WO2020045002A1 - 熱交換型換気扇 - Google Patents

熱交換型換気扇 Download PDF

Info

Publication number
WO2020045002A1
WO2020045002A1 PCT/JP2019/031157 JP2019031157W WO2020045002A1 WO 2020045002 A1 WO2020045002 A1 WO 2020045002A1 JP 2019031157 W JP2019031157 W JP 2019031157W WO 2020045002 A1 WO2020045002 A1 WO 2020045002A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
heat exchange
indoor
outdoor
Prior art date
Application number
PCT/JP2019/031157
Other languages
English (en)
French (fr)
Inventor
健太 種治
大輔 橋野
訓 藤本
直人 正村
真璃子 杉山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020045002A1 publication Critical patent/WO2020045002A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to air supply / exhaust air flow control in a heat exchange type ventilation fan.
  • the conventional heat exchange type ventilation fan includes a blower passage 104, an exhaust passage 107, a circulation passage 108, a heat exchange element 109, an air supply fan 110, an exhaust fan 111, A particle sensor 112 and a particle removal filter 113 are provided.
  • the air passage 104 vents the main body 101 from the outdoor suction port 102 to the indoor air supply port 103.
  • the exhaust passage 107 is ventilated from the indoor suction port 105 for sucking inside air to the outdoor exhaust port 106.
  • the circulation path 108 allows the inside air sucked from the indoor suction port 105 to flow to the indoor air supply port 103.
  • the heat exchange element 109 performs heat exchange between the exhaust gas flow and the supply air flow.
  • the air supply fan 110 generates an air supply flow.
  • the exhaust fan 111 generates an exhaust flow.
  • the particle sensor 112 detects the concentration of particles in a room.
  • the particulate removal filter 113 removes particulates on the air passage 104.
  • the ventilation path 104, the exhaust path 107, and the circulation path 108 are controlled based on the particle concentration detected by the particle sensor 112 in the room.
  • the circulation operation is performed by the circulation path 108, the outdoor suction port 102 and the outdoor exhaust port 106 are closed. (For example, see Patent Document 1).
  • the present disclosure solves such a conventional problem.
  • concentration of indoor particles is high
  • the indoor air environment is improved. It is an object of the present invention to provide a heat exchange type ventilator that can purify and ventilate the inside air in response.
  • the heat exchange type ventilation fan of the present disclosure includes a housing, a heat exchange element, an air supply path, an air supply fan, an exhaust air path, an exhaust fan, and an outdoor air supply shutter. , An outdoor exhaust shutter, a circulation damper, an indoor particle sensor, and a particle removal filter.
  • the housing has an outdoor suction port, an indoor air supply port, an indoor suction port, and an outdoor exhaust port.
  • the heat exchange element is arranged in the housing.
  • the supply air passage communicates the outdoor suction port with the indoor supply port.
  • the air supply fan is provided in the air supply air passage, and guides outside air to the indoor air supply port.
  • the exhaust air path communicates between the indoor suction port and the outdoor exhaust port.
  • the exhaust fan is provided in an exhaust air passage and guides inside air to an outdoor exhaust port.
  • the outdoor air supply shutter opens and closes the outdoor suction port.
  • the outdoor exhaust shutter opens and closes an outdoor exhaust port.
  • the circulation damper opens and closes a circulation port provided at a boundary part separating the supply air passage and the exhaust air passage.
  • the indoor particle sensor detects the concentration of the particles passing through the indoor suction port.
  • the particle removal filter removes particles passing through the indoor air supply port. If the value of the concentration of the fine particles detected by the indoor fine particle sensor is higher than a predetermined value, the circulation damper opens the circulation port to form a circulation air passage that connects the indoor suction port and the indoor air supply port, and
  • the air supply shutter opens the outdoor suction port.
  • the heat exchange type ventilation fan performs a mixed air operation in which air is supplied from the outside to the room by the air supply passage and circulation from the room to the room is simultaneously performed by the circulation air passage, and the air in the room is removed through the particulate removal filter. Intake air from outside air while removing fine particles.
  • FIG. 1 is a diagram illustrating a configuration of the heat exchange type ventilation fan according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration of the heat exchange type ventilation fan according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an air passage in the circulation operation according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an air path in the air supply / mixing operation according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an air path in the ventilation / mixing operation according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an air path in the heat exchange mixed-air operation according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration of the heat exchange type ventilation fan according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration of the heat exchange type ventilation fan according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram
  • FIG. 7 is a flowchart for determining an operation state according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an air path in a mixed-air operation of a heat exchange type ventilation fan according to a modification.
  • FIG. 9 is a schematic configuration diagram of a conventional technique.
  • a heat exchange type ventilation fan includes a housing, a heat exchange element, an air supply passage, an air supply fan, an exhaust air passage, an exhaust fan, an outdoor air supply shutter, and an outdoor exhaust shutter. , A circulation damper, an indoor particle sensor, and a particle removal filter.
  • the housing has an outdoor suction port, an indoor air supply port, an indoor suction port, and an outdoor exhaust port.
  • the heat exchange element is arranged in the housing.
  • the supply air passage communicates the outdoor suction port with the indoor supply port.
  • the air supply fan is provided in the air supply air passage, and guides outside air to the indoor air supply port.
  • the exhaust air path communicates between the indoor suction port and the outdoor exhaust port.
  • the exhaust fan is provided in an exhaust air passage and guides inside air to an outdoor exhaust port.
  • the outdoor air supply shutter opens and closes the outdoor suction port.
  • the outdoor exhaust shutter opens and closes an outdoor exhaust port.
  • the circulation damper is provided at a boundary between the supply air passage and the exhaust air passage, and opens and closes a circulation port.
  • the indoor particle sensor detects the concentration of the particles passing through the indoor suction port.
  • the particle removal filter removes particles passing through the indoor air supply port.
  • the circulation damper opens the circulation port to form a circulation air passage that connects the indoor suction port and the indoor air supply port, and
  • the air shutter opens the outdoor suction port.
  • the heat exchange type ventilation fan performs a mixed air operation in which air is supplied from the outside to the room by the air supply passage and circulation from the room to the room is simultaneously performed by the circulation air passage. While taking in air from outside air.
  • the heat exchange type ventilation fan can efficiently provide the optimal air chamber by simultaneously performing the ventilation by removing the fine particles in the indoor air and taking in the outside air by the mixed air operation.
  • the circulation damper may be provided between the heat exchange element and the outdoor exhaust port, and the mixed air operation may be performed using the air supply fan and the exhaust fan.
  • the number of rotations of the supply fan and the exhaust fan is adjusted in accordance with the concentration of the particles detected by the indoor particle sensor, and the amount of air supplied by the supply fan and the amount of air circulated by the exhaust fan are adjusted.
  • a control unit for controlling the air volume may be further provided. Thereby, the ratio of the supply air volume and the circulation air volume in the mixed air operation is controlled.
  • the circulation air amount and the supply air amount in the mixed air operation can be controlled by the rotation speeds of the supply fan and the exhaust fan, and the circulation air amount and the supply air amount according to the concentration of the indoor fine particles can be appropriately adjusted. it can.
  • the heat exchange type ventilation fan of the present disclosure may further include a control unit that operates the outdoor exhaust shutter to open the outdoor exhaust port, and controls the amount of exhaust air and the amount of circulation air according to the opening angle of the circulation damper.
  • the heat exchange type ventilation fan of the present disclosure may further include a ventilation air supply damper, a ventilation exhaust damper, an outdoor temperature sensor, and an indoor temperature sensor.
