WO2020045220A1 - 高強度鋼板及びその製造方法 - Google Patents

高強度鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020045220A1
WO2020045220A1 PCT/JP2019/032799 JP2019032799W WO2020045220A1 WO 2020045220 A1 WO2020045220 A1 WO 2020045220A1 JP 2019032799 W JP2019032799 W JP 2019032799W WO 2020045220 A1 WO2020045220 A1 WO 2020045220A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
mass
rolling
content
Prior art date
Application number
PCT/JP2019/032799
Other languages
English (en)
French (fr)
Inventor
義彦 小野
佑馬 本田
真平 吉岡
公一 谷口
中村 展之
村井 剛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021002269A priority Critical patent/MX2021002269A/es
Priority to JP2019565581A priority patent/JP6680420B1/ja
Priority to CN201980056596.8A priority patent/CN112639147B/zh
Priority to KR1020217006058A priority patent/KR102507710B1/ko
Priority to EP19854806.7A priority patent/EP3828296A4/en
Priority to US17/271,663 priority patent/US20210340641A1/en
Publication of WO2020045220A1 publication Critical patent/WO2020045220A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet which is preferably used as a material for automobile parts and the like and has excellent delayed fracture resistance, and a method for producing the same.
  • delayed fracture means that when a part is placed in a hydrogen intrusion environment with high stress applied to the part, hydrogen penetrates into the steel sheet constituting the part and lowers the atomic bonding force.
  • Patent Literature 1 discloses a technique for improving the bendability of a structure including ferrite and martensite by improving the heterogeneity of a solidified structure to homogenize the hardness distribution of the surface layer of a steel sheet. ing. Further, in the technique described in Patent Document 1, the slab is stirred using a magnetic stirring device or the like in the mold to increase the flow velocity of the molten steel at the solidification interface near the mold meniscus to stir the molten steel on the slab surface layer in the solidification process by the flow of the molten steel.
  • Patent Literature 2 discloses a high-strength cold-rolled steel sheet in which the metal structure and the amount of inclusions are limited for the purpose of improving stretch flangeability.
  • tempered martensite having a hardness of 380 Hv or less contains an area ratio of 50% or more (including 100%), the remainder has a structure composed of ferrite, and the equivalent circle diameter present in the tempered martensite.
  • the number of cementite particles of 0.1 ⁇ m or more is 2.3 or less per 1 ⁇ m 2 of the tempered martensite, and the number of inclusions having an aspect ratio of 2.0 or more present in the entire structure is 200 or less per 1 mm 2.
  • a high-strength cold-rolled steel sheet excellent in stretch flangeability has been proposed.
  • Patent Document 3 discloses that the total of one or two of Ce and La is 0.001 to 0.04%, and that (Ce + La) / acid-soluble Al ⁇ 0.1 on a mass basis.
  • a high-strength steel sheet having a chemical component having (Ce + La) / S of 0.4 to 50 and having excellent stretch flangeability and fatigue properties has been proposed.
  • MnS, TiS, and (Mn, Ti) S are deposited on fine and hard Ce oxide, La oxide, cerium oxysulfide, and lanthanum oxysulfide generated by deoxidation by addition of Ce and La.
  • a technique for improving delayed fracture resistance by satisfying / 24 + Mn / 6 and containing 80% or more by volume of martensite in a microstructure is disclosed.
  • Patent Document 2 is to improve the stretch flangeability by controlling the morphology of MnS inclusions and the like, but does not give any suggestion regarding the control of oxide-based inclusions, The degree, the maximum P concentration, and the distribution form of MnS are not properly controlled. Therefore, the technique described in Patent Document 2 cannot provide the excellent delayed fracture resistance aimed at by the present invention.
  • Patent Document 3 requires the addition of special elements such as Ce and La to control oxide-based inclusions, so that the production cost is significantly increased. Further, since the degree of Mn segregation, the maximum P concentration, and the distribution form of MnS are not properly controlled, the technique described in Patent Document 3 cannot obtain the excellent delayed fracture resistance aimed at by the present invention.
  • the technique described in Patent Document 4 is a technique for improving delayed fracture resistance when the delayed fracture resistance is evaluated by an electrolysis method. Particularly, in a corrosive environment caused by immersion in HCl at a high concentration of 5 wt%, the technique described in Patent Document 4 is effective. The effect of improving delayed fracture characteristics is not always sufficient. Further, since the degree of Mn segregation, the maximum P concentration, and the distribution form of MnS are not properly controlled, the technique described in Patent Document 4 cannot obtain the excellent delayed fracture resistance aimed at by the present invention.
  • an object of the present invention is to provide a high-strength steel sheet having a tensile strength of 980 MPa or more and having excellent delayed fracture resistance and a method of manufacturing the same.
  • a test piece is prepared in which a stress is applied to a processed portion by bolting after U-bending.
  • the bending radius is set to the minimum bending radius that does not cause cracking when visually observed when the bending is performed.
  • the test piece to which the stress is applied is manufactured by the following first to third steps.
  • the center of the test piece 1 is bent as shown in FIG.
  • a third step as shown in FIG. 3, a washer 3 made of a fluoroethylene resin is attached to the above-described perforation 2, and a stress is applied to the test piece 1 by tightening with a stainless steel bolt 4.
  • the stress value is applied by giving a strain amount equivalent to an elastic stress of 2000 MPa calculated by the Hooke's law with a Young's modulus of 210 GPa based on the post-bending process in which the bolt tightening amount is zero (in this specification, , 2000 MPa).
  • the amount of strain at this time is measured by attaching a strain gauge having a gauge length of 1 mm to the tip of the bent portion.
  • the present inventors have studied the controlling factors of the delayed fracture resistance of a high-strength steel sheet in order to solve the above-mentioned problems relating to the delayed fracture resistance, and have obtained the following findings.
  • the delayed fracture resistance in the present invention is mainly affected by the occurrence of cracks at the tip of the bent portion and the ease of crack propagation in the direction of the bending ridge line.
  • a high-strength steel sheet of TS980 MPa or higher one or more inclusions (hereinafter, sometimes referred to as MnS group) are arranged in the steel in a stretched and / or dotted manner in the rolling direction over one hundred and more than 120 ⁇ m. .
  • MnS group inclusions
  • the delayed fracture resistance can be significantly improved.
  • the balance having a component composition consisting of iron and unavoidable impurities, Mn segregation degree in a region within 100 ⁇ m from the surface in the thickness direction is 1.5 or less,
  • the maximum P concentration in a region within 100 ⁇ m from the surface in the plate thickness direction is 0.08% by mass or less;
  • the MnS particle group includes two or more MnS particles
  • the distance between the MnS particles is 40 ⁇ m or less
  • the MnS particle group having a long diameter of 150 ⁇ m or more is 1 mm. 2.0 or less per 2
  • the number of oxide-based inclusions having a particle diameter of 5 ⁇ m or more is 8 or less per mm 2
  • Alumina content is 50% by mass or more
  • silica content is 20% by mass or less
  • calcia content is 40% by mass or less in the total number of the oxide-based inclusions having a particle diameter of 5 ⁇ m or more.
  • the number ratio of oxide-based inclusions having a composition is 80% or more;
  • the steel structure has, by volume fraction, a total of martensite and bainite: 30 to 95%, a ferrite phase: 5 to 70%, and an austenite phase: less than 3% (including 0%);
  • the component composition further includes, in mass%, Ti: 0.003-0.05%, Nb: 0.003 to 0.05%, The high-strength steel sheet according to [1], containing one or more of V: 0.001 to 0.1% and Zr: 0.001 to 0.1%.
  • the component composition further includes, in mass%, Cr: 0.01 to 1.0%, The high-strength steel sheet according to [1] or [2], containing one or more of Mo: 0.01 to 0.20% and B: 0.0001 to 0.0030%.
  • the component composition further includes, in mass%, Cu: 0.01-0.5%, The high-strength steel sheet according to any one of [1] to [3], containing one or more of Ni: 0.01 to 0.5% and Sn: 0.001 to 0.1%.
  • the component composition further includes, in mass%, The high-strength steel sheet according to any one of [1] to [4], containing Sb: 0.001 to 0.1%.
  • the component composition further includes, in mass%, The high-strength steel sheet according to any one of [1] to [5], comprising one or two of REM and Mg in total of 0.0002% or more and 0.01% or less.
  • the method for producing a high-strength steel sheet according to any one of [1] to [6] The reflux time in the RH vacuum degassing apparatus was set to 500 sec or more, and after the refining was completed, in continuous casting, the difference between the casting temperature and the solidification temperature was 10 ° C. to 35 ° C.
  • the steel material obtained in the casting step is directly or once cooled and then heated to 1220 ° C. or more and 1300 ° C. or less and held for 80 minutes or more, and the rolling reduction in the first pass of the rough rolling is set to 10% or more, and the finish rolling is performed.
  • the primary cooling is performed at an average temperature of 3 ° C./sec or more and less than 100 ° C./sec to 350 ° C. or less, and a retention time in a temperature range of 450 to 130 ° C .: 10 to 1000 sec.
  • the number of various oxide-based inclusions and MnS particles in the surface layer of the steel sheet (a region within 100 ⁇ m in the thickness direction from the steel sheet surface) is reduced, and the composition of the oxide-based inclusion is adjusted to an appropriate range.
  • the Mn segregation degree and the P maximum concentration within an appropriate range, a high-strength steel sheet excellent in delayed fracture resistance and suitable for materials for automobile parts such as automobile structural members can be obtained.
  • the use of the high-strength steel sheet of the present invention or the manufacturing method of the present invention can improve the collision safety of an automobile, and can also improve the fuel efficiency by reducing the weight of automobile parts.
  • % representing the content of a component means “% by mass”.
  • the high strength in the present invention means that the tensile strength is 980 MPa or more.
  • C 0.10 to 0.35%
  • C is an important element for strengthening martensite in a quenched structure. If the C content is less than 0.10%, the effect of increasing the strength will be insufficient. For this reason, the C content is set to 0.10% or more. C content is preferably 0.12% or more, more preferably 0.14% or more. On the other hand, if the C content exceeds 0.35%, the strength becomes too high, and the delayed fracture resistance deteriorates significantly. In addition, since the weld breaks in a cross tension test in spot welding, the joining strength is significantly reduced. For this reason, the C content is set to 0.35% or less. C content is preferably 0.30% or less, more preferably 0.24% or less.
  • Si 0.01 to 2.0% Si is effective in increasing the ductility of a high-strength steel sheet. In addition, there is an effect of suppressing decarburization of the surface layer and improving fatigue characteristics. Therefore, the Si content is set to 0.01% or more. From the viewpoint of improving ductility and fatigue properties, the Si content is preferably 0.10% or more, more preferably 0.20% or more, and further preferably 0.40% or more. On the other hand, if the content of Si exceeds 2.0%, it is difficult to control the oxide composition within a predetermined range, and the delayed fracture resistance deteriorates. Further, Si has an effect of deteriorating weldability. Therefore, the Si content is set to 2.0% or less. From the viewpoint of improving delayed fracture resistance and weldability, the Si content is preferably 1.5% or less, more preferably less than 1.0%, and further preferably less than 0.8%. preferable.
  • Mn 2.2 to 3.5% Mn is added to increase the strength of the high-strength steel sheet.
  • the Mn content is set to 2.2% or more.
  • the Mn content is preferably 2.3% or more, more preferably 2.5% or more.
  • the Mn content is set to 3.5% or less.
  • the Mn content is preferably 3.2% or less, and more preferably 3.0% or less.
  • P 0.015% or less (excluding 0%)
  • P is an impurity, and deteriorates delayed fracture resistance due to an increase in the maximum P concentration of the micro-segregated portion formed during casting. Therefore, reduction of the P content is one of the important requirements in the present invention. If the P content exceeds 0.015%, it becomes difficult to control the maximum P concentration in the surface layer to 0.08% by mass or less, so that the excellent delayed fracture resistance aimed at by the present invention cannot be obtained. . Therefore, the P content needs to be 0.015% or less.
  • the P content is preferably 0.010% or less, more preferably 0.008% or less. Further, it is preferable to remove P as much as possible, but if the P content is less than 0.003%, the effect of improving delayed fracture resistance is saturated and productivity is significantly impaired, so the P content is 0.003% or more. Is preferred.
  • S 0.0015% or less (excluding 0%)
  • S is an impurity and forms MnS in combination with Mn.
  • the presence of coarse MnS particles significantly deteriorates delayed fracture resistance. Therefore, reduction of the S content is one of the particularly important requirements in the present invention. If the S content exceeds 0.0015%, the number of coarse MnS particles having a major axis of 150 ⁇ m or more increases, and the excellent delayed fracture resistance aimed at by the present invention cannot be obtained. Therefore, the S content needs to be 0.0015% or less.
  • S is preferably removed as much as possible, and the S content is preferably 0.0010% or less, more preferably 0.0008% or less, and further preferably 0.0005% or less.
  • productivity is significantly impaired, so that 0.0002% or more is preferable.
  • Sol. Al 0.01 to 1.0% Sol. If the Al content is less than 0.01%, the effects of deoxidation and denitrification are not sufficient. For this reason, Sol. The Al content is 0.01% or more. Sol. The Al content is preferably 0.02% or more. Also, Sol. Al is a ferrite-forming element like Si, and is positively added when a steel structure containing ferrite is intended. On the other hand, when the content exceeds 1.0%, it is difficult to stably secure the tensile strength of 980 MPa. In addition, the delayed fracture resistance deteriorates. Then, Sol. The Al content is set to 1.0% or less. Sol. The Al content is preferably 0.5% or less, more preferably 0.1% or less. Here, Sol. Al is an acid-soluble aluminum, and Sol. The Al content is the Al content excluding Al existing as an oxide in the total Al content in the steel.
  • N 0.0055% or less (excluding 0%) N is an impurity contained in the crude steel and deteriorates the formability of the steel sheet. Therefore, the N content needs to be 0.0055% or less.
  • the N content is preferably 0.0050% or less, more preferably 0.0045% or less.
  • the N content is preferably set to 0.0006% or more.
  • O 0.0025% or less (excluding 0%) O is such that metal oxides and the like generated during refining remain as inclusions in the steel.
  • the delayed fracture resistance can be improved through the bending workability. If the O content exceeds 0.0025%, the rate of occurrence of microcracks during bending is significantly increased, and as a result, delayed fracture resistance deteriorates. Therefore, the O content is set to 0.0025% or less.
  • the O content is preferably 0.0020% or less, more preferably 0.0014% or less.
  • the O content is preferably 0.0008% or more.
  • Ca 0.0005% or less (including 0%) Ca is an impurity contained in the crude steel and reacts with oxygen to form an oxide or reacts with another oxide to form a composite oxide. If these are present in the steel, they may cause defects in the steel sheet or deteriorate the delayed fracture resistance through the bendability. Therefore, the Ca content needs to be 0.0005% or less.
  • the Ca content is preferably 0.0003% or less, more preferably 0.0002% or less.
  • the steel sheet of the present invention contains the above components, and the remainder other than the above components has a component composition containing Fe (iron) and unavoidable impurities.
  • the steel sheet of the present invention contains the above components, and the balance has a component composition consisting of Fe and unavoidable impurities.
  • the component composition of the steel sheet of the present invention may further contain the following optional elements depending on the purpose, in addition to the above elements.
  • Ti, Nb, V, and Zr form carbides and nitrides in steel during the casting and hot rolling processes, and suppress the coarsening of the crystal grain size, thereby suppressing the propagation of cracks generated by processing. There is. In order to obtain such an effect, it is preferable that Ti, Nb, V, and Zr are contained at the above-mentioned lower limit or more.
  • the Ti content is more preferably at least 0.02%.
