WO2020050236A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2020050236A1
WO2020050236A1 PCT/JP2019/034518 JP2019034518W WO2020050236A1 WO 2020050236 A1 WO2020050236 A1 WO 2020050236A1 JP 2019034518 W JP2019034518 W JP 2019034518W WO 2020050236 A1 WO2020050236 A1 WO 2020050236A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
difference
rotation
unit
Prior art date
Application number
PCT/JP2019/034518
Other languages
French (fr)
Japanese (ja)
Inventor
仁 友定
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020050236A1 publication Critical patent/WO2020050236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to an information processing device and an information processing method.
  • a device that monitors the operation of a movable device that performs a predetermined operation to detect the presence or absence of an abnormality in the movable device is used.
  • the presence or absence of an abnormality in the drawing device is determined by obtaining an average value and a standard deviation of a difference between a set stroke and a detection stroke of a slab for a plurality of cycles.
  • An object of one embodiment of the present invention is to accurately detect an abnormality of a movable device.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • the information processing apparatus provides an index associated with the rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value over time.
  • An acquiring unit for acquiring, the index acquired by the acquiring unit, and a difference computing unit that computes, over time, a difference between the index and an expected value of the index associated with the rotation of the motor based on the indicated value; and a predetermined period of the difference.
  • a failure detection unit that detects a failure of the movable device by comparing the feature value with a threshold value.
  • An information processing method is an acquisition step of sequentially acquiring an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an instruction value, A difference calculating step of calculating, over time, a difference between the index acquired in the acquiring step and an expected value of the index associated with rotation of the motor based on the instruction value; A feature value calculating step of calculating; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the feature value with a threshold.
  • FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment.
  • FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment.
  • FIG. 3 is a diagram illustrating respective waveforms of an instruction value, an ideal waveform, and a measurement value according to the first embodiment.
  • 5 is a waveform showing a difference between an output value associated with rotation of a motor and an expected value, calculated by a difference calculation unit according to the first embodiment.
  • FIG. 3 is a diagram illustrating a flow of processing of the PLC according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment.
  • the PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
  • the movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50.
  • the movable system 1 is, for example, a production facility used in a product manufacturing factory.
  • the movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20.
  • the movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
  • the PLC 50 acquires an index associated with the rotation of the motor 30 over time, and detects an abnormality of the movable device 10 based on a difference between an expected value of the index and the acquired index.
  • the predicted value is predicted based on the indicated value (control target value) and is different from the indicated value (control target value).
  • the predicted value represents a measured value of the index in the normal movable device 10 (for example, an average value).
  • the PLC 50 may be any information processing device that detects an abnormality of the movable device 10 based on a difference between the expected value of the index and the index, and the information processing device may be, for example, a server. . Specific examples of the index will be described later.
  • the movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13.
  • the ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11.
  • the movable section 13 is mounted on the ball screw 12.
  • One end of the ball screw 12 is connected to an output shaft of a motor 30 via a coupling 20.
  • the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path).
  • the movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation.
  • the predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
  • the motor 30 includes the encoder 35.
  • the encoder 35 outputs information indicating the rotation direction and the rotation angle of the motor 30 to the driver 40 over time as a pulse signal.
  • the encoder 35 may be externally provided separately from the motor 30.
  • the encoder 35 is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder 35 outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 with time as a pulse signal.
  • the encoder 35 built in the motor 30 or an external encoder 35 provided separately from the motor 30 makes contact between the rotating part and a sensing part that senses the rotation direction and the rotation angle of the rotating part.
  • the driver 40 sets an appropriate value of current and voltage based on an instruction value (control target value) from the PLC 50 so that the number of revolutions of the motor 30 per unit time becomes the instruction value (control target value). And outputs the generated current and voltage to the motor 30.
  • the driver 40 controls the rotation of the motor 30.
  • the driver 40 calculates a torque value, which is an output value associated with the rotation of the motor 30, with time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50. .
  • An instruction value (control target value) from the PLC 50 input to the driver 40, a current value and a voltage value output from the driver 40 to the motor 30, and a torque value calculated from the current value and the voltage value are determined by the rotation of the motor 30.
  • 7 is an example of a control value for controlling the motor 30 among the indices associated with.
  • the driver 40 changes the angular velocity value (in other words, the rotation speed of the motor 30) which is the output value (measured value) accompanying the rotation of the motor 30 with time based on the pulse signal acquired from the encoder 35 provided in the motor 30. And sequentially output to the PLC 50.
  • an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value.
  • the data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30.
  • an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value.
  • the data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30.
  • a position sensor is attached to the movable unit 13, and the position sensor acquires the position data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the position sensor acquires the position data of the movable unit 13. May be sequentially output to the PLC 50 as an output value associated with the rotation of the motor 30.
  • the rotation speed of the motor 30 calculated from the pulse signal output from the motor 30 to the driver 40, or the acceleration value and the position obtained from a separately provided sensor are determined by the rotation of the motor 30. It is an example of an output value (measured value) accompanying rotation of the motor 30 among the accompanying indexes. Note that the output value (measured value) associated with the rotation of the motor 30 may be a value obtained by measuring with the rotation of the motor 30.
  • FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment.
  • the PLC 50 includes an instruction unit 51, a predicted value calculation unit 52, a storage unit 53, an acquisition unit 54, a difference calculation unit 55, a feature value calculation unit 56, and an abnormality detection unit 57.
  • an instruction unit 51 a predicted value calculation unit 52
  • a storage unit 53 a storage unit 53
  • an acquisition unit 54 a difference calculation unit 55
  • a feature value calculation unit 56 a feature value calculation unit 56
  • an abnormality detection unit 57 an abnormality detection unit 57.
  • FIG. 3 is a diagram showing the waveforms of the indicated value, the ideal waveform, and the measured values 1 and 2 according to the first embodiment.
  • the instruction unit 51 outputs the instruction values shown in FIG.
  • the instruction value output from the instruction unit 51 to the driver 40 is a target value of an index associated with the rotation of the motor 30.
  • the index associated with the rotation of the motor 30 includes a current value and a voltage value (control value) generated by the driver 40 based on the instruction value, a torque value (control value) calculated from the current value and the voltage value, and a rotation of the motor 30.
  • the output value (measured value) accompanying the rotation of the motor 30 is, for example, the rotation speed of the motor 30 at which a pulse signal output from the encoder 35 is calculated, or an acceleration value, a position, or the like obtained from a separately provided sensor.
  • the torque and the speed are indexes when the movable device 10 is moving, the abnormality of the movable device 10 is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device 10 can be detected at an early stage.
  • the driver 40 When the instruction value is the control target value of the torque, when the driver 40 obtains the instruction value from the instruction unit 51, the driver 40 generates a current and a voltage having such a value that the torque of the motor 30 becomes the instruction value, and generates the current. The motor 30 is rotated by the current and the voltage. Thereby, the motor 30 rotates so that the torque becomes the indicated value.
  • the driver 40 obtains the instruction value from the instruction unit 51, and sets the current and the value of the value such that the rotating speed of the motor 30 becomes the instruction value. A voltage is generated, and the motor 30 is rotated by the generated current and voltage. Thereby, the motor 30 rotates so that the speed becomes the indicated value.
  • the driver 40 obtains the instruction value from the instruction unit 51, and outputs a current and a voltage of such values that the speed of the movable unit 13 becomes the instruction value. Then, the motor 30 is rotated by the generated current and voltage. As a result, the motor 30 rotates so that the speed of the movable unit 13 becomes the specified value.
  • the waveform of the instruction value output from the instruction unit 51 to the driver 40 represents an example in which the target value of the rotation speed of the motor 30 is used. Further, in the example shown in FIG. 3, the waveform of the instruction value is not a waveform that switches smoothly during acceleration, constant speed, and deceleration, but is a rectangular shape. In addition, the example shown in FIG. 3 shows a waveform of an instruction value when the movable unit 13 operates in one cycle.
  • the instruction unit 51 may be omitted, and the instruction value may be obtained from a separately provided PLC.
  • the predicted value calculation unit 52 generates a predicted value of an index associated with the rotation of the motor 30 based on the command value output from the command unit 51 to the driver 40, and stores the predicted value in the storage unit 53 in advance.
  • the predicted value calculation unit 52 creates in advance a database representing the correspondence between the indicated value output by the indicating unit 51 and an index associated with the rotation of the motor 30 with respect to the indicated value, and stores the database in the storage unit 53. You should keep it.
  • the expected value calculation unit 52 previously creates a transfer function indicating the correspondence between the indicated value output by the indicating unit 51 and an index associated with the rotation of the motor 30 with respect to the indicated value, and stores the transfer function.
  • the information may be stored in the unit 53.
  • FIG. 3 represents an ideal waveform which is a waveform of an expected value corresponding to the waveform of the indicated value output from the indicating unit 51.
  • the index associated with the rotation of the motor 30 has a waveform that follows the waveform of the indicated value output by the indicating unit 51, but is exactly the same as the waveform of the indicated value output by the indicating unit 51. And some deviation occurs.
  • the ideal waveform is obtained immediately after the rising of the waveform of the indicated value output from the indicating unit 51 (that is, immediately after the rotation of the motor 30 is started from a stopped state) and from the falling of the waveform of the indicated value output by the indicating unit 51. Until the motor 30 stops (ie, from the deceleration state of the motor 30 to the stop of the rotation), the deviation from the waveform of the indicated value increases.
  • the storage unit 53 stores a database or a transfer function for obtaining an expected value of an index associated with the rotation of the motor 30 with respect to the indicated value.
  • the expected value of the output value accompanying the rotation of the motor 30 with respect to the waveform of the indicated value may be stored in the storage unit 53 as a waveform.
  • the storage unit 53 may be provided outside the PLC 50 or may be externally connected to the PLC 50.
  • the acquisition unit 54 acquires an index associated with the rotation of the motor 30 when the driver 40 rotates based on the instruction value from the driver 40 over time.
  • the measured value of the rotation speed of the motor 30 is, for example, the rotation speed of the motor 30 obtained by the driver 40 from the encoder 35.
  • the waveform of the measured value of the rotating speed of the motor 30 has a large difference from the waveform of the indicated value, but the difference from the ideal waveform is small.
  • the shape is along.
  • the difference calculation unit 55 Based on the instruction value acquired from the instruction unit 51, the difference calculation unit 55 acquires, from the storage unit 53, the predicted value of the output value accompanying the rotation of the motor 30 based on the instruction value over time. Then, the difference calculation unit 55 calculates the difference between the index acquired by the acquisition unit 54 associated with the rotation of the motor 30 and the predicted value acquired from the storage unit 53 over time.
  • FIG. 4 is a waveform showing a difference between an index associated with the rotation of the motor 30 and an expected value, calculated by the difference calculation unit 55 according to the first embodiment.
  • the difference between the ideal waveform shown in FIG. 3 and the measured value 1 is represented by a difference 1
  • the difference between the ideal waveform and the measured value 2 is represented by a difference 2 as a waveform. That is, the difference 1 represents a deviation of the measured value 1 from the ideal waveform shown in FIG. 3, and the difference 2 represents a deviation of the measured value 2 from the ideal waveform shown in FIG.
  • the difference 1 and the difference 2 indicate a difference between an expected output value associated with the rotation of the motor 30 and an actual output value associated with the rotation of the motor 30.
  • the difference between the measured value and the expected value such as the difference 1 and the difference 2 may be referred to as a disturbance component.
  • the feature value calculation unit 56 calculates a feature value of a difference (turbulence component) between a predicted value of an output value accompanying rotation of the motor 30 and an index associated with actual rotation of the motor 30 in a predetermined period. For example, the feature value calculation unit 56 calculates the feature value of the difference 1 in one cycle shown in FIG. 4 and / or the feature value of the difference 2 in one cycle shown in FIG.
  • the feature value calculated by the feature value calculation unit 56 includes an average value of absolute values of differences in a predetermined period, a difference between a maximum value and a minimum value of the difference in a predetermined period, or a variance of the difference in a predetermined period. This is a variation amount of the index in a predetermined period.
  • the difference is accumulated over the predetermined period, so that a small deviation from the predicted value can be detected. Therefore, the abnormality of the movable device 10 can be accurately and early detected.
  • the predetermined period may be a period of an integral multiple cycle (one or more cycles) of the movable device 10.
  • the abnormality detection unit 57 compares the feature amount calculated by the feature amount calculation unit 56 with a threshold. Then, when the feature amount becomes equal to or larger than the threshold value, the abnormality detection unit 57 detects that an abnormality has occurred in the movable device 10. Then, when detecting that an abnormality has occurred in the movable device 10, the abnormality detection unit 57 performs a process of notifying the user.
  • the difference calculation unit 55 calculates the difference between the index acquired by the acquisition unit 54 and the predicted value based on the instruction value stored in the storage unit 53 over time. Then, the feature value calculation unit 56 calculates the feature value of the difference in a predetermined period. Then, the abnormality detection unit 57 detects an abnormality of the movable device 10 by comparing the feature amount with the threshold. For this reason, a smaller change in the index can be detected as compared with the case where the abnormality of the movable device 10 is detected based on the difference between the indicated value and the index. As a result, the abnormality of the movable device 10 can be accurately detected.
  • the process of notifying the user includes various methods for notifying the user.
  • Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker.
  • to output the data to Alternatively, as a process of notifying the user, for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
  • FIG. 5 is a diagram illustrating a processing flow of the PLC 50 according to the first embodiment.
  • the expected value calculation unit 52 calculates an expected value of an index associated with the rotation of the motor 30 based on the instruction value output from the instruction unit 51 to the driver 40, and stores a waveform (ideal waveform) of the expected value in the storage unit 53.
  • the instruction unit 51 calculates an instruction value at which the rotation speed of the motor 30 is targeted, and outputs the instruction value to the driver 40 (step S12).
  • the driver 40 sets the voltage and the current (that is, sets the torque) so that the indicated value obtained by the indicating unit 51 is obtained, and rotates the motor 30.
  • the acquisition unit 54 acquires the rotation speed (index) of the motor 30 from the driver 40 with time (step S13).
  • the difference calculation unit 55 refers to the storage unit 53, acquires an expected value based on the instruction value obtained from the instruction unit 51 (that is, acquires an ideal waveform, and acquires the rotation speed (index) of the motor 30 acquired by the acquisition unit 54).
  • the feature value calculation unit 56 calculates the feature value of the difference calculated by the difference calculation unit 55 for each predetermined time (Step S15).
  • the unit 57 compares the feature value calculated by the feature value calculation unit 56 with a threshold value (step S16), and when the feature value is equal to or larger than the threshold value (YES in step S16), performs notification processing to the user (step S17).
  • control blocks of the PLC 50 are logic circuits formed on an integrated circuit (IC chip) or the like. It may be realized by a circuit (hardware) or by software.
  • the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium include "temporary tangible media” such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program.
  • a transmission medium a communication network, a broadcast wave, or the like
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • An information processing device acquires an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value over time.
  • An acquisition unit a difference calculation unit that calculates a difference between the index acquired by the acquisition unit and an expected value of an index associated with rotation of the motor based on the indicated value over time, and a feature of the difference in a predetermined period.
  • the mobile device includes a feature value calculation unit that calculates an amount, and an abnormality detection unit that detects an abnormality of the movable device by comparing the feature value with a threshold.
  • a storage unit may be provided that stores in advance an expected value corresponding to an index associated with the rotation of the motor based on the instruction value.
  • the feature value may be an average value of absolute values of the difference during the predetermined period. According to this, the difference is accumulated over a predetermined period, so that a small deviation from the expected value can be detected. Therefore, the abnormality of the movable device can be accurately and early detected.
  • the feature value may be a difference between a maximum value and a minimum value of the difference during the predetermined period, or a variance of the difference during the predetermined period.
  • the index associated with the rotation of the motor may be the torque of the motor.
  • the index associated with the rotation of the motor may be a speed at which the motor rotates. Since the torque and the speed are indexes when the movable device is moving, the abnormality of the movable device is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device can be detected at an early stage.
  • An information processing method is an acquisition step of sequentially acquiring an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an instruction value, A difference calculating step of calculating, over time, a difference between the index acquired in the acquiring step and an expected value of the index associated with rotation of the motor based on the instruction value; A feature value calculating step of calculating; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the feature value with a threshold.