  • the ventilation air supply damper includes a heat exchange air supply path that connects an outdoor air intake and an indoor air supply port through a heat exchange element, and an outdoor air intake port and an indoor air supply port that do not pass through a heat exchange element. Is switched to the ventilation air supply path that communicates with The ventilation / exhaust damper communicates the exhaust air path with the heat exchange / exhaust air path that connects the indoor suction port and the outdoor exhaust port via the heat exchange element, and the indoor air intake port and the outdoor exhaust port without the heat exchange element. Switch to a ventilation exhaust path.
  • the outdoor temperature sensor is provided in the air supply passage, and detects an outdoor temperature.
  • the indoor temperature sensor is provided in the exhaust air passage and detects the indoor temperature.
  • the ventilation air supply damper is provided in the mixed air operation when
  • the ventilation / exhaust damper switches the supply air path and the exhaust air path to a ventilation supply air path and a ventilation / exhaust air path that do not pass through a heat exchange element.
  • > Ta the ventilation air supply damper and the ventilation exhaust gas damper switch the supply air path and the exhaust air path to the heat exchange supply air path and the heat exchange exhaust air path via the heat exchange element.
  • the circulation damper may be provided between the heat exchange element and the indoor suction port.
  • the mixed air operation is controlled by the operation control of the air supply fan and the opening / closing angle of the circulation damper.
  • FIG. 1 is a diagram illustrating a configuration of the heat exchange type ventilation fan according to the first embodiment of the present disclosure.
  • FIG. 1 is a plan view of the heat exchange type ventilation fan 1 and shows a configuration of a main part of the heat exchange type ventilation fan 1.
  • the heat exchange type ventilation fan 1 is installed in the back of the ceiling, inside the side wall, or under the floor in the building. In the present embodiment, a case where the heat exchange type ventilation fan 1 is installed under the floor will be described.
  • the heat exchange type ventilation fan 1 has a rectangular parallelepiped housing 30.
  • the housing 30 has an outdoor suction port 3, an indoor air supply port 4, an indoor suction port 5, and an outdoor exhaust port 6.
  • the heat exchange element 2 is disposed in the housing 30.
  • the heat exchange element 2 incorporated in the heat exchange type ventilation fan 1 has a function of recovering heat of air exhausted from indoors and applying heat to air supplied from outside. That is, the heat exchange element 2 has a function of recovering the exhaust heat from the exhaust flow and giving the heat to the supply air flow. Further, the heat exchange element 2 has a plurality of heat transfer plates. An air path is formed by stacking a plurality of heat transfer plates at predetermined intervals.
  • This heat transfer plate has a gas shielding property and a moisture permeability, and by alternately flowing indoor air and outdoor air between the heat transfer plates, exchanges heat through the heat transfer plate while performing ventilation.
  • the structure is such that water can be exchanged.
  • the heat exchange air supply passage A and the heat exchange exhaust air passage B are alternately stacked with the heat transfer plate interposed therebetween. Thereby, heat exchange is performed without confusing the supply air flow and the exhaust air flow.
  • the outdoor intake port 3 and the indoor air supply port 4 communicate with each other through a heat exchange air supply path A, and an air supply fan for generating an air supply flow is provided near the indoor air supply port 4 of the heat exchange air supply path A. 7 are provided.
  • the indoor suction port 5 and the outdoor exhaust port 6 communicate with each other through a heat exchange exhaust air path B, and an exhaust fan 8 for generating an exhaust flow is provided near the outdoor exhaust port 6 of the heat exchange exhaust air path B. Is provided.
  • an outdoor air supply shutter 9 is an openable and closable partition having a fulcrum at an end of the outdoor suction port 3, and operates to open and close the outdoor suction port 3.
  • the outdoor exhaust shutter 10 is an openable and closable partition having a fulcrum at an end of the outdoor exhaust port 6, and operates to open and close the outdoor exhaust port 6.
  • the ventilation air supply damper 11 controls the flow of outside air into the heat exchange element 2 on the outdoor suction port 3 side of the heat exchange element 2.
  • the ventilation air supply damper 11 is controlled so that the heat exchange air supply passage A passing through the heat exchange element 2 is formed.
  • the air supply fan 7 operates in the heat exchange air supply path A, the external air sucked from the outdoor air inlet 3 passes through the heat exchange element 2 and is supplied into the room from the indoor air inlet 4.
  • Control is performed so as to close the exchange element 2.
  • the ventilation air supply damper 11 is moved so as to close the heat exchange element 2.
  • an air path bypassing the heat exchange element 2 that is, a linear air path from the outdoor suction port 3 to the indoor air supply port 4, a ventilation air supply air path C is formed.
  • the air supply fan 7 By operating the air supply fan 7 in a state in which the ventilation air supply passage C is formed, the outside air sucked from the outdoor suction port 3 passes through the ventilation air supply passage C without flowing into the heat exchange element 2 and is supplied to the indoor air supply passage.
  • the supply air path includes a heat exchange supply air path A and a ventilation supply air path C.
  • the ventilation / exhaust damper 12 controls the flow of inside air into the heat exchange element 2 on the indoor suction port 5 side of the heat exchange element 2.
  • the ventilation / exhaust damper 12 is controlled so that the heat exchange exhaust air passage B passing through the heat exchange element 2 is formed.
  • Control is performed so as to close element 2.
  • the ventilation / exhaust damper 12 is moved so as to close the heat exchange element 2.
  • an air path bypassing the heat exchange element 2 that is, a linear air path from the indoor suction port 5 to the outdoor exhaust port 6, a ventilation exhaust air path D is formed.
  • the exhaust fan 8 By operating the exhaust fan 8 in a state where the ventilation exhaust air path D is formed, the inside air sucked from the indoor suction port 5 passes through the ventilation exhaust air path D without flowing into the heat exchange element 2 and the outdoor exhaust port. Air is exhausted from the room 6. From this, it can be said that the indoor suction port 5 and the outdoor exhaust port 6 communicate with each other through the ventilation / exhaust air path D.
  • the exhaust air path includes a heat exchange exhaust air path B and a ventilation exhaust air path D.
  • the ventilation air supply damper 11 and the ventilation exhaust air damper 12 perform heat exchange operation for supplying and exhausting air in the heat exchange air supply path A and the heat exchange exhaust air path B, and supply air in the ventilation air supply air path C and the ventilation exhaust air path D.
  • the circulation damper 14 opens and closes the circulation port 13 provided in a section that separates the supply air path and the exhaust air path in the vicinity of the outdoor intake port 3 and the outdoor exhaust port 6. Can be.
  • the circulation damper 14 is a damper that forms an air path for mixing the inside air sucked from the indoor suction port 5 with the outside air sucked from the outdoor suction port 3 and circulating the air into the room again. is there.
  • all of the inside air sucked from the indoor suction port 5 may be mixed with the outside air, or a part of the inside air sucked from the indoor suction port 5 may be mixed with the outside air.
  • the circulation damper 14 is controlled so as to close the circulation port 13. Specifically, the circulation damper 14 is moved so as to close the circulation port 13. Thereby, the supply air flow and the exhaust air flow are not mixed.
  • a circulation air passage E is formed.
  • the circulation air path E is formed by the circulation damper 14 opening the circulation port 13 and the outdoor air supply shutter 9 and the outdoor exhaust shutter 10 closing the outdoor intake port 3 and the outdoor exhaust port 6, respectively.
  • the circulation damper 14 performs a heat exchange operation for supplying and exhausting air in the heat exchange air supply passage A and the heat exchange exhaust air passage B, a ventilation operation for supplying and exhausting air in the ventilation air supply passage C and the ventilation exhaust air passage D, and a circulation operation.
  • This is a damper for switching between a circulation operation for circulating inside air again in the room through the air passage E.
  • a particulate removal filter 15, an indoor particulate sensor 16, an indoor carbon dioxide sensor 17, an indoor temperature sensor 18, and an outdoor temperature sensor 19 are provided in the internal air passage of the heat exchange type ventilation fan 1. .
  • the particulate filter 15 is provided between the heat exchange element 2 and the indoor air supply port 4 and removes fine particles passing through the heat exchange element 2. After the particulates such as PM2.5 and pollen are removed by the particulate removal filter 15, purified outside air is supplied into the room.
