WO2020047762A1 - 目镜、眼睛模拟器装置、人体模拟器及训练方法 - Google Patents

目镜、眼睛模拟器装置、人体模拟器及训练方法 Download PDF

Info

Publication number
WO2020047762A1
WO2020047762A1 PCT/CN2018/104059 CN2018104059W WO2020047762A1 WO 2020047762 A1 WO2020047762 A1 WO 2020047762A1 CN 2018104059 W CN2018104059 W CN 2018104059W WO 2020047762 A1 WO2020047762 A1 WO 2020047762A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
simulated
image
eyelid
eyepiece
Prior art date
Application number
PCT/CN2018/104059
Other languages
English (en)
French (fr)
Inventor
刘雁飞
刘朝群
陆君
周继彬
•N. 布鲁萨尔•大卫
米勒•查尔斯•G.
伍兹•杰里
• D. 奥姆斯特德•克利福德
Original Assignee
天津天堰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津天堰科技股份有限公司 filed Critical 天津天堰科技股份有限公司
Priority to PCT/CN2018/104059 priority Critical patent/WO2020047762A1/zh
Priority to US17/273,242 priority patent/US11967250B2/en
Priority to CN201880095930.6A priority patent/CN112585663B/zh
Publication of WO2020047762A1 publication Critical patent/WO2020047762A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones

Definitions

  • the invention relates to an eye simulation device, in particular to a device for simulating human eye movement, a display device and a training method.
  • Traditional analog eyeballs are limited in terms of function, reliability and practical operation.
  • traditional analog eyeballs need to work with pneumatic actuators or electric gear motors, but these pneumatic actuators or motors may generate noise interference, and Mechanical failure may occur prematurely;
  • traditional simulated eyeballs cannot be used to manually open the simulated eyelid operation (the simulated eyelid should be forced to open for inspection), and some components can only achieve simple eye opening and closing movements and The pupil changes, the eyes cannot move with the movement of an object, and the structure is complicated, the volume is large, and it is inconvenient to use.
  • An object of the present invention is to provide an eye simulator device for the limitation of the traditional simulated eyeball, which cannot allow medical workers to manually open the simulated eyelid, and cannot simulate the real scene where the eyelid is forced to open.
  • the invention relates to an eye simulator device having an electromagnetic coil connected to an execution arm and the execution arm to control the simulated eyelid movement of the eyepiece on the device; the device may further include a simulated eyeball for projecting an image to the eyepiece.
  • the invention discloses an eyepiece, including:
  • a display for projecting at least one image onto the anterior surface of the eyeball or projecting at least one image through the anterior surface of the eyeball, the at least one image being a 2D or 3D image of a human eye.
  • it further comprises an image sensor, which is arranged coaxially or off-axis with the display.
  • the image sensor is used to detect at least one of light brightness, light intensity, light movement, light wavelength, object motion, temperature, and pressure.
  • the at least one image includes at least one of a sclera, an iris, or a pupil.
  • the invention also discloses an eye simulator device, including the eyepiece, and further comprising:
  • Simulating eyelids movably connected to the support for cooperating with the simulating eyeballs;
  • the actuator assembly includes an execution arm and an electromagnetic coil connected to the execution arm.
  • the execution arm is mechanically connected to the simulated eyelid, and is configured to drive the simulated eyelid to generate eye movement.
  • a base is further included, the base is a housing of the actuator assembly, and the support member extends from the base.
  • it further comprises a circuit connected to the actuator assembly and the display, the circuit for generating a bipolar pulse with a modulated signal. Further preferably, it further comprises a position sensor for recording the position of the simulated eyelid and transmitting the position to the circuit.
  • a centering magnet is further included, and the centering magnet is used to drive the actuator arm to a default position.
  • the invention also discloses a human body simulator including at least one of the eye simulator devices, and the eye simulator device is located in at least one eye socket of the human body simulator.
  • the invention also discloses a method for physician training, the method includes:
  • the at least one image is a 2D or 3D image of a human eye, including at least one of a sclera, an iris, or a pupil; the eye state Including redness of the sclera, yellowing of the sclera, and / or turbidity of the sclera;
  • Tracking the motion of an object by the image sensor enables the display to generate significant pupil movement.
  • it further comprises implementing the display to generate an eye state based on an operator's operation, realizing the simulated eyelid generating eye activity, and realizing the display to generate significant pupil movement.
  • the present invention has the beneficial effects that it can not only realize the eye opening and closing movements of the simulated eyelids, but also realize the manual opening and closing of the simulated eyelids, and the position of the simulated eyelids can be controlled to make the simulated eyes more real and more Intuitive motion changes; projecting at least one image onto the anterior surface of the eyeball through the image sensor or projecting at least one image through the anterior surface of the eyeball to achieve the state of the eye; it can also realize that the eye can follow the object's Move while moving.
  • the structure of the invention is relatively simple, and it can be placed in the orbit of any human body simulator, which greatly realizes the standardization of the product. It can be widely applied to various types of simulated people, making the simulated people more real, and the medical staff can understand humans more intuitively. Eye movement changes.
  • FIG. 1A is a schematic diagram of an embodiment of an eye simulator device
  • FIG. 1B is a front view of an embodiment of an eye simulator device
  • FIG. 1C is a right side view of an embodiment of an eye simulator device.
  • FIG. 2 is a schematic diagram of an image display projected on or through the eyepiece.
  • FIG. 3A is a schematic diagram of the off-axis arrangement of the image sensor and the display
  • FIG. 3B is a schematic diagram of the coaxial arrangement of the image sensor and the display.
  • Figure 4 is a schematic diagram of an actuator assembly for use with an eye simulator device.
  • Figure 5 is a side view of an actuator assembly for use with an eye simulator device.
  • Figure 6 is a top view of an actuator assembly for use with an eye simulator device.
  • FIG. 7 is an exemplary schematic diagram of an embodiment of a circuit for use with an eye simulator device.
  • FIG. 8A is a schematic diagram of the simulated eyelid in the closed eye position
  • FIG. 8B is a schematic diagram of the simulated eyelid in the position between the closed eye and the open position (for example, an intermediate position)
  • FIG. 8C is a simulated eyelid in the opened eye position schematic diagram.
  • 100-eye simulator device 102-base; 104-circuit; 106-actuator assembly; 108-eyepiece; 110-base first (front) side; 112-base second (rear) side; 113- Screw; 114-top of base; 116-bottom of base; 118-supports; 120-simulation eyeball; 122-support first end; 124-support second end; 126-base longitudinal axis; 128-base transverse axis; 130- Simulated eyelids; 132- Pivot; 134- Simulated inner surface of eyelid; 136- Simulated outer surface of eyelid; 138- Simulated first side of eyelid; 140- Simulated second side of eyelid; 142- Supported first side; 144- Supported second Side; 146-simulated lens; 148-sclera; 150-iris; 152-pupil; 154-display; 156-convex front surface; 158-image sensor; 160-driver controller; 162-first
  • the eye simulator device 100 in this embodiment may be an independent device.
  • the eye simulator device 100 may be a simulated eye supported by a support 118.
  • the eye simulator device 100 may be part of another device.
  • the eye simulator device 100 may be placed in the orbit of the human body simulator.
  • Embodiments of the eye simulator device 100 can be used to simulate eye functions (such as opening simulated eyelids, closing simulated eyelids, blinking, pupil dilation, etc.) and eye states (such as redness indicating irritation, yellowing of liver disease, and conjunctiva Inflammation pink, etc.), medical workers can learn and train by simulating eye function and eye state.
  • the simulated eyeball device 100 may include a base portion 102, which may be a mechanism that supports the components of the eye simulator device 100.
  • the base 102 may be a housing; the housing may contain the circuit 104, the actuator assembly 106, and / or other components, and the outer surface of the housing may support the eyepiece 108 and / or other components, for example,
  • the base 102 may be a housing having a rectangular shape having a base first (front) side 110, a base second (rear) side 112, a base top 114 and a base bottom 116; the base first (front) side 110 may support an eyepiece 108.
  • the second (rear) side 112 of the base may be attached to, for example, a part of a human body simulator (eg, to the orbit of a mannequin) by screws 113 or similar fasteners.
  • the second (rear) side 112 of the base may allow the eye simulator device 100 to stand upright.
  • the base 102 may include an internal circuit 104; the base 102 further includes an actuator assembly 106, and the circuit 104 and the actuator assembly 106 may be electrically connected to each other and the eyepiece 108; the base 102 may be made of a rigid material such as metal, plastic, Glass fiber, glass, ceramic, etc.
  • the eyepiece 108 may be attached to the base 102 via a support 118 that is attached to or may be attached to the base 102, for example, the support 118 may be welded, screwed or otherwise Fasteners, glue, fixed to the base 102 by mating, etc .; the support 118 attached to the base 102 may extend from the first (front) side 110 of the base.
  • the support 118 can support the eyepiece 108 of the simulated eyeball 120 to facilitate the electrical connection between the eyepiece 108 and the circuit 104.
  • the support 118 can have a support first end 122 and a support second end 124.
  • the support first end 122 can be The opening in the first (front) side 110 of the base is attached to the base 102, the supporting second end 124 can support the simulated eyeball 120, the inside of the support 118 can be hollowed out to form a catheter, and a wire or other electrical connection can be passed in the catheter.
  • the cable can realize the electrical connection between the circuit 104 in the base 102 and at least one component of the eyepiece 108.
  • the support member 118 has a flat square shape at the support first end 122 and protrudes backward to form a columnar shape, and then forms a dish or bowl shape at the support second end 124.
  • the dish or bowl shape can be similar to the shape of the eyeball 120 Complementary.
  • the support second end 124 may be connected to at least a portion of the simulated eyeball 120; in some embodiments, the simulated eyeball 120 and the support 118 may be a single structure; in some embodiments, the support 118 may be shaped similar to a human eye Optic nerve and / or retina.
  • the support 118 may extend from the intersection of the base longitudinal axis 126 and the base transverse axis 128 of the first (front) side 110 of the base, for example, the opening of the first (front) side 110 of the base is located at the base At the intersection of the longitudinal axis 126 and the base transverse axis 128, it is conceivable that the support member 118 extends from the intersection of the base longitudinal axis 126 and the base transverse axis 128 on the first (front) side 110 of the base, and the support member 118 may also extend from the base 102 The rest of the extension.
  • the eye simulator device 100 may include a simulated eyelid 130, which may be a component attached to the support 118 via a pivot 132, for example, a simulated eyelid 130 may be attached to the support first end 122, a pivot 132 may be a rotatable hub assembly, a hinge, a syringe structure, a bushing and seat construction, and the like.
  • the simulated eyelid 130 has a dome or helmet shape and may cover at least a portion of the simulated eyeball 120.
  • the simulated eyelid 130 has a simulated inner eyelid surface 134 and a simulated outer eyelid surface 136, wherein the simulated eyelid 130
  • the shape may complement the shape of at least the simulated eyelid inner surface 134 and the simulated eyelid outer surface 136, which may allow the simulated eyelid 130 to be placed on at least a portion of the simulated eyeball 120 (eg, a portion of the simulated eyeball 120 may fit to the simulated eyelid inner surface 134).
  • the simulated eyelid 130 includes a simulated eyelid first side 138 and a simulated eyelid second side 140, and the simulated eyelid first side 138 and simulated eyelid second side 140 are respectively attached to the support first side 142 and the support A second side 144, such as a simulated eyelid first side 138 may be attached to the support first side 142 via a first pivot 132, a simulated eyelid second side 140 may be attached to the support second side 144 via a second pivot 132 .
  • the connecting part of the pivot 132 can cause the simulated eyelid 130 to rotate around the pivot 132, and at the same time, the simulated eyelid 130 can pass through the portion of the simulated eyeball 120.
  • the simulated eyelid 130 can rotate around the pivot 132 to make The simulated eyelid 130 rotates around an axis defined by or parallel to the base transverse axis 128.
  • the simulated eyelid 130 may be made of a rigid material, such as metal, plastic, fiberglass, glass, ceramic, or the like.
  • the simulated eyelid 130 may be made of a semi-rigid material, such as a semi-rigid material of polymer, rubber, silicon, plastic, or the like.
  • the simulated eyelid 130 may be made of a flexible material.
  • the eyepiece 108 may include a simulated eyeball 120 that has a hemispherical shape with a convex front surface 156 that simulates a real human eye.
  • the simulated eyeball 120 may include features such as simulated lens 146, sclera 148, iris 150, pupil 152, and the like.
  • the simulated eyeball 120 may be made of glass, plastic, ceramic, or the like, and the simulated eyeball 120 may be transparent or translucent.
  • the eyepiece 108 may further include a display 154.
  • the display 154 has a plurality of array pixels for generating an image. For example, the illumination of the pixels in the array can generate various images.
  • the display 154 may be a liquid crystal display (LCD), an active matrix organic light emitting diode (AMOLED), or the like.
  • the display 154 may be located within the simulated eyeball 120, and the display 154 may project at least one image onto the front surface 156 of the simulated eyeball 120 or project at least one image through the convex front surface 156 of the eye.
  • the simulated lens 146 may be projections from the display 154, and the image may be a 2D or 3D view of the human eye.
  • the simulated lens 146 may be an optical element (eg, glass, ceramic, plastic, etc.), and the optical element is located near the display 154.
  • the simulated lens 146 may be positioned between the display 154 and the convex front surface 156 of the eye ;
  • the analog lens 146 is configured to condense, diverge, and / or transmit light from the display 154.
  • the display 154 may also generate other images that simulate the state of the eyeball 120, including projecting the projected image onto the sclera 148 of the simulated eyeball 120 to simulate redness of the sclera (eg, irritation, conjunctivitis, etc.); projecting the projected image to the sclera of the simulated eyeball 120 On 148, scleral yellowing is simulated (eg, hepatitis, obstruction of the liver, liver disease, etc.); the projected image is projected onto the opacity of sclera 148 (eg, glaucoma), etc. of the simulated eyeball 120.
  • scleral yellowing is simulated (eg, hepatitis, obstruction of the liver, liver disease, etc.)
  • the projected image is projected onto the opacity of sclera 148 (eg, glaucoma), etc. of the simulated eyeball 120.
  • the display 154 may project an image with enlarged pupils, an image with reduced pupils, an image with misaligned pupils (ie, strabismus, amblyopia, etc.), and the like.
  • the image sensor 158 can also be used to track the movement of the object (for example, the image sensor 158 can be a motion sensor). The physician can use the object (such as a finger, a light pointer, etc.) to make the pupil 152 follow the object. For example, the pupil 152 The image in is moved with the movement of the object, which can be achieved by moving the image of the pupil 152 when different pixels of the display 154 are illuminated to represent the pupil 152.
  • the sequence of pixels in the display 154 may be illuminated to produce an image of the pupil 152, thereby moving over the sclera 148.
  • the display 154 may also use other image projections, including, for example, projecting blood vessels in the sclera 148.
