WO2020047775A1 - 一种小径管管座角焊缝相控阵检测试块及其使用方法 - Google Patents

一种小径管管座角焊缝相控阵检测试块及其使用方法 Download PDF

Info

Publication number
WO2020047775A1
WO2020047775A1 PCT/CN2018/104187 CN2018104187W WO2020047775A1 WO 2020047775 A1 WO2020047775 A1 WO 2020047775A1 CN 2018104187 W CN2018104187 W CN 2018104187W WO 2020047775 A1 WO2020047775 A1 WO 2020047775A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
dac
hole
verification
vertical
Prior art date
Application number
PCT/CN2018/104187
Other languages
English (en)
French (fr)
Inventor
齐高君
杜传国
徐学堃
庞继勇
张勇
Original Assignee
中国电建集团山东电力建设第一工程有限公司
山东丰汇工程检测有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团山东电力建设第一工程有限公司, 山东丰汇工程检测有限公司 filed Critical 中国电建集团山东电力建设第一工程有限公司
Priority to PCT/CN2018/104187 priority Critical patent/WO2020047775A1/zh
Publication of WO2020047775A1 publication Critical patent/WO2020047775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects

Definitions

  • the invention relates to an ultrasonic detection technology, in particular to a phased array detection test block for fillet welds of a small diameter pipe seat and a method for using the same.
  • fillet weld of the pipe seat is complicated, and the welding conditions are harsh. During the welding process, defects such as pores, slag inclusions, incomplete penetration, unfusion, and cracks are prone to occur. During the operation, it is easy to receive uneven forces and cause stress concentration. Therefore, in the inspection of power station boilers, fillet welds of tube sockets are the most common failure sites, and they are also the key inspection and monitoring sites.
  • Phased array inspection technology uses electronic control methods to apply specific focusing rules to multiple wafers to achieve the deflection and focusing of the acoustic beam, and real-time imaging of defects, providing a single probe for determining the shape, size and direction of defects.
  • the system has stronger detection capabilities. Therefore, as a cutting-edge detection technology, phased array ultrasonic testing has been used more and more widely in the field of tube fillet welding.
  • the test block needs to be used to calibrate the performance of the instrument and the probe and the performance of the combined system. Therefore, the test block is a very important tool in the phased array test and directly affects the accuracy of the test results.
  • phased array ultrasonic beam has a large range and complex sound field characteristics. There are also differences in sound pressure characteristics and theoretical values at various points in the sound field range. Therefore, process verification is required before detection to confirm the sound beam coverage and sensitivity. Ensure that defects are not missed.
  • the type of the reflector used in the simulation test block is single, and the structure is different from the real fillet weld, which is not applicable.
  • Phased array ultrasonic detection method has the same near-field area as conventional ultrasonic detection.
  • the sound pressure distribution in the near-field area is uneven.
  • the instrument often cannot accurately display the reflection energy characteristics of the defects, especially It is very unfavorable to test the welded joints of small-diameter thin-walled pipes.
  • the encoder of the scanning rack needs to be calibrated every day. During calibration, a soft ruler is wound around the pipe to measure a certain length as a measurement reference. It is more troublesome to operate, and the soft ruler is prone to slip and cause inaccurate measurement, affecting the detection data.
  • the present invention provides a calibration test block specially used for phased array detection of fillet welds of small-diameter pipe sockets. Its structural design is reasonable, functions are complete, and it is easy to carry. It solves the angular gain of conventional test blocks. Correction, sensitivity curve production, and process verification test are significantly different from the actual inspection, which improves the accuracy of defect detection.
  • a small-diameter pipe seat fillet weld phased array test block includes an encoding debugging block, a left DAC verification block, a right DAC verification block, an angle gain correction block, and a near-field defect comparison block; the left DAC verification block and The right DAC verification block is a part taken from the fillet weld of the small diameter pipe seat.
  • the left and right DAC verification blocks are symmetrically arranged and their upper ends are connected to the coding debugging block.
  • the lower end of the left DAC verification block and the right end of the angle gain correction block are welded to obtain a left corner weld.
  • the lower end of the right DAC verification block is Weld the left end of the defect comparison block in the near field to obtain the right fillet weld;
  • the small-diameter pipe seat fillet weld phased array test block, the reflector on the left DAC verification block includes No. 1 horizontal through hole, No. 1 vertical through hole, and No. 4 rectangular groove with rectangular cross section;
  • the No. 1 horizontal through hole is provided on the upper part of the left DAC verification block and traverses the DAC verification block;
  • the No. 1 vertical through hole is provided on the right side of the left corner weld and passes through the left corner weld, and is perpendicular to the No. 1 horizontal through hole in space;
  • the No. 4 rectangular groove is provided along the outer circumferential direction of the left corner weld.
  • the small-diameter pipe seat fillet weld phased array detection test block, the reflector on the right DAC verification block includes No. 1 rectangular groove, No. 2 rectangular groove, No. 3 rectangular groove, and No. 2 longitudinal through hole;
  • the No. 1 rectangular slot, No. 2 rectangular slot and No. 3 rectangular slot are all arranged along the circumferential direction of the inner wall of the right DAC verification block and are arranged up and down;
  • the No. 2 vertical through hole is arranged on the lower side of the right corner weld and passes through the right corner weld and is parallel to the No. 1 longitudinal through hole.
  • the reflectors on the contrast detection inclined surface include equidistantly arranged contrast holes No. 1 to No. 4, the axes of the No. 1 to No. 4 contrast holes are parallel to each other and both extend perpendicularly to the inclined plane inwardly.
  • the right detection surface is an arc surface and its curvature coincides with the small-diameter pipe, and the angle between the inclined surface and the plane where the detection surface is located is 55 °.
  • the left side of the left DAC verification block is a correction detection surface
  • the upper side is a left detection surface.
  • the correction detection surface is an arc surface and has a radius of 50 mm.
  • the left detection surface is an arc surface and its curvature coincides with the small diameter tube.
  • the above-mentioned small-diameter pipe seat fillet weld phased array detection test block has a diameter of 2 mm for the No. 1 horizontal through hole, No. 1 vertical through hole, and No. 2 vertical through hole, and the No. 1 vertical through hole is provided on the left 1/3 of the vertical height of the right side of the fillet weld, and the second longitudinal through hole is set at 1/3 of the lateral length of the lower side of the right fillet;
