WO2020048873A1 - Procédé de détermination d'une température ambiante d'une première unité d'accumulation d'énergie électrique en liaison avec des deuxièmes unités d'accumulation d'énergie électrique, et dispositif correspondant, logiciel et support de stockage lisible par machine - Google Patents

Procédé de détermination d'une température ambiante d'une première unité d'accumulation d'énergie électrique en liaison avec des deuxièmes unités d'accumulation d'énergie électrique, et dispositif correspondant, logiciel et support de stockage lisible par machine Download PDF

Info

Publication number
WO2020048873A1
WO2020048873A1 PCT/EP2019/073161 EP2019073161W WO2020048873A1 WO 2020048873 A1 WO2020048873 A1 WO 2020048873A1 EP 2019073161 W EP2019073161 W EP 2019073161W WO 2020048873 A1 WO2020048873 A1 WO 2020048873A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical energy
energy storage
storage unit
temperature
determining
Prior art date
Application number
PCT/EP2019/073161
Other languages
German (de)
English (en)
Inventor
Jens Becker
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201980057500.XA priority Critical patent/CN112639496A/zh
Publication of WO2020048873A1 publication Critical patent/WO2020048873A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/20Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Energy storage unit in conjunction with second electrical energy storage units and corresponding device, computer program and machine-readable storage medium
  • the present disclosure describes a method for determining the ambient temperature of a first electrical energy storage unit, which is in a network with second electrical energy storage units.
  • Electrical energy storage units in particular battery cells or electrical energy stores constructed from the same, show a strong dependency of their performance, i.e. in particular their current-carrying capacity or current-carrying capacity, their temperature.
  • the permissible electrical current drops sharply when the current is supplied or in particular when the current is drawn at temperatures of around or below 0 ° C.
  • An amperage that is higher than the permissible level thus frequently leads to damage to an electrical energy storage unit, for example lithium plating - the unwanted deposition of lithium - which cannot be reversed.
  • Compliance with the permissible current strengths is therefore an important requirement when operating electrical energy storage units.
  • the permissible current strengths can have a dependence on the temperature of the electrical energy storage units in order to take into account the temperature dependence of the performance.
  • the temperatures of the further electrical energy storage units in the network are optionally determined using mathematical models and methods. Since the mathematical models typically model heat exchange processes, knowledge of an ambient temperature of the corresponding electrical energy storage unit is required for precise mathematical modeling. If there is no knowledge of the ambient temperature, the temperatures of the other electrical energy storage units can only be estimated imprecisely. It is therefore necessary that their respective current limits have a corresponding safety buffer, as a result of which the entire performance of the further electrical energy storage units cannot be called up.
  • the electrical energy storage units are usually oversized.
  • a larger electrical capacity of the electrical energy storage units or a different type of cell, for example with different cell chemistry, may be required.
  • a method for determining an ambient temperature of a first electrical energy storage unit is disclosed, the first electrical energy is located in a network with second electrical energy storage units.
  • a network can represent a battery pack, for example.
  • a temperature of the first electrical energy storage unit is determined using a temperature sensor.
  • the temperature sensor can be mounted in or on the first electrical energy storage unit.
  • the environment can represent, for example, the air surrounding the first electrical energy storage unit or an enclosure, for example made of metal, of the first electrical energy storage unit or the first electrical energy storage unit and the second electrical energy storage units.
  • an ambient temperature of the surroundings of the first electrical energy storage unit is determined as a function of the temperature of the first electrical energy storage unit and the temperature difference.
  • An electrical current strength of an electrical current flowing into or out of the first electrical energy storage unit is expediently determined and compared with a predefined threshold value, with the reaching and / or falling below the predefined threshold value by the Current intensity at least determining a temperature of the first electrical energy storage unit and determining the temperature difference between the first electrical energy storage unit and its environment. This is advantageous because the ambient temperature can be determined more precisely under these conditions.
  • the predefined threshold value is advantageously between 0 A and 10 A, preferably between 0 A and 5 A, particularly preferably between 0 A and 1 A. This advantageously ensures that the first electrical energy storage unit is not too strong due to ohmic losses Is heated “from the inside”, which increases the accuracy of the determination of the ambient temperature.
  • the step of determining the ambient temperature can also be carried out if the predefined threshold value is exceeded, as long as it is ensured that the temperature of the first electrical energy storage unit and the temperature difference when reaching and / or falling below the predefined threshold value by the current intensity are ensured.
  • a temperature of a further one of the second electrical energy storage units is determined as a function of the determined ambient temperature of the first electrical energy storage unit.
  • power electronics are controlled, the current limits being set as a function of the average temperature of the further electrical energy storage unit.
  • Such power electronics can be an inverter, for example. This is advantageous since the current limits can be set more precisely, that is to say less conservatively - with less safety reserve - as a function of the determined ambient temperature, as a result of which a higher power output or power consumption is possible. This is particularly relevant for applications of electrical energy storage units in which they have to consume a lot of power in a short time, for example in so-called boost recuperation systems based on 48V.
