WO2020050237A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2020050237A1
WO2020050237A1 PCT/JP2019/034519 JP2019034519W WO2020050237A1 WO 2020050237 A1 WO2020050237 A1 WO 2020050237A1 JP 2019034519 W JP2019034519 W JP 2019034519W WO 2020050237 A1 WO2020050237 A1 WO 2020050237A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
feature
motor
index
rotation
Prior art date
Application number
PCT/JP2019/034519
Other languages
French (fr)
Japanese (ja)
Inventor
仁 友定
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020050237A1 publication Critical patent/WO2020050237A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to an information processing device and an information processing method.
  • a device that monitors the operation of a movable device that performs a predetermined operation to detect the presence or absence of an abnormality in the movable device is used.
  • the presence or absence of an abnormality is determined for each index by independently comparing a plurality of indexes with a threshold value.
  • JP-A-2016-064710 Japanese Unexamined Patent Publication
  • An object of one embodiment of the present invention is to detect the presence or absence of an abnormality at an early stage.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • the information processing apparatus includes a first index and a first index associated with the rotation of the motor that causes the movable device to perform a predetermined operation when the driver rotates the motor based on the input instruction value.
  • An acquisition unit that acquires two indices over time, a first feature amount computation unit that computes a first feature amount that is a feature amount of the first index in a predetermined period acquired by the acquisition unit, and an acquisition unit that acquires the first index.
  • a second feature value calculation unit that calculates a second feature value of the second index, which is a feature value in the predetermined period, and a second feature value that defines a normal range of the second feature value and changes according to the first feature value.
  • a second threshold value and comparing the second feature value calculated by the second feature value calculation unit with the second threshold value to determine whether the second feature value is included in the normal range. It is provided with a judging unit for performing.
  • An information processing method provides a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value.
  • a first feature amount calculating step of calculating a first feature amount, which is a feature amount of the first index acquired in the acquiring step during a predetermined period, and an acquisition step of acquiring the first index acquired in the acquiring step.
  • the presence or absence of an abnormality can be detected at an early stage.
  • FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment.
  • FIG. 4 is a diagram illustrating a state of a normal range calculated by a normal range calculation unit in a coordinate space according to the first embodiment.
  • FIG. 4 is a diagram illustrating a temporal change of a motor torque when the movable device according to the first embodiment performs a predetermined operation.
  • FIG. 5 is a diagram illustrating a temporal change of a rotation speed of a motor when the movable device according to the first exemplary embodiment performs a predetermined operation.
  • FIG. 1 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment.
  • FIG. 4 is a diagram illustrating a state of a normal
  • FIG. 4 is a diagram illustrating a state of a change in a torque average value according to the first embodiment.
  • FIG. 6 is a diagram illustrating a state of a change in a speed difference average value according to the first embodiment.
  • FIG. 5 is a diagram illustrating a state where the first feature amount and the second feature amount are plotted in a coordinate space having the first feature amount and the second feature amount according to the first embodiment.
  • FIG. 3 is a diagram illustrating a flow of processing of the PLC according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment.
  • the PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
  • the movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50.
  • the movable system 1 is, for example, a production facility used in a product manufacturing factory.
  • the movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20.
  • the movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
  • the PLC 50 may be any information processing device that acquires a plurality of indices associated with the rotation of the motor 30 over time and detects an abnormality of the movable device 10 based on the plurality of indices.
  • the information processing device for example, , A server, or the like.
  • the index associated with the rotation of the motor 30 is an index related to each other, such as a control value (input value) for controlling the motor 30 and an output value (measured value) associated with the rotation of the motor 30. Then, the PLC 50 determines whether there is an abnormality in the movable device 10 based on the plurality of indices. Specific examples of the index will be described later.
  • the PLC 50 determines whether the coordinates indicated by the first index and the second index fall within a normal range on a two-dimensional plane having the first index as the horizontal axis and the second index as the vertical axis. Then, it is determined whether or not the movable device 10 is abnormal. Specific examples of the index will be described later.
  • the movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13.
  • the ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11.
  • the movable section 13 is mounted on the ball screw 12.
  • One end of the ball screw 12 is connected to an output shaft of a motor 30 via a coupling 20.
  • the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path).
  • the movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation.
  • the predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
  • the motor 30 includes the encoder 35.
  • the encoder 35 outputs information indicating the rotation direction and the rotation angle of the motor 30 to the driver 40 over time as a pulse signal.
  • the encoder 35 may be externally provided separately from the motor 30.
  • the encoder 35 is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder 35 outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 with time as a pulse signal.
  • the encoder 35 built in the motor 30 or an external encoder 35 provided separately from the motor 30 makes contact between the rotating part and a sensing part that senses the rotation direction and the rotation angle of the rotating part.
  • the driver 40 generates appropriate values of current and voltage based on the command value (target value) from the PLC 50 so that the number of revolutions of the motor 30 per unit time becomes the command value (target value). , And outputs the generated current and voltage to the motor 30.
  • the driver 40 controls the rotation of the motor 30.
  • the driver 40 calculates the torque value of the motor 30 over time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50.
  • the instruction value (target value) from the PLC 50 input to the driver 40, the current value and the voltage value output from the driver 40 to the motor 30, and the torque value calculated from the current value and the voltage value are determined by the rotation of the motor 30.
  • 7 is an example of a control value for controlling the motor 30 among the indices associated with.
  • the driver 40 changes the angular velocity value (in other words, the rotation speed of the motor 30) which is the output value (measured value) accompanying the rotation of the motor 30 with time based on the pulse signal acquired from the encoder 35 provided in the motor 30. And sequentially output to the PLC 50.
  • an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value.
  • the data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30.
  • a position sensor is attached to the movable unit 13, and the position sensor acquires the position data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the position sensor acquires the position data of the movable unit 13. May be sequentially output to the PLC 50 as an output value associated with the rotation of the motor 30.
  • a temperature sensor is attached to the motor 30, and the temperature sensor acquires temperature data of the motor 30 that rises with the rotation of the motor 30 over time, and the temperature sensor indicates a temperature indicating the temperature of the motor 30.
  • the data may be sequentially output to the PLC 50 via the PLC 50 or the driver 40 as an output value accompanying the rotation of the motor 30.
  • the rotation speed of the motor 30 calculated from the pulse signal output from the motor 30 to the driver 40, or the acceleration value, position, temperature, and the like obtained from a separately provided sensor are determined by the rotation of the motor 30.
  • 5 is an example of an output value (measured value) associated with the rotation of the motor 30 among indices associated with. Note that the output value (measured value) associated with the rotation of the motor 30 may be a value obtained by measuring with the rotation of the motor 30.
  • FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment.
  • the PLC 50 includes an instruction unit 51, a normal range calculation unit 52, a storage unit 53, an acquisition unit 54, a first feature value calculation unit 55a, a second feature value calculation unit 55b, and a determination unit 56. I have. Hereinafter, each unit included in the PLC 50 will be described.
  • FIG. 3 is a diagram illustrating a normal range calculated by the normal range calculation unit in the coordinate space according to the first embodiment.
  • the normal range calculation unit 52 calculates a normal range of the feature amount of each of the plurality of indexes to be evaluated in a coordinate space using the feature amounts of the plurality of indexes to be evaluated as coordinate axes, and stores the calculation result in the storage unit. 53.
  • the plurality of indexes to be evaluated by the PLC 50 are indexes associated with the rotation of the motor 30.
  • the plurality of indexes are indexes whose values change (degrade) at the same time as the motor 30 rotates.
  • the plurality of indices may be relevant indices such that the value of one index is changed (deteriorated) and the value of another index is also degraded.
  • control values input values for controlling the motor 30, output values (measurement values) associated with the rotation of the motor 30, and other related indices, and indices calculated from those indices. There may be.
  • the control value (input value) for controlling the motor 30 is, for example, an instruction value (target value) output from the PLC 50 to the driver 40, a current value and a voltage value generated based on the instruction value by the driver 40, and the current value. And a torque value calculated from the voltage value and the voltage value.
  • the output value (measured value) accompanying the rotation of the motor 30 is, for example, the rotation speed of the motor 30 at which the pulse signal output from the encoder 35 is calculated, or the acceleration value, position, and position obtained from a separately provided sensor. Temperature and the like can be mentioned.
  • the torque and the speed are indexes when the movable device 10 is moving, the abnormality of the movable device 10 is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device 10 can be detected at an early stage.
  • Indices calculated from these indices are, for example, an expected value for an instruction value output from the PLC 50 to the driver 40 set in advance, and the expected value and an output value (measurement value) associated with the rotation of the motor 30 are set.
  • Value) (which may be referred to as a turbulence component).
  • the storage unit 53 may create and store in advance a database representing the correspondence between the indicated value and the output value associated with the rotation of the motor 30 with respect to the indicated value.
  • a transfer function indicating the correspondence between the value and the output value associated with the rotation of the motor 30 with respect to the indicated value may be created and stored in advance.
  • the waveform of the predicted value corresponding to the waveform of the indicated value is a waveform that includes an expected deviation from the waveform of the indicated value.
  • the output value accompanying the rotation of the motor 30 has a waveform that follows the waveform of the indicated value, but does not become exactly the same as the waveform of the indicated value, and some deviation occurs.
  • the waveform of the predicted value is obtained immediately after the rising of the waveform of the indicated value (that is, immediately after the motor 30 starts rotating from a stopped state) and from the falling to the stop of the waveform of the indicated value (that is, from the deceleration state of the motor 30) Until the rotation stops), the deviation from the waveform of the indicated value increases.
  • the waveform of the expected value with respect to the waveform of the indicated value is grasped in advance, and if the waveform of the output value accompanying the rotation of the motor 30 follows the waveform of the expected value, the movable device 10 can move normally. In addition, when the deviation of the waveform of the output value due to the rotation of the motor 30 increases, it is possible to grasp that an abnormality has occurred in the movement of the movable device 10.
  • the characteristic amount of the index is the average value of the absolute value of the index in a predetermined period, the difference between the maximum value and the minimum value of the difference in a predetermined period, the variance of the difference in a predetermined period, the maximum value and the minimum value of the average in a predetermined period. This is a variation amount of the index in a predetermined period, such as a difference from the value.
  • the predetermined period may be a period of an integral multiple cycle (one or a plurality of cycles) of the movable device 10.
  • the first index is a torque value
  • the second index is a disturbance component of the rotation speed of the motor 30 (difference between a waveform of the rotation speed of the motor 30 and an ideal waveform).
  • the x-axis represents a difference between the average maximum value and the minimum value in a predetermined period, which is an example of the feature amount (first feature amount) of the first index (torque value).
  • the y-axis indicates an average value which is an example of a feature amount (second feature amount) of the second index (a disturbance component of the rotation speed of the motor 30).
  • the PLC 50 controls the speed of the movable device 10 (that is, the speed control of the rotation of the motor 30)
  • the factor that affects the production in the factory is the speed of the movable unit 13 in the movable device 10 (that is, the rotation of the motor 30).
  • Speed the rotation speed of the motor 30 is adjusted by the voltage and current (that is, torque) input to the motor 30 by the driver 40. That is, the driver 40 inputs the voltage and the current (that is, torque) to the motor 30 so that the rotation speed of the motor 30 becomes a desired speed. Therefore, for example, when an abnormality occurs in the movable device 10, the characteristic amount of the voltage and current (that is, torque) input to the motor 30 by the driver 40 before the characteristic amount of the rotation speed of the motor 30 appears. Is affected.
  • the torque value selected as the first index and the speed disturbance component selected as the second index are mutually related indexes. Then, by monitoring the characteristic amount of the rotation speed of the motor 30 and the characteristic amount of the torque that is the control value of the speed, the abnormality can be detected early.
  • the temperature and the torque value are mutually related indices.
  • the plurality of indices to be evaluated by the PLC 50 include a control value (input value) for controlling the motor 30, an output value (measured value) associated with the rotation of the motor 30, and those indices. Are selected in combination with the indices calculated from.