Abstract

The present invention accurately detects abnormalities at a moving device. According to the present invention, a difference computation part (55) of a PLC (50) computes the difference between a prediction value for a command value and an indicator that is associated with the rotation of a motor (30), and an abnormality detection part (57) determines that there is an abnormality when a feature quantity for the difference is at or above a threshold value.

Description

情報処理装置及び情報処理方法Information processing apparatus and information processing method
 本発明は情報処理装置及び情報処理方法に関する。 The present invention relates to an information processing device and an information processing method.
 所定動作を行う可動装置の動作を監視することで当該可動装置の異常の有無を検出する装置が使用されている。特許文献1の引抜装置では、鋳片の、引抜き設定ストロークと引き抜き検出ストロークとの偏差の複数サイクル分の平均値及び標準偏差を求めて引抜装置の異常の有無を検出している。 装置 A device that monitors the operation of a movable device that performs a predetermined operation to detect the presence or absence of an abnormality in the movable device is used. In the drawing device of Patent Document 1, the presence or absence of an abnormality in the drawing device is determined by obtaining an average value and a standard deviation of a difference between a set stroke and a detection stroke of a slab for a plurality of cycles.
日本国公開特許公報「特開平6‐226405号公報」Japanese Unexamined Patent Publication "JP-A-6-226405"
 速度制御で動作させる際の可動装置に入力する速度の指示値(目標値)と、実際に可動装置の可動部が可動した際の速度との間にはずれが生じる。特に、可動部の動作開始直後、及び、動作終了直前に、当該ずれは大きくなる。 ず れ There is a gap between the speed instruction value (target value) input to the movable device when operating under speed control and the speed when the movable part of the movable device actually moves. In particular, immediately after the start of the operation of the movable part and immediately before the end of the operation, the deviation becomes large.
 このため可動装置に入力する指示値と、可動装置が実際に動作したときの出力値との比較に基づいて当該可動装置の異常の有無を検出すると、わずかな可動装置の異常に伴う変動に気付かない場合がある。本発明の一態様は、精度よく、可動装置の異常を検出することを目的とする。 Therefore, if the presence or absence of an abnormality in the movable device is detected based on a comparison between an instruction value input to the movable device and an output value when the movable device actually operates, a slight change due to the abnormality in the movable device may be noticed. May not be. An object of one embodiment of the present invention is to accurately detect an abnormality of a movable device.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention employs the following configuration in order to solve the above-described problems.
 すなわち、本発明の一側面に係る情報処理装置は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う指標を経時的に取得する取得部と、前記取得部が取得した前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算部と、前記差分の所定期間における特徴量を演算する特徴量演算部と、前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている。 That is, the information processing apparatus according to one aspect of the present invention provides an index associated with the rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value over time. An acquiring unit for acquiring, the index acquired by the acquiring unit, and a difference computing unit that computes, over time, a difference between the index and an expected value of the index associated with the rotation of the motor based on the indicated value; and a predetermined period of the difference. And a failure detection unit that detects a failure of the movable device by comparing the feature value with a threshold value.
 本発明の一側面に係る情報処理方法は、可動装置に所定動作をさせるモータをドライバが指示値に基づいて回転させたときの当該モータの回転に伴う指標を経時的に取得する取得ステップと、前記取得ステップにて取得された前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算ステップと、前記差分の所定期間における特徴量を演算する特徴量演算ステップと、前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する。 An information processing method according to one aspect of the present invention is an acquisition step of sequentially acquiring an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an instruction value, A difference calculating step of calculating, over time, a difference between the index acquired in the acquiring step and an expected value of the index associated with rotation of the motor based on the instruction value; A feature value calculating step of calculating; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the feature value with a threshold.
 本発明の一態様によれば、精度よく、可動装置の異常を検出することができる。 According to one embodiment of the present invention, it is possible to accurately detect an abnormality in a movable device.
実施形態1に係るPLCの機能ブロックの一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional block of the PLC according to the first embodiment. 実施形態1に係るPLCの適用場面の一例を模式的に表す図である。FIG. 3 is a diagram schematically illustrating an example of an application scene of the PLC according to the first embodiment. 実施形態1に係る、指示値、理想波形、計測値それぞれの波形を表す図である。FIG. 3 is a diagram illustrating respective waveforms of an instruction value, an ideal waveform, and a measurement value according to the first embodiment. 実施形態1に係る差分演算部が演算した、モータの回転に伴う出力値と、予想値との差分を表す波形である。5 is a waveform showing a difference between an output value associated with rotation of a motor and an expected value, calculated by a difference calculation unit according to the first embodiment. 実施形態1に係るPLCの処理の流れを表す図である。FIG. 3 is a diagram illustrating a flow of processing of the PLC according to the first embodiment.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 §1 適用例
 図2を用いて、本発明が適用される場面の一例について説明する。図2は、実施形態1に係るPLC(programmable logic controller)50の適用場面の一例を模式的に表す図である。本実施形態に係るPLC50は、モータ30の回転によって所定動作をする可動機構(可動部13、ボールネジ12)を含む可動装置10の異常をリアルタイムで検出する、本発明の情報処理装置の一例である。
§1 Application Example An example of a scene to which the present invention is applied will be described with reference to FIG. FIG. 2 is a diagram schematically illustrating an example of an application scene of a PLC (programmable logic controller) 50 according to the first embodiment. The PLC 50 according to the present embodiment is an example of the information processing apparatus of the present invention that detects an abnormality of the movable device 10 including the movable mechanism (the movable portion 13 and the ball screw 12) that performs a predetermined operation by the rotation of the motor 30 in real time. .
 可動システム1は、可動装置10と、モータ30と、モータ30の駆動を制御するドライバ40と、PLC50とを備えている。可動システム1は、例えば、製品の製造工場において用いられる生産設備である。可動装置10は、例えば、カップリング20を介して接続されているモータ30の回転が伝達されることによって、所定動作を行う装置である。可動装置10は、モータ30の回転が伝達されることで所定動作をする装置であればよく、例えば、製造工場において用いられる搬送装置等の各種装置であってもよいし、製造工場以外で用いられている各種のロボット等の装置であってもよい。 The movable system 1 includes the movable device 10, the motor 30, a driver 40 that controls the driving of the motor 30, and a PLC 50. The movable system 1 is, for example, a production facility used in a product manufacturing factory. The movable device 10 is a device that performs a predetermined operation, for example, by transmitting rotation of a motor 30 connected via the coupling 20. The movable device 10 may be any device that performs a predetermined operation when the rotation of the motor 30 is transmitted, and may be, for example, various devices such as a transport device used in a manufacturing plant, or used in a device other than the manufacturing plant. Devices such as various types of robots.
 PLC50は、モータ30の回転に伴う指標を経時的に取得し、当該指標の予想値と当該取得した指標との差分に基づいて可動装置10の異常を検出する。予測値は、指示値(制御目標値)に基づいて予測されるものであり、指示値(制御目標値)とは異なる。予測値は、正常な可動装置10における指標の計測値を表すもの(例えば平均値)である。なお、PLC50は、指標の予想値と当該指標との差分に基づいて可動装置10の異常を検出する情報処理装置であればよく、当該情報処理装置としては、例えば、サーバ等であってもよい。指標の具体例は後述する。 The PLC 50 acquires an index associated with the rotation of the motor 30 over time, and detects an abnormality of the movable device 10 based on a difference between an expected value of the index and the acquired index. The predicted value is predicted based on the indicated value (control target value) and is different from the indicated value (control target value). The predicted value represents a measured value of the index in the normal movable device 10 (for example, an average value). Note that the PLC 50 may be any information processing device that detects an abnormality of the movable device 10 based on a difference between the expected value of the index and the index, and the information processing device may be, for example, a server. . Specific examples of the index will be described later.