  • the eyepiece 108 may further include an image sensor 158.
  • the image sensor 158 may be a sensor that detects brightness, light intensity, light movement, light wavelength, temperature, pressure, and the like, and may record image sensor data.
  • the image sensor 158 may be a photoelectric sensor, a photodiode, a photoresistor, and a proximity light. Any one or a combination of a sensor, a thermistor, a resistance thermometer, a thermocouple, a temperature sensitive semiconductor, a piezoresistive pressure gauge, an optical strain sensor, a potential sensor, a pressure sensitive semiconductor, and the like.
  • the image sensor data is transmitted to the circuit 104 for processing, for example, the image sensor data may be transmitted to the driver controller 160 of the circuit 104.
  • the image sensor 158 may be disposed coaxially with the display 154, that is, located at the same location (eg, adjacent to each other and occupying a shared space). This can be used to generate the eye simulator device 100 configured to simulate the state of the eye without any moving parts. In some embodiments, as shown in FIG.
  • the image sensor 158 may be disposed off-axis with the display 154 (eg, when viewing the display from the convex front surface 156 of the eye, the line of sight is outside the straight line of the display 154); the image sensor 158
  • the off-axis setting with the display 154 is conducive to providing the doctor's field of vision with a clear line of sight to the display 154, and can reduce or eliminate any optical interference of the light emitted from the display to the image sensor 158, so this configuration can also be conveniently used for An unmodified and easily accessible display 154 of the eyepiece 108.
  • the image sensor 158 is disposed coaxially with the display 154 (eg, when the display 154 is viewed from the convex front surface 156 of the eye, directly in front of the display 154) (see FIG. 3B), this configuration can be obtained from a doctor The angle provides more realistic visual effects.
  • the coaxial setting of the image sensor 158 and the display 154 or the off-axis setting of the display 154 can be defined by the line of sight extending from the center point of the convex front surface 156 of the eye of the eyeball 120 at a normal angle.
  • the display 154 can be positioned at Inside the eyeball 120 is simulated so that it is located on the line of sight, if the eye simulator device 100 is viewed along the line of sight, the observer will see the image shown in FIG. 1B along the line of sight.
  • the image sensor 158 and the display 154 are arranged coaxially, the image sensor 158 is also located on the line of sight, as shown in FIG. 3B; in the embodiment where the image sensor 158 and the display 154 are arranged off-axis, the image sensor 158 is Positioning is not on the line of sight, as shown in Figure 3A.
  • the eye simulator device 100 may further include an actuator assembly 106 that may be attached to or contained within the base 102, for example, the base 102 may be configured to include at least a portion of the actuator assembly 106
  • the actuator assembly 106 may be electrically or electrically connected to the circuit 104; the actuator assembly 106 may also be mechanically connected to the simulated eyelid 130, including at least one pivot 132 connected to the simulated eyelid 130.
  • the actuator assembly 106 can drive the simulated eyelid 130 to rotate about the pivot 132, drive the simulated eyelid 130 to resist rotation about the pivot 132, drive the simulated eyelid 130 to repeatedly rotate around the pivot 132, and so on.
  • the electrical connection mentioned in this embodiment may be a wired connection (wire connection), a wireless connection (Bluetooth, WIFI, etc.).
  • the eye simulator device 100 may be divided into a first sector 162 and a second sector 164, where the first sector 162 is an area extending from the zonal axis 128 of the base to the top 114 of the base, and the second sector 164 is from The base zonal axis 128 extends to the area of the base bottom 116 (see FIG. 1B), and the actuator assembly 106 can drive the simulated eyelid 130 to rotate about the pivot 132 so that the simulated eyelid 130 (or at least a portion of the simulated eyelid 130) is located in the first place.
  • this can be used to simulate the opening of the eyes of the eye simulator device 100 or to generate an operation to open the simulated eyelids 130; the actuator assembly 106 can drive the simulated eyelids 130 to rotate about the pivot 132, so that the simulated eyelids 130 (or at least A part of the simulated eyelid 130) is located in the second sector 164, which may be used to simulate the closed eyes of the eye simulator device 100 or to generate an operation to close the simulated eyelid 130.
  • the actuator assembly 106 can drive the simulated eyelid 130 to move freely by manually pulling or pushing the simulated eyelid 130 to rotate the simulated eyelid 130 from the open (or closed) eye position To the closed (or open) eye position, or rotated to any position between them.
  • the actuator assembly 106 may also be configured to resist such movement, the resistance of such movement may require more force to move the simulated eyelid 130, and if the pulling or pushing stops, the simulated eyelid 130 returns to the open (or closed) position And so on.
  • the actuator assembly 106 may cause the simulated eyelid 130 to open (or close) the eye position and close (or open) the eye position to simulate blinking in a repeating manner; in addition, the actuator assembly 106 may cause the simulated eyelid 130 to open from the opened The eye position is moved to an intermediate position between the open eye position and the closed eye position to simulate strabismus; in addition, the actuator assembly 106 can move the simulated eyelid 130 from the closed eye position to the closed eye position and the open eye Intermediate positions between positions to simulate ptosis or ptosis; other activities of simulating eyelid 130 can be used to simulate other states of the eye and other motor functions.
  • the eye simulator device 100 may include the display 154, and any one or combination of simulated eyelid 130 movements may be used in combination with any one or combination of image projections to simulate eye functions and / or states.
  • the pupil 152 of 120 is partially enlarged, and the simulated eyelid 130 can be partially closed, which can simulate a more realistic strabismus state; as will be explained later, the application software can be used to provide instructions for various components to generate the scene.
  • Strabismus can be a software-specified scene that simulates a flinching response when light from a pointer is moved too close (defined by a predetermined distance of the image sensor 158) and quickly moves toward the image sensor 158.
  • the actuator assembly 106 may include an electromagnetic ("EM") coil 166, and the EM coil 166 may be electromechanically connected to the execution arm 168, for example, the execution arm 168 may be connected via at least one The torque magnet 170 is connected to the EM coil 166.
  • the EM coil 166 may be a cylinder having an EM coil inner surface 172 and an EM coil outer surface 174, and the execution arm 168 and the torque magnet 170 may be positioned within the EM coil 166, at least partially on the EM coil inner surface 172 Inside and rotatably attached to the EM coil 166.
  • the execution arm 168 may include a connection portion 176 and an arm portion 178 that clamp the torque magnet 170, wherein the connection portion 176 and the torque magnet 170 are both rotatably attached to the EM coil inner surface 172.
  • the arm portion 178 may extend from the connection portion 176 such that it is located outside the inner surface 172 of the EM coil.
  • An electrical signal (eg, current or voltage) may be applied to the EM coil 166 to move the arm portion 178 in a desired direction by the torque applied to the arm portion 178 via the torque magnet 170, which may be connected to the simulated eyelids 130 and On the pivot 132, the movement of the arm portion 178 can push the simulated eyelid 130 to rotate about the pivot 132.
  • the centering magnet 180 may be attached to the EM coil 166. When no electrical signal is applied to the EM coil 166, the centering magnet 180 may force the arm portion 178 (and the simulated eyelid 130) to move to a default position. The position may be that the simulated eyelid 130 is in an open, closed, or any other position.
  • the position sensor 182 may be used to record the actual position of the simulated eyelid 130 and transmit the actual position to the driver controller 160, which may control the simulated eyelid 130 to move to an expected position, which may be The default position defined for the application software, as long as the actual position is not the default position and the application software is generating a scene that expects the default position, the position sensor 182 may be an encoder, a Hall effect sensor, and the like.
  • the power supply 186 can supply power to various components in the eye simulator device 100.
  • the power supply 186 can also provide current and / or voltage for generating electrical signals (via the circuit 104) to be sent to the EM coil 166.
  • the power supply 186 may include a processor, the processor may receive image sensor data and position sensor data, and the processor may further send a position command signal to the circuit 104.
  • the processor of the power supply 186 may include application software in a memory (eg, non-transitory non-volatile memory associated with the processor), the application software being programmed to cause the processor to execute Function, the processor can generate a position command signal according to the scene of the application software.
  • the electrical signal may be generated by a circuit 104, which may include at least one integrated circuit.
  • the circuit 104 may include a drive control circuit 188 that may include one or more analog or digital components configured to convert a position command signal into a signal format that is available to the drive controller 160.
  • the drive control circuit 188 may be an H-bridge motor drive circuit, and the driver controller 160 may be a processor (hardware) or a module (software) that coordinates the activities of the components of the eye simulator device 100.
  • the drive control circuit 188 may be configured to generate a bipolar pulse with a modulation signal (see FIGS. 8A-8C). When the pulse is transmitted to the EM coil 166, the modulation signal enables the torque magnet 170 to generate The torque against the arm portion 178.
  • the drive controller 160 may store the application software in a memory (eg, the non-transitory, nonvolatile memory drive controller 160 with a processing program)
  • the memory is programmed to cause the driver controller 160 to perform a function according to a medical training scenario, and the application software may provide a simulation of the eyelid 130 and / or the display 154 movement scenario, the operation being configured to simulate an eye state for training.
  • the application software executed by the processor may cause the display 154 and / or the actuator assembly 106 to operate in a desired order.
  • the image sensing data may be fed back to the processor to generate a feedback loop through which the eye simulator device 100 provides eye movements and eyes suitable for treating certain eye conditions and responding to doctor actions status.
  • the application software may include an instruction to move the simulated eyelid 130 from the eye open position to the closed eye position when the image sensor 158 detects a light beam of a predetermined brightness or intensity.
  • the circuit 104 may generate The bipolar pulse of the signal is modulated to cause the torque magnet 170 to generate a torque against the arm portion 178 to move the arm portion 178, thereby driving the simulated eyelid 130 to move to the closed-eye position.
  • a bipolar pulse with a modulation signal shown in FIG. 8A can generate a modulation signal to move the analog eyelid 130 to a closed eye position; a bipolar pulse with a modulation signal shown in FIG. 8B can generate a modulation signal to move the analog eyelid 130 to The position between the closed eye position and the open eye position (eg, an intermediate position); the bipolar pulse with a modulation signal shown in FIG. 8C can generate a modulation signal to move the simulated eyelid 130 to the open eye position.
  • embodiments of the eye simulator device 100 may provide a simulated resistance movement of the eyelid 130, for example, when a relatively intense light beam (eg, light from a flashlight) is detected, the image sensor 158 may enable the simulated eyelid 130 Moving to the closed eye position can be a scenario where the simulated patient is very sensitive to light; the doctor wants to open the simulated eyelid 130 to check the eyes, and (in real life) has to open the simulated eyelid.
  • a relatively intense light beam eg, light from a flashlight
  • the application software may include a situation where the execution arm 178 (and the simulated eyelid 130) can manually pull or push the simulated eyelid 130 so that it can freely move from the closed eye position and rotate it from the closed eye position To open the eye position, or rotate to any position between them, but if you want to prevent this movement, you can output a continuous electrical signal to the EM coil 166 through the driver controller 160, so that the simulated eyelid 130 is continuously offset (otherwise not Force) to the closed eye position. Not only can the doctor open the simulated eyelid 130, but when the doctor releases the simulated eyelid 130, the simulated eyelid 130 is allowed to move to its closed offset position.
  • the offset may be any position, not just the closed eye position, and the doctor may try to move the simulated eyelid 130 in any direction until the simulated eyelid 130 is offset to a specific position.
  • One of the advantages of the eye simulator device 100 is that there are no gears (such as to be used with electric gear motors) or pumps (such as to be used with pneumatic actuators).
  • gears such as to be used with electric gear motors
  • pumps such as to be used with pneumatic actuators
  • the electric gear or pump will not be able to move or be offset to the middle position of the eyelid 130 (for example, a position between the closed eye position and the open eye position) ).
  • the electric signal may control the execution arm 168 to move at a predetermined distance.
  • the configuration of the electrical signal itself may provide a position where the execution arm 168 (and the simulated eyelid 130) stops or remains offset.
  • the electric gear or pump will not be able to move the simulated eyelid 130 at different speeds.
  • the electric signal may cause the execution arm 168 (and the simulated eyelid 130) to move at a predetermined speed. This makes it easy to distinguish between different movements (for example, blinking or opening or closing eyes at will).
  • the eye simulator device 100 may be placed in the orbit of the human body simulator.
  • the circuit 104 may be electrically connected or communicated with the control system of the human body simulator (such as hard-wired or wireless connection). This allows the eye simulator device 100 to operate in accordance with the simulation operation of the human body simulator.
  • the embodiments disclosed above may be modified to meet a specific set of design criteria, for example, the base 102, the actuator assembly 106, the eyepiece 108, the EM coil 166, and / or other components or parameters may be used Quantity or configuration to meet a specific purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Business, Economics & Management (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Algebra (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Graphics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种眼睛模拟器装置,涉及医学教具;包括种目镜(108),包括将至少一个图像投影到眼部部件的眼球(120)前表面上或将至少一个图像通过眼球(120)前表面进行投影的显示器(154);用于支撑目镜(108)的支撑件(118);活动连接于支撑件(118)上的模拟眼睑(130);以及致动器组件(106),包括执行臂(178)以及与该执行臂(178)连接的电磁线圈(166)以控制目镜(108)的模拟眼睑运动;该装置让模拟眼睛更加真实,更直观的运动变化;通过图像投影来实现眼睛状态,能够形象地体现眼睛的变化过程,方便学生理解。