  • the normal range calculation unit 52 repeats data sampling for a plurality of indexes to be evaluated, calculates a normal range in the feature amount of each index, defines a threshold that defines the normal range, and sets the threshold to The information is stored in the storage unit 53.
  • the normal range calculation unit 52 illustrates an example in which a threshold (first threshold) T1 and a threshold (second threshold) T2 are defined in the xy coordinate space.
  • the threshold T1 is a threshold that defines a normal range that is a normal value without any problem.
  • the threshold value T2 is a threshold value that defines a range surrounding the outside of the threshold value T1, and defines a warning range to be noted before an abnormality occurs.
  • the range outside the threshold value T2 is an abnormal range indicating an abnormal value.
  • the threshold value T1 is defined by coordinates (T1x: T1y).
  • the threshold value T2 is defined by coordinates (T2x: T2y). Since the first index and the second index are indexes related to each other, for example, in the example illustrated in FIG. 3, the normal range has an elliptical shape. That is, the threshold values T1 and T2 in the y-axis direction vary depending on the value on the x-axis. Further, the threshold values T1 and T2 in the x-axis direction vary depending on the value of the y-axis.
  • the normal range calculation unit 52 calculates a normal range not in two axes (xy axes) but in a multidimensional coordinate space of three or more axes in accordance with the number of types of indices, and determines a threshold range in each axis direction. Stipulate.
  • the storage unit 53 stores the normal range calculated by the normal range calculation unit 52.
  • the coordinates (T1x: T1y) are stored as the threshold T1
  • the coordinates (T2x: T2y) are stored as the threshold T2.
  • the storage unit 53 may be provided outside the PLC 50 or may be externally connected to the PLC 50.
  • the instruction unit 51 outputs the instruction value to the driver 40.
  • the instruction value output from the instruction unit 51 to the driver 40 is a target value of an output value accompanying rotation of the motor 30.
  • the instruction value output from the instruction unit 51 to the driver 40 may be a target value of the torque associated with the rotation of the motor 30 or a target value of the speed (angular speed, rotation speed) associated with the rotation of the motor 30.
  • the target value may be a target value of the speed (moving speed) of the movable unit 13 associated with the rotation of the motor 30, or may be a target value of another value.
  • the driver 40 obtains the indicated value from the instructing section 51, generates a current and a voltage having values such that the torque of the motor 30 becomes the indicated value, and generates the generated current. Then, the motor 30 is rotated by the voltage. Thereby, the motor 30 rotates so that the torque becomes the indicated value.
  • the driver 40 obtains the instruction value from the instruction unit 51, and sets the current and the value of the value such that the rotating speed of the motor 30 becomes the instruction value. A voltage is generated, and the motor 30 is rotated by the generated current and voltage. Thereby, the motor 30 rotates so that the speed becomes the indicated value.
  • the driver 40 obtains the instruction value from the instruction unit 51, and outputs a current and a voltage of such values that the speed of the movable unit 13 becomes the instruction value. Then, the motor 30 is rotated by the generated current and voltage. As a result, the motor 30 rotates so that the speed of the movable unit 13 becomes the specified value.
  • the information processing apparatus is not a PLC but a server
  • a configuration in which the instruction unit 51 is omitted may be adopted.
  • FIG. 4 is a diagram illustrating a temporal change of the torque of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation.
  • FIG. 5 is a diagram illustrating a temporal change in the rotation speed of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation.
  • the acquisition unit 54 acquires a plurality of indices from the driver 40 or various sensors provided separately.
  • the acquisition unit 54 acquires the torque value from the driver 40 over time as the first index, and acquires the rotation speed value of the motor 30 from the driver 40 over time as the second index. I do.
  • the horizontal axis shown in FIGS. 4 and 5 represents the same time. That is, FIGS. 4 and 5 show the change over time of the torque value (FIG. 4) and the change over time of the speed value (FIG. 5) at the same time.
  • a period B1, a period B2, a period B3, and a period B4 shown in FIGS. 4 and 5 represent one cycle of the operation period of the movable device 10 at the same timing.
  • the acquisition unit 54 may acquire the instruction value from the instruction unit 51.
  • FIG. 6 is a diagram showing a state of a change in the average torque value according to the first embodiment.
  • the first feature value calculation unit 55a calculates a first feature value which is a feature value of the first index acquired by the acquisition unit 54 in a predetermined period.
  • the first feature amount calculating unit 55a features the average value of the torque values for each of the periods B1, B2, B3, and B4 shown in FIG. 4 from the torque values acquired by the acquiring unit 54. Calculate as a quantity.
  • the first feature value calculation unit 55a determines, as the first feature value, an average value, a variance, and a maximum value of the first index in a predetermined period (for example, each of the periods B1, B2, B3, B4,). , The average of the difference between the predicted value of the output value associated with the rotation of the motor and the measured value of the output value, and the predicted value of the output value associated with the rotation of the motor 30 and the measured value of the output value Any one of the variances of the difference may be calculated.
  • FIG. 7 is a diagram illustrating a state of a change in the average speed difference value according to the first embodiment.
  • the second feature value calculation unit 55b calculates a second feature value which is a feature value of the second index acquired by the acquisition unit 54 in a predetermined period.
  • the second feature amount calculating unit 55b calculates a speed difference (speed turbulence component) for each of the periods B1, B2, B3, and B4 shown in FIG. ) Is calculated as a feature value.
  • a temporal change in the average speed difference value in which the average speed difference value for each of the periods B1, B2, B3, B4,. .
  • the second feature value calculation unit 55b determines the average value, the variance, and the maximum value of the second index in a predetermined period (for example, each of the periods B1, B2, B3, B4,...) As the second feature amount. , The average of the difference between the predicted value of the output value associated with the rotation of the motor and the measured value of the output value, and the predicted value of the output value associated with the rotation of the motor 30 and the measured value of the output value Any one of the variances of the difference may be calculated.
  • FIG. 8 is a diagram illustrating a state where the first feature amount and the second feature amount are plotted in a coordinate space having the first feature amount and the second feature amount according to the first embodiment.
  • the determination unit 56 sets the average value of the torque (the first characteristic amount of the first index) on the x-axis and the average speed difference (the second characteristic amount of the second index) on the y-axis. Xy coordinates are created. Then, when the temporal change of the average value of the torque value from the first characteristic amount calculating unit 55a shown in FIG. 6 and the temporal change of the average speed difference value from the second characteristic amount calculating unit 55b shown in FIG. The average value of the torque and the average value of the speed difference at the same time are associated with each other and plotted on the xy coordinate space. That is, the determination unit 56 creates coordinate data (x: y) using the average value of the torque as the x coordinate and the average value of the speed difference as the y coordinate.
  • the determination unit 56 refers to the normal range stored in the storage unit 53, and calculates the first feature value (x value) calculated by the first feature value calculation unit 55a in the coordinate data plotted in the xy coordinate space.
  • a second threshold value (a value range of the y-coordinate of the threshold T1 and a value range of the y-coordinate of the threshold T2) that changes accordingly is acquired.
  • the value of y in the coordinate data is included in the second threshold value (the value range of the y coordinate of the threshold T1 and the value range of the y coordinate of the threshold T2), the value of y is within the normal range. Is determined.
  • the determination unit 56 warns the user if the y value of the coordinate data is outside the y coordinate value range of the threshold value T1 and is within the y coordinate value range of the threshold value T2. Perform notification processing.
  • the determination unit 56 determines that the value of y is an abnormal value, and notifies the user of the abnormality. Perform error notification processing.
  • the determination unit 56 determines a first threshold (a value range of the x coordinate of the threshold T1; a first threshold that changes according to the second feature amount (the value of y) of the coordinate data that has determined whether or not the y coordinate is normal; (The value range of the x coordinate of the threshold value T2). Then, if the value of x in the coordinate data is included in the first threshold (the value range of the x coordinate of the threshold T1 and the value of the x coordinate of the threshold T2), the value of x is within the normal range. Is determined.
  • the determination unit 56 determines that the value of x is within the normal range if the value of x of the coordinate data is outside the value range of the x coordinate of the threshold T1 and within the value range of the x coordinate of the threshold T2. In order to warn the user, a warning notification process to the user is performed. When the value of x of the coordinate data is out of the range of the x coordinate of the threshold value T2, the determination unit 56 determines that the value of x is an abnormal value, and notifies the user of the abnormality. Perform error notification processing.
  • the torque of the torque according to the speed difference average value (second feature value) that is the feature value of the speed is obtained.
  • An accurate normal range of the average value (first feature amount) can be obtained as the first threshold.
  • the index to be evaluated may have a relationship that affects another index when one indicator changes, or the value changes at the same time even if it does not have the relationship (deterioration). ) May be used.
  • the determination unit 56 When there are three or more types of indices to be evaluated, the determination unit 56 plots coordinate data in a three-dimensional or more multidimensional space corresponding to the type, and determines whether the coordinate data is within a normal range. Determine whether or not.
  • the determination unit 56 first determines whether the value of x is within the value range of the x coordinate of the threshold value T1 or is within the value range of the x coordinate value of the threshold value T2. Then, it may be determined whether the value of y is within the value range of the y-coordinate of the threshold T1 or whether it is within or outside the value range of the y-coordinate of the threshold T2. When the determination unit 56 determines that the previously determined value (for example, the value of y) of the coordinate data is out of the range of the threshold value T2 (warning range), the other value (for example, the value of x) May be performed without determining whether or not is within the value range of the coordinates of the threshold T1 and the threshold T2.
  • the process of notifying the user includes various methods for notifying the user.
  • Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker.
  • to output the data to Alternatively, as a process of notifying the user, for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
  • FIG. 9 is a diagram illustrating a processing flow of the PLC 50 according to the first embodiment.
  • the normal range calculation unit 52 calculates thresholds (thresholds T1 and T2) that define a normal range of each feature in a multidimensional coordinate space in which each feature of the index to be evaluated is used as a coordinate axis.
  • Step S10 the acquisition unit 54 acquires a first index such as a torque value and a second index such as a speed value from the driver 40 with time (step S11).
  • the first feature value calculation unit 55a calculates an average value (first feature value) which is a feature value of the first index such as the torque value acquired by the acquisition unit 54 in a predetermined period (step S12).
  • the first feature value calculation unit 55a outputs the calculated average value (first feature value) to the determination unit 56 over time.
  • the second feature value calculation unit 55b calculates a speed difference average value (second feature value) as a feature value of the second index such as the speed value acquired by the acquisition unit 54 in a predetermined period (step S13).
  • the second feature value calculation unit 55b outputs the calculated speed difference average value (second feature value) to the determination unit 56 over time.
  • the determination unit 56 creates a coordinate space in which the average value of the torque (first feature value) is set as the x coordinate and the average value of the speed difference (second feature value) is set as the y coordinate. Then, the determination unit 56 sets the average value (first feature amount) obtained from the first feature amount calculation unit 55a as the value of x, and obtains the speed difference obtained from the second feature amount calculation unit 55b at the same time as the average value. Coordinate data with the average value (second feature amount) as the value of y is created and plotted in the xy coordinate space.
  • the determination unit 56 refers to the normal range stored in the storage unit 53, and sets a threshold value of the y value (second feature amount) corresponding to the x value (the average value of torque) among the plotted coordinate data.
  • the value range of the y-coordinate of the threshold T1 and the value range of the y-coordinate of the threshold T2 are acquired (step S14).
  • the determination unit 56 refers to the normal range stored in the storage unit 53, and among the coordinate data plotted in the coordinate space, the value of x (first characteristic amount) corresponding to the value of y (average speed difference value) ) (The value range of the x coordinate of the threshold T1 and the value range of the x coordinate of the threshold T2) are acquired (step S15).
  • step S16 if both the value of x and the value of y are within the range of the threshold value T1 (YES in step S16), the determination unit 56 determines that the coordinate data is a value in the normal range. The process returns to step S11.
