WO2020044993A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2020044993A1
WO2020044993A1 PCT/JP2019/031053 JP2019031053W WO2020044993A1 WO 2020044993 A1 WO2020044993 A1 WO 2020044993A1 JP 2019031053 W JP2019031053 W JP 2019031053W WO 2020044993 A1 WO2020044993 A1 WO 2020044993A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
information processing
abnormality
movable device
Prior art date
Application number
PCT/JP2019/031053
Other languages
French (fr)
Japanese (ja)
Inventor
仁 友定
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020044993A1 publication Critical patent/WO2020044993A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to an information processing apparatus and an information processing method for detecting an abnormality in a movable device using the motor based on an output value of the motor.
  • a device that monitors an abnormality of a movable device using the motor based on an output value of the motor is used.
  • a power value that periodically changes with driving of a motor is sequentially acquired, a variance value of a time that changes by one or more cycles is set as a first power variance value, and A variance value of the first power variance value is set as a second power variance value, and a ratio between the latest second power variance value and a predetermined number of second power variance values is sequentially obtained. If it exceeds the predetermined number of times, it is determined that an abnormality has occurred in the power value.
  • JP 2016-40072 Japanese Unexamined Patent Publication “JP 2016-40072”
  • An object of one embodiment of the present invention is to stably detect an abnormality of a movable device using a motor.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • an information processing device is an information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and acquires an output value associated with rotation of the motor with time.
  • An acquisition unit a feature amount calculation unit that calculates a feature amount for each of the predetermined operations from the output value obtained by the acquisition unit, and a distribution index that is an index indicating a width of the distribution of the feature amount in a first predetermined period.
  • An information processing method is an information processing method for an information processing apparatus that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and outputs an output value accompanying rotation of the motor over time.
  • FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment.
  • FIG. 4 is a diagram illustrating a temporal change of a torque value of a motor when the movable device according to the first embodiment performs a predetermined operation.
  • FIG. 4 is a diagram illustrating a temporal change of an average value of torque values for each predetermined operation of the movable device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a temporal change in PP of an average value of torque values for each predetermined period according to the first embodiment.
  • 5 is a flowchart illustrating a flow of calculating a threshold value in the PLC according to the first embodiment. 5 is a flowchart illustrating a flow of detecting an abnormality of a movable device in the PLC according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment.
  • the PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
  • the movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50.
  • the movable system 1 is, for example, a production facility used in a product manufacturing factory.
  • the movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20.
  • the movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
  • the PLC 50 may be any information processing device that acquires an output value associated with the rotation of the motor 30 over time and detects an abnormality of the movable device 10 based on the output value.
  • the information processing device for example, a server And so on.
  • the PLC 50 detects an abnormality based on the variance of the average value of the torque in a predetermined operation in a predetermined period.
  • the movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13.
  • the ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11.
  • the movable section 13 is mounted on the ball screw 12.
  • One end of the ball screw 12 is connected to an output shaft of the motor 30 via a coupling.
  • the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path).
  • the movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation.
  • the predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
  • the motor 30 may include an encoder.
  • the encoder included in the motor 30 outputs information indicating the rotation direction and the rotation angle to the driver 40 over time as a pulse signal. I do.
  • the encoder may be externally provided separately from the motor 30.
  • the encoder is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 over time as a pulse signal.
  • An encoder built in the motor 30 or an external encoder provided separately from the motor 30 is in contact with the rotating portion and a sensing portion that senses the rotation direction and the rotation angle of the rotating portion. It may be a contact type encoder or a non-contact type encoder in which a rotating part and a sensing part are not in contact with each other.
  • the driver 40 outputs appropriate values of current and voltage to the motor 30 based on an instruction from the PLC 50 so that the number of rotations of the motor 30 per unit time becomes a predetermined value.
  • the driver 40 controls the rotation of the motor 30.
  • the driver 40 calculates a torque value, which is an output value associated with the rotation of the motor 30, with time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50. .
  • the driver 40 sequentially calculates an angular velocity value, which is an output value accompanying rotation of the motor 30, based on a pulse signal acquired from the motor 30, and sequentially , PLC50.
  • an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value.
  • the data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30.
  • the torque value, the angular velocity value, and the acceleration value as described above are merely examples of the output value associated with the rotation of the motor 30.
  • the output value associated with the rotation of the motor 30 is obtained with the rotation of the motor 30. Any value is acceptable.
  • FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment.
  • the PLC 50 includes an acquisition unit 51, a threshold calculation unit 52, a storage unit 53, a feature calculation unit 54, a distribution index calculation unit 55, and an abnormality detection unit 56.
  • an acquisition unit 51 a threshold calculation unit 52
  • a storage unit 53 a storage unit 53
  • a feature calculation unit 54 a distribution index calculation unit 55
  • an abnormality detection unit 56 an abnormality detection unit 56.
  • FIG. 3 is a diagram illustrating a temporal change in the torque value of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation.
  • the acquisition unit 51 acquires a torque value over time as an output value accompanying the rotation of the motor 30 from the driver 40, for example, as shown in a series 1 in FIG.
  • FIG. 3 illustrates an example in which the acquisition unit 51 also acquires information indicating the rotation direction of the motor 30 from the driver 40 with time, as shown in the series 2.
  • the +1 period (periods B1 and B3) in the series 2 is a period during which the driver 40 instructs the motor 30 to rotate clockwise. When the motor 30 rotates clockwise, the movable section 13 moves in the forward direction.
  • the period -1 (periods B2 and B4) is a period during which the driver 40 instructs the motor 30 to rotate in the counterclockwise direction.
  • the period of 0 is a period during which the rotation instruction of the driver 40 to the motor 30 is stopped, and a period during which the movable unit 13 is about to stop (that is, a period during which the torque value of the motor 30 is decreasing) or a period during which it is stopped Is represented. That is, each of the period B1, the period B2, the period B3, the period B4,... Is an operation period of one cycle in the movable device 10.
  • the predetermined operation of the movable device 10 is described as one cycle of operation, but may be a plurality of cycles of operation.
  • the acquisition unit 51 may acquire the angular velocity value of the motor 30 from the driver 40 over time as an output value associated with the rotation of the motor 30. Further, for example, when the acceleration sensor is attached to the movable unit 13, the acquisition unit 51 may acquire acceleration data indicating an acceleration value from the acceleration sensor as an output value accompanying rotation of the motor 30.
  • the threshold calculating unit 52 calculates a threshold from the output value of the motor 30 as a criterion for the abnormality detecting unit 56 to detect abnormality of the movable device 10 and stores the threshold in the storage unit 53.
  • the threshold calculator 52 calculates a threshold from the output value obtained by the obtaining unit 51 in a second predetermined period that is a fixed period.
  • the second predetermined period is not a period in which the abnormality detection unit 56 moves according to the progress of the abnormality detection processing such as the second power dispersion value described in Patent Literature 1, but the abnormality detection unit 56 uses the movable device 10 based on the output value of the motor 30. This is a fixed period irrespective of the progress of the process of detecting the abnormality of the image.
  • the second predetermined period may be a period immediately after activating the PLC 50, a predetermined period from a preset time in a day, or the like.
  • the second predetermined period is preferably a period in which no abnormality of the movable device 10 has been detected by the PLC 50 from the output value of the motor 30 in the past.
  • the threshold value calculation unit 52 automatically calculates and sets the threshold value, the work efficiency of the user can be increased as compared with the case where the user inputs the threshold value. Further, since the threshold value calculation unit 52 calculates the threshold value from the output value associated with the actual rotation of the motor 30, the threshold value calculation unit 52 can set the threshold value according to the operation state of the motor 30. According to this, the detection accuracy of the abnormality of the movable device 10 can be improved.
  • the threshold value may be directly input to the PLC 50 by the user. An example of a specific process in which the threshold calculator 52 calculates the threshold will be described later with reference to FIG.
  • FIG. 4 is a diagram illustrating a temporal change in the average value of the torque value for each predetermined operation of the movable device 10 according to the first embodiment.