Description

目镜、眼睛模拟器装置、人体模拟器及训练方法 技术领域
本发明涉及眼模拟装置,尤其涉及一种模拟人眼运动、展示装置和训练方法。
背景技术
一些包括模拟眼球的医学模拟器,用于医师训练关于与眼睛相关的医学状态和医学症状。
技术问题
传统的模拟眼球在功能、可靠性和实际操作方面都会受到限制,比如传统的模拟眼球需要与气动致动器或电动齿轮电机一起工作,但这些气动致动器或电动机可能会产生噪声干扰,而且可能会过早的产生机械故障;还有,传统的模拟眼球不能实现手动的打开模拟眼睑操作(模拟眼睑应可以被强制打开以进行检查),有的部件只能实现简单的睁闭眼运动和瞳孔变化,无法实现眼睛随某一对象的移动而移动,而且是结构复杂,体积较大,不方便使用。
技术解决方案
本发明的目的在于,针对传统的模拟眼球的受限性、不能允许医护工作者手动张开模拟眼睑,不能模拟眼睑被强制打开的真实场景,提供一种眼睛模拟器装置。
本发明涉及一种眼睛模拟器装置,其具有执行臂与该执行臂连接的电磁线圈,以控制本装置上目镜的模拟眼睑运动;所述装置还可以包括用于将图像投影到目镜的模拟眼球上或投影到目镜的模拟眼球前表面上的显示器;所述装置可用于生成模拟眼睑运动和眼睛状态(通过图像投影),为执业医生模拟眼睛状态。
本发明公开了一种目镜,包括:
模拟眼球,具有眼球前表面; 以及
显示器,所述显示器用于将至少一个图像投影到所述眼球前表面上或将至少一个图像通过所述眼球前表面进行投影,所述至少一个图像是人眼的2D图或3D图。
优选地,还包括图像传感器,所述图像传感器与所述显示器同轴设置或者偏轴设置。
进一步优选地,所述图像传感器用于检测光亮度、光强度、光移动、光波长、物体运动、温度及压力中的至少一种。
优选地,所述至少一个图像包括巩膜、虹膜或瞳孔中的至少一个。
本发明还公开了一种眼睛模拟器装置,包括所述的目镜,还包括:
支撑件,用于支撑所述目镜;
模拟眼睑,活动连接于所述支撑件上,用于和所述模拟眼球相配合;以及
致动器组件,包括执行臂以及与该执行臂连接的电磁线圈,所述执行臂与所述模拟眼睑机械连接,用于驱动所述模拟眼睑生成眼睛活动。
优选地,还包括基部,所述基部为所述致动器组件的壳体;所述支撑件从所述基部延伸。
优选地,还包括与所述致动器组件和所述显示器连接的电路,所述电路用于生成具有调制信号的双极脉冲。进一步优选地,还包括位置传感器,所述位置传感器用于记录所述模拟眼睑的位置且将所述位置传输到所述电路。
优选地,还包括定心磁体,所述定心磁体用于驱动所述执行臂到默认位置。
本发明还公开了一种人体模拟器,包括至少一个所述眼睛模拟器装置,所述眼睛模拟器装置位于人体模拟器的至少一个眼眶内。
本发明还公开了一种用于医师训练的方法,所述方法包括:
提供所述的眼睛模拟器装置;
通过所述显示器将至少一个图像投影到所述目镜上生成眼睛状态;其中,所述至少一个图像是人眼的2D图或3D图,包括巩膜、虹膜或瞳孔中的至少一个;所述眼睛状态包括所述巩膜变红、所述巩膜泛黄和/或所述巩膜浑浊;
通过驱动所述致动器组件实现所述模拟眼睑生成眼睛活动,所述眼睛活动包括闭眼、睁眼、眨眼和/或模拟眼睑位置偏移;以及
通过所述图像传感器跟踪物体的运动实现所述显示器生成明显的瞳孔运动。
优选地,还包括基于操作者的操作实现所述显示器生成眼睛状态、实现所述模拟眼睑生成眼睛活动和实现所述显示器生成明显的瞳孔运动。
有益效果
与现有技术相比,本发明的有益效果在于:不仅可以实现模拟眼睑的睁闭眼运动,还可以实现手动的打开模拟眼睑操作,并且可以控制模拟眼睑的位置,让模拟眼睛更加真实,更直观的运动变化;通过图像传感器将至少一个图像投影到眼部部件的眼球前表面上或将至少一个图像通过所述眼球前表面进行投影,来实现眼睛的状态;还可以实现眼睛可以跟随对象的移动而移动。本发明的结构相对简单,可以放置任何的人体模拟器眼眶内,极大的实现了产品的标准化,可广泛应用于各类模拟人身上,让模拟人更加真实,医护人员更能直观的了解人类眼睛的运动变化。
附图说明
附图1A为眼睛模拟器装置实施例的示意图,附图1B示出眼睛模拟器装置实施例的正视图,附图1C为眼睛模拟器装置实施例的右视图。
附图2是投影在目镜上或通过目镜投影的图像显示器示意图。
附图3A是图像传感器与显示器偏轴设置的示意图,附图3B是图像传感器与显示器同轴设置的示意图。
附图4是与眼睛模拟器装置一起使用的致动器组件的示意图。
附图5是与眼睛模拟器装置一起使用的致动器组件的侧视图。
附图6是与眼睛模拟器装置一起使用的致动器组件的俯视图。
附图7是与眼睛模拟器装置一起使用的电路的实施例的示例性示意图。
附图8A是模拟眼睑处于闭眼位置的示意图,附图8B是模拟眼睑处于闭眼位置与开眼位置之间的位置(例如中间位置)的示意图,附图8C是模拟眼睑处于打开的眼睛位置的示意图。
其中,100-眼睛模拟器装置;102-基部;104-电路;106-致动器组件;108-目镜;110-基部第一(前)侧;112-基部第二(后)侧;113-螺钉;114-基部顶部;116-基部底部;118-支撑件;120-模拟眼球;122-支撑第一端;124-支撑第二端;126-基部纵向轴线;128-基部横向轴线;130-模拟眼睑;132-枢轴;134-模拟眼睑内表面;136-模拟眼睑外表面;138-模拟眼睑第一侧;140-模拟眼睑第二侧;142-支撑第一侧;144-支撑第二侧;146-模拟晶状体;148-巩膜;150-虹膜;152-瞳孔;154-显示器;156-凸形前表面;158-图像传感器;160-驱动器控制器;162-第一扇区;164-第二扇区;166-EM线圈;168-执行臂;170-扭矩磁体;172-EM线圈内表面;174-EM线圈外表面;176-连接部分;178-臂部分;180-定心磁体;182-位置传感器;186-电源;188-驱动控制电路
本发明的实施方式
以下描述是目前预期用于实施本发明的示例性实施例,所述描述不应被认为是限制性的,而仅仅是为了描述本发明的一般原理和特征的目的。本发明的范围不受所述描述的限制。
如图1-3所示,本实施例眼睛模拟器装置100,眼睛模拟器装置100可以是一独立装置,例如,眼睛模拟器装置100可以是由一支撑件118支撑的模拟眼睛。或者可选地,眼睛模拟器装置100也可以为另一装置的一部分,例如,眼睛模拟器装置100可以置于人体模拟器的眼眶内。眼睛模拟器装置100的实施例可以用于模拟眼睛功能(例如打开模拟眼睑,闭合模拟眼睑,眨眼睛,瞳孔扩张等)和眼睛状态(例如表示刺激的发红,表示肝病的泛黄,表示结膜炎的粉红色等),医护工作者可以通过模拟眼睛功能和眼睛状态进行学习培训。
模拟眼球装置100可以包括基部102,基部102可以是支撑眼睛模拟器装置100组件的机构。在一些实施例中,基部102可以为一壳体;壳体可以包含电路104、致动器组件106和/或其它部件,而壳体的外表面可以支撑目镜108和/或其它部件,例如,基部102可以是具有矩形形状的壳体,其具有基部第一(前)侧110,基部第二(后)侧112,基部顶部114和基部底部116;基部第一(前)侧110可以支撑目镜108,基部第二(后)侧112可以通过螺钉113或类似的紧固件来附接到比如人体模拟器一部分(例如附接到人体模型的眼眶)。可选地,基部第二(后)侧112可以允许眼睛模拟器装置100直立。基部102内部可以包括电路104;基部102内部还包括致动器组件106,电路104和致动器组件106可以彼此以及与目镜108电连接;基部102可以由刚性材料制成,如金属、塑料、玻璃纤维、玻璃、陶瓷等。
在一些实施例中,目镜108可以经由支撑件118附接到基部102,支撑件118是附接到基部102上或可以附接到基部102上,例如支撑件118可以是焊接、通过螺钉或其他紧固件、胶粘、通过配合等固定到基部102;附接到基部102的支撑件118可以从基部第一(前)侧110延伸。支撑件118可以支撑模拟眼球120的目镜108,便于目镜108和电路104之间的电连接,例如,支撑件118可具有支撑第一端122和支撑第二端124,支撑第一端122可以在基部第一(前)侧110中的开口处附接到基部102,支撑第二端124可以支撑模拟眼球120,支撑件118内部可以被挖空形成导管,导管内可穿过电线或其它电连接线,可实现使基部102内的电路104与目镜108的至少一个组件之间的电连接。支撑件118在支撑第一端122处具有平面正方形形状,并向后突出形成柱状形状,然后在支撑第二端124处形成碟状或碗形状,碟状或碗形状可以与模拟眼球120的形状互补。例如,支撑第二端124可以连接模拟眼球120的至少一部分;在一些实施例中,模拟眼球120和支撑件118可以是单一结构;在一些实施例中,支撑件118可以塑造成类似于人眼的视神经和/或视网膜。