  • the Nb content is more preferably at least 0.02%.
  • the V content is more preferably at least 0.003%, further preferably at least 0.006%.
  • the Zr content is more preferably 0.003% or more, and still more preferably 0.006% or more.
  • the Ti content is more preferably 0.04% or less.
  • the Nb content is more preferably 0.04% or less.
  • the V content is more preferably 0.050% or less, and still more preferably 0.010% or less.
  • the Zr content is more preferably 0.050% or less, further preferably 0.010% or less.
  • One or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.20% and B: 0.0001 to 0.0030% Cr, Mo, and B have hardenability. It is an element effective for stably obtaining a tensile strength of 980 MPa or more by improving, and in order to obtain such an effect, it is preferable to include one or more of these elements.
  • the above effects can be obtained by containing each of them at the lower limit or more.
  • the Cr content is more preferably 0.1% or more.
  • Mo content is more preferably 0.05% or more.
  • the B content is more preferably 0.0003% or more.
  • the Cr content is more preferably 0.7% or less.
  • the Mo content is more preferably 0.15% or less.
  • the B content is more preferably 0.0020% or less.
  • Cu 0.01 to 0.5%
  • Ni 0.01 to 0.5%
  • Sn 0.001 to 0.1%
  • Cu, Ni and Sn are the corrosion resistance of the steel sheet
  • the improvement has the effect of increasing the delayed fracture resistance, and in order to obtain such an effect, it is preferable to include one or more of these elements. Since such effects can be obtained when the contents of Cu, Ni, and Sn are 0.01% or more, 0.01% or more, and 0.001% or more, respectively, the Cu content is 0.01% or more.
  • Ni content is preferably 0.01% or more
  • Sn content is preferably 0.001% or more. More preferably, the Cu content is 0.05% or more, the Ni content is 0.05% or more, and the Sn content is 0.005% or more.
  • the Cu content is preferably 0.5% or less, the Ni content is 0.5% or less, and the Sn content is preferably 0.1% or less. More preferably, the Cu content is 0.2% or less, the Ni content is 0.2% or less, and the Sn content is 0.050% or less.
  • Sb 0.001 to 0.1% Sb suppresses the reduction of the C content and the B content existing in the surface layer of the steel sheet by being concentrated in the surface layer of the steel sheet in the annealing process of the continuous annealing.
  • the Sb content is preferably set to 0.001% or more.
  • the Sb content is more preferably 0.008% or more.
  • the Sb content is preferably set to 0.1% or less.
  • the Sb content is more preferably 0.012% or less.
  • One or two of REM and Mg in total are 0.0002% or more and 0.01% or less. These elements are used to improve the formability by miniaturizing inclusions and reducing the starting point of fracture. It is a useful element. If the total content is less than 0.0002%, the above effects cannot be effectively exerted. On the other hand, when the total content exceeds 0.01%, the inclusions may be coarsened and the moldability may be reduced. Therefore, the total content of one or two of REM and Mg is preferably 0.0002% or more and 0.01% or less.
  • REM indicates a total of 17 elements of Sc, Y and lanthanoid, and in the case of lanthanoid, it is industrially added in the form of misch metal. In the present invention, the content of REM refers to the total content of these elements.
  • the remainder other than the above is Fe and inevitable impurities.
  • any of the optional elements described above is included below the lower limit, these elements do not impair the effects of the present invention, and therefore these elements are included in the inevitable impurities.
  • Mn segregation degree in a region within 100 ⁇ m from the surface in the thickness direction is 1.5 or less.
  • the Mn concentration distribution of the steel sheet is measured by EPMA (Electron Probe Micro Analyzer). Since the degree of Mn segregation changes according to EPMA measurement conditions, in the present invention, the measurement area under a constant condition of an acceleration voltage of 15 kV, an irradiation current of 2.5 ⁇ A, an irradiation time of 0.05 s / point, a probe diameter of 1 ⁇ m, and a measurement pitch of 1 ⁇ m. Is evaluated as 45000 ⁇ m 2 (90 ⁇ m in the depth direction ⁇ 500 ⁇ m in the rolling direction).
  • a value obtained by averaging the data in a range of 3 ⁇ m ⁇ 3 ⁇ m is defined as measurement data of the area.
  • one evaluation area is 3 ⁇ m ⁇ 3 ⁇ m. Note that the presence of inclusions such as MnS particles apparently increases the maximum Mn segregation degree. Therefore, when an inclusion is hit, the value is evaluated excluding the value.
  • the Mn segregation degree exceeds 1.5, the number of MnS particles exceeds the range of the present invention, so that excellent delayed fracture resistance cannot be obtained. Therefore, the Mn segregation degree is set to 1.5 or less. Preferably, the degree of Mn segregation is 1.3 or less.
  • the lower limit of the Mn segregation degree is not particularly limited, and the value of the Mn segregation degree is preferably smaller.
  • Mn Note that Mn segregation existing on the center side of the sheet thickness from 100 ⁇ m in the sheet thickness direction from the steel sheet surface has little effect on the delayed fracture resistance aimed at by the present invention, and thus is not particularly defined in the present invention.
  • the maximum P concentration in a region within 100 ⁇ m from the surface in the thickness direction is 0.08% by mass or less.
  • the maximum concentration of P is defined as a depth of 10 ⁇ m in the thickness direction from the surface excluding the central segregation portion of the steel sheet. This is the maximum concentration of P in a region (surface layer) up to a depth of 100 ⁇ m. Measurement values in a region whose depth from the outermost surface is less than 10 ⁇ m are excluded from the measurement because a measurement error occurs due to measurement of the surface. Control of the maximum P concentration is an important requirement for obtaining the excellent delayed fracture resistance aimed at by the present invention.
  • the concentration distribution of P in a steel plate is measured by EPMA (Electron Probe Micro Analyzer). Since the maximum P concentration varies depending on the EPMA measurement conditions, in the present invention, the measurement area is measured under a constant condition of an acceleration voltage of 15 kV, an irradiation current of 2.5 ⁇ A, an irradiation time of 0.05 s / point, a probe diameter of 1 ⁇ m and a measurement pitch of 1 ⁇ m. Is evaluated as 45000 ⁇ m 2 (90 ⁇ m in the depth direction ⁇ 500 ⁇ m in the rolling direction). With respect to the obtained data, a value obtained by averaging the data in a range of 3 ⁇ m ⁇ 3 ⁇ m is defined as measurement data of the area. In the present invention, one evaluation area is 3 ⁇ m ⁇ 3 ⁇ m.
  • the maximum concentration is set to 0.08% by mass or less.
  • the maximum P concentration is preferably 0.06% by mass or less, and more preferably 0.05% by mass or less.
  • the lower limit of the maximum concentration is not particularly limited, and the lower the maximum concentration, the better, but usually it is often 0.01% by mass or more.
  • the steel sheet of the present invention has a thickness cross section parallel to the rolling direction of the steel sheet in a region within 100 ⁇ m in the thickness direction from the surface, and one or more major axes extended and / or distributed in a dot sequence in the rolling direction: MnS particles comprising MnS particles composed of MnS particles of 0.3 ⁇ m or more, when the MnS particle group is composed of two or more, the distance between the MnS particles is 40 ⁇ m or less, MnS particles of a major axis 150 ⁇ m or more group is less than or equal to 2.0 per 1mm 2.
  • the MnS particle group includes a MnS particle group composed of MnS particles having one or more major axes: 0.3 ⁇ m or more, which are extended and / or distributed in the form of dots in the rolling direction.
  • the distance between the MnS particles is 40 ⁇ m or less.
  • the major axis of the MnS particles in the present invention means the major axis of a circle-equivalent ellipse.
  • MnMnS particles will be described with reference to FIGS. 4 to 6 show thickness cross sections of the steel sheet 10 parallel to the rolling direction D1.
  • the MnS particle group is composed of one or more MnS particles that extend in the rolling direction and / or are distributed in a dot array. That is, the MnS particle group is classified into a case where the MnS particle group is composed of any one of the following (1) to (3).
  • FIG. 4 shows an example of the case (1) above.
  • FIG. 4 shows the MnS particles 11 extending in the rolling direction D1 in a thickness section parallel to the rolling direction D1 of the steel sheet 10 in a region within 100 ⁇ m from the steel sheet surface.
  • FIG. 5 shows a plurality of MnS particles 12 that are distributed in a row of dots in the rolling direction D1 in a thickness section parallel to the rolling direction D1 of the steel sheet 10 in a region within 100 ⁇ m from the steel sheet surface.
  • FIG. 6 shows an example of the case (3).
  • FIG. 6 shows, in a region within 100 ⁇ m from the steel sheet surface, a MnS particle 11 extending in the rolling direction D1 in a sheet thickness section parallel to the rolling direction D1 of the steel sheet 10, and a plurality of MnS particles 11 distributed in a row of dots in the rolling direction D1.
  • MnS particles each have a major axis of 0.3 ⁇ m or more. 5 and 6, in which the MnS particle group is composed of two or more MnS particles, the distance between the MnS particles is 40 ⁇ m or less.
  • MnS particles that are present from the surface of the steel sheet in the thickness direction at a position closer to the center of the thickness than 100 ⁇ m or the MnS particles that have a total length (major axis) of less than 150 ⁇ m have little effect on the delayed fracture resistance. do not have to.
  • the MnS particle group having a total length (major axis) of 150 ⁇ m or more, which is present in a region within 100 ⁇ m in the thickness direction from the steel sheet surface is limited as follows.
  • the major axis of the MnS particle group means the length of the MnS particle group in the rolling direction when the MnS particle group is composed of one MnS particle.
  • the MnS particle group is composed of two or more MnS particles, it means the maximum length in the rolling direction between two points on the outer circumference of the particles present at both ends in the rolling direction.
  • 4 to 6 show the major axis L1 of the MnS particle group in the cases (1) to (3) (see FIGS. 4 to 6).
  • the present invention aims. Excellent delayed fracture resistance cannot be obtained. Therefore, it is necessary to reduce the number of the MnS particle groups to 2.0 or less per 1 mm 2 .
  • the number of MnS particles is preferably 1.5 or less per 1 mm 2 , more preferably 1.0 or less per 1 mm 2 . Note that the number of MnS particle groups may be 0 per 1 mm 2 .
  • the number of oxide-based inclusions having a particle diameter of 5 ⁇ m or more is 8 or less per mm 2 , Of the total number of inclusions, the number of oxide-based inclusions having a composition of alumina content: 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less
  • the ratio is 80% or more.
  • Oxide-based inclusions present on the center side of the sheet thickness from 100 ⁇ m in the thickness direction from the steel sheet surface, or oxide-based inclusions having a particle diameter of less than 5 ⁇ m have a small effect on delayed fracture resistance. There is no need to control. Therefore, oxide-based inclusions having a particle diameter of 5 ⁇ m or more, which are present in a region within 100 ⁇ m in the thickness direction from the steel sheet surface, are limited as follows.
  • the particle diameter means the length of the diameter of the circle equivalent diameter.
  • the number of oxide-based inclusions with a particle diameter of 5 ⁇ m or more exceeds 8 per mm 2 in a region parallel to the plate surface including the rolling direction of the steel plate in a region within 100 ⁇ m in the thickness direction from the steel plate surface, Cracks may occur and breakage may occur at the immersion test starting from the minute cracks. Therefore, the number of the inclusions is set to 8 or less per 1 mm 2 .
  • the size of the inclusions is evaluated on a plane parallel to the sheet surface including the rolling direction of the steel sheet.
  • the evaluation was performed at an arbitrary cross section within 100 ⁇ m from the steel sheet surface. May be. However, in the case where oxide-based inclusions having a particle diameter of 5 ⁇ m or more are unevenly distributed in the plate thickness direction, the evaluation is performed at the depth where the number of distributions is largest.
  • the evaluation area is 100 mm 2 or more.
  • ⁇ ⁇ ⁇ ⁇ Alumina is inevitably contained as a deoxidation product in oxide inclusions having a particle diameter of 5 ⁇ m or more, but the effect of the alumina alone on the delayed fracture resistance is small.
  • the alumina content in the oxide-based inclusions is less than 50% by mass, the oxide has a low melting point, and the oxide-based inclusions extend during rolling and tend to be crack initiation points during bending. For this reason, the alumina content in the oxide-based inclusions having a particle diameter of 5 ⁇ m or more is set to 50% by mass or more.
  • Silica and calcia coexist with alumina, which lowers the melting point of oxides and causes oxide-based inclusions to expand during rolling and easily become crack initiation points during bending, deteriorating the delayed fracture resistance of steel sheets. Let it. If the content exceeds 20% and 40% in mass%, respectively, the bending workability deteriorates remarkably, so that the silica content is 20 mass% or less and the calcia content is 40 mass% or less.
  • the average composition of the oxides in the steel in the molten steel is, by mass%, an alumina content: 60% or more, a silica content: 10% or less, and a calcia content: 20%. It is as follows.
  • the number ratio of oxide-based inclusions satisfying the above composition is set to 80% or more. That is, the number ratio of oxide-based inclusions having a composition of alumina content: 50% by mass or more, silica content: 20% by mass or less, and calcia content: 40% by mass or less is 80%. Above. In order to further improve the delayed fracture resistance, the number ratio is preferably at least 88%, more preferably at least 90%, most preferably 100%.
  • Adjustment of the oxide composition is achieved by adjusting the slag composition of the converter or secondary refining process. Further, the average composition of oxides in steel can be quantitatively determined by cutting a sample from a slab and extracting residue analysis method (for example, Kuraho et al .: Iron and Steel, Vol. 82 (1996), 1017).
  • the particle diameter of the oxide-based inclusions in the present invention means a circle-equivalent diameter.
  • the measuring method of a volume fraction employ adopts the method as described in an Example, and as described in an Example, an area ratio except a retained austenite is considered as a volume fraction.
  • Total volume fraction of martensite and bainite 30-95%
  • the total of the volume fraction is preferably 55% or more, more preferably 60% or more.
  • the total of the volume fractions is set to 95% or less in order to secure elongation which is an index of press formability.
  • the total of the volume fraction is preferably 90% or less, more preferably 85% or less.
  • martensite includes martensite that has been tempered.
  • bainite is a structure having a lath-like form, and includes tempered bainite.
  • volume fraction of ferrite phase 5 to 70% or less Since the soft ferrite phase contributes to the improvement of the elongation of the steel sheet, in the present invention, the lower limit of the ferrite phase is limited to 5% from the viewpoint of ensuring elongation.
  • the volume fraction of the ferrite phase is preferably at least 7%, more preferably at least 10%.
  • the ferrite phase is limited to a volume fraction of 70% or less.
  • the volume fraction of the ferrite phase is preferably 45% or less, more preferably 40% or less.
  • the ferrite phase includes bainitic ferrite.
  • Austenite phase (retained austenite phase): less than 3% (including 0%) It is preferable that the austenite phase is not contained, but if it is less than 3%, it may be contained because it is substantially harmless. When the austenite phase is 3% or more, the austenite phase is transformed into hard martensite at the time of bending, so that when a soft ferrite phase is present, the difference in hardness is large and the starting point of bending cracks, deteriorating delayed fracture resistance. In some cases, this is not preferable.
  • phases may be included as long as the effects of the present invention are not impaired.
  • Other phases are acceptable as long as the total volume fraction is 4% or less.
  • Other phases include, for example, pearlite.
  • the high-strength steel sheet may have a galvanized layer.
  • the galvanized layer is, for example, a hot-dip galvanized layer or an electrogalvanized layer. Further, the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer that has been alloyed.
  • the above high-strength steel sheets of the present invention have high strength.
  • the tensile strength measured by the method described in the examples is 980 MPa or more.
  • it is 1200 MPa or more.