  • the feature value calculation unit 54 calculates a feature value for each predetermined operation of the movable device 10 from the output value acquired by the acquisition unit 51. For example, based on the torque value acquired by the acquisition unit 51, the feature amount calculation unit 54 sets each of the periods B1, B2, B3, B4,... Shown in FIG. Is calculated as a feature value. In the example shown in FIG. 4, the average value of the torque values for each of the periods B1, B2, B3, B4,. ing.
  • the feature value calculated by the feature value calculation unit 54 may be other than the average value, and examples thereof include a variance, a median value, and a difference between the maximum value and the minimum value. Further, the feature amount calculation unit 54 calculates the feature amount not for each of the periods B1, B2, B3, B4,... Shown in FIG. 3 but for a plurality of periods (for example, for each of the periods B1 + B2, B3 + B4). May be. Note that the average value, the variance, the median value, the difference between the maximum value and the minimum value, and the like described above are merely examples of the feature amount calculated by the feature amount calculation unit 54, and the feature amount calculation unit 54
  • the characteristic value to be calculated may be any value that can be calculated from the output value of the motor 30.
  • FIG. 5 is a diagram showing a temporal change in PP of the average value of the torque value for each predetermined period according to the first embodiment.
  • the distribution index calculation unit 55 calculates a distribution index, which is an index indicating the width of the distribution of the feature amount in each first predetermined period, from the feature amount calculated by the feature amount calculation unit 54.
  • the distribution index calculator 55 calculates a difference (PP: PeakPto Peak) between the average calculated by the feature calculator 54 and the maximum value and the minimum value indicating the width of the distribution of the average in the first predetermined period. ) Is calculated as a distribution index.
  • P1 and the minimum value P2 of the average value for each of the average values C10, C2, and C3 representing the first predetermined period in FIG.
  • the state of the temporal change of the difference (PP) between the maximum value and the minimum value plotted in the axial direction is shown.
  • the first predetermined period can be set arbitrarily. For example, at least some of the periods C1, C2, and C3 may overlap, or a period in which the periods C1, C2, and C3 are not continuous (that is, the periods C1 and C2 are (A separated period, a period in which the period C2 and the period C3 are separated), and the like.
  • the distribution index calculation unit 55 calculates the difference between the maximum value and the minimum value of the average value in the first predetermined period. Should be stored in memory. Therefore, as compared with the case where the variance is calculated as the distribution index, the memory area required for the calculation can be reduced, and as a result, the load required for the calculation can be reduced.
  • the distribution index calculated by the distribution index calculation unit 55 may be other than the difference between the maximum value and the minimum value, and may be, for example, variance, skewness of a normal distribution, or the like. In this way, it is also possible to stably detect the abnormality of the movable device 10 from the output value of the motor 30.
  • the difference between the maximum value and the minimum value, the variance, the skewness of the normal distribution, and the like described above are merely examples of the distribution index calculated by the distribution index calculation unit 55, and the distribution calculated by the distribution index calculation unit 55.
  • the index may be any index that indicates the width of the distribution of the feature amount.
  • the abnormality detection unit 56 refers to the threshold value T1 (for example, 0.46) stored in the storage unit 53, and refers to the threshold value T1 and the feature amount (here, (The difference between the maximum value and the minimum value), and when the feature amount exceeds the threshold value T1, it is detected in real time that an abnormality has occurred in the movable device 10.
  • the abnormality detection unit 56 When detecting that the feature amount has become equal to or larger than the threshold value T1 (that is, an abnormality has occurred in the movable device 10), the abnormality detection unit 56 performs a process of notifying the user of the fact.
  • the process of notifying the user includes various methods for notifying the user. Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker.
  • a process of notifying the user for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
  • the abnormality detection unit 56 executes a process of notifying the user of the fact and / or a process of stopping the rotation of the motor 30 for the driver 40. Is also good. Thus, when an abnormality occurs in the movable device 10, the movable device 10 can be prevented from being broken.
  • the output value such as the torque value of the motor tends to change due to disturbance such as temperature. For this reason, it is difficult to detect a sign of failure of the movable device only by comparing the output value such as the torque value of the motor with the threshold value.
  • the distribution index (for example, the difference (PP) between the maximum value and the minimum value of the average value) itself, which is an index indicating the width of the distribution of the feature amount (for example, the average value) in each first predetermined period, itself.
  • the abnormality detection unit 56 Is successively compared with the threshold by the abnormality detection unit 56, thereby detecting an abnormality of the movable device 10 in real time. Therefore, even if disturbance such as temperature is applied to the motor 30, an abnormality of the movable device 10 can be detected stably.
  • Patent Document 1 even if the movable device 10 gradually breaks down due to various causes such as wear due to the operation of the movable device 10 or looseness due to vibration, the abnormality of the movable device 10 is detected. can do. Thereby, the abnormality of the movable device 10 can be stably detected.
  • FIG. 6 is a flowchart illustrating a flow of calculating the threshold T1 in the PLC 50 according to the first embodiment.
  • the threshold value T1 is calculated by the threshold value calculation unit 52.
  • the threshold calculator 52 calculates the threshold T1 and stores the threshold T1 in the storage 53 in advance before the feature calculator 54, the distribution index calculator 55, and the abnormality detector 56 perform their respective processes. Note that the flowchart illustrated in FIG. 6 is an example of a flow in which the threshold value calculation unit 52 calculates the threshold value T1.
  • the threshold calculator 52 may calculate the threshold T1 by another method.
  • the acquisition unit 51 acquires the torque value over time in the second predetermined period from the driver 40 (Step S1).
  • the threshold calculator 52 calculates the average value of the torque values in the second predetermined period obtained by the obtaining unit 51 (step S2), and further, the standard deviation of the torque values in the second predetermined period obtained by the obtaining unit 51. Is calculated (step S3).
  • the threshold value calculation unit 52 calculates the threshold value T1 by multiplying the standard deviation calculated in step S3 by three and adding the average value calculated in step S2 (step S4).
  • the threshold value calculation unit 52 stores the threshold value T1 obtained in step S4 in the storage unit 53.
  • FIG. 7 is a flowchart illustrating a flow of detecting an abnormality of the movable device 10 in the PLC 50 according to the first embodiment.
  • the obtaining unit 51 obtains a torque value over time from the driver 40 (Step S11).
  • the characteristic amount calculating unit 54 calculates an average value for each predetermined operation of the movable device 10 with time from the torque value acquired by the acquiring unit 51 (Step S12).
  • the distribution index calculation unit 55 calculates a difference (PP) between the maximum value and the minimum value of the average value for each first predetermined period with time from the average value calculated by the feature value calculation unit 54 ( Step S13).
  • PP difference
  • the abnormality detection unit 56 successively compares the difference (PP) between the maximum value and the minimum value of the average value calculated by the distribution index calculation unit 55 with the threshold value T1 stored in the storage unit 53. Then, it is determined whether or not the difference (PP) between the maximum value and the minimum value of the average value is equal to or larger than the threshold value T1 (step S14).
  • step S14 when the abnormality detection unit 56 determines that the difference (PP) between the maximum value and the minimum value of the average value is equal to or larger than the threshold value T1 (YES in step S14), the abnormality detection unit 56 performs a notification process to the user (step S14). Step S15).
  • control blocks of the PLC 50 are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. Or may be realized by software.
  • the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function.
  • This computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above-described program is embodied by electronic transmission.
  • An information processing device is an information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and acquires an output value associated with rotation of the motor with time. And a feature value calculation unit that calculates a feature value for each of the predetermined operations from the output value obtained by the obtaining unit, and calculates a distribution index that is an index indicating a width of the distribution of the feature value in a first predetermined period. A distribution index calculation unit; and an abnormality detection unit that detects an abnormality of the movable device by comparing the distribution index with a threshold.
  • the abnormality of the movable device is detected by comparing the distribution index itself, which is an index indicating the width of the distribution of the feature amount, with the threshold value at predetermined time intervals. Therefore, unlike Patent Document 1, even if the movable device gradually breaks down, it is possible to detect the abnormality of the movable device. This makes it possible to stably detect an abnormality in the movable device.