  • step S16 the determination unit 56 determines whether or not at least one of the value of x and y is in a range greater than the threshold T1 and equal to or less than the threshold T2 (step S17). Then, in step S17, when the determining unit 56 determines that at least one of the value of x and the value of y is in a range that is larger than the threshold value T1 and equal to or smaller than the threshold value T2 (YES in step S17), the coordinate data is set in the warning range. It is determined that it is included, and a warning notification process to the user is performed (step S18).
  • step S17 when at least one of the value x and the value y is larger than the threshold value T2 (NO in step S17), the determination unit 56 determines that the coordinate data is abnormal, and notifies the user of the abnormality. The process is performed (Step S19).
  • control blocks of the PLC 50 are integrated circuits (IC chips) and the like. It may be realized by a formed logic circuit (hardware) or by software.
  • the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium include "temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • An information processing apparatus includes a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value.
  • An acquisition unit that acquires the first index over time, a first feature quantity computation unit that computes a first feature quantity that is a feature quantity in a predetermined period of the first index acquired by the acquisition unit, and a second feature quantity that is acquired by the acquisition unit.
  • a second feature value calculation unit that calculates a second feature value of the index during the predetermined period; and a second threshold value that defines a normal range of the second feature value and changes according to the first feature value. And comparing the second feature value calculated by the second feature value calculation unit with the second threshold value to determine whether or not the second feature value is included in the normal range. It has a part.
  • an accurate normal range of the second feature value according to the first feature value, which is the feature value of the first index, out of the first index and the second index can be obtained as the second threshold value.
  • the presence or absence of an abnormality in the movable device can be detected at an early stage.
  • the determination unit defines a normal range of the first feature amount and obtains a first threshold value that changes according to the second feature amount, and obtains the first feature amount calculated by the first feature amount calculation unit. By comparing the first feature value with the first threshold value, it may be determined whether or not the first feature value is included in the normal range.
  • an accurate normal range of the first characteristic amount according to the second characteristic amount, which is the characteristic amount of the second index, of the first index and the second index can be obtained as the first threshold.
  • the presence or absence of an abnormality in the movable device can be detected at an early stage.
  • the normal range may be elliptical.
  • the first feature amount is an average value, a variance, a difference between a maximum value and a minimum value, a predicted value of an output value accompanying rotation of a motor, and a measured value of the output value of the first index during the predetermined period. It may be any of the average of the differences and the variance of the difference between the predicted value of the output value due to the rotation of the motor and the measured value of the output value.
  • the second feature amount is an average value, a variance, a difference between a maximum value and a minimum value, a predicted value of an output value accompanying rotation of the motor, and a measured value of the output value of the second index in the predetermined period. It may be any of the average of the differences and the variance of the difference between the predicted value of the output value due to the rotation of the motor and the measured value of the output value.
  • the first index and the second index are different from each other, and may be any one of a torque associated with the rotation of the motor, a speed at which the motor rotates, and an operation speed of the movable device according to the rotation of the motor. It may be. Since the torque and the speed are indexes when the movable device is moving, the abnormality of the movable device is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device can be detected at an early stage.
  • An information processing method provides a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value.
  • a first feature amount calculating step of calculating a first feature amount, which is a feature amount of the first index acquired in the acquiring step during a predetermined period, and an acquisition step of acquiring the first index acquired in the acquiring step.

Abstract

The present invention quickly detects abnormalities. According to the present invention, within a coordinate space, a determination part (56) of a PLC (50) acquires threshold value ranges for rotational speed difference average values that correspond to average values for the torque of a motor (30) and determines whether speed difference average values that have been associated with average values for torque are within the threshold value ranges.

Description

情報処理装置及び情報処理方法Information processing apparatus and information processing method
  本発明は情報処理装置及び情報処理方法に関する。 The present invention relates to an information processing device and an information processing method.
  所定動作を行う可動装置の動作を監視することで当該可動装置の異常の有無を検出する装置が使用されている。特許文献1のパワーステアリング装置では、複数の指標をそれぞれ独立して閾値と比較することで、指標毎に異常の有無を判定している。 装置 A device that monitors the operation of a movable device that performs a predetermined operation to detect the presence or absence of an abnormality in the movable device is used. In the power steering apparatus of Patent Document 1, the presence or absence of an abnormality is determined for each index by independently comparing a plurality of indexes with a threshold value.
日本国公開特許公報「特開2016‐064710号公報」Japanese Unexamined Patent Publication "JP-A-2016-064710"
  複数の指標が互いに関連している場合、1個の指標の値の変動により、他の指標の正常範囲が変化する場合がある。特許文献1のパワーステアリング装置によると異なる指標毎に閾値と比較している。このため、正確に各指標の異常の有無を判定することができず、可動装置の異常の発見が遅れる可能性がある。本発明の一態様は、異常の有無を早期に検出することを目的とする。 場合 When a plurality of indices are related to each other, a change in the value of one index may change the normal range of another index. According to the power steering apparatus of Patent Literature 1, a threshold value is compared for each different index. For this reason, it is not possible to accurately determine the presence or absence of an abnormality in each index, and there is a possibility that the discovery of an abnormality in the movable device may be delayed. An object of one embodiment of the present invention is to detect the presence or absence of an abnormality at an early stage.
  本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention employs the following configuration in order to solve the above-described problems.
  すなわち、本発明の一側面に係る情報処理装置は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得部と、前記取得部が取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算部と、前記取得部が取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算部と、前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算部が演算した前記第2特徴量と前記第2閾値とを比較することで、当該第2特徴量が前記正常範囲に含まれるか否かを判定する判定部を備えている。 That is, the information processing apparatus according to one aspect of the present invention includes a first index and a first index associated with the rotation of the motor that causes the movable device to perform a predetermined operation when the driver rotates the motor based on the input instruction value. An acquisition unit that acquires two indices over time, a first feature amount computation unit that computes a first feature amount that is a feature amount of the first index in a predetermined period acquired by the acquisition unit, and an acquisition unit that acquires the first index. A second feature value calculation unit that calculates a second feature value of the second index, which is a feature value in the predetermined period, and a second feature value that defines a normal range of the second feature value and changes according to the first feature value. A second threshold value, and comparing the second feature value calculated by the second feature value calculation unit with the second threshold value to determine whether the second feature value is included in the normal range. It is provided with a judging unit for performing.
  本発明の一側面に係る情報処理方法は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得ステップと、前記取得ステップにて取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算ステップと、前記取得ステップにて取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算ステップと、前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算ステップにて演算した前記第2特徴量が前記正常範囲に含まれるか否かを判定する判定ステップとを有する。 An information processing method according to one aspect of the present invention provides a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value. Acquiring over time, a first feature amount calculating step of calculating a first feature amount, which is a feature amount of the first index acquired in the acquiring step during a predetermined period, and an acquisition step of acquiring the first index acquired in the acquiring step. A second feature value calculating step of calculating a second feature value which is a feature value of the second index during the predetermined period; and a second feature value defining a normal range of the second feature value and changing in accordance with the first feature value. Determining a second threshold value and determining whether or not the second feature value calculated in the second feature value calculation step is included in the normal range.
  本開示の一態様によれば、異常の有無を早期に検出することができる。 According to one aspect of the present disclosure, the presence or absence of an abnormality can be detected at an early stage.
実施形態1に係るPLCの機能ブロックの一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment. 実施形態1に係るPLCの適用場面の一例を模式的に表す図である。FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment. 実施形態1に係る、座標空間において正常範囲演算部が演算した正常範囲の様子を表す図である。FIG. 4 is a diagram illustrating a state of a normal range calculated by a normal range calculation unit in a coordinate space according to the first embodiment. 実施形態1に係る可動装置が所定動作を行っている際のモータのトルクの経時変化を表す図である。FIG. 4 is a diagram illustrating a temporal change of a motor torque when the movable device according to the first embodiment performs a predetermined operation. 実施形態1に係る可動装置が所定動作を行っている際のモータの回転の速度の経時変化を表す図である。FIG. 5 is a diagram illustrating a temporal change of a rotation speed of a motor when the movable device according to the first exemplary embodiment performs a predetermined operation. 実施形態1に係るトルク平均値の変化の様子を表す図である。FIG. 4 is a diagram illustrating a state of a change in a torque average value according to the first embodiment. 実施形態1に係る速度差分平均値の変化の様子を表す図である。FIG. 6 is a diagram illustrating a state of a change in a speed difference average value according to the first embodiment. 実施形態1に係る第1特徴量と第2特徴量とを座標とする座標空間に、第1特徴量と第2特徴量とをプロットした様子を表す図である。FIG. 5 is a diagram illustrating a state where the first feature amount and the second feature amount are plotted in a coordinate space having the first feature amount and the second feature amount according to the first embodiment. 実施形態1に係るPLCの処理の流れを表す図である。FIG. 3 is a diagram illustrating a flow of processing of the PLC according to the first embodiment.
  以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
  §1 適用例
 図2を用いて、本発明が適用される場面の一例について説明する。図2は、実施形態1に係るPLC(programmable logic controller)50の適用場面の一例を模式的に表す図である。本実施形態に係るPLC50は、モータ30の回転によって所定動作をする可動機構(可動部13、ボールネジ12)を含む可動装置10の異常をリアルタイムで検出する、本発明の情報処理装置の一例である。
§1 Application Example An example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment. The PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
  可動システム1は、可動装置10と、モータ30と、モータ30の駆動を制御するドライバ40と、PLC50とを備えている。可動システム1は、例えば、製品の製造工場において用いられる生産設備である。可動装置10は、例えば、カップリング20を介して接続されているモータ30の回転が伝達されることによって、所定動作を行う装置である。可動装置10は、モータ30の回転が伝達されることで所定動作をする装置であればよく、例えば、製造工場において用いられる搬送装置等の各種装置であってもよいし、製造工場以外で用いられている各種のロボット等の装置であってもよい。 The movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50. The movable system 1 is, for example, a production facility used in a product manufacturing factory. The movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20. The movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
  PLC50は、モータ30の回転に伴う複数の指標を経時的に取得し、当該複数の指標に基づいて可動装置10の異常を検出する情報処理装置であればよく、当該情報処理装置としては、例えば、サーバ等であってもよい。モータ30の回転に伴う指標とは、モータ30を制御するための制御値(入力値)、モータ30の回転に伴う出力値(計測値)等、互いに関連する指標である。そして、PLC50は、複数の指標に基づいて、可動装置10の異常の有無を判定する。指標の具体例は後述する。例えば、PLC50は、第1指標を横軸とし、第2指標を縦軸とした2次元平面において、第1指標と第2指標とで示される座標が正常範囲に入っているか否かに基づいて、可動装置10の異常の有無を判定する。指標の具体例は後述する。 The PLC 50 may be any information processing device that acquires a plurality of indices associated with the rotation of the motor 30 over time and detects an abnormality of the movable device 10 based on the plurality of indices. As the information processing device, for example, , A server, or the like. The index associated with the rotation of the motor 30 is an index related to each other, such as a control value (input value) for controlling the motor 30 and an output value (measured value) associated with the rotation of the motor 30. Then, the PLC 50 determines whether there is an abnormality in the movable device 10 based on the plurality of indices. Specific examples of the index will be described later. For example, the PLC 50 determines whether the coordinates indicated by the first index and the second index fall within a normal range on a two-dimensional plane having the first index as the horizontal axis and the second index as the vertical axis. Then, it is determined whether or not the movable device 10 is abnormal. Specific examples of the index will be described later.
  §2 構成例
 図2を用いて、実施形態1に係る可動システム1の構成例について説明する。可動装置10は、例えば、リニアガイドを有するベース11と、ボールネジ12と、可動部13とを備えている。ボールネジ12は、ベース11の長軸方向に平行となるようにベース11に搭載されている。可動部13は、ボールネジ12に搭載されている。ボールネジ12の一方の端部は、カップリング20を介してモータ30の出力軸と接続されている。
§2 Configuration Example A configuration example of the movable system 1 according to the first embodiment will be described with reference to FIG. The movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13. The ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11. The movable section 13 is mounted on the ball screw 12. One end of the ball screw 12 is connected to an output shaft of a motor 30 via a coupling 20.
