WO2020044981A1 - Method for producing vanadium dioxide-containing particles - Google Patents

Method for producing vanadium dioxide-containing particles Download PDF

Info

Publication number
WO2020044981A1
WO2020044981A1 PCT/JP2019/030815 JP2019030815W WO2020044981A1 WO 2020044981 A1 WO2020044981 A1 WO 2020044981A1 JP 2019030815 W JP2019030815 W JP 2019030815W WO 2020044981 A1 WO2020044981 A1 WO 2020044981A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
containing particles
raw material
vanadium
material liquid
Prior art date
Application number
PCT/JP2019/030815
Other languages
French (fr)
Japanese (ja)
Inventor
山本 昌一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020540202A priority Critical patent/JP7173150B2/en
Publication of WO2020044981A1 publication Critical patent/WO2020044981A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing vanadium dioxide-containing particles having a small average particle diameter by a hydrothermal synthesis method using a flow-type reactor.
  • thermochromic materials In order to achieve both energy saving and comfortableness, application of thermochromic materials has been actively studied.
  • thermochromic material refers to, for example, a material that enables optical characteristics typified by light transmittance to be controlled by temperature.
  • a thermochromic material is applied to a window glass of a building. In this case, it is a material that can reflect heat in the room by reflecting infrared rays in summer and transmit infrared rays in the room in winter in order to use the heat energy.
  • thermochromic material that has received the most attention is a material containing vanadium dioxide (VO 2 ).
  • VO 2 vanadium dioxide
  • thermalchromic property is a property that optical properties reversibly change with temperature when a phase transition occurs near room temperature. Therefore, by utilizing this property, it is possible to obtain a material exhibiting an environmental temperature-dependent thermochromic property.
  • vanadium dioxide has several crystal phases such as an A phase, a B phase, a C phase, and a rutile type crystal phase (hereinafter, also referred to as an “R phase”).
  • the crystal structure exhibiting chromic properties at a relatively low temperature of 100 ° C. or lower is limited to the R phase (rutile type crystal phase).
  • the R phase has a monoclinic structure at a temperature lower than the phase transition temperature (about 68 ° C.), and exhibits high transmittance of visible light and infrared light.
  • the R phase has a tetragonal structure in a temperature range of 68 ° C.
  • phase transition temperature which is a phase transition temperature
  • vanadium dioxide-containing particles having such properties When vanadium dioxide-containing particles having such properties are applied to an optical film used by being attached to a window glass or the like, transparency (low haze) as the particles is required. It is desirable that the vanadium-containing particles are not agglomerated (the secondary particle size is small) and that the particle size is in the nano order (100 nm or less).
  • Patent Document 1 discloses that the composition and composition of a doped vanadium dioxide powder (V 1 ⁇ x M x O 2 ) are adjusted so that the doping element satisfies 0 ⁇ x ⁇ 0.5. Is disclosed as being controllable. Further, as a result, it is disclosed that the size of the crystallite diameter of the manufactured doped vanadium dioxide powder can be reduced and made uniform. Then, as a method for producing doped vanadium dioxide powder, the reaction precursor treated so that the hydrothermal reaction can be performed more easily is transferred to a hydrothermal reaction autoclave, and the hydrothermal reaction is performed. A method for drying and separating is disclosed.
  • Patent Literature 1 is a batch-type production apparatus using a hydrothermal autoclave, and requires a long hydrothermal reaction time of 6 to 12 hours. Since the average particle diameter is large and the distribution is wide, when the vanadium dioxide-containing particles are applied to an optical film, the film has a high haze and is not suitable as a film for use in vehicles or building materials.
  • Patent Document 2 discloses a hydrothermal synthesis method using high-temperature, high-pressure water in a supercritical state as a production method using a flow-type reactor.
  • the hydrothermal synthesis method using a flow-type reaction apparatus disclosed in Patent Document 2 when synthesizing fine particles, functional alkaline particles are supplied by supplying an alkaline aqueous solution to a reaction field and adjusting the pH. It is a method of controlling the diameter, but since the particles are formed in the same environment without removing the salts and the like which are excessively present in the particle formation process, the crystallite diameter and the particle diameter of the particles are adjusted to the desired conditions.
  • the particle size distribution is widened, which causes a decrease in thermochromic property and a decrease in transparency (haze) when applied to an optical film.
  • the present invention has been made in view of the above-described problems and circumstances, and a problem to be solved is to provide a vanadium dioxide-containing particle capable of obtaining an optical film having a small average particle size, a low haze, and excellent thermochromic properties. It is to provide a manufacturing method.
  • the present inventor has studied the causes of the above problems in order to solve the above problems, and found that in a method for producing vanadium dioxide-containing particles using a flow-type reaction apparatus having a hydrothermal reaction section, a vanadium-containing compound, Particles containing vanadium dioxide having an average primary particle size of 1 to 30 nm and an average crystallite size of 1 to 15 nm by adjusting the conditions of the step of desalting the slurry raw material liquid containing the agent and water.
  • the present inventors have found a method for producing vanadium dioxide-containing particles capable of obtaining an optical film having a small average particle size, a low haze, and an excellent thermochromic property by the method for producing the present invention, and have led to the present invention.
  • a method for producing vanadium dioxide-containing particles using a flow reactor having a hydrothermal reaction section It has at least the following first to third steps: First step: a step of preparing a slurry raw material liquid containing at least a vanadium-containing compound, a reaction modifier, and water Second step: a step of subjecting the slurry raw material liquid to a desalting treatment Third step: applying the desalting treatment A step of producing vanadium dioxide-containing particles by a hydrothermal reaction method using a reaction liquid obtained by mixing a slurry raw material liquid and water in a supercritical or subcritical state. In the second step, the pH of the slurry raw material liquid at 25 ° C.
  • the average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm, and A method for producing vanadium dioxide-containing particles, wherein the particles are produced by adjusting the average crystallite diameter to fall within a range of 1 to 15 nm.
  • vanadium dioxide-containing particles When producing vanadium dioxide-containing particles by a hydrothermal synthesis method, for example, if the slurry raw material liquid composed of a vanadium-containing compound, an alkaline agent, etc. is in a state containing a large amount of salts, the salts are converted into water. Controlling the particle structure during thermal synthesis, particularly affecting the formation of crystallites, made it difficult to obtain vanadium dioxide-containing particles having a desired particle profile.
  • salts in the slurry raw material liquid are excessively removed, for example, the electric conductivity of the slurry raw material liquid is reduced to about 1 mS / m.
  • the environment for forming particles during hydrothermal synthesis is improved, the crystallite size of vanadium dioxide-containing particles can be adjusted, and during hydrothermal synthesis, for example, when using a flow-through reactor, a flow path due to particle aggregation or the like is used. This has the advantage that it is possible to prevent clogging and to improve continuous productivity, but it has been found that it has the following problems.
  • the present inventor found that the slurry raw material liquid at the time of desalination treatment had a pH at 25 ° C. of 8.0 to 11.0.
  • the electric conductivity at 25 ° C. within the specific condition range of 10 to 1000 mS / m, the average primary order can be prevented without causing the above-described coarsening of the particles.
  • Process flow chart showing an example of a production process of vanadium dioxide-containing particles having a desalination treatment step of the present invention
  • the schematic diagram which shows an example of the processing flow of the ultrafiltration apparatus which is an example of the desalination apparatus applicable to the desalination processing step which concerns on this invention.
  • Schematic diagram showing an example of the particle structure (crystallite diameter) of vanadium dioxide-containing particles specified by the production method according to the present invention.
  • the method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles using a flow-type reaction apparatus having a hydrothermal reaction section, comprising at least the first to third steps described above,
  • the pH of the slurry raw material liquid at 25 ° C. is set within a range of 8.0 to 11.0
  • the electric conductivity at 25 ° C. is maintained within a range of 10 to 1000 mS / m
  • the vanadium dioxide is added. It is characterized in that the particles are produced by adjusting the average primary particle diameter of the contained particles to be in the range of 1 to 30 nm and the average crystallite diameter in the range of 1 to 15 nm.
  • This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the use of an ultrafiltration device as the desalting treatment for removing salts from the slurry raw material liquid can efficiently perform the desalting treatment. Is preferred.
  • the desalting treatment for removing salts from the slurry raw material liquid is performed at a liquid temperature of 30 ° C. or lower in that the desalting treatment can be performed more efficiently.
  • the water constituting the reaction solution is water in a supercritical state in that high-quality vanadium dioxide-containing particles can be stably produced.
  • the method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles using a flow reactor having a hydrothermal reaction section, It has at least the following first to third steps: First step: a step of preparing a slurry raw material liquid containing at least a vanadium-containing compound, a reaction modifier, and water Second step: a step of subjecting the slurry raw material liquid to a desalting treatment Third step: applying the desalting treatment A step of producing vanadium dioxide-containing particles by a hydrothermal reaction method using a reaction liquid obtained by mixing a slurry raw material liquid and water in a supercritical or subcritical state, In the second step, the pH of the slurry raw material liquid at 25 ° C.
  • the average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm, and It is characterized by being manufactured by adjusting the average crystallite diameter so as to be in the range of 1 to 15 nm.
  • vanadium dioxide (VO 2 ) -containing particles are also referred to as “vanadium dioxide-containing particles according to the present invention”, “VO 2 -containing particles according to the present invention”, or simply “VO 2 -containing particles”.
  • a method of forming a vanadium dioxide-containing particle by a hydrothermal reaction between a slurry raw material liquid containing a desalted vanadium-containing compound and supercritical or subcritical water is referred to as ⁇ hydrothermal.
  • synthesis method also referred to as “synthesis method”, “hydrothermal reaction method”, or “hydrothermal reaction”
  • the step of performing the hydrothermal reaction is referred to as “hydrothermal reaction step”
  • An apparatus for continuously performing a hydrothermal reaction as shown in FIG. 4 is referred to as a “flow-type reaction apparatus”.
  • FIG. 1 is a flowchart showing an example of the method for producing vanadium dioxide-containing particles of the present invention having a desalination treatment step.
  • a slurry raw material liquid is prepared.
  • the slurry raw material liquid according to the present invention includes (A) a raw material liquid containing a vanadium-containing compound and water, (B) a reaction modifier (for example, an alkali), and (C) water (preferably an ion (Exchange water), and various additives are added as needed.
  • the slurry raw material liquid is characterized in that the pH at 25 ° C. is in the range of 8.0 to 11.0 and the electric conductivity at 25 ° C. is in the range of 10 to 1000 mS / m.
  • the desalting method a decantation method, a centrifugal separation method, an ultrafiltration method and the like can be applied, and among them, the ultrafiltration method is particularly preferable.
  • the pH of the slurry raw material liquid can be easily measured using a commercially available pH meter, and the electric conductivity can also be easily measured using a commercially available electric conductivity meter.
  • the desalting temperature is preferably 30 ° C. or lower.
  • a "reaction liquid” is prepared by associating a slurry raw material liquid subjected to a desalination treatment with supercritical or subcritical ion exchange water, and then a hydrothermal reactor (for example, FIG. 4), and containing vanadium dioxide having an average primary particle size in the range of 1 to 30 nm and an average crystallite size in the range of 1 to 15 nm. Produce particles.
  • vanadium-containing compound raw material of vanadium dioxide-containing particles
  • vanadium (V) pentavalent vanadium
  • V divanadium pentoxide
  • V Tetravalent vanadium such as 2 O 5
  • ammonium vanadate V
  • V vanadium trichloride
  • V vanadium trichloride
  • V vanadium trichloride
  • V sodium vanadate
  • V NaVO 3
  • Described as (IV)) as vanadyl oxalate (IV) (VOC 2 O 4 ), vanadium oxide sulfate (hereinafter also referred to as vanadyl sulfate) (IV) (VOSO 4 ), and divanadium tetroxide (IV ) (V 2 O 4 ) dissolved in an acid such as sulfuric acid.
  • vanadium (IV) tetravalent vanadium
  • the vanadium-containing compound may be used singly or as a mixture of two or more.
  • the reaction modifier constituting the slurry raw material liquid is not particularly limited as long as it can produce vanadium dioxide-containing particles by hydrothermally reacting the slurry raw material liquid, but tetravalent vanadium (vanadium (IV When)) is applied, an alkali is used.
  • a tetravalent vanadium (IV) -containing compound is used as the vanadium-containing compound
  • an alkali is applied as the reaction regulator.
  • the alkali is added to an aqueous solution containing a vanadium-containing compound and ion-exchanged water.
  • a pentavalent vanadium (V) -containing compound When a pentavalent vanadium (V) -containing compound is used as the vanadium-containing compound, a reducing agent (for example, hydrazine and a hydrate thereof) is applied as a reaction modifier, but the reaction agent of the present invention is In the method for producing vanadium-containing particles, it is preferable to apply a tetravalent vanadium (IV) -containing compound capable of forming a slurry raw material liquid as the vanadium-containing compound. V) Detailed description of the containing compound and the reducing agent is omitted.
  • the vanadium (IV) -containing compound (raw material for the vanadium dioxide-containing particles) applied to the method for producing vanadium dioxide-containing particles of the present invention is not particularly limited, and can be appropriately selected from the compounds listed above. Among them, vanadium (IV) oxide (VOSO 4 ) is preferable from the viewpoint of generating as little by-products as possible after the hydrothermal reaction.
  • the vanadium (IV) -containing compound may be used alone or as a mixture of two or more.
  • the initial concentration of the vanadium (IV) -containing compound contained in the reaction solution is not particularly limited as long as the intended effects of the present invention can be obtained, but is preferably 0.1 to 1000 mmol / L. With such a concentration, the vanadium (IV) -containing compound is sufficiently dissolved or dispersed, the average primary particle size (particle size) of the obtained vanadium dioxide-containing particles is reduced, and the particle size (particle size) distribution is narrowed. As a result, the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be further improved.
  • the initial concentration of the vanadium (IV) compound contained in the reaction solution depends on the average primary particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles, and the transparency of the optical film containing the vanadium dioxide-containing particles. From the viewpoint of properties and the like, it is more preferably in the range of 20 to 600 mmol / L, and still more preferably in the range of 50 to 400 mmol / L.
  • the “initial concentration” is the amount of the vanadium (IV) -containing compound in 1 L of the reaction solution before the hydrothermal reaction (when two or more vanadium (IV) -containing compounds are contained, the total amount thereof). is there.
  • a vanadium (IV) -containing compound When a vanadium (IV) -containing compound is used as the vanadium-containing compound, it is preferable to use an alkali as a reaction regulator. Further, as described above, when a pentavalent vanadium (V) -containing compound is used as the vanadium-containing compound, a reducing agent (for example, hydrazine and its hydrate) is applied as the reaction modifier.
  • a reducing agent for example, hydrazine and its hydrate
  • alkali In the hydrothermal synthesis method (hydrothermal reaction), when the vanadium-containing compound is a vanadium (IV) -containing compound, it is preferable to use an alkali as at least one of the reaction modifiers.
  • the term “alkali” as used in the present invention means a substance that generates hydroxide ions (OH ⁇ ) in an aqueous solution. In addition to a compound that itself generates hydroxide ions, the alkali itself is a hydroxide ion. And compounds that do not result in the formation of a hydroxide ion.
  • the alkali is not particularly limited, and examples thereof include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like.
  • the above alkalis can be used alone or in combination of two or more.
  • ammonia, sodium hydroxide, or potassium hydroxide is preferable, ammonia or sodium hydroxide is more preferable, and ammonia is more preferable.
  • the alkali concentration in the slurry raw material liquid composed of the vanadium (IV) -containing compound, alkali and ion-exchanged water is not particularly limited, but is preferably, for example, in the range of 0.01 to 10 mol / L. More preferably, it is in the range of 0.1 to 5 mol / L.
  • the amount of alkali in the reaction liquid obtained by mixing the slurry raw material liquid and the supercritical or subcritical ion-exchanged water is not particularly limited, for example, a vanadium-containing compound, a compound that reacts with the vanadium-containing compound It is preferable to adjust the pH of the reaction solution composed of ion-exchanged water in a supercritical or subcritical state to be in the range of 6.8 to 11.2, and in the range of 7.0 to 8.5. It is more preferable to adjust within.
  • the water constituting the slurry raw material liquid is not particularly limited, but it is preferable to use ion-exchanged water or degassed water, and particularly preferable to use ion-exchanged water.
  • phase transition regulator for vanadium-containing particles in the method for producing vanadium dioxide-containing particles of the present invention, in the hydrothermal reaction section, in order to adjust the phase transition temperature of the vanadium-containing compound contained in the reaction solution to the vanadium dioxide-containing particles, a phase transition regulator containing a specific element Can be contained.
  • the method of adding the phase transition regulator to the reaction solution for controlling the phase transition temperature of the vanadium dioxide-containing particles is not particularly limited, and a known method can be used.
  • a method of adding to the reaction liquid it is preferable to add to the slurry raw material liquid containing the vanadium-containing compound. Further, a method of directly adding to the reaction solution before the hydrothermal reaction can also be used.
  • the phase transition regulator is not particularly limited, but, for example, tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus
  • a substance containing a metal element other than vanadium can be used.
  • the reaction solution contains the phase transition regulator, the phase transition temperature of the resulting vanadium dioxide-containing particles can be reduced.
  • Phase Specific examples of transition modifiers can include, for example, ammonium tungstate para pentahydrate ((NH 4) 10 W 12 O 41 ⁇ 5H 2 O) and the like.
  • a desalting treatment for removing a predetermined amount of salts from the slurry raw material liquid before producing the vanadium dioxide-containing particles by the hydrothermal synthesis method for the slurry raw material liquid prepared above. And maintaining the pH of the slurry raw material liquid at 25 ° C. in the range of 8.0 to 11.0 and the electrical conductivity at 25 ° C. in the range of 10 to 1000 mS / m during the desalting treatment. And performing a desalination treatment.
  • the desalting treatment means is not particularly limited as long as it can remove salts, for example, ammonium ions, sulfate ions, sodium ions, potassium ions, calcium ions, and the like from the slurry raw material liquid at a predetermined concentration.
  • a filtration method, a centrifugal separation method, an ultrafiltration method, etc. can be applied.
  • the ultrafiltration method is particularly preferable.
  • the centrifugal separation method applicable to desalination treatment involves adjusting the pH of the slurry raw material liquid prepared above, performing solid-liquid separation using a centrifugal separator, and discharging a part of the aqueous separation liquid out of the system. Then, the same volume of ion-exchanged water as that discharged was additionally added, and then dispersion treatment was performed. This operation was repeated to discharge unnecessary salts, and the slurry raw material liquid was subjected to predetermined pH and electric conductivity. Adjust to
  • FIG. 2 is a schematic diagram showing a processing flow of an ultrafiltration apparatus which is an example of a desalination apparatus used for producing vanadium dioxide-containing particles according to the present invention.
  • the ultrafiltration device 50 shown in FIG. 2 includes a preparation vessel 51 for storing a slurry raw material liquid 52 and a replenishing pH-adjusting water storing replenishing pH-adjusting water 58 for adjusting the pH to a predetermined value.
  • a stock kettle 57, a replenishing pH-adjusted water supply line 59 for adding replenishing pH-adjusted water 58 to the adjusting kettle 51, a circulation line 53 for circulating the preparation kettle 51 by a circulation pump 54, and a circulation line 53 are removed.
  • an ultrafiltration unit 55, an electric conductivity meter 60, and a pH meter 61 are disposed as salt means.
  • Step (I)> The slurry raw material liquid 52 containing the vanadium-containing compound, the compound that reacts with the vanadium-containing compound, and water, prepared by the method described above, is stored in the preparation tank 51, and circulated using the circulation pump 54. In the filtration unit 55, water containing salts in the slurry raw material liquid is discharged from the discharge port 56 at a predetermined discharge amount V1, and concentrated to a predetermined salt concentration.
  • the slurry raw material liquid 52 concentrated in the ultrafiltration unit 55 is discharged from the replenishment pH adjusted water stock tank 57 via the replenishment pH adjusted water supply line 59 through the ultrafiltration unit 55 ( The same volume of replenishing pH-adjusted water 58 as in V1) is added as an added amount V2, and the mixture is sufficiently stirred and mixed to prepare a first desalted slurry raw material liquid 52.
  • the electric conductivity (mS / m) and pH of the first desalted slurry raw material liquid 52 are measured by the electric conductivity meter 60.