  • the temperature sensor is expediently mounted in or on the first electrical energy storage unit. This is advantageous because the Temperature of the first electrical energy storage unit can be determined.
  • the temperature difference between the first electrical energy storage unit and the surroundings of the first electrical energy storage unit is expediently determined as a function of a rate of change in the temperature of the first electrical energy storage unit over time. This is advantageous because, using the temperature sensor, the rate of change in the temperature of the first electrical energy storage unit can be determined in a simple manner, which enables the method to be implemented quickly and easily and the ambient temperature to be determined precisely.
  • the temperature difference between the first electrical energy storage unit and the surroundings of the first electrical energy storage unit is expediently determined as a function of a constant, the constant representing the ratio of a heat capacity of the first electrical energy storage unit to a thermal resistance of the first electrical energy storage unit.
  • the execution sequence of the individual method steps is advantageously adapted to the requirements of a specific application.
  • the temperature of the first electrical energy storage unit can be determined before the current strength of the electrical current flowing into or out of the first electrical energy storage unit can be determined.
  • the disclosure furthermore relates to a device for determining the ambient temperature of a first electrical energy storage unit, comprising a temperature sensor which is in particular mounted in or on the first electrical energy storage unit, and at least one means which are set up to carry out the steps of the disclosed method.
  • a device for determining the ambient temperature of a first electrical energy storage unit comprising a temperature sensor which is in particular mounted in or on the first electrical energy storage unit, and at least one means which are set up to carry out the steps of the disclosed method.
  • the at least one means can, for example, be a battery management control device and can include corresponding power electronics, for example an inverter, and current sensors and / or voltage sensors and / or temperature sensors.
  • An electronic control unit in particular in the form of a battery management control device, can also be such a means.
  • An electronic control unit can include, in particular, an electronic control unit which, for example, contains a microcontroller and / or an application-specific hardware module, e.g. an ASIC, can be understood, but it can also include a personal computer or a programmable logic controller.
  • the disclosure furthermore relates to a computer program which comprises commands which cause the disclosed device to carry out the disclosed method steps. This is advantageous because the advantages of the disclosed method can be realized by the computer program.
  • the disclosure also relates to a machine-readable storage medium on which the disclosed computer program is stored.
  • the disclosed computer program can be easily distributed on the machine-readable storage medium.
  • An electrical energy storage unit can in particular be understood to mean an electrochemical battery cell and / or a battery module with at least one electrochemical battery cell and / or a battery pack with at least one battery module.
  • the electrical energy storage unit can be a lithium-based battery cell or a lithium-based battery module or a lithium-based battery pack.
  • the electrical energy storage unit can be a lithium-ion battery cell or a lithium-ion battery module or a lithium-ion battery pack.
  • a capacitor is also possible as an electrical energy storage unit.
  • Figure 1 is a flowchart of the disclosed method according to a first embodiment
  • FIG. 2 shows a flow diagram of the disclosed method according to a second embodiment
  • Figure 3 is a flowchart of the disclosed method according to a third embodiment.
  • Figure 4 is a schematic representation of the disclosed device according to one embodiment.
  • FIG. 1 shows a flow diagram of the disclosed method according to a first embodiment.
  • a temperature of a first electrical energy storage unit is determined by means of a temperature sensor fitted in or on the first electrical energy storage unit.
  • the first electrical energy storage unit is in a network with second electrical energy storage units.
  • a temperature difference between the first electrical energy storage unit and the surroundings of the first electrical energy storage unit is determined. This is the formula
  • M represents the mass of the electrical energy storage unit
  • c p the specific heat capacity of the electrical energy storage unit
  • the temporal rate of change in the temperature of the first electrical energy storage unit A ce n2 DCi the area over which heat is exchanged with neighboring electrical energy storage units
  • cc ceU2ceU the ⁇ heat transfer coefficient to neighboring electrical energy storage units
  • AT ce u 2ceii the temperature difference between the first electrical energy storage unit and an adjacent cell
  • Q a heat flow, which is composed of ohmic losses and heat due to chemical recations
  • a ce ii2env is the area over which heat is exchanged with the environment and a ce m env is the heat transfer coefficient to the environment, for example air, of the first electrical energy storage unit.
  • T env T sens + NT DC n env .
  • T sens represents the temperature of the first electrical energy storage unit determined in the first step and the ambient temperature of the first electrical energy storage unit.
  • Figure 2 shows a flow diagram of the disclosed method according to a two-th embodiment.
  • a current intensity of an electrical current flowing from a first electrical energy storage unit is determined. So this happens when the first electrical energy storage unit is discharged.
  • the first step Sil can also be carried out during a charging process of the first electrical energy storage unit.
  • the first electrical energy storage unit is in a network with second electrical energy storage units.
  • a second step S22 the current strength determined in the first step S21 is compared with a predefined threshold value, here, for example 1 A. If the determined current intensity is above the predefined threshold value, the first step S21 is carried out again. If the determined current intensity is below the determined threshold value or if the determined current intensity is equal to the determined threshold value, the process continues with the third step S23.