  • the diameters of the first to fourth contrast holes are 2 mm in diameter, and the vertical distance between the respective ends of the first to fourth contrast holes and the right detection surface is an increasing number of equal difference series.
  • the vertical distance between the end of the first comparison hole and the right detection surface is 2mm, and the distance between the end of the second comparison hole and the right detection surface
  • the vertical distance is 4mm
  • the vertical distance between the end of the third contrast hole and the right detection surface is 6mm
  • the vertical distance between the end of the fourth contrast hole and the right detection surface is 8mm.
  • the small-diameter pipe seat fillet weld phased array detection test block is provided with a scale on an outer wall of the coding debugging block;
  • the opening height of the No. 4 rectangular groove is 1 mm and the depth is 2 mm.
  • the opening height of the first rectangular groove is 1mm, and the depth is 1mm.
  • the opening height of the second rectangular groove is 1 mm and the depth is 3 mm.
  • the opening height of the No. 3 rectangular groove is 1 mm and the depth is 2 mm.
  • the horizontal position of the No. 3 rectangular groove corresponds to the lower side of the right fillet weld.
  • the method for using the phased array test block for the fillet weld of the small-diameter pipe seat includes the following:
  • Encoder calibration and debugging Install the scanning rack with encoder on the small diameter pipe section, rotate the scanning rack, make the encoder walk a certain length according to the scale display of the coding debugging block, and then adjust the testing instrument parameters to display The value is consistent with the distance actually traveled by the encoder to complete the calibration of the encoder;
  • Angle gain correction of the detection instrument place the phased array probe on the left detection surface of the angle gain correction block and align the front end of the probe with the correction detection surface, and then move the probe back and forth one by one for each required angle sound beam to gain correction In order to make the sound beam at various angles meet the detection requirements;
  • the invention has reasonable design, multiple functions, and convenient use. Under the condition of ensuring that the equipment is qualified, only this test block can be used to complete the adjustment of the phased array instrument; the applicability is strong, and both the placement type and the plug-in socket fillet weld are applicable.
  • the present invention improves the situation in which conventional test blocks differ greatly from actual detection in terms of angle gain correction, sensitivity curve production, and process verification tests.
  • the invention provides a set of rectangular grooves with different depths, which greatly improves the measurement accuracy of unwelded defects.
  • the present invention provides a reflector setting form for the comparison of stomatal defects in the near field region, which improves the defect detection accuracy in this region.
  • the invention optimizes a semi-circular test block, changes the detection surface to an arc surface, saves the process of frequently replacing the wedge block, and improves the accuracy of the angular gain correction.
  • the end of the test block is processed by the scale ruler, eliminating the need for a soft ruler bundle measurement process, and improving the encoder calibration accuracy.
  • FIG. 1 is a schematic perspective view of an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of another embodiment of the present invention.
  • FIG. 3 is a schematic front view of an embodiment of the present invention.
  • FIG. 5 is a schematic left side view of an embodiment of the present invention.
  • FIG. 6 is a schematic right side view of an embodiment of the present invention.
  • FIG. 7 is a schematic top view of an embodiment of the present invention.
  • 1 is the coding debugging block
  • 2 is the left DAC verification block
  • 3 is the right DAC verification block
  • 4 is the angle gain correction block
  • 5 is the near-field defect comparison block
  • 21 is No. 1 horizontal through hole
  • 22 is No. 1 vertical through hole
  • 23 is No. 4 rectangular slot
  • 31 is No. 1 rectangular slot
  • 32 is No. 2 rectangular slot
  • 33 is No. 3 rectangular slot
  • 34 No. 2 vertical through hole
  • 41 is the correction detection surface
  • 42 is the left detection surface
  • 51 is the number one contrast hole
  • 52 is the number two contrast hole
  • 53 is the number three contrast hole
  • 54 is the number four contrast hole
  • 55 is the right detection surface.
  • a phased array detection test block for fillet welds of a small-diameter pipe socket comprising an encoding debugging block 1, a left DAC verification block 2, a right DAC verification block 3, an angular gain correction block 4, and a near field defect comparison block 5;
  • the left DAC verification block 2 and the right DAC verification block 3 are a part taken from the fillet weld of the small-diameter pipe seat.
  • the height of the code debugging block 1 is 50 mm;
  • the heights of the left and right DAC verification blocks 2 and 3 are 80 mm.
  • the left and right DAC verification blocks 2 and 3 are symmetrically arranged and the upper ends thereof are connected to the coding debugging block 1.
  • the lower ends of the left DAC verification blocks 2 and The right end of the angle gain correction block 4 is welded to obtain a left corner weld, and the lower end of the right DAC verification block 3 is welded to the left end of the near-field defect comparison block 5 to obtain a right corner weld;
  • the left DAC verification block 2, the right DAC verification block 3, and the near-field defect comparison block 5 are each provided with several reflectors.
  • the above-mentioned small-diameter tube seat fillet weld phased array test block, the reflector on the left DAC verification block 2 includes a No. 1 horizontal through hole 21, a No. 1 vertical through hole 22, and a No. 4 rectangular groove 23 having a rectangular cross section. ;
  • the first horizontal through hole 21 is provided on the upper part of the left DAC verification block 2 and traverses the DAC verification block 2;
  • the first through-hole 22 is located on the right side of the left corner weld and passes through the left-corner weld, and is perpendicular to the first through-hole 21 in space;
  • the fourth rectangular groove 23 is provided along the outer circumferential direction of the left corner weld.
  • the reflector on the right DAC verification block 3 includes a rectangular groove No. 31, a rectangular groove No. 32, a rectangular groove No. 3, and a longitudinal through hole No. 2 34;
  • the first rectangular slot 31, the second rectangular slot 32, and the third rectangular slot 33 are all arranged along the circumferential direction of the inner wall of the right DAC verification block 3 and arranged up and down;
  • the second vertical through hole 34 is disposed on the lower side of the right fillet weld and passes through the right fillet weld and is parallel to the first vertical fill hole 22.