 §2 構成例
 図2を用いて、実施形態1に係る可動システム1の構成例について説明する。可動装置10は、例えば、リニアガイドを有するベース11と、ボールネジ12と、可動部13とを備えている。ボールネジ12は、ベース11の長軸方向に平行となるようにベース11に搭載されている。可動部13は、ボールネジ12に搭載されている。ボールネジ12の一方の端部は、カップリング20を介してモータ30の出力軸と接続されている。
§2 Configuration Example A configuration example of the movable system 1 according to the first embodiment will be described with reference to FIG. The movable device 10 includes, for example, a base 11 having a linear guide, a ball screw 12, and a movable portion 13. The ball screw 12 is mounted on the base 11 so as to be parallel to the long axis direction of the base 11. The movable section 13 is mounted on the ball screw 12. One end of the ball screw 12 is connected to an output shaft of a motor 30 via a coupling 20.
 モータ30の出力軸の回転(単に、モータ30の回転と称する)によってボールネジ12が回転する。そして、可動部13は、ボールネジ12の回転に伴い、ボールネジ12上であって、矢印A1に示すように、ボールネジ12に沿って動作する(すなわち移動する)。 (4) The rotation of the output shaft of the motor 30 (simply called the rotation of the motor 30) causes the ball screw 12 to rotate. Then, as the ball screw 12 rotates, the movable portion 13 moves (ie, moves) on the ball screw 12 and along the ball screw 12 as indicated by an arrow A1.
 可動装置10は、例えば、可動部13が、ボールネジ12の一方の端部(モータ30に近い側の端部)近傍から、他方の端部(モータ30から遠い側の端部)近傍方向(往路方向)へ1サイクルの動作として移動したり、逆に、可動部13が、ボールネジ12の他方の端部近傍から、一方の端部近傍方向(復路方向)へ1サイクルの動作として移動したりする。この可動装置10における所定動作とは、前記1サイクルの動作であってもよいし、前記1サイクルの動作を複数回含む複数サイクルの動作であってもよい。 In the movable device 10, for example, the movable portion 13 moves from the vicinity of one end (the end closer to the motor 30) of the ball screw 12 to the vicinity of the other end (the end farther from the motor 30) (outbound path). The movable portion 13 moves from the vicinity of the other end of the ball screw 12 to the vicinity of one end (return direction) of the ball screw 12 as a one-cycle operation. . The predetermined operation in the movable device 10 may be the one-cycle operation or a plurality of cycles including the one-cycle operation a plurality of times.
 本実施形態では、モータ30はエンコーダ35を備えているものとして説明する。エンコーダ35は、モータ30の回転方向及び回転角度を示す情報をパルス信号としてドライバ40へ経時的に出力する。 実 施 In the present embodiment, description will be made assuming that the motor 30 includes the encoder 35. The encoder 35 outputs information indicating the rotation direction and the rotation angle of the motor 30 to the driver 40 over time as a pulse signal.
 なお、エンコーダ35は、モータ30とは別に設けられた外付けであってもよい。エンコーダ35がモータ30とは別に設けられている場合、例えば、当該エンコーダ35は、ボールネジ12の他方の端部(モータ30から遠い側の端部)にカップリングを介して取り付けられる。そして、当該エンコーダ35は、ボールネジ12の回転方向及び回転角度を示す情報をパルス信号としてPLC50へ経時的に出力する。 The encoder 35 may be externally provided separately from the motor 30. When the encoder 35 is provided separately from the motor 30, for example, the encoder 35 is attached to the other end of the ball screw 12 (the end farther from the motor 30) via a coupling. Then, the encoder 35 outputs information indicating the rotation direction and the rotation angle of the ball screw 12 to the PLC 50 with time as a pulse signal.
 なお、モータ30に内蔵されているエンコーダ35又はモータ30とは別に設けられた外付けのエンコーダ35は、回転部分と、当該回転部分の回転方向及び回転角度をセンシングするセンシング部分と、が接触している接触式のエンコーダであってもよいし、回転部分とセンシング部分とが非接触である非接触式のエンコーダであってもよい。 Note that the encoder 35 built in the motor 30 or an external encoder 35 provided separately from the motor 30 makes contact between the rotating part and a sensing part that senses the rotation direction and the rotation angle of the rotating part. Contact type encoder, or a non-contact type encoder in which the rotating part and the sensing part are in non-contact.
 例えば、ドライバ40は、PLC50からの指示値(制御目標値)に基づいて、モータ30の単位時間あたりの回転数が指示値(制御目標値)となるように、適切な値の電流及び電圧を生成し、当該生成した電流及び電圧をモータ30に出力する。これにより、ドライバ40は、モータ30の回転を制御する。例えば、ドライバ40は、モータ30へ出力した電流及び電圧それぞれの電流値及び電圧値に基づいて、モータ30の回転に伴う出力値であるトルク値を経時的に演算し、逐次、PLC50へ出力する。 For example, the driver 40 sets an appropriate value of current and voltage based on an instruction value (control target value) from the PLC 50 so that the number of revolutions of the motor 30 per unit time becomes the instruction value (control target value). And outputs the generated current and voltage to the motor 30. Thus, the driver 40 controls the rotation of the motor 30. For example, the driver 40 calculates a torque value, which is an output value associated with the rotation of the motor 30, with time based on the current value and the voltage value of the current and the voltage output to the motor 30, and sequentially outputs the torque value to the PLC 50. .
 ドライバ40に入力されるPLC50からの指示値(制御目標値)、ドライバ40からモータ30へ出力する電流値及び電圧値及び、当該電流値及び電圧値から演算されるトルク値は、モータ30の回転に伴う指標のうち、モータ30を制御するための制御値の一例である。 An instruction value (control target value) from the PLC 50 input to the driver 40, a current value and a voltage value output from the driver 40 to the motor 30, and a torque value calculated from the current value and the voltage value are determined by the rotation of the motor 30. 7 is an example of a control value for controlling the motor 30 among the indices associated with.
 また、ドライバ40は、モータ30が備えるエンコーダ35から取得するパルス信号に基づいて、モータ30の回転に伴う出力値(計測値)である角速度値(換言するとモータ30の回転の速度)を経時的に演算して、逐次、PLC50へ出力してもよい。 Further, the driver 40 changes the angular velocity value (in other words, the rotation speed of the motor 30) which is the output value (measured value) accompanying the rotation of the motor 30 with time based on the pulse signal acquired from the encoder 35 provided in the motor 30. And sequentially output to the PLC 50.
 なお、例えば、可動部13に加速度センサを取り付けておき、モータ30の回転に伴って移動する可動部13の加速度データを加速度センサが経時的に取得し、当該加速度センサが、加速度値を示す加速度データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。 In addition, for example, an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value. The data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30.
 なお、例えば、可動部13に加速度センサを取り付けておき、モータ30の回転に伴って移動する可動部13の加速度データを加速度センサが経時的に取得し、当該加速度センサが、加速度値を示す加速度データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。また、例えば、可動部13に位置センサを取り付けておき、モータ30の回転に伴って移動する可動部13の位置データを位置センサが経時的に取得し、当該位置センサが、可動部13の位置を示す位置データを、モータ30の回転に伴う出力値として、逐次、PLC50へ出力するようにしてもよい。 In addition, for example, an acceleration sensor is attached to the movable unit 13, the acceleration sensor acquires the acceleration data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the acceleration sensor determines the acceleration value indicating the acceleration value. The data may be sequentially output to the PLC 50 as an output value accompanying the rotation of the motor 30. Further, for example, a position sensor is attached to the movable unit 13, and the position sensor acquires the position data of the movable unit 13 that moves with the rotation of the motor 30 over time, and the position sensor acquires the position data of the movable unit 13. May be sequentially output to the PLC 50 as an output value associated with the rotation of the motor 30.
 上述したような、モータ30からドライバ40へ出力されるパルス信号から演算されるモータ30の回転の速度、又は別途設けられたセンサから得られる、加速度値、及び位置等は、モータ30の回転に伴う指標のうち、モータ30の回転に伴う出力値(計測値)の一例である。なお、モータ30の回転に伴う出力値(計測値)は、モータ30の回転に伴って計測して得られる値であればよい。 As described above, the rotation speed of the motor 30 calculated from the pulse signal output from the motor 30 to the driver 40, or the acceleration value and the position obtained from a separately provided sensor are determined by the rotation of the motor 30. It is an example of an output value (measured value) accompanying rotation of the motor 30 among the accompanying indexes. Note that the output value (measured value) associated with the rotation of the motor 30 may be a value obtained by measuring with the rotation of the motor 30.