  • the concentrated mixed solution 52 is supplied from the replenishing pH-adjusted water stock kettle 57 to the replenishing pH-adjusted water supply line 59 via the replenishing pH-adjusted water supply line 59 to have the same volume as the discharge amount V1.
  • the replenishing pH-adjusted water 58 is added in an addition amount V2, and sufficiently stirred and mixed to prepare a second desalted slurry raw material liquid 52.
  • the electric conductivity (mS / m) and pH of the secondary desalted slurry raw material liquid 52 are measured by the electric conductivity meter 60 and the pH meter 61.
  • the ultrafiltration membrane as the membrane material, as the organic membrane, a flat plate type, a spiral type, a cylindrical type, a hollow fiber type, a hollow fiber type, etc. already incorporated as a module are available from Asahi Kasei Corporation, Daicel Chemical Co., Ltd., (although commercially available from Toray Industries, Inc., Nitto Denko Corporation, etc., ceramic membranes such as NGK Insulators Co., Ltd. and Noritake Co., Ltd. are preferred as the solvent-resistant membrane.
  • ultrafiltration is performed at a flow rate of 300 ml / min (min), a liquid pressure of 100 kPa, and room temperature using Vivaflow 50 (effective filtration area: 50 cm 2 , molecular weight cut off: 5000) manufactured by Sartorius stemim as a filtration membrane.
  • Vivaflow 50 effective filtration area: 50 cm 2 , molecular weight cut off: 5000
  • examples thereof include an ultrafiltration device (Pellicon 2 cassette manufactured by Nippon Millipore Co., Ltd.) having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000.
  • a slurry raw material liquid subjected to the above desalting treatment and having a predetermined electric conductivity and pH adjusted is subjected to hydrothermal synthesis in the next step as shown in the flow chart of FIG. And producing vanadium dioxide-containing particles having an average primary particle size in the range of 1 to 30 nm and an average crystallite size in the range of 1 to 15 nm.
  • the conditions of the hydrothermal reaction treatment are appropriately set, but the temperature of the hydrothermal reaction treatment is, for example, in the range of 300 to 500 ° C. , Preferably within the range of 350 to 400 ° C.
  • the temperature of the hydrothermal reaction treatment is, for example, in the range of 300 to 500 ° C. , Preferably within the range of 350 to 400 ° C.
  • the time of the hydrothermal reaction is not particularly limited, but is preferably in the range of 3 to 1000 seconds. Under the above conditions, it is possible to efficiently produce vanadium dioxide-containing particles having a narrow particle diameter distribution and a small particle diameter.
  • the hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions.
  • the hydrothermal reaction according to the present invention is preferably performed with stirring. By stirring, the vanadium dioxide-containing particles can be prepared more uniformly.
  • the hydrothermal reactor is preferably subcritical or supercritical using a flow-type reactor equipped with a flow-type reactor such as a pressure-resistant tube type or tank type.
  • a flow-type reactor such as a pressure-resistant tube type or tank type.
  • This is a method of continuously synthesizing by mixing with high-temperature and high-pressure water in a critical state.
  • a flow-type reaction apparatus using a tubular reactor can be suitably used.
  • Flow type reactor In the method for producing vanadium dioxide-containing particles of the present invention, it is particularly preferable that the hydrothermal reaction is performed using a flow-type reactor having a hydrothermal reaction section.
  • the flow reactor according to the present invention is a flow reactor equipped with a hydrothermal reactor.
  • the term “hydrothermal reaction section” as used herein refers to a mixing and reactor that realizes high-speed mixing and reaction under high-temperature and high-pressure conditions.
  • a vanadium-containing compound subjected to desalination treatment in the hydrothermal reaction unit performing the hydrothermal reaction of the flow-type reaction device, a vanadium-containing compound subjected to desalination treatment, a vanadium-containing compound and
  • the passage time of a reaction solution obtained by mixing a slurry raw material solution containing a compound to be reacted and ion-exchanged water with ion-exchanged water in a supercritical or subcritical state is in the range of 4 to 700 seconds, and more preferably 12 to 700 seconds. It is preferable to be within the range of seconds.
  • FIG. 3 shows an example of a production flow of a flow reactor having a hydrothermal reaction section suitable for the method for producing vanadium dioxide-containing particles of the present invention.
  • the desalted slurry raw material liquid container 5 contains 1) a vanadium-containing compound, 2) a compound that reacts with the vanadium-containing compound, for example, an alkali dissolved at a predetermined concentration in ion-exchanged water. 3) A salt-treated slurry raw material liquid composed of ion-exchanged water is charged, and ion-exchanged water is stored in the other raw material liquid container 2 as water.
  • FIG. 4 is a schematic view showing an example of a flow-type reaction apparatus having a hydrothermal reaction section, which is applicable to the production of vanadium dioxide-containing particles according to the present invention.
  • a flow-type reaction apparatus 1 having a hydrothermal reaction section 16 has a desalted pH at 25 ° C. containing a vanadium-containing compound, a compound that reacts with the vanadium-containing compound, and ion-exchanged water.
  • the slurry raw material container 5 for holding a slurry raw material liquid having a conductivity of 8.0 to 11.0 and an electric conductivity at 25 ° C.
  • the confluence point MP From the pipe 6, the confluence point MP, the heating section pipe 17, the pipe 18 and the control valve 19, the pump 7 for sending the liquid to the tank 9, and the other constituent liquid, which is stored in the ion exchange water container 2.
  • Ion-exchanged water for forming supercritical water or subcritical water is supplied from the ion-exchanged water container 2 through the pipe 3, the heating medium 13, the junction MP, the heating section pipe 17, the pipe 18, and the control valve 19. Then, the pump 4 for sending the liquid to the tank 9 is arranged.
  • the flow-type reactor 1 may be provided with a cooling unit 8 having a flow channel 18 for cooling a reaction solution containing vanadium dioxide-containing particles after the hydrothermal reaction, if necessary.
  • a cooling unit 8 having a flow channel 18 for cooling a reaction solution containing vanadium dioxide-containing particles after the hydrothermal reaction, if necessary.
  • added to the reaction solution containing the vanadium dioxide-containing particles after the hydrothermal reaction for example, a surface modifier, a pH adjuster, or the reaction solution after the hydrothermal reaction
  • a tank 10 for containing a cooling medium (for example, water) for mixing and cooling, a surface modifier, a pH adjuster, a cooling medium, and the like are sent to a flow path 18 via a flow path 11. May be provided.
  • the flow reactor 1 has heating media 13 and 15 in the line of the flow path 6 or the flow path 3.
  • the heating medium 13 disposed in the flow path 3 applies a predetermined temperature and pressure to the ion exchange water stored in the ion exchange water container 2 to form supercritical water or subcritical water. .
  • a vanadium-containing compound a slurry raw material liquid containing a compound that reacts with the vanadium-containing compound, and ion-exchanged water
  • a hydrothermal reaction section 16 through which a reaction liquid after the hydrothermal reaction flows
  • a heating section pipe 17 a flow path 3
  • the material of the piping constituting 6, 11, 18 and the like is not particularly limited, and examples thereof include stainless steel, aluminum, iron, and Hastelloy.
  • the line length L of the heating section pipe 17 of the heating section pipe 17 formed inside the hydrothermal reaction section 16 is not particularly limited, and the vanadium-containing compound, the compound that reacts with the vanadium-containing compound, It is sufficient that the reaction solution is composed of a critical or subcritical ion-exchanged water and pass through within a time of 3 to 1000 seconds.
  • the speed (flow rate) of the reaction solution passing (flowing) through the heating section pipe 17 in the hydrothermal reaction section is not particularly limited, but is preferably 0.1 to 10 m / sec, more preferably 0.2 to 8 m / sec. 0.0 m / sec.
  • the vanadium-containing compound contained in the reaction solution and the compound that reacts with the vanadium-containing compound are subjected to a hydrothermal reaction in the presence of supercritical or subcritical ion-exchanged water under a predetermined condition. Can be implemented effectively.
  • the line length L of the heating part pipe 17 in the present invention is defined as the line length L of the pipe part from the inlet IN of the heating medium 14 through the junction point MP to the outlet OUT of the heating medium 14 after the hydrothermal treatment. Refers to the length.
  • the passage time of the reaction liquid in the heating section piping 17 which is a hydrothermal reaction section is determined by the above-mentioned flow rate of the reaction liquid and the line length L of the heating section piping. Desired conditions can be obtained by controlling the pressure and the flow rate according to the liquid sending pressure of the pumps 4 and 7 installed in (3 and 6) and the inner diameter of each flow path.
  • the lengths of the flow paths 3 and 6 for feeding the raw material liquid, the flow path 11 for sending the refrigerant or the surface modifier added to the reaction liquid after the hydrothermal reaction, and the flow path 18 for cooling the reaction liquid are set forth.
  • the length is not particularly limited, but is generally in the range of 50 to 10000 mm, and preferably in the range of 100 to 1000 mm.
  • the gap (inner diameter in the case of piping) of the flow channel is not particularly limited, but is generally in the range of 0.1 to 10 mm, preferably in the range of 1.0 to 8 mm.
  • the pipes 3, 6, 11 and 18 preferably have the above-mentioned materials, lengths and inner diameters, but may be the same or different.
  • the reaction solution after the hydrothermal reaction obtained in the above-described hydrothermal reaction step is subjected to filtration (for example, ultrafiltration) or centrifugation to replace the dispersion medium or the solvent, and to convert the vanadium dioxide-containing particles into water or alcohol (for example, it may be washed with ethanol) or the like.
  • the obtained vanadium dioxide-containing particles may be dried by any means.
  • TC shown in FIG. 4 is a temperature sensor.
  • thermothermal reaction conditions temperature, pressure
  • the average primary particle size and the average crystallite size of the formed vanadium dioxide-containing particles can be controlled to desired conditions, and the vanadium dioxide-containing particles can be controlled.
  • the thermochromic properties of the particles and the transparency of the optical film containing the particles containing vanadium dioxide can be improved (reduction in haze).
  • the water in a high temperature and high pressure state is a high temperature and high pressure water in a supercritical or subcritical state, that is, supercritical water (SCW) or subcritical water (sub). -Critical @ water: sub-CW).
  • SCW supercritical water
  • subcritical water water having the temperature and pressure higher than the temperature is referred to as supercritical water.
  • subcritical water refers to water in a state where the temperature or pressure is slightly lower than the supercritical point of water, and for example, from a temperature range of 200 ° C. or more to a critical temperature of 374 ° C. Refers to a region where the temperature is lower than the critical temperature of water and the pressure is a critical pressure of water of 22 MPa or more.
  • a typical supercritical water region is, for example, 375-500 ° C., preferably 375-450 ° C., more preferably 375-420 ° C., even more preferably 375-400 ° C., and in some cases, for example, 375-400 ° C.
  • the reaction pressure is, for example, 22 to 50 MPa, preferably 22 to 45 MPa, Preferably it is in the range of 22 to 40 MPa, more preferably 25 to 35 MPa.
  • a typical subcritical water region has a pressure of a critical pressure of 22 MPa or more and a temperature region from a temperature of 150 ° C. or more to a critical temperature of 374 ° C., or a temperature of 200 ° C. or more to a critical temperature of 374 ° C. Or a region from a temperature of 250 ° C. or more to a critical temperature of 374 ° C., a region of a temperature from 300 ° C. or more to a critical temperature of 374 ° C., and the like.
  • the subcritical water region is a region from a pressure of 10.0 MPa or more to a critical pressure of 22 MPa, or a region from a pressure of 15.0 MPa or more to a critical pressure of 22 MPa, or a pressure of 18.0 MPa or more to a critical pressure.
  • a region up to 22 MPa or a region from a pressure of 20.0 MPa or more to a critical pressure of 22 MPa may be included.
  • subcritical water water in a temperature range of 200 to 373 ° C. and a pressure range of 5.0 to 50 MPa is referred to as subcritical water. Is defined.
  • the temperature and pressure conditions in the hydrothermal reaction are not particularly limited as long as they are in the range of 150 to 500 ° C. and the pressure is higher than the saturated vapor pressure as described above. More preferably, the temperature is in the range of 500 ° C., the pressure is in the range of 10 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature.
  • the temperature is 300 ° C. or higher, the average primary particle size (D) and the like can be further reduced while avoiding the possibility that crystallinity is lowered. Further, when the temperature is 500 ° C. or lower, the particle size distribution can be narrowed.
  • the temperature is in the range of 350 to 450 ° C.
  • the pressure is in the range of 20 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature.
  • the hydrothermal reaction is performed in the presence of supercritical water at a temperature in the range of 380 to 400 ° C. and a pressure in the range of 25 to 30 MPa.
  • the hydrothermal reaction time is not particularly limited, but is preferably in the range of 3 to 1000 seconds. Under the above conditions, particles containing vanadium dioxide having a narrow particle size distribution and a small particle size can be efficiently produced. Further, the possibility that the crystallinity of the vanadium dioxide-containing particles is reduced can be avoided.
  • the hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions.
  • the hydrothermal reaction according to the present invention is preferably performed with stirring. By stirring, the vanadium dioxide-containing particles can be prepared more uniformly.
  • a cooling step of cooling the reaction solution after hydrothermal reaction (a dispersion containing vanadium dioxide-containing particles) (FIG. 4) It is preferable to further include a cooling unit 8) indicated by the following.
  • the cooling step it is preferable to start cooling the reaction solution after the hydrothermal reaction within one minute after performing the hydrothermal reaction for a predetermined time (at the end of the reaction), but the entire reaction solution is cooled within this time. If it is difficult, the reaction solution may be cooled by a predetermined amount while keeping the reaction solution at a reaction temperature with a certain amount of time.
  • the cooling rate can be appropriately adjusted.
  • the method of cooling the reaction solution after the hydrothermal reaction is not particularly limited, and can be applied in the same manner as a known method or by appropriately changing it.
  • a cooling method for example, a method of immersing the reaction solution after the hydrothermal reaction in a cooling medium with stirring if necessary, a method of mixing the reaction solution after the hydrothermal reaction with the cooling medium (particularly water), A method of passing a gaseous cooling medium (for example, liquid nitrogen) through the reaction solution after the hydrothermal reaction may be used.
  • the method of bringing the reaction liquid after the hydrothermal reaction and the cooling medium into contact with each other via a pipe is preferable as illustrated in FIG. 4 because the cooling rate can be easily controlled.
  • the cooling is performed by using the cooling unit 8 connected to the hydrothermal reaction unit 16 directly or via another component.
  • cooling unit 8 connected to the hydrothermal reaction unit 16 and having the flow path 18 therein in the flow-type reaction device 1. Note that the cooling method that can be used in the present invention is not limited to the mode described below.
  • the reaction solution after the hydrothermal reaction is cooled by passing (flowing) through the flow channel 18 of the flow-type reaction device 1. That is, as an example of the flow-type reaction device 1 shown in FIG. 4, the reaction liquid containing vanadium dioxide-containing particles is passed (flowed) through the flow channel 18 of the cooling unit 8 on the downstream side of the hydrothermal reaction unit 16.
  • the cooling medium C flows into the cooling unit 8 and cools the flow channel 18 from the outer surface.
  • the tank 10 may be replaced with the above-described surface modifying agent or pH adjustment.
  • the cooling medium may be directly added.
  • a pump 12 for flowing the cooling medium through the flow path 11 may be further provided.
  • the cooling medium may be used as a cooling medium having a pH adjusting effect when the pH adjusting agent is dissolved in water or the like as the medium.
  • the mixing ratio of the cooling medium with the reaction solution after the hydrothermal reaction is not particularly limited as long as a desired cooling rate can be achieved.
  • the mixing ratio can be controlled by setting the flow rates of the reaction liquid and the cooling medium after the hydrothermal reaction to the above-described ratios.
  • the temperature of the cooling medium is not particularly limited, but is preferably higher than the phase transition temperature of vanadium dioxide (about 68 ° C.), and more preferably 70 to 95 ° C.
  • the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is maintained at 70 to 95 ° C. for at least 5 minutes after mixing the reaction solution after the hydrothermal reaction with water. Is more preferable.
  • the upper limit of the time for maintaining the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is not particularly limited, but it is sufficient if the reaction product immediately after the hydrothermal reaction is mixed with water for 10 minutes or less. It is.
  • the pH of the mixture of the reaction solution after the hydrothermal reaction and the cooling medium is not particularly limited, but is in the range of 4.0 to 7.0 at 25 ° C. It is preferred that By setting the pH within the above range, the stability of the vanadium dioxide-containing particles after particle formation (crystal precipitation) can be improved. Therefore, the purity of the desired rutile-type crystal phase (R phase) vanadium dioxide can be further improved, and the thermochromic properties of the vanadium dioxide-containing particles can be more effectively improved.
  • Means for achieving such a pH value is not particularly limited, and may be achieved by adding the above-described pH adjuster to the reaction solution after the hydrothermal reaction before the cooling step. This may be achieved by using a cooling medium mixed with the conditioning agent.
  • the mixing position of the reaction liquid after the hydrothermal reaction and the cooling medium (the installation position of the pipe 11) is not particularly limited, but considering the cooling efficiency of the reaction liquid after the hydrothermal reaction and the like.
  • the pipe 11 is preferably connected to the heating section pipe 17 at a distance of 10 to 500 mm from the outlet on the tank 9 side.
  • the cooled reaction liquid (cooling liquid) after the hydrothermal reaction is stored in the tank 9 via the control valve 19.
  • the dispersion medium and the solvent may be replaced by filtration (eg, ultrafiltration) or centrifugation, and the vanadium dioxide-containing particles may be washed with water, alcohol (eg, ethanol), or the like. Further, the obtained vanadium dioxide-containing particles may be dried by any means.
  • a surface modifier is further added to the reaction solution containing the vanadium dioxide-containing particles immediately after the hydrothermal reaction from the tank 10 shown in FIG. Can be added.
  • the reaction solution containing the vanadium dioxide-containing particles formed by the hydrothermal reaction By adding a surface modifier to the reaction solution containing the vanadium dioxide-containing particles formed by the hydrothermal reaction, aggregation of the vanadium dioxide-containing particles is effectively suppressed and prevented, and the size (particle diameter) of the vanadium dioxide-containing particles is reduced.
  • the dispersion stability and storage stability of the vanadium dioxide-containing particles can be further improved by reducing the particle size and narrowing the particle size distribution. Therefore, haze due to the vanadium dioxide-containing particles is reduced, and thermochromic properties can be effectively exhibited.
  • Examples of the surface modifier that can be provided in the present invention include organic silicon compounds, organic titanium compounds, organic aluminum compounds, organic zirconia compounds, surfactants, and silicone oils.
  • the number of reactive groups in the surface modifier is not particularly limited, but is preferably 1 or 2.
  • organosilicon compounds such as hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane (tetraethylorthosilicate), and trimethylsilyl.
  • organosilicon compound can be obtained as a commercial product, and for example, SZ6187 (manufactured by Dow Silicone Toray) can be suitably used.
  • organosilicon compounds it is preferable to use an organic silicate compound having a small molecular weight and high durability, and in particular, to use hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride. Is more preferred.
  • Organic titanium compound examples include tetrabutyl titanate, tetraoctyl titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxy Acetate titanate, as a chelate compound, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, titanium phosphate compound, titanium octylene glycolate, titanium ethyl acetoacetate, titanium lactate ammonium salt, titanium lactate, titanium triethanol Aminates and the like.
  • the organic titanium compound can be obtained as a commercial product, and examples thereof include Prenact TTS and Prenact TTS44 (all
  • Organic aluminum compound examples include aluminum isopropoxide and aluminum tert-butoxide.
  • Organic zirconia compound examples include normal propyl zirconate, normal butyl zirconate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate, and the like.
  • Surfactants are compounds having a hydrophilic group and a hydrophobic group in the same molecule.
  • the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, and a phosphate.
  • a polyalkylene glycol group a polyalkylene glycol group.
  • the amino group may be primary, secondary, or tertiary.
  • Specific examples of the hydrophobic group of the surfactant include an alkyl group, a silyl group having an alkyl group, and a fluoroalkyl group.
  • the alkyl group may have an aromatic ring as a substituent.
  • the surfactant only needs to have at least one hydrophilic group and one hydrophobic group as described above in the same molecule, and may have two or more of each group. More specifically, examples of such a surfactant include myristyldiethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, and 2-hydroxyethyl-2-hydroxytetra.