  • the phased array detection test block for the fillet weld of the small-diameter tube seat, the right side of the near-field defect comparison block 5 is a contrast detection inclined plane, and the upper side is a right detection plane 55;
  • the reflector on the contrast detection inclined surface includes equidistantly arranged contrast holes 51, 52, 53, 54 of numbers one to four, and the axes of the contrast holes 51, 52, 53, 54 of numbers one to four are parallel to each other and All extend perpendicularly to the inclined plane inward.
  • the right detection surface 55 is an arc surface and its curvature coincides with the small-diameter tube, and the included angle between the inclined surface and the plane where the detection surface 55 is located is 55 °.
  • the left side of the left DAC verification block 2 is a correction detection surface 41, and the upper side is a left detection surface 42.
  • the correction detection surface 41 is an arc surface and its The radius is 50 mm
  • the left detection surface 42 is an arc surface, and its curvature coincides with the small diameter tube.
  • the above-mentioned small-diameter pipe seat fillet weld phased array detection test block has a diameter of 2 mm for the No. 1 horizontal through hole 21, No. 1 vertical through hole 22, and No. 2 vertical through hole 34; the No. 1 horizontal through hole;
  • the vertical distance between 21 and the lower end face of the coding debugging block 1 is 30mm, the first vertical through hole 22 is provided at 1/3 of the vertical height of the right side of the left corner weld, and the second vertical through hole 34 is provided at 1/3 of the lateral length of the lower side of the right corner weld;
  • the diameters of the first to fourth contrast holes 51, 52, 53, 54 are 2 mm, and the ends of the first to fourth contrast holes 51, 52, 53, 54 are perpendicular to the right detection surface 55.
  • the distance is an increasing number of equal difference series.
  • the vertical distance between the end of the first comparison hole 51 and the right detection surface 55 is 2 mm, and the end of the second comparison hole 52 and the right detection surface
  • the vertical distance between 55 is 4mm
  • the vertical distance between the end of the third contrast hole 53 and the right detection surface 55 is 6mm
  • the vertical distance between the end of the fourth contrast hole 54 and the right detection surface 55 The distance is 8mm.
  • the small-diameter pipe seat fillet weld phased array detection test block is provided with a scale on an outer wall of the coding debugging block 1;
  • the opening height of the No. 4 rectangular groove 23 is 1 mm and the depth is 2 mm.
  • the opening height of the first rectangular slot 31 is 1 mm and the depth is 1 mm, and the vertical distance from the lower end surface of the coding debugging block 1 is 50 mm;
  • the opening height of the second rectangular slot 32 is 1 mm and the depth is 3 mm, and the vertical distance from the first rectangular slot 31 is 40 mm;
  • the opening height of the No. 3 rectangular groove 33 is 1 mm and the depth is 2 mm.
  • the horizontal position of the No. 3 rectangular groove 33 corresponds to the lower side of the right corner weld, that is, the perpendicularity of the No. 3 rectangular groove 33 and the No. 2 rectangular groove 32.
  • the distance is 20mm.
  • the method of using the above test blocks includes the following 1) -5) contents:
  • the phased array sound beam range is larger than that of a conventional ultrasonic sound beam.
  • the first longitudinal through hole 22 and the second longitudinal through hole 34 are separately arranged to avoid mutual interference of reflector echoes.
  • the No. 1 vertical through hole 22 and the No. 2 vertical through hole 34 are disposed on the DAC verification block 3 having a curvature, and the sensitivity curve made by it is closer to the real detection situation, which improves the detection accuracy.
  • No. 1 vertical through hole 22 is located near the probe side in the vertical direction of the left fillet
  • No. 2 vertical through hole 34 is located near the probe side in the horizontal direction of the right fillet. These two positions are close to the maximum sensitivity of the reflected wave.
  • the sensitivity curve can be satisfied by using the No. 1 vertical through hole 22 and the No. 2 vertical through hole 34, and it is better than DL-1 and GS Test blocks are more efficient and accurate.
  • the settings of the reflectors of the left DAC verification block 2 and the right DAC verification block 3 have multiple functions: since the phased array device can not only display waveforms but also powerful image display functions, the first vertical through hole 22 and the second vertical through hole
  • the hole 34 can be used for both the production of the sensitivity curve and the verification of the rationality of the detection process according to its imaging quality.
  • No. 3 rectangular groove 33 is a characteristic of non-penetration, and in combination with No. 1 rectangular groove 31 and No. 2 rectangular groove 32, the unpenetrated depth of the pipe fillet weld can be compared and measured.
  • the fourth rectangular groove 23 is an unfused characterization, and can be used as a reference for the actual characterization of defects.
  • the left detection surface 42 is a curved surface design, the process of replacing the flat wedge and the arc wedge is omitted, and the calibration error is reduced, and the detection accuracy is improved.
  • Defect comparison block in the near field 5 Place the phased array probe on the right detection surface 55, the front end of the probe is facing the contrast detection slope, and move the probe back and forth to measure the reflection of the contrast holes 51, 52, 53, 54 of No. 1 to No. 4
  • the data are stored in the testing instrument; the defects found in the near-field area are compared with the reflection characteristics of No. 1 to No. 4 contrast holes 51, 52, 53, 54 to calculate the actual burial depth of the defects.
  • the right detection surface 55 is an arc surface and its curvature coincides with the small-diameter tube. The purpose is to improve the coupling between the probe and the test block and improve the test accuracy.
  • the common small-diameter tube self-focusing phased array probe center angle is mostly 55 °.
  • the angle between the contrast detection slope and the right detection surface is 55 °.
  • the reflectors No. 1 to No. 4 contrast holes 51, 52, 53, 54 are perpendicular to the contrast. Detect the oblique arrangement so that the axis of the phased array sound beam is perpendicular to the upper end surfaces of the contrast holes 51, 52, 53, 54 of No. 1 to No. 4 to simulate the reflection characteristics of real stomatal defects.
  • the comparative reflector and the arrangement form disclosed by the present invention improve the detection accuracy of stomatal defects in the near field region.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种小径管管座角焊缝相控阵检测试块及其使用方法。试块包括编码调试块(1)、左DAC验证块(2)、右DAC验证块(3)、角度增益修正块(4)和近场区缺陷对比块(5);左DAC验证块(2)和右DAC验证块(3)为小径管管座角焊接处截取的一部分,左DAC验证块(2)、右DAC验证块(3)对称设置且其上端均与编码调试块(1)连接,左DAC验证块(2)的下端与角度增益修正块(4)右端焊接得到左角焊缝,右DAC验证块(3)的下端与近场区缺陷对比块(5)的左端焊接得到右角焊缝;左DAC验证块(2)、右DAC验证块(3)和近场区缺陷对比块(5)上均设有数个反射体。