 図1は、実施形態1に係るPLC50の機能ブロックの一例を示す図である。PLC50は、指示部51と、予想値演算部52と、記憶部53と、取得部54と、差分演算部55と、特徴量演算部56と、異常検出部57を備えている。以下、PLC50が備える各部について説明する。 FIG. 1 is a diagram illustrating an example of functional blocks of the PLC 50 according to the first embodiment. The PLC 50 includes an instruction unit 51, a predicted value calculation unit 52, a storage unit 53, an acquisition unit 54, a difference calculation unit 55, a feature value calculation unit 56, and an abnormality detection unit 57. Hereinafter, each unit included in the PLC 50 will be described.
 図3は、実施形態1に係る、指示値、理想波形、計測値1・2それぞれの波形を表す図である。 FIG. 3 is a diagram showing the waveforms of the indicated value, the ideal waveform, and the measured values 1 and 2 according to the first embodiment.
 指示部51は、図3に示す指示値を、ドライバ40に出力する。指示部51がドライバ40に出力する指示値とは、モータ30の回転に伴う指標の目標値である。 The instruction unit 51 outputs the instruction values shown in FIG. The instruction value output from the instruction unit 51 to the driver 40 is a target value of an index associated with the rotation of the motor 30.
 モータ30の回転に伴う指標は、ドライバ40が指示値に基づいて生成する電流値及び電圧値(制御値)、当該電流値及び電圧値から演算されるトルク値(制御値)、モータ30の回転に伴う出力値(計測値)を挙げることができる。モータ30の回転に伴う出力値(計測値)は、例えば、エンコーダ35から出力されるパルス信号が演算されるモータ30の回転の速度、又は別途設けられたセンサから得られる、加速度値、位置等を挙げることができる。特に、トルク及び速度は、可動装置10が動いているときの指標であるので、可動装置10の異常が値に反映されやすい。それゆえ、可動装置10の異常の有無を早期に検出することができる。 The index associated with the rotation of the motor 30 includes a current value and a voltage value (control value) generated by the driver 40 based on the instruction value, a torque value (control value) calculated from the current value and the voltage value, and a rotation of the motor 30. Output value (measurement value) associated with the above. The output value (measured value) accompanying the rotation of the motor 30 is, for example, the rotation speed of the motor 30 at which a pulse signal output from the encoder 35 is calculated, or an acceleration value, a position, or the like obtained from a separately provided sensor. Can be mentioned. In particular, since the torque and the speed are indexes when the movable device 10 is moving, the abnormality of the movable device 10 is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device 10 can be detected at an early stage.
 指示値がトルクの制御目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、モータ30のトルクが当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、トルクが当該指示値となるように回転する。また、指示値がモータ30の回転する速度の目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、モータ30の回転する速度が当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、速度が当該指示値となるように回転する。また、指示値が可動部13の速度の目標値の場合、ドライバ40は、指示部51から当該指示値を取得すると、可動部13の速度が当該指示値となるような値の電流及び電圧を生成し、当該生成した電流及び電圧によってモータ30を回転させる。これにより、モータ30は、可動部13の速度が当該指示値となるように回転する。 When the instruction value is the control target value of the torque, when the driver 40 obtains the instruction value from the instruction unit 51, the driver 40 generates a current and a voltage having such a value that the torque of the motor 30 becomes the instruction value, and generates the current. The motor 30 is rotated by the current and the voltage. Thereby, the motor 30 rotates so that the torque becomes the indicated value. When the instruction value is the target value of the rotating speed of the motor 30, the driver 40 obtains the instruction value from the instruction unit 51, and sets the current and the value of the value such that the rotating speed of the motor 30 becomes the instruction value. A voltage is generated, and the motor 30 is rotated by the generated current and voltage. Thereby, the motor 30 rotates so that the speed becomes the indicated value. When the instruction value is the target value of the speed of the movable unit 13, the driver 40 obtains the instruction value from the instruction unit 51, and outputs a current and a voltage of such values that the speed of the movable unit 13 becomes the instruction value. Then, the motor 30 is rotated by the generated current and voltage. As a result, the motor 30 rotates so that the speed of the movable unit 13 becomes the specified value.
 図3に示す例では、指示部51がドライバ40へ出力する指示値の波形は、モータ30の回転する速度の目標値である場合の例を表している。また、図3に示す例では、指示値の波形は、加速時・等速時・減速時それぞれの切り換えがなだらかな波形ではなく、矩形形状の例を表している。また、図3に示す例では、可動部13が1サイクル動作する際の指示値の波形を示している。 In the example shown in FIG. 3, the waveform of the instruction value output from the instruction unit 51 to the driver 40 represents an example in which the target value of the rotation speed of the motor 30 is used. Further, in the example shown in FIG. 3, the waveform of the instruction value is not a waveform that switches smoothly during acceleration, constant speed, and deceleration, but is a rectangular shape. In addition, the example shown in FIG. 3 shows a waveform of an instruction value when the movable unit 13 operates in one cycle.
 なお、本発明に係る情報処理装置がPLCではなく、サーバである場合は、指示部51を省略し、別途設けられるPLCから指示値を取得するようにしてもよい。 In the case where the information processing apparatus according to the present invention is not a PLC but a server, the instruction unit 51 may be omitted, and the instruction value may be obtained from a separately provided PLC.
 予想値演算部52は、指示部51がドライバ40へ出力する指示値に基づく、モータ30の回転に伴う指標の予想値を生成し、当該予想値を記憶部53に予め記憶しておく。予想値演算部52は、指示部51が出力する指示値と、当該指示値に対するモータ30の回転に伴う指標との対応関係を表すデータベースを予め作成しておき、当該データベースを記憶部53に記憶しておけばよい。また、予想値演算部52は、指示部51が出力する指示値と、当該指示値に対するモータ30の回転に伴う指標との対応関係を表す伝達関数を予め作成しておき、当該伝達関数を記憶部53に記憶しておいてもよい。 The predicted value calculation unit 52 generates a predicted value of an index associated with the rotation of the motor 30 based on the command value output from the command unit 51 to the driver 40, and stores the predicted value in the storage unit 53 in advance. The predicted value calculation unit 52 creates in advance a database representing the correspondence between the indicated value output by the indicating unit 51 and an index associated with the rotation of the motor 30 with respect to the indicated value, and stores the database in the storage unit 53. You should keep it. In addition, the expected value calculation unit 52 previously creates a transfer function indicating the correspondence between the indicated value output by the indicating unit 51 and an index associated with the rotation of the motor 30 with respect to the indicated value, and stores the transfer function. The information may be stored in the unit 53.
 図3に示す例では、指示部51が出力する指示値の波形に対応する予想値の波形である理想波形を表している。 (3) The example shown in FIG. 3 represents an ideal waveform which is a waveform of an expected value corresponding to the waveform of the indicated value output from the indicating unit 51.
 図3に示すように、モータ30の回転に伴う指標は、指示部51が出力する指示値の波形に追従するような波形となるが、指示部51が出力する指示値の波形と全く同じにはならず、多少のズレが生じる。特に、理想波形は、指示部51が出力する指示値の波形の立ち上がり直後(すなわちモータ30の停止状態から回転を開始した直後)、及び、指示部51が出力する指示値の波形の立ち下がりから停止まで(すなわちモータ30の減速状態から回転の停止まで)において、指示値の波形とのズレが大きくなる。 As shown in FIG. 3, the index associated with the rotation of the motor 30 has a waveform that follows the waveform of the indicated value output by the indicating unit 51, but is exactly the same as the waveform of the indicated value output by the indicating unit 51. And some deviation occurs. In particular, the ideal waveform is obtained immediately after the rising of the waveform of the indicated value output from the indicating unit 51 (that is, immediately after the rotation of the motor 30 is started from a stopped state) and from the falling of the waveform of the indicated value output by the indicating unit 51. Until the motor 30 stops (ie, from the deceleration state of the motor 30 to the stop of the rotation), the deviation from the waveform of the indicated value increases.
 記憶部53は、上述のように、指示値に対するモータ30の回転に伴う指標の予想値を得るためのデータベース又は伝達関数が記憶されている。指示値の波形に対するモータ30の回転に伴う出力値の予想値が波形として記憶部53に記憶されていてもよい。なお、記憶部53は、PLC50の外部に設けられてもよいし、PLC50に外付けで接続されてもよい。 As described above, the storage unit 53 stores a database or a transfer function for obtaining an expected value of an index associated with the rotation of the motor 30 with respect to the indicated value. The expected value of the output value accompanying the rotation of the motor 30 with respect to the waveform of the indicated value may be stored in the storage unit 53 as a waveform. The storage unit 53 may be provided outside the PLC 50 or may be externally connected to the PLC 50.