  • the term R * I 2 can be neglected due to the low current.
  • the predefined threshold is therefore chosen so that the influence of the heating of the first electrical energy storage unit is low or negligible due to a current flow.
  • the temperature of the first electrical energy storage unit is determined using a temperature sensor attached to the electrical energy storage unit.
  • a temperature sensor attached to the electrical energy storage unit.
  • a temperature difference between the first electrical energy storage unit and the surroundings of the first electrical energy storage unit is determined, the following formula being used for this purpose:
  • k denotes a constant, the constant representing the ratio of a heat capacity of the first electrical energy storage unit to a heat resistance of the first electrical energy storage unit.
  • This constant k can easily be determined, for example, in the run-up to the execution of the method by means of an experiment in the laboratory.
  • T env T sens + N ⁇ DC n env .
  • T Sens represents the temperature of the first electrical energy storage unit determined in the first step, the ambient temperature of the first electrical energy storage unit determined.
  • Figure 3 shows a flow diagram of the disclosed method according to a third embodiment.
  • the first step S31 corresponds to the first step Sil
  • the second step S32 corresponds to the second step S12
  • the third step S33 corresponds to the third step S13.
  • the first electrical energy storage unit is in a network with second electrical energy storage units.
  • the further electrical energy storage unit being one of the second electrical energy storage units.
  • a mathematical model for the temperature of the further electrical energy storage unit is used, so that a temperature sensor on the further electrical energy storage unit is not required.
  • the mathematical model can contain a differential equation for the temperature estimate of the further electrical energy storage unit, such as the following:
  • the mathematical model can be part of a Kalman filter or a Luenberger observer or another suitable control structure.
  • a fifth step S35 power electronics, for example an inverter, are then controlled in order to comply with at least one current limit value of the further electrical energy storage unit.
  • the current limit value is set as a function of the temperature of the further electrical energy storage unit determined in the fourth step S34. This makes it possible to call up a higher output from the further electrical energy storage unit since the current limit value can be set less conservatively due to the known temperature.
  • the disclosed method is used particularly for the current limit in the charging direction, since electrical energy storage units, in particular based on lithium-ions, are only charged with reduced currents at lower temperatures, in particular below 5 ° C., in order to avoid damage .
  • this current limit value in the charging direction can be set less conservatively, that is to say higher, since the temperature of the further electrical energy storage unit is determined and is therefore known.
  • the formula for determining the temperature difference between the first is electrical energy storage unit and the surroundings of the first electrical energy storage unit:
  • Equation the size bl DCI2cooi which represents an area of the first electrical energy storage unit to a cooling element, for example a cooling plate
  • the size cr DCi2cooi which represents a heat transfer coefficient to the cooling element
  • Ar DCi2cooi which represents a temperature difference between the first electrical energy storage unit and represents the cooling element
  • the two constants kl and k2 can be determined, for example, in a simple manner before the method is carried out in the laboratory by means of a laboratory experiment.
  • FIG. 3 shows a schematic representation of the disclosed device 40 according to one embodiment.
  • the device 40 is arranged in connection with battery cells 42 in a series circuit and electrically connected to one another via cell connectors 47.
  • a temperature sensor 41 is placed on the middle battery cell 46 of the composite consisting of seven battery cells to determine the temperature of the middle battery cell 46.
  • An environment 43 of the middle battery cell 46 is formed by the surrounding air.
  • the temperature sensor 41 transmits a temperature variable to the electronic one
  • Control unit 44 This transmission can, for example, be wireless or wired.
  • power electronics 45 for example an inverter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de détermination de la température ambiante d'une première unité d'accumulation d'énergie électrique. La première unité d'accumulation d'énergie électrique est en liaison avec des deuxièmes unités d'accumulation d'énergie électrique. Les étapes suivantes sont réalisées : a) déterminer la température de la première unité d'accumulation d'énergie électrique à l'aide d'un capteur de température ; b) déterminer la différence de température entre la première unité d'accumulation d'énergie électrique et l'environnement de la première unité d'accumulation d'énergie électrique ; c) déterminer la température ambiante en fonction de la température de la première unité d'accumulation d'énergie électrique et de la différence de température. L'invention concerne en outre Un dispositif correspondant, un logiciel correspondant et un support de stockage correspondant lisible par machine.
PCT/EP2019/073161 2018-09-04 2019-08-30 Procédé de détermination d'une température ambiante d'une première unité d'accumulation d'énergie électrique en liaison avec des deuxièmes unités d'accumulation d'énergie électrique, et dispositif correspondant, logiciel et support de stockage lisible par machine WO2020048873A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980057500.XA CN112639496A (zh) 2018-09-04 2019-08-30 用于确定与第二电蓄能单元复合的第一电蓄能单元的周围环境温度的方法以及相对应的设备、计算机程序和机器可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018214984.4A DE102018214984A1 (de) 2018-09-04 2018-09-04 Verfahren zur Ermittlung einer Umgebungstemperatur einer ersten elektrischen Energiespeichereinheit im Verbund mit zweiten elektrischen Energiespeichereinheiten sowie entsprechende Vorrichtung, Computerprogramm und maschinenlesbares Speichermedium
DE102018214984.4 2018-09-04