  モータ30の出力軸の回転(単に、モータ30の回転と称する)によってボールネジ12が回転する。そして、可動部13は、ボールネジ12の回転に伴い、ボールネジ12上であって、矢印A1に示すように、ボールネジ12に沿って動作する(すなわち移動する)。 (4) The rotation of the output shaft of the motor 30 (simply called the rotation of the motor 30) causes the ball screw 12 to rotate. Then, as the ball screw 12 rotates, the movable portion 13 moves (ie, moves) on the ball screw 12 and along the ball screw 12 as indicated by an arrow A1.
  可動装置10は、例えば、可動部13が、ボールネジ12の一方の端部(モータ30に近い側の端部)近傍から、他方の端部(モータ30から遠い側の端部)近傍方向(往路方向)へ1サイクルの動作として移動したり、逆に、可動部13が、ボールネジ12の他方の端部近傍から、一方の端部近傍方向(復路方向)へ1サイクルの動作として移動したりする。この可動装置10における所定動作とは、前記1サイクルの動作であってもよいし、前記1サイクルの動作を複数回含む複数サイクルの動作であってもよい。 In the movable device 10, for example, the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path). The movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation. . The predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
  本実施形態では、モータ30はエンコーダ35を備えているものとして説明する。エンコーダ35は、モータ30の回転方向及び回転角度を示す情報をパルス信号としてドライバ40へ経時的に出力する。 実 施 In the present embodiment, description will be made assuming that the motor 30 includes the encoder 35. The encoder 35 outputs information indicating the rotation direction and the rotation angle of the motor 30 to the driver 40 over time as a pulse signal.
  なお、エンコーダ35は、モータ30とは別に設けられた外付けであってもよい。エンコーダ35がモータ30とは別に設けられている場合、例えば、当該エンコーダ35は、ボールネジ12の他方の端部(モータ30から遠い側の端部)にカップリングを介して取り付けられる。そして、当該エンコーダ35は、ボールネジ12の回転方向及び回転角度を示す情報をパルス信号としてPLC50へ経時的に出力する。 The encoder 35 may be externally provided separately from the motor 30. When the encoder 35 is provided separately from the motor 30, for example, the encoder 35 is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder 35 outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 with time as a pulse signal.
  なお、モータ30に内蔵されているエンコーダ35又はモータ30とは別に設けられた外付けのエンコーダ35は、回転部分と、当該回転部分の回転方向及び回転角度をセンシングするセンシング部分と、が接触している接触式のエンコーダであってもよいし、回転部分とセンシング部分とが非接触である非接触式のエンコーダであってもよい。 Note that the encoder 35 built in the motor 30 or an external encoder 35 provided separately from the motor 30 makes contact between the rotating part and a sensing part that senses the rotation direction and the rotation angle of the rotating part. Contact type encoder, or a non-contact type encoder in which the rotating part and the sensing part are in non-contact.
  例えば、ドライバ40は、PLC50からの指示値(目標値)に基づいて、モータ30の単位時間あたりの回転数が指示値(目標値)となるように、適切な値の電流及び電圧を生成し、当該生成した電流及び電圧をモータ30に出力する。これにより、ドライバ40は、モータ30の回転を制御する。例えば、ドライバ40は、モータ30へ出力した電流及び電圧それぞれの電流値及び電圧値に基づいて、モータ30のトルク値を経時的に演算し、逐次、PLC50へ出力する。 For example, the driver 40 generates appropriate values of current and voltage based on the command value (target value) from the PLC 50 so that the number of revolutions of the motor 30 per unit time becomes the command value (target value). , And outputs the generated current and voltage to the motor 30. Thus, the driver 40 controls the rotation of the motor 30. For example, the driver 40 calculates the torque value of the motor 30 over time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50.
  ドライバ40に入力されるPLC50からの指示値(目標値)、ドライバ40からモータ30へ出力する電流値及び電圧値、及び、当該電流値及び電圧値から演算されるトルク値は、モータ30の回転に伴う指標のうち、モータ30を制御するための制御値の一例である。 The instruction value (target value) from the PLC 50 input to the driver 40, the current value and the voltage value output from the driver 40 to the motor 30, and the torque value calculated from the current value and the voltage value are determined by the rotation of the motor 30. 7 is an example of a control value for controlling the motor 30 among the indices associated with.
  また、ドライバ40は、モータ30が備えるエンコーダ35から取得するパルス信号に基づいて、モータ30の回転に伴う出力値(計測値)である角速度値(換言するとモータ30の回転の速度)を経時的に演算して、逐次、PLC50へ出力してもよい。 Further, the driver 40 changes the angular velocity value (in other words, the rotation speed of the motor 30) which is the output value (measured value) accompanying the rotation of the motor 30 with time based on the pulse signal acquired from the encoder 35 provided in the motor 30. And sequentially output to the PLC 50.
  なお、例えば、可動部13に加速度センサを取り付けておき、モータ30の回転に伴って移動する可動部13の加速度データを加速度センサが経時的に取得し、当該加速度センサが、加速度値を示す加速度データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。また、例えば、可動部13に位置センサを取り付けておき、モータ30の回転に伴って移動する可動部13の位置データを位置センサが経時的に取得し、当該位置センサが、可動部13の位置を示す位置データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。また、例えば、モータ30に温度センサを取り付けておき、モータ30の回転に伴って上昇するモータ30の温度データを温度センサが経時的に取得し、当該温度センサが、モータ30の温度を示す温度データを、モータ30の回転に伴う出力値として、逐次、PLC50又はドライバ40を介してPLC50へ出力するようにしてもよい。 In addition, for example, an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value. The data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30. Further, for example, a position sensor is attached to the movable unit 13, and the position sensor acquires the position data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the position sensor acquires the position data of the movable unit 13. May be sequentially output to the PLC 50 as an output value associated with the rotation of the motor 30. Further, for example, a temperature sensor is attached to the motor 30, and the temperature sensor acquires temperature data of the motor 30 that rises with the rotation of the motor 30 over time, and the temperature sensor indicates a temperature indicating the temperature of the motor 30. The data may be sequentially output to the PLC 50 via the PLC 50 or the driver 40 as an output value accompanying the rotation of the motor 30.
  上述したような、モータ30からドライバ40へ出力されるパルス信号から演算されるモータ30の回転の速度、又は別途設けられたセンサから得られる、加速度値、位置及び温度等は、モータ30の回転に伴う指標のうち、モータ30の回転に伴う出力値(計測値)の一例である。なお、モータ30の回転に伴う出力値(計測値)は、モータ30の回転に伴って計測して得られる値であればよい。 As described above, the rotation speed of the motor 30 calculated from the pulse signal output from the motor 30 to the driver 40, or the acceleration value, position, temperature, and the like obtained from a separately provided sensor are determined by the rotation of the motor 30. 5 is an example of an output value (measured value) associated with the rotation of the motor 30 among indices associated with. Note that the output value (measured value) associated with the rotation of the motor 30 may be a value obtained by measuring with the rotation of the motor 30.
  図1は、実施形態1に係るPLC50の機能ブロックの一例を示す図である。PLC50は、指示部51と、正常範囲演算部52と、記憶部53と、取得部54と、第1特徴量演算部55aと、第2特徴量演算部55bと、判定部56とを備えている。以下、PLC50が備える各部について説明する。 FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment. The PLC 50 includes an instruction unit 51, a normal range calculation unit 52, a storage unit 53, an acquisition unit 54, a first feature value calculation unit 55a, a second feature value calculation unit 55b, and a determination unit 56. I have. Hereinafter, each unit included in the PLC 50 will be described.
  図3は、実施形態1に係る、座標空間において正常範囲演算部が演算した正常範囲の様子を表す図である。正常範囲演算部52は、評価対象とする複数の指標それぞれの特徴量を座標軸とする座標空間における、評価対象とする複数の指標それぞれの特徴量の正常範囲を演算し、当該演算結果を記憶部53に記憶する。 FIG. 3 is a diagram illustrating a normal range calculated by the normal range calculation unit in the coordinate space according to the first embodiment. The normal range calculation unit 52 calculates a normal range of the feature amount of each of the plurality of indexes to be evaluated in a coordinate space using the feature amounts of the plurality of indexes to be evaluated as coordinate axes, and stores the calculation result in the storage unit. 53.
  PLC50が評価対象とする複数の指標は、モータ30の回転に伴う指標である。当該複数の指標は、モータ30の回転に伴い同時に値が変化(劣化)していく指標である。例えば、複数の指標は、1種類の指標の値の変化(劣化)に伴って、他の指標の値も劣化しているような関連性を有する指標であってもよい。例えば、上述したような、モータ30を制御するための制御値(入力値)、モータ30の回転に伴う出力値(計測値)等、互いに関連する指標、及びそれらの指標から演算される指標であってもよい。 The plurality of indexes to be evaluated by the PLC 50 are indexes associated with the rotation of the motor 30. The plurality of indexes are indexes whose values change (degrade) at the same time as the motor 30 rotates. For example, the plurality of indices may be relevant indices such that the value of one index is changed (deteriorated) and the value of another index is also degraded. For example, as described above, control values (input values) for controlling the motor 30, output values (measurement values) associated with the rotation of the motor 30, and other related indices, and indices calculated from those indices. There may be.
  モータ30を制御するための制御値(入力値)は、例えば、PLC50からドライバ40へ出力される指示値(目標値)、ドライバ40が指示値に基づいて生成する電流値及び電圧値、当該電流値及び電圧値から演算されるトルク値等を挙げることができる。 The control value (input value) for controlling the motor 30 is, for example, an instruction value (target value) output from the PLC 50 to the driver 40, a current value and a voltage value generated based on the instruction value by the driver 40, and the current value. And a torque value calculated from the voltage value and the voltage value.
  モータ30の回転に伴う出力値(計測値)は、例えば、エンコーダ35から出力されるパルス信号が演算されるモータ30の回転の速度、又は別途設けられたセンサから得られる、加速度値、位置及び温度等を挙げることができる。 The output value (measured value) accompanying the rotation of the motor 30 is, for example, the rotation speed of the motor 30 at which the pulse signal output from the encoder 35 is calculated, or the acceleration value, position, and position obtained from a separately provided sensor. Temperature and the like can be mentioned.
  トルク及び速度は、可動装置10が動いているときの指標であるので、可動装置10の異常が値に反映されやすい。それゆえ、可動装置10の異常の有無を早期に検出することができる。 Since the torque and the speed are indexes when the movable device 10 is moving, the abnormality of the movable device 10 is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device 10 can be detected at an early stage.
  また、それらの指標から演算される指標とは、例えば、PLC50からドライバ40へ出力される指示値に対する予想値を予め設定しておき、当該予想値と、モータ30の回転に伴う出力値(計測値)との差分(乱れ成分と称する場合がある)であってもよい。当該予想値を得るために、記憶部53に予め、指示値と当該指示値に対するモータ30の回転に伴う出力値との対応関係を表すデータベースを作成して記憶しておいてもよいし、指示値と当該指示値に対するモータ30の回転に伴う出力値との対応関係を表す伝達関数を予め作成して記憶しておいてもよい。 Indices calculated from these indices are, for example, an expected value for an instruction value output from the PLC 50 to the driver 40 set in advance, and the expected value and an output value (measurement value) associated with the rotation of the motor 30 are set. Value) (which may be referred to as a turbulence component). In order to obtain the expected value, the storage unit 53 may create and store in advance a database representing the correspondence between the indicated value and the output value associated with the rotation of the motor 30 with respect to the indicated value. A transfer function indicating the correspondence between the value and the output value associated with the rotation of the motor 30 with respect to the indicated value may be created and stored in advance.