 取得部54は、ドライバ40が指示値に基づいて回転させたときのモータ30の回転に伴う指標を、ドライバ40から経時的に取得する。図3に示す例では、モータ30の回転に伴う指標として、計測値1・計測値2に示すように、ドライバ40から、モータ30の回転する速度の計測値を2回取得している例を表している。モータ30の回転する速度の計測値とは、例えば、ドライバ40がエンコーダ35から得たモータ30の回転の速度である。図3の計測値1・計測値2に示すように、モータ30の回転する速度の計測値の波形は、指示値の波形との差は大きいが、理想波形との差は小さく、理想波形に沿った形状をしている。 The acquisition unit 54 acquires an index associated with the rotation of the motor 30 when the driver 40 rotates based on the instruction value from the driver 40 over time. In the example illustrated in FIG. 3, an example in which the measured value of the rotating speed of the motor 30 is acquired twice from the driver 40 as an index associated with the rotation of the motor 30 as indicated by the measured value 1 and the measured value 2 Represents. The measured value of the rotation speed of the motor 30 is, for example, the rotation speed of the motor 30 obtained by the driver 40 from the encoder 35. As shown by the measured value 1 and the measured value 2 in FIG. 3, the waveform of the measured value of the rotating speed of the motor 30 has a large difference from the waveform of the indicated value, but the difference from the ideal waveform is small. The shape is along.
 差分演算部55は、指示部51から取得した指示値に基づいて、当該指示値に基づくモータ30の回転に伴う出力値の予想値を経時的に記憶部53から取得する。そして、差分演算部55は、取得部54が取得したモータ30の回転に伴う指標と、記憶部53から取得した予想値との差分を経時的に演算する。 Based on the instruction value acquired from the instruction unit 51, the difference calculation unit 55 acquires, from the storage unit 53, the predicted value of the output value accompanying the rotation of the motor 30 based on the instruction value over time. Then, the difference calculation unit 55 calculates the difference between the index acquired by the acquisition unit 54 associated with the rotation of the motor 30 and the predicted value acquired from the storage unit 53 over time.
 図4は、実施形態1に係る差分演算部55が演算した、モータ30の回転に伴う指標と、予想値との差分を表す波形である。図4では、図3に示した理想波形と計測値1との差分を差分1として表し、理想波形と計測値2との差分を差分2としてそれぞれ波形で表している。すなわち、差分1は、図3に示した理想波形に対する計測値1のズレを表しており、差分2は、図3に示した理想波形に対する計測値2のズレを表している。換言すると、差分1・差分2は、モータ30の回転に伴う出力値の予想値に対する、実際のモータ30の回転に伴う出力値とのズレを表している。なお、差分1・差分2のように、予想値に対する計測値の差分を乱れ成分と称する場合がある。 FIG. 4 is a waveform showing a difference between an index associated with the rotation of the motor 30 and an expected value, calculated by the difference calculation unit 55 according to the first embodiment. In FIG. 4, the difference between the ideal waveform shown in FIG. 3 and the measured value 1 is represented by a difference 1, and the difference between the ideal waveform and the measured value 2 is represented by a difference 2 as a waveform. That is, the difference 1 represents a deviation of the measured value 1 from the ideal waveform shown in FIG. 3, and the difference 2 represents a deviation of the measured value 2 from the ideal waveform shown in FIG. In other words, the difference 1 and the difference 2 indicate a difference between an expected output value associated with the rotation of the motor 30 and an actual output value associated with the rotation of the motor 30. Note that the difference between the measured value and the expected value, such as the difference 1 and the difference 2, may be referred to as a disturbance component.
 特徴量演算部56は、モータ30の回転に伴う出力値の予想値と、実際のモータ30の回転に伴う指標との差分(乱れ成分)の所定期間における特徴量を演算する。例えば、特徴量演算部56は、図4に示した1サイクルにおける差分1の特徴量、及び/または、図4に示した1サイクルにおける差分2の特徴量を演算する。この特徴量演算部56が演算する特徴量とは、所定期間における差分の絶対値の平均値、所定期間における差分の最大値と最小値との差分、又は、所定期間における前記差分の分散等、所定期間における指標のバラツキ量である。 The feature value calculation unit 56 calculates a feature value of a difference (turbulence component) between a predicted value of an output value accompanying rotation of the motor 30 and an index associated with actual rotation of the motor 30 in a predetermined period. For example, the feature value calculation unit 56 calculates the feature value of the difference 1 in one cycle shown in FIG. 4 and / or the feature value of the difference 2 in one cycle shown in FIG. The feature value calculated by the feature value calculation unit 56 includes an average value of absolute values of differences in a predetermined period, a difference between a maximum value and a minimum value of the difference in a predetermined period, or a variance of the difference in a predetermined period. This is a variation amount of the index in a predetermined period.
 特に、特徴量として、所定期間における、差分1・2の絶対値の平均値を演算することで、所定期間に渡って差分が累積されるため、予測値に対する小さなずれも検出することができる。それゆえ、精度よく、早期に可動装置10の異常を検出することができる。 Particularly, by calculating the average value of the absolute values of the differences 1 and 2 in the predetermined period as the feature amount, the difference is accumulated over the predetermined period, so that a small deviation from the predicted value can be detected. Therefore, the abnormality of the movable device 10 can be accurately and early detected.
 なお所定期間とは、可動装置10の整数倍サイクル(1又は複数サイクル)の期間であればよい。 The predetermined period may be a period of an integral multiple cycle (one or more cycles) of the movable device 10.
 異常検出部57は、特徴量演算部56が演算した特徴量を、閾値とを比較する。そして当該特徴量が閾値以上になると、異常検出部57は、可動装置10に異常が発生していることを検出する。そして、異常検出部57は、可動装置10に異常が発生していることを検出すると、ユーザに通知する処理を行う。 The abnormality detection unit 57 compares the feature amount calculated by the feature amount calculation unit 56 with a threshold. Then, when the feature amount becomes equal to or larger than the threshold value, the abnormality detection unit 57 detects that an abnormality has occurred in the movable device 10. Then, when detecting that an abnormality has occurred in the movable device 10, the abnormality detection unit 57 performs a process of notifying the user.
 このようにPLC50によると、差分演算部55は、取得部54が取得した指標と、記憶部53が記憶する指示値に基づく予想値との差分とを経時的に演算する。そして、特徴量演算部56は、当該差分の所定期間における特徴量を演算する。そして、異常検出部57は、特徴量と閾値とを比較することで、可動装置10の異常を検出する。このため、指示値と指標との差分に基づいて可動装置10の異常を検出する場合と比べて、より小さな指標の変動を検出することができる。この結果、精度よく、可動装置10の異常を検出することができる。 According to the PLC 50, the difference calculation unit 55 calculates the difference between the index acquired by the acquisition unit 54 and the predicted value based on the instruction value stored in the storage unit 53 over time. Then, the feature value calculation unit 56 calculates the feature value of the difference in a predetermined period. Then, the abnormality detection unit 57 detects an abnormality of the movable device 10 by comparing the feature amount with the threshold. For this reason, a smaller change in the index can be detected as compared with the case where the abnormality of the movable device 10 is detected based on the difference between the indicated value and the index. As a result, the abnormality of the movable device 10 can be accurately detected.
 なお、ユーザに通知する処理とは、ユーザに通知するための種々の方法を含む。このユーザに通知する処理の例としては、可動システム1がディスプレイを備える場合は、ユーザに通知する画面をディスプレイに表示させたり、可動システム1がスピーカを備える場合は、ユーザに通知する音声をスピーカに出力させたりする処理を挙げることができる。または、このユーザに通知する処理として、例えば、ユーザが指定するアドレスにメールを送信することでユーザに通知したり、可動システム1がランプを備える場合は、当該ランプを点灯又は点滅させたりする処理等を挙げることもできる。 処理 Note that the process of notifying the user includes various methods for notifying the user. Examples of the process of notifying the user include displaying a screen for notifying the user on the display when the movable system 1 includes a display, and outputting a sound for notifying the user when the movable system 1 includes a speaker. For example, to output the data to Alternatively, as a process of notifying the user, for example, a process of notifying the user by sending an e-mail to an address designated by the user, or a process of turning on or blinking the lamp when the movable system 1 includes a lamp And the like.