Publications (1)

Publication Number Publication Date
WO2020048873A1 true WO2020048873A1 (fr) 2020-03-12

Family

ID=67847704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073161 WO2020048873A1 (fr) 2018-09-04 2019-08-30 Procédé de détermination d'une température ambiante d'une première unité d'accumulation d'énergie électrique en liaison avec des deuxièmes unités d'accumulation d'énergie électrique, et dispositif correspondant, logiciel et support de stockage lisible par machine

Country Status (3)

Country Link
CN (1) CN112639496A (fr)
DE (1) DE102018214984A1 (fr)
WO (1) WO2020048873A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393911B (zh) * 2023-12-11 2024-04-16 江苏天合储能有限公司 储能系统的热管理方法、能量管理系统、储能系统及介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937528A (en) * 1988-10-14 1990-06-26 Allied-Signal Inc. Method for monitoring automotive battery status
EP1251360A1 (fr) * 2001-04-16 2002-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif pour la détermination d'une grandeur physique d'un bloc de batteries
US20070024244A1 (en) 2005-07-28 2007-02-01 Ford Global Technologies, Llc System and method for thermal management of a vehicle power source
EP2184800A1 (fr) * 2007-07-26 2010-05-12 Panasonic Corporation Dispositif de détection de court-circuit interne de pile, procédé, bloc-pile et système de dispositif électronique
CN102253347A (zh) * 2011-06-30 2011-11-23 大连大工安道船舶技术有限责任公司 电动汽车蓄电池soc估算系统
US20120290237A1 (en) * 2010-02-19 2012-11-15 Mitsuhiro Takahashi Battery condition detecting apparatus and battery condition detecting method
US20150035495A1 (en) * 2012-02-29 2015-02-05 Nec Energy Devices, Ltd. Battery control system and battery pack
EP2952920A1 (fr) * 2013-01-30 2015-12-09 Mitsubishi Electric Corporation Dispositif de surveillance de batterie, système de stockage d'énergie et système de commande
US20160091573A1 (en) * 2014-09-30 2016-03-31 Gs Yuasa International Ltd. Battery deterioration determination device, battery deterioration determination method, and vehicle
KR20160051198A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 이차 전지의 출력 조정 장치 및 방법
EP3050740A1 (fr) * 2015-01-29 2016-08-03 MAN Truck & Bus AG Procédé et dispositif de limitation de courant en fonction de la température pour un système de stockage d'énergie électrique
EP3121613A1 (fr) * 2014-03-18 2017-01-25 Kabushiki Kaisha Toshiba Procédé d'estimation de dégradation, système d'estimation de dégradation, et programme d'estimation de dégradation
CN106872904A (zh) * 2017-02-23 2017-06-20 合肥工业大学 基于离散滑模观测器的锂电池内部温度估计方法
EP3249736A1 (fr) * 2015-03-12 2017-11-29 Omron Corporation Batterie, système, dispositif de détection d'endommagement de batterie, procédé de gestion de batterie, programme de gestion de batterie, et support d'enregistrement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134065A1 (de) * 2001-07-13 2003-01-23 Vb Autobatterie Gmbh Verfahren zur Vorhersage der elektrischen Belastbarkeit eines elektrochemischen Energiespeichers
US7034507B2 (en) * 2003-07-03 2006-04-25 Micron Technology, Inc. Temperature sensing device in an integrated circuit
DE102005062148B4 (de) * 2005-11-25 2014-11-13 Audi Ag Verfahren zum Ermitteln des Betriebszustands eines Energiespeichers für elektrische Energie
DE102006004786A1 (de) * 2006-02-02 2007-08-09 Hella Kgaa Hueck & Co. Verfahren zur Bestimmung einer Systemtemperatur einer elektrochemischen Batterie