  指示値の波形に対応する予測値の波形は、指示値の波形に対して予想されるズレを含む波形である。モータ30の回転に伴う出力値は、指示値の波形に追従するような波形となるが、指示値の波形と全く同じにはならず、多少のズレが生じる。特に、予測値の波形は、指示値の波形の立ち上がり直後(すなわちモータ30の停止状態から回転を開始した直後)、及び、指示値の波形の立ち下がりから停止まで(すなわちモータ30の減速状態から回転の停止まで)において、指示値の波形とのズレが大きくなる。よって予め指示値の波形に対する予想値の波形を把握しておき、予想値の波形に対して、モータ30の回転に伴う出力値の波形が追従していれば正常に可動装置10が可動しており、モータ30の回転に伴う出力値の波形のズレが大きくなると、可動装置10の可動に異常が生じていることを把握することができる。 予 測 The waveform of the predicted value corresponding to the waveform of the indicated value is a waveform that includes an expected deviation from the waveform of the indicated value. The output value accompanying the rotation of the motor 30 has a waveform that follows the waveform of the indicated value, but does not become exactly the same as the waveform of the indicated value, and some deviation occurs. In particular, the waveform of the predicted value is obtained immediately after the rising of the waveform of the indicated value (that is, immediately after the motor 30 starts rotating from a stopped state) and from the falling to the stop of the waveform of the indicated value (that is, from the deceleration state of the motor 30) Until the rotation stops), the deviation from the waveform of the indicated value increases. Therefore, the waveform of the expected value with respect to the waveform of the indicated value is grasped in advance, and if the waveform of the output value accompanying the rotation of the motor 30 follows the waveform of the expected value, the movable device 10 can move normally. In addition, when the deviation of the waveform of the output value due to the rotation of the motor 30 increases, it is possible to grasp that an abnormality has occurred in the movement of the movable device 10.
  指標の特徴量とは、所定期間における指標の絶対値の平均値、所定期間における前記差分の最大値と最小値との差分、所定期間における前記差分の分散、所定期間における平均の最大値と最小値との差等、所定期間における指標のバラツキ量である。なお、所定期間とは、可動装置10の整数倍サイクル(1又は複数サイクル)の期間であればよい。 The characteristic amount of the index is the average value of the absolute value of the index in a predetermined period, the difference between the maximum value and the minimum value of the difference in a predetermined period, the variance of the difference in a predetermined period, the maximum value and the minimum value of the average in a predetermined period. This is a variation amount of the index in a predetermined period, such as a difference from the value. Note that the predetermined period may be a period of an integral multiple cycle (one or a plurality of cycles) of the movable device 10.
  図3に示す例では、第1指標はトルク値であり、第2指標はモータ30の回転の速度の乱れ成分(理想波形に対するモータ30の回転の速度の波形の差分)としている。そして、x軸は、第1指標(トルク値)の特徴量(第1特徴量)としての例である、所定期間における平均の最大値と最小値との差分を表している。y軸は、第2指標(モータ30の回転の速度の乱れ成分)の特徴量(第2特徴量)の例である平均値を表している。 In the example shown in FIG. 3, the first index is a torque value, and the second index is a disturbance component of the rotation speed of the motor 30 (difference between a waveform of the rotation speed of the motor 30 and an ideal waveform). The x-axis represents a difference between the average maximum value and the minimum value in a predetermined period, which is an example of the feature amount (first feature amount) of the first index (torque value). The y-axis indicates an average value which is an example of a feature amount (second feature amount) of the second index (a disturbance component of the rotation speed of the motor 30).
  ここで、例えば、PLC50が可動装置10を速度制御(すなわちモータ30の回転の速度制御)する場合、工場における生産に影響を与えるのは可動装置10における可動部13の速度(すなわちモータ30の回転の速度)である。そして、モータ30の回転の速度は、ドライバ40がモータ30に入力する電圧及び電流(すなわちトルク)によって調整される。すなわち、ドライバ40は、モータ30の回転の速度が所望の速度となるように電圧及び電流(すなわちトルク)をモータ30に入力する。このため、例えば、可動装置10に異常が生じると、モータ30の回転の速度の特徴量に影響が表れる前に、ドライバ40がモータ30へ入力している電圧及び電流(すなわちトルク)の特徴量に影響が表れる。 Here, for example, when the PLC 50 controls the speed of the movable device 10 (that is, the speed control of the rotation of the motor 30), the factor that affects the production in the factory is the speed of the movable unit 13 in the movable device 10 (that is, the rotation of the motor 30). Speed). Then, the rotation speed of the motor 30 is adjusted by the voltage and current (that is, torque) input to the motor 30 by the driver 40. That is, the driver 40 inputs the voltage and the current (that is, torque) to the motor 30 so that the rotation speed of the motor 30 becomes a desired speed. Therefore, for example, when an abnormality occurs in the movable device 10, the characteristic amount of the voltage and current (that is, torque) input to the motor 30 by the driver 40 before the characteristic amount of the rotation speed of the motor 30 appears. Is affected.
  よって、第1指標として選択したトルク値と、第2指標として選択した速度の乱れ成分とは互いに関連する指標である。そして、モータ30の回転の速度の特徴量と、当該速度の制御値であるトルクの特徴量とを監視することで早期に異常の検出を行うことができる。 Therefore, the torque value selected as the first index and the speed disturbance component selected as the second index are mutually related indexes. Then, by monitoring the characteristic amount of the rotation speed of the motor 30 and the characteristic amount of the torque that is the control value of the speed, the abnormality can be detected early.
  また、例えば、モータ30の温度が変化すると、トルク値の平均値も変化するため、温度とトルク値とも互いに関連する指標である。その他、上述したように、PLC50が評価対象とする複数の指標は、モータ30を制御するための制御値(入力値)、モータ30の回転に伴う出力値(計測値)、及び、それらの指標から演算される指標を組み合わせて選択する。 Also, for example, when the temperature of the motor 30 changes, the average value of the torque values also changes. Therefore, the temperature and the torque value are mutually related indices. In addition, as described above, the plurality of indices to be evaluated by the PLC 50 include a control value (input value) for controlling the motor 30, an output value (measured value) associated with the rotation of the motor 30, and those indices. Are selected in combination with the indices calculated from.
  正常範囲演算部52は、評価対象とする複数の指標に関してデータのサンプリングを繰り返すことで、それぞれの指標の特徴量における正常範囲を演算し、当該正常範囲を規定する閾値を規定し、当該閾値を記憶部53に記憶する。図3に示す例では、正常範囲演算部52は、xy座標空間に、閾値(第1閾値)T1と、閾値(第2閾値)T2を規定している例を示している。閾値T1は、問題なく正常値である正常範囲を規定する閾値である。閾値T2は、閾値T1の外側を囲む範囲を規定する閾値であり、異常が発生する手前の注意すべき警告範囲を規定する。閾値T2より外側の範囲は、異常値を示す異常範囲である。閾値T1は、座標(T1x:T1y)によって規定されている。閾値T2は、座標(T2x:T2y)によって規定されている。第1指標と第2指標とは互いに関連する指標であるため、例えば、図3に示す例では、正常範囲は楕円形状となっている。つまり、x軸の値によって、y軸方向の閾値T1・T2は変動する。また、y軸の値によって、x軸方向の閾値T1・T2は変動する。 The normal range calculation unit 52 repeats data sampling for a plurality of indexes to be evaluated, calculates a normal range in the feature amount of each index, defines a threshold that defines the normal range, and sets the threshold to The information is stored in the storage unit 53. In the example illustrated in FIG. 3, the normal range calculation unit 52 illustrates an example in which a threshold (first threshold) T1 and a threshold (second threshold) T2 are defined in the xy coordinate space. The threshold T1 is a threshold that defines a normal range that is a normal value without any problem. The threshold value T2 is a threshold value that defines a range surrounding the outside of the threshold value T1, and defines a warning range to be noted before an abnormality occurs. The range outside the threshold value T2 is an abnormal range indicating an abnormal value. The threshold value T1 is defined by coordinates (T1x: T1y). The threshold value T2 is defined by coordinates (T2x: T2y). Since the first index and the second index are indexes related to each other, for example, in the example illustrated in FIG. 3, the normal range has an elliptical shape. That is, the threshold values T1 and T2 in the y-axis direction vary depending on the value on the x-axis. Further, the threshold values T1 and T2 in the x-axis direction vary depending on the value of the y-axis.
  なお、評価対象とする指標は、2種類に限定されず、3種類以上であってもよい。この場合、正常範囲演算部52は、2軸(xy軸)ではなく、指標の種類数に応じて3軸以上の多次元の座標空間上に正常範囲を演算して各軸方向の閾値範囲を規定する。 指標 Note that the number of indices to be evaluated is not limited to two, and may be three or more. In this case, the normal range calculation unit 52 calculates a normal range not in two axes (xy axes) but in a multidimensional coordinate space of three or more axes in accordance with the number of types of indices, and determines a threshold range in each axis direction. Stipulate.
  記憶部53は、正常範囲演算部52が演算した正常範囲が記憶されている。当該正常範囲は、例えば、上述したように、閾値T1として座標(T1x:T1y)が記憶されており、閾値T2として座標(T2x:T2y)が記憶されている。なお、記憶部53は、PLC50の外部に設けられてもよいし、PLC50に外付けで接続されてもよい。 The storage unit 53 stores the normal range calculated by the normal range calculation unit 52. In the normal range, for example, as described above, the coordinates (T1x: T1y) are stored as the threshold T1, and the coordinates (T2x: T2y) are stored as the threshold T2. The storage unit 53 may be provided outside the PLC 50 or may be externally connected to the PLC 50.
  指示部51は、指示値をドライバ40に出力する。指示部51がドライバ40に出力する指示値とは、モータ30の回転に伴う出力値の目標値である。例えば、指示部51がドライバ40に出力する指示値とは、モータ30の回転に伴うトルクの目標値であってもよいし、モータ30の回転に伴う速度(角速度、回転速度)の目標値であってもよいし、モータ30の回転に伴う可動部13の速度(移動速度)の目標値であってもよいし、他の値の目標値であってもよい。 (4) The instruction unit 51 outputs the instruction value to the driver 40. The instruction value output from the instruction unit 51 to the driver 40 is a target value of an output value accompanying rotation of the motor 30. For example, the instruction value output from the instruction unit 51 to the driver 40 may be a target value of the torque associated with the rotation of the motor 30 or a target value of the speed (angular speed, rotation speed) associated with the rotation of the motor 30. The target value may be a target value of the speed (moving speed) of the movable unit 13 associated with the rotation of the motor 30, or may be a target value of another value.
  指示値がトルクの目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、モータ30のトルクが当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、トルクが当該指示値となるように回転する。また、指示値がモータ30の回転する速度の目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、モータ30の回転する速度が当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、速度が当該指示値となるように回転する。また、指示値が可動部13の速度の目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、可動部13の速度が当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、可動部13の速度が当該指示値となるように回転する。 When the indicated value is the target value of the torque, the driver 40 obtains the indicated value from the instructing section 51, generates a current and a voltage having values such that the torque of the motor 30 becomes the indicated value, and generates the generated current. Then, the motor 30 is rotated by the voltage. Thereby, the motor 30 rotates so that the torque becomes the indicated value. When the instruction value is the target value of the rotating speed of the motor 30, the driver 40 obtains the instruction value from the instruction unit 51, and sets the current and the value of the value such that the rotating speed of the motor 30 becomes the instruction value. A voltage is generated, and the motor 30 is rotated by the generated current and voltage. Thereby, the motor 30 rotates so that the speed becomes the indicated value. When the instruction value is the target value of the speed of the movable unit 13, the driver 40 obtains the instruction value from the instruction unit 51, and outputs a current and a voltage of such values that the speed of the movable unit 13 becomes the instruction value. Then, the motor 30 is rotated by the generated current and voltage. As a result, the motor 30 rotates so that the speed of the movable unit 13 becomes the specified value.
  なお、本発明に係る情報処理装置がPLCではなく、サーバである場合は、指示部51を省略した構成としてもよい。 In the case where the information processing apparatus according to the present invention is not a PLC but a server, a configuration in which the instruction unit 51 is omitted may be adopted.