  • it is preferably 1600 MPa or less from the viewpoint of easy balance with other properties.
  • the method for producing a high-strength steel sheet of the present invention includes a casting step, a hot rolling step, a cold rolling step, an annealing step, and a galvanizing step performed as necessary.
  • the reflux time in the RH vacuum degassing apparatus is set to 500 sec or more, and after continuous refining, the difference between the casting temperature and the solidification temperature is 10 ° C or more and 35 ° C or less.
  • Reflux time in RH vacuum degassing device 500 sec or more Reflux time in RH vacuum degassing device after the final addition of metal for component adjustment or alloy iron is 500 sec or more.
  • the presence of Ca-based composite oxides in a steel sheet deteriorates the delayed fracture resistance due to the occurrence of microcracks during bending, so that it is necessary to reduce these oxides. Therefore, in the refining process, it is necessary to set the reflux time in the RH vacuum degassing apparatus after the final addition of the metal for component adjustment and the alloyed iron to 500 sec or more.
  • the reflux time is preferably 650 sec or more, more preferably 800 sec or more. Although the upper limit of the reflux time is not particularly defined, the above reflux time is preferably 3600 sec or less in consideration of productivity.
  • Difference between casting temperature and solidification temperature 10 ° C. or more and 35 ° C. or less
  • the difference between the casting temperature and the solidification temperature is set to 35 ° C. or less.
  • the difference between the casting temperature and the solidification temperature is preferably 30 ° C. or less.
  • the difference between the casting temperature and the solidification temperature is 10 ° C.
  • the difference between the casting temperature and the solidification temperature is preferably 15 ° C. or higher.
  • the casting temperature can be obtained by actually measuring the temperature of the molten steel in the tundish.
  • the solidification temperature can be determined by the following equation by actually measuring the component composition of steel.
  • Solidification temperature (° C) 1539-(70 x [% C] + 8 x [% Si] + 5 x [% Mn] + 30 x [% P] + 25 x [% S] + 5 x [% Cu] + 4 x [% Ni] ] + 1.5 ⁇ [% Cr])
  • [% element symbol] means the content (% by mass) of each element in the steel.
  • the molten steel flow rate at the solidification interface near the mold meniscus 0.5 to 1.5 m / min.
  • the molten steel flow rate at the solidification interface near the mold meniscus is set to 1.5 m / min or less.
  • the metal-based inclusions float and are removed.
  • the molten steel flow rate exceeds 1.5 m / min, the amount of nonmetallic inclusions remaining in the steel increases, and the delayed fracture resistance deteriorates due to an increase in microcracks.
  • the molten steel flow rate is preferably 1.2 m / min or less.
  • the molten steel flow rate is 0.5 m / min or more, preferably 0.8 m / min or more.
  • the passing temperature of the bent portion and the straightening portion 550 ° C or more and 1050 ° C or less
  • the passing temperature of the bent portion and the straightening portion of 1050 ° C or less reduces segregation of P, Mn, etc. by suppressing the bulging of the cast slab, In order to reduce the maximum concentration of MnS particles having a major axis of 150 ⁇ m or more or P in a region within 100 ⁇ m in the thickness direction from the surface of Pb, it is effective in improving delayed fracture resistance. If the passing temperature exceeds 1050 ° C., this effect will be reduced.
  • the passing temperature is more preferably at most 1000 ° C.
  • the passing temperature of the bending section and the straightening section is less than 550 ° C.
  • the slab becomes hard and the deformation load of the bending straightening device increases, so that the roll life of the straightening section is shortened, and the roll opening degree at the end of solidification is increased.
  • the center segregation is degraded because the light reduction due to the narrowing does not act sufficiently. Therefore, the passing temperature is 550 ° C. or more.
  • the hot rolling step is to directly or once cool the steel material obtained in the casting step, hold it at 1220 ° C. or higher and 1300 ° C. or lower, hold it for 80 minutes or more, and reduce the rolling reduction in the first pass of the rough rolling by 10% or more.
  • This is a step in which hot rolling is completed at a rolling reduction of the first pass of the finish rolling of 20% or more and winding is performed.
  • Slab heating temperature 1220 ° C or higher and 1300 ° C or lower and 80 minutes or more
  • the steel material obtained by the above casting is heated as necessary (if the temperature of the steel slab after casting is in the range of 1220 ° C or higher and 1300 ° C or lower, heating is performed). It is not necessary to keep the slab at a surface temperature of 1220 ° C. or more and 1300 ° C. or less for 80 minutes or more, which is an important requirement for reducing the number of the MnS particles. At the same time, Mn and P segregation are reduced.
  • the holding temperature is less than 1220 ° C.
  • the dissolution of MnS at the time of soaking becomes insufficient, and coarse MnS particles generated at the time of casting do not sufficiently dissolve and remain, and are subjected to subsequent hot rolling and subsequent cold rolling. Since a large number of the MnS particles are formed, the delayed fracture resistance becomes insufficient.
  • the slab heating temperature is set to 1300 ° C. or less because it is economically undesirable to make the heating temperature excessively high. If the holding time in the slab heating temperature range is less than 80 minutes, the dissolution of MnS at the time of soaking becomes insufficient, and the coarse MnS particles generated at the time of casting are not sufficiently dissolved and remain.
  • the holding time in the slab heating temperature range is 80 minutes or more, preferably 90 minutes or more.
  • the upper limit of the holding time is not particularly limited, but if it exceeds 120 minutes, it will be a factor of inhibiting productivity, and thus it is preferably 120 minutes or less.
  • Reduction amount in first pass of rough rolling 10% or more
  • Mn segregation and P segregation can be reduced, so that delayed fracture resistance is improved.
  • the rolling reduction is preferably 12% or more.
  • the excessive rolling reduction in the first pass is preferably 18% or less because the shape of the steel sheet may be impaired.
  • Reduction amount in first pass of finish rolling 20% or more
  • Mn segregation and P segregation can be reduced, so that delayed fracture resistance is improved.
  • the rolling reduction is preferably 24% or more.
  • the rolling reduction is less than 20%, the effect of reducing segregation is reduced, and the delayed fracture resistance becomes insufficient.
  • the rolling reduction is preferably 35% or less.
  • Hot finishing rolling temperature Ar 3 transformation point or higher (preferred conditions)
  • the hot finish rolling temperature is preferably equal to or higher than the Ar 3 transformation point.
  • the preferable upper limit of the finish rolling temperature is not particularly defined, if it exceeds 1000 ° C., the structure after hot finish rolling becomes coarse, and the structure after cold rolling annealing also remains coarse, so that the elongation may decrease. is there.
  • Ar 3 transformation point (° C.) 910-310 ⁇ [% C] ⁇ 80 ⁇ [% Mn] ⁇ 20 ⁇ [% Cu] ⁇ 15 ⁇ [% Cr] ⁇ 55 ⁇ [% Ni] ⁇ 80 ⁇ [% Mo ] + 0.35 ⁇ (t ⁇ 8)
  • [% element symbol] means the content (% by mass) of each element, and elements not contained are set to 0.
  • t means the thickness (mm) of the steel sheet.
  • Winding temperature less than 550 ° C (preferred conditions)
  • the winding temperature is preferably less than 550 ° C.
  • the winding temperature is preferably lower than 550 ° C., and it is preferable to suppress pearlite in a cooling process after winding to form a structure mainly composed of bainite and martensite.
  • the winding temperature is more preferably 500 ° C. or lower.
  • the winding temperature is preferably 400 ° C. or higher, more preferably 420 ° C. or higher.
  • the cold rolling step is a step in which the hot rolled steel sheet obtained in the hot rolling step is pickled and then cold rolled.
  • Cold rolling rate 40% or more (preferred conditions) If the rolling reduction is less than 40%, strain is not uniformly introduced into the steel sheet, so that the progress of recrystallization in the steel sheet varies, resulting in a non-uniform structure in which coarse grains and fine grains are present. there is a possibility. Therefore, sufficient elongation may not be obtained. Therefore, the cold rolling reduction is preferably set to 40% or more.
  • the upper limit is not particularly limited, but if the rolling ratio exceeds 80%, it may be a factor inhibiting productivity, so that the upper limit is preferably 80% or less.
  • the cold rolling reduction is more preferably 45 to 70%.
  • the annealing step is a step of annealing the cold-rolled steel sheet obtained in the cold-rolling step.
  • the cold-rolled steel sheet obtained in the cold-rolling step is heated to a temperature range of 780 to 900 ° C., and is soaked in the temperature range for 20 seconds or more, and the primary cooling from the soaking temperature to 350 ° C. is averaged. Cool at a temperature of 3 ° C./sec or more and less than 100 ° C./s to 350 ° C. or less, hold in a temperature range of 450 to 130 ° C .: 10 to 1000 sec. It is preferable to have a step of secondary cooling at a temperature of at least ° C / sec.
  • Annealing temperature (soaking temperature): 780 to 900 ° C If the annealing temperature is lower than 780 ° C., the volume fraction of the ferrite phase finally obtained after annealing becomes excessive due to an increase in the ferrite fraction during heat annealing, and a desired martensite fraction is obtained. Therefore, it may be difficult to secure a tensile strength of 980 MPa or more.
  • the annealing temperature is preferably set to 780 to 900 ° C.
  • the annealing temperature is more preferably 790 to 860 ° C.
  • Soaking time 20 sec or more If the soaking time is less than 20 sec, austenite may not be sufficiently generated, and sufficient strength may not be obtained.
  • the soaking time is 20 sec or more, preferably 30 sec or more.
  • the upper limit of the soaking time is not particularly limited, but it is preferable that the soaking time is 1200 sec or less so as not to impair productivity.
  • cooling may be started for a certain period of time without immediately starting cooling after heating.
  • Average primary cooling rate 3 ° C./sec or more and less than 100 ° C./sec.
  • the volume fraction of ferrite can be adjusted. If the average primary cooling rate is 100 ° C./sec or more, a ferrite fraction of 5% or more cannot be secured and elongation may be deteriorated. Therefore, in the present invention, the average primary cooling rate is preferably less than 100 ° C./sec.
  • the lower limit of the average primary cooling rate is preferably 3 ° C./sec or more from the viewpoint of productivity.
  • the cooling stop temperature is preferably 350 ° C. or less. Although the lower limit of the cooling stop temperature is not particularly limited, the cooling stop temperature is usually 25 ° C. or higher.
  • the temperature is maintained at 450 to 130 ° C. for 10 to 1000 seconds.
  • the delayed fracture resistance is improved. If the holding temperature is lower than 130 ° C., such an effect may not be sufficiently obtained.
  • the holding temperature exceeds 450 ° C., the strength is remarkably reduced, and it may be difficult to obtain a tensile strength of 980 MPa or more, and furthermore, due to coarsening of precipitates such as iron-based carbides.
  • the delayed fracture resistance may deteriorate.
  • the holding temperature is preferably from 190 to 320 ° C, more preferably from 200 to 300 ° C.
  • the cooling stop temperature of the primary cooling is lower than 130 ° C., it is necessary to reheat, and the heating condition in that case may be set as appropriate.
  • the retention time is preferably from 10 to 1000 sec, more preferably from 200 to 800 sec.
  • Average secondary cooling rate 10 ° C./sec or more If the average secondary cooling rate for cooling the temperature range of 130 to 50 ° C. after the above holding (residence) is less than 10 ° C./sec, the hardenability of the steel sheet is insufficient. In some cases, the sum of the volume fractions of martensite and bainite is less than 30%, and tensile strength of 980 MPa or more cannot be obtained. Therefore, in the present invention, the average cooling rate in the above temperature range (average secondary cooling rate) ) Is preferably 10 ° C./sec or more. On the other hand, from the viewpoint of securing strength, the upper limit of the average secondary cooling rate is not particularly limited. However, a huge amount of equipment investment is required to secure the temperature exceeding 2000 ° C./sec. Is preferred.
  • the cooling stop temperature of the secondary cooling is not particularly limited.
  • Temper rolling is preferably performed at an elongation ratio of 0.1 to 0.7% in order to eliminate yield elongation.
  • the galvanizing step is a step of galvanizing the steel sheet after the annealing step.
  • the galvanizing step is performed when a galvanized layer is formed on the surface of the steel sheet.
  • Examples of zinc plating include electroplating and hot-dip galvanizing. Further, an alloying treatment may be performed after hot-dip galvanizing.
  • a high-strength steel sheet having a galvanized layer or a high-strength steel sheet having no galvanized layer may be coated with a solid lubricant or the like, if necessary.
  • a steel ingot was melted and cast under the conditions shown in Table 2 using steel having the composition shown in Table 1.
  • the obtained steel ingot was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having a sheet thickness of 2.8 mm.
  • the winding temperature of hot rolling was performed at 480 ° C.
  • cold rolling was performed to a sheet thickness of 1.4 mm, and heat treatment (annealing) under the annealing conditions shown in Table 2 was performed. After annealing, temper rolling at an elongation of 0.2% was performed.
  • the casting temperatures in Table 2 were obtained by actually measuring the temperature of molten steel in the tundish.
  • the solidification temperature was determined by the following equation by actually measuring the component composition of steel.
  • Solidification temperature (° C) 1539-(70 x [% C] + 8 x [% Si] + 5 x [% Mn] + 30 x [% P] + 25 x [% S] + 5 x [% Cu] + 4 x [% Ni] ] + 1.5 ⁇ [% Cr])
  • [% element symbol] means the content (% by mass) of each element in the steel.
  • the metal structure structure fraction (volume fraction)
  • Mn segregation degree Mn segregation degree
  • P maximum concentration MnS particle group
  • oxide-based inclusions were determined.
  • the tensile properties and the delayed fracture resistance were evaluated.
  • the martensite and bainite specified in the present invention both have a lath-like structure and exhibit a form in which acicular iron-based carbides are formed in the grains.
  • the orientation state of the acicular carbides in the grains is determined by the SEM structure. Can be determined from That is, since the needle-like carbide in bainite is generated with a certain orientation relationship with the bainite matrix, the elongation direction of the carbide is oriented in one direction.
  • acicular carbides in martensite have a plurality of orientation relationships with the martensite matrix.
  • the amount of the retained austenite phase was determined by the X-ray diffraction method using Mo K ⁇ radiation. That is, a test piece having a surface near a plate thickness of 1/4 including a surface parallel to the rolling direction of the steel plate as a measurement surface was used, and the (211) and (220) planes of the austenitic phase and the ferrite phase were used.
  • the volume fraction of the retained austenite phase was calculated from the peak intensities of the (200) plane and the (220) plane, and used as the value of the volume fraction.
  • the concentration distribution of Mn and P in an area within 100 ⁇ m from the surface in the thickness direction was measured by EPMA (Electron Probe Micro Analyzer).
  • EPMA Electro Probe Micro Analyzer
  • the measurement value in the area whose depth from the outermost surface is less than 10 ⁇ m is excluded from the measurement because a measurement error occurs due to measurement of the surface.
  • the measurement area is 45,000 ⁇ m under the constant conditions of an acceleration voltage of 15 kV, an irradiation current of 2.5 ⁇ A, an irradiation time of 0.05 s / point, a probe diameter of 1 ⁇ m, and a measurement pitch of 1 ⁇ m.
  • the plane parallel to the plate surface is a cross section including the rolling direction.
  • the particle diameter of the oxide-based inclusions in the present invention means a circle-equivalent diameter.
  • inclusion particles having a particle diameter of 5 ⁇ m or more all were subjected to SEM-EDX analysis to quantitatively analyze the composition.
  • the alumina content was 50% by mass or more and the silica content was 20% by mass or less.
  • the number of inclusion particles having a composition with a calcia content of 40% by mass or less was determined. Further, the ratio of the number corresponding to the composition to the total number of the inclusion particles having a particle diameter of 5 ⁇ m or more, obtained by the above observation, was determined as in the following formula, and was defined as the ratio corresponding to the composition.