  • the information processing apparatus may further include a threshold value calculation unit that calculates the threshold value from an output value obtained by the obtaining unit in a second predetermined period that is a fixed period. According to the configuration, since the information processing apparatus automatically calculates the threshold, the work efficiency of the user can be improved as compared with a case where the user inputs the threshold.
  • the distribution index may be a difference between a maximum value and a minimum value of the feature amount within the first predetermined period. According to the configuration, it is possible to reduce the load required for the calculation as compared with the case where the abnormality of the movable device is detected using the variance of the feature amount.
  • the distribution index may be a variance of the feature amount or a skewness of a normal distribution within the first predetermined period. According to the configuration, the abnormality of the movable device can be stably detected.
  • the output value may be a torque value of the motor, and the feature amount may be an average value of the torque values.
  • the threshold value calculation unit calculates an average value and a standard deviation of the output values during the second predetermined period, and calculates the threshold value from a product of the average value and the standard deviation. May be.
  • the abnormality detection unit may execute a process of stopping the rotation of the motor when detecting an abnormality of the movable device. Thereby, it is possible to prevent the movable device from being destroyed.
  • An information processing method is an information processing method for an information processing apparatus that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and outputs an output value accompanying rotation of the motor over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The present invention stably detects an abnormality of a movable device in which a motor is used. A PLC (50) is provided with an abnormality detection unit (56) that detects an abnormality of a movable device (10) by comparing, with a threshold value (T1), a difference between the maximum value and the minimum value in averages of torque values of a motor (30).

Description

情報処理装置及び情報処理方法Information processing apparatus and information processing method
 本発明は、モータの出力値によって、当該モータが用いられている可動装置の異常を検出する、情報処理装置及び情報処理方法に関する。 The present invention relates to an information processing apparatus and an information processing method for detecting an abnormality in a movable device using the motor based on an output value of the motor.
 モータの出力値によって、当該モータが用いられている可動装置の異常を監視する装置が使用されている。特許文献1の工具異常検知方法では、モータの駆動に伴い周期的に変化する電力値を逐次取得し、一周期以上変化する時間の分散値を第1の電力分散値とし、さらに、所定期間における第1の電力分散値の分散値を第2の電力分散値とし、最新の第2の電力分散値と、所定個数前の第2の電力分散値との比を逐次求め、当該比が閾値を所定回数続けて越えたとき、電力値に異常が発生したと判定している。 装置 A device that monitors an abnormality of a movable device using the motor based on an output value of the motor is used. In the tool abnormality detection method of Patent Literature 1, a power value that periodically changes with driving of a motor is sequentially acquired, a variance value of a time that changes by one or more cycles is set as a first power variance value, and A variance value of the first power variance value is set as a second power variance value, and a ratio between the latest second power variance value and a predetermined number of second power variance values is sequentially obtained. If it exceeds the predetermined number of times, it is determined that an abnormality has occurred in the power value.
日本国公開特許公報「特開2016‐40072号公報」Japanese Unexamined Patent Publication “JP 2016-40072”
 モータが用いられている可動装置は、動作に伴う摩耗又は振動による緩み等によって徐々に故障していく場合が多い。特許文献1の工具異常検知方法によると、最新の第2の電力分散値と、所定個数前(すなわち所定時間前)の第2の電力分散値との比を閾値と比較して、電力値の異常の有無を判定している。このため、可動装置が徐々に故障していくことで性能が徐々に低下した場合、当該可動装置の異常に気付けない場合がある。 可 動 Movable devices using motors often fail gradually due to wear due to operation or looseness due to vibration. According to the tool abnormality detection method of Patent Document 1, the ratio of the latest second power variance value to the second power variance value before a predetermined number (that is, a predetermined time before) is compared with a threshold value, and the power value The presence or absence of an abnormality is determined. Therefore, when the performance of the movable device gradually decreases due to the gradual failure of the movable device, the abnormality of the movable device may not be noticed.
 本発明の一態様は、モータが用いられている可動装置の異常を、安定して検出することを目的とする。 An object of one embodiment of the present invention is to stably detect an abnormality of a movable device using a motor.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention employs the following configuration in order to solve the above-described problems.
 すなわち、本発明の一側面に係る情報処理装置は、モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置であって、前記モータの回転に伴う出力値を経時的に取得する取得部と、前記取得部が取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算部と、第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算部と、前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている。 That is, an information processing device according to one aspect of the present invention is an information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and acquires an output value associated with rotation of the motor with time. An acquisition unit, a feature amount calculation unit that calculates a feature amount for each of the predetermined operations from the output value obtained by the acquisition unit, and a distribution index that is an index indicating a width of the distribution of the feature amount in a first predetermined period. A distribution index calculation unit for calculating; and an abnormality detection unit for detecting an abnormality of the movable device by comparing the distribution index with a threshold.
 本発明の一側面に係る情報処理方法は、モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置の情報処理方法であって、前記モータの回転に伴う出力値を経時的に取得する取得ステップと、前記取得ステップにおいて取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算ステップと、第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算ステップと、前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する。 An information processing method according to one aspect of the present invention is an information processing method for an information processing apparatus that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and outputs an output value accompanying rotation of the motor over time. An acquiring step of acquiring, a feature amount calculating step of calculating a feature amount for each of the predetermined operations from the output value obtained in the acquiring step, and a distribution which is an index indicating a width of a distribution of the feature amount in a first predetermined period. A distribution index calculating step of calculating an index; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the distribution index with a threshold.
 本開示の一態様によれば、モータが用いられている可動装置の異常を、安定して検出することができる。 According to an embodiment of the present disclosure, it is possible to stably detect an abnormality of a movable device using a motor.
実施形態1に係るPLCの機能ブロックの一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment. 実施形態1に係るPLCの適用場面の一例を模式的に表す図である。FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment. 実施形態1に係る可動装置が所定動作を行っている際のモータのトルク値の経時変化を表す図である。FIG. 4 is a diagram illustrating a temporal change of a torque value of a motor when the movable device according to the first embodiment performs a predetermined operation. 実施形態1に係る可動装置の所定動作毎のトルク値の平均値の経時変化を表す図である。FIG. 4 is a diagram illustrating a temporal change of an average value of torque values for each predetermined operation of the movable device according to the first embodiment. 実施形態1に係る、所定期間毎のトルク値の平均値のP‐Pの経時変化を表す図である。FIG. 4 is a diagram illustrating a temporal change in PP of an average value of torque values for each predetermined period according to the first embodiment. 実施形態1に係るPLCにおいて、閾値を演算する流れを表すフローチャートである。5 is a flowchart illustrating a flow of calculating a threshold value in the PLC according to the first embodiment. 実施形態1に係るPLCにおいて、可動装置の異常を検出する流れを表すフローチャートである。5 is a flowchart illustrating a flow of detecting an abnormality of a movable device in the PLC according to the first embodiment.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 §1 適用例
 図2を用いて、本発明が適用される場面の一例について説明する。図2は、実施形態1に係るPLC(programmable logic controller)50の適用場面の一例を模式的に表す図である。本実施形態に係るPLC50は、モータ30の回転によって所定動作をする可動機構(可動部13、ボールネジ12)を含む可動装置10の異常をリアルタイムで検出する、本発明の情報処理装置の一例である。
§1 Application Example An example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment. The PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
 可動システム1は、可動装置10と、モータ30と、モータ30の駆動を制御するドライバ40と、PLC50とを備えている。可動システム1は、例えば、製品の製造工場において用いられる生産設備である。可動装置10は、例えば、カップリング20を介して接続されているモータ30の回転が伝達されることによって、所定動作を行う装置である。可動装置10は、モータ30の回転が伝達されることで所定動作をする装置であればよく、例えば、製造工場において用いられる搬送装置等の各種装置であってもよいし、製造工場以外で用いられている各種のロボット等の装置であってもよい。 The movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50. The movable system 1 is, for example, a production facility used in a product manufacturing factory. The movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20. The movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
 PLC50は、モータ30の回転に伴う出力値を経時的に取得し、当該出力値に基づいて可動装置10の異常を検出する情報処理装置であればよく、当該情報処理装置としては、例えば、サーバ等であってもよい。例えば、PLC50は、所定動作におけるトルクの平均値の、所定期間における分散に基づいて、異常を検出する。 The PLC 50 may be any information processing device that acquires an output value associated with the rotation of the motor 30 over time and detects an abnormality of the movable device 10 based on the output value. As the information processing device, for example, a server And so on. For example, the PLC 50 detects an abnormality based on the variance of the average value of the torque in a predetermined operation in a predetermined period.