在一些实施例中,支撑件118可以从基部第一(前)侧110的基座纵向轴线126和基部横向轴线128的交点处延伸,例如,基部第一(前)侧110的开口处位于基部纵向轴线126和基部横向轴线128的交点处,可以设想支撑件118从基部第一(前)侧110的基座纵向轴线126和基部横向轴线128的交点处延伸,支撑件118也可以从基部102的其他部分延伸。
眼睛模拟器装置100的一些实施例可以包括模拟眼睑130,模拟眼睑130可以是通过枢轴132附接到支撑件118的部件,例如,模拟眼睑130可附接到支撑第一端122,枢轴132可以是可旋转的轮毂组件、铰链、针筒结构、衬套和座圈构造等。在一些实施例中,模拟眼睑130为具有圆顶或头盔形状,并且可以覆盖至少模拟眼球120的一部分,例如,模拟眼睑130具有模拟眼睑内表面134和模拟眼睑外表面136,其中模拟眼睑130的形状可以使至少模拟眼睑内表面134与模拟眼睑外表面136的形状互补,这可以使模拟眼睑130被放置在模拟眼球120的至少一部分上(例如,模拟眼球120的一部分可以配合到模拟眼睑内表面134中)。
在至少一个实施例中,模拟眼睑130包括模拟眼睑第一侧138和模拟眼睑第二侧140,模拟眼睑第一侧138和模拟眼睑第二侧140分别附接至支撑件第一侧142和支撑第二侧144,例如模拟眼睑第一侧138可以经由第一枢轴132附接至支撑件第一侧142,模拟眼睑第二侧140可以经由第二枢轴132附接至支撑第二侧144。枢轴132的连接部可以使模拟眼睑130围绕枢轴132旋转,同时可以使模拟眼睑130穿过模拟眼球120的部分,例如在一些实施例中,模拟眼睑130可以围绕枢轴132旋转,以使模拟眼睑130围绕由基部横向轴线128或平行于基部横向轴线128的轴线限定的轴线旋转。模拟眼睑130可由刚性材料制成,例如金属、塑料、玻璃纤维、玻璃、陶瓷等。在替代方案中,模拟眼睑130可以由半刚性材料制成,例如聚合物、橡胶、硅、塑料等的半刚性材料制成。在一些实施例中,模拟眼睑130可以由柔韧材料制成。
如本文所述,目镜108可以包括模拟眼球120,模拟眼球120为半球形形状,该半球形形状具有凸形前表面156,所述凸形前表面156模拟真人眼睛。另外,模拟眼球120可以包括模拟晶状体146、巩膜148、虹膜150、瞳孔152等特征。模拟眼球120可以由玻璃、塑料、陶瓷等制成,模拟眼球120可以是透明或半透明的。
目镜108还可以包括显示器154。显示器154具有多个阵列像素用于产生图像,例如阵列中像素的光照可以生成各种图像。显示器154可以是液晶显示器(LCD)、有源矩阵有机发光二极管(AMOLED)等。显示器154可以位于模拟眼球120内,显示器154可以将至少一个图像投影到所述模拟眼球120的前表面156上或者将至少一个图像通过眼睛凸形前表面156进行投影。在一些实施例中,模拟晶状体146、巩膜148、虹膜150、瞳孔152等可以是来自显示器154的投影,图像可以是人眼的2D图或3D图。在一些实施例中,模拟晶状体146可以是光学元件(例如玻璃、陶瓷、塑料等),所述光学元件位于显示器154附近,例如模拟晶状体146可以定位在显示器154和眼睛凸形前表面156之间;模拟晶状体146被配置为对显示器154发射出的光进行聚光、发散和/或光透。
显示器154还可以生成模拟眼球120状态的其他图像,包括将投影图像投影到模拟眼球120的巩膜148上,模拟巩膜发红(例如刺激、结膜炎等);将投射图像投影到模拟眼球120的巩膜148上,模拟巩膜泛黄(例如肝炎、管道阻塞、肝脏疾病等);将投射图像投影到模拟眼球120的巩膜148的混浊(例如青光眼)等等。另外,显示器154可以投影瞳孔扩大的图像、投影瞳孔缩小的图像、投影瞳孔未对准的图像(即斜视、弱视等)等。另外,图像传感器158也可以用于跟踪物体的运动(例如图像传感器158可以是运动传感器),医师可以使用对象(例如手指、光指示器等)使瞳孔152跟随对象运动,例如,可以使瞳孔152中的图像随着对象的移动而移动,这可以通过当显示器154的不同像素被照亮以表示瞳孔152时,瞳孔152的图像移动起来实现。因此,显示器154中的像素序列可以被照亮,以产生瞳孔152图像,从而在巩膜148上移动。显示器154也可以使用其他图像投影,包括例如在巩膜148中投影血管。
目镜108还可以包括图像传感器158。图像传感器158可以是检测光亮度、光强度,光移动、光波长、温度、压力等的传感器,并可以记录图像传感器数据,例如,图像传感器158可以是光电传感器、光电二极管、光敏电阻、接近光传感器、热敏电阻、电阻温度计、热电偶、温度敏感型半导体、压阻式压力计、光学应变传感器、电位传感器、压力敏感半导体等中的任何一个或其组合。图像传感器数据被传输到电路104以进行处理,例如图像传感器数据可以被传输到电路104的驱动器控制器160。在一些实施例中,图像传感器158可以与显示器154同轴设置,即位于同一位置(例如,彼此相邻并且占用共享空间)。这可以用来生成被配置为模拟眼睛的状态而没有任何移动部件的眼睛模拟器装置100。在一些实施例中,如图3A所示,图像传感器158可以与显示器154偏轴设置(例如,当从眼睛凸形前表面156观看显示器时,视线位于显示器154的直线之外);图像传感器158与显示器154的偏轴设置,有利于提供医师的视野向显示器154观察的清晰视线,可以减少或消除从显示器发射的光对图像传感器158的任何光学干扰,因此这种配置还可以便于使用用于目镜108的未修改且容易获得的显示器154。在一些实施例中,图像传感器158与显示器154同轴设置(例如,当从眼睛凸形前表面156观看显示器154时,直接位于显示器154的前面)(见图3B),这种配置可以从医生的角度提供更逼真的视觉效果。
关于图像传感器158与显示器154的同轴设置或与显示器154的偏轴设置,可以由模拟眼球120的眼睛凸形前表面156的中心点以法线角度延伸的视线来定义,显示器154可以定位在模拟眼球120内,使得其位于所述视线上,如果沿着视线观看眼睛模拟器装置100,观察者将沿着视线将看到图1B中所示的图像。在图像传感器158与显示器154同轴设置的实施例中,图像传感器158也位于所述视线上,如图3B所示;在图像传感器158与显示器154偏轴设置的实施例中,图像传感器158被定位为不在所述视线上,如图3A所示。
眼睛模拟器装置100还可以包括致动器组件106,致动器组件106可附接到基部102上或容纳于基部102内,例如,基部102可以被构造成包含致动器组件106的至少一部分的壳体;致动器组件106可以通过电线或电连接到电路104;致动器组件106还可以与模拟眼睑130机械连接,包括与模拟眼睑130连接的至少一个枢轴132机械连接。在一些实施例中,致动器组件106可以驱动模拟眼睑130围绕枢轴132旋转,驱动模拟眼睑130抵抗围绕枢轴132旋转,驱动模拟眼睑130围绕枢轴132重复往复旋转等。
本实施例中提到的电连接可以为有线连接(电线连接)、无线连接(蓝牙、WIFI等)。
例如,眼睛模拟器装置100可被分割成第一扇区162和第二扇区164,第一扇区162是从基部纬向轴线128延伸到基部顶部114的区域,第二扇区164是从基部纬向轴线128延伸到基部底部116的区域(参见图1B),致动器组件106可驱动模拟眼睑130围绕枢轴132旋转,使得模拟眼睑130(或模拟眼睑130的至少一部分)位于第一扇区162中,这可以用于模拟眼睛模拟器装置100的睁眼或产生打开模拟眼睑130的操作;致动器组件106可以驱动模拟眼睑130围绕枢轴132旋转,使得模拟眼睑130(或者至少一部分模拟眼睑130)位于第二扇区164内,这可以用于模拟眼睛模拟器装置100的闭眼或产生闭合模拟眼睑130的操作。
当模拟眼睑130处于打开(或闭合)眼睛位置时,致动器组件106可以驱动使模拟眼睑130通过手动拉动或推动模拟眼睑130而自由移动,使模拟眼睑130从打开(或闭合)眼睛位置旋转到闭合(或打开)的眼睛位置,或者旋转到它们之间的任何位置。致动器组件106还可以构造成抵抗这种移动,这种移动的阻力可以通过需要更多的力来移动模拟眼睑130,如果停止拉动或推动,则模拟眼睑130恢复到打开(或关闭)位置等来限定。此外,致动器组件106可以使模拟眼睑130以重复的方式打开(或闭合)眼睛位置和闭合(或打开)眼睛位置来模拟眨眼;另外,致动器组件106可以使得模拟眼睑130从打开的眼睛位置移动到在打开的眼睛位置和闭合的眼睛位置之间的中间位置来模拟斜视;另外,致动器组件106可以使模拟眼睑130从闭合的眼睛位置移动到闭合的眼睛位置和打开的眼睛位置之间的中间位置来模拟上睑下垂或模拟眼睑下垂;模拟眼睑130的其他活动可用于模拟眼睛其它状态和其他运动机能。