  • Ratio (%) of the number of corresponding compositions ⁇ (number of corresponding compositions) / (total number of inclusion particles having a particle diameter of 5 ⁇ m or more) ⁇ ⁇ 100
  • the length in the rolling direction is 10 ⁇ m or more
  • the length in the rolling direction is reduced. It is divided into two or more parts (so that the length of the divided area after the division in the rolling direction is 5 to 10 ⁇ m), and the longitudinal central part of the inclusions in each divided area is analyzed to analyze each divided area. Determined by averaging the values.
  • JIS Z2201 JIS No. 5 test piece
  • YS yield strength
  • TS tensile strength
  • El Butt extension
  • Table 3 shows the evaluation results. As is clear from the results, the steel sheet of the present invention has a tensile strength TS ⁇ 980 MPa and is excellent in delayed fracture resistance. On the other hand, the steel sheet of the comparative example was inferior in delayed fracture resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

本発明の課題は、引張強さが980MPa以上で優れた耐遅れ破壊特性を有する高強度鋼板及びその製造方法を提供することである。 本発明の高強度鋼板は、特定の成分組成を有し、特定の領域におけるMn偏析度が1.5以下であり、特定の領域におけるP最大濃度が0.08質量%以下であり、特定の領域における特定のMnS粒子群が1mmあたり2.0個以下であり、特定の酸化物系介在物が1mm当たり8個以下であり、前記酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率が80%以上であり、鋼組織が、体積分率で、マルテンサイトとベイナイトの合計:30~95%、フェライト相:5~70%を有し、オーステナイト相:3%未満(0%含む)であり、引張強さが980MPa以上である。

Description

高強度鋼板及びその製造方法
 本発明は、自動車部品等の素材として好ましく用いられ、耐遅れ破壊特性に優れる高強度鋼板及びその製造方法に関する。
 近年、地球環境の保護意識の高まりから、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、自動車部品の素材である鋼板を高強度化して、部品の薄肉化を図り、車体を軽量化しようとする動きが活発となってきている。引張強さが980MPa級以上の鋼板をプレス成形で成形加工を行った場合、部品内での残留応力の増加や鋼板そのものによる耐遅れ破壊特性の劣化により、遅れ破壊が生じるおそれがある。ここで、遅れ破壊とは、部品に高い応力が加わった状態で部品が水素侵入環境下に置かれたとき、水素が部品を構成する鋼板内に侵入し、原子間結合力を低下させることや曲げ加工等により局所的な変形を生じさせることで微小亀裂が生じ、その微小亀裂が進展することで破壊に至る現象である。本発明では、高濃度酸浸漬による腐食環境において優れた耐遅れ破壊特性を確保する必要がある。
 高強度鋼板の曲げ加工性の改善手段については、従来、種々の検討が行われてきた。例えば、特許文献1には、凝固組織の不均質性を改善して鋼板表層の硬度分布を均質化させることで、フェライトとマルテンサイトを含む組織でありながら、曲げ性を向上する技術が開示されている。また、特許文献1に記載の技術では、鋳型内電磁攪拌装置等を用いて、スラブを鋳型メニスカス近傍の凝固界面の溶鋼流速を速くして溶鋼の流動により凝固過程にあるスラブ表層の溶鋼を攪拌することによって、デンドライトのアーム間に介在物や欠陥がトラップされにくくし、鋳造時にスラブ表層近傍に不均質な凝固組織が発達することを妨げ、これら凝固組織の不均質性に起因した冷延-焼鈍後の鋼板表層の組織の不均一な変動と、これに起因した曲げ性の劣化を低減している。
 また、介在物の量や形状を制御して、鋼板の材料特性を改善する技術としては、例えば特許文献2及び3の技術がある。
 特許文献2には、伸びフランジ性の向上を目的として、金属組織及び介在物量を制限した高強度冷延鋼板が開示されている。特許文献2では、硬さ380Hv以下の焼戻しマルテンサイトが面積率で50%以上(100%を含む)を含み、残部がフェライトからなる組織を有し、焼戻しマルテンサイト中に存在する、円相当径0.1μm以上のセメンタイト粒子が、該焼戻しマルテンサイト1μm当たり2.3個以下であり、全組織中に存在する、アスペクト比2.0以上の介在物が、1mm当たり200個以下である伸びフランジ性に優れた高強度冷延鋼板が提案されている。
 また、特許文献3には、CeもしくはLaのうち1種または2種の合計が0.001~0.04%であり、さらに、質量ベースで、(Ce+La)/酸可溶Al≧0.1、かつ、(Ce+La)/Sが0.4~50である化学成分を有する、伸びフランジ性と疲労特性に優れた高強度鋼板が提案されている。特許文献3では、Ce、Laの添加による脱酸により生成した微細で硬質なCe酸化物、La酸化物、セリュウムオキシサルファイド、ランタンオキシサルファイド上にMnS、TiS、(Mn,Ti)Sが析出し、圧延時にもこの析出したMnS、TiS、(Mn,Ti)Sの変形が起こり難いため、鋼板中には伸展した粗大なMnS粒子が著しく減少し、繰り返し変形時や穴拡げ加工時において、これらのMnS系介在物が割れ発生の起点や亀裂伝播の経路となり難くなることが開示されている。また、特許文献3には、酸可溶Al濃度に応じたCe、La濃度とすることにより、Al脱酸で生成したAl系介在物について、添加したCe、Laが還元分解して微細な介在物を形成し、アルミナ系酸化物がクラスター化して粗大とならないことが開示されている。
 また、特許文献4には、質量%または質量ppmで、C:0.08~0.18%、Si:1%以下、Mn:1.2~1.8%、P:0.03%以下、S:0.01%以下、sol.Al:0.01~0.1%、N:0.005%以下、O:0.005%以下、B:5~25ppmに加えて、Nb:0.005~0.04%、Ti:0.005~0.04%、Zr:0.005~0.04%のうち1種または2種以上を含み、CeqとTSの関係がTS≧2270×Ceq+260、Ceq≦0.5、Ceq=C+Si/24+Mn/6を満たし、ミクロ組織について、体積分率で80%以上のマルテンサイトを含有させることで、耐遅れ破壊特性を改善する技術が開示されている。
特開2011-111670号公報 特開2009-215571号公報 特開2009-299137号公報 特開平09-111398号公報
 しかしながら、特許文献1に記載される技術では、鋳型メニスカス近傍の凝固界面の溶鋼流速が15cm/秒以上となる条件で鋳造するため、非金属系介在物が残存しやすく、当該介在物の近傍で微小な曲げ割れが生じる場合があり、酸浸漬試験においてこのような微小な曲げ割れを起点に遅れ破壊が生じるといった課題がある。また、Mn偏析度やP最大濃度、MnSの分布形態も適正に制御されていない。即ち、本発明が目的とする優れた耐遅れ破壊特性が得られない。なお、鋳型メニスカス近傍とは、溶鋼を鋳造する際に、スラブ表面からスラブ中心に向かってデンドライト組織が形成される程度に近傍であることを意味する。
 また、特許文献2に記載される技術は、MnS介在物等の形態を制御して伸びフランジ性を改善するものであるが、酸化物系介在物の制御に関する示唆を与えるものではなく、Mn偏析度やP最大濃度、MnSの分布形態も適正に制御されていない。したがって、特許文献2に記載の技術では本発明が目的とする優れた耐遅れ破壊特性が得られない。
 また、特許文献3に記載される技術は、酸化物系介在物の制御にCe、Laといった特殊元素の添加が必要であるため、製造コストが著しく上昇する。また、Mn偏析度やP最大濃度、MnSの分布形態も適正に制御されていないため、特許文献3に記載の技術では本発明が目的とする優れた耐遅れ破壊特性が得られない。
 また、特許文献4に記載される技術は、耐遅れ破壊特性を電気分解法で評価した場合の耐遅れ破壊特性改善技術であり、特に5wt%という高濃度のHCl浸漬による腐食環境においては、耐遅れ破壊特性の改善効果は必ずしも十分でない。また、Mn偏析度やP最大濃度、MnSの分布形態も適正に制御されていないため、特許文献4に記載の技術では本発明が目的とする優れた耐遅れ破壊特性が得られない。
 本発明は、かかる事情に鑑み、引張強さが980MPa以上で優れた耐遅れ破壊特性を有する高強度鋼板及びその製造方法を提供することを目的とする。
 まず、本発明における耐遅れ破壊特性の評価手法について説明する。本発明では、U曲げ加工を施した後、ボルト締めにより加工部に応力を負荷した試験片を用意する。曲げ半径は、曲げ加工を施した際に目視で見て割れが発生しない最小の曲げ半径で加工を行う。応力を負荷した試験片は次の第1~3工程により作製する。まず、第1工程では、図1に示すように、穿孔2を2つ有し、端面を機械研削した、幅(c):30mm、長さ(d):100mmの細長い直方体形状の試験片1を作製する。次いで、第2工程では、図2に示すように試験片1の中央部に曲げ加工を施す。次いで、第3工程では、図3に示すようにフッ化エチレン樹脂製のワッシャ3を前述の穿孔2に装着して、ステンレスボルト4で締め込むことによって試験片1に応力を負荷する。
 応力値は、ボルト締め込み量がゼロである曲げ加工後を基準に、ヤング率を210GPaとしてフックの法則により算出される弾性応力2000MPaに相当するひずみ量を与えることにより負荷する(本明細書では、2000MPaの応力を負荷する、と表記する場合がある)。このときのひずみ量は、曲げ加工部の先端にゲージ長さ1mmのひずみゲージを装着して測定する。このようにして作製したU曲げボルト締め試験片を9つ準備し、濃度5wt%、比液量60ml/cmの塩酸に浸漬し、96hr浸漬後に9つすべての試験片で長さ1mm以上の割れが発生しない場合に耐遅れ破壊特性に優れると判断した。
 本発明者らは、上記耐遅れ破壊特性に関する課題を解決するために、高強度鋼板の耐遅れ破壊特性の支配因子について研究した結果、以下の知見を得た。
 本発明における耐遅れ破壊特性は、主に曲げ加工部先端でのき裂の発生および曲げ稜線方向への亀裂の進展のしやすさが影響する。TS980MPa超級の高強度鋼板では、鋼中に、圧延方向に伸展および/または点列状に、120μm超にわたって1個以上並んだ介在物群(以下、MnS群と表記する場合がある)として存在する。このような粗大なMnS群が鋼板の表層(表面から板厚方向に100μm以内の領域)に存在すると、その形状そのものの効果に加えて、基地鋼板との間に局部電池を形成してMnS群に接する基地鋼板の溶解と腐食が促進されることで、大きな応力集中が生じるため、耐遅れ破壊特性が顕著に劣化する。すなわち、このような鋼板表層のMnS群を低減することで、耐遅れ破壊特性を顕著に向上することが可能となる。
 また、曲げ加工時に微小な割れが生じた場合、酸浸漬後に該微小割れを起点に遅れ破壊が生じることがあり、安定して良好な耐遅れ破壊特性が得られないことがわかった。このような曲げ加工時の微小割れは、鋼板表層に伸展および/または点列状に存在する酸化物系介在物を起点に形成されるので、該酸化物系介在物の個数を低減し、かつ、伸展および/または点列状に形成されるのを抑制するため、介在物の組成をアルミナ含有率:50質量%以上、シリカ含有率:20質量%以下、かつカルシア含有率:40質量%以下に制御することが重要である。
 上記に加えて、さらにP最大濃度を0.08質量%以下に制御することで、更なる耐遅れ破壊特性の改善効果が得られる。この理由は必ずしも明らかではないが、P偏析部により鋼板母相の靭性が低下し、P偏析部がMnSや上記酸化物系介在物と共存する場合に破壊の起点になるためと考えられる。
 これらをすべて組み合わせることで、本発明が目的とする、耐遅れ破壊特性に優れた高強度鋼板が得られ、本発明を完成させた。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1]質量%で、
C:0.10~0.35%、
Si:0.01~2.0%、
Mn:2.2~3.5%、
P:0.015%以下(0%を含まない)、
S:0.0015%以下(0%を含まない)、
Sol.Al:0.01~1.0%、
N:0.0055%以下(0%を含まない)、
O:0.0025%以下(0%を含まない)及び
Ca:0.0005%以下(0%を含む)を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、
 表面から板厚方向に100μm以内の領域におけるMn偏析度が1.5以下であり、
 表面から板厚方向に100μm以内の領域におけるP最大濃度が0.08質量%以下であり、
 表面から板厚方向に100μm以内の領域における、鋼板の圧延方向に平行な板厚断面で、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上のMnS粒子により構成されるMnS粒子群を含み、該MnS粒子群が2個以上のMnS粒子で構成される場合には該MnS粒子間の距離が40μm以下であり、長径150μm以上のMnS粒子群が1mm当たり2.0個以下であり、
 表面から板厚方向に100μm以内の領域における、板面と平行な面で、粒子直径5μm以上の酸化物系介在物が1mm当たり8個以下であり、
 前記粒子直径5μm以上の酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、かつカルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率が80%以上であり、
 鋼組織が、体積分率で、マルテンサイトとベイナイトの合計:30~95%、フェライト相:5~70%、及びオーステナイト相:3%未満(0%含む)を有し、
 引張強さが980MPa以上である高強度鋼板。
[2]前記成分組成は、さらに、質量%で、
Ti:0.003~0.05%、
Nb:0.003~0.05%、
V:0.001~0.1%及び
Zr:0.001~0.1%のうち1種または2種以上を含有する[1]に記載の高強度鋼板。
[3]前記成分組成は、さらに、質量%で、
Cr:0.01~1.0%、
Mo:0.01~0.20%及び
B:0.0001~0.0030%のうち1種または2種以上を含有する[1]または[2]に記載の高強度鋼板。
[4]前記成分組成は、さらに、質量%で、
Cu:0.01~0.5%、
Ni:0.01~0.5%及び
Sn:0.001~0.1%のうち1種または2種以上を含有する[1]~[3]のいずれかに記載の高強度鋼板。
[5]前記成分組成は、さらに、質量%で、
Sb:0.001~0.1%を含有する[1]~[4]のいずれかに記載の高強度鋼板。
[6]前記成分組成は、さらに、質量%で、
REM及びMgのうち1種または2種を合計で0.0002%以上0.01%以下を含有する[1]~[5]のいずれかに記載の高強度鋼板。
[7]表面に亜鉛めっき層を有する[1]~[6]のいずれかに記載の高強度鋼板。
[8][1]~[6]のいずれかに記載の高強度鋼板の製造方法であって、
 RH真空脱ガス装置での還流時間を500sec以上とし、精錬終了後、連続鋳造するにあたり、鋳造温度と凝固温度の差を10℃以上35℃以下、鋳型メニスカス近傍の凝固界面の溶鋼流速を0.5~1.5m/分とし、曲げ部および矯正部を550℃以上1050℃以下で通過させる鋳造工程と、
 前記鋳造工程で得られた鋼素材を、直接又は一旦冷却した後1220℃以上1300℃以下に加熱後80分以上保持し、粗圧延の1パス目の圧下量を10%以上とし、仕上げ圧延の1パス目の圧下量を20%以上とする熱延工程と、
 前記熱延工程で得られた熱延鋼板を酸洗後、冷間圧延する冷延工程と、
 前記冷延工程で得られた冷延鋼板を焼鈍する焼鈍工程と、を有する高強度鋼板の製造方法。
[9]前記焼鈍工程は、前記冷延工程で得られた冷延鋼板を780~900℃の温度域に加熱後、該温度域で20sec以上均熱保持し、該均熱温度から350℃までの一次冷却を平均3℃/sec以上100℃/sec未満で、350℃以下まで冷却し、450~130℃の温度域の滞留時間:10~1000secの条件で保持し、さらに130~50℃の温度域を平均10℃/sec以上で二次冷却する工程である[8]に記載の高強度鋼板の製造方法。