 §2 構成例
 図2を用いて、実施形態1に係る可動システム1の構成例について説明する。可動装置10は、例えば、リニアガイドを有するベース11と、ボールネジ12と、可動部13とを備えている。ボールネジ12は、ベース11の長軸方向に平行となるようにベース11に搭載されている。可動部13は、ボールネジ12に搭載されている。ボールネジ12の一方の端部は、カップリングを介してモータ30の出力軸と接続されている。
§2 Configuration Example A configuration example of the movable system 1 according to the first embodiment will be described with reference to FIG. The movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13. The ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11. The movable section 13 is mounted on the ball screw 12. One end of the ball screw 12 is connected to an output shaft of the motor 30 via a coupling.
 モータ30の出力軸の回転(単に、モータ30の回転と称する)によってボールネジ12が回転する。そして、可動部13は、ボールネジ12の回転に伴い、ボールネジ12上であって、矢印A1に示すように、ボールネジ12に沿って動作する(すなわち移動する)。 (4) The rotation of the output shaft of the motor 30 (simply called the rotation of the motor 30) causes the ball screw 12 to rotate. Then, as the ball screw 12 rotates, the movable portion 13 moves (ie, moves) on the ball screw 12 and along the ball screw 12 as indicated by an arrow A1.
 可動装置10は、例えば、可動部13が、ボールネジ12の一方の端部(モータ30に近い側の端部)近傍から、他方の端部(モータ30から遠い側の端部)近傍方向(往路方向)へ1サイクルの動作として移動したり、逆に、可動部13が、ボールネジ12の他方の端部近傍から、一方の端部近傍方向(復路方向)へ1サイクルの動作として移動したりする。この可動装置10における所定動作とは、前記1サイクルの動作であってもよいし、前記1サイクルの動作を複数回含む複数サイクルの動作であってもよい。 In the movable device 10, for example, the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path). The movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation. . The predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
 モータ30はエンコーダを備えていてもよい。モータ30は、エンコーダを備える場合(すなわちモータ30にエンコーダが内蔵されている場合)、例えば、モータ30が備えるエンコーダは、回転方向及び回転角度を示す情報をパルス信号としてドライバ40へ経時的に出力する。 The motor 30 may include an encoder. When the motor 30 includes an encoder (that is, when the motor 30 includes the encoder), for example, the encoder included in the motor 30 outputs information indicating the rotation direction and the rotation angle to the driver 40 over time as a pulse signal. I do.
 または、エンコーダは、モータ30とは別に設けられた外付けであってもよい。エンコーダがモータ30とは別に設けられている場合、例えば、当該エンコーダは、ボールネジ12の他方の端部(モータ30から遠い側の端部)にカップリングを介して取り付けられる。そして、当該エンコーダは、ボールネジ12の回転方向及び回転角度を示す情報をパルス信号としてPLC50へ経時的に出力する。 Alternatively, the encoder may be externally provided separately from the motor 30. When the encoder is provided separately from the motor 30, for example, the encoder is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 over time as a pulse signal.
 なお、モータ30に内蔵されているエンコーダ又はモータ30とは別に設けられた外付けのエンコーダは、回転部分と、当該回転部分の回転方向及び回転角度をセンシングするセンシング部分と、が接触している接触式のエンコーダであってもよいし、回転部分とセンシング部分とが非接触である非接触式のエンコーダであってもよい。 An encoder built in the motor 30 or an external encoder provided separately from the motor 30 is in contact with the rotating portion and a sensing portion that senses the rotation direction and the rotation angle of the rotating portion. It may be a contact type encoder or a non-contact type encoder in which a rotating part and a sensing part are not in contact with each other.
 例えば、ドライバ40は、PLC50からの指示に基づいて、モータ30の単位時間あたりの回転数が所定の値になるように、適切な値の電流及び電圧をモータ30に出力する。これにより、ドライバ40は、モータ30の回転を制御する。例えば、ドライバ40は、モータ30へ出力した電流及び電圧それぞれの電流値及び電圧値に基づいて、モータ30の回転に伴う出力値であるトルク値を経時的に演算し、逐次、PLC50へ出力する。 For example, the driver 40 outputs appropriate values of current and voltage to the motor 30 based on an instruction from the PLC 50 so that the number of rotations of the motor 30 per unit time becomes a predetermined value. Thus, the driver 40 controls the rotation of the motor 30. For example, the driver 40 calculates a torque value, which is an output value associated with the rotation of the motor 30, with time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50. .
 または、ドライバ40は、モータ30にエンコーダが内蔵されている場合は、モータ30から取得するパルス信号に基づいて、モータ30の回転に伴う出力値である角速度値を経時的に演算して、逐次、PLC50へ出力してもよい。 Alternatively, when an encoder is built in the motor 30, the driver 40 sequentially calculates an angular velocity value, which is an output value accompanying rotation of the motor 30, based on a pulse signal acquired from the motor 30, and sequentially , PLC50.
 なお、例えば、可動部13に加速度センサを取り付けておき、モータ30の回転に伴って移動する可動部13の加速度データを加速度センサが経時的に取得し、当該加速度センサが、加速度値を示す加速度データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。上述したような、トルク値、角速度値、及び加速度値は、あくまで、モータ30の回転に伴う出力値の一例であり、モータ30の回転に伴う出力値は、モータ30の回転に伴って得られる値であればよい。 In addition, for example, an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value. The data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30. The torque value, the angular velocity value, and the acceleration value as described above are merely examples of the output value associated with the rotation of the motor 30. The output value associated with the rotation of the motor 30 is obtained with the rotation of the motor 30. Any value is acceptable.
 図1は、実施形態1に係るPLC50の機能ブロックの一例を示す図である。PLC50は、取得部51と、閾値演算部52と、記憶部53と、特徴量演算部54と、分布指標演算部55と、異常検出部56とを備えている。以下、PLC50が備える各部について説明する。 FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment. The PLC 50 includes an acquisition unit 51, a threshold calculation unit 52, a storage unit 53, a feature calculation unit 54, a distribution index calculation unit 55, and an abnormality detection unit 56. Hereinafter, each unit included in the PLC 50 will be described.
 図3は、実施形態1に係る可動装置10が所定動作を行っている際のモータ30のトルク値の経時変化を表す図である。 FIG. 3 is a diagram illustrating a temporal change in the torque value of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation.
 取得部51は、図3の系列1に示すように、例えば、ドライバ40から、モータ30の回転に伴う出力値として、トルク値を経時的に取得する。また、図3では、系列2に示すように、取得部51は、ドライバ40からモータ30の回転方向を示す情報も経時的に取得している例を表している。系列2における、+1の期間(期間B1・B3)は、ドライバ40がモータ30を、時計回り方向に回転することを指示している期間である。モータ30が時計回り方向に回転することで、可動部13が往路方向へ移動する。-1の期間(期間B2・B4)は、ドライバ40がモータ30を反時計回り方向に回転することを指示している期間である。モータ30が反時計回り方向に回転することで可動部13が復路方向へ移動する。0の期間は、ドライバ40のモータ30への回転指示が停止することで、可動部13が停止しようとしている期間(すなわち、モータ30のトルク値が減少している期間)又は停止している期間を表している。すなわち、期間B1、期間B2、期間B3、期間B4・・・は、それぞれ、可動装置10における1サイクルの動作期間である。なお、本実施形態では、可動装置10の所定動作とは、1サイクルの動作であるものとして説明するが、複数サイクルの動作であってもよい。 The acquisition unit 51 acquires a torque value over time as an output value accompanying the rotation of the motor 30 from the driver 40, for example, as shown in a series 1 in FIG. FIG. 3 illustrates an example in which the acquisition unit 51 also acquires information indicating the rotation direction of the motor 30 from the driver 40 with time, as shown in the series 2. The +1 period (periods B1 and B3) in the series 2 is a period during which the driver 40 instructs the motor 30 to rotate clockwise. When the motor 30 rotates clockwise, the movable section 13 moves in the forward direction. The period -1 (periods B2 and B4) is a period during which the driver 40 instructs the motor 30 to rotate in the counterclockwise direction. As the motor 30 rotates counterclockwise, the movable portion 13 moves in the backward direction. The period of 0 is a period during which the rotation instruction of the driver 40 to the motor 30 is stopped, and a period during which the movable unit 13 is about to stop (that is, a period during which the torque value of the motor 30 is decreasing) or a period during which it is stopped Is represented. That is, each of the period B1, the period B2, the period B3, the period B4,... Is an operation period of one cycle in the movable device 10. In the present embodiment, the predetermined operation of the movable device 10 is described as one cycle of operation, but may be a plurality of cycles of operation.