Description

一种小径管管座角焊缝相控阵检测试块及其使用方法 技术领域
本发明涉及超声检测技术,具体涉及一种小径管管座角焊缝相控阵检测试块及其使用方法。
背景技术
管座角焊缝结构复杂,焊接条件恶劣,在焊接过程中容易出现气孔、夹渣、未焊透、未熔合和裂纹等缺陷;在运行过程中容易受力不均,产生应力集中。因此在电站锅炉检验中,管座角焊缝是多见的失效部位,也是重点检验和监测部位。
相控阵检测技术采用电子控制方式按特定的聚焦法则施加于多个晶片,来实现声束的偏转、聚焦,并对缺陷进行实时成像,为确定缺陷的形状、大小和方向提供了比单个探头系统更强的检测能力。因此相控阵超声检测作为一项前沿检测技术,在管座角焊缝的检测领域得到了越来越广泛的应用。但是在进行相控阵检测前,需要采用试块对仪器、探头各自性能和组合系统性能校准,因此试块是相控阵检测中非常重要的工具,直接影响检测结果的精度。
目前常采用R50或者R100半圆试块进行角度增益修正;直接采用常规超声波使用的DL-1或者GS试块进行灵敏度曲线的制作,常采用自制焊接缺陷试样进行工艺验证试验。现有标准没有形成一套相控阵专用试块体系,还有一些试块直接使用的是常规超声波试块,直接影响了相控阵检测结果的准确性。
技术问题
(1)、现行国内标准中没有规定专门用于小径管检测灵敏度确定的试块,现在通常在DL-1或者GS试块上调整灵敏度,采用直射波对不同深度的横通孔进行测试得到灵敏度曲线,而角焊缝检测中绝大多数使用的是一次反射波检测,因此与角焊缝中实际缺陷的回波特征存在差异,尤其在4~8mm厚度的薄壁管检测中比较明显。
(2)、相控阵超声波束范围大,声场特征复杂,声场范围内各点的声压特征与理论值也存在差异,所以检测前需要进行工艺验证,对声束覆盖及灵敏度进行确认,以保证缺陷不漏检。目前常用的模拟试块反射体类型单一,并且结构形式与真实管座角焊缝存在差异,适用性不强。
(3)、相控阵仪器检测前需要进行角度增益修正,目前使用R50半圆标准试块进行测试。该试块的探头接触面是平面,需要先更换平楔块,校调完成后再换回相应的曲面楔块进行检测,操作繁琐,并且更换曲面楔块后对修正好的仪器参数会产生不利影响。
(4)、相控阵超声检测方法与常规超声检测同样具有近场区,近场区的声压分布是不均匀的,该区域存在缺陷时仪器往往不能精确地显示缺陷的反射能特征,尤其是对小径薄壁管焊接接头的检测是非常不利的。
(5)、扫查架编码器每天都需要进行校准,校准时用软尺在管道上缠绕量取一定长度作为测量基准,操作时比较麻烦,并且软尺容易产生滑动导致测量不准,影响检测数据。
(6)、角度增益修正、灵敏度曲线制作、工艺验证均需要在不同的试块上进行,需备齐各种试块,现场携带不便。
技术解决方案
为了解决上述问题,本发明提供了一种专门用于小径管管座角焊缝相控阵检测用的校准试块,其结构设计合理、功能齐全、便于携带,解决了常规试块在角度增益修正、灵敏度曲线制作和工艺验证试验方面与实际检测情况差异较大的问题,提高了缺陷检测精度。
本发明采用的技术方案如下:
一种小径管管座角焊缝相控阵检测试块,包括编码调试块、左DAC验证块、右DAC验证块、角度增益修正块和近场区缺陷对比块;所述左DAC验证块和右DAC验证块为小径管管座角焊接处截取的一部分,
所述左、右DAC验证块对称设置且其上端均与编码调试块连接,所述左DAC验证块的下端与角度增益修正块右端焊接得到左角焊缝,所述右DAC验证块的下端与近场区缺陷对比块的左端焊接得到右角焊缝;
所述左DAC验证块、右DAC验证块和近场区缺陷对比块上均设有数个反射体。
上述小径管管座角焊缝相控阵检测试块,所述左DAC验证块上的反射体包括一号横通孔、一号纵通孔和截面为矩形的四号矩形槽;
所述一号横通孔设在左DAC验证块上部且横穿DAC验证块;
所述一号纵通孔设在左角焊缝的右侧且穿过左角焊缝、与一号横通孔呈空间垂直;
所述四号矩形槽沿左角焊缝的外圆周方向设置。
上述小径管管座角焊缝相控阵检测试块,所述右DAC验证块上的反射体包括一号矩形槽、二号矩形槽、三号矩形槽和二号纵通孔;
所述一号矩形槽、二号矩形槽和三号矩形槽均沿右DAC验证块的内壁圆周方向设置且呈上下布置;
所述二号纵通孔设在右角焊缝的下侧且穿过右角焊缝、与一号纵通孔平行。
上述小径管管座角焊缝相控阵检测试块,所述近场区缺陷对比块的右侧为对比检测斜面、上面为右检测面;
所述对比检测斜面上的反射体包括等距布置的一号至四号对比孔,所述一号至四号对比孔的轴线互相平行且均垂直于斜面向内延伸。
上述小径管管座角焊缝相控阵检测试块,所述右检测面为圆弧面且其曲率与小径管吻合,所述 斜面与比检测面所在平面的夹角为55°。
上述小径管管座角焊缝相控阵检测试块,所述左DAC验证块的左侧为修正检测面、上面为左检测面,所述修正检测面为圆弧面且其为半径50mm,所述左检测面为圆弧面且其曲率与小径管吻合。
上述小径管管座角焊缝相控阵检测试块,所述一号横通孔、一号纵通孔和二号纵通孔的直径均为2mm,所述一号纵通孔设在左角焊缝右侧边竖直高度的1/3处,所述二号纵通孔设在右角焊缝下侧边横向长度的1/3处;
所述一号至四号对比孔的直径均为2mm,所述一号至四号对比孔各自的末端与右检测面之间的垂直距离为逐渐递增的等差数列。
上述小径管管座角焊缝相控阵检测试块,所述一号对比孔的末端与右检测面之间的垂直距离为2mm,所述二号对比孔的末端与右检测面之间的垂直距离为4mm,所述三号对比孔的末端与右检测面之间的垂直距离为6mm,所述四号对比孔与的末端与右检测面之间的垂直距离为8mm。