  図4は、実施形態1に係る可動装置10が所定動作を行っている際のモータ30のトルクの経時変化を表す図である。図5は、実施形態1に係る可動装置10が所定動作を行っている際のモータ30の回転の速度の経時変化を表す図である。 FIG. 4 is a diagram illustrating a temporal change of the torque of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation. FIG. 5 is a diagram illustrating a temporal change in the rotation speed of the motor 30 when the movable device 10 according to the first embodiment performs a predetermined operation.
  取得部54は、複数の指標を、ドライバ40、又は、別途設けられる各種センサから取得する。図4及び図5に示す例では、取得部54は、第1指標としてドライバ40からトルク値を経時的に取得し、第2指標としてドライバ40からモータ30の回転の速度値を経時的に取得する。図4及び図5に示す横軸は同時間を表している。つまり、図4及び図5は、同時間における、トルク値の経時変化(図4)と速度値の経時変化(図5)とを表している。図4及び図5に示す期間B1、期間B2、期間B3、及び期間B4は、可動装置10の同じタイミングの1サイクルの動作期間を表している。なお、評価対象である指標が指示値の場合は、取得部54は指示部51から当該指示値を取得すればよい。 The acquisition unit 54 acquires a plurality of indices from the driver 40 or various sensors provided separately. In the example illustrated in FIGS. 4 and 5, the acquisition unit 54 acquires the torque value from the driver 40 over time as the first index, and acquires the rotation speed value of the motor 30 from the driver 40 over time as the second index. I do. The horizontal axis shown in FIGS. 4 and 5 represents the same time. That is, FIGS. 4 and 5 show the change over time of the torque value (FIG. 4) and the change over time of the speed value (FIG. 5) at the same time. A period B1, a period B2, a period B3, and a period B4 shown in FIGS. 4 and 5 represent one cycle of the operation period of the movable device 10 at the same timing. When the index to be evaluated is an instruction value, the acquisition unit 54 may acquire the instruction value from the instruction unit 51.
  図6は、実施形態1に係るトルク平均値の変化の様子を表す図である。第1特徴量演算部55aは、取得部54が取得した第1指標の所定期間における特徴量である第1特徴量を演算する。例えば、第1特徴量演算部55aは、取得部54が取得したトルク値から、図4に示した期間B1、期間B2、期間B3、及び期間B4・・・毎のトルク値の平均値を特徴量として演算する。図6に示す例では、期間B1、期間B2、期間B3、期間B4・・・毎のトルク値の平均値を経時的に横軸方向にプロットしたトルク値の平均値の経時変化の様子を表している。 FIG. 6 is a diagram showing a state of a change in the average torque value according to the first embodiment. The first feature value calculation unit 55a calculates a first feature value which is a feature value of the first index acquired by the acquisition unit 54 in a predetermined period. For example, the first feature amount calculating unit 55a features the average value of the torque values for each of the periods B1, B2, B3, and B4 shown in FIG. 4 from the torque values acquired by the acquiring unit 54. Calculate as a quantity. In the example shown in FIG. 6, the average value of the torque values for each of the periods B1, B2, B3, B4,. ing.
 なお、第1特徴量演算部55aは、第1特徴量として、所定期間(例えば期間B1、期間B2、期間B3、期間B4・・・毎)における第1指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータ30の回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかを演算してもよい。 Note that the first feature value calculation unit 55a determines, as the first feature value, an average value, a variance, and a maximum value of the first index in a predetermined period (for example, each of the periods B1, B2, B3, B4,...). , The average of the difference between the predicted value of the output value associated with the rotation of the motor and the measured value of the output value, and the predicted value of the output value associated with the rotation of the motor 30 and the measured value of the output value Any one of the variances of the difference may be calculated.
  図7は、実施形態1に係る速度差分平均値の変化の様子を表す図である。第2特徴量演算部55bは、取得部54が取得した第2指標の所定期間における特徴量である第2特徴量を演算する。例えば、第2特徴量演算部55bは、取得部54が取得した速度値から、図5に示した期間B1、期間B2、期間B3、及び期間B4・・・毎の速度差分(速度の乱れ成分)の平均値を特徴量として演算する。図7に示す例では、期間B1、期間B2、期間B3、期間B4・・・毎の速度差分平均値を経時的に横軸方向にプロットした速度差分平均値の経時変化の様子を表している。 FIG. 7 is a diagram illustrating a state of a change in the average speed difference value according to the first embodiment. The second feature value calculation unit 55b calculates a second feature value which is a feature value of the second index acquired by the acquisition unit 54 in a predetermined period. For example, the second feature amount calculating unit 55b calculates a speed difference (speed turbulence component) for each of the periods B1, B2, B3, and B4 shown in FIG. ) Is calculated as a feature value. In the example shown in FIG. 7, a temporal change in the average speed difference value in which the average speed difference value for each of the periods B1, B2, B3, B4,. .
 なお、第2特徴量演算部55bは、第2特徴量として、所定期間(例えば期間B1、期間B2、期間B3、期間B4・・・毎)における第2指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータ30の回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかを演算してもよい。 The second feature value calculation unit 55b determines the average value, the variance, and the maximum value of the second index in a predetermined period (for example, each of the periods B1, B2, B3, B4,...) As the second feature amount. , The average of the difference between the predicted value of the output value associated with the rotation of the motor and the measured value of the output value, and the predicted value of the output value associated with the rotation of the motor 30 and the measured value of the output value Any one of the variances of the difference may be calculated.
  図8は、実施形態1に係る第1特徴量と第2特徴量とを座標とする座標空間に、第1特徴量と第2特徴量とをプロットした様子を表す図である。 FIG. 8 is a diagram illustrating a state where the first feature amount and the second feature amount are plotted in a coordinate space having the first feature amount and the second feature amount according to the first embodiment.
  判定部56は、図8に示すように、例えば、トルクの平均値(第1指標の第1特徴量)をx軸とし、速度差分平均値(第2指標の第2特徴量)をy軸として、xy座標を作成する。そして、図6に示した第1特徴量演算部55aからトルク値の平均値の経時変化と、図7に示した第2特徴量演算部55bから速度差分平均値の経時変化とを取得すると、同時間同士のトルクの平均値と速度差分平均値とを対応づけ、xy座標空間上にプロットする。つまり、判定部56は、トルクの平均値をx座標とし、速度差分平均値をy座標とする座標データ(x:y)を作成する。 As illustrated in FIG. 8, for example, the determination unit 56 sets the average value of the torque (the first characteristic amount of the first index) on the x-axis and the average speed difference (the second characteristic amount of the second index) on the y-axis. Xy coordinates are created. Then, when the temporal change of the average value of the torque value from the first characteristic amount calculating unit 55a shown in FIG. 6 and the temporal change of the average speed difference value from the second characteristic amount calculating unit 55b shown in FIG. The average value of the torque and the average value of the speed difference at the same time are associated with each other and plotted on the xy coordinate space. That is, the determination unit 56 creates coordinate data (x: y) using the average value of the torque as the x coordinate and the average value of the speed difference as the y coordinate.
  そして、判定部56は、記憶部53に記憶された正常範囲を参照し、xy座標空間にプロットした座標データにおける、第1特徴量演算部55aが演算した第1特徴量(xの値)に応じて変化する第2閾値(閾値T1のy座標の値範囲と、閾値T2のy座標の値範囲)とを取得する。そして、判定部56は、座標データにおけるyの値が第2閾値(閾値T1のy座標の値範囲と、閾値T2のy座標の値範囲)に含まれていれば、yの値は正常範囲であると判定する。 Then, the determination unit 56 refers to the normal range stored in the storage unit 53, and calculates the first feature value (x value) calculated by the first feature value calculation unit 55a in the coordinate data plotted in the xy coordinate space. A second threshold value (a value range of the y-coordinate of the threshold T1 and a value range of the y-coordinate of the threshold T2) that changes accordingly is acquired. Then, if the value of y in the coordinate data is included in the second threshold value (the value range of the y coordinate of the threshold T1 and the value range of the y coordinate of the threshold T2), the value of y is within the normal range. Is determined.
  なお、判定部56は、座標データのyの値が、閾値T1のy座標の値範囲外であり、閾値T2のy座標の値範囲内であれば、ユーザに警告するため、ユーザへの警告通知処理を行う。また、判定部56は、座標データのyの値が、閾値T2のy座標の値範囲外であれば、yの値は異常値であると判定し、ユーザに異常を知らせるため、ユーザへの異常通知処理を行う。 Note that the determination unit 56 warns the user if the y value of the coordinate data is outside the y coordinate value range of the threshold value T1 and is within the y coordinate value range of the threshold value T2. Perform notification processing. When the value of y of the coordinate data is out of the range of the y coordinate of the threshold value T2, the determination unit 56 determines that the value of y is an abnormal value, and notifies the user of the abnormality. Perform error notification processing.
  このように、例えば、互いに関連する指標である、トルク(第1指標)及び速度(第2指標)のうち、トルクの特徴量であるトルク平均(第1特徴量)に応じた速度の速度差分平均値(第2特徴量)の正確な正常範囲を、第2閾値として得ることができる。これにより、可動装置10の異常の有無を早期に検出することができる。 In this way, for example, among the torque (first index) and the speed (second index), which are indexes related to each other, a speed difference between the speeds according to the torque average (first characteristic amount) which is the characteristic amount of the torque. An accurate normal range of the average value (second feature amount) can be obtained as the second threshold. Thereby, the presence or absence of abnormality of the movable device 10 can be detected at an early stage.
  また、判定部56は、y座標が正常であるか否かを判定した座標データの第2特徴量(yの値)に応じて変化する第1閾値(閾値T1のx座標の値範囲と、閾値T2のx座標の値範囲)とを取得する。そして、判定部56は、座標データにおけるxの値が第1閾値(閾値T1のx座標の値範囲と、閾値T2のx座標の値範囲)に含まれていれば、xの値は正常範囲であると判定する。 In addition, the determination unit 56 determines a first threshold (a value range of the x coordinate of the threshold T1; a first threshold that changes according to the second feature amount (the value of y) of the coordinate data that has determined whether or not the y coordinate is normal; (The value range of the x coordinate of the threshold value T2). Then, if the value of x in the coordinate data is included in the first threshold (the value range of the x coordinate of the threshold T1 and the value of the x coordinate of the threshold T2), the value of x is within the normal range. Is determined.
  なお、判定部56は、座標データのxの値が、閾値T1のx座標の値範囲外であり、閾値T2のx座標の値範囲内であれば、xの値は正常範囲であるが、ユーザに警告するため、ユーザへの警告通知処理を行う。また、判定部56は、座標データのxの値が、閾値T2のx座標の値範囲外であると、xの値は異常値であると判定し、ユーザに異常を知らせるため、ユーザへの異常通知処理を行う。 Note that the determination unit 56 determines that the value of x is within the normal range if the value of x of the coordinate data is outside the value range of the x coordinate of the threshold T1 and within the value range of the x coordinate of the threshold T2. In order to warn the user, a warning notification process to the user is performed. When the value of x of the coordinate data is out of the range of the x coordinate of the threshold value T2, the determination unit 56 determines that the value of x is an abnormal value, and notifies the user of the abnormality. Perform error notification processing.
  このように、例えば、互いに関連する指標である、トルク(第1指標)及び速度(第2指標)のうち、速度の特徴量である速度差分平均値(第2特徴量)に応じたトルクの平均値(第1特徴量)の正確な正常範囲を、第1閾値として得ることができる。これにより、可動装置10の異常の有無を早期に検出することができる。なお、評価対象とする指標は、1個の指標が変化すると他の指標にも影響を及ぼす関連を有していてもよいし、当該関連を有していなくても同時に値が変化する(劣化する)ような複数の指標であってもよい。 As described above, for example, of the torque (first index) and the speed (second index), which are indexes related to each other, the torque of the torque according to the speed difference average value (second feature value) that is the feature value of the speed is obtained. An accurate normal range of the average value (first feature amount) can be obtained as the first threshold. Thereby, the presence or absence of abnormality of the movable device 10 can be detected at an early stage. It should be noted that the index to be evaluated may have a relationship that affects another index when one indicator changes, or the value changes at the same time even if it does not have the relationship (deterioration). ) May be used.