 なお、取得部51は、モータ30の回転に伴う出力値として、モータ30の角速度値をドライバ40から経時的に取得してもよい。また、例えば、加速度センサが可動部13に取り付けられている場合は、取得部51は、モータ30の回転に伴う出力値として、加速度値を示す加速度データを加速度センサから取得してもよい。 The acquisition unit 51 may acquire the angular velocity value of the motor 30 from the driver 40 over time as an output value associated with the rotation of the motor 30. Further, for example, when the acceleration sensor is attached to the movable unit 13, the acquisition unit 51 may acquire acceleration data indicating an acceleration value from the acceleration sensor as an output value accompanying rotation of the motor 30.
 閾値演算部52は、モータ30の出力値から異常検出部56が可動装置10の異常を検出する判断基準となる閾値を演算して記憶部53に記憶する。閾値演算部52は、固定された期間である第2所定期間において取得部51が取得した出力値から、閾値を演算する。第2所定期間は、特許文献1に記載の第2の電力分散値のような異常の検出処理の進捗に伴って移動する期間ではなく、モータ30の出力値から異常検出部56が可動装置10の異常を検出する処理の進捗とは関係なく固定された期間である。例えば、第2所定期間は、PLC50を起動させた直後の期間、一日の中で予め設定された時刻からの所定期間等としてもよい。また、第2所定期間は、過去に、モータ30の出力値から可動装置10の異常がPLC50によって検出されなかった期間であることが好ましい。 The threshold calculating unit 52 calculates a threshold from the output value of the motor 30 as a criterion for the abnormality detecting unit 56 to detect abnormality of the movable device 10 and stores the threshold in the storage unit 53. The threshold calculator 52 calculates a threshold from the output value obtained by the obtaining unit 51 in a second predetermined period that is a fixed period. The second predetermined period is not a period in which the abnormality detection unit 56 moves according to the progress of the abnormality detection processing such as the second power dispersion value described in Patent Literature 1, but the abnormality detection unit 56 uses the movable device 10 based on the output value of the motor 30. This is a fixed period irrespective of the progress of the process of detecting the abnormality of the image. For example, the second predetermined period may be a period immediately after activating the PLC 50, a predetermined period from a preset time in a day, or the like. The second predetermined period is preferably a period in which no abnormality of the movable device 10 has been detected by the PLC 50 from the output value of the motor 30 in the past.
 このように、閾値演算部52が自動で閾値を演算して設定するため、ユーザが閾値を入力する場合と比べて、ユーザの作業効率を上げることができる。また、閾値演算部52は、実際のモータ30の回転に伴う出力値から閾値を演算しているため、モータ30の動作状況に即した閾値を設定することができる。これによると、可動装置10の異常の検出精度を向上させることができる。なお、閾値は、ユーザがPLC50に直接入力するようにしてもよい。閾値演算部52が閾値を演算する具体的な処理の一例は、図6を用いて後述する。 閾 値 Since the threshold value calculation unit 52 automatically calculates and sets the threshold value, the work efficiency of the user can be increased as compared with the case where the user inputs the threshold value. Further, since the threshold value calculation unit 52 calculates the threshold value from the output value associated with the actual rotation of the motor 30, the threshold value calculation unit 52 can set the threshold value according to the operation state of the motor 30. According to this, the detection accuracy of the abnormality of the movable device 10 can be improved. The threshold value may be directly input to the PLC 50 by the user. An example of a specific process in which the threshold calculator 52 calculates the threshold will be described later with reference to FIG.
 図4は、実施形態1に係る可動装置10の所定動作毎のトルク値の平均値の経時変化を表す図である。 FIG. 4 is a diagram illustrating a temporal change in the average value of the torque value for each predetermined operation of the movable device 10 according to the first embodiment.
 特徴量演算部54は、取得部51が取得した出力値から、可動装置10の所定動作毎の特徴量を演算する。例えば、特徴量演算部54は、取得部51が取得したトルク値から、可動装置10の1サイクルの動作期間として図3に示した、期間B1、期間B2、期間B3、期間B4・・・毎の平均値を特徴量として演算する。図4に示す例では、期間B1、期間B2、期間B3、期間B4・・・毎のトルク値の平均値を経時的に横軸方向にプロットしたトルク値の平均値の経時変化の様子を表している。 The feature value calculation unit 54 calculates a feature value for each predetermined operation of the movable device 10 from the output value acquired by the acquisition unit 51. For example, based on the torque value acquired by the acquisition unit 51, the feature amount calculation unit 54 sets each of the periods B1, B2, B3, B4,... Shown in FIG. Is calculated as a feature value. In the example shown in FIG. 4, the average value of the torque values for each of the periods B1, B2, B3, B4,. ing.
 なお、特徴量演算部54が演算する特徴量は、平均値以外であってもよく、例えば、分散、中央値、最大値と最小値との差分等を挙げることができる。また、特徴量演算部54は、図3に示した期間B1、期間B2、期間B3、期間B4・・・毎ではなく、複数期間毎(例えば、期間B1+B2、期間B3+B4毎)に特徴量を演算してもよい。なお、上述したような、平均値、分散、中央値、最大値と最小値との差分等は、あくまで、特徴量演算部54が演算する特徴量の一例であり、特徴量演算部54が演算する特徴量は、モータ30の出力値から演算できる値であればよい。 The feature value calculated by the feature value calculation unit 54 may be other than the average value, and examples thereof include a variance, a median value, and a difference between the maximum value and the minimum value. Further, the feature amount calculation unit 54 calculates the feature amount not for each of the periods B1, B2, B3, B4,... Shown in FIG. 3 but for a plurality of periods (for example, for each of the periods B1 + B2, B3 + B4). May be. Note that the average value, the variance, the median value, the difference between the maximum value and the minimum value, and the like described above are merely examples of the feature amount calculated by the feature amount calculation unit 54, and the feature amount calculation unit 54 The characteristic value to be calculated may be any value that can be calculated from the output value of the motor 30.
 図5は、実施形態1に係る、所定期間毎のトルク値の平均値のP‐Pの経時変化を表す図である。 FIG. 5 is a diagram showing a temporal change in PP of the average value of the torque value for each predetermined period according to the first embodiment.
 分布指標演算部55は、特徴量演算部54が演算した特徴量から、第1所定期間毎における特徴量の分布の幅を示す指標である分布指標を演算する。例えば、分布指標演算部55は、特徴量演算部54が演算した平均値から、第1所定期間における平均値の分布の幅を示す最大値と最小値との差分(P‐P:Peak to Peak)を分布指標として演算する。図5に示す例では、図4において第1所定期間を表す平均値10個分の期間C1、期間C2、期間C3毎の平均値の最大値P1と最小値P2との差分を経時的に横軸方向にプロットした、最大値と最小値との差分(P‐P)の経時変化の様子を表している。 The distribution index calculation unit 55 calculates a distribution index, which is an index indicating the width of the distribution of the feature amount in each first predetermined period, from the feature amount calculated by the feature amount calculation unit 54. For example, the distribution index calculator 55 calculates a difference (PP: PeakPto Peak) between the average calculated by the feature calculator 54 and the maximum value and the minimum value indicating the width of the distribution of the average in the first predetermined period. ) Is calculated as a distribution index. In the example shown in FIG. 5, the difference between the maximum value P1 and the minimum value P2 of the average value for each of the average values C10, C2, and C3 representing the first predetermined period in FIG. The state of the temporal change of the difference (PP) between the maximum value and the minimum value plotted in the axial direction is shown.