如上所述,眼睛模拟器装置100可以包括显示器154,模拟眼睑130运动的任何一个或组合可以与图像投影中的任何一个或组合结合使用来模拟眼睛功能和/或状态,例如,可以使模拟眼球120的瞳孔152部分扩大,同时可以使模拟眼睑130部分闭合,这可以模拟更加真实的斜视状态;如稍后将解释的,应用软件可以用来为各种组件提供指令以便生成场景,上述描述的斜视可以是一个由软件规定的场景,该场景模拟来自指示器的光被移动得太近(由图像传感器158的预定距离定义)并且快速向图像传感器158移动时的退缩反应形成的。
如图4-6所示,在至少一个实施例中,致动器组件106可以包括电磁(“EM”)线圈166,EM线圈166可以与执行臂168机电连接,例如执行臂168可以经由至少一个扭矩磁体170连接到EM线圈166。在一些实施例中,EM线圈166可以是具有EM线圈内表面172和EM线圈外表面174的圆柱体,执行臂168和扭矩磁体170可定位在EM线圈166内,至少部分位于EM线圈内表面172内,并且可旋转地附接到EM线圈166。
在一些实施例中,执行臂168可以包括连接部分176和臂部分178,连接部分176夹住扭矩磁体170,其中连接部分176和扭矩磁体170都可旋转地附接到EM线圈内表面172。臂部分178可以从连接部分176延伸,使得其位于EM线圈内表面172的外部。电信号(例如,电流或电压)可以施加到EM线圈166,以便通过经由扭矩磁体170施加在臂部分178上的扭矩使臂部分178沿预期的方向移动,臂部分178可连接到模拟眼睑130和/或枢轴132上,使得臂部分178的移动可以推动模拟眼睑130围绕枢轴132旋转。
在一些实施例中,定心磁体180可以附接到EM线圈166,当没有电信号施加到EM线圈166时,定心磁体180可以迫使臂部分178(以及模拟眼睑130)移动到默认位置,默认位置可以是模拟眼睑130处于打开、关闭或任何其他位置。另外或替代地,位置传感器182可以被用于记录模拟眼睑130的实际位置,并将实际位置传输到驱动器控制器160,驱动器控制器160可以控制模拟眼睑130移动到预期位置,所述预期位置可以为应用软件定义的缺省位置,只要实际位置不是缺省位置并且应用软件正在生成期望缺省位置的场景,位置传感器182可以是编码器,霍尔效应传感器等。
如图7-8所示,电源186可以向眼睛模拟器装置100中的各组件供电,电源186还可以提供电流和/或电压,用于生成电信号(经由电路104)发送到EM线圈166。在一些实施例中,电源186可以包括处理器,处理器可以接收图像传感器数据和位置传感器数据,处理器还可以向电路104发送位置命令信号。在一些实施例中,电源186的处理器可以包括存储器(例如与处理器关联的非暂态非易失性存储器)内的应用软件,该应用软件被编程为使得处理器执行根据医学训练场景的功能,处理器根据应用软件的场景可以生成位置命令信号。
电信号可以由电路104产生,电路104可以包括至少一个集成电路。在一些实施例中,电路104可以包括驱动控制电路188,驱动控制电路188可以包含一个或多个模拟或数字组件,其经配置后将位置命令信号转换为可用于驱动器控制器160的信号格式。例如,驱动控制电路188可以是H桥电机驱动电路,驱动器控制器160可以是协调眼睛模拟器装置100的各组件活动的一个处理器(硬件)或一个模块(软件)。在至少一个实施例中,驱动控制电路188可以被配置为生成具有调制信号的双极脉冲(参见图8A-8C),当脉冲被传输到EM线圈166时,该调制信号使扭矩磁体170能产生抵靠臂部分178的转矩。
另外,或者作为具有应用软件的电源的处理器的替代方案,驱动器控制器160可以将应用软件存储于在存储器(例如具有处理程序的非暂时性,非易失性存储器的驱动器控制器160)内,该存储器被编程为使得驱动器控制器160执行根据医疗训练情景的功能,应用软件可以提供模拟眼睑130和/或显示器154移动场景,所述操作被配置成模拟用于训练的眼睛状态。这样,由处理器执行的应用软件可以使显示器154和/或致动器组件106以预期的顺序操作。
在一些实施例中,可以将图像传感数据反馈到处理器以生成反馈回路,通过该反馈回路,眼睛模拟器装置100提供适用于治疗某些眼睛状态并且对医生动作起反应的眼睛运动和眼睛状态。作为非限制性示例,应用软件可以包括当图像传感器158检测到预定亮度或强度的光束时,使模拟眼睑130从眼睛打开位置移动到闭眼位置的指令,这种情况下,电路104可以生成具有调制信号的双极脉冲,以使扭矩磁体170产生抵靠臂部分178的转矩,以使臂部分178移动,从而驱动模拟眼睑130移动到闭眼位置。
图8A示出的具有调制信号的双极脉冲,可以生成调制信号使模拟眼睑130移动到闭眼位置;图8B示出的具有调制信号的双极脉冲,可以生成调制信号使得模拟眼睑130移动到闭合的眼睛位置和打开的眼睛位置之间(例如中间位置)的位置;图8C示出的具有调制信号的双极脉冲,可以生成调制信号使模拟眼睑130移动到打开的眼睛位置。
如本文所指出的,眼睛模拟器装置100的实施例可以提供模拟眼睑130的阻力运动,例如,在检测到相对强烈的光束(例如,来自手电筒的光)时,图像传感器158可以使模拟眼睑130移动到闭眼位置,这可以是模拟患者对光线非常敏感的一种情景;医生希望打开模拟眼睑130来检查眼睛,也(在现实生活中)不得不打开模拟眼睑。因此,应用软件可以包括这样一种情形,其中执行臂178(和模拟眼睑130)能够通过手动地拉动或推动模拟眼睑130,使其能自由的从闭合眼睛位置移动,使其从闭合眼睛位置旋转到打开眼睛位置,或旋转到它们之间的任何位置,但如果要阻止这种移动,可以通过驱动器控制器160输出连续电信号到EM线圈166,使模拟眼睑130被连续地偏移(否则不存在力)到闭合的眼睛位置。医生不仅可以打开模拟眼睑130,而且医生释放模拟眼睑130时,允许模拟眼睑130移动到其被闭合的偏移位置。
应当注意,偏移可以是任何位置而不仅仅是闭眼位置,医生可以尝试在任何方向移动模拟眼睑130,直到模拟眼睑130偏移到特定位置。眼睛模拟器装置100的优点之一是不存在齿轮(如将与电动齿轮马达一起使用)或泵(如将与气动致动器一起使用)。对于眼睛模拟器装置100的实施例,当医师将模拟眼睑130打开时,不会在齿轮或泵上产生应变,因为是由于EM线圈166产生模拟眼睑130运动或产生模拟眼睑130的偏移。另外,如果没有一些复杂和笨重的机构停止所述机构,电动齿轮或泵将不能使模拟眼睑130移动或被偏移到眼睛的中间位置(例如,位于闭眼位置和打开眼位置之间的位置)。对于眼睛模拟器装置100的实施例,电信号可以控制执行臂168移动以已预定好的距离。电信号本身的配置可以提供执行臂168(和模拟眼睑130)停止或保持偏移的位置。另外,如果没有某种类型的调节器,电动齿轮或泵将不能使模拟眼睑130以不同的速度进行移动。对于眼睛模拟器装置100的实施例,电信号可以使执行臂168(和模拟眼睑130)以预定速度进行移动。这能够容易区别不同的运动(例如,眨眼或随意打开或关闭眼睛)。
如上所述,眼睛模拟器装置100可以放置于人体模拟器的眼眶内,在一些实施例中,电路104可以与人体模拟器的控制系统电连接或电通信(例如硬连线或无线连接),这可以使眼睛模拟器装置100与人体模拟器的模拟操作保持一致地动作。
应当理解的是,可以对是上述公开的实施例进行修改以满足特定的一组设计标准,例如可以使用基部102,致动器组件106,目镜108,EM线圈166和/或其他部件或参数的数量或配置来满足特定目的。
对于本领域技术人员来说显而易见的是,根据上述公开的内容,所描述的示例和实施例的许多修改和变化是可能的,所公开的示例和实施例仅用于说明本发明的目的,其他替代实施例可包括本文公开的各种实施例的一些或全部特征。例如,可以设想,单独描述的特征或作为实施例的一部分描述的特定特征可以与其他单独描述的特征或其他实施例的部分组合。因此,这里描述的各种实施例的元件和动作以提供进一步的实施例。
综上所述,覆盖所有这些修改和替代实施例的意图可能会落入本发明权利要求范围内。此外,数值范围的公开是该范围内的每个数值、包括端点。因此,尽管在此已经讨论和说明了设备及其制造和使用方法的某些示例性实施例,但是应当清楚地理解,本发明不限于此,而是可以在所附权利要求的范围内以其他方式不同地实施和实践。