[10]前記焼鈍工程後の鋼板に亜鉛めっきを施す亜鉛めっき工程を有する[8]又は[9]に記載の高強度鋼板の製造方法。
 本発明によれば、鋼板表層(鋼板表面から板厚方向に100μm以内の領域)の種々の酸化物系介在物およびMnS粒子群の個数を低減し、該酸化物系介在物の組成を適正範囲内に制御し、かつMn偏析度とP最大濃度を適正範囲内に小さくすることで、自動車の構造部材等の自動車部品用素材に好適な、耐遅れ破壊特性に優れる高強度鋼板が得られる。
 本発明の又は本発明の製造方法で製造した高強度鋼板を用いれば、自動車の衝突安全性の向上が図られるとともに、自動車部品の軽量化による燃費改善も図れる。
耐遅れ破壊特性の評価手法の第1工程を説明するための模式図である。 耐遅れ破壊特性の評価手法の第2工程を説明するための模式図である。 耐遅れ破壊特性の評価手法の第3工程を説明するための模式図である。 MnS粒子群が、圧延方向に伸展した1個以上のMnS粒子から構成されている場合の一例を示す模式図である。 MnS粒子群が、圧延方向に点列状に分布した1個以上のMnS粒子から構成されている場合の一例を示す模式図である。 MnS粒子群が、圧延方向に伸展した1個以上のMnS粒子と、圧延方向に点列状に分布した1個以上のMnS粒子と、から構成されている場合の一例を示す模式図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 <高強度鋼板>
 先ず、本発明の高強度鋼板の成分組成について説明する。以下の説明において成分の含有量を表す「%」は「質量%」を意味する。なお、本発明でいう高強度とは、引張強さが980MPa以上のことをいう。
 C:0.10~0.35%
 Cは焼入れ組織のマルテンサイトを強化するために重要な元素である。C含有量が0.10%未満では強度上昇の効果が不十分となる。このため、C含有量は0.10%以上とする。C含有量は、好ましくは0.12%以上であり、より好ましくは0.14%以上である。一方、C含有量が0.35%を超えると強度が高くなりすぎて、耐遅れ破壊特性著しく劣化する。また、スポット溶接における十字引張試験において溶接部破断するため、接合強度が著しく低下する。このため、C含有量は0.35%以下とする。C含有量は、好ましくは0.30%以下であり、より好ましくは、0.24%以下である。
 Si:0.01~2.0%
 Siは、高強度鋼板の延性を高めるのに有効である。また、表層の脱炭を抑えて疲労特性を改善する効果がある。このためSi含有量は0.01%以上とする。延性や疲労特性を向上させる観点からは、Si含有量は好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.40%以上である。一方、Siを2.0%超で含有すると酸化物組成が所定範囲に制御することが難しく、耐遅れ破壊特性が劣化する。また、Siは溶接性を劣化させる作用がある。このため、Si含有量は2.0%以下とする。耐遅れ破壊特性と溶接性を向上させる観点からはSi含有量を1.5%以下とすることが好ましく、1.0%未満とすることがより好ましく、0.8%未満とすることがさらに好ましい。
 Mn:2.2~3.5%
 Mnは、高強度鋼板の強度を高めるために添加される。しかし、Mn含有量が2.2%未満であると、焼鈍冷却時に生成するフェライト生成量が多くなり、またパーライトの生成も起こりやすくなり、強度が不十分となる。そこで、Mn含有量は2.2%以上とする。Mn含有量は、好ましくは2.3%以上であり、より好ましくは2.5%以上である。一方、Mn含有量が3.5%を超えると粗大なMnS粒子の割合が多くなり、MnS粒子群の個数が本発明の範囲を超えるため、優れた耐遅れ破壊特性が得られなくなる。このためMn含有量は3.5%以下とする。Mn含有量は、好ましくは3.2%以下であり、より好ましくは3.0%以下である。
 P:0.015%以下(0%を含まない)
 本発明の高強度鋼板の成分組成において、Pは不純物であり、鋳造時に形成するミクロ偏析部のP最大濃度の増大により耐遅れ破壊特性を劣化させる。このため、P含有量の低減は本発明において重要な要件の1つである。P含有量が0.015%を超えると、表層におけるP最大濃度を0.08質量%以下に制御することが困難になるので、本発明が目的とする優れた耐遅れ破壊特性が得られなくなる。このため、P含有量は0.015%以下とする必要がある。P含有量は、好ましくは0.010%以下であり、さらに好ましくは0.008%以下である。また、Pはできるだけ除去することが好ましいが、P含有量が0.003%未満では耐遅れ破壊特性の改善効果は飽和し、生産性を著しく阻害するため、P含有量は0.003%以上が好ましい。
 S:0.0015%以下(0%を含まない)
 本発明の高強度鋼板の成分組成において、Sは不純物であり、Mnと結びついてMnSを形成し、粗大なMnS粒子の存在は耐遅れ破壊特性を著しく劣化させる。このため、S含有量の低減は本発明において特に重要な要件の1つである。S含有量が0.0015%を超えると、長径150μm以上の粗大なMnS粒子群が増加して本発明が目的とする優れた耐遅れ破壊特性が得られなくなる。そこで、S含有量を0.0015%以下とする必要がある。またSはできるだけ除去することが好ましく、S含有量は好ましくは0.0010%以下、より好ましくは0.0008%以下、さらに好ましくは0.0005%以下である。一方、S含有量を0.0002%未満に低減するためには生産性を著しく阻害するため、0.0002%以上が好ましい。
 Sol.Al:0.01~1.0%
 Sol.Al含有量が0.01%未満では脱酸・脱窒の効果が十分でない。このため、Sol.Al含有量は0.01%以上とする。Sol.Al含有量は、好ましくは0.02%以上である。また、Sol.AlはSiと同様にフェライト生成元素であり、フェライトを含む鋼組織を志向する場合には積極的に添加される。一方、1.0%超の含有は引張強さ980MPaを安定的に確保することが難しくなる。また、耐遅れ破壊特性も劣化する。そこで、Sol.Al含有量を1.0%以下とする。Sol.Al含有量は、好ましくは0.5%以下、より好ましくは0.1%以下である。なお、ここで、Sol.Alは酸可溶性アルミニウムであり、Sol.Al含有量は鋼中全Al含有量のうち、酸化物として存在するAlを除いたAl含有量である。
 N:0.0055%以下(0%を含まない)
 Nは粗鋼中に含まれる不純物であり、鋼板の成形性を劣化させるため、N含有量は0.0055%以下とする必要がある。N含有量は、好ましくは0.0050%以下、より好ましくは0.0045%以下である。一方、N含有量を0.0006%未満にしようとすると、精錬コストが著しく上昇する。このため、N含有量は0.0006%以上とすることが好ましい。
 O:0.0025%以下(0%を含まない)
 Oは精錬時に生成した金属酸化物などが鋼中の介在物として残留するものである。本発明においては、後述するように、酸化物系介在物の組成を適正に制御することで、曲げ加工性を介して耐遅れ破壊特性を改善することができる。O含有量が0.0025%を超えると、曲げ加工時の微小割れの発生率が著しく上昇し、結果的に耐遅れ破壊特性が劣化する。このため、O含有量は0.0025%以下とする。O含有量は、好ましくは0.0020%以下であり、より好ましくは0.0014%以下である。一方、O含有量を0.0008%未満にしようとすると、精錬コストが著しく上昇する。よって、精錬コストの上昇を抑制するため、O含有量を0.0008%以上とすることが好ましい。
 Ca:0.0005%以下(0%を含む)
 Caは粗鋼中に含有される不純物であり、酸素と反応して酸化物を形成したり、別の酸化物と反応して複合酸化物となったりする。これらが鋼中に存在すると、鋼板における欠陥の原因となったり、曲げ性を介して耐遅れ破壊特性を劣化させたりするため、Ca含有量は0.0005%以下とする必要がある。Ca含有量は、好ましくは0.0003%以下であり、より好ましくは0.0002%以下である。
 本発明の鋼板は、上記成分を含有し、上記成分以外の残部はFe(鉄)および不可避的不純物を含む成分組成を有する。ここで、本発明の鋼板は、上記成分を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。また、本発明の鋼板の成分組成には、上記の元素に加えて、目的に応じて、さらに下記の任意元素を含有することができる。
 Ti:0.003~0.05%、Nb:0.003~0.05%、V:0.001~0.1%及びZr:0.001~0.1%のうち1種または2種以上
 Ti、Nb、V、Zrは、鋳造、熱延工程で鋼中に炭化物、窒化物を形成し、結晶粒径の粗大化を抑制することで、加工によって生じた亀裂の伝播を抑制させる効果がある。このような効果を得るためには、上記下限値以上でTi、Nb、V、Zrを含有することが好ましい。Ti含有量は、より好ましくは0.02%以上である。Nb含有量は、より好ましくは0.02%以上である。V含有量は、より好ましくは0.003%以上、さらに好ましくは0.006%以上である。Zr含有量は、より好ましくは0.003%以上、さらに好ましくは0.006%以上である。ただし、これらの元素の過度の添加は炭窒化物の析出量が多くなり、粗大なものはスラブ加熱時に溶け残ることで、製品の成形性を低下させる。そのため、上記上限値以下でTi、Nb、V、Zrを含有することが好ましい。Ti含有量は、より好ましくは0.04%以下である。Nb含有量は、より好ましくは0.04%以下である。V含有量は、より好ましくは0.050%以下、さらに好ましくは0.010%以下である。Zr含有量は、より好ましくは0.050%以下、さらに好ましくは0.010%以下である。
 Cr:0.01~1.0%、Mo:0.01~0.20%及びB:0.0001~0.0030%のうち1種または2種以上
 Cr、Mo、Bは、焼入れ性を向上させることで980MPa以上の引張強さを安定して得るのに有効な元素であり、このような効果を得るため、これらの元素のうち1種または2種以上を含有させることが好ましい。それぞれ下限値以上含有することで上記効果を得ることができる。Cr含有量はより好ましくは0.1%以上である。Mo含有量はより好ましくは0.05%以上である。B含有量はより好ましくは0.0003%以上である。一方、Cr、Mo、Bは、それぞれ、上記上限値を超えると延性を劣化させる可能性がある。このため、上記上限値以下とすることが好ましい。Cr含有量は、より好ましくは0.7%以下である。Mo含有量は、より好ましくは0.15%以下である。B含有量は、より好ましくは0.0020%以下である。
 Cu:0.01~0.5%、Ni:0.01~0.5%及びSn:0.001~0.1%のうち1種または2種以上
 Cu、Ni、Snは鋼板の耐食性の向上により耐遅れ破壊特性を高める効果があり、このような効果を得るため、これらの元素のうち1種または2種以上を含有させることが好ましい。Cu、Ni、Snの含有量は、それぞれ、0.01%以上、0.01%以上、0.001%以上でこのような効果を得ることができるため、Cu含有量は0.01%以上、Ni含有量は0.01%以上、Sn含有量は0.001%以上であることが好ましい。より好ましくは、Cu含有量は0.05%以上、Ni含有量は0.05%以上、Sn含有量は0.005%以上である。一方、Cu、Ni、Snのうち1種または2種以上を含有する場合、それぞれの含有量が、0.5%、0.5%、0.1%を超えると鋳造および熱間圧延時の脆化により表面欠陥が発生する。このため、Cu含有量は0.5%以下、Ni含有量は0.5%以下、Sn含有量は0.1%以下とすることが好ましい。より好ましくは、Cu含有量は0.2%以下、Ni含有量は0.2%以下、Sn含有量は0.050%以下とする。
 Sb:0.001~0.1%
 Sbは、連続焼鈍の焼鈍過程において、鋼板の表層に濃化することで鋼板の表層に存在するC含有量及びB含有量の低減を抑制する。このような効果を得るためには、Sb含有量を0.001%以上とすることが好ましい。Sb含有量は、より好ましくは0.008%以上とする。一方、Sb含有量が0.1%を超えるとその効果が飽和するだけでなく、Sbの粒界偏析により靭性が低下する可能性がある。従って、Sb含有量は0.1%以下とすることが好ましい。Sb含有量は、より好ましくは、0.012%以下である。
 REM及びMgのうち1種または2種を合計で0.0002%以上0.01%以下
 これらの元素は、介在物を微細化し、破壊の起点を減少させることで、成形性を向上させるのに有用な元素である。合計含有量が0.0002%未満となる添加では上記のような作用を有効に発揮しえない。一方、合計含有量が0.01%を超えると、逆に介在物が粗大化し、成形性が低下する可能性がある。したがって、REM及びMgのうち1種または2種の合計含有量が0.0002%以上0.01%以下であることが好ましい。ここで、REMとは、Sc、Y及びランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。本発明では、REMの含有量はこれらの元素の合計含有量を指す。
 なお、本発明の鋼板において、上記以外の残部はFeおよび不可避的不純物である。上記の任意に含むことができる任意元素を、上記下限値未満含む場合には、これらの元素は本発明の効果を害さないため、これらの元素を不可避的不純物に含むこととする。
 次に、本発明鋼板の表層のMn偏析度およびP最大濃度の限定理由について説明する。
 表面から板厚方向に100μm以内の領域におけるMn偏析度が1.5以下
 本発明において、Mn偏析度とは、鋼板の中心偏析部を除いた平均のMn量に対する表面から板厚方向に10μm深さから100μm深さまでの領域(表層)の最大のMn量である(Mn偏析度=(最大Mn量/平均Mn量))。最表面からの深さが10μm未満までの領域の測定値は表面を測定することによる測定誤差が生じるため、測定からは除外する。また、Mn偏析度の制御は、本発明が目的とする優れた耐遅れ破壊特性を得るうえで最も重要な要件の1つである。
 Mn偏析度を測定する場合、EPMA(Electron Probe Micro Analyzer)によって鋼板のMn濃度分布を測定する。Mn偏析度はEPMAの測定条件によって変化するため、本発明では、加速電圧15kV、照射電流2.5μA、照射時間0.05s/点、プローブ径を1μm、測定ピッチ1μmの一定条件で、測定面積を45000μm(深さ方向90μm×圧延方向500μm)として評価する。得られたデータについて、3μm×3μmの範囲でデータを平均化した値をその領域の測定データとする。本発明では、一つの評価領域を3μm×3μmとする。なお、MnS粒子などの介在物が存在すると最大Mn偏析度が見かけ上大きくなるので、介在物が当たった場合はその値は除いて評価するものとする。
 Mn偏析度が1.5を超えると、MnS粒子群の個数が本発明の範囲を超えるため、優れた耐遅れ破壊特性が得られなくなる。このため、Mn偏析度は1.5以下とする。好ましくは、Mn偏析度は、1.3以下である。
 また、上記Mn偏析度の下限は特に限定されず、上記Mn偏析度の値は小さい方が好ましい。
 なお、鋼板表面から板厚方向に100μmより板厚中心側に存在するMn偏析は、本発明が目的とする耐遅れ破壊特性に対して影響が小さいので本発明では特に規定はしない。
 表面から板厚方向に100μm以内の領域におけるP最大濃度が0.08質量%以下
 本発明において、Pの最大濃度とは、鋼板の中心偏析部を除いた表面から板厚方向に10μm深さから100μm深さまでの領域(表層)のPの最大濃度である。最表面からの深さが10μm未満までの領域の測定値は表面を測定することによる測定誤差が生じるため、測定からは除外する。また、P最大濃度の制御は本発明が目的とする優れた耐遅れ破壊特性を得るうえで重要な要件である。
 Pの最大濃度を測定する場合、EPMA(Electron Probe Micro Analyzer)によって鋼板のPの濃度分布を測定する。P最大濃度はEPMAの測定条件によって変化するため、本発明では、加速電圧15kV、照射電流2.5μA、照射時間0.05s/点、プローブ径を1μm、測定ピッチ1μmの一定条件で、測定面積を45000μm(深さ方向90μm×圧延方向500μm)として評価する。得られたデータについて、3μm×3μmの範囲でデータを平均化した値をその領域の測定データとする。本発明では、一つの評価領域を3μm×3μmとする。
 Pは濃化するほど鋼板が脆性的になり、最大濃度が0.08質量%を超えると、浸漬遅れ破壊試験時に粗大なMnS粒子を起点にした割れの発生割合が多くなり、本発明が目的とする優れた耐遅れ破壊特性が得られなくなる。このため、P最大濃度は0.08質量%以下とする。P最大濃度は、好ましくは、0.06質量%以下であり、さらに好ましくは0.05質量%以下である。
 また、上記最大濃度の下限は特に限定されず、上記最大濃度は少ない方が好ましいが、通常、0.01質量%以上であることが多い。
 なお、鋼板表面から板厚方向に100μmより板厚中心側に存在するP偏析は、本発明が目的とする耐遅れ破壊特性に対して影響が小さいので本発明では特に規定はしない。
 続いて、MnSに関する限定理由について、説明する。