 なお、第1所定期間は任意に設定可能である。例えば、期間C1、期間C2、期間C3は、少なくとも一部の期間が重複していてもよいし、期間C1、期間C2、期間C3が連続していない期間(すなわち、期間C1と期間C2とが離れた期間、期間C2と期間C3とが離れた期間)等であってもよい。 The first predetermined period can be set arbitrarily. For example, at least some of the periods C1, C2, and C3 may overlap, or a period in which the periods C1, C2, and C3 are not continuous (that is, the periods C1 and C2 are (A separated period, a period in which the period C2 and the period C3 are separated), and the like.
 このように、分布指標として、第1所定期間における平均値の最大値と最小値との差分を演算する場合、分布指標演算部55は、第1所定期間における平均値の最大値と最小値とをメモリしておけばよい。このため、分布指標として分散を演算する場合と比べて、演算に要するメモリ領域を減らすことができ、この結果、演算に要する負荷を低減することができる。 As described above, when calculating the difference between the maximum value and the minimum value of the average value in the first predetermined period as the distribution index, the distribution index calculation unit 55 calculates the difference between the maximum value and the minimum value of the average value in the first predetermined period. Should be stored in memory. Therefore, as compared with the case where the variance is calculated as the distribution index, the memory area required for the calculation can be reduced, and as a result, the load required for the calculation can be reduced.
 なお、分布指標演算部55が演算する分布指標は、最大値と最小値との差分以外であってもよく、例えば、分散、正規分布の歪度等であってもよい。これによっても、安定してモータ30の出力値から可動装置10の異常を検出することができる。上述したような、最大値と最小値との差分、分散、正規分布の歪度等は、あくまで、分布指標演算部55が演算する分布指標の一例であり、分布指標演算部55が演算する分布指標は、特徴量の分布の幅を示す指標であればよい。 The distribution index calculated by the distribution index calculation unit 55 may be other than the difference between the maximum value and the minimum value, and may be, for example, variance, skewness of a normal distribution, or the like. In this way, it is also possible to stably detect the abnormality of the movable device 10 from the output value of the motor 30. The difference between the maximum value and the minimum value, the variance, the skewness of the normal distribution, and the like described above are merely examples of the distribution index calculated by the distribution index calculation unit 55, and the distribution calculated by the distribution index calculation unit 55. The index may be any index that indicates the width of the distribution of the feature amount.
 異常検出部56は、記憶部53に記憶されている閾値T1(例えば0.46)を参照し、この閾値T1と、分布指標演算部55が経時的に演算していく特徴量(ここでは、最大値と最小値との差分)と逐次比較していき、当該特徴量が閾値T1を越えると、リアルタイムで可動装置10に異常が発生したことを検出する。 The abnormality detection unit 56 refers to the threshold value T1 (for example, 0.46) stored in the storage unit 53, and refers to the threshold value T1 and the feature amount (here, (The difference between the maximum value and the minimum value), and when the feature amount exceeds the threshold value T1, it is detected in real time that an abnormality has occurred in the movable device 10.
 異常検出部56は、特徴量が閾値T1以上となった(すなわち、可動装置10に異常が発生した)ことを検出すると、その旨をユーザに通知する処理を行う。このユーザに通知する処理とは、ユーザに通知するための種々の方法を含む。このユーザに通知する処理の例としては、可動システム1がディスプレイを備える場合は、ユーザに通知する画面をディスプレイに表示させたり、可動システム1がスピーカを備える場合は、ユーザに通知する音声をスピーカに出力させたりする処理を挙げることができる。または、このユーザに通知する処理として、例えば、ユーザが指定するアドレスにメールを送信することでユーザに通知したり、可動システム1がランプを備える場合は、当該ランプを点灯又は点滅させたりする処理等を挙げることもできる。 (4) When detecting that the feature amount has become equal to or larger than the threshold value T1 (that is, an abnormality has occurred in the movable device 10), the abnormality detection unit 56 performs a process of notifying the user of the fact. The process of notifying the user includes various methods for notifying the user. Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker. For example, to output the data to Alternatively, as a process of notifying the user, for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
 異常検出部56は、特徴量が閾値T1以上となったことを検出すると、その旨をユーザに通知する処理、及び/又は、ドライバ40に対し、モータ30の回転を停止する処理を実行してもよい。これにより、可動装置10に異常が発生したとき、可動装置10が破壊してしまうことを防止することができる。 When detecting that the characteristic amount has become equal to or greater than the threshold value T1, the abnormality detection unit 56 executes a process of notifying the user of the fact and / or a process of stopping the rotation of the motor 30 for the driver 40. Is also good. Thus, when an abnormality occurs in the movable device 10, the movable device 10 can be prevented from being broken.
 ここで、モータのトルク値等の出力値は、温度等の外乱によって変化しやすい。このため、モータのトルク値等の出力値と閾値とを比較するだけでは、可動装置の故障の前兆を捉えにくい。 出力 Here, the output value such as the torque value of the motor tends to change due to disturbance such as temperature. For this reason, it is difficult to detect a sign of failure of the movable device only by comparing the output value such as the torque value of the motor with the threshold value.
 そこで、PLC50によると、第1所定期間毎における特徴量(例えば平均値)の分布の幅を示す指標である分布指標(例えば平均値の最大値と最小値との差分(P‐P))自体を異常検出部56が閾値と逐次比較していくことで、可動装置10の異常をリアルタイムで検出する。このため、モータ30に温度などの外乱が加わっても、安定して可動装置10の異常を検出することができる。加えて、特許文献1とは異なり、可動装置10の動作に伴う摩耗又は振動による緩み等の種々の原因によって、徐々に可動装置10が故障していったとしても、可動装置10の異常を検出することができる。これにより、可動装置10の異常を安定して検出することができる。 Therefore, according to the PLC 50, the distribution index (for example, the difference (PP) between the maximum value and the minimum value of the average value) itself, which is an index indicating the width of the distribution of the feature amount (for example, the average value) in each first predetermined period, itself. Is successively compared with the threshold by the abnormality detection unit 56, thereby detecting an abnormality of the movable device 10 in real time. Therefore, even if disturbance such as temperature is applied to the motor 30, an abnormality of the movable device 10 can be detected stably. In addition, unlike Patent Document 1, even if the movable device 10 gradually breaks down due to various causes such as wear due to the operation of the movable device 10 or looseness due to vibration, the abnormality of the movable device 10 is detected. can do. Thereby, the abnormality of the movable device 10 can be stably detected.
 図6は、実施形態1に係るPLC50において、閾値T1を演算する流れを表すフローチャートである。閾値T1の演算は閾値演算部52が行う。閾値演算部52は、特徴量演算部54、分布指標演算部55及び異常検出部56がそれぞれの処理を行う前に、予め、閾値T1を演算して記憶部53に記憶しておく。なお、図6に示すフローチャートは、閾値演算部52が閾値T1を演算する流れの一例である。閾値演算部52は他の方法によって閾値T1を演算してもよい。 FIG. 6 is a flowchart illustrating a flow of calculating the threshold T1 in the PLC 50 according to the first embodiment. The threshold value T1 is calculated by the threshold value calculation unit 52. The threshold calculator 52 calculates the threshold T1 and stores the threshold T1 in the storage 53 in advance before the feature calculator 54, the distribution index calculator 55, and the abnormality detector 56 perform their respective processes. Note that the flowchart illustrated in FIG. 6 is an example of a flow in which the threshold value calculation unit 52 calculates the threshold value T1. The threshold calculator 52 may calculate the threshold T1 by another method.