Claims (12)

  1. 一种目镜,其特征在于,包括:
    模拟眼球,具有眼球前表面; 以及
    显示器,所述显示器用于将至少一个图像投影到所述眼球前表面上或将至少一个图像通过所述眼球前表面进行投影,所述至少一个图像是人眼的2D图或3D图。
  2. 根据权利要求1所述的目镜,其特征在于,还包括图像传感器,所述图像传感器与所述显示器同轴设置或者偏轴设置。
  3. 根据权利要求2所述的目镜,其特征在于,所述图像传感器用于检测光亮度、光强度、光移动、光波长、物体运动、温度及压力中的至少一种。
  4. 根据权利要求1所述的目镜,其特征在于,所述至少一个图像包括巩膜、虹膜或瞳孔中的至少一个。
  5. 一种眼睛模拟器装置,其特征在于,包括如权利要求1-4所述的任一种目镜,还包括:
    支撑件,用于支撑所述目镜;
    模拟眼睑,活动连接于所述支撑件上,用于和所述模拟眼球相配合;以及
    致动器组件,包括执行臂以及与该执行臂连接的电磁线圈,所述执行臂与所述模拟眼睑机械连接,用于驱动所述模拟眼睑生成眼睛活动。
  6. 根据权利要求5所述的眼睛模拟器装置,其特征在于,还包括基部,所述基部为所述致动器组件的壳体;所述支撑件从所述基部延伸。
  7. 根据权利要求5所述的眼睛模拟器装置,其特征在于,还包括与所述致动器组件和所述显示器连接的电路,所述电路用于生成具有调制信号的双极脉冲。
  8. 根据权利要求7所述的眼睛模拟器装置,其特征在于,进一步包括位置传感器,所述位置传感器用于记录所述模拟眼睑的位置且将所述位置传输到所述电路。
  9. 根据权利要求5所述的眼睛模拟器装置,其特征在于,还包括定心磁体,所述定心磁体用于驱动所述执行臂到默认位置。
  10. 一种人体模拟器,其特征在于,包括至少一个权利要求5-9所述的任一眼睛模拟器装置,所述眼睛模拟器装置位于人体模拟器的至少一个眼眶内。
  11. 一种用于医师训练的方法,其特征在于,所述方法包括:
    提供权利要求5-9所述的任一眼睛模拟器装置;
    通过所述显示器将至少一个图像投影到所述目镜上生成眼睛状态;其中,所述至少一个图像是人眼的2D图或3D图,包括巩膜、虹膜或瞳孔的至少一个;所述眼睛状态包括所述巩膜变红、所述巩膜泛黄和/或所述巩膜浑浊;
    通过驱动所述致动器组件实现所述模拟眼睑生成眼睛活动,所述眼睛活动包括闭眼、睁眼、眨眼和/或模拟眼睑位置偏移;以及
    通过所述图像传感器跟踪物体的运动实现所述显示器生成明显的瞳孔运动。
  12. 根据权利要求11所述的用于医师训练的方法,其特征在于,还包括基于操作者的操作实现所述显示器生成眼睛状态、实现所述模拟眼睑生成眼睛活动和实现所述显示器生成明显的瞳孔运动。
     
PCT/CN2018/104059 2018-09-05 2018-09-05 目镜、眼睛模拟器装置、人体模拟器及训练方法 WO2020047762A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/104059 WO2020047762A1 (zh) 2018-09-05 2018-09-05 目镜、眼睛模拟器装置、人体模拟器及训练方法
US17/273,242 US11967250B2 (en) 2018-09-05 2018-09-05 Eyepiece, eye simulator device, mannequin simulator and training method
CN201880095930.6A CN112585663B (zh) 2018-09-05 2018-09-05 目镜、眼睛模拟器装置、人体模拟器及训练方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104059 WO2020047762A1 (zh) 2018-09-05 2018-09-05 目镜、眼睛模拟器装置、人体模拟器及训练方法

Publications (1)

Publication Number Publication Date
WO2020047762A1 true WO2020047762A1 (zh) 2020-03-12

Family

ID=69721597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104059 WO2020047762A1 (zh) 2018-09-05 2018-09-05 目镜、眼睛模拟器装置、人体模拟器及训练方法

Country Status (3)