  なお、判定部56は、評価対象である指標の種類が3種類以上の場合は、当該種類に応じた3軸以上の多次元空間において座標データをプロットし、当該座標データが正常範囲であるか否かを判定する。 When there are three or more types of indices to be evaluated, the determination unit 56 plots coordinate data in a three-dimensional or more multidimensional space corresponding to the type, and determines whether the coordinate data is within a normal range. Determine whether or not.
  また、判定部56は、座標データのうち、先に、xの値が閾値T1のx座標の値範囲内であるか、また、閾値T2のx座標の値範囲内又は範囲外であるかを判定し、その次に、yの値が閾値T1のy座標の値範囲内であるか、また、閾値T2のy座標の値範囲内又は範囲外であるかを判定してもよい。また、判定部56は、座標データのうち、先に判定した値(例えばyの値)が、閾値T2の範囲外(警告範囲)であると判定すると、もう一方の値(例えばxの値)が、閾値T1及び閾値T2の座標の値範囲内であるか否かを判定せずに、ユーザに対する異常通知処理を行ってもよい。 In addition, the determination unit 56 first determines whether the value of x is within the value range of the x coordinate of the threshold value T1 or is within the value range of the x coordinate value of the threshold value T2. Then, it may be determined whether the value of y is within the value range of the y-coordinate of the threshold T1 or whether it is within or outside the value range of the y-coordinate of the threshold T2. When the determination unit 56 determines that the previously determined value (for example, the value of y) of the coordinate data is out of the range of the threshold value T2 (warning range), the other value (for example, the value of x) May be performed without determining whether or not is within the value range of the coordinates of the threshold T1 and the threshold T2.
  なお、ユーザに通知する処理とは、ユーザに通知するための種々の方法を含む。このユーザに通知する処理の例としては、可動システム1がディスプレイを備える場合は、ユーザに通知する画面をディスプレイに表示させたり、可動システム1がスピーカを備える場合は、ユーザに通知する音声をスピーカに出力させたりする処理を挙げることができる。または、このユーザに通知する処理として、例えば、ユーザが指定するアドレスにメールを送信することでユーザに通知したり、可動システム1がランプを備える場合は、当該ランプを点灯又は点滅させたりする処理等を挙げることもできる。 処理 Note that the process of notifying the user includes various methods for notifying the user. Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker. For example, to output the data to Alternatively, as a process of notifying the user, for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
  図9は、実施形態1に係るPLC50の処理の流れを表す図である。まず、正常範囲演算部52は、評価対象である指標の特徴量それぞれを座標軸とした多次元の座標空間において、それぞれの特徴量の正常範囲を規定する閾値(閾値T1・T2)を演算する(ステップS10)。次いで、取得部54は、ドライバ40からトルク値等の第1指標と、速度値等の第2指標を経時的に取得する(ステップS11)。 FIG. 9 is a diagram illustrating a processing flow of the PLC 50 according to the first embodiment. First, the normal range calculation unit 52 calculates thresholds (thresholds T1 and T2) that define a normal range of each feature in a multidimensional coordinate space in which each feature of the index to be evaluated is used as a coordinate axis. Step S10). Next, the acquisition unit 54 acquires a first index such as a torque value and a second index such as a speed value from the driver 40 with time (step S11).
  そして、第1特徴量演算部55aは、取得部54が取得したトルク値等の第1指標の所定期間における特徴量である平均値(第1特徴量)を演算する(ステップS12)。第1特徴量演算部55aは、演算した平均値(第1特徴量)を経時的に判定部56へ出力する。 Then, the first feature value calculation unit 55a calculates an average value (first feature value) which is a feature value of the first index such as the torque value acquired by the acquisition unit 54 in a predetermined period (step S12). The first feature value calculation unit 55a outputs the calculated average value (first feature value) to the determination unit 56 over time.
  また、第2特徴量演算部55bは、取得部54が取得した速度値等の第2指標の所定期間における特徴量である速度差分平均値(第2特徴量)を演算する(ステップS13)。第2特徴量演算部55bは、演算した速度差分平均値(第2特徴量)を経時的に判定部56へ出力する。 {Circle around (2)} The second feature value calculation unit 55b calculates a speed difference average value (second feature value) as a feature value of the second index such as the speed value acquired by the acquisition unit 54 in a predetermined period (step S13). The second feature value calculation unit 55b outputs the calculated speed difference average value (second feature value) to the determination unit 56 over time.
  次いで、判定部56は、トルクの平均値(第1特徴量)をx座標とし、速度差分平均値(第2特徴量)をy座標とする座標空間を作成する。そして、判定部56は、第1特徴量演算部55aから取得した平均値(第1特徴量)をxの値とし、当該平均値と同じ時間の第2特徴量演算部55bから取得した速度差分平均値(第2特徴量)をyの値とする座標データを作成し、xy座標空間にプロットしていく。そして、判定部56は、記憶部53に記憶された正常範囲を参照し、プロットした座標データのうち、xの値(トルクの平均値)に応じたyの値(第2特徴量)の閾値(閾値T1のy座標の値範囲及び閾値T2のy座標の値範囲)を取得する(ステップS14)。 Next, the determination unit 56 creates a coordinate space in which the average value of the torque (first feature value) is set as the x coordinate and the average value of the speed difference (second feature value) is set as the y coordinate. Then, the determination unit 56 sets the average value (first feature amount) obtained from the first feature amount calculation unit 55a as the value of x, and obtains the speed difference obtained from the second feature amount calculation unit 55b at the same time as the average value. Coordinate data with the average value (second feature amount) as the value of y is created and plotted in the xy coordinate space. Then, the determination unit 56 refers to the normal range stored in the storage unit 53, and sets a threshold value of the y value (second feature amount) corresponding to the x value (the average value of torque) among the plotted coordinate data. (The value range of the y-coordinate of the threshold T1 and the value range of the y-coordinate of the threshold T2) are acquired (step S14).
  さらに、判定部56は、記憶部53に記憶された正常範囲を参照し、座標空間にプロットした座標データのうち、yの値(速度差分平均値)に応じたxの値(第1特徴量)の閾値(閾値T1のx座標の値範囲及び閾値T2のx座標の値範囲)を取得する(ステップS15)。 Further, the determination unit 56 refers to the normal range stored in the storage unit 53, and among the coordinate data plotted in the coordinate space, the value of x (first characteristic amount) corresponding to the value of y (average speed difference value) ) (The value range of the x coordinate of the threshold T1 and the value range of the x coordinate of the threshold T2) are acquired (step S15).
  そして、ステップS16において、判定部56は、xの値及びyの値が共に、閾値T1の範囲内であれば(ステップS16のYESの場合)、座標データは正常範囲の値であると判定し、ステップS11の処理に戻る。 Then, in step S16, if both the value of x and the value of y are within the range of the threshold value T1 (YES in step S16), the determination unit 56 determines that the coordinate data is a value in the normal range. The process returns to step S11.
  また、ステップS16において、判定部56は、xの値及びyの少なくとも一方が、閾値T1より大きく閾値T2以下の範囲であるか否かを判定する(ステップS17)。そして、ステップS17において、判定部56は、xの値及びyの少なくとも一方が、閾値T1より大きく閾値T2以下の範囲であると判定すると(ステップS17のYESの場合)、座標データは警告範囲に含まれると判定し、ユーザへの警告通知処理を行う(ステップS18)。また、ステップS17において、判定部56は、xの値及びyの少なくとも一方が、閾値T2より大きい場合(ステップS17のNOの場合)、座標データは異常であると判定し、ユーザへの異常報知処理を行う(ステップS19)。 In addition, in step S16, the determination unit 56 determines whether or not at least one of the value of x and y is in a range greater than the threshold T1 and equal to or less than the threshold T2 (step S17). Then, in step S17, when the determining unit 56 determines that at least one of the value of x and the value of y is in a range that is larger than the threshold value T1 and equal to or smaller than the threshold value T2 (YES in step S17), the coordinate data is set in the warning range. It is determined that it is included, and a warning notification process to the user is performed (step S18). In step S17, when at least one of the value x and the value y is larger than the threshold value T2 (NO in step S17), the determination unit 56 determines that the coordinate data is abnormal, and notifies the user of the abnormality. The process is performed (Step S19).
  〔ソフトウェアによる実現例〕
 PLC50の制御ブロック(特に指示部51、正常範囲演算部52、取得部54、第1特徴量演算部55a、第2特徴量演算部55b及び判定部56)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks of the PLC 50 (especially, the instruction unit 51, the normal range calculation unit 52, the acquisition unit 54, the first feature calculation unit 55a, the second feature calculation unit 55b, and the determination unit 56) are integrated circuits (IC chips) and the like. It may be realized by a formed logic circuit (hardware) or by software.
  後者の場合、PLC50は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function. The computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program. As the processor, for example, a CPU (Central Processing Unit) can be used. Examples of the recording medium include "temporary tangible media" such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 (付記事項)
  本発明の一側面に係る情報処理装置は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得部と、前記取得部が取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算部と、前記取得部が取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算部と、前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算部が演算した前記第2特徴量と前記第2閾値とを比較することで、当該第2特徴量が前記正常範囲に含まれるか否かを判定する判定部を備えている。
(Appendix)
An information processing apparatus according to one aspect of the present invention includes a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value. An acquisition unit that acquires the first index over time, a first feature quantity computation unit that computes a first feature quantity that is a feature quantity in a predetermined period of the first index acquired by the acquisition unit, and a second feature quantity that is acquired by the acquisition unit. A second feature value calculation unit that calculates a second feature value of the index during the predetermined period; and a second threshold value that defines a normal range of the second feature value and changes according to the first feature value. And comparing the second feature value calculated by the second feature value calculation unit with the second threshold value to determine whether or not the second feature value is included in the normal range. It has a part.
  上記構成によると、第1指標及び第2指標のうち、第1指標の特徴量である第1特徴量に応じた第2特徴量の正確な正常範囲を、第2閾値として得ることができる。これにより、前記可動装置の異常の有無を早期に検出することができる。 According to the above configuration, an accurate normal range of the second feature value according to the first feature value, which is the feature value of the first index, out of the first index and the second index can be obtained as the second threshold value. Thus, the presence or absence of an abnormality in the movable device can be detected at an early stage.
  前記判定部は、前記第1特徴量の正常範囲を規定しかつ前記第2特徴量に応じて変化する第1閾値を取得し、前記第1特徴量演算部が演算した前記第1特徴量と前記第1閾値とを比較することで、当該第1特徴量が前記正常範囲に含まれるか否かを判定してもよい。上記構成によると、第1指標及び第2指標のうち、第2指標の特徴量である第2特徴量に応じた第1特徴量の正確な正常範囲を、第1閾値として得ることができる。これにより、前記可動装置の異常の有無を早期に検出することができる。 The determination unit defines a normal range of the first feature amount and obtains a first threshold value that changes according to the second feature amount, and obtains the first feature amount calculated by the first feature amount calculation unit. By comparing the first feature value with the first threshold value, it may be determined whether or not the first feature value is included in the normal range. According to the above configuration, an accurate normal range of the first characteristic amount according to the second characteristic amount, which is the characteristic amount of the second index, of the first index and the second index can be obtained as the first threshold. Thus, the presence or absence of an abnormality in the movable device can be detected at an early stage.
  前記正常範囲は楕円形状であってもよい。 正常 The normal range may be elliptical.
  前記第1特徴量は、前記所定期間における前記第1指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかであってもよい。 The first feature amount is an average value, a variance, a difference between a maximum value and a minimum value, a predicted value of an output value accompanying rotation of a motor, and a measured value of the output value of the first index during the predetermined period. It may be any of the average of the differences and the variance of the difference between the predicted value of the output value due to the rotation of the motor and the measured value of the output value.