 取得部51は、第2所定期間において、ドライバ40からトルク値を経時的に取得する(ステップS1)。次いで、閾値演算部52は、取得部51が取得した第2所定期間におけるトルク値の平均値を演算し(ステップS2)、さらに、取得部51が取得した第2所定期間におけるトルク値の標準偏差を演算する(ステップS3)。そして、閾値演算部52は、ステップS3において演算した標準偏差を3倍してから、ステップS2において演算した平均値を加えることで閾値T1を演算する(ステップS4)。閾値演算部52は、ステップS4にて得られた閾値T1を記憶部53に記憶する。 The acquisition unit 51 acquires the torque value over time in the second predetermined period from the driver 40 (Step S1). Next, the threshold calculator 52 calculates the average value of the torque values in the second predetermined period obtained by the obtaining unit 51 (step S2), and further, the standard deviation of the torque values in the second predetermined period obtained by the obtaining unit 51. Is calculated (step S3). Then, the threshold value calculation unit 52 calculates the threshold value T1 by multiplying the standard deviation calculated in step S3 by three and adding the average value calculated in step S2 (step S4). The threshold value calculation unit 52 stores the threshold value T1 obtained in step S4 in the storage unit 53.
 図7は、実施形態1に係るPLC50において、可動装置10の異常を検出する流れを表すフローチャートである。取得部51は、ドライバ40からトルク値を経時的に取得する(ステップS11)。次いで、特徴量演算部54は、取得部51が取得したトルク値から、可動装置10の所定動作毎の平均値を経時的に演算する(ステップS12)。そして、分布指標演算部55は、特徴量演算部54が演算した平均値から、第1所定期間毎における平均値の最大値と最小値との差分(P‐P)を経時的に演算する(ステップS13)。次いで、異常検出部56は、分布指標演算部55が演算した平均値の最大値と最小値との差分(P‐P)を、記憶部53に記憶された閾値T1と逐次比較していくことで、平均値の最大値と最小値との差分(P‐P)が閾値T1以上となるか否かを判定する(ステップS14)。 FIG. 7 is a flowchart illustrating a flow of detecting an abnormality of the movable device 10 in the PLC 50 according to the first embodiment. The obtaining unit 51 obtains a torque value over time from the driver 40 (Step S11). Next, the characteristic amount calculating unit 54 calculates an average value for each predetermined operation of the movable device 10 with time from the torque value acquired by the acquiring unit 51 (Step S12). Then, the distribution index calculation unit 55 calculates a difference (PP) between the maximum value and the minimum value of the average value for each first predetermined period with time from the average value calculated by the feature value calculation unit 54 ( Step S13). Next, the abnormality detection unit 56 successively compares the difference (PP) between the maximum value and the minimum value of the average value calculated by the distribution index calculation unit 55 with the threshold value T1 stored in the storage unit 53. Then, it is determined whether or not the difference (PP) between the maximum value and the minimum value of the average value is equal to or larger than the threshold value T1 (step S14).
 ステップS14において、異常検出部56は、平均値の最大値と最小値との差分(P‐P)が閾値T1以上となったと判定すると(ステップS14におけるYES)、ユーザへの通知処理を行う(ステップS15)。 In step S14, when the abnormality detection unit 56 determines that the difference (PP) between the maximum value and the minimum value of the average value is equal to or larger than the threshold value T1 (YES in step S14), the abnormality detection unit 56 performs a notification process to the user (step S14). Step S15).
 〔ソフトウェアによる実現例〕
 PLC50の制御ブロック(特に、閾値演算部52、特徴量演算部54、分布指標演算部55、異常検出部56)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks of the PLC 50 (in particular, the threshold value calculation unit 52, the feature value calculation unit 54, the distribution index calculation unit 55, and the abnormality detection unit 56) are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. Or may be realized by software.
 後者の場合、PLC50は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function. This computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program. As the processor, for example, a CPU (Central Processing Unit) can be used. Examples of the recording medium include “temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above-described program is embodied by electronic transmission.
 (付記事項)
 本発明の一側面に係る情報処理装置は、モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置であって、前記モータの回転に伴う出力値を経時的に取得する取得部と、前記取得部が取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算部と、第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算部と、前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている。
(Appendix)
An information processing device according to one aspect of the present invention is an information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and acquires an output value associated with rotation of the motor with time. And a feature value calculation unit that calculates a feature value for each of the predetermined operations from the output value obtained by the obtaining unit, and calculates a distribution index that is an index indicating a width of the distribution of the feature value in a first predetermined period. A distribution index calculation unit; and an abnormality detection unit that detects an abnormality of the movable device by comparing the distribution index with a threshold.
 上記構成によると、所定期間毎に、前記特徴量の分布の幅を示す指標である分布指標自体を閾値と比較することで、前記可動装置の異常を検出する。このため、特許文献1とは異なり、徐々に可動装置が故障していったとしても、当該可動装置の異常を検出することができる。これにより、可動装置の異常を安定して検出することができる。 According to the above configuration, the abnormality of the movable device is detected by comparing the distribution index itself, which is an index indicating the width of the distribution of the feature amount, with the threshold value at predetermined time intervals. Therefore, unlike Patent Document 1, even if the movable device gradually breaks down, it is possible to detect the abnormality of the movable device. This makes it possible to stably detect an abnormality in the movable device.
 上記一側面に係る情報処理装置において、固定された期間である第2所定期間において前記取得部が取得した出力値から、前記閾値を演算する閾値演算部を備えていてもよい。前記構成によると、前記情報処理装置が自動で前記閾値を演算するため、ユーザが閾値を入力する場合と比べて、ユーザの作業効率を上げることができる。 The information processing apparatus according to the above aspect may further include a threshold value calculation unit that calculates the threshold value from an output value obtained by the obtaining unit in a second predetermined period that is a fixed period. According to the configuration, since the information processing apparatus automatically calculates the threshold, the work efficiency of the user can be improved as compared with a case where the user inputs the threshold.
 上記一側面に係る情報処理装置において、前記分布指標は、前記第1所定期間内における、前記特徴量の最大値と最小値との差分であってもよい。前記構成によると、前記特徴量の分散を用いて前記可動装置の異常を検出する場合と比べて、演算に要する負荷を低減することができる。 In the information processing apparatus according to the one aspect, the distribution index may be a difference between a maximum value and a minimum value of the feature amount within the first predetermined period. According to the configuration, it is possible to reduce the load required for the calculation as compared with the case where the abnormality of the movable device is detected using the variance of the feature amount.
 上記一側面に係る情報処理装置において、前記分布指標は、前記第1所定期間内における、前記特徴量の分散又は正規分布の歪度であってもよい。前記構成によっても、前記可動装置の異常を安定して検出することができる。 In the information processing apparatus according to the one aspect, the distribution index may be a variance of the feature amount or a skewness of a normal distribution within the first predetermined period. According to the configuration, the abnormality of the movable device can be stably detected.
 上記一側面に係る情報処理装置において、前記出力値は、当該モータのトルク値であり、前記特徴量は、前記トルク値の平均値であってもよい。 In the information processing apparatus according to the one aspect, the output value may be a torque value of the motor, and the feature amount may be an average value of the torque values.
 上記一側面に係る情報処理装置において、前記閾値演算部は、前記第2所定期間における前記出力値の平均値と標準偏差とを演算し、前記平均値と標準偏差との積から前記閾値を演算してもよい。 In the information processing apparatus according to the one aspect, the threshold value calculation unit calculates an average value and a standard deviation of the output values during the second predetermined period, and calculates the threshold value from a product of the average value and the standard deviation. May be.
 上記一側面に係る情報処理装置において、前記異常検出部は、前記可動装置の異常を検出すると、前記モータの回転を停止する処理を実行してもよい。これにより、前記可動装置が破壊されてしまうことを防止することができる。 In the information processing apparatus according to the one aspect, the abnormality detection unit may execute a process of stopping the rotation of the motor when detecting an abnormality of the movable device. Thereby, it is possible to prevent the movable device from being destroyed.