  • Decylamine pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8 to 18 carbon atoms) benzyldimethylammonium chloride, ethylenebisalkyl (C8-18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, perfluoroalkenyl, perf Oroarukiru compounds.
  • silicone oil examples include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carrubinol-modified silicone oil, and methacryl-modified silicone oil. Silicone oil, mercapto-modified silicone oil, heterofunctional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic specially-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-containing modified silicone oil and fluorine-modified silicone And the like.
  • straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil
  • amino-modified silicone oil amino-modified silicone oil
  • epoxy-modified silicone oil epoxy-modified silicone oil
  • carboxyl-modified silicone oil carboxyl-modified silicone oil
  • carrubinol-modified silicone oil examples of the silicone oil
  • the surface modifier is appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water, or the like, and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
  • the number of carbon atoms in the organic functional group introduced by the surface modifier is preferably 1 to 6. Thereby, durability can be improved.
  • the solution containing the surface modifying agent may be adjusted to an appropriate pH value (for example, 2 to 12) using a pH adjusting agent.
  • the pH adjuster is not particularly limited, and the same pH adjusters as described below can be used.
  • the amount of the surface modifier is not particularly limited, but is in the range of 0.1 to 100% by mass based on the mass of the vanadium dioxide-containing particles obtained by the hydrothermal reaction. Preferably, it is more preferably in the range of 1 to 10% by mass.
  • the addition of the surface modifier is preferably started immediately after the hydrothermal reaction (immediately after the end of the reaction). Specifically, the addition is preferably performed within 10 seconds from the end of the reaction, and more preferably within 5 seconds.
  • the method for adding the surface modifier is not particularly limited, and a known method can be used.
  • a surface modifier or a solution containing the surface modifier
  • the tank 10 to the reaction solution immediately after the hydrothermal reaction by the pump 12.
  • the heating unit piping 17 By joining the heating unit piping 17 via the heating unit 11, it can be mixed with the reaction solution.
  • the speed at which the solution containing the surface modifier passes (flows) through the flow channel 11 is not particularly limited, but is preferably in the range of 0.01 to 10 mL / sec, more preferably 0.1 to 10 mL / sec. Within the range of 5 mL / sec.
  • the surface modifier With such a flow rate, the surface modifier is brought into sufficient contact with the vanadium dioxide-containing particles and the effect of the surface modifier (coagulation suppression effect of particles, Dispersion stability and storage stability).
  • the mixing position of the reaction solution after the hydrothermal reaction and the surface modifying agent (the installation position of the pipe 11) is not particularly limited, but the addition of the surface modifying agent is started immediately after the hydrothermal reaction. It is preferable to dispose it immediately after the outlet B.
  • the cooling unit 8 is provided after the hydrothermal reaction unit 16 as in the flow-type reactor 1, the cooling unit 8 is disposed immediately after the hydrothermal reaction unit 16 and before the cooling unit 8 as shown in FIG. Is preferred.
  • another line including the tank 10, the flow path 11, and the pump 12 may be separately provided.
  • PH adjuster In the method for producing vanadium dioxide-containing particles using a flow-type reactor, a pH adjuster can be further added to the reaction solution immediately after the hydrothermal reaction from the tank 10 via the flow path 11.
  • the pH adjuster is not particularly limited.
  • an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia, etc. is used.
  • an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia, etc. is used.
  • the particle size of the vanadium dioxide-containing particles, particle size distribution, from the viewpoint of the transparency of the optical film containing the vanadium dioxide-containing particles thermochromic and vanadium dioxide-containing particles, at 25 °C Preferably in the range of 3.0 to 10.0, more preferably in the range of 4.0 to 9.0.
  • the pH adjuster may be the same as or different from the alkali and the reducing agent used as the compound that reacts with the vanadium-containing compound in the hydrothermal reaction.
  • the pH adjuster is appropriately diluted with methanol, ethanol, water, or the like, and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
  • the method of adding the pH adjuster is not particularly limited, and a known method can be used.
  • a pH adjusting agent or a solution containing the pH adjusting agent
  • a solution containing the pH adjusting agent is flowed from the tank 10 to the reaction solution immediately after the hydrothermal reaction by the pump 12. 11 and can be mixed with the reaction solution.
  • the mixing position of the reaction solution after the hydrothermal reaction and the pH adjusting agent is not particularly limited, but from the viewpoint of starting the addition of the surface modifier after the hydrothermal reaction, Preferably, it is arranged after the part 16.
  • the cooling unit 8 when the cooling unit 8 is provided after the hydrothermal reaction unit 16, the cooling unit 8 may be disposed after the hydrothermal reaction unit 16 and before the cooling unit 8. Alternatively, it may be arranged after the cooling unit 8 and before the tank 9.
  • the supply lines including the tank 10, the flow path 11, and the pump 12 may be individually provided.
  • a method may be used in which a pH adjuster and a surface modifier, or a pH adjuster and a cooling medium are mixed and supplied through one supply line.
  • the average primary particle diameter of the produced vanadium dioxide-containing particles is in the range of 1 to 30 nm, and the average crystallite diameter is in the range of 1 to 15 nm.
  • the average primary particle diameter of the particles containing vanadium dioxide is characterized by being in the range of 1 to 30 nm, preferably in the range of 1 to 20 nm. With the particles containing vanadium dioxide having such a particle diameter, haze can be reduced favorably and thermochromic properties can be effectively exhibited.
  • the particle diameter of the vanadium dioxide-containing particles can be measured by an electron microscope observation or a particle diameter measuring method based on a dynamic light scattering method.
  • the particle size of the vanadium dioxide-containing particles can be measured using a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.).
  • the average primary particle diameter (D) (nm) of the vanadium dioxide-containing particles can be measured by the following method.
  • an SEM photograph is taken with a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.).
  • the particle diameter is calculated using an SEM photograph (1100 nm ⁇ 950 nm).
  • the particle diameter means an area circle equivalent diameter.
  • the SEM photograph the area of each particle was measured, and the diameter of a circle having the same area was defined as the particle diameter of the particle.
  • 30 particles having the most universal size and shape were selected, the average primary particle size of the 30 particles was calculated, and the average value was defined as the average primary particle size (D) (nm).
  • the average crystallite diameter of the vanadium dioxide-containing particles is characterized by being in the range of 1 to 15 nm, but is more preferably in the range of 1 to 10 nm.
  • ⁇ The“ crystallite ” refers to the largest region of a microcrystal present as a complete single crystal in polycrystalline particles.
  • FIG. 5 is a schematic view showing an example of the particle structure of the vanadium dioxide-containing particles according to the present invention.
  • the vanadium dioxide-containing particles P according to the present invention are formed by a plurality of crystallites CL.
  • the average crystallite diameter of the vanadium oxide-containing particles is 1 It can be controlled within the range of 1515 nm.
  • D shown in FIG. 5 is an average primary particle size of the vanadium dioxide-containing particles P.
  • the obtained average crystallite diameter A represents the size of the crystal growing in the same direction in the crystal grain.
  • the small average crystallite diameter A means that the crystallite CL growing in a specific same direction in the crystal grain is small. Since the crystallite CL grows by applying the slurry raw material liquid that has been subjected to the desalting treatment in advance, crystal particles having an average crystallite diameter A larger than the average primary particle diameter D are formed.
  • the average crystallite diameter A according to the present invention can be calculated by XRD (X-ray diffraction) measurement using the Scherrer formula shown in the following formula (1).
  • Equation (1) K ⁇ / ⁇ cos ⁇
  • K is a Scherrer constant
  • is an X-ray wavelength
  • is the half value width of the diffraction line.
  • is the Bragg angle for the diffraction line.
  • the vanadium dioxide-containing particles according to the present invention can be preferably used for an optical film.
  • the optical film referred to here has a transparent substrate and an optical functional layer formed on the transparent substrate, and the optical functional layer contains a resin and the vanadium dioxide (VO 2 ) -containing particles according to the present invention.
  • This is a film that exhibits thermochromic properties and has a configuration that:
  • the transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film.
  • the substrate include flexibility and production suitability (roll-to-roll suitability). From the viewpoint, a transparent resin film is preferable.
  • transparent in the transparent substrate according to the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80%. That is all.
  • the thickness of the transparent substrate is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the glass curved surface when bonding to the glass substrate during production of laminated glass. Followability is improved.
  • the transparent substrate has a heat shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing wrinkles of the optical film and cracking of the infrared reflective layer. Is more preferably in the range of 1.5 to 3.0%, and still more preferably 1.9 to 2.7%.
  • the transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and various transparent resin films can be used.
  • a polyolefin film for example, , A polyethylene film, a polypropylene film, etc.
  • a polyester film eg, a polyethylene terephthalate film, a polyethylene naphthalate film, etc.
  • a polyvinyl chloride film e.g, a triacetyl cellulose film, etc.
  • a polyester film e.g, a polyethylene terephthalate film, a polyethylene naphthalate film, etc.
  • a polyvinyl chloride film eg, a polyethylene terephthalate film, a polyethylene naphthalate film, etc.
  • a polyvinyl chloride film eg, a triacetyl cellulose film, etc.
  • a triacetyl cellulose film e.g., a triacetyl cellulose film
  • the polyester constituting the polyester film is not particularly limited, but is preferably a film-forming polyester having a dicarboxylic acid component and a diol component as main components.
  • the main components of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfondicarboxylic acid, diphenyletherdicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexanedicarboxylic acid, diphenyldicarboxylic acid, diphenylthioetherdicarboxylic acid, diphenylketonedicarboxylic acid, and phenylindanedicarboxylic acid.
  • the diol component includes ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters containing these as main components terephthalic acid or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component, ethylene glycol or Polyesters containing 1,4-cyclohexanedimethanol as the main constituent are preferred.
  • polyethylene terephthalate, polyethylene naphthalate, polyesters containing these as main constituents, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more of these polyesters Polyesters whose main constituent is a mixture are preferred.
  • the transparent resin film is particularly preferably a biaxially oriented polyester film, but a uniaxially stretched polyester film that has not been stretched or at least one stretched can also be used. Stretched films are preferred from the viewpoint of improving strength and suppressing thermal expansion. In particular, when the laminated glass provided with the optical film is used as a windshield of an automobile in the present invention, a stretched film is more preferable.
  • fine particles when a transparent resin film is used as the transparent substrate, fine particles may be contained within a range that does not impair the transparency, in order to facilitate handling.
  • the fine particles applicable to the transparent resin film include inorganic fine particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide.
  • organic fine particles such as crosslinked polymer fine particles and calcium oxalate.
  • Examples of the method for adding the fine particles include a method in which the fine particles are contained in a resin (for example, polyester or the like) as a raw material for forming a film, a method in which the fine particles are directly added to an extruder, and the like. Either method may be adopted, or two methods may be used in combination. If necessary, various additives may be added to the transparent resin film in addition to the fine particles. Examples of such additives include stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
  • the transparent resin film as the transparent substrate can be manufactured by a conventionally known general method. For example, a resin as a material was mixed with a solvent to prepare a dope, the dope was cast on a continuous support, a film was formed, and a partial rotation was performed on a continuously rotating endless support. Later, peeling off from the endless support, and then performing sufficient drying, and optionally performing a stretching treatment during or after drying, to produce an unstretched or stretched transparent resin film by a solution casting method. Can be. Further, for example, a resin as a material is melted by an extruder, extruded by an annular die or a T die, and quenched to produce a substantially amorphous, unoriented, unstretched transparent resin film. It can be produced by a drawing method.
  • the transport direction of the transparent resin film (vertical direction) can be obtained by a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, or tubular simultaneous biaxial stretching of the unstretched transparent resin film.
  • MD direction or a transverse axis direction (width direction, TD direction) perpendicular to the transport direction of the transparent resin film, whereby a stretched transparent resin film can be produced.
  • the stretching ratio in this case can be appropriately selected according to the resin used as the raw material of the transparent resin film, but it is preferable that the stretching is performed in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the stretching treatment may be further performed on a transparent resin film that has been stretched in advance.
  • the transparent resin film may be subjected to a relaxation treatment or an off-line heat treatment in view of dimensional stability.
  • the relaxation treatment is performed, for example, in a step of stretching after heat setting in a polyester film stretching film-forming step, in a transverse stretching tenter, or in winding up after leaving the tenter.
  • the relaxation treatment is preferably performed at a processing temperature of 80 to 200 ° C, and more preferably at a temperature of 100 to 180 ° C. It is preferable that the treatment is carried out at a relaxation rate in the range of 0.1 to 10% in both the transport direction and the horizontal axis direction, and it is more preferable that the treatment is carried out at a relaxation rate in the range of 2 to 6%.
  • the substrate subjected to the relaxation treatment is subjected to off-line heat treatment so that the heat resistance is improved and the dimensional stability is further improved.
  • the undercoat layer coating liquid can be applied to one or both surfaces of the transparent resin film in-line during the film formation process.
  • the resins used in the undercoat layer coating solution useful for transparent resin films include polyester resins, (meth) acrylic modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, and polyethylene. Examples include an imine resin, a polyvinyl alcohol resin, a modified polyvinyl alcohol resin, and gelatin, and any of them can be preferably used. Conventionally known additives can be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating and the like.
  • the coating amount of the undercoat layer can be about 0.01 to 2 g / m 2 (dry state).
  • an optical functional layer containing the resin and the vanadium dioxide-containing particles according to the present invention is provided.
  • the resin is not particularly limited, and the same resins as those generally used for the optical functional layer of the optical film can be used, and preferably, a water-soluble polymer can be used.
  • water-soluble polymer refers to a polymer that can be dissolved in 100 g of water at 25 ° C. in an amount of 0.001 g or more.
  • Specific examples of the water-soluble polymer include polyvinyl alcohol, polyethyleneimine, gelatin (for example, a hydrophilic polymer represented by gelatin described in JP-A-2006-343391), starch, guar gum, alginate, methylcellulose, and ethylcellulose.
  • the content of the vanadium dioxide-containing particles in the optical functional layer is preferably in the range of 1 to 60% by mass relative to the total mass of the optical functional layer, from the viewpoint of obtaining desired thermochromic properties, and 5 to 50% by mass. % Is more preferable.
  • Fluorescent brightening agents described in JP-A-219266 pH adjusting agents such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide and potassium carbonate, defoaming , Diethylene glycol and other lubricants, preservatives, fungicides, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption And various known additives such as agents, dyes, and pigments.
  • the method for producing the optical film (the method for forming the optical functional layer) is not particularly limited, and can be applied in the same manner as a known method, or appropriately modified, except for using the vanadium dioxide-containing particles according to the present invention. . Specifically, a method of preparing a coating solution containing vanadium dioxide-containing particles, coating the coating solution on a transparent substrate by a wet coating method, and drying to form an optical functional layer is preferable.
  • the wet coating method is not particularly limited, and examples thereof include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide type curtain coating method, and US Pat. No. 2,761,419, Examples thereof include a slide hopper coating method and an extrusion coating method described in Japanese Patent No. 2761791.
  • Preparation of particles containing vanadium dioxide >> [Preparation of vanadium dioxide-containing particles 101] (Preparation of slurry raw material liquid A) 19.0 g of vanadium (IV) oxide (VOSO 4 ) was dissolved in ion-exchanged water to 300 mL as the raw material liquid 1, and 68 mL of an aqueous 3.0 mol / L NH 3 solution was added as an alkali while stirring this liquid. Thus, a slurry raw material liquid A was prepared.
  • VSO 4 vanadium (IV) oxide
  • ⁇ Desalination 1> Using a known centrifugal separator, a solid-liquid separation is performed by centrifugation at 30 ° C. on the slurry raw material liquid A containing vanadium (IV) oxide sulfate and alkali, and then a part of the aqueous separation liquid is removed from the system. Then, the same volume of ion-exchanged water as that discharged was added, and then the dispersion treatment was performed. This operation was repeated to discharge unnecessary salts, and the electric conductivity of the slurry raw material liquid was set to 1 mS / m and pH were adjusted to 7.5 using a 3.0 mol / L aqueous NH 3 solution to prepare a desalted slurry raw material liquid 1.
  • vanadium dioxide-containing particles 101 were prepared according to the following method using a flow-type reaction apparatus having a hydrothermal reaction section shown in FIGS.
  • the slurry raw material container 5 shown in FIGS. 3 and 4 contains vanadium (IV) oxide desalted by the above-described method and an alkali as the raw material liquid 1 and has an electric conductivity (mS / m) of 1 mS. / M and a slurry raw material liquid 1 having a pH of 7.5 were stored.
  • ion-exchanged water was stored as the raw material liquid 2 in the ion-exchanged water container 2 shown in FIGS.
  • the desalted slurry raw material liquid 1 containing vanadium (IV) oxide sulfate and alkali is sent from the slurry raw material liquid container 5 to the inside of the flow path 6 by the pump 7, and is heated by the heating medium 15 at 25 ° C. and 30 MPa. Pressure was applied to meet the conditions.
  • the ion-exchanged water which is the raw material liquid 2
  • the ion-exchanged water container 2 is degassed and then sent from the ion-exchanged water container 2 to the inside of the flow path 3 by the pump 4, and heated with the heating medium 13 at 440 ° C. and 30 MPa. Press to obtain supercritical water.
  • the slurry raw material liquid 1 containing vanadium (IV) oxide sulfate and the alkali, and the ion exchange water as supercritical water were used as a volume ratio of the slurry raw material liquid 1: ion
  • the liquid was sent to the heating section piping 17 arranged in the heating medium 14.
  • the hydrothermal reaction conditions in the heating pipe section 17 were performed at 440 ° C.
  • the treatment time was set to 5 seconds, to form particles 101 containing vanadium dioxide (VO 2 ).
  • the reaction liquid was cooled in the cooling unit 8 to prepare the dispersion liquid 1 containing the vanadium dioxide-containing particles 101 and water.
  • the slurry raw material liquid A (52, initial electric conductivity: 3400 mS / m) having a liquid temperature of 30 ° C. is stored in the adjusting pot 51, and is circulated using the circulation pump 54.
  • the water containing salt in the raw material A1 is discharged at a discharge amount V1 from a discharge port 56, and then from a stock tank 57 of ion-exchanged water 58 whose pH has been adjusted to 10.0 by adding ammonia via a supply line 59.
  • ion-exchanged water 58 having the same volume as the discharged amount V1 in the ultrafiltration unit 55 and having a pH of 10 was added in an added amount V2.
  • This operation is repeated while measuring the electric conductivity (mS / m) of the desalted slurry raw material liquid 52 with the electric conductivity meter 60, and the electric conductivity (mS / m) of the slurry raw material liquid 52 at 25 ° C.
  • the desalting operation was terminated, and then the dispersion treatment was performed to prepare the slurry raw material liquid 2 after the desalination treatment.
  • the pH of the desalted slurry raw material liquid 2 measured at 25 ° C. was 10.2.
  • vanadium dioxide-containing particles 103 were prepared in the same manner as the hydrothermal reactor, except that the following autoclave was used instead of a flow-type reactor having a hydrothermal reactor. .
  • the desalted slurry raw material liquid 2 (electric conductivity: 3000 mS / m, pH: 10.2) is placed in an autoclave having an internal volume of 500 mL, and subjected to a hydrothermal reaction treatment at 300 ° C. and 8.6 MPa for 6 hours. Thus, vanadium dioxide-containing particles 103 were formed. Next, the reaction liquid was cooled to prepare a dispersion liquid containing the vanadium dioxide-containing particles 103.
  • slurry raw material liquid B As a raw material liquid 1, 19.0 g of vanadium (IV) oxide (VOSO 4 ) was dissolved in ion-exchanged water to 300 mL, and while stirring this liquid, 68 mL of a 3.0 mol / L NaOH aqueous solution was added as an alkali while stirring. And a slurry raw material liquid B was prepared.
  • VOSO 4 vanadium (IV) oxide
  • ⁇ Preparation of optical film >> [Preparation of Optical Film 101]
  • a coating liquid 1 for forming an optical functional layer having the following composition was dried with a die coater to a dry film thickness of 2.0 ⁇ m. The wet coating was performed by adjusting the coating amount, and the coating was dried at 90 ° C. for 1 minute to produce an optical film 101 as a thermochromic film.