 本発明の鋼板は、表面から板厚方向に100μm以内の領域における、鋼板の圧延方向に平行な板厚断面で、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上のMnS粒子により構成されるMnS粒子群を含み、該MnS粒子群が2個以上で構成される場合には該MnS粒子間の距離が40μm以下であり、長径150μm以上のMnS粒子群が1mmあたり2.0個以下である。MnS粒子群とは、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上のMnS粒子により構成されるMnS粒子群を含み、該MnS粒子群が2個以上のMnS粒子で構成される場合には該MnS粒子間の距離が40μm以下であるものを指す。なお、本発明でいうMnS粒子の長軸は、円相当楕円の長軸を意味する。
 図4~6を用いて、MnS粒子群を説明する。図4~6は、鋼板10の圧延方向D1に平行な板厚断面を示している。
 MnS粒子群は、上述したとおり、圧延方向に伸展および/または点列状に分布した1個以上のMnS粒子により構成されている。つまり、MnS粒子群は、以下の(1)~(3)のいずれか一つのMnS粒子により構成されている場合に分けられる。
(1)圧延方向に伸展した1個以上のMnS粒子
(2)圧延方向に点列状に分布した1個以上のMnS粒子
(3)圧延方向に伸展した1個以上のMnS粒子と、圧延方向に点列状に分布した1個以上のMnS粒子とを有するMnS粒子
 上記(1)の場合の一例を図4に示す。図4には、鋼板表面から100μ以内の領域において、鋼板10の圧延方向D1に平行な板厚断面で、圧延方向D1に伸展したMnS粒子11を示している。
 上記(2)の場合の一例を図5に示す。図5には、鋼板表面から100μ以内の領域において、鋼板10の圧延方向D1に平行な板厚断面で、圧延方向D1に点列状に分布した複数のMnS粒子12を示している。
 上記(3)の場合の一例を図6に示す。図6には、鋼板表面から100μ以内の領域において、鋼板10の圧延方向D1に平行な板厚断面で、圧延方向D1に伸展したMnS粒子11と、圧延方向D1に点列状に分布した複数のMnS粒子12とが連続して存在している場合を示している。
 また、これらのMnS粒子は、それぞれ、長軸0.3μm以上である。また、MnS粒子群が2個以上のMnS粒子で構成されている図5及び6では、MnS粒子間の距離が40μm以下である。
 MnS粒子の存在形態を上記範囲に制御することは本発明の目的とする優れた耐遅れ破壊特性を得るうえで最も重要な要件の1つである。鋼板表面から板厚方向に100μmより板厚中心側に存在するMnS粒子群、または全長(長径)が150μm未満のMnS粒子群は、耐遅れ破壊特性に対して影響が小さいので本発明では特に制御する必要はない。このため、鋼板表面から板厚方向に100μm以内の領域に存在する、全長(長径)が150μm以上のMnS粒子群について、以下のように限定する。
 また、MnS粒子群の長径は、MnS粒子群が1個のMnS粒子から構成される場合には、その粒子の圧延方向の長さを意味する。MnS粒子群が2個以上のMnS粒子から構成される場合には、圧延方向の両端に存在する粒子の外周上の2点間の圧延方向の最大長さを意味する。また、図4~6には、上記(1)~(3)の場合の、MnS粒子群の長径L1を図示している(図4~6参照)。
 鋼板表面から板厚方向に100μm以内の領域において、鋼板の圧延方向に平行な板厚断面で、長径150μm以上のMnS粒子群が1mm当たり2.0個を超えると、本発明が目的とする優れた耐遅れ破壊特性が得られない。このため、該MnS粒子群の個数は1mm当たり2.0個以下に低減する必要がある。MnS粒子群の個数は、好ましくは1mm当たり1.5個以下であり、より好ましくは1mm当たり1.0個以下である。なお、MnS粒子群の個数は1mm当たり0個でもよい。
 さらに、酸化物系介在物に関する限定理由について、説明する。
 本発明では、鋼板の表面から板厚方向に100μm以内の領域における、板面と平行な面で、粒子直径5μm以上の酸化物系介在物が1mm当たり8個以下であり、該酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率が80%以上である。
 酸化物系介在物の形態、組成を上記範囲に制御することは本発明の目的とする優れた耐遅れ破壊特性を得るうえで重要な要件である。鋼板表面から板厚方向に100μmより板厚中心側に存在する酸化物系介在物、または粒子直径が5μm未満の酸化物系介在物は耐遅れ破壊特性に対して影響が小さいので本発明では特に制御する必要はない。このため、鋼板表面から板厚方向に100μm以内の領域に存在する、粒子直径5μm以上の酸化物系介在物について、以下のように限定する。なお、粒子直径とは円相当径の直径の長さを意味する。
 鋼板表面から板厚方向に100μm以内の領域において、鋼板の圧延方向を含む板面と平行な面で、粒子直径5μm以上の酸化物系介在物が1mm当たり8個を超えると曲げ加工時に微小割れが生じ、浸漬試験時に該微小割れを起点に破壊が生じる場合がある。このため、当該介在物の個数は1mm当たり8個以下とする。なお、酸化物系介在物は圧延により伸展するので、本発明においては、介在物の大きさは鋼板の圧延方向を含む板面と平行な面で評価する。また、粒子直径5μm以上の酸化物系介在物の鋼板表面から深さ方向(板厚方向)100μm以内の分布は、通常ほぼ均一であるので、評価位置は鋼板表面から100μm以内の任意断面で行ってよい。ただし、粒子直径5μm以上の酸化物系介在物が板厚方向に不均一に分布する場合は、最も分布個数が多い深さで評価するものとする。また、評価面積は100mm以上とする。
 粒子直径が5μm以上の酸化物系介在物中にアルミナは脱酸生成物として不可避的に含まれるが、アルミナ単体では耐遅れ破壊特性への影響が小さい。一方、酸化物系介在物中のアルミナ含有率が50質量%未満になると、酸化物が低融点化し、酸化物系介在物が圧延加工時に伸展して、曲げ加工時の割れ起点となり易くなる。このため、粒子直径が5μm以上の酸化物系介在物中のアルミナ含有率は50質量%以上とする。シリカ、カルシアはアルミナと共存することにより、酸化物が低融点化し、酸化物系介在物が圧延加工時に伸展して、曲げ加工時の割れ起点となり易くなるため、鋼板の耐遅れ破壊特性を劣化させる。それぞれ質量%で、20%、40%を超えると曲げ加工性の劣化が著しくなるため、シリカ含有率は20質量%以下、カルシア含有率は40質量%以下とする。なお、より好ましい介在物組成としては、溶鋼中の鋼中酸化物の平均組成が、質量%で、アルミナ含有率:60%以上、かつシリカ含有率:10%以下、かつカルシア含有率:20%以下である。この時、上記したように、評価する鋼板の表面から板厚方向に100μm以内の鋼板中における粒子直径5μm以上の酸化物系介在物の全個数のうち、個数比率で80%以上が上記組成の範囲を満たしていれば、良好な耐遅れ破壊特性が得られる。このため、上記組成を満たす酸化物系介在物の個数比率を80%以上とする。すなわち、アルミナ含有率:50質量%以上であり、かつシリカ含有率:20質量%以下であり、かつカルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率を80%以上とする。さらに耐遅れ破壊特性を向上させるためには、該個数比率を88%以上とすることが好ましく、90%以上とすることがより好ましく、最も好ましくは100%である。酸化物組成の調整は、転炉または二次精錬プロセスのスラグ組成を調整することにより達成される。また、鋼中酸化物の平均組成は、スラブからサンプルを切り出し、抽出残渣分析法(例えば、蔵保ら:鉄と鋼、Vol.82(1996)、1017)によって定量的に求めることができる。なお、本発明における酸化物系介在物の粒子直径は円相当径を意味する。
 次に鋼組織の限定理由について説明する。なお、体積分率の測定方法は実施例に記載の方法を採用し、実施例に記載の通り、残留オーステナイト以外は面積率を体積分率とみなす。
 マルテンサイトとベイナイトの体積分率の合計:30~95%
 マルテンサイトとベイナイトの体積分率を合計で30%以上とすることで、引張強さで980MPa以上の強度を安定して確保することができる。当該体積分率の合計は、好ましくは55%以上であり、より好ましくは60%以上である。当該体積分率の合計は、プレス成形性の指標である伸びを担保するために95%以下とする。当該体積分率の合計は、好ましくは90%以下であり、より好ましくは85%以下である。なお、本発明においては、マルテンサイトとは、焼戻しされているマルテンサイトを含むものとする。また、本発明においては、ベイナイトとは、ラス状の形態を呈する組織であり、焼戻しされているベイナイトも含むものとする。
 フェライト相の体積分率:5~70%以下
 軟質なフェライト相は鋼板の伸び向上に寄与するため、本発明では、伸び担保の観点からフェライト相の下限は5%に制限する。フェライト相の体積分率は、好ましくは7%以上、より好ましくは10%以上である。一方、フェライト相が体積分率で70%を超えると、低温変態相の硬さとの組み合わせにもよるが、引張強さ980MPaの確保が困難となる場合がある。従って、フェライト相は体積分率で70%以下に制限する。フェライト相の体積分率は、好ましくは45%以下であり、より好ましくは40%以下である。なお、フェライト相にはベイニティックフェライトが含まれる。
 オーステナイト相(残留オーステナイト相):3%未満(0%含む)
 オーステナイト相は含まれないことが好ましいが、3%未満であれば実質的に無害であるので含まれてもよい。オーステナイト相が3%以上になると、オーステナイト相は曲げ加工時に硬いマルテンサイトに変態するため、軟質なフェライト相が存在する場合には硬度差が大きく曲げ割れの起点となり、耐遅れ破壊特性を劣化させる場合があるため、好ましくない。
 その他の相は、本発明の効果を害さない範囲で含んでもよい。その他の相は、合計の体積分率が4%以下であれば許容できる。その他の相としては例えばパーライトが挙げられる。
 なお、上記高強度鋼板は、亜鉛めっき層を有してもよい。亜鉛めっき層は例えば溶融亜鉛めっき層、電気亜鉛めっき層である。また、溶融亜鉛めっき層は合金化されている合金化溶融亜鉛めっき層でもよい。
 以上の本発明の高強度鋼板は、強度が高い。具体的には、実施例に記載の方法で測定した引張強度が980MPa以上である。好ましくは1200MPa以上である。なお、引張強度は高いほど好ましいが、他の性質とのバランスの取りやすさの観点から1600MPa以下が好ましい。
 次に、本発明の高強度鋼板の製造方法について説明する。本発明の高強度鋼板の製造方法は、鋳造工程と、熱延工程と、冷延工程と、焼鈍工程と、必要に応じて行われる亜鉛めっき工程とを有する。
 鋳造工程とは、RH真空脱ガス装置での還流時間を500sec以上とし、精錬終了後、連続鋳造するにあたり、鋳造温度と凝固温度の差を10℃以上35℃以下、鋳型メニスカス近傍の凝固界面の溶鋼流速を0.5~1.5m/分とし、曲げ部および矯正部を550℃以上1050℃以下で通過させる条件で鋳造する工程である。
 RH真空脱ガス装置での還流時間:500sec以上
 成分調整用の金属や合金鉄の最終添加後のRH真空脱ガス装置での還流時間を500sec以上とする。鋼板中にCa系複合酸化物が存在すると曲げ加工時の微小割れ発生により耐遅れ破壊特性を劣化させるため、これらの酸化物を低減させる必要がある。そのため、精錬工程において、成分調整用の金属や合金鉄の最終添加後のRH真空脱ガス装置での還流時間を500sec以上とすることが必要となる。還流時間は、好ましくは650sec以上であり、より好ましくは800sec以上である。また、還流時間の上限は特に規定されないが、生産性を考慮すると、上記還流時間は3600sec以下が好ましい。
 鋳造温度と凝固温度の差:10℃以上35℃以下
 鋳造温度と凝固温度の差を小さくすることで、凝固時の等軸晶の生成を促進しP、Mn等の偏析を軽減できる。この効果を十分に得るため、鋳造温度と凝固温度の差を35℃以下とする。鋳造温度と凝固温度の差は30℃以下が好ましい。一方、鋳造温度と凝固温度の差が10℃未満では、鋳造時のパウダーやスラグ等の巻込みによる欠陥が増加する懸念がある。したがって、鋳造温度と凝固温度の差は10℃以上とする。鋳造温度と凝固温度の差は、15℃以上が好ましい。鋳造温度は、タンディッシュ内の溶鋼温度を実測することで求めることができる。凝固温度は、鋼の成分組成を実測して、下記式により求めることができる。
 凝固温度(℃)=1539-(70×[%C]+8×[%Si]+5×[%Mn]+30×[%P]+25×[%S]+5×[%Cu]+4×[%Ni]+1.5×[%Cr])
 上記式において、[%元素記号]は、鋼中の各元素の含有量(質量%)を意味する。
 鋳型メニスカス近傍の凝固界面の溶鋼流速:0.5~1.5m/分
 精錬終了後、連続鋳造するにあたり、鋳型メニスカス近傍の凝固界面の溶鋼流速を1.5m/分以下とすることで、非金属系介在物が浮上することとなり除去される。溶鋼流速が1.5m/分を超えると鋼中に残存する非金属系介在物の量が増加し、微小割れの増加により耐遅れ破壊特性が劣化する。溶鋼流速は、好ましくは1.2m/分以下である。一方、溶鋼流速が0.5m/分未満となると、凝固速度が著しく低下するためMn偏析度やP最大濃度が増加し、耐遅れ破壊特性が劣化する。溶鋼流速は、0.5m/分以上であり、好ましくは0.8m/分以上である。
 曲げ部および矯正部の通過温度:550℃以上1050℃以下
 曲げ部および矯正部の通過温度を1050℃以下とすることは、鋳片のバルジングの抑制を通じてP、Mn等の偏析を軽減し、鋼板の表面から板厚方向に100μm以内の領域における長径150μm以上のMnS粒子群やPの最大濃度を低減するため、耐遅れ破壊特性の改善に効果的である。該通過温度が1050℃を超えると、この効果が低減することになる。該通過温度は、より好ましくは1000℃以下である。
 一方、曲げ部および矯正部の通過温度を550℃未満とすると、鋳片が硬質化し曲げの矯正装置の変形負荷が増大するため、矯正部のロール寿命を短くしたり、凝固末期のロール開度の狭小化による軽圧下が十分に作用せずに中心偏析が劣化する。したがって、該通過温度は550℃以上である。
 熱延工程とは、鋳造工程で得られた鋼素材を、直接又は一旦冷却した後1220℃以上1300℃以下に加熱後80分以上保持し、粗圧延の1パス目の圧下量を10%以上とし、仕上げ圧延の1パス目の圧下量を20%以上で熱間圧延を完了し、巻き取る工程である。
 スラブ加熱温度:1220℃以上1300℃以下で80分以上
 上記鋳造で得られた鋼素材を必要に応じて加熱し(鋳造後の鋼スラブの温度が1220℃以上1300℃以下の範囲にあれば加熱の必要はない)、スラブの表面温度で1220℃以上1300℃以下の範囲で80分以上保持することは、上記MnS粒子群の個数を低減するのに重要な要件である。また同時にMnやP偏析も軽減される。保持温度が1220℃未満になると、均熱時のMnSの溶解が不十分となり、鋳造時に生成した粗大なMnS粒子が十分に溶解せず残存して、その後の熱間圧延と引き続く冷間圧延で上記MnS粒子群が多数形成するため、耐遅れ破壊特性が不十分となる。好ましくは1240℃以上である。スラブ加熱温度は、加熱温度を過度に高温にすることは経済上好ましくないことから、1300℃以下とする。該スラブ加熱温度域の保持時間が80分未満になると、均熱時のMnSの溶解が不十分となり、鋳造時に生成した粗大なMnS粒子が十分に溶解せず残存して、その後の熱間圧延と引き続く冷間圧延で上記MnS粒子群が多数形成するため、耐遅れ破壊特性が不十分となる。該スラブ加熱温度域の保持時間は80分以上であり、好ましくは90分以上である。保持時間の上限は特に限定されないが、120分を超えると生産性の阻害要因となるため、好ましくは120分以下である。
 粗圧延の1パス目の圧下量:10%以上
 粗圧延の1パス目の圧下量を10%以上とすることでMn偏析やP偏析を軽減できるため、耐遅れ破壊特性が向上する。該圧下量は、好ましくは12%以上である。該圧下量が10%未満の場合では偏析軽減効果が低下し、耐遅れ破壊特性が不十分となる。なお、1パス目での過度の圧下量は、鋼板形状を損なうことがあるため、18%以下が好ましい。
 仕上げ圧延の1パス目の圧下量:20%以上
 仕上げ圧延の1パス目の圧下量を20%以上とすることでMn偏析やP偏析を軽減できるため、耐遅れ破壊特性が向上する。該圧下量は、好ましくは24%以上である。該圧下量が20%未満の場合では偏析軽減効果が低下し、耐遅れ破壊特性が不十分となる。なお、熱間圧延時の通板性の観点から上記圧下量は35%以下が好ましい。
 熱間仕上げ圧延温度:Ar変態点以上(好適条件)
 熱間仕上げ圧延温度がAr変態点より低い場合、熱間仕上げ圧延後の組織がバンド状の展伸粒組織となり、冷延焼鈍後もバンド状の展伸粒組織が残存するため、十分な伸びが得られない場合がある。このため、熱間仕上げ圧延温度はAr変態点以上が好ましい。仕上げ圧延温度の好ましい上限は特に規定しないが、1000℃を超えると、熱間仕上げ圧延後の組織が粗大になり、冷延焼鈍後の組織も粗大なままとなるため、伸びが低下する場合がある。また、この場合、熱間仕上げ圧延後に高温で長時間、滞留することとなるため、スケール厚が厚くなって、酸洗後の表面の凹凸が大きくなり、冷延焼鈍後の鋼板の曲げ性に悪影響を及ぼす結果となる。なお、Ar変態点は以下の式により定義される。