上述小径管管座角焊缝相控阵检测试块,所述编码调试块的外壁上设有刻度;
所述四号矩形槽的开口高度为1mm、深度为2mm,
所述一号矩形槽的开口高度为1mm、深度为1mm,
所述二号矩形槽的开口高度为1mm、深度为3mm,
所述三号矩形槽的开口高度为1mm、深度为2mm,所述三号矩形槽的水平位置对应于右角焊缝的下侧边。
上述小径管管座角焊缝相控阵检测试块的使用方法,包括如下内容:
1)编码器校准调试:将带有编码器的扫查架安装在小径管管段上,旋转扫查架,使编码器按照编码调试块的刻度显示行走一定长度,然后调整检测仪器参数使其显示值与编码器实际走过的距离一致,完成编码器的校准;
2)制作DAC(灵敏度)曲线:将探头放置在左DAC验证块上,探头前端对准一号纵通孔,来回移动探头找到该反射体一号纵通孔的最高波位置,检测仪器记录该位置点信息;然后将探头放置在右DAC验证块上,探头前端对准二号纵通孔,来回移动探头找到该反射体二号纵通孔的最高波位置,检测仪器记录该位置点信息;之后两点连线即生成灵敏度曲线;
3)管座角焊缝工艺验证:将探头放置在左DAC验证块的管壁上,探头前端朝下对准左角焊缝,观察检测仪器屏幕是否能清楚显示一号纵通孔和四号矩形槽的回波图像;然后再转移到右DAC验证块的管壁上,观察检测仪器屏幕是否能清楚显示三号矩形槽和二号纵通孔回波图;如果均能清晰显示则说明本次管座角焊缝工艺合格;
4)检测仪器的角度增益修正:将相控阵探头放在角度增益修正块的左检测面上并使探头前端对 准修正检测面,然后前后移动探头逐一对各所需角度声束进行增益修正以使各角度声束满足检测要求;
5)近场区缺陷对比:将相控阵探头放置在近场区缺陷对比块的右检测面上,探头前端朝向对比检测斜面,前后移动探头测定一号至四号对比孔的反射特征,将数据储存在检测仪器中;对近场区发现的缺陷与一号至四号对比孔的反射特征进行数据比对,计算出缺陷实际的埋藏深度。
有益效果
1、本发明设计合理、功能多、使用方便。在保证仪器设备合格的条件下只需本试块即可完成对相控阵仪器的调校;适用性强,安放式、插入式管座角焊缝均适用。
2、本发明改善了常规试块在角度增益修正、灵敏度曲线制作和工艺验证试验方面与实际检测情况差异较大的情况。
3、本发明设置一组不同深度的矩形槽,大大提高了对未焊透缺陷的测量精度。
4、本发明提供了一种用于近场区气孔类缺陷对比的反射体设置形式,提高该区域的缺陷检测精度。
5、本发明优化了半圆试块,将检测面改成圆弧面,省去了频繁更换楔块的工序,提高了角度增益修正精度。
6、本发明将刻度标尺加工试块端部,省去了软尺捆绑测量的工序,提高了编码器校准精度。
附图说明
图1为本发明实施例的立体示意图;
图2为本发明实施例的另一视角立体示意图;
图3为本发明实施例的主视示意图;
图4为本发明实施例的局部示意图;
图5为本发明实施例的左视示意图;
图6为本发明实施例的右视示意图;
图7为本发明实施例的俯视示意图。
图中:1为编码调试块、2为左DAC验证块、3为右DAC验证块、4为角度增益修正块、5为近场区缺陷对比块、
21为一号横通孔、22为一号纵通孔、23为四号矩形槽、31为一号矩形槽、32为二号矩形槽、33为三号矩形槽、34二号纵通孔、41为修正检测面、42为左检测面、51为一号对比孔、52为二号对比孔、53为三号对比孔、54为四号对比孔、55为右检测面。
本发明的最佳实施方式
下面结合附图对本发明进一步解释说明。
一种小径管管座角焊缝相控阵检测试块,包括编码调试块1、左DAC验证块2、右DAC验证块3、角度增益修正块4和近场区缺陷对比块5;所述左DAC验证块2和右DAC验证块3为小径管管座角焊接处截取的一部分,本实施例中编码调试块1高度为50mm;
所述左、右DAC验证块2、3的高度为80mm,所述左、右DAC验证块2、3对称设置且其上端均与编码调试块1连接,所述左DAC验证块2的下端与角度增益修正块4右端焊接得到左角焊缝,所述右DAC验证块3的下端与近场区缺陷对比块5的左端焊接得到右角焊缝;
所述左DAC验证块2、右DAC验证块3和近场区缺陷对比块5上均设有数个反射体。
上述小径管管座角焊缝相控阵检测试块,所述左DAC验证块2上的反射体包括一号横通孔21、一号纵通孔22和截面为矩形的四号矩形槽23;
所述一号横通孔21设在左DAC验证块2上部且横穿DAC验证块2;
所述一号纵通孔22设在左角焊缝的右侧且穿过左角焊缝、与一号横通孔21呈空间垂直;
所述四号矩形槽23沿左角焊缝的外圆周方向设置。
上述小径管管座角焊缝相控阵检测试块,所述右DAC验证块3上的反射体包括一号矩形槽31、二号矩形槽32、三号矩形槽33和二号纵通孔34;
所述一号矩形槽31、二号矩形槽32和三号矩形槽33均沿右DAC验证块3的内壁圆周方向设置且呈上下布置;
所述二号纵通孔34设在右角焊缝的下侧且穿过右角焊缝、与一号纵通孔22平行。
上述小径管管座角焊缝相控阵检测试块,所述近场区缺陷对比块5的右侧为对比检测斜面、上面为右检测面55;
所述对比检测斜面上的反射体包括等距布置的一号至四号对比孔51、52、53、54,所述一号至四号对比孔51、52、53、54的轴线互相平行且均垂直于斜面向内延伸。
上述小径管管座角焊缝相控阵检测试块,所述右检测面55为圆弧面且其曲率与小径管吻合,所述斜面与比检测面55所在平面的夹角为55°。
上述小径管管座角焊缝相控阵检测试块,所述左DAC验证块2的左侧为修正检测面41、上面为左检测面42,所述修正检测面41为圆弧面且其为半径50mm,所述左检测面42为圆弧面且其曲率与小径管吻合。