  • the number of the particulate removal filter is one, but the filter is not limited as long as the filter is provided on the air supply passage, and a plurality of filters may be provided.
  • the indoor particle sensor 16 and the indoor carbon dioxide sensor 17 are installed between the indoor suction port 5 and the heat exchange element 2, and measure indoor air environment such as indoor PM2.5 concentration and carbon dioxide concentration. Since the lens is expected to be contaminated by dust due to the use of an optical lens inside the sensor, a place where concentration detection can be performed by convection without directly placing it in the air path, for example, a small change in air flow even in the air path Placement in place is desirable.
  • the configuration using the minimum necessary sensor is used.
  • the installation location and the number of sensors are not limited to this, and a plurality of locations and a plurality of sensors may be used. Further, the same effect can be expected if the sensor can measure the inside air environment, and thus the present invention is not limited to this.
  • the indoor temperature sensor 18 is arranged near the indoor suction port 5 in order to accurately detect the indoor temperature.
  • the outdoor temperature sensor 19 is arranged near the outdoor suction port 3 of the air supply passage in order to accurately detect the outdoor temperature.
  • the control unit 20 disposed on the side surface of the housing 30 of the heat exchange type ventilation fan 1 controls the outdoor air supply shutter 9 based on signals from the indoor particle sensor 16, the outdoor temperature sensor 19, the indoor temperature sensor 18, and the indoor carbon dioxide sensor 17. ,
  • the inside air can be purified by the particulate removal filter 15 and the concentration of the particulates in the room can be reduced by performing the circulation operation as shown in FIG.
  • the outdoor air supply shutter 9 opens the outdoor air inlet 3 to form the ventilation air supply path C.
  • the air supply mixed-air operation for taking in the outside air is performed.
  • the air volume of the exhaust fan 8 becomes equal to the circulating air volume
  • the air volume of the air supply fan 7 Is the sum of the supply air volume and the circulation air volume. Therefore, the control unit 20 controls the air flow of the air supply fan 7 to be 100 CFM and the air flow of the exhaust fan 8 to be 60 CFM.
  • the circulation air volume and the supply air volume during the air supply / mixing operation can be determined by controlling the air supply fan 7 and the exhaust fan 8. At this time, the air volume of the supply fan 7 and the exhaust fan 8 can be set arbitrarily. By making the air volume of the air supply fan 7 and the exhaust fan 8 the same, the supply air volume from the outside air is 0, that is, equivalent to the circulation operation. Becomes
  • FIG. 5 shows that the outdoor exhaust port 6 is opened, and the ventilation air supply path C, the ventilation exhaust air path D, and the circulation air path E are formed, so that exhaust is performed in addition to the air supply / mixing operation shown in FIG.
  • the amount of circulating air during the ventilation / mixing operation is determined by the opening angle of the circulating damper 14. For example, if the amount of exhaust air from the exhaust fan 8 is 100 CFM, and if the opening angle of the circulation damper 14 is 45 degrees, which is halfway between the time of opening and closing, the amount of exhaust air discharged from the outdoor exhaust port 6 is 50 CFM. Control is performed such that the amount of circulating air circulated from the circulation port 13 into the room becomes 50 CFM.
  • the circulation air volume is controlled by the opening angle of the circulation damper 14. However, the circulation air volume can be accurately controlled by newly adding a circulation fan near the circulation port 13.
  • FIG. 6 shows a state in which the circulation air passage E is formed, and the air supply and the exhaust air are respectively subjected to the heat exchange mixed air operation in which the heat exchange air supply passage A and the heat exchange exhaust air passage B are formed through the heat exchange element 2. Is shown. This is effective when there is a temperature difference between the inside air and the outside air.
  • the indoor temperature detected by the indoor temperature sensor 18 be Ti
  • the outdoor temperature detected by the outdoor temperature sensor 19 be To
  • the predetermined temperature be Ta.
  • the ventilation air supply damper 11 and the ventilation exhaust damper 11 are formed so that the heat exchange air supply passage A and the heat exchange exhaust air passage B are formed. 12 is controlled.
  • the ventilation operation that is, the ventilation supply damper 11 and the ventilation exhaust damper 11 are formed so that the ventilation supply air path C and the ventilation exhaust air path D are formed. 12 is controlled.
  • both the supply air passage and the exhaust air passage need not be the ventilation air passage.
  • the ventilation air supply damper 11 and the ventilation exhaust damper 12 may be controlled such that the supply air path is a heat exchange supply air path A and the exhaust air path is a ventilation exhaust path D.
  • S in FIG. 7 means a step.
  • the control unit 20 obtains the indoor carbon dioxide concentration, the indoor particulate concentration, and the indoor carbon dioxide sensor 17, the indoor particulate sensor 16, the outdoor temperature sensor 19, and the indoor temperature sensor 18.
  • the measured values of the outdoor temperature and the indoor temperature are read (S01).
  • control unit 20 compares the read particle concentration in the room with a predetermined threshold value (S02).
  • the indoor particle concentration is 20 ⁇ g / m 3 or less (No in S02), it is determined that the reduction of the indoor particle concentration is not necessary, and the heat exchange operation and the ventilation operation are prioritized, and the process proceeds to the next step (S03). .
  • the concentration of the particulates in the room is higher than 20 ⁇ g / m 3 (Yes in S02), it is determined that the concentration of the particulates in the room needs to be reduced, and the circulation operation for purifying the inside air with the particulate removal filter 15 is performed.
  • a predetermined threshold (S03). If the temperature difference between the room and the outside is equal to or less than a predetermined threshold, an operation of directly introducing the outside air into the room without heat exchange, that is, a ventilation operation is performed.
  • a ventilation operation 4 ° C. is set as the predetermined threshold.
  • the control unit 20 sets the read measurement value of the indoor carbon dioxide sensor 17 to a predetermined threshold value.
  • the threshold value is set to 1000 ppm at which the person begins to feel drowsy and the concentration is reduced, but is not limited to this and can be set to an arbitrary value.
  • the control unit 20 determines that the indoor carbon dioxide concentration needs to be reduced.
  • the process proceeds to the next step (S05) in which the determination is made based on the temperature difference between the room and the outside.
  • the indoor carbon dioxide concentration is equal to or lower than the threshold value (No in S04), it is determined that there is no need to lower the indoor carbon dioxide concentration, and the air supply mixed-air operation for supplying air is performed in addition to the circulation operation.
  • the control unit 20 calculates the temperature difference between the read indoor temperature and the outdoor temperature and compares it with a predetermined threshold.
  • a predetermined threshold 4 ° C. is set as a threshold value of the temperature difference between the inside and outside.
  • the mixed air operation includes a supply air mixed operation, a ventilation mixed air operation, and a heat exchange mixed air operation.
  • FIGS. 1 to 7 of the present disclosure the configuration of the horizontal type heat exchange type ventilation fan installed under the ceiling or under the floor is shown, but the heat exchange type ventilation fan body may be the vertical type installed on the floor. I don't care.
  • FIG. 8 shows a heat exchange type ventilation fan according to a modification.
  • the positions of the circulation port and the circulation damper are different from those of the heat exchange type ventilation fan 1.
  • a circulation port 13A is provided in a section in the vicinity of the indoor air supply port 4 and the indoor air suction port 5 for separating the air supply air path and the exhaust air path.
  • the heat exchange type ventilation fan 1A operates only the air supply fan 7 to open the circulation damper 14A that opens and closes the circulation port 13A. Then, by controlling the angle of the circulation damper 14A and the air supply fan 7, the air supply amount and the circulation air amount are determined.
  • the heat exchange type ventilation fan 1 ⁇ / b> A since the air supply / mixing operation is performed only by the air supply fan 7, power consumption is suppressed more than in the heat exchange type ventilation fan 1.
  • the heat exchange type ventilation fan according to the present disclosure can be used for houses, buildings, and other general heat exchange type ventilation fans.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