EP1947432A3 (fr) * 2007-01-19 2011-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Capteur de température, capteur et procédé destiné à la détermination d'une température d'un milieu, procédé de fabrication d'un capteur de température destiné à la détermination améliorée de la température d'un milieu et procédé destiné à la fabrication d'un capteur, qui peut en plus déterminer une température d'un milieu
DE102010063376A1 (de) * 2010-12-17 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Temperaturregelverfahren für einen elektrochemischen Energiespeicher in einem Fahrzeug
JP2013005663A (ja) * 2011-06-21 2013-01-07 Toyota Motor Corp 電池パック入出力制御装置
JP2015191777A (ja) * 2014-03-28 2015-11-02 三菱電機株式会社 蓄電システム及び電池パックの運転方法
KR101628489B1 (ko) * 2014-09-25 2016-06-08 현대자동차주식회사 차량용 고전압 배터리 제어 장치 및 방법
EP3255721B1 (fr) * 2016-06-08 2020-04-29 Robert Bosch GmbH Procédé de régulation de la température d'une cellule de batterie

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937528A (en) * 1988-10-14 1990-06-26 Allied-Signal Inc. Method for monitoring automotive battery status
EP1251360A1 (fr) * 2001-04-16 2002-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif pour la détermination d'une grandeur physique d'un bloc de batteries
US20070024244A1 (en) 2005-07-28 2007-02-01 Ford Global Technologies, Llc System and method for thermal management of a vehicle power source
EP2184800A1 (fr) * 2007-07-26 2010-05-12 Panasonic Corporation Dispositif de détection de court-circuit interne de pile, procédé, bloc-pile et système de dispositif électronique
US20120290237A1 (en) * 2010-02-19 2012-11-15 Mitsuhiro Takahashi Battery condition detecting apparatus and battery condition detecting method
CN102253347A (zh) * 2011-06-30 2011-11-23 大连大工安道船舶技术有限责任公司 电动汽车蓄电池soc估算系统
US20150035495A1 (en) * 2012-02-29 2015-02-05 Nec Energy Devices, Ltd. Battery control system and battery pack
EP2952920A1 (fr) * 2013-01-30 2015-12-09 Mitsubishi Electric Corporation Dispositif de surveillance de batterie, système de stockage d'énergie et système de commande
EP3121613A1 (fr) * 2014-03-18 2017-01-25 Kabushiki Kaisha Toshiba Procédé d'estimation de dégradation, système d'estimation de dégradation, et programme d'estimation de dégradation
US20160091573A1 (en) * 2014-09-30 2016-03-31 Gs Yuasa International Ltd. Battery deterioration determination device, battery deterioration determination method, and vehicle
KR20160051198A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 이차 전지의 출력 조정 장치 및 방법
EP3050740A1 (fr) * 2015-01-29 2016-08-03 MAN Truck & Bus AG Procédé et dispositif de limitation de courant en fonction de la température pour un système de stockage d'énergie électrique
EP3249736A1 (fr) * 2015-03-12 2017-11-29 Omron Corporation Batterie, système, dispositif de détection d'endommagement de batterie, procédé de gestion de batterie, programme de gestion de batterie, et support d'enregistrement
CN106872904A (zh) * 2017-02-23 2017-06-20 合肥工业大学 基于离散滑模观测器的锂电池内部温度估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOICO F ET AL: "Solar Battery Chargers for NiMH Batteries", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 22, no. 5, 1 September 2007 (2007-09-01), pages 1600 - 1609, XP011191696, ISSN: 0885-8993, DOI: 10.1109/TPEL.2007.904164 *
RAIJMAKERS LUC H J ET AL: "Non-Zero Intercept Frequency: An Accurate Method to Determine the Integral Temperature of Li-Ion Batteries", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 63, no. 5, 1 May 2016 (2016-05-01), pages 3168 - 3178, XP011605691, ISSN: 0278-0046, [retrieved on 20160408], DOI: 10.1109/TIE.2016.2516961 *