上述小径管管座角焊缝相控阵检测试块,所述一号横通孔21、一号纵通孔22和二号纵通孔34的直径均为2mm;所述一号横通孔21与编码调试块1下端面的垂直距离为30mm,所述一号纵通孔22设在左角焊缝右侧边竖直高度的1/3处,所述二号纵通孔34设在右角焊缝下侧边横向长度的1/3处;
所述一号至四号对比孔51、52、53、54的直径均为2mm,所述一号至四号对比孔51、52、 53、54各自的末端与右检测面55之间的垂直距离为逐渐递增的等差数列。
上述小径管管座角焊缝相控阵检测试块,所述一号对比孔51的末端与右检测面55之间的垂直距离为2mm,所述二号对比孔52的末端与右检测面55之间的垂直距离为4mm,所述三号对比孔53的末端与右检测面55之间的垂直距离为6mm,所述四号对比孔54与的末端与右检测面55之间的垂直距离为8mm。
上述小径管管座角焊缝相控阵检测试块,所述编码调试块1的外壁上设有刻度;
所述四号矩形槽23的开口高度为1mm、深度为2mm,
所述一号矩形槽31的开口高度为1mm、深度为1mm,其与编码调试块1下端面的垂直距离为50mm;
所述二号矩形槽32的开口高度为1mm、深度为3mm,其与一号矩形槽31的垂直距离为40mm;
所述三号矩形槽33的开口高度为1mm、深度为2mm,所述三号矩形槽33的水平位置对应于右角焊缝的下侧边即三号矩形槽33与二号矩形槽32的垂直距离为20mm。
上述试块的使用方法包括如下1)-5)个内容:
1)用编码调试块1对编码器校准调试:将带有编码器的扫查架安装在小径管管段上,旋转扫查架,使编码器按照编码调试块1的刻度显示行走一定长度,然后调整检测仪器参数使其显示值与编码器实际走过的距离一致,完成编码器的校准,方便快捷,校准精度高。
2)制作DAC灵敏度曲线:将探头放置在左DAC验证块2上,探头前端对准一号纵通孔22,来回移动探头找到该反射体一号纵通孔22的最高波位置,检测仪器记录该位置点信息;然后将探头放置在右DAC验证块3上,探头前端对准二号纵通孔34,来回移动探头找到该反射体二号纵通孔34的最高波位置,检测仪器记录该位置点信息;之后两点连线即生成灵敏度曲线。
相控阵声束范围比常规超声声束范围大,一号纵通孔22和二号纵通孔34分开设置避免了反射体回波的相互干扰。并且一号纵通孔22和二号纵通孔34设置在具有曲率的DAC验证块3上,其做出的灵敏度曲线更接近真实检测情形,提高了检测精度。一号纵通孔22设置在左角焊缝垂直方向近探头侧,二号纵通孔34设置在右角焊缝水平方向远探头侧,这两处位置分别接近一次反射波的灵敏度极大值处和极小值处,因此对于管座角焊缝相控阵检测来说,用一号纵通孔22和二号纵通孔34制作灵敏度曲线便可满足检测要求,并且比DL-1和GS试块更高效、更精确。
3)进行工艺验证:将探头放置在左DAC验证块2的管壁上,探头前端朝下对准左角焊缝,观察检测仪器屏幕是否能清楚显示一号纵通孔22和四号矩形槽23的回波图像;然后再转移到右DAC验证块3的管壁上,观察检测仪器屏幕是否能清楚显示三号矩形槽33和二号纵通孔34回波图;如果均能清晰显示则说明本次管座角焊缝工艺合格。
左DAC验证块2和右DAC验证块3的反射体的设置有多重功能:由于相控阵设备不仅可以 波形显示并且还有强大的图像显示功能,因此一号纵通孔22和二号纵通孔34既可用于灵敏度曲线的制作,也可根据其成像质量来验证检测工艺的合理性。三号矩形槽33是未焊透的表征,并且与一号矩形槽31和二号矩形槽32联合使用便可对管座角焊缝的未焊透深度进行比对测量,一号矩形槽31深1mm、三号矩形槽33深2mm、二号矩形槽32深3mm正好形成一个深度序列,可通过实测数据比对,得出实际未焊透缺陷的深度数值。四号矩形槽23是未熔合的表征,可用于实际缺陷定性时的参照。
4)对检测仪器进行角度增益修正:将相控阵探头放在角度增益修正块4的左检测面42上并使探头前端对准修正检测面41,然后前后移动探头逐一对各所需角度声束进行增益修正以使各角度声束满足检测要求。
由于左检测面42是曲面设计,这样省去了平楔块与圆弧楔块进行更换的流程,并且减小校准误差,提高了检测精度。
5)近场区缺陷对比块5:将相控阵探头放置在右检测面55上,探头前端朝向对比检测斜面,前后移动探头测定一号至四号对比孔51、52、53、54的反射特征,将数据储存在检测仪器中;对近场区发现的缺陷与一号至四号对比孔51、52、53、54的反射特征进行数据比对,计算出缺陷实际的埋藏深度。
右检测面55为圆弧面且其曲率与小径管吻合,目的在于探头和试块耦合良好,提高测试精度。常见的小径管自聚焦相控阵探头中心角度多为55°,对比检测斜面与右检测面55成55°夹角,反射体一号至四号对比孔51、52、53、54垂直于对比检测斜面布置,这样就可以使相控阵声束轴线垂直于一号至四号对比孔51、52、53、54的上端面,用来模拟真实气孔类缺陷的反射特征。本发明公开的该种对比反射体及其布置形式,提高了对近场区气孔类缺陷的检测精度。
本申请公开了一种新型试块的结构形式和设计理念,根据检测对象的实际规格和焊接形式,参照本申请公开的内容可加工出相应专用试块。结合附图对本申请的试块特征和具体实施方式进行了描述,但并非对本申请保护范围的限制。所属领域技术人员应该明白,在本申请技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形,仍在本申请权利要求的保护范围以内。