熱交換型換気扇(1)は、室外吸込口(3)、室内給気口(4)、室内吸込口(5)、および室外排気口(6)を有する筐体(30)と、熱交換素子(2)と、給気風路と、給気ファン(7)と、排気風路と、排気ファン(8)と、室外給気シャッター(9)と、室外排気シャッター(10)と、循環口(13)を開閉する循環ダンパ(14)と、室内微粒子センサ(16)と、微粒子除去フィルタ(15)と、を備える。微粒子の濃度の値が所定の値よりも高い場合、循環ダンパ(14)は循環口(13)を開けて室内吸込口(5)と室内給気口(4)とが連通する循環風路(E)を形成する。そして、熱交換型換気扇(1)は、給気風路による室外から室内への給気と、循環風路(E)による室内から室内への循環を同時に行う混風運転を行う。

Description

熱交換型換気扇
 本開示は、熱交換型換気扇における給排気の送風制御に関する。
 従来の熱交換型換気扇は、図9の概略図に示すように、送風路104と、排気路107と、循環路108と、熱交換素子109と、給気ファン110と、排気ファン111と、微粒子センサ112と、微粒子除去フィルタ113とを備える。送風路104は、本体101に室外吸込口102から室内給気口103に通風する。排気路107は、内気を吸込む室内吸込口105から室外排気口106に通風する。循環路108は、室内吸込口105から吸込んだ内気を、室内給気口103へ通風する。熱交換素子109は、排気流と給気流の熱交換を行う。給気ファン110は、給気流を発生させる。排気ファン111は、排気流を発生させる。微粒子センサ112は、室内の微粒子濃度を検出する。微粒子除去フィルタ113は、送風路104上で微粒子の除去を行う。
 従来の熱交換型換気扇は、室内の微粒子センサ112で検知した微粒子濃度に基づいて送風路104と排気路107と循環路108を制御している。また、循環路108によって循環運転される場合は、室外吸込口102と室外排気口106とが閉じられている。(例えば、特許文献1参照)。
特開2017―229828号公報
 このような従来の熱交換型換気扇では室内微粒子濃度が高い場合は、循環路による循環運転により、微粒子フィルタを介すことで内気の浄化を行っている。しかし、室外吸込口と室外排気口とが閉じられた状態で循環運転を行っている為、換気が必要な場合であっても外気を取り入れることができず、換気ができないという課題がある。
 そこで、本開示は、このような従来の問題を解決するもので、室内の微粒子濃度が高い場合において、従来の循環運転に加え、外気を取り入れる混風運転を行うことにより、室内の空気環境に応じて内気の浄化及び換気を行うことができる熱交換型換気装置を提供することを目的とする。
 この目的を達成するために、本開示の熱交換型換気扇は、筐体と、熱交換素子と、給気風路と、給気ファンと、排気風路と、排気ファンと、室外給気シャッターと、室外排気シャッターと、循環ダンパと、室内微粒子センサと、微粒子除去フィルタと、を備える。筐体は、室外吸込口と、室内給気口と、室内吸込口と、室外排気口を有する。熱交換素子は、筐体内に配置されている。給気風路は、室外吸込口と室内給気口とを連通する。給気ファンは、給気風路内に設けられ、室内給気口へ外気を導く。排気風路は、室内吸込口と室外排気口とを連通する。排気ファンは、排気風路内に設けられ、室外排気口へ内気を導く。室外給気シャッターは、室外吸込口を開閉する。室外排気シャッターは、室外排気口を開閉する。循環ダンパは、給気風路と排気風路とを隔てる境界部分に設けられた循環口を開閉する。室内微粒子センサは、室内吸込口を通る微粒子の濃度を検出する。微粒子除去フィルタは、室内給気口を通る微粒子を除去する。室内微粒子センサによって検出された微粒子の濃度の値が所定の値よりも高い場合、循環ダンパは、循環口を開けて室内吸込口と室内給気口とが連通する循環風路を形成し、室外給気シャッターは室外吸込口を開ける。そして、熱交換型換気扇は、給気風路による室外から室内への給気と、循環風路による室内から室内への循環を同時に行う混風運転を行い、微粒子除去フィルタを介して室内の空気の微粒子を除去しつつ外気からの給気を取り入れる。
 本開示の熱交換型換気扇の混風運転によって、室内の空気中の微粒子の除去及び外気の取り入れによる換気を同時に行うことができる。
図1は、本開示の実施の形態1の熱交換型換気扇の構成を示す図である。 図2は、本開示の実施の形態1の熱交換型換気扇の構成を示す図である。 図3は、本開示の実施の形態1の循環運転における風路を示す図である。 図4は、本開示の実施の形態1の給気混風運転における風路を示す図である。 図5は本開示の実施の形態1の換気混風運転における風路を示す図である。 図6は、本開示の実施の形態1の熱交混風運転における風路を示す図である。 図7は、本開示の実施の形態1の運転状態を決定するフローチャートである。 図8は、変形例に係る熱交換型換気扇の混風運転における風路を示す図である。 図9は、従来技術の概略構成図である。
 本開示の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本開示の技術思想を具体化するために例示するものであって、本開示は以下のものに特定しない。特に実施の形態に記載されている数値、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本開示の範囲をそれのみに限定する趣旨ではなく、単なる実施例に過ぎない。
 本開示の一態様に係る熱交換型換気扇は、筐体と、熱交換素子と、給気風路と、給気ファンと、排気風路と、排気ファンと、室外給気シャッターと、室外排気シャッターと、循環ダンパと、室内微粒子センサと、微粒子除去フィルタと、を備える。筐体は、室外吸込口と、室内給気口と、室内吸込口と、室外排気口を有する。熱交換素子は、筐体内に配置される。給気風路は、室外吸込口と室内給気口とを連通する。給気ファンは、給気風路内に設けられ、室内給気口へ外気を導く。排気風路は、室内吸込口と室外排気口とを連通する。排気ファンは、排気風路内に設けられ、室外排気口へ内気を導く。室外給気シャッターは、室外吸込口を開閉する。室外排気シャッターは、室外排気口を開閉する。循環ダンパは、給気風路と排気風路とを隔てる境界部分に設けられて循環口を開閉する。室内微粒子センサは、室内吸込口を通る微粒子の濃度を検出する。微粒子除去フィルタは、室内給気口を通る微粒子を除去する。室内微粒子センサによって検出された微粒子の濃度の値が所定の値よりも高い場合、循環ダンパは循環口を開けて室内吸込口と室内給気口とが連通する循環風路を形成し、室外給気シャッターは室外吸込口を開ける。そして熱交換型換気扇は、給気風路による室外から室内への給気と、循環風路により室内から室内への循環を同時に行う混風運転を行い、微粒子除去フィルタを介して室内の空気の微粒子を除去しつつ外気からの給気を取り入れる。
 これにより、熱交換型換気扇は、混風運転によって、室内の空気中の微粒子の除去及び外気の取り入れによる換気を同時に行うことで効率的に最適な空気室を提供することができる。
 また、本開示の熱交換型換気扇において、循環ダンパは、熱交換素子と室外排気口の間に設けられ、混風運転は給気ファンと排気ファンを用いて行ってもよい。
 これにより、給気ファンと排気ファンの両方を使用して、混風運転を行うことで、室内の空気の循環を効率的に促進することができ、室内微粒子濃度が非常に高い場合でも、短時間で室内微粒子を低減することができる。
 本開示の熱交換型換気扇は、室内微粒子センサが検知した微粒子の濃度に応じて、給気ファンと排気ファンの回転数をそれぞれ調整して、給気ファンによる給気風量と、排気ファンによる循環風量とを制御する制御部をさらに備えてもよい。これにより、混風運転における給気風量と循環風量の割合の制御を行う。
 また、混風運転における循環風量と給気風量とを給気ファンと排気ファンの回転数により制御することができ、室内微粒子の濃度に応じた循環風量と給気風量とを適宜調整することができる。
 本開示の熱交換型換気扇は、室外排気シャッターを動作させて室外排気口を開け、循環ダンパの開き角度によって排気風量と循環風量の制御を行う制御部をさらに備えてもよい。
 これにより、室内微粒子を除去する循環運転だけでなく、室内から室外への排気を行う換気運転を同時に行うことができ、室内微粒子濃度を低減できると共に、フィルタで除去できない浮遊物質を排気することができる。
 本開示の熱交換型換気扇は、換気給気ダンパと、換気排気ダンパと、室外温度センサと、室内温度センサをさらに備えてもよい。換気給気ダンパは、給気風路を、熱交換素子を介して室外吸込口と室内給気口を連通する熱交換給気風路と、熱交換素子を介さずに室外吸込口と室内給気口を連通する換気給気風路とに切替える。換気排気ダンパは、排気風路を、熱交換素子を介して室内吸込口と室外排気口を連通する熱交換排風路と、熱交換素子を介さずに室内吸込口と室外排気口を連通する換気排気風路とに切替える。室外温度センサは、給気風路内に設けられ、室外の温度を検知する。室内温度センサは、排気風路内に設けられ、室内の温度を検知する。室外温度センサの検知した室外温度をTo、室内温度センサの検知した室内温度をTi、所定の温度差をTaとすると、混風運転において、|To―Ti|≦Taの場合に換気給気ダンパ及び換気排気ダンパは、給気風路と排気風路を熱交換素子を介さない換気給気風路と換気排気風路に切替える。また、|To―Ti|>Taの場合に換気給気ダンパ及び換気排気ダンパは、給気風路と排気風路を熱交換素子を介す熱交換給気風路と熱交換排気風路に切替える。