 本発明の一側面に係る情報処理方法は、モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置の情報処理方法であって、前記モータの回転に伴う出力値を経時的に取得する取得ステップと、前記取得ステップにおいて取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算ステップと、第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算ステップと、前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する。 An information processing method according to one aspect of the present invention is an information processing method for an information processing apparatus that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor, and outputs an output value accompanying rotation of the motor over time. An acquiring step of acquiring, a feature amount calculating step of calculating a feature amount for each of the predetermined operations from the output value obtained in the acquiring step, and a distribution which is an index indicating a width of a distribution of the feature amount in a first predetermined period. A distribution index calculating step of calculating an index; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the distribution index with a threshold.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
  1 可動システム
 10 可動装置
 11 ベース
 12 ボールネジ
 13 可動部
 20 カップリング
 30 モータ
 40 ドライバ
 50 PLC(情報処理装置)
 51 取得部
 52 閾値演算部
 53 記憶部
 54 特徴量演算部
 55 分布指標演算部
 56 異常検出部
 T1 閾値
DESCRIPTION OF SYMBOLS 1 Movable system 10 Movable device 11 Base 12 Ball screw 13 Movable part 20 Coupling 30 Motor 40 Driver 50 PLC (information processing device)
Reference Signs List 51 acquisition unit 52 threshold value calculation unit 53 storage unit 54 feature value calculation unit 55 distribution index calculation unit 56 abnormality detection unit T1 threshold value

Claims (8)

  1.  モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置であって、
     前記モータの回転に伴う出力値を経時的に取得する取得部と、
     前記取得部が取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算部と、
     第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算部と、
     前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている情報処理装置。
    An information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor,
    An acquisition unit that acquires an output value accompanying the rotation of the motor over time,
    From the output value obtained by the obtaining unit, a feature amount calculating unit that calculates a feature amount for each of the predetermined operations,
    A distribution index calculation unit that calculates a distribution index that is an index indicating a width of the distribution of the feature amount in a first predetermined period;
    An information processing apparatus comprising: an abnormality detection unit that detects an abnormality of the movable device by comparing the distribution index with a threshold.
  2.  固定された期間である第2所定期間において前記取得部が取得した出力値から、前記閾値を演算する閾値演算部を備えている請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising: a threshold calculation unit configured to calculate the threshold from an output value acquired by the acquisition unit in a second predetermined period that is a fixed period.
  3.  前記分布指標は、前記第1所定期間内における、前記特徴量の最大値と最小値との差分である請求項1又は2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the distribution index is a difference between a maximum value and a minimum value of the feature amount within the first predetermined period.
  4.  前記分布指標は、前記第1所定期間内における、前記特徴量の分散又は正規分布の歪度である請求項1又は2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the distribution index is a variance of the feature amount or a skewness of a normal distribution within the first predetermined period.
  5.  前記出力値は、当該モータのトルク値であり、
     前記特徴量は、前記トルク値の平均値である請求項1~4の何れか1項に記載の情報処理装置。
    The output value is a torque value of the motor,
    The information processing apparatus according to any one of claims 1 to 4, wherein the characteristic amount is an average value of the torque values.
  6.  前記閾値演算部は、前記第2所定期間における前記出力値の平均値と標準偏差とを演算し、前記平均値と標準偏差との積から前記閾値を演算する請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the threshold value calculation unit calculates an average value and a standard deviation of the output values in the second predetermined period, and calculates the threshold value from a product of the average value and the standard deviation. .
  7.  前記異常検出部は、前記可動装置の異常を検出すると、前記モータの回転を停止する処理を実行する請求項1~6の何れか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 6, wherein the abnormality detection unit executes a process of stopping rotation of the motor when detecting an abnormality of the movable device.
  8.  モータの回転によって所定動作をする可動装置の異常を検出する情報処理装置の情報処理方法であって、
     前記モータの回転に伴う出力値を経時的に取得する取得ステップと、
     前記取得ステップにおいて取得した出力値から、前記所定動作毎の特徴量を演算する特徴量演算ステップと、
     第1所定期間における前記特徴量の分布の幅を示す指標である分布指標を演算する分布指標演算ステップと、
     前記分布指標と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する情報処理方法。
    An information processing method of an information processing device that detects an abnormality of a movable device that performs a predetermined operation by rotation of a motor,
    An acquisition step of acquiring an output value accompanying the rotation of the motor over time,
    A feature value calculating step of calculating a feature value for each of the predetermined operations from the output value obtained in the obtaining step;
    A distribution index calculating step of calculating a distribution index that is an index indicating a width of the distribution of the feature amount in a first predetermined period;
    An abnormality detection step of detecting an abnormality of the movable device by comparing the distribution index with a threshold.
PCT/JP2019/031053 2018-08-31 2019-08-07 Information processing device and information processing method WO2020044993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163611 2018-08-31
JP2018163611A JP2020035372A (en) 2018-08-31 2018-08-31 Information processing apparatus and information processing method

Publications (1)

Publication Number Publication Date
WO2020044993A1 true WO2020044993A1 (en) 2020-03-05

Family

ID=69644839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031053 WO2020044993A1 (en) 2018-08-31 2019-08-07 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP2020035372A (en)
WO (1) WO2020044993A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116569120A (en) * 2020-12-18 2023-08-08 三菱电机株式会社 Information processing apparatus and information processing method
JP2023049535A (en) * 2021-09-29 2023-04-10 オムロン株式会社 control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096432A (en) * 1995-06-14 1997-01-10 Mitsubishi Electric Corp Abnormality detector for control system
JP2014178306A (en) * 2013-02-12 2014-09-25 Ricoh Co Ltd Image inspection device, image inspection system, and image inspection method
WO2017090098A1 (en) * 2015-11-25 2017-06-01 株式会社日立製作所 Facility management device and method
WO2018047804A1 (en) * 2016-09-08 2018-03-15 日本電気株式会社 Abnormality detecting device, abnormality detecting method, and recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187022A (en) * 2010-03-11 2011-09-22 Toshiba Corp Abnormality monitoring system
JP5726022B2 (en) * 2011-08-31 2015-05-27 株式会社マキタ Electric tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096432A (en) * 1995-06-14 1997-01-10 Mitsubishi Electric Corp Abnormality detector for control system
JP2014178306A (en) * 2013-02-12 2014-09-25 Ricoh Co Ltd Image inspection device, image inspection system, and image inspection method
WO2017090098A1 (en) * 2015-11-25 2017-06-01 株式会社日立製作所 Facility management device and method
WO2018047804A1 (en) * 2016-09-08 2018-03-15 日本電気株式会社 Abnormality detecting device, abnormality detecting method, and recording medium

Also Published As

Publication number Publication date
JP2020035372A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
EP3388906B1 (en) Motor control system, motor controller, and method for setting safety function
JP2008503811A (en) Intelligent drive
WO2020044993A1 (en) Information processing device and information processing method
US10105846B2 (en) Robot control system having stop function
JP2016179527A (en) Robot controller having function of diagnosing abnormality of robot
CN110174873B (en) Servo control device
US20180169814A1 (en) Abnormality determination device and abnormality determining method
JP7275008B2 (en) Diagnostic device, motor drive device and diagnostic method
JP2020015099A (en) Abnormality detection device of machine tool
JP2019000916A (en) Cable damage detection assistance apparatus and cable damage detection assistance method in robot mechanism
US9356550B2 (en) Motor controller having abnormality detection function of power transmission unit between motor and main shaft
US11194309B2 (en) Abnormality detection device of machine tool
JP4538730B2 (en) Motor control device
WO2020050236A1 (en) Information processing device and information processing method
US9753456B2 (en) Device for detecting decrease in rotational speed of cooling fan of machine tool
US10527676B2 (en) Abnormality diagnosing device and abnormality diagnosing method
US9178460B2 (en) Motor controller
JP6763286B2 (en) Motor control system
JP2016078211A (en) robot
KR101421997B1 (en) Embedded system and method for detecting fault thereof
KR101531340B1 (en) Servo motor control system
JP2015175239A (en) Monitoring device, monitoring method, and program
JPWO2018193649A1 (en) Motor controller
JP7192458B2 (en) Information processing device, information processing method and information processing program
WO2020050237A1 (en) Information processing device and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856262

Country of ref document: EP

Kind code of ref document: A1