Claims (10)

  1. 一种小径管管座角焊缝相控阵检测试块,其特征在于:包括编码调试块(1)、左DAC验证块(2)、右DAC验证块(3)、角度增益修正块(4)和近场区缺陷对比块(5);所述左DAC验证块(2)和右DAC验证块(3)为小径管管座角焊接处截取的一部分,
    所述左、右DAC验证块(2、3)对称设置且其上端均与编码调试块(1)连接,所述左DAC验证块(2)的下端与角度增益修正块(4)右端焊接得到左角焊缝,所述右DAC验证块(3)的下端与近场区缺陷对比块(5)的左端焊接得到右角焊缝;
    所述左DAC验证块(2)、右DAC验证块(3)和近场区缺陷对比块(5)上均设有数个反射体。
  2. 根据权利要求1所述小径管管座角焊缝相控阵检测试块,其特征在于:所述左DAC验证块(2)上的反射体包括一号横通孔(21)、一号纵通孔(22)和截面为矩形的四号矩形槽(23);
    所述一号横通孔(21)设在左DAC验证块(2)上部且横穿DAC验证块(2);
    所述一号纵通孔(22)设在左角焊缝的右侧且穿过左角焊缝、与一号横通孔(21)呈空间垂直;
    所述四号矩形槽(23)沿左角焊缝的外圆周方向设置。
  3. 根据权利要求2所述小径管管座角焊缝相控阵检测试块,其特征在于:所述右DAC验证块(3)上的反射体包括一号矩形槽(31)、二号矩形槽(32)、三号矩形槽(33)和二号纵通孔(34);
    所述一号矩形槽(31)、二号矩形槽(32)和三号矩形槽(33)均沿右DAC验证块(3)的内壁圆周方向设置且呈上下布置;
    所述二号纵通孔(34)设在右角焊缝的下侧且穿过右角焊缝、与一号纵通孔(22)平行。
  4. 根据权利要求3所述小径管管座角焊缝相控阵检测试块,其特征在于:所述近场区缺陷对比块(5)的右侧为对比检测斜面、上面为右检测面(55);
    所述对比检测斜面上的反射体包括等距布置的一号至四号对比孔(51、52、53、54),所述一号至四号对比孔(51、52、53、54)的轴线互相平行且均垂直于斜面向内延伸。
  5. 根据权利要求4所述小径管管座角焊缝相控阵检测试块,其特征在于:所述右检测面(55)为圆弧面且其曲率与小径管吻合,所述斜面与比检测面(55)所在平面的夹角为55°。
  6. 根据权利要求4所述小径管管座角焊缝相控阵检测试块,其特征在于:所述左DAC验证块(2)的左侧为修正检测面(41)、上面为左检测面(42),所述修正检测面(41)为圆弧面且其为半径50mm,所述左检测面(42)为圆弧面且其曲率与小径管吻合。
  7. 根据权利要求4所述小径管管座角焊缝相控阵检测试块,其特征在于:所述一号横通孔(21)、一号纵通孔(22)和二号纵通孔(34)的直径均为2mm,所述一号纵通孔(22)设在左角焊缝右侧边竖直高度的1/3处,所述二号纵通孔(34)设在右角焊缝下侧边横向长度的1/3处;
    所述一号至四号对比孔(51、52、53、54)的直径均为2mm,所述一号至四号对比孔(51、 52、53、54)各自的末端与右检测面(55)之间的垂直距离为逐渐递增的等差数列。
  8. 根据权利要求7所述小径管管座角焊缝相控阵检测试块,其特征在于:所述一号对比孔(51)的末端与右检测面(55)之间的垂直距离为2mm,所述二号对比孔(52)的末端与右检测面(55)之间的垂直距离为4mm,所述三号对比孔(53)的末端与右检测面(55)之间的垂直距离为6mm,所述四号对比孔(54)与的末端与右检测面(55)之间的垂直距离为8mm。
  9. 根据权利要求7所述小径管管座角焊缝相控阵检测试块,其特征在于:所述编码调试块(1)的外壁上设有刻度;
    所述四号矩形槽(23)的开口高度为1mm、深度为2mm,
    所述一号矩形槽(31)的开口高度为1mm、深度为1mm,
    所述二号矩形槽(32)的开口高度为1mm、深度为3mm,
    所述三号矩形槽(33)的开口高度为1mm、深度为2mm,所述三号矩形槽(33)的水平位置对应于右角焊缝的下侧边。
  10. 一种如权利要求9所述小径管管座角焊缝相控阵检测试块的使用方法,其特征在于包括如下内容:
    1)编码器校准调试:将带有编码器的扫查架安装在小径管管段上,旋转扫查架,使编码器按照编码调试块(1)的刻度显示行走一定长度,然后调整检测仪器参数使其显示值与编码器实际走过的距离一致,完成编码器的校准;
    2)制作DAC(灵敏度)曲线:将探头放置在左DAC验证块(2)上,探头前端对准一号纵通孔(22),来回移动探头找到该反射体一号纵通孔(22)的最高波位置,检测仪器记录该位置点信息;然后将探头放置在右DAC验证块(3)上,探头前端对准二号纵通孔(34),来回移动探头找到该反射体二号纵通孔(34)的最高波位置,检测仪器记录该位置点信息;之后两点连线即生成灵敏度曲线;
    3)管座角焊缝工艺验证:将探头放置在左DAC验证块(2)的管壁上,探头前端朝下对准左角焊缝,观察检测仪器屏幕是否能清楚显示一号纵通孔(22)和四号矩形槽(23)的回波图像;然后再转移到右DAC验证块(3)的管壁上,观察检测仪器屏幕是否能清楚显示三号矩形槽(33)和二号纵通孔(34)回波图;如果均能清晰显示则说明本次管座角焊缝工艺合格;
    4)检测仪器的角度增益修正:将相控阵探头放在角度增益修正块(4)的左检测面(42)上并使探头前端对准修正检测面(41),然后前后移动探头逐一对各所需角度声束进行增益修正以使各角度声束满足检测要求;
    5)近场区缺陷对比:将相控阵探头放置在近场区缺陷对比块(5)的右检测面(55)上,探头前端朝向对比检测斜面,前后移动探头测定一号至四号对比孔(51、52、53、54)的反射特征,将数据储存在检测仪器中;对近场区发现的缺陷与一号至四号对比孔(51、52、53、54)的反射特征 进行数据比对,计算出缺陷实际的埋藏深度。
PCT/CN2018/104187 2018-09-05 2018-09-05 一种小径管管座角焊缝相控阵检测试块及其使用方法 WO2020047775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104187 WO2020047775A1 (zh) 2018-09-05 2018-09-05 一种小径管管座角焊缝相控阵检测试块及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104187 WO2020047775A1 (zh) 2018-09-05 2018-09-05 一种小径管管座角焊缝相控阵检测试块及其使用方法