 これにより、室外温度と室内温度の差によって、混風運転時に熱交換素子を介す熱交換風路と熱交換素子を介さない換気風路を切替える制御をすることができる。室外と室内の温度差が大きい場合には、給気風路と排気風路との熱交換運転を用いた混風運転を行い、温度差が小さい場合には、換気運転を用いた混風運転が可能になることで、効率的に熱の回収を行いながら、内気の浄化が可能となる。
 本開示の熱交換型換気扇において、循環ダンパは、熱交換素子と室内吸込口の間に設けられてもよい。そして、混風運転は、給気ファンの動作制御と循環ダンパの開閉角度とによって制御される。
 これにより、混風運転における循環風量と給気風量とを給気ファンの動作制御と循環ダンパの開閉角度の制御によって、正確に調整することができる。
 本開示を実施するための形態について添付図面を参照して説明する。
 (実施の形態1)
 図1から図7を参照して本開示の実施の形態1の熱交換型換気扇について説明する。
 図1は、本開示の実施の形態1の熱交換型換気扇の構成を示す図である。なお、図1は、熱交換型換気扇1を平面視したものであり、熱交換型換気扇1の主要部の構成を示すものである。
 熱交換型換気扇1は、建物内の天井裏、側面壁内、または床下などに設置される。本実施の形態では、熱交換型換気扇1を床下に設置した場合について説明する。
 熱交換型換気扇1は直方体の筐体30を備えている。筐体30は、室外吸込口3と、室内給気口4と、室内吸込口5と、室外排気口6とを有している。また、筐体30内には、熱交換素子2が配置されている。
 熱交換型換気扇1に内蔵される熱交換素子2は、屋内から排気される空気の熱を回収して屋外から給気される空気に熱を与える機能を有している。つまり、熱交換素子2は、排気流からの排気熱を回収して給気流に与える機能を有している。また、熱交換素子2は、複数の伝熱板を有する。複数の伝熱板が所定の間隔をあけて積層されることで、風路が構成されている。
 この伝熱板は、気体遮蔽性と透湿性を有していて、室内の空気と室外の空気を伝熱板の間に交互に流すことで、換気を行いながら伝熱板を介して熱の交換および水分の交換を行うことができる構成となっている。すなわち、熱交換素子2の内部では、熱交換給気風路Aと熱交換排気風路Bとが伝熱板を挟んで交互に積層されて設けられている構成となっている。これにより、給気流と排気流とが混同することなく熱交換される。
 室外吸込口3と室内給気口4は熱交換給気風路Aで連通していて、熱交換給気風路Aの室内給気口4の近傍には、給気流を発生させるための給気ファン7が設けられている。また、室内吸込口5と室外排気口6は熱交換排気風路Bで連通していて、熱交換排気風路Bの室外排気口6の近傍には、排気流を発生させるための排気ファン8が設けられている。
 また、熱交換型換気扇1の内部には、室外給気シャッター9と、室外排気シャッター10と、換気給気ダンパ11と、換気排気ダンパ12と、循環口13と、循環ダンパ14とが設けられている。室外給気シャッター9は、室外吸込口3の端部に支点を有する開閉自在の隔壁であり、室外吸込口3を開閉するように動作する。室外排気シャッター10は、室外排気口6の端部に支点を有する開閉自在の隔壁であり、室外排気口6を開閉するように動作する。
 換気給気ダンパ11は、熱交換素子2の室外吸込口3側において、熱交換素子2への外気の流入を制御するものである。
 給気流と排気流の熱交換を行う熱交換運転においては、給気流が熱交換素子2を通過する必要がある。そのため、熱交換素子2を通過する熱交換給気風路Aが形成されるように、換気給気ダンパ11が制御される。
 従って、熱交換給気風路Aにおいて給気ファン7が動作することで、室外吸込口3から吸込まれた外気が熱交換素子2を通過し、室内給気口4から室内に給気される。
 一方、熱交換運転を行わない、つまり、外気が熱交換素子2を通過せずに室内に導入される換気運転を行う場合には、図2に示すように、換気給気ダンパ11は、熱交換素子2を塞ぐように制御される。具体的には、換気給気ダンパ11を、熱交換素子2を塞ぐように可動させる。これにより、熱交換素子2をバイパスする風路、つまり室外吸込口3から室内給気口4への直線状の風路、換気給気風路Cが形成される。換気給気風路Cが形成された状態で給気ファン7が動作することにより、室外吸込口3から吸込まれた外気は熱交換素子2に流入することなく換気給気風路Cを通り、室内給気口4から室内に給気される。これより、室外吸込口3と室内給気口4は換気給気風路Cで連通していると言える。また、給気風路とは、熱交換給気風路Aと換気給気風路Cを含む。
 換気排気ダンパ12は、図1に示すように、熱交換素子2の室内吸込口5側において、熱交換素子2への内気の流入を制御するものである。
 給気流と排気流の熱交換を行う熱交換運転においては、排気流が熱交換素子2を通過する必要がある。そのため、熱交換素子2を通過する熱交換排気風路Bが形成されるように、換気排気ダンパ12が制御される。
 従って、熱交換排気風路Bにおいて排気ファン8が動作することで、室内吸込口5から吸込まれた内気が熱交換素子2を通過し、室外排気口6から室外に排気される。
 一方、熱交換運転を行わない、つまり、内気が熱交換素子2を通過せずに室外へ排気される換気運転を行う場合には、図2に示すように、換気排気ダンパ12は、熱交換素子2を塞ぐように制御される。具体的には、換気排気ダンパ12を、熱交換素子2を塞ぐように可動させる。これにより、熱交換素子2をバイパスする風路、つまり室内吸込口5から室外排気口6への直線状の風路、換気排気風路Dが形成される。換気排気風路Dが形成された状態で排気ファン8が動作することにより、室内吸込口5から吸込まれた内気は熱交換素子2に流入することなく換気排気風路Dを通り、室外排気口6から室外に排気される。これより、室内吸込口5と室外排気口6は換気排気風路Dで連通していると言える。また、排気風路とは、熱交換排気風路Bと換気排気風路Dを含む。
 すなわち、換気給気ダンパ11及び換気排気ダンパ12は、熱交換給気風路Aと熱交換排気風路Bで給排気を行う熱交換運転と、換気給気風路Cと換気排気風路Dで給排気を行う換気運転とを切替えるためのダンパである。
 図3、図4に示すように、循環ダンパ14は、室外吸込口3及び室外排気口6の近傍における給気風路と排気風路とを隔てる区画に設置された循環口13の開閉を行うことができる。図4に示すように、循環ダンパ14は、室内吸込口5から吸込んだ内気を、室外吸込口3から吸込んだ外気と混入させて、再度室内へと循環させるための風路を形成するダンパである。なお、室内吸込口5から吸込んだ内気の全てを外気と混入させてもよいし、室内吸込口5から吸込んだ内気の一部を外気と混入させてもよい。
 熱交換運転又は換気運転時には、循環ダンパ14は循環口13を閉じるように制御される。具体的には、循環ダンパ14は、循環口13を塞ぐように可動される。これにより、給気流と排気流とが混入することが無い。
 一方、図3に示すように、室内吸込口5から吸込んだ内気を室内給気口4から再び室内へ循環する循環運転時は、循環風路Eが形成される。循環風路Eは、循環ダンパ14が循環口13を開口し、室外給気シャッター9及び室外排気シャッター10が、それぞれ室外吸込口3及び室外排気口6を閉口とすることで形成される。
 循環風路Eが形成された状態で給気ファン7及び排気ファン8が動作することにより、室内吸込口5から吸込まれた内気は、室内給気口4から再び室内へと給気される。
 すなわち、循環ダンパ14は、熱交換給気風路Aと熱交換排気風路Bで給排気を行う熱交換運転及び換気給気風路Cと換気排気風路Dで給排気を行う換気運転と、循環風路Eで内気を再び室内に循環させる循環運転とを切替えるためのダンパである。
 また、熱交換型換気扇1の内部風路には、微粒子除去フィルタ15と、室内微粒子センサ16と、室内二酸化炭素センサ17と、室内温度センサ18と、室外温度センサ19と、が設けられている。
 微粒子除去フィルタ15は、熱交換素子2と室内給気口4との間に設置され、熱交換素子2を通過した目の細かい微粒子を取り除く。この微粒子除去フィルタ15によりPM2.5や花粉などの微粒子が除去された後に室内に浄化された外気が給気される。ここで、微粒子除去フィルタは1つとしたが、給気風路上に構成されていればこの限りではなく、また複数個設けてもよい。
 室内微粒子センサ16と室内二酸化炭素センサ17は、室内吸込口5と熱交換素子2との間に設置され、室内のPM2.5濃度や、二酸化炭素濃度など、室内の空気環境の測定を行う。センサ内部に光学レンズを使用している都合上ほこりでレンズが汚れることが予想されるため、風路には直接配置せず対流によって濃度検出が行える場所、例えば風路内でも気流の変化が小さい場所への配置が望ましい。
 本開示では必要最小限のセンサを用いた構成としたが、より精度高く細かな制御をするために、センサの設置箇所や個数に関してはこの限りではなく、複数個所及び複数個用いてもよい。また、内気環境を測定できるセンサであれば同様の効果が期待できるため、この限りではない。
 室内温度センサ18は、室内の温度を正確に検出するために室内吸込口5の近傍に配置されている。また、室外温度センサ19は、室外の温度を正確に検出するために給気風路の室外吸込口3近傍に配置されている。
 熱交換型換気扇1の筐体30の側面に配置された制御部20は、室内微粒子センサ16、室外温度センサ19、室内温度センサ18、室内二酸化炭素センサ17からの信号に基づき室外給気シャッター9、室外排気シャッター10、給気ファン7、排気ファン8、循環ダンパ14、換気給気ダンパ11、換気排気ダンパ12の制御を行う。