 図5は、実施形態1に係るPLC50の処理の流れを表す図である。まず、予想値演算部52は、指示部51がドライバ40へ出力する指示値に基づく、モータ30の回転に伴う指標の予想値を演算し、当該予想値の波形(理想波形)を記憶部53に記憶する(ステップS11)。次いで、指示部51は、モータ30の回転の速度が目標とする指示値を演算し、当該指示値をドライバ40へ出力する(ステップS12)。そして、ドライバ40は、指示部51が取得した指示値となるように、電圧及び電流を設定し(すなわちトルクを設定し)、モータ30を回転させる。そして、取得部54は、ドライバ40からモータ30の回転の速度(指標)を経時的に取得する(ステップS13)。次いで、差分演算部55は、記憶部53を参照して指示部51から得た指示値に基づく予想値(すなわち理想波形を取得し、取得部54が取得したモータ30の回転の速度(指標)との差分を経時的に演算する(ステップS14)。そして、特徴量演算部56は、差分演算部55が演算する差分の所定時間毎の特徴量を演算する(ステップS15)。次いで、異常検出部57は、特徴量演算部56が演算する特徴量を閾値と比較していき(ステップS16)、閾値以上になると(ステップS16のYESの場合)、ユーザへの通知処理を行う(ステップS17)。 FIG. 5 is a diagram illustrating a processing flow of the PLC 50 according to the first embodiment. First, the expected value calculation unit 52 calculates an expected value of an index associated with the rotation of the motor 30 based on the instruction value output from the instruction unit 51 to the driver 40, and stores a waveform (ideal waveform) of the expected value in the storage unit 53. (Step S11). Next, the instruction unit 51 calculates an instruction value at which the rotation speed of the motor 30 is targeted, and outputs the instruction value to the driver 40 (step S12). Then, the driver 40 sets the voltage and the current (that is, sets the torque) so that the indicated value obtained by the indicating unit 51 is obtained, and rotates the motor 30. Then, the acquisition unit 54 acquires the rotation speed (index) of the motor 30 from the driver 40 with time (step S13). Next, the difference calculation unit 55 refers to the storage unit 53, acquires an expected value based on the instruction value obtained from the instruction unit 51 (that is, acquires an ideal waveform, and acquires the rotation speed (index) of the motor 30 acquired by the acquisition unit 54). (Step S14) Then, the feature value calculation unit 56 calculates the feature value of the difference calculated by the difference calculation unit 55 for each predetermined time (Step S15). The unit 57 compares the feature value calculated by the feature value calculation unit 56 with a threshold value (step S16), and when the feature value is equal to or larger than the threshold value (YES in step S16), performs notification processing to the user (step S17). .
 〔ソフトウェアによる実現例〕
 PLC50の制御ブロック(特に指示部51、予想値演算部52、取得部54、差分演算部55、特徴量演算部56及び異常検出部57)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks of the PLC 50 (in particular, the instruction unit 51, the expected value calculation unit 52, the acquisition unit 54, the difference calculation unit 55, the feature value calculation unit 56, and the abnormality detection unit 57) are logic circuits formed on an integrated circuit (IC chip) or the like. It may be realized by a circuit (hardware) or by software.
 後者の場合、PLC50は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the PLC 50 includes a computer that executes instructions of a program that is software for realizing each function. The computer includes, for example, one or more processors and a computer-readable recording medium storing the program. Then, in the computer, the object of the present invention is achieved when the processor reads the program from the recording medium and executes the program. As the processor, for example, a CPU (Central Processing Unit) can be used. Examples of the recording medium include "temporary tangible media" such as ROM (Read Only Memory), tapes, disks, cards, semiconductor memories, and programmable logic circuits. Further, a RAM (Random Access Memory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (a communication network, a broadcast wave, or the like) capable of transmitting the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 (付記事項)
 本発明の一側面に係る情報処理装置は、可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う指標を経時的に取得する取得部と、前記取得部が取得した前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算部と、前記差分の所定期間における特徴量を演算する特徴量演算部と、前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている。このため、前記指示値と前記指標との差分に基づいて前記可動装置の異常を検出する場合と比べて、より小さな前記指標の変動を検出することができる。この結果、精度よく、前記可動装置の異常を検出することができる。
(Appendix)
An information processing device according to one aspect of the present invention acquires an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an input instruction value over time. An acquisition unit, a difference calculation unit that calculates a difference between the index acquired by the acquisition unit and an expected value of an index associated with rotation of the motor based on the indicated value over time, and a feature of the difference in a predetermined period. The mobile device includes a feature value calculation unit that calculates an amount, and an abnormality detection unit that detects an abnormality of the movable device by comparing the feature value with a threshold. For this reason, a smaller change in the index can be detected as compared with the case where the abnormality of the movable device is detected based on the difference between the instruction value and the index. As a result, it is possible to accurately detect the abnormality of the movable device.
 前記指示値に基づく前記モータの回転に伴う指標に対応する予想値を予め記憶している記憶部を備えてもよい。 記憶 A storage unit may be provided that stores in advance an expected value corresponding to an index associated with the rotation of the motor based on the instruction value.
 前記特徴量は、前記所定期間における、前記差分の絶対値の平均値であってもよい。これによれば、所定期間に渡って差分が累積されるため、予想値に対する小さなずれも検出することができる。それゆえ、精度よく、早期に前記可動装置の異常を検出することができる。 The feature value may be an average value of absolute values of the difference during the predetermined period. According to this, the difference is accumulated over a predetermined period, so that a small deviation from the expected value can be detected. Therefore, the abnormality of the movable device can be accurately and early detected.
 前記特徴量は、前記所定期間における前記差分の最大値と最小値との差分、又は、前記所定期間における前記差分の分散であってもよい。 The feature value may be a difference between a maximum value and a minimum value of the difference during the predetermined period, or a variance of the difference during the predetermined period.
 前記モータの回転に伴う指標は、前記モータのトルクであってもよい。 The index associated with the rotation of the motor may be the torque of the motor.
 前記モータの回転に伴う指標は、前記モータが回転する速度であってもよい。トルク及び速度は、可動装置が動いているときの指標であるので、可動装置の異常が値に反映されやすい。それゆえ、前記可動装置の異常の有無を早期に検出することができる。 The index associated with the rotation of the motor may be a speed at which the motor rotates. Since the torque and the speed are indexes when the movable device is moving, the abnormality of the movable device is likely to be reflected in the values. Therefore, the presence or absence of an abnormality in the movable device can be detected at an early stage.
 本発明の一側面に係る情報処理方法は、可動装置に所定動作をさせるモータをドライバが指示値に基づいて回転させたときの当該モータの回転に伴う指標を経時的に取得する取得ステップと、前記取得ステップにて取得された前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算ステップと、前記差分の所定期間における特徴量を演算する特徴量演算ステップと、前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する。 An information processing method according to one aspect of the present invention is an acquisition step of sequentially acquiring an index associated with rotation of a motor that causes a movable device to perform a predetermined operation when the driver rotates the motor based on an instruction value, A difference calculating step of calculating, over time, a difference between the index acquired in the acquiring step and an expected value of the index associated with rotation of the motor based on the instruction value; A feature value calculating step of calculating; and an abnormality detecting step of detecting an abnormality of the movable device by comparing the feature value with a threshold.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
  1 可動システム
 10 可動装置
 11 ベース
 12 ボールネジ
 13 可動部
 20 カップリング
 30 モータ
 35 エンコーダ
 40 ドライバ
 50 PLC
 51 指示部
 52 予想値演算部
 53 記憶部
 54 取得部
 55 差分演算部
 56 特徴量演算部
 57 異常検出部
DESCRIPTION OF SYMBOLS 1 Movable system 10 Movable device 11 Base 12 Ball screw 13 Movable part 20 Coupling 30 Motor 35 Encoder 40 Driver 50 PLC
51 instruction unit 52 predicted value calculation unit 53 storage unit 54 acquisition unit 55 difference calculation unit 56 feature calculation unit 57 abnormality detection unit