  • Resin binder (poly-N-vinylacetamide, trade name: GE191-103, manufactured by Showa Denko KK, molecular weight 900000) 90.7 parts by mass
  • the above-mentioned constituent materials are sequentially added, mixed and dissolved, and the solid content concentration is 3
  • the mixture was diluted with water so as to have a concentration of 0.0% by mass to prepare a water-based coating liquid 1 for forming an optical functional layer.
  • optical films 102 to 117 were prepared in the same manner except that the vanadium dioxide-containing particles 101 used in the preparation of the optical functional layer forming coating liquid 1 were changed to vanadium dioxide-containing particles 102 to 117, respectively.
  • the vanadium dioxide-containing particles 101 used in the preparation of the optical functional layer forming coating liquid 1 were changed to vanadium dioxide-containing particles 102 to 117, respectively.
  • Equation (1) D K ⁇ / ⁇ cos ⁇
  • K is a Scherrer constant
  • is an X-ray wavelength
  • is the half value width of the diffraction line.
  • is the Bragg angle for the diffraction line.
  • an SEM photograph was taken with a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.).
  • the particle diameter was calculated using the taken SEM photograph (1100 nm ⁇ 950 nm).
  • the particle diameter of the vanadium dioxide-containing particles, the area circle equivalent diameter is applied, the area of each vanadium dioxide-containing particle is measured in the SEM photograph, and the diameter of the circle having the same area is determined as the particle diameter of the vanadium dioxide-containing particles. did.
  • 30 particles having the most universal dimensions and shapes were selected, the average primary particle size of the 30 particles was calculated, and the average value was defined as the average primary particle size D (nm).
  • Average primary particle size is 1 nm or more and 20 nm or less :: Average primary particle size is more than 20 nm and 30 nm or less ⁇ : Average primary particle size is more than 30 nm and 40 nm or less ⁇ : Average primary particle size is , 40 nm.
  • Haze is less than 1.5% :: Haze is 1.5% or more and less than 2.0% ⁇ : Haze is 2.0% or more and less than 3.0% ⁇ : Haze is 3.0% or more.
  • thermochromic properties For each of the optical films produced above, the thermal barrier property (TSER) difference ( ⁇ TSER), which is a measure of thermochromic properties, was evaluated.
  • the light transmittance and light reflectance of every 2 nm in the wavelength region of 300 to 2500 nm are measured for each optical film.
  • the temperature was measured at low temperature (10 ° C.) and high temperature (80 ° C.).
  • the solar reflectance R (DS) and the solar transmittance T (DS) are determined according to the method described in JIS ⁇ R ⁇ 3106: 1998, and then the heat shield at low and high temperatures calculated from the following equation (2).
  • the performance (TSER,%) was obtained, and then ⁇ TSER (%) was calculated according to the equation (3), and the heat shielding property was evaluated according to the following evaluation criteria.
  • TSER (%) ((100 ⁇ T (DS) ⁇ R (DS)) ⁇ 0.7143) + R (DS) Equation (3)
  • ⁇ TSER (%) TSER (high temperature)-TSER (low temperature) :: ⁇ TSER is 13.0% or more ⁇ : ⁇ TSER is 8.0% or more and less than 13.0% X: ⁇ TSER is less than 8.0%.
  • the slurry raw material liquid containing the vanadium-containing compound was subjected to a desalting treatment, and the pH of the slurry raw material liquid at 25 ° C. was adjusted to 8.0 to 11.0.
  • the particles are treated by a hydrothermal synthesis method so that the average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm.
  • the optical film to which the vanadium dioxide-containing particles are applied can achieve both excellent thermochromic properties ( ⁇ TSER) and transparency (haze resistance). I was able to confirm that I could.
  • the vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles of the present invention have a small average particle size, a low haze, excellent thermochromic properties, and a property between an internal environment such as a room or a vehicle and an external environment.
  • an internal environment such as a room or a vehicle and an external environment.
  • it can be suitably used as an optical film or the like that can achieve both energy saving and comfortableness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention addresses the problem of providing a method for producing vanadium dioxide-containing particles, by which it is possible to produce vanadium dioxide-containing particles having a small average particle diameter and obtain an optical film having low haze and excellent thermochromic properties by using the vanadium dioxide-containing particles. This method for producing vanadium dioxide-containing particles is a method in which vanadium dioxide-containing particles are produced by means of a hydrothermal synthesis method using a circulating reactor and using a reaction liquid obtained by mixing supercritical water or subcritical water with a raw material slurry containing a vanadium-containing compound and a compound that reacts with the vanadium-containing compound. The production method is characterized in that vanadium dioxide-containing particles having a pH of 8.0-11.0, an electrical conductivity within the range 10-1000 mS/m, an average primary particle diameter of 1-30 nm and an average crystallite diameter within the range 1-15 nm are produced by subjecting the raw material slurry to a desalting treatment prior to the hydrothermal synthesis method.

Description

二酸化バナジウム含有粒子の製造方法Method for producing vanadium dioxide-containing particles
 本発明は、流通式反応装置を用い、水熱合成法により、平均粒径が小さい二酸化バナジウム含有粒子を製造する二酸化バナジウム含有粒子の製造方法に関する。 The present invention relates to a method for producing vanadium dioxide-containing particles having a small average particle diameter by a hydrothermal synthesis method using a flow-type reactor.
 住宅やビル等の建物、及び車両のような移動体において、室内や車両内等の内部環境と外部環境との間で大きな熱交換が生じる箇所、例えば、建築用窓ガラスや車体用窓ガラス等においては、省エネルギー化と快適性の確保を両立するため、サーモクロミック材料の適用が盛んに検討されている。 In a building such as a house or a building, and a moving body such as a vehicle, a place where a large heat exchange occurs between an internal environment such as a room or a vehicle and an external environment, for example, a window glass for a building or a window glass for a vehicle body. In order to achieve both energy saving and comfortableness, application of thermochromic materials has been actively studied.
 ここでいう「サーモクロミック材料」とは、例えば、光透過性に代表される光学的特性を、温度により制御することを可能とする材料で、例えば、建物の窓ガラスにサーモクロミック材料を適用した場合、夏季においては赤外線を反射させて室内に侵入する熱を遮断し、冬季には赤外線を室内に透過させて、その熱エネルギーを利用することが可能となる材料である。 The term "thermochromic material" as used herein refers to, for example, a material that enables optical characteristics typified by light transmittance to be controlled by temperature.For example, a thermochromic material is applied to a window glass of a building. In this case, it is a material that can reflect heat in the room by reflecting infrared rays in summer and transmit infrared rays in the room in winter in order to use the heat energy.
 近年、最も着目されているサーモクロミック材料の一つとして、二酸化バナジウム(VO)を含む材料が挙げられる。この二酸化バナジウムは、室温近傍で相転移を起こす際に、温度により光学特性が可逆的に変化する性質である「サーモクロミック性」を示すことが知られている。したがって、この性質を利用することにより、環境温度依存型のサーモクロミック特性を発現する材料を得ることができる。 In recent years, one of the thermochromic materials that has received the most attention is a material containing vanadium dioxide (VO 2 ). It is known that vanadium dioxide exhibits "thermochromic property", which is a property that optical properties reversibly change with temperature when a phase transition occurs near room temperature. Therefore, by utilizing this property, it is possible to obtain a material exhibiting an environmental temperature-dependent thermochromic property.
 ここで、二酸化バナジウムには、A相、B相、C相及びルチル型結晶相(以下、「R相」ともいう。)など、いくつかの結晶相が存在するが、そのなかでも、上記サーモクロミック性を100℃以下の比較的低温で示す結晶構造は、R相(ルチル型結晶相)に限定される。このR相は、相転移温度(約68℃)未満では単斜晶の構造を有し、可視光線及び赤外線の透過率が高い特性を発現する。一方、R相は、相転移温度である68℃以上の温度領域では正方晶の構造を有し、単斜晶構造の場合に比べて赤外線の透過率が低いという性質を示す。すなわち、相転移温度を境にして、赤外線の透過率が大きく変化するという特有の性質を有している。 Here, vanadium dioxide has several crystal phases such as an A phase, a B phase, a C phase, and a rutile type crystal phase (hereinafter, also referred to as an “R phase”). The crystal structure exhibiting chromic properties at a relatively low temperature of 100 ° C. or lower is limited to the R phase (rutile type crystal phase). The R phase has a monoclinic structure at a temperature lower than the phase transition temperature (about 68 ° C.), and exhibits high transmittance of visible light and infrared light. On the other hand, the R phase has a tetragonal structure in a temperature range of 68 ° C. or higher, which is a phase transition temperature, and exhibits a property of lower infrared transmittance than a monoclinic structure. That is, it has a unique property that the transmittance of infrared rays greatly changes around the phase transition temperature.
 このような特性を有する二酸化バナジウム含有粒子を、窓ガラス等に貼付して使用する光学フィルムに適用する場合には、粒子としての透明性(ヘイズが低いこと)が要求され、そのためには、二酸化バナジウム含有粒子が凝集していないこと(二次粒径サイズが小さいこと)、粒径がナノオーダー(100nm以下)であることが望ましい。 When vanadium dioxide-containing particles having such properties are applied to an optical film used by being attached to a window glass or the like, transparency (low haze) as the particles is required. It is desirable that the vanadium-containing particles are not agglomerated (the secondary particle size is small) and that the particle size is in the nano order (100 nm or less).
 このような透明性の高い微粒子である二酸化バナジウム含有粒子を製造する方法として、近年、水熱反応を用いて、R相の二酸化バナジウム粒子を製造する方法が報告されている。 As a method for producing vanadium dioxide-containing particles which are fine particles having high transparency, a method of producing R-phase vanadium dioxide particles using a hydrothermal reaction has recently been reported.
 例えば、特許文献1には、ドーピング二酸化バナジウム粉体(V1-x)の組成をドーピング元素が0<x≦0.5となる組成とすることにより、粉体の寸法及び形状が制御可能となることが開示されている。また、その結果、製造されるドーピング二酸化バナジウム粉体の結晶子径の寸法を小さくし、均一化し得ることが開示されている。そして、ドーピング二酸化バナジウム粉体の製造方法として、水熱反応がより容易に行えるよう処理された反応前駆体を水熱反応オートクレーブに移行して水熱反応を行った後、水熱反応生成物を乾燥分離する方法が開示されている。 For example, Patent Document 1 discloses that the composition and composition of a doped vanadium dioxide powder (V 1−x M x O 2 ) are adjusted so that the doping element satisfies 0 <x ≦ 0.5. Is disclosed as being controllable. Further, as a result, it is disclosed that the size of the crystallite diameter of the manufactured doped vanadium dioxide powder can be reduced and made uniform. Then, as a method for producing doped vanadium dioxide powder, the reaction precursor treated so that the hydrothermal reaction can be performed more easily is transferred to a hydrothermal reaction autoclave, and the hydrothermal reaction is performed. A method for drying and separating is disclosed.
 しかしながら、特許文献1で開示されている方法は、水熱オートクレーブを用いたバッチ方式の製造装置で、水熱反応時間が6~12時間という長時間を要する製造方法であり、得られる二酸化バナジウムも、平均粒径が大きく、かつ分布も広いため、この二酸化バナジウム含有粒子を光学フィルムに適用した場合には、ヘイズが高いため車載用又は建材用途のフィルムとしては不向きであった。 However, the method disclosed in Patent Literature 1 is a batch-type production apparatus using a hydrothermal autoclave, and requires a long hydrothermal reaction time of 6 to 12 hours. Since the average particle diameter is large and the distribution is wide, when the vanadium dioxide-containing particles are applied to an optical film, the film has a high haze and is not suitable as a film for use in vehicles or building materials.
 また、特許文献2には、流通式反応装置を用いた製造方法として、超臨界状態の高温高圧水を用いる水熱合成法が開示されている。特許文献2で開示されている流通式反応装置を用いた水熱合成法では、微粒子合成を行う際に、反応場にアルカリ水溶液を供給してpHを調整することにより機能性のナノ粒子の粒子径を制御する方法であるが、粒子形成過程で過剰に存在する塩類等の除去を行わず、そのままの環境下で粒子形成を行っているため、粒子の結晶子径や粒子径を所望の条件に制御させることが難しく、その結果、粒径分布が広くなり、サーモクロミック性の低下や、光学フィルムに適用した際、透明性(ヘイズ)の低下を引き起こすという問題を抱えている。 文献 Patent Document 2 discloses a hydrothermal synthesis method using high-temperature, high-pressure water in a supercritical state as a production method using a flow-type reactor. In the hydrothermal synthesis method using a flow-type reaction apparatus disclosed in Patent Document 2, when synthesizing fine particles, functional alkaline particles are supplied by supplying an alkaline aqueous solution to a reaction field and adjusting the pH. It is a method of controlling the diameter, but since the particles are formed in the same environment without removing the salts and the like which are excessively present in the particle formation process, the crystallite diameter and the particle diameter of the particles are adjusted to the desired conditions. However, there is a problem that the particle size distribution is widened, which causes a decrease in thermochromic property and a decrease in transparency (haze) when applied to an optical film.
特表2014-505651号公報JP 2014-505651 A 特開2010-069474号公報JP 2010-069474 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、平均粒径が小さく、低ヘイズで、サーモクロミック性に優れた光学フィルムを得ることができる二酸化バナジウム含有粒子の製造方法を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a problem to be solved is to provide a vanadium dioxide-containing particle capable of obtaining an optical film having a small average particle size, a low haze, and excellent thermochromic properties. It is to provide a manufacturing method.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、水熱反応部を有する流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法において、バナジウム含有化合物、反応調整剤及び水を含有するスラリー原料液の脱塩処理を施すステップの条件を調整することにより、平均一次粒径が1~30nm、平均結晶子径が1~15nmの範囲内となる二酸化バナジウム含有粒子を製造する方法により、平均粒径が小さく、低ヘイズで、サーモクロミック性に優れた光学フィルムを得ることができる二酸化バナジウム含有粒子の製造方法を見いだし、本発明に至った。 The present inventor has studied the causes of the above problems in order to solve the above problems, and found that in a method for producing vanadium dioxide-containing particles using a flow-type reaction apparatus having a hydrothermal reaction section, a vanadium-containing compound, Particles containing vanadium dioxide having an average primary particle size of 1 to 30 nm and an average crystallite size of 1 to 15 nm by adjusting the conditions of the step of desalting the slurry raw material liquid containing the agent and water. The present inventors have found a method for producing vanadium dioxide-containing particles capable of obtaining an optical film having a small average particle size, a low haze, and an excellent thermochromic property by the method for producing the present invention, and have led to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned subject according to the present invention is solved by the following means.
 1.水熱反応部を有する流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法であって、
 少なくとも下記の第1ステップ~第3ステップを有し:
 第1ステップ:少なくともバナジウム含有化合物、反応調整剤及び水を含有するスラリー原料液を調製するステップ
 第2ステップ:前記スラリー原料液に脱塩処理を施すステップ
 第3ステップ:前記脱塩処理を施したスラリー原料液と、超臨界又は亜臨界状態の水とを混合した反応液を用いる水熱反応法により、二酸化バナジウム含有粒子を製造するステップ
 前記第2ステップにおいて、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、
 25℃における電気伝導率を10~1000mS/mの範囲内に維持し、
 前記二酸化バナジウム含有粒子の平均一次粒径を1~30nmの範囲内とし、かつ、
 平均結晶子径を1~15nmの範囲内になるように調整して製造する
 ことを特徴とする二酸化バナジウム含有粒子の製造方法。
1. A method for producing vanadium dioxide-containing particles using a flow reactor having a hydrothermal reaction section,
It has at least the following first to third steps:
First step: a step of preparing a slurry raw material liquid containing at least a vanadium-containing compound, a reaction modifier, and water Second step: a step of subjecting the slurry raw material liquid to a desalting treatment Third step: applying the desalting treatment A step of producing vanadium dioxide-containing particles by a hydrothermal reaction method using a reaction liquid obtained by mixing a slurry raw material liquid and water in a supercritical or subcritical state. In the second step, the pH of the slurry raw material liquid at 25 ° C. Within the range of 8.0 to 11.0,
Maintaining the electrical conductivity at 25 ° C. within the range of 10 to 1000 mS / m;
The average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm, and
A method for producing vanadium dioxide-containing particles, wherein the particles are produced by adjusting the average crystallite diameter to fall within a range of 1 to 15 nm.
 2.前記スラリー原料液から塩類を除去する脱塩処理が、限外濾過装置を用いて行うことを特徴とする第1項に記載の二酸化バナジウム含有粒子の製造方法。 {2. 2. The method for producing vanadium dioxide-containing particles according to claim 1, wherein the desalting treatment for removing salts from the slurry raw material liquid is performed using an ultrafiltration device.
 3.前記スラリー原料液から塩類を除去する脱塩処理が、液温30℃以下で行うことを特徴とする第1項又は第2項に記載の二酸化バナジウム含有粒子の製造方法。 {3. The method for producing vanadium dioxide-containing particles according to claim 1 or 2, wherein the desalting treatment for removing salts from the slurry raw material liquid is performed at a liquid temperature of 30 ° C or lower.
 4.前記第3ステップにおける反応液を構成する水が、超臨界状態の水であることを特徴とする第1項から第3項までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。 4. The method for producing vanadium dioxide-containing particles according to any one of claims 1 to 3, wherein water constituting the reaction solution in the third step is water in a supercritical state.
 本発明の上記手段により、低ヘイズで、サーモクロミック性に優れた光学フィルムを得ることができる二酸化バナジウム含有粒子の製造方法を提供することができる。 に よ り By the above means of the present invention, it is possible to provide a method for producing vanadium dioxide-containing particles capable of obtaining an optical film having low haze and excellent thermochromic properties.
 本発明で規定する製造条件とすることにより、上記課題を解決することができる効果の発現機構及び作用機構について、以下のように推測している。 機構 The production mechanism and action mechanism that can solve the above-mentioned problems under the manufacturing conditions specified by the present invention are estimated as follows.
 二酸化バナジウム含有粒子を水熱合成法により製造する際、例えば、バナジウム含有化合物、アルカリ剤等により構成されているスラリー原料液が、塩類を多く含有している状態にあると、当該塩類が、水熱合成時の粒子構造の制御、特に、結晶子の形成に影響を及ぼし、所望の粒子プロファイルを有する二酸化バナジウム含有粒子を得ることが難しかった。 When producing vanadium dioxide-containing particles by a hydrothermal synthesis method, for example, if the slurry raw material liquid composed of a vanadium-containing compound, an alkaline agent, etc. is in a state containing a large amount of salts, the salts are converted into water. Controlling the particle structure during thermal synthesis, particularly affecting the formation of crystallites, made it difficult to obtain vanadium dioxide-containing particles having a desired particle profile.
 そこで、脱塩処理における各条件について検討を進めた結果、脱塩処理ステップにおいて、スラリー原料液中の塩類を過度に除去する、例えば、スラリー原料液の電気伝導率として1mS/m程度まで脱塩を進めると、水熱合成時の粒子形成環境が改善され、二酸化バナジウム含有粒子の結晶子径を調整でき、水熱合成時、例えば、流通式反応装置を用いる場合に、粒子凝集等による流路の閉塞を防止することができ、連続生産性を向上させることができるという利点を有しているが、下記のような問題を抱えていることが判明した。 Therefore, as a result of studying each condition in the desalting treatment, in the desalting treatment step, salts in the slurry raw material liquid are excessively removed, for example, the electric conductivity of the slurry raw material liquid is reduced to about 1 mS / m. The environment for forming particles during hydrothermal synthesis is improved, the crystallite size of vanadium dioxide-containing particles can be adjusted, and during hydrothermal synthesis, for example, when using a flow-through reactor, a flow path due to particle aggregation or the like is used. This has the advantage that it is possible to prevent clogging and to improve continuous productivity, but it has been found that it has the following problems.