 次に図4から図7を用いて、本開示の内容について説明する。
 室内の微粒子濃度が高い場合には、図3に示すように循環運転をすることで、内気を微粒子除去フィルタ15によって浄化し、室内の微粒子濃度を下げることができる。
 また、室内の微粒子濃度を下げる循環運転を行うとともに、換気を行いたい場合があると考えられる。
 そこで、このような場合は図4に示すように、循環運転時の循環風路Eに加え、室外給気シャッター9が室外吸込口3を開口することで、換気給気風路Cを形成する。これにより、外気の取り入れを行う給気混風運転を行う。また、このときの室内からの循環風量を60CFM(Cubic Feet per Minute)、室外からの給気風量を40CFMとする場合は、排気ファン8の風量は循環風量と等しくなり、給気ファン7の風量は給気風量と循環風量の和となる。そのため、制御部20は、給気ファン7の風量を100CFM、排気ファン8の風量を60CFMとなるように制御を行う。このように給気混風運転時の循環風量と給気風量は、給気ファン7と排気ファン8を制御することで決定することができる。このときの給気ファン7と排気ファン8の風量は任意に設定でき、給気ファン7と排気ファン8の風量を同じにすることで、外気からの給気風量が0、つまり循環運転と同等となる。
 また、図4に示す構成では、室内からの排気は行わないが、給気により室内が正圧となるため、部屋の壁の隙間などから強制的に排気が行われるため、換気運転と同様の効果を得ることができる。
 図5は、室外排気口6を開口とし、換気給気風路C、換気排気風路D、循環風路Eを形成することで、図4に示した給気混風運転に加え排気も行う、換気混風運転を示している。これは、室内二酸化炭素センサ17によって検出した二酸化炭素濃度が高く、内気の排気が必要な場合等に有効である。
 この換気混風運転時の循環風量は循環ダンパ14の開き角度によって決定される。例えば、排気ファン8による排気風量を100CFMとすると、循環ダンパ14の開き角度が、開口時と閉口時の中間である45度である場合は、室外排気口6から排出される排気風量を50CFM、循環口13から室内へ循環される循環風量を50CFMとなるような制御を行う。本開示では循環ダンパ14の開き角度による循環風量の制御を行うとしたが、新たに循環口13の近傍に循環ファンを追加することで循環風量の制御を正確に行うことも可能である。
 図6は循環風路Eが形成された状態で、給気と排気を、それぞれ熱交換素子2を介する熱交換給気風路Aと熱交換排気風路Bとが形成された熱交換混風運転を示している。これは、内気と室外空気の温度差がある場合に有効である。
 室内温度センサ18により検出された屋内温度をTi、室外温度センサ19により検出された室外温度をTo、所定温度をTaとする。ここで、室内温度Tiと室外温度Toの差が所定温度Taよりも大きい場合は、熱交換給気風路Aと熱交換排気風路Bが形成されるように換気給気ダンパ11と換気排気ダンパ12が制御される。また、室内温度Tiと室外温度Toの差が所定温度Ta以下の場合は、換気運転、つまり換気給気風路Cと換気排気風路Dが形成されるように換気給気ダンパ11と換気排気ダンパ12が制御される。
 なお、換気運転において、給気風路及び排気風路の両方を換気風路にしなくてもよい。例えば、給気風路は熱交換給気風路A、排気風路は換気排気風路Dのように、換気給気ダンパ11と換気排気ダンパ12を制御しても良い。
 以下に本開示の熱交換型換気扇の運転状態の決定について、図7のフローチャートを用いて説明する。なお、図7中のSはステップを意味する。
 まず、最初に熱交換型換気扇1の運転状態において、制御部20は、室内二酸化炭素センサ17、室内微粒子センサ16、室外温度センサ19、室内温度センサ18から、室内二酸化炭素濃度、室内微粒子濃度、室外温度、室内温度の計測値を読み込む(S01)。
 次に、制御部20は、読み込んだ室内の微粒子濃度を予め定められた閾値と比較する(S02)。
 なお、ここでは閾値として、人体に影響のないレベルとされる20μg/mを設定するものとする。
 室内の微粒子濃度が20μg/m以下であれば(S02でNo)、室内の微粒子濃度の低減が必要無いと判断し、熱交換運転及び換気運転を優先するとして次のステップ(S03)に進む。一方、室内の微粒子濃度が20μg/mより高ければ(S02でYes)、室内の微粒子濃度を低減させる必要があると判断し、内気を微粒子除去フィルタ15によって浄化する循環運転を行う。
 室内の微粒子濃度の低減が必要無いと判断した場合は、室内外の温度差が所定の閾値以下か否かを判断する(S03)。室内外の温度差が、所定の閾値以下であれば、外気を熱交換せずに直接室内に導入する運転、つまり換気運転を行う。ここでは、所定の閾値として4℃を設定している。
 室内と室外の温度差が4℃以下であれば(S03でNo)、換気運転を行えると判断し、換気運転優先として換気運転を行う。室内と室外の温度差が4℃より大きければ(S03でYes)、換気運転は行えず熱交換運転を行う必要があると判断し、熱交換運転を行う。
 一方、室内の微粒子濃度を低減させる必要があると判断した場合は、循環運転を行い、一定時間経過後、制御部20は、読み込んだ室内二酸化炭素センサ17の計測値を予め定められた閾値と比較する(S04)。なお、ここでは閾値として、人が眠気を感じ始め集中力が低下する1000ppmを設定するものとするがその限りではなく、任意の値に設定できる。
 制御部20は室内の二酸化炭素濃度を閾値と比較した結果、室内の二酸化炭素濃度が閾値(1000ppm)より大きければ(S04でYes)、室内の二酸化炭素濃度を下げる必要があると判断する。次に、内気の排気による室内の二酸化炭素濃度の低減を行うために、室内と室外の温度差による判定を行う次のステップ(S05)に進む。
 一方、室内の二酸化炭素濃度が閾値以下であれば(S04でNo)、室内の二酸化炭素濃度を下げる必要がないと判断し、循環運転に加えて給気を行う給気混風運転を行う。
 室内の二酸化炭素濃度を下げる必要があると判断したステップ(S05)では、制御部20は、読み込んだ室内温度と室外温度の温度差を計算し、予め定められた閾値と比較する。ここでは、室内外の温度差の閾値として4℃を設定する。
 室内と室外の温度差が4℃以下であれば(S05でNo)、換気運転を行えると判断し、換気運転優先として換気混風運転を行う。室内と室外の温度差が4℃より大きければ(S05でYes)、換気運転は行わず熱交換運転を行う必要があると判断し、熱交換混風運転を行う。
 このように、熱交換型換気扇1において混風運転を行うことで、室内の微粒子濃度及び二酸化炭素濃度の低減を行うことができ、室内の空気環境に応じて最適な運転状態を決定することができる。なお、ここで言う混風運転とは、給気混風運転、換気混風運転、熱交換混風運転を含む。
 なお、各ステップの上位と下位で判断が異なる場合は、上位の判断を優先し運転状態を決定するものとする。
 また、本開示の図1から図7では、天井または床下に設置する横置きタイプの熱交換型換気扇の構成を表しているが、熱交換型換気扇本体は床に設置する縦置き型のものでもかまわない。
 また、循環口13を室外吸込口3及び室外排気口6の近傍に設けた例を示したが、これに限らない。
 図8は、変形例に係る熱交換型換気扇を示している。熱交換型換気扇1Aでは、循環口、循環ダンパの位置が熱交換型換気扇1と異なる。熱交換型換気扇1Aでは、室内給気口4と室内吸込口5の近傍における給気風路と排気風路とを隔てる区画に循環口13Aが設けられている。熱交換型換気扇1Aは、給気ファン7のみを動作させ、循環口13Aの開閉を行う循環ダンパ14Aを開状態とする。そして、循環ダンパ14Aの角度と給気ファン7を制御することで、給気風量と循環風量を決定する。熱交換型換気扇1Aでは、給気ファン7のみで給気混風運転を行うため、熱交換型換気扇1よりも消費電力が抑制される。
 以上、実施形態に基づき本開示を説明したが、本開示は上記実施形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 また、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。
 本開示にかかる熱交換型換気扇は、住宅用やビル用、その他熱交換型換気扇全般に用いることができる。
 1、1A  熱交換型換気扇
 2  熱交換素子
 3  室外吸込口
 4  室内給気口
 5  室内吸込口
 6  室外排気口
 7  給気ファン
 8  排気ファン
 9  室外給気シャッター
 10  室外排気シャッター
 11  換気給気ダンパ
 12  換気排気ダンパ
 13  循環口
 13A  循環口
 14  循環ダンパ
 14A  循環ダンパ
 15  微粒子除去フィルタ
 16  室内微粒子センサ
 17  室内二酸化炭素センサ
 18  室内温度センサ
 19  室外温度センサ
 20  制御部
 30  筐体
 101  本体
 102  室外吸込口
 103  室内給気口
 104  送風路
 105  室内吸込口
 106  室外排気口
 108  循環路
 109  熱交換素子
 110  給気ファン
 111  排気ファン
 112  微粒子センサ
 113  微粒子除去フィルタ
 A  熱交換給気風路
 B  熱交換排気風路
 C  換気給気風路
 D  換気排気風路
 E  循環風路