Claims (7)

  1.  可動装置に所定動作をさせるモータを、入力された指示値に基づいてドライバが回転させたときの当該モータの回転に伴う指標を経時的に取得する取得部と、
     前記取得部が取得した前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算部と、
     前記差分の所定期間における特徴量を演算する特徴量演算部と、
     前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出部とを備えている情報処理装置。
    An acquisition unit that acquires, with time, an index associated with the rotation of the motor when the driver rotates the motor that causes the movable device to perform the predetermined operation based on the input instruction value;
    A difference calculating unit that calculates a difference between the index obtained by the obtaining unit and an expected value of the index associated with the rotation of the motor based on the indicated value over time,
    A feature value calculation unit that calculates a feature value of the difference in a predetermined period;
    An information processing apparatus comprising: an abnormality detection unit that detects an abnormality of the movable device by comparing the feature amount with a threshold.
  2.  前記指示値に基づく前記モータの回転に伴う指標に対応する予想値を予め記憶している記憶部を備える請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising: a storage unit that stores an expected value corresponding to an index associated with rotation of the motor based on the instruction value in advance.
  3.  前記特徴量は、前記所定期間における、前記差分の絶対値の平均値である請求項1又は2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the feature amount is an average value of absolute values of the difference during the predetermined period.
  4.  前記特徴量は、前記所定期間における前記差分の最大値と最小値との差分、又は、前記所定期間における前記差分の分散である請求項1又は2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the feature amount is a difference between a maximum value and a minimum value of the difference during the predetermined period, or a variance of the difference during the predetermined period.
  5.  前記モータの回転に伴う指標は、前記モータのトルクであることを特徴とする請求項1~4の何れか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the index associated with the rotation of the motor is a torque of the motor.
  6.  前記モータの回転に伴う指標は、前記モータが回転する速度であることを特徴とする請求項1~4の何れか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the index associated with the rotation of the motor is a speed at which the motor rotates.
  7.  可動装置に所定動作をさせるモータをドライバが指示値に基づいて回転させたときの当該モータの回転に伴う指標を経時的に取得する取得ステップと、
     前記取得ステップにて取得された前記指標と、前記指示値に基づく前記モータの回転に伴う指標の予想値との差分を経時的に演算する差分演算ステップと、
     前記差分の所定期間における特徴量を演算する特徴量演算ステップと、
     前記特徴量と閾値とを比較することで、前記可動装置の異常を検出する異常検出ステップとを有する情報処理方法。
    An acquisition step of acquiring an index associated with the rotation of the motor when the driver rotates the motor for performing the predetermined operation based on the instruction value with time,
    A difference calculation step of calculating, over time, a difference between the index acquired in the acquisition step and an expected value of an index associated with rotation of the motor based on the indicated value,
    A feature value calculating step of calculating a feature value in a predetermined period of the difference;
    An abnormality detection step of detecting an abnormality of the movable device by comparing the feature amount with a threshold value.
PCT/JP2019/034518 2018-09-07 2019-09-03 Information processing device and information processing method WO2020050236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-168027 2018-09-07
JP2018168027A JP7110845B2 (en) 2018-09-07 2018-09-07 Information processing device and information processing method