 すなわち、スラリー原料液の脱塩を過度に進め、大部分の塩類を除去すると、塩濃度の低下に伴い、バナジウム含有前駆体粒子の溶解度がアップし、脱塩処理ステップでの微粒子の溶解及び大きな粒子への成長、いわゆるオストワルド熟成が進行し、最終的に得られる粒子は結晶成長が進んだものとなり、平均粒子径や平均結晶子径が大きなものとなる。したがって、高品質の特性が要求されている光学フィルムの適用においては、ヘイズの上昇や光学性能の低下の要因となるため、改良すべき余地を残しているのが現状である。 That is, excessive desalting of the slurry raw material liquid, removing most of the salts, with a decrease in the salt concentration, the solubility of the vanadium-containing precursor particles increases, the dissolution of the fine particles in the desalination process step and large Growth into particles, so-called Ostwald ripening, progresses, and the finally obtained particles have advanced crystal growth, and have a large average particle diameter and a large average crystallite diameter. Therefore, in the application of an optical film that requires high quality characteristics, it causes a rise in haze and a decrease in optical performance, and therefore, at present, there is room for improvement.
 本発明者は、脱塩処理条件について更に詳細な検討を進めた結果、脱塩処理時のスラリー原料液の液特性として、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、かつ25℃における電気伝導率を10~1000mS/mという特定の条件範囲内を維持して脱塩処理を施すことにより、上記のような粒子の粗大化を起こすことなく、平均一次粒径を1~30nmの範囲内、平均結晶子径を1~15nmの範囲内にある単分散性の高い二酸化バナジウム含有粒子を得ることができ、その結果、凝集体(二次粒子)の生成が抑制され、粒径分布が狭く、分散安定性に優れた平均粒径の小さい二酸化バナジウム含有粒子と、それを適用した低ヘイズで、かつサーモクロミック性に優れた光学フィルムを得ることができたと推測している。 As a result of further detailed examination of the desalting treatment conditions, the present inventor found that the slurry raw material liquid at the time of desalination treatment had a pH at 25 ° C. of 8.0 to 11.0. By performing the desalting treatment while keeping the electric conductivity at 25 ° C. within the specific condition range of 10 to 1000 mS / m, the average primary order can be prevented without causing the above-described coarsening of the particles. Highly monodisperse vanadium dioxide-containing particles having a particle size in the range of 1 to 30 nm and an average crystallite size in the range of 1 to 15 nm can be obtained, and as a result, formation of aggregates (secondary particles) Is suppressed, the particle size distribution is narrow, the vanadium dioxide-containing particles having a small average particle size and excellent dispersion stability, and a low haze to which it is applied, and an optical film with excellent thermochromic properties can be obtained. Speculate that.
 なお、上記の各技術的な機構はあくまでも推測であり、本発明の技術的範囲を制限するものではない。 Note that the above technical mechanisms are merely speculations and do not limit the technical scope of the present invention.
本発明の脱塩処理ステップを有する二酸化バナジウム含有粒子の製造工程の一例を示す工程フロー図Process flow chart showing an example of a production process of vanadium dioxide-containing particles having a desalination treatment step of the present invention 本発明に係る脱塩処理ステップに適用可能な脱塩装置の一例である限外濾過装置の処理フローの一例を示す概略図The schematic diagram which shows an example of the processing flow of the ultrafiltration apparatus which is an example of the desalination apparatus applicable to the desalination processing step which concerns on this invention. 本発明に係る二酸化バナジウム含有粒子の製造に適用可能な水熱反応部を具備した製造フローの一例を示す概略図Schematic showing an example of a production flow including a hydrothermal reaction section applicable to the production of vanadium dioxide-containing particles according to the present invention. 本発明に係る二酸化バナジウム含有粒子の製造に適用可能な水熱反応部を具備した流通式反応装置の一例を示す概略図Schematic showing an example of a flow-type reaction apparatus equipped with a hydrothermal reaction section applicable to the production of vanadium dioxide-containing particles according to the present invention. 本発明に係る製造方法で規定する二酸化バナジウム含有粒子の粒子構造(結晶子径)の一例を示す模式図Schematic diagram showing an example of the particle structure (crystallite diameter) of vanadium dioxide-containing particles specified by the production method according to the present invention.
 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応部を有する流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法であって、少なくとも前記の第1ステップ~第3ステップを有し、前記第2ステップにおいて、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、25℃における電気伝導率を10~1000mS/mの範囲内に維持し、前記二酸化バナジウム含有粒子の平均一次粒径を1~30nmの範囲内とし、かつ、平均結晶子径を1~15nmの範囲内になるように調整して製造することを特徴とする。この特徴は、下記各実施形態に共通する又は対応する技術的特徴である。 The method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles using a flow-type reaction apparatus having a hydrothermal reaction section, comprising at least the first to third steps described above, In the second step, the pH of the slurry raw material liquid at 25 ° C. is set within a range of 8.0 to 11.0, the electric conductivity at 25 ° C. is maintained within a range of 10 to 1000 mS / m, and the vanadium dioxide is added. It is characterized in that the particles are produced by adjusting the average primary particle diameter of the contained particles to be in the range of 1 to 30 nm and the average crystallite diameter in the range of 1 to 15 nm. This feature is a technical feature common to or corresponding to each of the following embodiments.
 本発明の実施態様としては、本発明の効果発現の観点から、スラリー原料液から塩類を除去する脱塩処理として、限外濾過装置を用いることが、効率よく脱塩処理を行うことができる点で好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the use of an ultrafiltration device as the desalting treatment for removing salts from the slurry raw material liquid can efficiently perform the desalting treatment. Is preferred.
 また、スラリー原料液から塩類を除去する脱塩処理が、液温30℃以下で行うことが、更に効率よく脱塩処理を行うことができる点で好ましい。 (4) It is preferable that the desalting treatment for removing salts from the slurry raw material liquid is performed at a liquid temperature of 30 ° C. or lower in that the desalting treatment can be performed more efficiently.
 また、反応液を構成する水が、超臨界状態の水であることが、高品質の二酸化バナジウム含有粒子を安定して製造できる点で好ましい。 水 Further, it is preferable that the water constituting the reaction solution is water in a supercritical state in that high-quality vanadium dioxide-containing particles can be stably produced.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。なお、各図の説明において、構成要素の末尾に記載した数字は、説明する図面に記載した符号を表す。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the present invention, its components, and embodiments and modes for carrying out the present invention will be described in detail. In addition, in this application, "-" is used in the meaning including the numerical value described before and after it as a lower limit and an upper limit. In the description of each drawing, the numbers described at the end of the constituent elements represent the reference numerals described in the drawings to be described. In addition, the dimensional ratios in the drawings are exaggerated for convenience of description, and may be different from the actual ratios.
 《二酸化バナジウム含有粒子の製造方法》
 はじめに、本発明の二酸化バナジウム含有粒子の製造方法の全体概要を説明する。
<< Method for producing vanadium dioxide-containing particles >>
First, an overall outline of the method for producing vanadium dioxide-containing particles of the present invention will be described.
 本発明の二酸化バナジウム含有粒子の製造方法は、水熱反応部を有する流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法であって、
 少なくとも下記の第1ステップ~第3ステップを有し:
 第1ステップ:少なくともバナジウム含有化合物、反応調整剤及び水を含有するスラリー原料液を調製するステップ
 第2ステップ:前記スラリー原料液に脱塩処理を施すステップ
 第3ステップ:前記脱塩処理を施したスラリー原料液と、超臨界又は亜臨界状態の水とを混合した反応液を用いる水熱反応法により、二酸化バナジウム含有粒子を製造するステップ、
 上記第2ステップにおいて、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、
 25℃における電気伝導率を10~1000mS/mの範囲内に維持し、
 前記二酸化バナジウム含有粒子の平均一次粒径を1~30nmの範囲内とし、かつ、
 平均結晶子径を1~15nmの範囲内になるように調整して製造する
 ことを特徴とする。
The method for producing vanadium dioxide-containing particles of the present invention is a method for producing vanadium dioxide-containing particles using a flow reactor having a hydrothermal reaction section,
It has at least the following first to third steps:
First step: a step of preparing a slurry raw material liquid containing at least a vanadium-containing compound, a reaction modifier, and water Second step: a step of subjecting the slurry raw material liquid to a desalting treatment Third step: applying the desalting treatment A step of producing vanadium dioxide-containing particles by a hydrothermal reaction method using a reaction liquid obtained by mixing a slurry raw material liquid and water in a supercritical or subcritical state,
In the second step, the pH of the slurry raw material liquid at 25 ° C. is in the range of 8.0 to 11.0,
Maintaining the electrical conductivity at 25 ° C. within the range of 10 to 1000 mS / m;
The average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm, and
It is characterized by being manufactured by adjusting the average crystallite diameter so as to be in the range of 1 to 15 nm.
 本発明において、「二酸化バナジウム(VO)含有粒子」を「本発明に係る二酸化バナジウム含有粒子」、「本発明に係るVO含有粒子」、又は単に「VO含有粒子」ともいう。 In the present invention, “vanadium dioxide (VO 2 ) -containing particles” are also referred to as “vanadium dioxide-containing particles according to the present invention”, “VO 2 -containing particles according to the present invention”, or simply “VO 2 -containing particles”.
 本発明においては、脱塩処理を施したバナジウム含有化合物を含むスラリー原料液と、超臨界化又は亜臨界化させた水とを水熱反応させ、二酸化バナジウム含有粒子を形成する方法を「水熱合成方法」、「水熱反応方法」、又は「水熱反応」ともいい、その水熱反応を実施する工程を「水熱反応工程」と称し、具体的に、詳細は後述する図3及び図4に示すような連続して水熱反応を行う装置を「流通式反応装置」という。 In the present invention, a method of forming a vanadium dioxide-containing particle by a hydrothermal reaction between a slurry raw material liquid containing a desalted vanadium-containing compound and supercritical or subcritical water is referred to as `` hydrothermal. '' Also referred to as “synthesis method”, “hydrothermal reaction method”, or “hydrothermal reaction”, the step of performing the hydrothermal reaction is referred to as “hydrothermal reaction step”, and specifically, FIG. 3 and FIG. An apparatus for continuously performing a hydrothermal reaction as shown in FIG. 4 is referred to as a “flow-type reaction apparatus”.
 [二酸化バナジウム含有粒子の基本的な製造フロー]
 図1は、脱塩処理ステップを有する本発明の二酸化バナジウム含有粒子の製造方法の一例を示すフロー図である。
[Basic production flow of vanadium dioxide-containing particles]
FIG. 1 is a flowchart showing an example of the method for producing vanadium dioxide-containing particles of the present invention having a desalination treatment step.
 二酸化バナジウム含有粒子の製造方法では、第1ステップとして、スラリー原料液の調製を行う。本発明に係るスラリー原料液は、主の構成要素として、(A)バナジウム含有化合物及び水を含む原料液と、(B)反応調整剤(例えば、アルカリ)と、(C)水(好ましくはイオン交換水)で構成され、その他に必要に応じて、各種添加剤が添加されている。 (4) In the method for producing vanadium dioxide-containing particles, as a first step, a slurry raw material liquid is prepared. The slurry raw material liquid according to the present invention includes (A) a raw material liquid containing a vanadium-containing compound and water, (B) a reaction modifier (for example, an alkali), and (C) water (preferably an ion (Exchange water), and various additives are added as needed.
 第2ステップとしては、上記調製したスラリー原料液に対し脱塩処理を施し、不要の塩類(例えば、カルシウムイオン等)をスラリー原料液から取り除く。この時、スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、かつ25℃における電気伝導率を10~1000mS/mの範囲内を維持することを特徴とする。脱塩処理方法としては、特に制限はないが、デカンテーション法、遠心分離法、限外濾過法等を適用することができるが、その中でも、特に、限外濾過法が好ましい。本発明において、スラリー原料液のpHは、市販のpHメーターを用いて容易に測定でき、電気伝導率についても、市販の電気伝導率計を用いて、容易に測定することができる。この時、脱塩処理温度は30℃以下であることが好ましい。 2 In the second step, desalting treatment is performed on the slurry raw material liquid prepared above to remove unnecessary salts (for example, calcium ions) from the slurry raw material liquid. At this time, the slurry raw material liquid is characterized in that the pH at 25 ° C. is in the range of 8.0 to 11.0 and the electric conductivity at 25 ° C. is in the range of 10 to 1000 mS / m. Although there is no particular limitation on the desalting method, a decantation method, a centrifugal separation method, an ultrafiltration method and the like can be applied, and among them, the ultrafiltration method is particularly preferable. In the present invention, the pH of the slurry raw material liquid can be easily measured using a commercially available pH meter, and the electric conductivity can also be easily measured using a commercially available electric conductivity meter. At this time, the desalting temperature is preferably 30 ° C. or lower.
 次いで、第3ステップとして、脱塩処理を施したスラリー原料液と、超臨界化又は亜臨界化したイオン交換水と会合させて「反応液」を調製した後、水熱反応装置(例えば、図4に示すような流通式反応装置)を用いて高温高圧下で反応させて、平均一次粒径が1~30nmの範囲内で、かつ平均結晶子径が1~15nmの範囲内の二酸化バナジウム含有粒子を製造する。 Next, as a third step, a "reaction liquid" is prepared by associating a slurry raw material liquid subjected to a desalination treatment with supercritical or subcritical ion exchange water, and then a hydrothermal reactor (for example, FIG. 4), and containing vanadium dioxide having an average primary particle size in the range of 1 to 30 nm and an average crystallite size in the range of 1 to 15 nm. Produce particles.
 [スラリー原料液]
 はじめに、スラリー原料液を構成する(1)バナジウム含有化合物、(2)反応調整剤、及び(3)水について説明する。
[Slurry raw material liquid]
First, (1) a vanadium-containing compound, (2) a reaction modifier, and (3) water that constitute a slurry raw material liquid will be described.
 〔(1)バナジウム含有化合物〕
 本発明に適用可能なバナジウム含有化合物(二酸化バナジウム含有粒子の原料)としては、例えば、五価のバナジウム(以下、バナジウム(V)と記載する。)としては、五酸化二バナジウム(V)(V)、バナジン酸アンモニウム(V)(NHVO)、三塩化酸化バナジウム(V)(VOCl)、バナジン酸ナトリウム(V)(NaVO)等、四価のバナジウム(以下、バナジウム(IV)と記載する。)としては、シュウ酸バナジル(IV)(VOC)、酸化硫酸バナジウム(以下、硫酸バナジルとも称する)(IV)(VOSO)、及び四酸化二バナジウム(IV)(V)を硫酸等の酸で溶解したものが例示できる。なお、上記のバナジウム含有化合物のうち、スラリー状の原料液を構成する観点から、四価のバナジウム(バナジウム(IV))を適用することが好ましい。また、バナジウム含有化合物は1種単独で用いてもよく、又は2種以上を混合して用いてもよい。
[(1) Vanadium-containing compound]
Examples of the vanadium-containing compound (raw material of vanadium dioxide-containing particles) applicable to the present invention include, for example, pentavalent vanadium (hereinafter, referred to as vanadium (V)), and divanadium pentoxide (V) (V Tetravalent vanadium (hereinafter, vanadium) such as 2 O 5 ), ammonium vanadate (V) (NH 4 VO 3 ), vanadium trichloride (V) (VOCl 3 ), and sodium vanadate (V) (NaVO 3 ) (Described as (IV))) as vanadyl oxalate (IV) (VOC 2 O 4 ), vanadium oxide sulfate (hereinafter also referred to as vanadyl sulfate) (IV) (VOSO 4 ), and divanadium tetroxide (IV ) (V 2 O 4 ) dissolved in an acid such as sulfuric acid. Note that, among the above vanadium-containing compounds, it is preferable to use tetravalent vanadium (vanadium (IV)) from the viewpoint of forming a slurry-like raw material liquid. Further, the vanadium-containing compound may be used singly or as a mixture of two or more.
 スラリー原料液を構成する反応調整剤としては、スラリー原料液を水熱反応させることによって二酸化バナジウム含有粒子を製造することができるものであれば、特に制限されないが、四価のバナジウム(バナジウム(IV))を適用する場合には、アルカリが使用される。 The reaction modifier constituting the slurry raw material liquid is not particularly limited as long as it can produce vanadium dioxide-containing particles by hydrothermally reacting the slurry raw material liquid, but tetravalent vanadium (vanadium (IV When)) is applied, an alkali is used.
 具体的には、バナジウム含有化合物として四価のバナジウム(IV)含有化合物を用いる場合には、前記反応調整剤としては、アルカリを適用する。この時、アルカリは、バナジウム含有化合物及びイオン交換水を含む水溶液に添加される。 Specifically, when a tetravalent vanadium (IV) -containing compound is used as the vanadium-containing compound, an alkali is applied as the reaction regulator. At this time, the alkali is added to an aqueous solution containing a vanadium-containing compound and ion-exchanged water.
 なお、バナジウム含有化合物として五価のバナジウム(V)含有化合物を用いる場合には、反応調整剤としては、還元剤(例えば、ヒドラジン及びその水和物等)が適用されるが、本発明の二酸化バナジウム含有粒子の製造方法においては、主には、バナジウム含有化合物としては、スラリー原料液を形成することができる四価のバナジウム(IV)含有化合物を適用することが好ましいため、五価のバナジウム(V)含有化合物及び還元剤の詳細な説明は省略する。 When a pentavalent vanadium (V) -containing compound is used as the vanadium-containing compound, a reducing agent (for example, hydrazine and a hydrate thereof) is applied as a reaction modifier, but the reaction agent of the present invention is In the method for producing vanadium-containing particles, it is preferable to apply a tetravalent vanadium (IV) -containing compound capable of forming a slurry raw material liquid as the vanadium-containing compound. V) Detailed description of the containing compound and the reducing agent is omitted.
 (四価のバナジウム(IV)含有化合物)
 本発明の二酸化バナジウム含有粒子の製造方法に適用するバナジウム(IV)含有化合物(二酸化バナジウム含有粒子の原料)は、特に制限されず、上記で列挙した化合物の中から適宜選択できる。その中でも、水熱反応後に副生成物をできるだけ生成させない観点から、酸化硫酸バナジウム(IV)(VOSO)であることが好ましい。なお、バナジウム(IV)含有化合物は、1種単独で用いてもよく、又は2種以上を混合して用いてもよい。
(Tetravalent vanadium (IV) containing compound)
The vanadium (IV) -containing compound (raw material for the vanadium dioxide-containing particles) applied to the method for producing vanadium dioxide-containing particles of the present invention is not particularly limited, and can be appropriately selected from the compounds listed above. Among them, vanadium (IV) oxide (VOSO 4 ) is preferable from the viewpoint of generating as little by-products as possible after the hydrothermal reaction. The vanadium (IV) -containing compound may be used alone or as a mixture of two or more.
 反応液に含まれるバナジウム(IV)含有化合物の初期濃度は、本発明の目的効果が得られる限りにおいて特に制限されないが、好ましくは0.1~1000ミリモル/Lである。このような濃度であれば、バナジウム(IV)含有化合物を十分に溶解又は分散し、得られる二酸化バナジウム含有粒子の平均一次粒径(粒子径)を小さくし、かつ粒子径(粒度)分布を狭くして、二酸化バナジウム含有粒子のサーモクロミック性、及び二酸化バナジウム含有粒子を含む光学フィルムの透明性をより高めることができる。反応液に含まれるバナジウム(IV)化合物の初期濃度は、二酸化バナジウム含有粒子の平均一次粒径及び粒子径分布、すなわち二酸化バナジウム含有粒子のサーモクロミック性、及び二酸化バナジウム含有粒子を含む光学フィルムの透明性などの観点から、より好ましくは20~600ミリモル/Lの範囲内であり、さらに好ましくは50~400ミリモル/Lの範囲内である。なお、上記の「初期濃度」とは、水熱反応前における、反応液1L中のバナジウム(IV)含有化合物量(2種以上のバナジウム(IV)含有化合物を含む場合は、その合計量)である。 初期 The initial concentration of the vanadium (IV) -containing compound contained in the reaction solution is not particularly limited as long as the intended effects of the present invention can be obtained, but is preferably 0.1 to 1000 mmol / L. With such a concentration, the vanadium (IV) -containing compound is sufficiently dissolved or dispersed, the average primary particle size (particle size) of the obtained vanadium dioxide-containing particles is reduced, and the particle size (particle size) distribution is narrowed. As a result, the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be further improved. The initial concentration of the vanadium (IV) compound contained in the reaction solution depends on the average primary particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles, and the transparency of the optical film containing the vanadium dioxide-containing particles. From the viewpoint of properties and the like, it is more preferably in the range of 20 to 600 mmol / L, and still more preferably in the range of 50 to 400 mmol / L. The “initial concentration” is the amount of the vanadium (IV) -containing compound in 1 L of the reaction solution before the hydrothermal reaction (when two or more vanadium (IV) -containing compounds are contained, the total amount thereof). is there.