Claims (6)

  1.  室外吸込口、室内給気口、室内吸込口、および室外排気口を有する筐体と、
     前記筐体内に配置された熱交換素子と、
     前記室外吸込口と前記室内給気口とを連通する給気風路と、
     前記給気風路内に設けられ、前記室内給気口へ外気を導く給気ファンと、
     前記室内吸込口と前記室外排気口とを連通する排気風路と、
     前記排気風路内に設けられ、前記室外排気口へ内気を導く排気ファンと、
     前記室外吸込口を開閉する室外給気シャッターと、
     前記室外排気口を開閉する室外排気シャッターと、
     前記給気風路と前記排気風路とを隔てる境界部分に設けられた循環口を開閉する循環ダンパと、
     前記室内吸込口を通る微粒子の濃度を検出する室内微粒子センサと、
     前記室内給気口を通る前記微粒子を除去する微粒子除去フィルタと、を備え、
     前記室内微粒子センサによって検出された前記微粒子の前記濃度の値が所定の値よりも高い場合、
     前記循環ダンパは、前記循環口を開けて前記室内吸込口と前記室内給気口とが連通する循環風路を形成し、
     前記室外給気シャッターは前記室外吸込口を開け、
     前記給気風路による室外から室内への給気と、前記循環風路による前記室内から前記室内への循環を同時に行う混風運転を行い、微粒子除去フィルタを介して室内の空気の微粒子を除去しつつ前記外気からの給気を取り入れることを特徴とする熱交換型換気扇。
  2.  前記循環ダンパは、前記熱交換素子と前記室外排気口の間に設けられ、
     前記混風運転は前記給気ファンと前記排気ファンを用いて行われることを特徴とする請求項1に記載の熱交換型換気扇。
  3.  制御部をさらに備え、
     前記制御部は、前記室内微粒子センサが検知した前記微粒子の前記濃度に応じて前記給気ファンと前記排気ファンの回転数をそれぞれ調整して前記給気ファンによる給気風量と、前記排気ファンによる循環風量とを制御し、前記混風運転における前記給気風量と前記循環風量の割合の制御を行うことを特徴とする、請求項1に記載の熱交換型換気扇。
  4.  制御部をさらに備え、
     前記制御部は、前記室外排気シャッターを動作させて前記室外排気口を開け、前記循環ダンパの開き角度によって排気風量と循環風量の制御を行うことを特徴とする、請求項1に記載の熱交換型換気扇。
  5.  前記給気風路を、前記熱交換素子を介して前記室外吸込口と前記室内給気口を連通する熱交換給気風路と、前記熱交換素子を介さずに前記室外吸込口と前記室内給気口を連通する前記換気給気風路とに切替える換気給気ダンパと、
     前記排気風路を、前記熱交換素子を介して前記室内吸込口と前記室外排気口を連通する熱交換排気風路と、前記熱交換素子を介さずに前記室内吸込口と前記室外排気口を連通する前記換気排気風路とに切替える換気排気ダンパと、
     前記給気風路内に設けられ、室外の温度を検知する室外温度センサと、
     前記排気風路内に設けられ、室内の温度を検知する室内温度センサと、をさらに備え、
    前記室外温度センサの検知した前記室外の前記温度をTo、前記室内温度センサの検知した前記室内の前記温度をTi、所定の温度差をTaとすると、前記混風運転において、
    |To―Ti|≦Taの場合に、前記換気給気ダンパ及び前記換気排気ダンパは、前記給気風路と前記排気風路を前記換気給気風路と前記換気排気風路に切替え、
    |To―Ti|>Taの場合に、前記換気給気ダンパ及び前記換気排気ダンパは、前記給気風路と前記排気風路を前記熱交換給気風路と前記熱交換給気風路に切替えることを特徴とする請求項1に記載の熱交換型換気扇。
  6.  前記循環ダンパは、前記熱交換素子と前記室内吸込口の間に設けられ、
     前記混風運転は、前記給気ファンの動作制御と前記循環ダンパの開閉角度とによって制御されることを特徴とする請求項1に記載の熱交換型換気扇。
PCT/JP2019/031157 2018-08-30 2019-08-07 熱交換型換気扇 WO2020045002A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160919A JP7209143B2 (ja) 2018-08-30 2018-08-30 熱交換型換気扇
JP2018-160919 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045002A1 true WO2020045002A1 (ja) 2020-03-05