Ar変態点(℃)=910-310×[%C]-80×[%Mn]-20×[%Cu]-15×[%Cr]-55×[%Ni]-80×[%Mo]+0.35×(t-8)
上記式において、[%元素記号]は各元素の含有量(質量%)を意味し、含まない元素は0とする。また、tは鋼板厚さ(mm)を意味する。
 巻取温度:550℃未満(好適条件)
 巻取温度は550℃未満が好ましい。巻取温度が550℃以上になると、Mn偏析帯に沿ってパーライトが巻取り後の冷却過程で生成し、その後の焼鈍過程でそのパーライト領域においてMn濃化が顕著なバンド状の組織が生成する可能性がある。Mn偏析を低減する観点からは巻取温度は550℃未満とし、巻取後の冷却過程でパーライトを抑制してベイナイトとマルテンサイト主体の組織とすることが好ましい。冷却過程でパーライトを一層低減し、Mn偏析度を低減する観点からは、巻取温度は500℃以下とすることがより好ましい。一方、巻取温度が400℃未満になると、鋼板の形状不良が発生したり、鋼板が過度に硬質化して冷間圧延時の破断を引き起こす可能性がある。したがって、巻取温度は、好ましくは400℃以上であり、より好ましくは420℃以上である。
 冷延工程とは、熱延工程で得られた熱延鋼板を酸洗後、冷間圧延する工程である。
 冷間圧延率:40%以上(好適条件)
 圧延率が40%に満たないと、鋼板中に歪が均一に導入されないため、鋼板中で再結晶の進み具合にバラツキが生じ、粗大な粒と微細な粒が存在する不均一な組織となる可能性がある。そのため、十分な伸びが得られない可能性がある。そこで、冷間圧延率は40%以上とすることが好ましい。上限は特に限定されないが、圧延率が80%を超えると、生産性の阻害要因となる可能性があるため80%以下が好ましい。冷間圧延率は、より好ましくは45~70%である。
 焼鈍工程とは、冷延工程で得られた冷延鋼板を焼鈍する工程である。焼鈍工程は、冷延工程で得られた冷延鋼板を780~900℃の温度域に加熱後、該温度域で20sec以上均熱保持し、該均熱温度から350℃までの一次冷却を平均3℃/sec以上100℃/s未満で、350℃以下まで冷却し、450~130℃の温度域の滞留時間:10~1000secの条件で保持し、さらに130~50℃の温度域を平均10℃/sec以上で二次冷却する工程とすることが好ましい。
 焼鈍温度(均熱温度):780~900℃
 焼鈍温度が780℃に満たないと、加熱焼鈍中のフェライト分率が高まることに起因して、焼鈍後に最終的に得られるフェライト相の体積分率が過剰となり、所望のマルテンサイト分率が得られない可能性があるため、引張強さ980MPa以上の確保が困難となる可能性がある。一方、900℃を超えた場合、オーステナイト単相の温度域まで加熱すると、オーステナイト粒径が過度に粗大化し、その後の冷却過程で生成するフェライト相の量が減少し、伸びが低下する可能性がある。従って、焼鈍温度は780~900℃とすることが好ましい。焼鈍温度は、より好ましくは、790~860℃である。
 均熱時間:20sec以上
 該均熱時間が20sec未満ではオーステナイトが十分生成せず、十分な強度を得られない可能性がある。該均熱時間は20sec以上であり、好ましくは30sec以上である。なお、該均熱時間の上限は特に規定されないが、生産性を損なわないようにするため、該均熱時間は1200sec以下とすることが好ましい。なお、上記滞留時間を確保するために、加熱後直ちに冷却を開始せずに一定時間保持してもよい。
 平均一次冷却速度:3℃/sec以上100℃/sec未満
 上記均熱保持後、該均熱温度から350℃までの平均冷却速度を3℃/sec以上100℃/sec未満で制御することで、フェライトの体積分率を調整できる。平均一次冷却速度が100℃/sec以上になると5%以上のフェライト分率を確保できず伸びが劣化する可能性がある。したがって本発明では、平均一次冷却速度は100℃/sec未満とすることが好ましい。一方、平均一次冷却速度の下限は、生産性の観点からは3℃/sec以上とすることが好ましい。なお、少なくとも350℃までは冷却する必要があるため、冷却停止温度は350℃以下であることが好ましい。冷却停止温度の下限は特に限定されないが、冷却停止温度は通常25℃以上である。
 450~130℃の滞留(保持)時間:10~1000sec
 一次冷却後、450~130℃で10~1000sec保持する。このように450~130℃での保持し、一次冷却で得られたマルテンサイトに焼戻し処理を施すことで、耐遅れ破壊特性が向上する。保持温度が130℃未満ではこのような効果が十分に得られない可能性がある。一方、該保持温度が450℃を超えると、強度低下が顕著となり、980MPa以上の引張強さを得ることが困難となる可能性があり、さらには、鉄系炭化物等の析出物の粗大化により耐遅れ破壊特性が劣化する可能性がある。該保持温度は、好ましくは190~320℃、より好ましくは200~300℃である。なお、一次冷却の冷却停止温度が130℃未満の場合には再加熱する必要があり、その場合の加熱条件は適宜設定すればよい。
 また、該保持温度域での保持時間が10sec未満では、上記したような、マルテンサイトの焼戻し効果が十分に得られない可能性がある。一方、保持時間が1000secを超えると、強度低下が顕著となり、980MPa以上の引張強さを得られない可能性がある。したがって、保持時間は、好ましくは10~1000secであり、より好ましくは200~800secである。
 平均二次冷却速度:10℃/sec以上
 上記保持(滞留)の後、130~50℃の温度域を冷却する二次冷却の平均冷却速度が10℃/sec未満となると、鋼板の焼入れ性不足に起因してマルテンサイトとベイナイトの体積分率の合計が30%未満となり、引張強さ980MPa以上が得られない場合があるため、本発明では上記温度域の平均冷却速度(平均二次冷却速度)を10℃/sec以上とすることが好ましい。一方、強度確保の観点からは、平均二次冷却速度の上限は特に限定されないが、2000℃/sec超えを担保するには莫大な設備投資額が必要となるため、2000℃/sec以下とすることが好ましい。
 二次冷却の冷却停止温度は特に限定されない。
 なお、上記二次冷却後、さらに調質圧延を施すことが好ましい。調質圧延は、降伏伸びをなくすため、伸長率で0.1~0.7%の範囲で行うことが好ましい。
 亜鉛めっき工程とは、焼鈍工程後の鋼板に亜鉛めっきを施す工程である。亜鉛めっき工程は、鋼板の表面に亜鉛めっき層を形成する場合に行われる。
 亜鉛めっきとしては、電気めっきや溶融亜鉛めっきを例示できる。また、溶融亜鉛めっき後に合金化処理を施してもよい。
 また、亜鉛めっき層を有する高強度鋼板、亜鉛めっき層を有さない高強度鋼板のいずれであっても、必要に応じて、固形潤滑材などを塗布してもよい。
 表1に示す成分組成の鋼を用い、表2に示す条件にて鋼塊を溶解、鋳造した。得られた鋼塊を表2に示す条件で熱間圧延を実施し板厚2.8mmの熱延鋼板を得た。なお、熱延の巻取温度は480℃で行った。次いで、冷間圧延を行い、板厚1.4mmとし、表2に示す焼鈍条件の熱処理(焼鈍)を施した。焼鈍後、伸長率0.2%の調質圧延を行った。なお、表2の鋳造温度は、タンディッシュ内の溶鋼温度を実測することで求めた。また、凝固温度は、鋼の成分組成を実測して、下記式により求めた。
 凝固温度(℃)=1539-(70×[%C]+8×[%Si]+5×[%Mn]+30×[%P]+25×[%S]+5×[%Cu]+4×[%Ni]+1.5×[%Cr])
 上記式において、[%元素記号]は、鋼中の各元素の含有量(質量%)を意味する。
 なお、表1の「-」は、任意元素を含有しない場合(0質量%)だけでなく、不可避的不純物として、任意元素を下限値未満で含有する場合も含むものとする。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のようにして得られた冷延鋼板について、以下に示すように、金属組織(組織分率(体積分率))、Mn偏析度、P最大濃度、MnS粒子群および酸化物系介在物を調査するとともに、引張特性および耐遅れ破壊特性を評価した。
 鋼組織(組織分率)
 圧延方向に平行な板厚断面で、板厚の1/4位置の面を走査型電子顕微鏡(SEM)で観察することにより調査した。観察はN=5(観察視野5箇所)で実施し、倍率:2000倍の断面組織写真を用い、画像解析により、任意に設定した50μm×50μm四方の正方形領域内に存在する各相の占有面積を求め、これを平均することにより、各相の体積分率とした。フェライト相、パーライト相、マルテンサイトおよびベイナイトは組織形態から判別して体積分率を算出した。なお本発明で規定するマルテンサイトとベイナイトは、いずれもラス状組織を有し、粒内に針状の鉄系炭化物が生成した形態を呈するが、SEM組織で粒内の針状炭化物の配向状態から判別することができる。すなわち、ベイナイト中の針状炭化物はベイナイト母相と一定の方位関係を持って生成するため、炭化物の伸長方向が一方向に配向する。一方、マルテンサイト中の針状炭化物は、マルテンサイト母相と複数の方位関係を持つ。
 また、残留オーステナイト相の量を、MoのKα線を用いてX線回折法により求めた。すなわち、鋼板の圧延方向に平行な面を含む板面の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の(211)面および(220)面とフェライト相の(200)面および(220)面のピーク強度から残留オーステナイト相の体積分率を算出し、体積分率の値とした。
 Mn偏析度およびP最大濃度の評価
 EPMA(Electron Probe Micro Analyzer)によって、表面から板厚方向に100μm以内の領域におけるMnおよびPの濃度分布を測定した。なお、最表面からの深さが10μm未満までの領域の測定値は表面を測定することによる測定誤差が生じるため、測定からは除外した。この際、測定結果はEPMAの測定条件によって変化するため、加速電圧15kV、照射電流2.5μA、照射時間0.05s/点、プローブ径を1μm、測定ピッチ1μmの一定条件で、測定面積を45000μm(深さ方向90μm×圧延方向500μm)として測定した。得られたデータについて、3μm×3μmの範囲でデータを平均化した値をその領域の測定データとした。本発明では、一つの評価領域を3μm×3μmとした。なお、MnS粒子などの介在物が存在すると最大Mn偏析度が見かけ上大きくなるので、介在物が当たった場合はその値は除いて評価した。
 鋼板中のMnS粒子群の評価
 鋼板の圧延方向に平行な板厚断面において、鋼板表面から板厚方向に深さ100μmの範囲をSEMで観察した。観察された介在物について、全てSEM-EDX分析を行い、長径150μm以上のMnS粒子群と判断されたものの個数を調査した。評価面積は3mm(深さ方向100μm×圧延方向30000μm)とした。
 鋼板中の酸化物系介在物の評価
 鋼板表面から板厚方向に深さ50μm、100μmの板面と平行な面を10mm×10mmの範囲で観察し、粒子直径5μm以上の介在物粒子の個数を調査した(深さ50μmの位置と100μmの位置とで結果が同じ(均一)であったため、一方の結果のみ表に示した)。なお、板面と平行な面は、圧延方向を含む断面である。また、本発明における酸化物系介在物の粒子直径は、円相当径を意味する。また、粒子直径5μm以上の介在物粒子に対しては、すべてSEM-EDX分析を行い、組成を定量分析し、アルミナ含有率:50質量%以上であるとともに、シリカ含有率:20質量%以下であり、カルシア含有率:40質量%以下である組成を有する介在物粒子数(組成該当個数)を求めた。また、上記観察により得た、粒子直径5μm以上の介在物粒子の全個数に対する組成該当個数の比率を下記式のように求め、組成該当比率とした。
組成該当個数の比率(%)={(組成該当個数)/(粒子直径5μm以上の介在物粒子の全個数)}×100
 ここで、酸化物系介在物でアスペクト比(圧延方向長さ/板厚方向長さ)が2以上に展伸したものの分析に際しては、圧延方向長さが10μm以上の場合では圧延方向長さを2分割以上(分割後の分割領域の圧延方向長さが5~10μmになるようにする)に分割し、各分割領域の介在物の長手方向の中央部を分析して、各分割領域の分析値を平均化することによって求めた。
 引張特性
 JIS5号試験片(JIS Z2201)を鋼板表面において圧延方向と直角方向を長手として採取し、JIS Z2241に準拠して引張試験を行い、降伏強度(YS)、引張強さ(TS)、及び突き合わせ伸び(El)を求めた。
 耐遅れ破壊特性
 前述した方法で2000MPaの応力を負荷したU曲げボルト締め試験片を9つ作製した。曲げ成形は、曲げ半径Rと板厚tの比であるR/tで、1320MPa>TS≧980MPaの高強度鋼板はR/t=4.0、1470MPa>TS≧1320MPaの高強度鋼板はR/t=4.5、TS≧1470MPaの高強度鋼板はR/t=5.0で行った。作製した試験片を5wt%、比液量60ml/cmの塩酸に最長96hr浸漬し、9つすべての試験片で長さ1mm以上の割れが発生しなかった鋼板を耐遅れ破壊特性に優れると判断した。また1つ以上割れたものについては、割れが発生した最小時間を測定した。
 表3に評価結果を示す。本結果より明らかなように、本発明例の鋼板は引張強さTS≧980MPaであり、耐遅れ破壊特性に優れる。一方、比較例の鋼板は耐遅れ破壊特性が劣っていた。
Figure JPOXMLDOC01-appb-T000003
 1  試験片
 2  穿孔
 3  ワッシャ
 4  ステンレスボルト
 10 鋼板
 11 MnS粒子
 12 MnS粒子
 D1 圧延方向
 L1 MnS粒子群の長径

Claims (10)

  1.  質量%で、
    C:0.10~0.35%、
    Si:0.01~2.0%、
    Mn:2.2~3.5%、
    P:0.015%以下(0%を含まない)、
    S:0.0015%以下(0%を含まない)、
    Sol.Al:0.01~1.0%、
    N:0.0055%以下(0%を含まない)、
    O:0.0025%以下(0%を含まない)及び
    Ca:0.0005%以下(0%を含む)を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、
     表面から板厚方向に100μm以内の領域におけるMn偏析度が1.5以下であり、
     表面から板厚方向に100μm以内の領域におけるP最大濃度が0.08質量%以下であり、
     表面から板厚方向に100μm以内の領域における、鋼板の圧延方向に平行な板厚断面で、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上のMnS粒子により構成されるMnS粒子群を含み、該MnS粒子群が2個以上のMnS粒子で構成される場合には該MnS粒子間の距離が40μm以下であり、長径150μm以上のMnS粒子群が1mm当たり2.0個以下であり、
     表面から板厚方向に100μm以内の領域における、板面と平行な面で、粒子直径5μm以上の酸化物系介在物が1mm当たり8個以下であり、
     前記粒子直径5μm以上の酸化物系介在物の全個数のうち、アルミナ含有率:50質量%以上であり、シリカ含有率:20質量%以下であり、かつカルシア含有率:40質量%以下である組成を有する酸化物系介在物の個数比率が80%以上であり、
     鋼組織が、体積分率で、マルテンサイトとベイナイトの合計:30~95%、フェライト相:5~70%、及びオーステナイト相:3%未満(0%含む)を有し、
     引張強さが980MPa以上である高強度鋼板。
  2.  前記成分組成は、さらに、質量%で、
    Ti:0.003~0.05%、
    Nb:0.003~0.05%、
    V:0.001~0.1%及び
    Zr:0.001~0.1%のうち1種または2種以上を含有する請求項1に記載の高強度鋼板。
  3.  前記成分組成は、さらに、質量%で、
    Cr:0.01~1.0%、
    Mo:0.01~0.20%及び
    B:0.0001~0.0030%のうち1種または2種以上を含有する請求項1または2に記載の高強度鋼板。
  4.  前記成分組成は、さらに、質量%で、
    Cu:0.01~0.5%、
    Ni:0.01~0.5%及び
    Sn:0.001~0.1%のうち1種または2種以上を含有する請求項1~3のいずれかに記載の高強度鋼板。
  5.  前記成分組成は、さらに、質量%で、
    Sb:0.001~0.1%を含有する請求項1~4のいずれかに記載の高強度鋼板。
  6.  前記成分組成は、さらに、質量%で、
    REM及びMgのうち1種または2種を合計で0.0002%以上0.01%以下を含有する請求項1~5のいずれかに記載の高強度鋼板。
  7.  表面に亜鉛めっき層を有する請求項1~6のいずれかに記載の高強度鋼板。
  8.  請求項1~6のいずれかに記載の高強度鋼板の製造方法であって、
     RH真空脱ガス装置での還流時間を500sec以上とし、精錬終了後、連続鋳造するにあたり、鋳造温度と凝固温度の差を10℃以上35℃以下、鋳型メニスカス近傍の凝固界面の溶鋼流速を0.5~1.5m/分とし、曲げ部および矯正部を550℃以上1050℃以下で通過させる鋳造工程と、