 〔(2)反応調整剤〕
 バナジウム含有化合物として、バナジウム(IV)含有化合物を使用する場合には、反応調整剤として、アルカリを用いることが好ましい。また、前述のように、バナジウム含有化合物として五価のバナジウム(V)含有化合物を用いる場合には、反応調整剤としては、還元剤(例えば、ヒドラジン及びその水和物等)が適用される。
[(2) Reaction modifier]
When a vanadium (IV) -containing compound is used as the vanadium-containing compound, it is preferable to use an alkali as a reaction regulator. Further, as described above, when a pentavalent vanadium (V) -containing compound is used as the vanadium-containing compound, a reducing agent (for example, hydrazine and its hydrate) is applied as the reaction modifier.
 (アルカリ)
 水熱合成法(水熱反応)では、バナジウム含有化合物がバナジウム(IV)含有化合物である場合、反応調整剤の少なくとも1種としてアルカリを用いて行うことが好ましい。なお、本発明でいうアルカリとは、水溶液中において水酸化物イオン(OH)を発生させる物質を意味し、それ自体が水酸化物イオンを生じる化合物の他に、それ自体が水酸化物イオンを生じるわけではなく結果的に水酸化物イオンを生じる化合物も含まれる。
(alkali)
In the hydrothermal synthesis method (hydrothermal reaction), when the vanadium-containing compound is a vanadium (IV) -containing compound, it is preferable to use an alkali as at least one of the reaction modifiers. The term “alkali” as used in the present invention means a substance that generates hydroxide ions (OH ) in an aqueous solution. In addition to a compound that itself generates hydroxide ions, the alkali itself is a hydroxide ion. And compounds that do not result in the formation of a hydroxide ion.
 アルカリとしては、特に制限されないが、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等が挙げられる。上記アルカリは、1種単独、あるいは2種以上を組み合わせて用いることができる。 The alkali is not particularly limited, and examples thereof include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like. The above alkalis can be used alone or in combination of two or more.
 これらの中でも、アンモニア、水酸化ナトリウム、又は水酸化カリウムであることが好ましく、アンモニア、又は水酸化ナトリウムであることがより好ましく、アンモニアであることがさらに好ましい。 中 で も Among these, ammonia, sodium hydroxide, or potassium hydroxide is preferable, ammonia or sodium hydroxide is more preferable, and ammonia is more preferable.
 なお、バナジウム(IV)含有化合物、アルカリ及びイオン交換水より構成されるスラリー原料液中のアルカリ濃度は、特に制限されないが、例えば、0.01~10mol/Lの範囲内であることが好ましく、0.1~5mol/Lの範囲内であることがより好ましい。 The alkali concentration in the slurry raw material liquid composed of the vanadium (IV) -containing compound, alkali and ion-exchanged water is not particularly limited, but is preferably, for example, in the range of 0.01 to 10 mol / L. More preferably, it is in the range of 0.1 to 5 mol / L.
 スラリー原料液と、超臨界化又は亜臨界化したイオン交換水とを混合して得られる反応液中のアルカリの量は、特に制限されないが、例えば、バナジウム含有化合物、バナジウム含有化合物と反応する化合物及び超臨界又は亜臨界状態のイオン交換水により構成される反応液のpHとして、6.8~11.2の範囲内となるように調整することが好ましく、7.0~8.5の範囲内に調整することがより好ましい。 The amount of alkali in the reaction liquid obtained by mixing the slurry raw material liquid and the supercritical or subcritical ion-exchanged water is not particularly limited, for example, a vanadium-containing compound, a compound that reacts with the vanadium-containing compound It is preferable to adjust the pH of the reaction solution composed of ion-exchanged water in a supercritical or subcritical state to be in the range of 6.8 to 11.2, and in the range of 7.0 to 8.5. It is more preferable to adjust within.
 〔(3)スラリー原料液調製用の水〕
 スラリー原料液を構成する水としては、特に制限はないが、イオン交換水又は脱気水を用いることが好ましく、特には、イオン交換水を用いることが好ましい。
[(3) Water for preparing slurry raw material liquid]
The water constituting the slurry raw material liquid is not particularly limited, but it is preferable to use ion-exchanged water or degassed water, and particularly preferable to use ion-exchanged water.
 〔その他の添加剤〕
 (バナジウム含有粒子の相転移調節剤)
 本発明の二酸化バナジウム含有粒子の製造方法では、水熱反応部において、反応液が含有するバナジウム含有化合物の二酸化バナジウム含有粒子への相転移温度を調節するため、特定の元素を含む相転移調整剤を含有することができる。
[Other additives]
(Phase transition regulator for vanadium-containing particles)
In the method for producing vanadium dioxide-containing particles of the present invention, in the hydrothermal reaction section, in order to adjust the phase transition temperature of the vanadium-containing compound contained in the reaction solution to the vanadium dioxide-containing particles, a phase transition regulator containing a specific element Can be contained.
 ここで、二酸化バナジウム含有粒子の相転移温度を調節するため相転移調節剤の反応液への添加方法は、特に制限されず、公知の方法を用いることができる。反応液への添加方法としては、バナジウム含有化合物含むスラリー原料液に添加されることが好ましい。また、水熱反応前の反応液へ直接添加される方法も用いることもできる。 Here, the method of adding the phase transition regulator to the reaction solution for controlling the phase transition temperature of the vanadium dioxide-containing particles is not particularly limited, and a known method can be used. As a method of adding to the reaction liquid, it is preferable to add to the slurry raw material liquid containing the vanadium-containing compound. Further, a method of directly adding to the reaction solution before the hydrothermal reaction can also be used.
 ここで、相転移調節剤としては、特に制限されないが、例えば、タングステン、チタン、モリブデン、ニオブ、タンタル、錫、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム、クロム、鉄、ガリウム、アルミニウム、フッ素、リン等の、バナジウム以外の金属元素を含む物質が使用できる。反応液が上記相転移調節剤を含むことにより、得られる二酸化バナジウム含有粒子の相転移温度を低下させることができる。相転移調節剤の具体例としては、例えば、タングステン酸アンモニウムパラ五水和物((NH101241・5HO)等を挙げることができる。 Here, the phase transition regulator is not particularly limited, but, for example, tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus For example, a substance containing a metal element other than vanadium can be used. When the reaction solution contains the phase transition regulator, the phase transition temperature of the resulting vanadium dioxide-containing particles can be reduced. Phase Specific examples of transition modifiers can include, for example, ammonium tungstate para pentahydrate ((NH 4) 10 W 12 O 41 · 5H 2 O) and the like.
 [脱塩処理ステップ]
 本発明の二酸化バナジウム含有粒子の製造方法においては、上記調製したスラリー原料液について、水熱合成法により二酸化バナジウム含有粒子を製造する前に、スラリー原料液から所定量の塩類を除去する脱塩処理を施すこと、かつ脱塩処理時に、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、かつ25℃における電気伝導率を10~1000mS/mの範囲内を維持して脱塩処理を行うことを特徴とする。
[Desalination step]
In the method for producing vanadium dioxide-containing particles of the present invention, a desalting treatment for removing a predetermined amount of salts from the slurry raw material liquid before producing the vanadium dioxide-containing particles by the hydrothermal synthesis method for the slurry raw material liquid prepared above. And maintaining the pH of the slurry raw material liquid at 25 ° C. in the range of 8.0 to 11.0 and the electrical conductivity at 25 ° C. in the range of 10 to 1000 mS / m during the desalting treatment. And performing a desalination treatment.
 脱塩処理手段としては、スラリー原料液から塩類、例えば、アンモニウムイオン、硫酸イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン等を所定の濃度取り除くことができる方法であれば特に制限はなく、例えば、デカンテーション法、遠心分離法、限外濾過法等を適用することができるが、その中でも、特に、限外濾過法が好ましい。 The desalting treatment means is not particularly limited as long as it can remove salts, for example, ammonium ions, sulfate ions, sodium ions, potassium ions, calcium ions, and the like from the slurry raw material liquid at a predetermined concentration. For example, a filtration method, a centrifugal separation method, an ultrafiltration method, etc. can be applied. Among them, the ultrafiltration method is particularly preferable.
 (遠心分離法)
 脱塩処理で適用可能な遠心分離法は、上記調製したスラリー原料液のpHを調製した後、遠心分離機により、固液分離を行った後、水系の分離液の一部を系外に排出し、その後、排出したのと同容量のイオン交換水を追加添加し、その後分散処理を行い、この操作を繰り返して、不要の塩類を排出して、スラリー原料液を所定のpH及び電気伝導率に調整する。
(Centrifugation method)
The centrifugal separation method applicable to desalination treatment involves adjusting the pH of the slurry raw material liquid prepared above, performing solid-liquid separation using a centrifugal separator, and discharging a part of the aqueous separation liquid out of the system. Then, the same volume of ion-exchanged water as that discharged was additionally added, and then dispersion treatment was performed. This operation was repeated to discharge unnecessary salts, and the slurry raw material liquid was subjected to predetermined pH and electric conductivity. Adjust to
 (限外濾過法)
 次いで、本発明に好適な脱塩手段である限外濾過法を用いた脱塩処理方法について、図を交えて説明する。
(Ultrafiltration method)
Next, a desalination treatment method using an ultrafiltration method, which is a desalting means suitable for the present invention, will be described with reference to the drawings.
 図2は、本発明に係る二酸化バナジウム含有粒子の製造に用いる脱塩装置の一例である限外濾過装置の処理フローを示す概略図である。 FIG. 2 is a schematic diagram showing a processing flow of an ultrafiltration apparatus which is an example of a desalination apparatus used for producing vanadium dioxide-containing particles according to the present invention.
 図2に示す限外濾過装置50は、スラリー原料液52を貯留するための調製釜51、pHを所定の値に調整するための補充用pH調整水58を貯留している補充用pH調整水ストック釜57、補充用pH調整水58を、調整釜51に添加する補充用pH調整水供給ライン59、調製釜51を、循環ポンプ54により循環させる循環ライン53、循環ライン53の経路内に脱塩手段として限外濾過部55と、電気伝導計60及びpHメーター61が配置されている構成である。 The ultrafiltration device 50 shown in FIG. 2 includes a preparation vessel 51 for storing a slurry raw material liquid 52 and a replenishing pH-adjusting water storing replenishing pH-adjusting water 58 for adjusting the pH to a predetermined value. A stock kettle 57, a replenishing pH-adjusted water supply line 59 for adding replenishing pH-adjusted water 58 to the adjusting kettle 51, a circulation line 53 for circulating the preparation kettle 51 by a circulation pump 54, and a circulation line 53 are removed. In this configuration, an ultrafiltration unit 55, an electric conductivity meter 60, and a pH meter 61 are disposed as salt means.
 限外濾過装置を用いた脱塩処理のフローについて説明する。 フ ロ ー The flow of the desalination treatment using the ultrafiltration device will be described.
 〈工程(I)〉
 調製釜51に、上記で説明した方により調製した、バナジウム含有化合物、バナジウム含有化合物と反応する化合物及び水を含むスラリー原料液52を貯留して、循環ポンプ54を用いて循環させながら、限外濾過部55で、スラリー原料液中の塩類を含む水分を排出口56より、予め設定した排出量V1で排出して、所定の塩濃度まで濃縮する。
<Step (I)>
The slurry raw material liquid 52 containing the vanadium-containing compound, the compound that reacts with the vanadium-containing compound, and water, prepared by the method described above, is stored in the preparation tank 51, and circulated using the circulation pump 54. In the filtration unit 55, water containing salts in the slurry raw material liquid is discharged from the discharge port 56 at a predetermined discharge amount V1, and concentrated to a predetermined salt concentration.
 〈工程(II)〉
 次いで、限外濾過部55で濃縮したスラリー原料液52に対し、補充用pH調整水ストック釜57より、補充用pH調整水供給ライン59を経由して、限外濾過部55での排出量(V1)と同容量の補充用pH調整水58を添加量V2として添加し、十分に撹拌混合して、第一次の脱塩したスラリー原料液52を調製する。この時、電気伝導計60により、第一次の脱塩したスラリー原料液52の電気伝導率(mS/m)及びpHを測定する。
<Process (II)>
Next, the slurry raw material liquid 52 concentrated in the ultrafiltration unit 55 is discharged from the replenishment pH adjusted water stock tank 57 via the replenishment pH adjusted water supply line 59 through the ultrafiltration unit 55 ( The same volume of replenishing pH-adjusted water 58 as in V1) is added as an added amount V2, and the mixture is sufficiently stirred and mixed to prepare a first desalted slurry raw material liquid 52. At this time, the electric conductivity (mS / m) and pH of the first desalted slurry raw material liquid 52 are measured by the electric conductivity meter 60.
 〈工程(III)〉
 次いで、上記工程(I)と同様にして、循環ポンプ54により、第一次の脱塩したスラリー原料液52を循環させながら、限外濾過部55で、スラリー原料液52中の構成液(イオン交換水+塩類)を排出量V1で系外に排出56する。
<Process (III)>
Next, in the same manner as in the above step (I), while the primary desalted slurry raw material liquid 52 is circulated by the circulation pump 54, the constituent liquid (ion (Exchanged water + salts) is discharged 56 out of the system at a discharge amount V1.
 〈工程(IV)〉
 次いで、上記工程(II)と同様にして、濃縮した混合溶液52に対し、補充用pH調整水ストック釜57より、補充用pH調整水供給ライン59を経由して、排出量V1と同容量の補充用pH調整水58を添加量V2で添加し、十分に撹拌混合して、第二次の脱塩したスラリー原料液52を調製する。この時、電気伝導計60及びpHメーター61により、第二次の脱塩したスラリー原料液52の電気伝導率(mS/m)及びpHを測定する。
<Process (IV)>
Next, in the same manner as in the above step (II), the concentrated mixed solution 52 is supplied from the replenishing pH-adjusted water stock kettle 57 to the replenishing pH-adjusted water supply line 59 via the replenishing pH-adjusted water supply line 59 to have the same volume as the discharge amount V1. The replenishing pH-adjusted water 58 is added in an addition amount V2, and sufficiently stirred and mixed to prepare a second desalted slurry raw material liquid 52. At this time, the electric conductivity (mS / m) and pH of the secondary desalted slurry raw material liquid 52 are measured by the electric conductivity meter 60 and the pH meter 61.
 上記工程(III)及び工程(IV)を繰り返し、スラリー原料液52の電気伝導率(mS/m)が、所望の条件となるまで、繰り返して行い、脱塩処理済みのスラリー原料液52を調製する。なお、pHについて、所定のpHに対し、差異が生じた場合、最終的には、pH調整用の酸又はアルカリを添加して、調整する。 The above steps (III) and (IV) are repeated until the electric conductivity (mS / m) of the slurry raw material liquid 52 reaches a desired condition, thereby preparing a desalted slurry raw material liquid 52. I do. In addition, when there is a difference between a predetermined pH and a predetermined pH, finally, an acid or an alkali for pH adjustment is added and adjusted.
 上記脱塩処理工程で用いる限外濾過方法としては、例えば、リサーチ・ディスクロージャー(Research Disclosure)のNo.10208(1972)、No.13122(1975)及びNo.16351(1977)などの記載を参照することができる。 限 As an ultrafiltration method used in the above desalting treatment step, for example, the method described in Research Disclosure No. 10208 (1972); 13122 (1975); 16351 (1977).
 操作条件として重要な圧力差や流量は、大矢春彦著「膜利用技術ハンドブック」幸書房出版(1978)、p275に記載の特性曲線を参考に設定することができる。 圧 力 The pressure difference and flow rate that are important as operating conditions can be set with reference to the characteristic curve described in “Handbook of Membrane Utilization Technology” by Haruhiko Oya, Koshobo Publishing (1978), p.275.
 限外濾過膜は、膜材質として、有機膜では、すでにモジュールとして組み込まれた平板型、スパイラル型、円筒型、中空糸型、ホローファイバー型などが旭化成(株)、ダイセル化学(株)、(株)東レ、(株)日東電工などから市販されているが、耐溶媒性のある膜としては、日本ガイシ(株)、(株)ノリタケなどのセラミック膜が好ましい。 As the ultrafiltration membrane, as the membrane material, as the organic membrane, a flat plate type, a spiral type, a cylindrical type, a hollow fiber type, a hollow fiber type, etc. already incorporated as a module are available from Asahi Kasei Corporation, Daicel Chemical Co., Ltd., ( Although commercially available from Toray Industries, Inc., Nitto Denko Corporation, etc., ceramic membranes such as NGK Insulators Co., Ltd. and Noritake Co., Ltd. are preferred as the solvent-resistant membrane.
 具体的には、例えば、濾過膜としてSartorius stedim社製ビバフロー50(有効濾過面積50cm、分画分子量5000)を用い、流速300ml/min(分)、液圧100kPa、室温で限外濾過を行う方法や、ポリエーテルスルホン製で分画分子量が30万の濾過膜を有する限外濾過装置(日本ミリポア株式会社製 ペリコン2カセット)等を挙げることができる。 More specifically, for example, ultrafiltration is performed at a flow rate of 300 ml / min (min), a liquid pressure of 100 kPa, and room temperature using Vivaflow 50 (effective filtration area: 50 cm 2 , molecular weight cut off: 5000) manufactured by Sartorius stemim as a filtration membrane. Examples thereof include an ultrafiltration device (Pellicon 2 cassette manufactured by Nippon Millipore Co., Ltd.) having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000.
 〔水熱反応装置〕
 二酸化バナジウム含有粒子の製造方法においては、上記脱塩処理を施し、所定の電気伝導率及びpHの調整したスラリー原料液は、図1のフロー図で示すように、次工程で水熱合成法により、平均一次粒径を1~30nmの範囲内で、かつ平均結晶子径を1~15nmの範囲内にある二酸化バナジウム含有粒子を製造する。
(Hydrothermal reactor)
In the method for producing vanadium dioxide-containing particles, a slurry raw material liquid subjected to the above desalting treatment and having a predetermined electric conductivity and pH adjusted is subjected to hydrothermal synthesis in the next step as shown in the flow chart of FIG. And producing vanadium dioxide-containing particles having an average primary particle size in the range of 1 to 30 nm and an average crystallite size in the range of 1 to 15 nm.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、300~500℃の範囲内であり、好ましくは350~400℃の範囲内である。温度を上記範囲内とすることで、結晶性が低くなる恐れを回避しつつ、平均一次粒径(D)等を小さく、かつ、粒子径分布を狭くすることができる。また、水熱反応処理の時間は、特に制限はないが、3~1000秒の範囲内とすることが好ましい。上記のような条件であれば、粒子径分布の狭い粒子径の小さい二酸化バナジウム含有粒子を効率よく製造できる。また、二酸化バナジウム含有粒子の結晶性が低くなるおそれを回避できる。なお、上記水熱反応は、同じ条件を用いて1段階で行われても、又は条件を変化させて多段階で行われてもよい。本発明に係る水熱反応は、撹拌しながら実施することが好ましい。撹拌により、二酸化バナジウム含有粒子をより均一に調製できる。 The conditions of the hydrothermal reaction treatment (eg, the amount of the reactant, the treatment temperature, the treatment pressure, the treatment time, etc.) are appropriately set, but the temperature of the hydrothermal reaction treatment is, for example, in the range of 300 to 500 ° C. , Preferably within the range of 350 to 400 ° C. By setting the temperature within the above range, it is possible to reduce the average primary particle size (D) and the like and to narrow the particle size distribution while avoiding the possibility that the crystallinity is lowered. The time of the hydrothermal reaction is not particularly limited, but is preferably in the range of 3 to 1000 seconds. Under the above conditions, it is possible to efficiently produce vanadium dioxide-containing particles having a narrow particle diameter distribution and a small particle diameter. Further, the possibility that the crystallinity of the vanadium dioxide-containing particles is reduced can be avoided. The hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions. The hydrothermal reaction according to the present invention is preferably performed with stirring. By stirring, the vanadium dioxide-containing particles can be prepared more uniformly.