Country Link
US (1) US11967250B2 (zh)
CN (1) CN112585663B (zh)
WO (1) WO2020047762A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916156B2 (en) * 2020-04-09 2024-02-27 The Hong Kong University Of Science And Technology Method and system for optical detection using a biomimetic electrochemical eye
CN117348735B (zh) * 2023-12-06 2024-02-06 北京东舟技术股份有限公司 应用于人体交互设备测试的仿真眼球
CN117711235A (zh) * 2024-02-05 2024-03-15 北京衔微医疗科技有限公司 一种眼科手术机器人用模拟训练装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055514A (zh) * 2013-01-16 2013-04-24 上海弘联医学科技集团有限公司 一种医学仿真人眼瞳孔及眼皮运动结构及其控制方法
CN103117017A (zh) * 2013-01-29 2013-05-22 营口巨成教学科技开发有限公司 仿真模拟眼睛结构
US20140127663A1 (en) * 2003-11-25 2014-05-08 Gaumard Scientific Company, Inc. Interactive Education System for Teaching Patient Care
CN103959357A (zh) * 2012-10-19 2014-07-30 儿童医院 用于眼科检查培训的系统、方法和计算机程序
CN205751327U (zh) * 2015-12-31 2016-11-30 天津市医学堂科技有限公司 仿真眼睛眨眼模拟装置
CN206471044U (zh) * 2017-02-10 2017-09-05 中国医科大学附属第一医院 一种电子模型眼

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989819A (en) * 1959-01-02 1961-06-27 Francis H Songer Doll eyes
US3177593A (en) * 1962-11-05 1965-04-13 American Home Prod Eye display and viewer
US3905130A (en) * 1974-05-01 1975-09-16 Univ Miami Ophthalmological manikin with funduscopic eyeground presentation
US5000714A (en) * 1989-10-17 1991-03-19 Michael Su Electronically controlled doll eyes
GB8927675D0 (en) * 1989-12-07 1990-02-07 Alexander William D Teaching aid
US5004443A (en) * 1990-01-22 1991-04-02 Michael Su Electronic eyeball of doll
WO1992019343A1 (en) 1991-04-24 1992-11-12 Concepts Development Australia Pty Ltd. Doll
JPH05205030A (ja) 1992-01-27 1993-08-13 Nippon Telegr & Teleph Corp <Ntt> 撮影人物の視線一致表示装置
US5900923A (en) * 1996-11-26 1999-05-04 Medsim-Eagle Simulation, Inc. Patient simulator eye dilation device
US6576013B1 (en) * 2002-01-08 2003-06-10 International Business Machines Corporation Eye prosthesis
JP5180483B2 (ja) * 2006-03-28 2013-04-10 本田技研工業株式会社 トルクセンサの製造方法
US7485025B2 (en) * 2006-12-08 2009-02-03 Disney Enterprises, Inc. Expressive eyes with dilating and constricting pupils
TW200833405A (en) * 2007-02-09 2008-08-16 Benq Corp Eyes module
CN101596366B (zh) * 2008-06-05 2012-03-14 鸿富锦精密工业(深圳)有限公司 玩具眼睛
CN101628179B (zh) * 2008-07-18 2012-09-19 鸿富锦精密工业(深圳)有限公司 玩具黑眼球及具有该玩具黑眼球的玩具眼球
CN101648080A (zh) * 2008-08-15 2010-02-17 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101721819A (zh) * 2008-10-29 2010-06-09 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101732870A (zh) * 2008-11-07 2010-06-16 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101732871A (zh) * 2008-11-12 2010-06-16 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101745227A (zh) * 2008-12-01 2010-06-23 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101745230A (zh) 2008-12-02 2010-06-23 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101745229A (zh) * 2008-12-08 2010-06-23 鸿富锦精密工业(深圳)有限公司 仿真眼睛
CN101890239A (zh) * 2009-05-18 2010-11-24 鸿富锦精密工业(深圳)有限公司 玩具眼睑控制结构
US8651916B2 (en) * 2010-01-18 2014-02-18 Disney Enterprises, Inc. System and method for generating realistic eyes
US8562133B2 (en) * 2010-09-30 2013-10-22 Wavelight Gmbh Simulator for use in ophthalmological measurements
CN202355835U (zh) 2011-12-06 2012-08-01 厦门新泰阳网络科技有限公司 一种会眨眼的娃娃
CH710128B1 (fr) * 2014-09-18 2018-08-31 Montres Breguet Sa Mécanisme d'horlogerie comportant un crantage sans contact entre deux composants.
US9776097B2 (en) * 2015-06-04 2017-10-03 Disney Enterprises, Inc. Artificial eye with an internal electromagnetic drive
US10943509B2 (en) * 2015-08-07 2021-03-09 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US10360859B1 (en) * 2016-03-23 2019-07-23 Valerie J. Heilbron Eye animation device and method to show eye expression in 2D and 3D lighted displays
CN106426196B (zh) 2016-08-31 2018-01-30 佛山博文机器人自动化科技有限公司 一种服务机器人头部
US11263924B2 (en) * 2017-03-31 2022-03-01 Cae Healthcare Canada Inc. Artificial eye system
US11257463B2 (en) * 2017-03-31 2022-02-22 Cae Inc. Artificial eye system
CA2963116C (en) 2017-03-31 2018-06-12 Cae Inc. Artificial eye system comprising a see-through display
CN107725631B (zh) * 2017-10-16 2019-05-17 上海纳铁福传动系统有限公司 电磁扭矩离合器
US11916156B2 (en) * 2020-04-09 2024-02-27 The Hong Kong University Of Science And Technology Method and system for optical detection using a biomimetic electrochemical eye

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127663A1 (en) * 2003-11-25 2014-05-08 Gaumard Scientific Company, Inc. Interactive Education System for Teaching Patient Care
CN103959357A (zh) * 2012-10-19 2014-07-30 儿童医院 用于眼科检查培训的系统、方法和计算机程序
CN103055514A (zh) * 2013-01-16 2013-04-24 上海弘联医学科技集团有限公司 一种医学仿真人眼瞳孔及眼皮运动结构及其控制方法
CN103117017A (zh) * 2013-01-29 2013-05-22 营口巨成教学科技开发有限公司 仿真模拟眼睛结构
CN205751327U (zh) * 2015-12-31 2016-11-30 天津市医学堂科技有限公司 仿真眼睛眨眼模拟装置
CN206471044U (zh) * 2017-02-10 2017-09-05 中国医科大学附属第一医院 一种电子模型眼

Also Published As

Publication number Publication date
US20210192978A1 (en) 2021-06-24
CN112585663B (zh) 2023-02-28
US11967250B2 (en) 2024-04-23
CN112585663A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US11537202B2 (en) Methods for generating calibration data for head-wearable devices and eye tracking system
WO2020047762A1 (zh) 目镜、眼睛模拟器装置、人体模拟器及训练方法
US9595208B2 (en) Trauma training simulator with event-based gesture detection and instrument-motion tracking
US3905130A (en) Ophthalmological manikin with funduscopic eyeground presentation
CN206819631U (zh) 一种高仿真模拟人体瞳孔的示教装置
CN109602499A (zh) 一种人机协作型眼科显微手术辅助机器人系统操作方法
Charreyron et al. A magnetically steered endolaser probe for automated panretinal photocoagulation
US10943509B2 (en) Interactive education system for teaching patient care
US20220142467A1 (en) Numerical system control of ophthalmic visualization and image system
JP2006065094A (ja) 眼球運動模擬システム、眼球運動模擬用ロボット及びバーチャルリアリティーを用いた眼球運動模擬システム
CN115533932A (zh) 多运动控制点表情机器人的机械结构
CN113963591B (zh) 一种眼底病模拟教学仪
CN107788945A (zh) 一种眼科检查机器人
CN106558269A (zh) 虹膜、仿真眼、瞳孔能缩放的教学模拟人及使仿真眼瞳孔缩放的方法
US20230142530A1 (en) Ocular simulated camera assisted robot for live, virtual or remote eye surgery training apparatus and method
CA2963116C (en) Artificial eye system comprising a see-through display
CN210167014U (zh) 一种仿真眼球
US20140085607A1 (en) Image detecting apparatus and image detecting method
TWI819654B (zh) 改善視網膜損傷患者視力的系統
Liu et al. A holographic waveguide based eye tracker
Zahir et al. Implementation and performance comparison for two versions of eye tracking based robotic arm movement
CN107240342B (zh) 眼球病征模型
Lambe et al. Design and test of a headset activation platform controlled by eye gaze tracking
US20220175241A1 (en) Non-contact wide angle retina viewing system
CN210378044U (zh) 一种医疗模拟人眼睛模拟模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932846

Country of ref document: EP

Kind code of ref document: A1