  前記第2特徴量は、前記所定期間における前記第2指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかであってもよい。 The second feature amount is an average value, a variance, a difference between a maximum value and a minimum value, a predicted value of an output value accompanying rotation of the motor, and a measured value of the output value of the second index in the predetermined period. It may be any of the average of the differences and the variance of the difference between the predicted value of the output value due to the rotation of the motor and the measured value of the output value.
  前記第1指標及び前記第2指標は、互いに異なる指標であって、前記モータの回転に伴うトルク、前記モータが回転する速度、及び、前記モータの回転に伴う前記可動装置の動作速度の何れかであってもよい。トルク及び速度は、可動装置が動いているときの指標であるので、可動装置の異常が値に反映されやすい。それゆえ、前記可動装置の異常の有無を早期に検出することができる。 The first index and the second index are different from each other, and may be any one of a torque associated with the rotation of the motor, a speed at which the motor rotates, and an operation speed of the movable device according to the rotation of the motor. It may be. Since the torque and the speed are indexes when the movable device is moving, the abnormality of the movable device is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device can be detected at an early stage.
  本発明の一側面に係る情報処理方法は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得ステップと、前記取得ステップにて取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算ステップと、前記取得ステップにて取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算ステップと、前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算ステップにて演算した前記第2特徴量が前記正常範囲に含まれるか否かを判定する判定ステップとを有する。 An information processing method according to one aspect of the present invention provides a first index and a second index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value. Acquiring over time, a first feature amount calculating step of calculating a first feature amount, which is a feature amount of the first index acquired in the acquiring step during a predetermined period, and an acquisition step of acquiring the first index acquired in the acquiring step. A second feature value calculating step of calculating a second feature value which is a feature value of the second index during the predetermined period; and a second feature value defining a normal range of the second feature value and changing in accordance with the first feature value. Determining a second threshold value and determining whether or not the second feature value calculated in the second feature value calculation step is included in the normal range.
  本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
  1 可動システム
 10 可動装置
 11 ベース
 12 ボールネジ
 13 可動部
 20 カップリング
 30 モータ
 35 エンコーダ
 40 ドライバ
 50 PLC
 51 指示部
 52 正常範囲演算部
 53 記憶部
 54 取得部
 55a 第1特徴量演算部
 55b 第2特徴量演算部
 56 判定部
DESCRIPTION OF SYMBOLS 1 Movable system 10 Movable device 11 Base 12 Ball screw 13 Movable part 20 Coupling 30 Motor 35 Encoder 40 Driver 50 PLC
51 instruction unit 52 normal range calculation unit 53 storage unit 54 acquisition unit 55a first feature value calculation unit 55b second feature value calculation unit 56 determination unit

Claims (7)

  1.  可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得部と、
     前記取得部が取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算部と、
     前記取得部が取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算部と、
     前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算部が演算した前記第2特徴量と前記第2閾値とを比較することで、当該第2特徴量が前記正常範囲に含まれるか否かを判定する判定部を備えている情報処理装置。
    An acquisition unit configured to sequentially acquire a first index and a second index associated with rotation of the motor when the driver rotates the motor that causes the movable device to perform the predetermined operation based on the input instruction value;
    A first feature value calculation unit that calculates a first feature value that is a feature value of the first index acquired by the acquisition unit during a predetermined period;
    A second feature value calculation unit that calculates a second feature value of the second index acquired by the acquisition unit during the predetermined period;
    A second threshold value that defines a normal range of the second feature value and changes in accordance with the first feature value is obtained, and the second feature value and the second threshold value calculated by the second feature value calculation unit are calculated. An information processing apparatus comprising: a determination unit that determines whether the second feature amount falls within the normal range by comparing
  2.  前記判定部は、前記第1特徴量の正常範囲を規定しかつ前記第2特徴量に応じて変化する第1閾値を取得し、前記第1特徴量演算部が演算した前記第1特徴量と前記第1閾値とを比較することで、当該第1特徴量が前記正常範囲に含まれるか否かを判定する請求項1に記載の情報処理装置。 The determination unit defines a normal range of the first feature amount and obtains a first threshold value that changes according to the second feature amount, and obtains the first feature amount calculated by the first feature amount calculation unit. The information processing apparatus according to claim 1, wherein it is determined whether the first feature value is included in the normal range by comparing the first feature value with the first threshold value.
  3.  前記正常範囲は楕円形状である請求項1又は2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the normal range has an elliptical shape.
  4.  前記第1特徴量は、
     前記所定期間における前記第1指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかである請求項1~3の何れか1項に記載の情報処理装置。
    The first feature amount is:
    The first index in the predetermined period, the average value, the variance, the difference between the maximum value and the minimum value, the average of the difference between the predicted value of the output value accompanying the rotation of the motor and the measured value of the output value, and 4. The information processing apparatus according to claim 1, wherein the information is a variance of a difference between a predicted value of an output value and a measured value of the output value due to the rotation of.
  5.  前記第2特徴量は、
     前記所定期間における前記第2指標の、平均値、分散、最大値と最小値との差、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の平均、及び、モータの回転に伴う出力値の予測値と当該出力値の計測値との差の分散のいずれかである請求項1~4の何れか1項に記載の情報処理装置。
    The second feature amount is:
    The second index in the predetermined period, the average value, the variance, the difference between the maximum value and the minimum value, the average of the difference between the predicted value of the output value accompanying the rotation of the motor and the measured value of the output value, and The information processing apparatus according to any one of claims 1 to 4, wherein the information is any one of a variance of a difference between a predicted value of the output value and a measured value of the output value due to the rotation of (i).
  6.  前記第1指標及び前記第2指標は、互いに異なる指標であって、前記モータの回転に伴うトルク、前記モータが回転する速度、及び、前記モータの回転に伴う前記可動装置の動作速度の何れかである請求項1~5の何れか1項に記載の情報処理装置。 The first index and the second index are different from each other, and may be any one of a torque associated with the rotation of the motor, a speed at which the motor rotates, and an operation speed of the movable device according to the rotation of the motor. The information processing apparatus according to any one of claims 1 to 5, wherein
  7.  可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う第1指標及び第2指標を経時的に取得する取得ステップと、
     前記取得ステップにて取得した第1指標の所定期間における特徴量である第1特徴量を演算する第1特徴量演算ステップと、
     前記取得ステップにて取得した第2指標の前記所定期間における特徴量である第2特徴量を演算する第2特徴量演算ステップと、
     前記第2特徴量の正常範囲を規定しかつ前記第1特徴量に応じて変化する第2閾値を取得し、前記第2特徴量演算ステップにて演算した前記第2特徴量が前記正常範囲に含まれるか否かを判定する判定ステップとを有する情報処理方法。
    An acquisition step of acquiring a first index and a second index associated with the rotation of the motor when the driver rotates the motor that causes the movable device to perform the predetermined operation based on the input instruction value over time;
    A first feature value calculation step of calculating a first feature value which is a feature value of the first index acquired in the acquisition step during a predetermined period;
    A second feature value calculation step of calculating a second feature value which is a feature value of the second index acquired in the acquisition step during the predetermined period;
    The normal range of the second feature value is defined, and a second threshold value that changes in accordance with the first feature value is acquired, and the second feature value calculated in the second feature value calculation step falls within the normal range. A determining step of determining whether or not the information is included.
PCT/JP2019/034519 2018-09-07 2019-09-03 Information processing device and information processing method WO2020050237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-168028 2018-09-07
JP2018168028A JP7103092B2 (en) 2018-09-07 2018-09-07 Information processing equipment and information processing method

Publications (1)

Publication Number Publication Date
WO2020050237A1 true WO2020050237A1 (en) 2020-03-12

Family

ID=69721844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034519 WO2020050237A1 (en) 2018-09-07 2019-09-03 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP7103092B2 (en)
WO (1) WO2020050237A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211911A (en) * 2007-02-26 2008-09-11 Jtekt Corp Motor control device and electric power steering device
JP2009011028A (en) * 2007-06-26 2009-01-15 Toyota Motor Corp Motor drive system
JP2011155787A (en) * 2010-01-28 2011-08-11 Toyota Motor Corp Rotating electric control system
JP2013034281A (en) * 2011-08-01 2013-02-14 Denso Corp Controller for multi-phase rotary machine, and electrically driven power steering device using the same
JP2013033459A (en) * 2011-06-29 2013-02-14 Jfe Steel Corp Abnormality monitoring system and abnormality monitoring method
JP2014023214A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Motor controller
JP2017028947A (en) * 2015-07-27 2017-02-02 株式会社デンソー Slip determination device
WO2017154185A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Step-out detection device and step-out detection method
WO2017213182A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Abnormality diagnosis device and abnormality diagnosis method
JP2018095429A (en) * 2016-12-14 2018-06-21 株式会社日立ビルシステム Elevator diagnostic system, elevator diagnostic device, and elevator diagnostic method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880967B2 (en) * 2012-09-28 2016-03-09 株式会社デンソー AC motor control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211911A (en) * 2007-02-26 2008-09-11 Jtekt Corp Motor control device and electric power steering device
JP2009011028A (en) * 2007-06-26 2009-01-15 Toyota Motor Corp Motor drive system
JP2011155787A (en) * 2010-01-28 2011-08-11 Toyota Motor Corp Rotating electric control system
JP2013033459A (en) * 2011-06-29 2013-02-14 Jfe Steel Corp Abnormality monitoring system and abnormality monitoring method
JP2013034281A (en) * 2011-08-01 2013-02-14 Denso Corp Controller for multi-phase rotary machine, and electrically driven power steering device using the same
JP2014023214A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Motor controller
JP2017028947A (en) * 2015-07-27 2017-02-02 株式会社デンソー Slip determination device
WO2017154185A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Step-out detection device and step-out detection method
WO2017213182A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Abnormality diagnosis device and abnormality diagnosis method
JP2018095429A (en) * 2016-12-14 2018-06-21 株式会社日立ビルシステム Elevator diagnostic system, elevator diagnostic device, and elevator diagnostic method

Also Published As

Publication number Publication date
JP7103092B2 (en) 2022-07-20
JP2020043651A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US10126718B2 (en) Control device, control program, and recording medium
US20160279794A1 (en) Robot controller capable of performing fault diagnosis of robot
JP5009791B2 (en) Intelligent drive
JP4109280B2 (en) Machine having a movable part driven and controlled by a servo motor
US10486279B2 (en) Abnormality determination device and abnormality determining method
JP5991042B2 (en) Anomaly monitoring system and anomaly monitoring method
US20160114483A1 (en) Robot control method, robot apparatus, program, recording medium, and manufacturing method of assembly part
US11370131B2 (en) Abnormality detecting device and abnormality detecting method
EP2344854A1 (en) A method and a device for detecting abnormal changes in play in a transmission unit of a movable mechanical unit
US20170102000A1 (en) Motor drive device capable of informing malfunction in operation of fan, and method thereof
CN108120454A (en) A kind of angle detecting method of incremental encoder
WO2020050237A1 (en) Information processing device and information processing method
US20170315533A1 (en) Machine tool control device having function of diagnosing malfunction in sensor for detecting one-rotation signal
JP3370845B2 (en) Absolute encoder
WO2020050236A1 (en) Information processing device and information processing method
JP7131611B2 (en) Abnormality determination device and abnormality determination method
WO2020044993A1 (en) Information processing device and information processing method
CN110695769B (en) Abnormality detection device for machine tool
JP7110843B2 (en) Abnormality determination device and abnormality determination method
US9356550B2 (en) Motor controller having abnormality detection function of power transmission unit between motor and main shaft
CN111897289B (en) Torque information processing method, device, equipment and medium for motor driving mechanism
US11754994B2 (en) Diagnostic apparatus and diagnostic method
JP3856204B2 (en) Equipment diagnostic equipment
TWI733951B (en) Method for dynamically sampling encoder in motor ripple of a motor
CN111638731A (en) Steering engine, control method thereof and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858096

Country of ref document: EP

Kind code of ref document: A1