Also Published As

Publication number Publication date
CN112639496A (zh) 2021-04-09
DE102018214984A1 (de) 2020-03-05

Similar Documents

Publication Publication Date Title
DE69730413T2 (de) Batteriesteuerungssystem und batteriesimulator
EP1941288B1 (fr) Procede et dispositif pour commander le point de fonctionnement d'une batterie
DE102011054778B4 (de) Algorithmus zur Bestimmung der Kapazität einer Batterie während des Batteriebetriebs
EP2798695B1 (fr) Procédé de régulation de la température d'au moins un élément de batterie, batterie et véhicule équipé d'une telle batterie
EP3017496B1 (fr) Procédé de gestion de batterie et système de gestion de batterie
DE102010024241A1 (de) Verfahren zur Verwendung mit einem Fahrzeugbatteriestapel, der eine Anzahl einzelner Batteriezellen aufweist
DE102012212869A1 (de) Verfahren und System zum Steuern einer Fahrzeugbatterie
DE102012110555B4 (de) Kombiniertes PI-Regelungs- und Vorsteuerverfahren für den Zellenladezustandsausgleich
DE102010034105A1 (de) Verfahren zum Aufladen eines Steckdosenelektrofahrzeugs
DE102009058263A1 (de) System und Verfahren zum Aufladen eines Steckdosen-Elektrofahrzeugs
EP1189326B1 (fr) Procédé de surveillancde de l'état de charge d'un accumulateur alcalin étanche
DE102015109286A1 (de) System und Verfahren zur Batterieleerlaufspannungsschätzung
DE102016007479A1 (de) Verfahren und Vorrichtung zum Laden einer Batteriezelle und Verfahren zum Bereitstellen eines Ladestromstärkenkennfeldes
DE102017105067A1 (de) Batteriekapazitäts-Schätzung auf Basis elektrochemischer Modelle reduzierter Ordnung
WO2015180910A1 (fr) Procédé de gestion de batterie, et système de gestion de batterie
DE102015109282A1 (de) System und Verfahren zum Batteriemanagement
WO2019206953A1 (fr) Procédé de détermination d'un état de la liaison thermique d'au moins un composant à l'intérieur d'un système accumulateur d'énergie électrique à une source de chaleur ou à un dissipateur thermique
WO2020048873A1 (fr) Procédé de détermination d'une température ambiante d'une première unité d'accumulation d'énergie électrique en liaison avec des deuxièmes unités d'accumulation d'énergie électrique, et dispositif correspondant, logiciel et support de stockage lisible par machine
WO2018228806A1 (fr) Procédé et dispositif de chargement d'une cellule de stockage d'énergie électrochimique rechargeable
DE102018104212A1 (de) Lithiumanreicherung zum eindämmen von kapazitätsverlust in li-ionen-batterien
DE102020202307A1 (de) Elektrisches Energiespeichersystem mit mehreren elektrochemischen Energiespeichereinheiten unterschiedlicher elektrochemischer Art in Reihenschaltung
DE102013215316A1 (de) Verfahren zur Zustandserkennung eines Energiespeichers
DE102021203390B3 (de) Verfahren zum spannungsgeführten Betrieb eines Batteriesystems während eines Ladevorgangs
DE102017222217A1 (de) Verfahren zum Laden einer Batterie, Auswerteeinheit eines Stromnetzes und Automobil
DE102013206612A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Zustandsgröße einer Batteriezelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19762754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19762754

Country of ref document: EP

Kind code of ref document: A1