Family

ID=69644847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031157 WO2020045002A1 (ja) 2018-08-30 2019-08-07 熱交換型換気扇

Country Status (2)

Country Link
JP (1) JP7209143B2 (ja)
WO (1) WO2020045002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539350B2 (ja) 2021-06-10 2024-08-23 三菱電機株式会社 換気システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340742B2 (ja) * 2019-09-11 2023-09-08 パナソニックIpマネジメント株式会社 熱交換型換気装置
CN112178852B (zh) * 2020-09-30 2021-11-16 珠海格力电器股份有限公司 内循环模式风阻小的新风机组及其控制方法
CN118224686A (zh) * 2021-04-18 2024-06-21 大金工业株式会社 空气处理设备
CN113465117A (zh) * 2021-06-11 2021-10-01 青岛海尔空调电子有限公司 空调器的送风控制方法及装置、计算机可读存储介质
KR102519505B1 (ko) * 2021-06-30 2023-04-11 동양하이테크산업주식회사 공기순환부 내부유입공기의 살균부가 구비된 전열교환 환기시스템
WO2024100833A1 (ja) * 2022-11-10 2024-05-16 三菱電機株式会社 熱交換形換気装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194133A (ja) * 1986-02-19 1987-08-26 Matsushita Seiko Co Ltd 空気調和機
JPH03286942A (ja) * 1990-03-31 1991-12-17 Toshiba Corp 換気装置
JP2007170712A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 熱交換形換気装置
JP2014066400A (ja) * 2012-09-25 2014-04-17 Panasonic Corp 熱交換機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211343B2 (ja) * 1992-03-27 2001-09-25 ダイキン工業株式会社 空気清浄機
JPH0889566A (ja) * 1994-09-21 1996-04-09 Matsushita Seiko Co Ltd 換気機能付空気清浄機
JPH10110989A (ja) * 1996-10-04 1998-04-28 Shimizu Corp 換気システム
KR100640799B1 (ko) 2005-04-28 2006-11-02 엘지전자 주식회사 공기 청정 겸용 환기장치
KR20080013585A (ko) * 2006-08-09 2008-02-13 박남규 습식 공기정화장치가 일체로 구비된 환기유닛
JP4985735B2 (ja) * 2009-09-29 2012-07-25 マックス株式会社 空気清浄機
JP5542046B2 (ja) * 2010-12-24 2014-07-09 三菱電機株式会社 熱交換換気装置
JP5538342B2 (ja) * 2011-10-24 2014-07-02 三菱電機株式会社 換気装置及び換気システム
CN204902110U (zh) * 2014-03-14 2015-12-23 威特奇公共电子有限公司 通风及空气净化装置
JP6834255B2 (ja) 2016-08-30 2021-02-24 三菱電機株式会社 空気清浄システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194133A (ja) * 1986-02-19 1987-08-26 Matsushita Seiko Co Ltd 空気調和機
JPH03286942A (ja) * 1990-03-31 1991-12-17 Toshiba Corp 換気装置
JP2007170712A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 熱交換形換気装置
JP2014066400A (ja) * 2012-09-25 2014-04-17 Panasonic Corp 熱交換機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539350B2 (ja) 2021-06-10 2024-08-23 三菱電機株式会社 換気システム

Also Published As

Publication number Publication date
JP7209143B2 (ja) 2023-01-20
JP2020034223A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2020045002A1 (ja) 熱交換型換気扇
CN107152744B (zh) 换气装置
CN100491851C (zh) 通风系统和用于驱动该通风系统的方法
KR101790696B1 (ko) 바이패스 및 재순환 기능을 겸비한 열교환형 환기장치
KR101149815B1 (ko) 전열교환 환기유니트
KR101808116B1 (ko) 공기청정 시스템
JP6982727B2 (ja) 熱交換型換気扇の制御方法
JP2008309381A (ja) 熱交換換気装置
KR20180045896A (ko) 공기 정화 및 열교환 기능을 구비한 창문 환기장치
KR101921206B1 (ko) 환기 겸용 공기청정장치
JP2005221217A (ja) 空気循環システム及びその制御方法
KR20180014122A (ko) 환기장치
WO2019107162A1 (ja) 空気浄化装置および空気浄化装置を備えた熱交換形換気装置
JP2019148342A (ja) 空気浄化装置およびこれを備えた熱交換形換気装置
JP2020051658A (ja) 熱交換型換気装置
KR20190117897A (ko) 환기 겸용 공기청정기
JP4424113B2 (ja) 換気システムと住宅構造
KR20190068869A (ko) 공기질에 따른 가변형 환기 장치
JPH11201511A (ja) 空気浄化システム
KR102540630B1 (ko) 건물 실내 온도 및 공기질 제어시스템 및 그 제어방법
KR100531084B1 (ko) 공기청정시스템 및 그 운전방법
KR102371835B1 (ko) 퍼지모드를 갖는 환기장치
KR100563527B1 (ko) 공기청정시스템의 운전방법
CN109489173B (zh) 换气系统
JP2003343875A (ja) 換気機能付き空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854006

Country of ref document: EP

Kind code of ref document: A1