 本発明の二酸化バナジウム含有粒子の製造方法においては、水熱反応装置としては、好ましくは、耐圧性の管型又は槽型などのフロー型リアクターを具備した流通式反応装置を用いて亜臨界又は超臨界状態にある高温高圧水と混合して連続的に合成する方法であり、特には管型のリアクターを利用する流通式反応装置を好適に利用できる。 In the method for producing vanadium dioxide-containing particles of the present invention, the hydrothermal reactor is preferably subcritical or supercritical using a flow-type reactor equipped with a flow-type reactor such as a pressure-resistant tube type or tank type. This is a method of continuously synthesizing by mixing with high-temperature and high-pressure water in a critical state. In particular, a flow-type reaction apparatus using a tubular reactor can be suitably used.
 (流通式反応装置)
 本発明の二酸化バナジウム含有粒子の製造方法においては、水熱反応装置としては、特に、水熱反応を、水熱反応部を有する流通式反応装置を用いて行うことが好ましい形態である。
(Flow type reactor)
In the method for producing vanadium dioxide-containing particles of the present invention, it is particularly preferable that the hydrothermal reaction is performed using a flow-type reactor having a hydrothermal reaction section.
 以下、本発明の二酸化バナジウム含有粒子の製造方法において好適な流通式反応装置を用いて水熱反応を行う実施形態について説明する。なお、本発明では、下記で説明する形態にのみ限定されるものではない。 Hereinafter, an embodiment in which a hydrothermal reaction is performed using a suitable flow-type reaction apparatus in the method for producing vanadium dioxide-containing particles of the present invention will be described. Note that the present invention is not limited to only the embodiments described below.
 本発明に係る流通式反応装置とは、水熱反応部を備えた流通式反応装置である。ここでいう水熱反応部とは、高温高圧条件下で、高速混合及び反応を実現する混合及び反応器をいう。 流通 The flow reactor according to the present invention is a flow reactor equipped with a hydrothermal reactor. The term “hydrothermal reaction section” as used herein refers to a mixing and reactor that realizes high-speed mixing and reaction under high-temperature and high-pressure conditions.
 水熱反応部において、高圧下、超臨界又は亜臨界状態のイオン交換水の存在下で、脱気処理を施した原料スラリー液に水熱反応を実施することにより、優れた二酸化バナジウム含有粒子のサーモクロミック性及び単分散性の高い二酸化バナジウム含有粒子を製造することができ、光学フィルムの透明性を達成することができる。この理由は、水熱反応を高圧下、超臨界又は亜臨界状態のイオン交換水の存在下で実施することにより、水熱反応時の酸化性雰囲気を抑制し、所望の粒子プロファイルを有する二酸化バナジウムを安定した反応により製造することができ、サーモクロミック性を有する二酸化バナジウム(VO)含有粒子を安定して製造することができる。 In the hydrothermal reaction section, under high pressure, in the presence of deionized water in a supercritical or subcritical state, by performing a hydrothermal reaction on the deaerated raw material slurry liquid, excellent vanadium dioxide-containing particles Vanadium dioxide-containing particles having high thermochromic properties and high monodispersity can be produced, and the transparency of the optical film can be achieved. This is because the hydrothermal reaction is performed under high pressure in the presence of ion exchange water in a supercritical or subcritical state, thereby suppressing the oxidizing atmosphere during the hydrothermal reaction and vanadium dioxide having a desired particle profile. Can be produced by a stable reaction, and vanadium dioxide (VO 2 ) -containing particles having thermochromic properties can be produced stably.
 流通式反応装置を用いて水熱反応を行う場合は、本発明においては、流通式反応装置の水熱反応を行う水熱反応部において、脱塩処理を施したバナジウム含有化合物、バナジウム含有化合物と反応する化合物及びイオン交換水を含むスラリー原料液と、超臨界又は亜臨界状態のイオン交換水とを混合した反応液の通過時間を、4~700秒の範囲内であり、さらには12~700秒の範囲内とすることが好ましい。 When performing a hydrothermal reaction using a flow-type reaction device, in the present invention, in the hydrothermal reaction unit performing the hydrothermal reaction of the flow-type reaction device, a vanadium-containing compound subjected to desalination treatment, a vanadium-containing compound and The passage time of a reaction solution obtained by mixing a slurry raw material solution containing a compound to be reacted and ion-exchanged water with ion-exchanged water in a supercritical or subcritical state is in the range of 4 to 700 seconds, and more preferably 12 to 700 seconds. It is preferable to be within the range of seconds.
 次いで、図を交えて、本発明の二酸化バナジウム含有粒子の製造方法に適用可能な流通式反応装置の具体的な構成について説明する。 Next, a specific configuration of a flow-type reaction apparatus applicable to the method for producing vanadium dioxide-containing particles of the present invention will be described with reference to the drawings.
 図3に、本発明の二酸化バナジウム含有粒子の製造方法に好適な水熱反応部を有する流通式反応装置の製造フローの一例を示す。 FIG. 3 shows an example of a production flow of a flow reactor having a hydrothermal reaction section suitable for the method for producing vanadium dioxide-containing particles of the present invention.
 図3で示すように、脱塩処理済みのスラリー原料液容器5には、1)バナジウム含有化合物、2)バナジウム含有化合物と反応する化合物、例えば、イオン交換水に所定の濃度で溶解したアルカリと、3)イオン交換水から構成される塩処理済みのスラリー原料液を入れ、他方の原料液容器2には、水としてイオン交換水を貯留し、このイオン交換水を加熱媒体13で所定の温度、圧力下で、超臨界又は亜臨界状態のイオン交換水としたのち、両者を合流点MPで会合させて反応液とした後、水熱反応部を構成する水熱反応部16内の加熱部配管17で水熱処理を施して、二酸化バナジウム含有粒子を調製する方法である。この時、混合した後の反応液は、水熱反応を施すまで超臨界又は亜臨界状態を維持させる。 As shown in FIG. 3, the desalted slurry raw material liquid container 5 contains 1) a vanadium-containing compound, 2) a compound that reacts with the vanadium-containing compound, for example, an alkali dissolved at a predetermined concentration in ion-exchanged water. 3) A salt-treated slurry raw material liquid composed of ion-exchanged water is charged, and ion-exchanged water is stored in the other raw material liquid container 2 as water. , Under pressure, ion-exchanged water in a supercritical or subcritical state, and after associating the two at the confluence point MP to form a reaction solution, the heating unit in the hydrothermal reaction unit 16 constituting the hydrothermal reaction unit In this method, vanadium dioxide-containing particles are prepared by performing a hydrothermal treatment in a pipe 17. At this time, the reaction liquid after mixing is maintained in a supercritical or subcritical state until a hydrothermal reaction is performed.
 図4は、本発明に係る二酸化バナジウム含有粒子の製造に適用可能な、水熱反応部を有する流通式反応装置の一例を示す概略図である。 FIG. 4 is a schematic view showing an example of a flow-type reaction apparatus having a hydrothermal reaction section, which is applicable to the production of vanadium dioxide-containing particles according to the present invention.
 図4において、水熱反応部16を有する流通式反応装置1は、一方の構成液であるバナジウム含有化合物、バナジウム含有化合物と反応する化合物及びイオン交換水を含む脱塩処理済みの25℃におけるpHが8.0~11.0の範囲内で、かつ25℃における電気伝導率を10~1000mS/mの範囲内であるスラリー原料液を入れるスラリー原料液容器5、他方の構成液である超臨界水又は亜臨界水を形成するためのイオン交換水を入れるイオン交換水容器2、水熱反応を行う加熱媒体14を有する水熱反応部16、水熱反応後の反応液を入れるためのタンク9、スラリー原料液容器5、イオン交換水容器2とタンク9をそれぞれ連結するための流路3及び6(配管)、一方の脱塩処理済みのスラリー原料液を、スラリー原料液容器5から、配管6、合流点MP、加熱部配管17、配管18及び制御弁19を経由してタンク9に送液するためのポンプ7、他方の構成液であるイオン交換水容器2に貯留している超臨界水又は亜臨界水を形成するためのイオン交換水等を、イオン交換水容器2から、配管3、加熱媒体13、合流点MP、加熱部配管17、配管18及び制御弁19を経由して、タンク9に送液するためのポンプ4が配置されている。 In FIG. 4, a flow-type reaction apparatus 1 having a hydrothermal reaction section 16 has a desalted pH at 25 ° C. containing a vanadium-containing compound, a compound that reacts with the vanadium-containing compound, and ion-exchanged water. The slurry raw material container 5 for holding a slurry raw material liquid having a conductivity of 8.0 to 11.0 and an electric conductivity at 25 ° C. of 10 to 1000 mS / m, and a supercritical liquid as the other constituent liquid An ion-exchanged water container 2 for containing ion-exchanged water for forming water or subcritical water, a hydrothermal reactor 16 having a heating medium 14 for performing a hydrothermal reaction, a tank 9 for containing a reaction solution after the hydrothermal reaction , A slurry raw material container 5, flow paths 3 and 6 (piping) for connecting the ion-exchanged water container 2 and the tank 9 respectively, and one of the desalted slurry raw material liquids into a slurry raw material liquid container. From the pipe 6, the confluence point MP, the heating section pipe 17, the pipe 18 and the control valve 19, the pump 7 for sending the liquid to the tank 9, and the other constituent liquid, which is stored in the ion exchange water container 2. Ion-exchanged water for forming supercritical water or subcritical water is supplied from the ion-exchanged water container 2 through the pipe 3, the heating medium 13, the junction MP, the heating section pipe 17, the pipe 18, and the control valve 19. Then, the pump 4 for sending the liquid to the tank 9 is arranged.
 また、流通式反応装置1には、必要に応じて、水熱反応後の二酸化バナジウム含有粒子を含む反応液を冷却するための流路18を具備した冷却部8を備えてもよい。また、詳細は後述するが、必要に応じて、水熱反応後の二酸化バナジウム含有粒子を含む反応液に添加する、例えば、表面修飾剤、pH調整剤や、又は水熱反応後の反応液に混合して冷却するための冷却媒体(例えば、水)を入れるためのタンク10や、表面修飾剤、pH調整剤、冷却媒体等を、流路11を経由して、流路18に送液するためのポンプ12を有してもよい。 The flow-type reactor 1 may be provided with a cooling unit 8 having a flow channel 18 for cooling a reaction solution containing vanadium dioxide-containing particles after the hydrothermal reaction, if necessary. In addition, although details will be described later, if necessary, added to the reaction solution containing the vanadium dioxide-containing particles after the hydrothermal reaction, for example, a surface modifier, a pH adjuster, or the reaction solution after the hydrothermal reaction A tank 10 for containing a cooling medium (for example, water) for mixing and cooling, a surface modifier, a pH adjuster, a cooling medium, and the like are sent to a flow path 18 via a flow path 11. May be provided.
 流通式反応装置1には、流路6又は流路3のライン中に、加熱媒体13及び15を有する。特に、流路3に配置されている加熱媒体13は、イオン交換水容器2に貯留しているイオン交換水を、所定の温度及び圧力を付与して、超臨界水又は亜臨界水を形成する。 The flow reactor 1 has heating media 13 and 15 in the line of the flow path 6 or the flow path 3. In particular, the heating medium 13 disposed in the flow path 3 applies a predetermined temperature and pressure to the ion exchange water stored in the ion exchange water container 2 to form supercritical water or subcritical water. .
 また、バナジウム含有化合物、バナジウム含有化合物と反応する化合物及びイオン交換水を含むスラリー原料液や、水熱反応後の反応液が流通する水熱反応部16と加熱部配管17、及び流路3、6、11、18等を構成する配管の材質は、特に制限されないが、ステンレス鋼、アルミニウム、鉄、ハステロイなどが挙げられる。 In addition, a vanadium-containing compound, a slurry raw material liquid containing a compound that reacts with the vanadium-containing compound, and ion-exchanged water, a hydrothermal reaction section 16 through which a reaction liquid after the hydrothermal reaction flows, a heating section pipe 17, a flow path 3, The material of the piping constituting 6, 11, 18 and the like is not particularly limited, and examples thereof include stainless steel, aluminum, iron, and Hastelloy.
 水熱反応部16の内部に構成される加熱部配管17の加熱部配管のライン長Lは、特に、制限はなく、合流部MPで合流したバナジウム含有化合物、バナジウム含有化合物と反応する化合物及び超臨界又は亜臨界状態のイオン交換水、により構成される反応液が、3~1000秒の時間内で通過できる長さであればよい。 The line length L of the heating section pipe 17 of the heating section pipe 17 formed inside the hydrothermal reaction section 16 is not particularly limited, and the vanadium-containing compound, the compound that reacts with the vanadium-containing compound, It is sufficient that the reaction solution is composed of a critical or subcritical ion-exchanged water and pass through within a time of 3 to 1000 seconds.
 また、水熱反応部内の加熱部配管17を通過(流通)させる反応液の速度(流通速度)は、特に制限されないが、好ましくは0.1~10m/秒、より好ましくは0.2~8.0m/秒である。このような流通速度であれば、反応液に含まれるバナジウム含有化合物と、バナジウム含有化合物と反応する化合物が、超臨界又は亜臨界状態のイオン交換水の存在下で、水熱反応を所定の条件で有効に実施できる。 Further, the speed (flow rate) of the reaction solution passing (flowing) through the heating section pipe 17 in the hydrothermal reaction section is not particularly limited, but is preferably 0.1 to 10 m / sec, more preferably 0.2 to 8 m / sec. 0.0 m / sec. With such a flow rate, the vanadium-containing compound contained in the reaction solution and the compound that reacts with the vanadium-containing compound are subjected to a hydrothermal reaction in the presence of supercritical or subcritical ion-exchanged water under a predetermined condition. Can be implemented effectively.
 本発明でいう加熱部配管17のライン長Lとは、各原料液が合流点MPを経て、加熱媒体14の入口INから、水熱処理後に、加熱媒体14の出口OUTに達するまでの配管部の長さをいう。 The line length L of the heating part pipe 17 in the present invention is defined as the line length L of the pipe part from the inlet IN of the heating medium 14 through the junction point MP to the outlet OUT of the heating medium 14 after the hydrothermal treatment. Refers to the length.
 本発明において、水熱反応部である加熱部配管17における反応液の通過時間は、上述の反応液の流通速度と加熱部配管のライン長Lにより決定されるが、流通速度は、各流路(3及び6)内に設置されているポンプ4及び7の送液圧力や各流路の内径により、圧力や流量を制御することにより所望の条件とすることができる。 In the present invention, the passage time of the reaction liquid in the heating section piping 17 which is a hydrothermal reaction section is determined by the above-mentioned flow rate of the reaction liquid and the line length L of the heating section piping. Desired conditions can be obtained by controlling the pressure and the flow rate according to the liquid sending pressure of the pumps 4 and 7 installed in (3 and 6) and the inner diameter of each flow path.
 また、原料液を送液する流路3及び6、水熱反応後の反応液に添加する冷媒や表面修飾剤等を送液する流路11、反応液を冷却するための流路18の長さは、特に制限されないが、概ね50~10000mmの範囲内であり、好ましくは100~1000mmの範囲内である。また、流路の間隙(配管の場合は内径)は、特に制限されないが、概ね0.1~10mmの範囲内であり、好ましくは1.0~8mmの範囲内である。 In addition, the lengths of the flow paths 3 and 6 for feeding the raw material liquid, the flow path 11 for sending the refrigerant or the surface modifier added to the reaction liquid after the hydrothermal reaction, and the flow path 18 for cooling the reaction liquid are set forth. The length is not particularly limited, but is generally in the range of 50 to 10000 mm, and preferably in the range of 100 to 1000 mm. The gap (inner diameter in the case of piping) of the flow channel is not particularly limited, but is generally in the range of 0.1 to 10 mm, preferably in the range of 1.0 to 8 mm.
 なお、配管3、6、11及び18は、上記材質、長さ、内径を有することが好ましいが、それぞれ、同じであっても又は異なるものであってもよい。 The pipes 3, 6, 11 and 18 preferably have the above-mentioned materials, lengths and inner diameters, but may be the same or different.
 上記の水熱反応工程によって得られた水熱反応後の反応液は、濾過(例えば、限外濾過)や遠心分離により、分散媒や溶媒の置換を行い、二酸化バナジウム含有粒子を水やアルコール(例えば、エタノール)等によって洗浄してもよい。得られた二酸化バナジウム含有粒子は、任意の手段により乾燥してもよい。なお、図4に記載のTCは、温度センサーである。 The reaction solution after the hydrothermal reaction obtained in the above-described hydrothermal reaction step is subjected to filtration (for example, ultrafiltration) or centrifugation to replace the dispersion medium or the solvent, and to convert the vanadium dioxide-containing particles into water or alcohol ( For example, it may be washed with ethanol) or the like. The obtained vanadium dioxide-containing particles may be dried by any means. In addition, TC shown in FIG. 4 is a temperature sensor.
 (水熱反応条件:温度、圧力)
 本発明においては、上記で説明した条件で水熱反応を行うことで、形成される二酸化バナジウム含有粒子の平均一次粒径及び平均結晶子径を所望の条件に制御することができ、二酸化バナジウム含有粒子のサーモクロミック性及び二酸化バナジウム含有粒子を含む光学フィルムの透明性を向上(ヘイズの減少)することができる。
(Hydrothermal reaction conditions: temperature, pressure)
In the present invention, by performing the hydrothermal reaction under the conditions described above, the average primary particle size and the average crystallite size of the formed vanadium dioxide-containing particles can be controlled to desired conditions, and the vanadium dioxide-containing particles can be controlled. The thermochromic properties of the particles and the transparency of the optical film containing the particles containing vanadium dioxide can be improved (reduction in haze).
 これらの優れた効果に関し、詳細なメカニズムは不明であるが、上記で示したような条件下の水熱反応によって、析出した二酸化バナジウムの微結晶の結晶成長が抑制されることで達成されると推測される。 Regarding these excellent effects, the detailed mechanism is unknown, but it is achieved by suppressing the crystal growth of precipitated vanadium dioxide microcrystals by the hydrothermal reaction under the conditions shown above. Guessed.
 本発明に係る水熱反応部において、高温高圧状態にある水とは、超臨界又は亜臨界状態にある高温高圧水、すなわち、超臨界水(super-critical water:SCW)又は亜臨界水(sub-critical water:sub-CW)である。水の臨界温度は374.2℃、水の臨界圧力は22.12MPaであるので、当該温度及び圧力以上にある水を超臨界水という。また、亜臨界水とは、水の超臨界点より僅かながら温度又は圧力が低い状態にある水を指しており、例えば、温度でいうと200℃以上の領域から臨界温度374℃までというように、その温度が水の臨界温度より低く、かつ圧力が水の臨界圧力22MPa又はそれ以上の圧力である領域をいう。 In the hydrothermal reaction section according to the present invention, the water in a high temperature and high pressure state is a high temperature and high pressure water in a supercritical or subcritical state, that is, supercritical water (SCW) or subcritical water (sub). -Critical @ water: sub-CW). Since the critical temperature of water is 374.2 ° C. and the critical pressure of water is 22.12 MPa, water having the temperature and pressure higher than the temperature is referred to as supercritical water. In addition, subcritical water refers to water in a state where the temperature or pressure is slightly lower than the supercritical point of water, and for example, from a temperature range of 200 ° C. or more to a critical temperature of 374 ° C. Refers to a region where the temperature is lower than the critical temperature of water and the pressure is a critical pressure of water of 22 MPa or more.
 典型的な超臨界水の領域は、例えば、375~500℃、好ましくは375~450℃、より好ましくは375~420℃、さらに好ましくは375~400℃であり、ある場合には、例えば、375~395℃、好ましくは375~390℃、より好ましくは375~385℃、又は、375~380℃の範囲内であり、その反応圧力としては、例えば、22~50MPa、好ましくは22~45MPa、より好ましくは22~40MPa、さらに好ましくは25~35MPaの範囲内である。 A typical supercritical water region is, for example, 375-500 ° C., preferably 375-450 ° C., more preferably 375-420 ° C., even more preferably 375-400 ° C., and in some cases, for example, 375-400 ° C. To 395 ° C., preferably 375 to 390 ° C., more preferably 375 to 385 ° C. or 375 to 380 ° C., and the reaction pressure is, for example, 22 to 50 MPa, preferably 22 to 45 MPa, Preferably it is in the range of 22 to 40 MPa, more preferably 25 to 35 MPa.