Publications (1)

Publication Number Publication Date
WO2020047775A1 true WO2020047775A1 (zh) 2020-03-12

Family

ID=69721800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104187 WO2020047775A1 (zh) 2018-09-05 2018-09-05 一种小径管管座角焊缝相控阵检测试块及其使用方法

Country Status (1)

Country Link
WO (1) WO2020047775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068061A (zh) * 2023-04-06 2023-05-05 中国科学院合肥物质科学研究院 一种超导磁体内部接头环焊缝检测对比试块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124238A (ko) * 2010-11-08 2010-11-26 주식회사 삼영검사엔지니어링 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
CN103293224A (zh) * 2013-05-08 2013-09-11 江苏法尔胜材料分析测试有限公司 一种钢箱梁u肋角焊缝的超声相控阵检测方法
CN203595688U (zh) * 2013-12-06 2014-05-14 天津诚信达金属检测技术有限公司 一种t型焊接接头tofd检测对比试块
CN203838125U (zh) * 2014-04-16 2014-09-17 天津诚信达金属检测技术有限公司 一种集箱管座角焊缝超声相控阵检测对比试块
CN204989115U (zh) * 2015-10-09 2016-01-20 上海市特种设备监督检验技术研究院 一种t型焊缝试块
CN105938122A (zh) * 2016-06-15 2016-09-14 田国良 一种薄壁小径管相控阵检测对比试块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124238A (ko) * 2010-11-08 2010-11-26 주식회사 삼영검사엔지니어링 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
CN103293224A (zh) * 2013-05-08 2013-09-11 江苏法尔胜材料分析测试有限公司 一种钢箱梁u肋角焊缝的超声相控阵检测方法
CN203595688U (zh) * 2013-12-06 2014-05-14 天津诚信达金属检测技术有限公司 一种t型焊接接头tofd检测对比试块
CN203838125U (zh) * 2014-04-16 2014-09-17 天津诚信达金属检测技术有限公司 一种集箱管座角焊缝超声相控阵检测对比试块
CN204989115U (zh) * 2015-10-09 2016-01-20 上海市特种设备监督检验技术研究院 一种t型焊缝试块
CN105938122A (zh) * 2016-06-15 2016-09-14 田国良 一种薄壁小径管相控阵检测对比试块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068061A (zh) * 2023-04-06 2023-05-05 中国科学院合肥物质科学研究院 一种超导磁体内部接头环焊缝检测对比试块

Similar Documents

Publication Publication Date Title
CN111537612B (zh) 一种奥氏体不锈钢小径管焊接接头相控阵检测及评定方法
CN103293224B (zh) 一种钢箱梁u肋角焊缝的超声相控阵检测方法
CN108226303B (zh) 一种异种钢电子束焊缝超声检测试块的检测方法
CN109946387B (zh) 小径管相控阵超声检测对比试块及使用该试块的检测校验方法
CN109100427B (zh) 一种小径管管座角焊缝相控阵检测试块及其使用方法
CN108414616A (zh) Tmcp钢板对接焊缝相控阵超声检测方法
CN110988139A (zh) 一种浮标底板与舢板焊接相控阵超声检测方法
JP2002048773A (ja) レール溶接部超音波探傷用校正試験片
CN108872400B (zh) 一种小径管焊接接头相控阵超声检测用对比试块
CN109239184B (zh) 一种管座角焊缝超声相控阵检测方法
CN112255307A (zh) 一种用于全焊接球阀压盖焊缝的超声相控阵检测方法
CN113866279B (zh) 曲面双轴肩搅拌摩擦焊缝的超声波相控阵检测方法
WO2020047775A1 (zh) 一种小径管管座角焊缝相控阵检测试块及其使用方法
CN109507302B (zh) 测定较薄板材焊缝缺陷的对比反射体试块及方法
CN113834874B (zh) 基于civa仿真及分析接管角焊缝缺陷的方法
CN215932146U (zh) 一种用于测量承压设备几何尺寸的综合检测仪
CN208833714U (zh) 一种小径管管座角焊缝相控阵检测试块
CN215932145U (zh) 一种用于精准测量承压设备几何尺寸的综合检测仪
CN114624337A (zh) 一种筒体纵焊缝tofd检测缺陷深度修正方法
WO2019091029A1 (zh) 铝合金焊接壳体焊缝的相控阵超声检测方法
CN208860814U (zh) 一种小径管焊接接头相控阵超声检测用对比试块
CN103207240B (zh) 一种斜探头超声场纵向声压分布的测量方法
CN112326799A (zh) 相控阵技术在压力管道定期检验评级中应用的方法
CN114324578A (zh) 一种铁素体钢容器薄板对接焊缝相控阵超声检测方法
WO2020047848A1 (zh) 一种小径管焊接接头相控阵超声检测用对比试块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932918

Country of ref document: EP

Kind code of ref document: A1