     前記鋳造工程で得られた鋼素材を、直接又は一旦冷却した後1220℃以上1300℃以下に加熱後80分以上保持し、粗圧延の1パス目の圧下量を10%以上とし、仕上げ圧延の1パス目の圧下量を20%以上とする熱延工程と、
     前記熱延工程で得られた熱延鋼板を酸洗後、冷間圧延する冷延工程と、
     前記冷延工程で得られた冷延鋼板を焼鈍する焼鈍工程と、を有する高強度鋼板の製造方法。
  9.  前記焼鈍工程は、前記冷延工程で得られた冷延鋼板を780~900℃の温度域に加熱後、該温度域で20sec以上均熱保持し、該均熱温度から350℃までの一次冷却を平均3℃/sec以上100℃/sec未満で、350℃以下まで冷却し、450~130℃の温度域の滞留時間:10~1000secの条件で保持し、さらに130~50℃の温度域を平均10℃/sec以上で二次冷却する工程である請求項8に記載の高強度鋼板の製造方法。
  10.  前記焼鈍工程後の鋼板に亜鉛めっきを施す亜鉛めっき工程を有する請求項8又は9に記載の高強度鋼板の製造方法。
PCT/JP2019/032799 2018-08-31 2019-08-22 高強度鋼板及びその製造方法 WO2020045220A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021002269A MX2021002269A (es) 2018-08-31 2019-08-22 Lamina de acero de alta resistencia y metodo para la produccion de la misma.
JP2019565581A JP6680420B1 (ja) 2018-08-31 2019-08-22 高強度鋼板及びその製造方法
CN201980056596.8A CN112639147B (zh) 2018-08-31 2019-08-22 高强度钢板及其制造方法
KR1020217006058A KR102507710B1 (ko) 2018-08-31 2019-08-22 고강도 강판 및 그의 제조 방법
EP19854806.7A EP3828296A4 (en) 2018-08-31 2019-08-22 HIGH STRENGTH STEEL SHEET AND ITS PRODUCTION PROCESS
US17/271,663 US20210340641A1 (en) 2018-08-31 2019-08-22 High-strength steel sheet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162573 2018-08-31
JP2018-162573 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045220A1 true WO2020045220A1 (ja) 2020-03-05

Family

ID=69644332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032799 WO2020045220A1 (ja) 2018-08-31 2019-08-22 高強度鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20210340641A1 (ja)
EP (1) EP3828296A4 (ja)
JP (1) JP6680420B1 (ja)
KR (1) KR102507710B1 (ja)
CN (1) CN112639147B (ja)
MX (1) MX2021002269A (ja)
WO (1) WO2020045220A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234320A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
WO2022234319A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
WO2023162891A1 (ja) * 2022-02-25 2023-08-31 日本製鉄株式会社 鋼板、および鋼板の製造方法
WO2023162893A1 (ja) * 2022-02-25 2023-08-31 日本製鉄株式会社 鋼板、および鋼板の製造方法
WO2024029145A1 (ja) * 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板
EP4159886A4 (en) * 2020-05-27 2024-04-17 Baoshan Iron & Steel Co., Ltd. ULTRA HIGH STRENGTH TWO-PHASE STEEL AND ITS MANUFACTURING METHOD
RU2822381C2 (ru) * 2021-05-04 2024-07-04 Арселормиттал Стальной лист и высокопрочная, закалённая под прессом стальная деталь и способ её изготовления

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639146B (zh) * 2018-08-31 2022-09-30 杰富意钢铁株式会社 高强度钢板及其制造方法
EP4442851A1 (en) * 2021-11-29 2024-10-09 POSCO Co., Ltd Ultra-high strength cold-rolled steel sheet having excellent elongation and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111398A (ja) 1995-10-19 1997-04-28 Nkk Corp 耐遅れ破壊特性に優れた超高強度鋼板及びその製造方法
JP2001081533A (ja) * 1999-09-16 2001-03-27 Sumitomo Metal Ind Ltd 高張力冷延鋼板及びその製造方法
JP2009215571A (ja) 2008-03-07 2009-09-24 Kobe Steel Ltd 伸びフランジ性に優れた高強度冷延鋼板
JP2009221522A (ja) * 2008-03-14 2009-10-01 Kobe Steel Ltd 大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板およびその製造方法
JP2009299137A (ja) 2008-06-13 2009-12-24 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法
JP2010013700A (ja) * 2008-07-03 2010-01-21 Jfe Steel Corp 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011111670A (ja) 2009-11-30 2011-06-09 Nippon Steel Corp 延性及び曲げ性の良好な引張最大応力900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2014008513A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 連続鋳造スラブの製造方法および高強度冷延鋼板の製造方法
WO2016152163A1 (ja) * 2015-03-25 2016-09-29 Jfeスチール株式会社 冷延鋼板およびその製造方法
WO2017026125A1 (ja) * 2015-08-11 2017-02-16 Jfeスチール株式会社 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
WO2017115748A1 (ja) * 2015-12-28 2017-07-06 Jfeスチール株式会社 高強度鋼板、高強度亜鉛めっき鋼板及びこれらの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131522A (en) * 1978-04-03 1979-10-12 Nippon Steel Corp Steel highly resistant against hydrogen induced blister and cracking
JPS60228655A (ja) * 1985-04-08 1985-11-13 Kawasaki Steel Corp 耐水素誘起割れ性にすぐれた鋼材
JPH0787998B2 (ja) * 1987-10-01 1995-09-27 川崎製鉄株式会社 ガスシールドアーク溶接用ワイヤ
JP6380658B2 (ja) * 2015-04-08 2018-08-29 新日鐵住金株式会社 熱処理用鋼板
JP6665658B2 (ja) * 2016-04-21 2020-03-13 日本製鉄株式会社 高強度厚鋼板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111398A (ja) 1995-10-19 1997-04-28 Nkk Corp 耐遅れ破壊特性に優れた超高強度鋼板及びその製造方法
JP2001081533A (ja) * 1999-09-16 2001-03-27 Sumitomo Metal Ind Ltd 高張力冷延鋼板及びその製造方法
JP2009215571A (ja) 2008-03-07 2009-09-24 Kobe Steel Ltd 伸びフランジ性に優れた高強度冷延鋼板
JP2009221522A (ja) * 2008-03-14 2009-10-01 Kobe Steel Ltd 大入熱溶接熱影響部の板厚方向靭性に優れたスキンプレート用鋼板およびその製造方法
JP2009299137A (ja) 2008-06-13 2009-12-24 Nippon Steel Corp 伸びフランジ性と疲労特性に優れた高強度鋼板およびその溶鋼の溶製方法
JP2010013700A (ja) * 2008-07-03 2010-01-21 Jfe Steel Corp 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011111670A (ja) 2009-11-30 2011-06-09 Nippon Steel Corp 延性及び曲げ性の良好な引張最大応力900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2014008513A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 連続鋳造スラブの製造方法および高強度冷延鋼板の製造方法
WO2016152163A1 (ja) * 2015-03-25 2016-09-29 Jfeスチール株式会社 冷延鋼板およびその製造方法
WO2017026125A1 (ja) * 2015-08-11 2017-02-16 Jfeスチール株式会社 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
WO2017115748A1 (ja) * 2015-12-28 2017-07-06 Jfeスチール株式会社 高強度鋼板、高強度亜鉛めっき鋼板及びこれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KURAYASU ET AL., TETSU-TO-HAGANE, vol. 82, 1996, pages 1017

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159886A4 (en) * 2020-05-27 2024-04-17 Baoshan Iron & Steel Co., Ltd. ULTRA HIGH STRENGTH TWO-PHASE STEEL AND ITS MANUFACTURING METHOD
WO2022234320A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
WO2022234413A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
WO2022234319A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
WO2022234414A1 (en) * 2021-05-04 2022-11-10 Arcelormittal Steel sheet and high strength press hardened steel part and method of manufacturing the same
RU2822381C2 (ru) * 2021-05-04 2024-07-04 Арселормиттал Стальной лист и высокопрочная, закалённая под прессом стальная деталь и способ её изготовления
WO2023162891A1 (ja) * 2022-02-25 2023-08-31 日本製鉄株式会社 鋼板、および鋼板の製造方法
WO2023162893A1 (ja) * 2022-02-25 2023-08-31 日本製鉄株式会社 鋼板、および鋼板の製造方法
WO2024029145A1 (ja) * 2022-08-03 2024-02-08 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
CN112639147B (zh) 2023-01-10
EP3828296A4 (en) 2021-09-22
US20210340641A1 (en) 2021-11-04
MX2021002269A (es) 2021-05-27
JP6680420B1 (ja) 2020-04-15
KR20210036966A (ko) 2021-04-05
JPWO2020045220A1 (ja) 2020-09-03
CN112639147A (zh) 2021-04-09
KR102507710B1 (ko) 2023-03-08
EP3828296A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6680421B1 (ja) 高強度鋼板及びその製造方法
JP6354909B2 (ja) 高強度鋼板、高強度亜鉛めっき鋼板及びこれらの製造方法
JP6680420B1 (ja) 高強度鋼板及びその製造方法
JP6354921B1 (ja) 鋼板およびその製造方法
CN113637923B (zh) 钢板及镀覆钢板
KR102590078B1 (ko) 고강도 강판 및 그 제조 방법
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP2007016319A (ja) 高張力溶融亜鉛めっき鋼板とその製造方法
JP7226672B1 (ja) 鋼板、部材およびそれらの製造方法
CN114207169B (zh) 钢板及其制造方法
JP2003166035A (ja) 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板及びその製造方法並びに高強度薄鋼板により作成された自動車用強度部品
CN112955575B (zh) 高强度构件、高强度构件的制造方法和高强度构件用钢板的制造方法
JP7276618B2 (ja) 高強度冷延鋼板およびその製造方法
JP2006063360A (ja) 高張力溶融亜鉛めっき鋼板とその製造方法
EP4379083A1 (en) Steel sheet and method for producing same
WO2021125283A1 (ja) 鋼板及びその製造方法
CN111868283B (zh) 钢板
CN113544301B (zh) 钢板
CN115485405B (zh) 钢板及其制造方法
JP2009179840A (ja) 低温靭性、亀裂伝搬停止特性に優れた高張力鋼の製造方法
WO2023153096A1 (ja) 冷延鋼板
KR20230164722A (ko) 고강도 합금화 용융 아연 도금 강판 및 그의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565581

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217006058

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019854806

Country of ref document: EP

Effective date: 20210226