Publications (1)

Publication Number Publication Date
WO2020050236A1 true WO2020050236A1 (en) 2020-03-12

Family

ID=69722333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034518 WO2020050236A1 (en) 2018-09-07 2019-09-03 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP7110845B2 (en)
WO (1) WO2020050236A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7438086B2 (en) * 2020-11-18 2024-02-26 株式会社日立ソリューションズ Methods, devices and programs for determining differences between data series

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034281A (en) * 2011-08-01 2013-02-14 Denso Corp Controller for multi-phase rotary machine, and electrically driven power steering device using the same
JP2013106470A (en) * 2011-11-15 2013-05-30 Tokyo Keiki Inc Abnormality diagnostic device for motor
JP2014023214A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Motor controller
WO2017213182A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Abnormality diagnosis device and abnormality diagnosis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034281A (en) * 2011-08-01 2013-02-14 Denso Corp Controller for multi-phase rotary machine, and electrically driven power steering device using the same
JP2013106470A (en) * 2011-11-15 2013-05-30 Tokyo Keiki Inc Abnormality diagnostic device for motor
JP2014023214A (en) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp Motor controller
WO2017213182A1 (en) * 2016-06-07 2017-12-14 三菱電機株式会社 Abnormality diagnosis device and abnormality diagnosis method

Also Published As

Publication number Publication date
JP7110845B2 (en) 2022-08-02
JP2020043650A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP5009791B2 (en) Intelligent drive
CN106909074B (en) Control device
US20160279794A1 (en) Robot controller capable of performing fault diagnosis of robot
US11413759B2 (en) Robot apparatus, control method for controlling the same, non-transitory computer-readable recording medium, manufacturing system, and method for manufacturing an article
US10486279B2 (en) Abnormality determination device and abnormality determining method
US20170102000A1 (en) Motor drive device capable of informing malfunction in operation of fan, and method thereof
CN108120454A (en) A kind of angle detecting method of incremental encoder
WO2020050236A1 (en) Information processing device and information processing method
WO2020044993A1 (en) Information processing device and information processing method
JP3370845B2 (en) Absolute encoder
JP7110843B2 (en) Abnormality determination device and abnormality determination method
US9356550B2 (en) Motor controller having abnormality detection function of power transmission unit between motor and main shaft
WO2020050237A1 (en) Information processing device and information processing method
US9103883B2 (en) Method and evaluation device for checking plausibility of an incremental counter
CN111897289B (en) Torque information processing method, device, equipment and medium for motor driving mechanism
JP6522236B2 (en) Motor controller
JP3856204B2 (en) Equipment diagnostic equipment
TWI733951B (en) Method for dynamically sampling encoder in motor ripple of a motor
JP7192458B2 (en) Information processing device, information processing method and information processing program
US11820007B2 (en) Abnormality detection device and abnormality detection method
TWI795048B (en) Component abnormality monitoring method, electronic equipment, and storage medium
US20210276183A1 (en) Torque estimation system, torque estimation method, and program
JP5587695B2 (en) Encoder with noise state detection function
CN116593884A (en) Monitoring device
JPH06247528A (en) Body pushing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857078

Country of ref document: EP

Kind code of ref document: A1