 典型的な亜臨界水の領域は、圧力が臨界圧力22MPa又はそれ以上であり、かつ、150℃以上の温度から臨界温度374℃までの温度領域、又は、200℃以上の温度から臨界温度374℃までの領域、又は、250℃以上の温度から臨界温度374℃までの領域、300℃以上の温度から臨界温度374℃までの領域などが挙げられる。もちろん、亜臨界水の領域は、10.0MPa以上の圧力から臨界圧力22MPaまでの領域、又は、15.0MPa以上の圧力から臨界圧力22MPaまでの領域、又は、18.0MPa以上の圧力から臨界圧力22MPaまでの領域、又は、20.0MPa以上の圧力から臨界圧力22MPaまでの領域なども含まれてよい。 A typical subcritical water region has a pressure of a critical pressure of 22 MPa or more and a temperature region from a temperature of 150 ° C. or more to a critical temperature of 374 ° C., or a temperature of 200 ° C. or more to a critical temperature of 374 ° C. Or a region from a temperature of 250 ° C. or more to a critical temperature of 374 ° C., a region of a temperature from 300 ° C. or more to a critical temperature of 374 ° C., and the like. Of course, the subcritical water region is a region from a pressure of 10.0 MPa or more to a critical pressure of 22 MPa, or a region from a pressure of 15.0 MPa or more to a critical pressure of 22 MPa, or a pressure of 18.0 MPa or more to a critical pressure. A region up to 22 MPa or a region from a pressure of 20.0 MPa or more to a critical pressure of 22 MPa may be included.
 上記のように、亜臨界水については様々な定義があるが、本発明においては、200~373℃の温度範囲内で、5.0~50MPaの圧力範囲内の領域にある水を亜臨界水と定義する。 As described above, there are various definitions of subcritical water. In the present invention, water in a temperature range of 200 to 373 ° C. and a pressure range of 5.0 to 50 MPa is referred to as subcritical water. Is defined.
 水熱反応における温度及び圧力の条件としては、前述のように150~500℃の範囲内であり、かつ圧力が飽和蒸気圧よりも上である状態であれば特に制限されないが、温度が300~500℃の範囲内にあり、圧力が10~40MPaの範囲内にあり、かつ設定温度における飽和蒸気圧よりも上の圧力となる条件であることがより好ましい条件である。温度が300℃以上であると、結晶性が低くなる恐れを回避しつつ、平均一次粒径(D)等をより小さくすることができる。また、温度が500℃以下であると、粒子径分布を狭くすることができる。同様の観点から、温度が350~450℃の範囲内であり、圧力が20~40MPaの範囲内であり、かつ設定温度における飽和蒸気圧よりも上の圧力となる条件であることがさらに好ましく、温度が380~400℃の範囲内で、圧力が25~30MPaの範囲内の超臨界水の存在下で水熱反応を行うことがさらに好ましい。 The temperature and pressure conditions in the hydrothermal reaction are not particularly limited as long as they are in the range of 150 to 500 ° C. and the pressure is higher than the saturated vapor pressure as described above. More preferably, the temperature is in the range of 500 ° C., the pressure is in the range of 10 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature. When the temperature is 300 ° C. or higher, the average primary particle size (D) and the like can be further reduced while avoiding the possibility that crystallinity is lowered. Further, when the temperature is 500 ° C. or lower, the particle size distribution can be narrowed. From the same viewpoint, it is more preferable that the temperature is in the range of 350 to 450 ° C., the pressure is in the range of 20 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature. More preferably, the hydrothermal reaction is performed in the presence of supercritical water at a temperature in the range of 380 to 400 ° C. and a pressure in the range of 25 to 30 MPa.
 本発明においては、水熱反応時間は、特に制限はないが、3~1000秒の範囲内とすることが好ましい。上記のような条件であれば、粒子径分布が狭く、かつ粒子径の小さい二酸化バナジウム含有粒子を効率よく製造できる。また、二酸化バナジウム含有粒子の結晶性が低くなるおそれを回避できる。なお、上記水熱反応は、同じ条件を用いて1段階で行われても、又は条件を変化させて多段階で行われてもよい。本発明に係る水熱反応は、撹拌しながら実施することが好ましい。撹拌により、二酸化バナジウム含有粒子をより均一に調製できる。 に お い て In the present invention, the hydrothermal reaction time is not particularly limited, but is preferably in the range of 3 to 1000 seconds. Under the above conditions, particles containing vanadium dioxide having a narrow particle size distribution and a small particle size can be efficiently produced. Further, the possibility that the crystallinity of the vanadium dioxide-containing particles is reduced can be avoided. The hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions. The hydrothermal reaction according to the present invention is preferably performed with stirring. By stirring, the vanadium dioxide-containing particles can be prepared more uniformly.
 (冷却工程)
 本発明の二酸化バナジウム含有粒子の製造方法においては、上記で説明した水熱反応工程に加えて、水熱反応後の反応液(二酸化バナジウム含有粒子を含む分散液)を冷却する冷却工程(図4で示す冷却部8)をさらに有することが好ましい。
(Cooling process)
In the method for producing vanadium dioxide-containing particles of the present invention, in addition to the above-described hydrothermal reaction step, a cooling step of cooling the reaction solution after hydrothermal reaction (a dispersion containing vanadium dioxide-containing particles) (FIG. 4) It is preferable to further include a cooling unit 8) indicated by the following.
 冷却工程は、水熱反応を所定時間行って(反応終了時点)から1分以内に、水熱反応後の反応液の冷却を開始することが好ましいが、反応液全量をこの時間内に冷却することが難しい場合は、反応時間に幅を持たせて反応液を反応温度に保ちながら所定量ずつ順次冷却してもよい。 In the cooling step, it is preferable to start cooling the reaction solution after the hydrothermal reaction within one minute after performing the hydrothermal reaction for a predetermined time (at the end of the reaction), but the entire reaction solution is cooled within this time. If it is difficult, the reaction solution may be cooled by a predetermined amount while keeping the reaction solution at a reaction temperature with a certain amount of time.
 本工程では、冷却速度は適宜調整することができる。 冷却 In this step, the cooling rate can be appropriately adjusted.
 水熱反応後の反応液の冷却方法は、特に制限されず、公知の方法と同様にして、又は適宜変更して適用できる。冷却方法としては、例えば、水熱反応後の反応液を必要であれば撹拌しながら冷却媒体中に浸漬する方法、水熱反応後の反応液と冷却媒体(特に水)とを混合する方法、水熱反応後の反応液にガス状の冷却媒体(例えば、液体窒素)を通過させる方法などが挙げられる。これらのうち、冷却速度の制御が容易である点から、図4で例示するように、水熱反応後の反応液と冷却媒体とを配管を介して接触させる方法が好ましい。ここで、少なくとも、流通式反応装置1において、冷却は、水熱反応部16に、直接又は他の構成部分を介して接続された、冷却部8を用いて行われることが好ましい。 (4) The method of cooling the reaction solution after the hydrothermal reaction is not particularly limited, and can be applied in the same manner as a known method or by appropriately changing it. As a cooling method, for example, a method of immersing the reaction solution after the hydrothermal reaction in a cooling medium with stirring if necessary, a method of mixing the reaction solution after the hydrothermal reaction with the cooling medium (particularly water), A method of passing a gaseous cooling medium (for example, liquid nitrogen) through the reaction solution after the hydrothermal reaction may be used. Among these, the method of bringing the reaction liquid after the hydrothermal reaction and the cooling medium into contact with each other via a pipe is preferable as illustrated in FIG. 4 because the cooling rate can be easily controlled. Here, at least in the flow-type reaction apparatus 1, it is preferable that the cooling is performed by using the cooling unit 8 connected to the hydrothermal reaction unit 16 directly or via another component.
 流通式反応装置1において、水熱反応部16に接続され、内部に流路18を有する冷却部8を用いた冷却方法について説明する。なお、本発明に用いることができる冷却方法は、以下で説明する形態に限定されない。 A description will be given of a cooling method using the cooling unit 8 connected to the hydrothermal reaction unit 16 and having the flow path 18 therein in the flow-type reaction device 1. Note that the cooling method that can be used in the present invention is not limited to the mode described below.
 本発明に係る冷却方法としては、水熱反応後の反応液を流通式反応装置1の流路18を通過(流通)させることにより冷却することが好ましい。すなわち、図4に示す流通式反応装置1を例として説明すると、水熱反応部16の下流側で、二酸化バナジウム含有粒子を含む反応液を冷却部8の流路18を通過(流通)させることにより冷却を行う。冷却部8には、冷却媒体Cが流入し、流路18を外面より冷却している。 As the cooling method according to the present invention, it is preferable that the reaction solution after the hydrothermal reaction is cooled by passing (flowing) through the flow channel 18 of the flow-type reaction device 1. That is, as an example of the flow-type reaction device 1 shown in FIG. 4, the reaction liquid containing vanadium dioxide-containing particles is passed (flowed) through the flow channel 18 of the cooling unit 8 on the downstream side of the hydrothermal reaction unit 16. To perform cooling. The cooling medium C flows into the cooling unit 8 and cools the flow channel 18 from the outer surface.
 また、他の方法としては、冷却媒体(例えば、水)と混合して冷却することを目的として、流通式反応装置1において、前述のようにタンク10を、前記説明した表面修飾剤やpH調整剤を入れるために用いる方法に代えて、あるいは同様の添加ラインを別に設けて、冷却媒体を直接添加するに用いてもよい。このとき、冷却媒体を、流路11を介して流通させるためのポンプ12をさらに有してもよい。 Further, as another method, for the purpose of cooling by mixing with a cooling medium (for example, water), in the flow-type reaction apparatus 1, as described above, the tank 10 may be replaced with the above-described surface modifying agent or pH adjustment. Instead of the method used for adding the agent, or by separately providing a similar addition line, the cooling medium may be directly added. At this time, a pump 12 for flowing the cooling medium through the flow path 11 may be further provided.
 また、この場合、冷却媒体としては、pH調整剤が媒体として水等に溶解されている形態では、pH調整効果を有する冷却媒体として用いてもよい。 In this case, the cooling medium may be used as a cooling medium having a pH adjusting effect when the pH adjusting agent is dissolved in water or the like as the medium.
 冷却媒体を使用する場合の、冷却媒体の水熱反応後の反応液との混合割合は、所望の冷却速度を達成できる限り、特に制限されない。例えば、冷却媒体を、水熱反応後の反応液に比して、1~2000倍(体積比)、より好ましくは10~1000倍(体積比)の割合で混合することが好ましい。なお、上記混合割合は、水熱反応後の反応液及び冷却媒体の流通速度を上記したような割合になるように設定することによって制御できる。 混合 When a cooling medium is used, the mixing ratio of the cooling medium with the reaction solution after the hydrothermal reaction is not particularly limited as long as a desired cooling rate can be achieved. For example, it is preferable to mix the cooling medium at a ratio of 1 to 2000 times (volume ratio), more preferably 10 to 1000 times (volume ratio) as compared with the reaction solution after the hydrothermal reaction. The mixing ratio can be controlled by setting the flow rates of the reaction liquid and the cooling medium after the hydrothermal reaction to the above-described ratios.
 また、冷却媒体の温度は、特に制限されないが、二酸化バナジウムの相転移温度(約68℃)より高いことが好ましく、70~95℃であることがより好ましい。上記に代えて又は上記に加えて、水熱反応後の反応液を水と混合してから5分間以上、前記水熱反応直後の反応液と水との混合物の温度を70~95℃に維持することがより好ましい。このような温度に設定することによって、所望のルチル型結晶相(R相)の二酸化バナジウムの純度をより向上できる。なお、水熱反応直後の反応液と水との混合物の温度を維持する時間の上限は、特に制限されないが、水熱反応直後の反応物を水と混合してから10分以下であれば十分である。 The temperature of the cooling medium is not particularly limited, but is preferably higher than the phase transition temperature of vanadium dioxide (about 68 ° C.), and more preferably 70 to 95 ° C. Alternatively or additionally, the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is maintained at 70 to 95 ° C. for at least 5 minutes after mixing the reaction solution after the hydrothermal reaction with water. Is more preferable. By setting to such a temperature, the purity of vanadium dioxide of a desired rutile type crystal phase (R phase) can be further improved. The upper limit of the time for maintaining the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is not particularly limited, but it is sufficient if the reaction product immediately after the hydrothermal reaction is mixed with water for 10 minutes or less. It is.
 冷却媒体を使用する場合には、水熱反応後の反応液と冷却媒体(好ましくは水)との混合物のpHは、特に制限されないが、25℃において、4.0~7.0の範囲内であることが好ましい。pHを上記の範囲内に設定することによって、粒子形成(結晶析出)後の二酸化バナジウム含有粒子の安定性を向上できる。ゆえに、所望のルチル型結晶相(R相)の二酸化バナジウムの純度をより向上し、二酸化バナジウム含有粒子のサーモクロミック性をより有効に向上できる。なお、かようなpHの値の達成手段は、特に制限されず、前述のpH調整剤を冷却工程前の水熱反応後の反応液に添加することで達成されてもよく、冷却工程においてpH調整剤が混合された冷却媒体を用いることで達成されてもよい。 When a cooling medium is used, the pH of the mixture of the reaction solution after the hydrothermal reaction and the cooling medium (preferably water) is not particularly limited, but is in the range of 4.0 to 7.0 at 25 ° C. It is preferred that By setting the pH within the above range, the stability of the vanadium dioxide-containing particles after particle formation (crystal precipitation) can be improved. Therefore, the purity of the desired rutile-type crystal phase (R phase) vanadium dioxide can be further improved, and the thermochromic properties of the vanadium dioxide-containing particles can be more effectively improved. Means for achieving such a pH value is not particularly limited, and may be achieved by adding the above-described pH adjuster to the reaction solution after the hydrothermal reaction before the cooling step. This may be achieved by using a cooling medium mixed with the conditioning agent.
 冷却媒体を使用する場合について、水熱反応後の反応液と冷却媒体との混合位置(配管11の設置位置)は、特に制限されないが、水熱反応後の反応液の冷却効率などを考慮すると、配管11が、タンク9側の出口から10~500mmの距離の位置で加熱部配管17と連結されていることが好ましい。 In the case where a cooling medium is used, the mixing position of the reaction liquid after the hydrothermal reaction and the cooling medium (the installation position of the pipe 11) is not particularly limited, but considering the cooling efficiency of the reaction liquid after the hydrothermal reaction and the like. The pipe 11 is preferably connected to the heating section pipe 17 at a distance of 10 to 500 mm from the outlet on the tank 9 side.
 冷却された水熱反応後の反応液(冷却液)は、制御弁19を経由して、タンク9に貯留される。貯留後は、濾過(例えば、限外濾過)や遠心分離により、分散媒や溶媒の置換を行い、二酸化バナジウム含有粒子を水やアルコール(例えば、エタノール)等によって洗浄してもよい。また、得られた二酸化バナジウム含有粒子は、任意の手段により乾燥してもよい。 反 応 The cooled reaction liquid (cooling liquid) after the hydrothermal reaction is stored in the tank 9 via the control valve 19. After storage, the dispersion medium and the solvent may be replaced by filtration (eg, ultrafiltration) or centrifugation, and the vanadium dioxide-containing particles may be washed with water, alcohol (eg, ethanol), or the like. Further, the obtained vanadium dioxide-containing particles may be dried by any means.
 [その他の添加剤]
 本発明の二酸化バナジウム含有粒子の製造方法においては、バナジウム含有化合物、バナジウム含有化合物と反応する化合物(アルカリ)の他に、必要に応じて各種添加剤を適用することができる。
[Other additives]
In the method for producing vanadium dioxide-containing particles of the present invention, various additives can be applied, if necessary, in addition to the vanadium-containing compound and the compound (alkali) that reacts with the vanadium-containing compound.
 以下の、代表的な添加剤について説明する。 代表 The following typical additives will be described.
 〔表面修飾剤〕
 本発明の二酸化バナジウム含有粒子の製造方法においては、水熱反応直後の二酸化バナジウム含有粒子を含む反応液に対し、さらに、図4に示すタンク10より、流路11を経由して表面修飾剤を添加することができる。
(Surface modifier)
In the method for producing vanadium dioxide-containing particles of the present invention, a surface modifier is further added to the reaction solution containing the vanadium dioxide-containing particles immediately after the hydrothermal reaction from the tank 10 shown in FIG. Can be added.
 水熱反応により形成した二酸化バナジウム含有粒子を含む反応液に表面修飾剤を添加することによって、二酸化バナジウム含有粒子の凝集が有効に抑制・防止され、二酸化バナジウム含有粒子の大きさ(粒子径)をより小さくし、粒子径分布も狭くして、二酸化バナジウム含有粒子の分散安定性及び保存安定性をより向上できる。ゆえに、二酸化バナジウム含有粒子によるヘイズが低下し、また、サーモクロミック性を有効に発現させることができる。 By adding a surface modifier to the reaction solution containing the vanadium dioxide-containing particles formed by the hydrothermal reaction, aggregation of the vanadium dioxide-containing particles is effectively suppressed and prevented, and the size (particle diameter) of the vanadium dioxide-containing particles is reduced. The dispersion stability and storage stability of the vanadium dioxide-containing particles can be further improved by reducing the particle size and narrowing the particle size distribution. Therefore, haze due to the vanadium dioxide-containing particles is reduced, and thermochromic properties can be effectively exhibited.
 本発明に提供可能な表面修飾剤としては、例えば、有機ケイ素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニア化合物、界面活性剤、シリコーンオイル等を挙げることができる。表面修飾剤の反応性基の数は、特に制限されないが、1又は2であることが好ましい。 表面 Examples of the surface modifier that can be provided in the present invention include organic silicon compounds, organic titanium compounds, organic aluminum compounds, organic zirconia compounds, surfactants, and silicone oils. The number of reactive groups in the surface modifier is not particularly limited, but is preferably 1 or 2.
 〈有機ケイ素化合物〉
 本発明に適用可能な表面修飾剤の具体例として有機ケイ素化合物(有機シリケート化合物)が挙げられ、例えば、ヘキサメチルジシラザン、トリメチルエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン(オルトケイ酸テトラエチル)、トリメチルシリルクロライド、メチルトリエトキシシラン、ジメチルジエトキシシラン、デシルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。また、有機ケイ素化合物は市販品としても入手することができ、例えば、SZ6187(東レ・ダウシリコーン社製)等を好適に用いることができる。
<Organosilicon compound>
Specific examples of the surface modifier applicable to the present invention include organosilicon compounds (organic silicate compounds), such as hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane (tetraethylorthosilicate), and trimethylsilyl. Chloride, methyltriethoxysilane, dimethyldiethoxysilane, decyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3- Aminopropyltriethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropyl methyldimethoxysilane, and the like. In addition, the organosilicon compound can be obtained as a commercial product, and for example, SZ6187 (manufactured by Dow Silicone Toray) can be suitably used.
 これらの有機ケイ素化合物のうち、分子量が小さく、高い耐久性を示す有機シリケート化合物を用いることが好ましく、特に、ヘキサメチルジシラザン、テトラエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルシリルクロライドを用いることがより好ましい。 Among these organosilicon compounds, it is preferable to use an organic silicate compound having a small molecular weight and high durability, and in particular, to use hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride. Is more preferred.
 〈有機チタン化合物〉
 有機チタン化合物としては、例えば、テトラブチルチタネート、テトラオクチルチタネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート及びビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート、キレート化合物として、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、リン酸チタン化合物、チタンオクチレンギリコレート、チタンエチルアセトアセテート、チタンラクテートアンモニウム塩、チタンラクテート、チタントリエタノールアミネート等が挙げられる。また、有機チタン化合物は市販品としても入手することができ、例えば、プレンアクトTTS、プレンアクトTTS44(以上、味の素ファインテクノ株式会社製)等が挙げられる。
<Organic titanium compound>
Examples of the organic titanium compound include tetrabutyl titanate, tetraoctyl titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxy Acetate titanate, as a chelate compound, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, titanium phosphate compound, titanium octylene glycolate, titanium ethyl acetoacetate, titanium lactate ammonium salt, titanium lactate, titanium triethanol Aminates and the like. In addition, the organic titanium compound can be obtained as a commercial product, and examples thereof include Prenact TTS and Prenact TTS44 (all manufactured by Ajinomoto Fine Techno Co., Ltd.).
 〈有機アルミニウム化合物〉
 有機アルミニウム化合物としては、例えば、アルミニウムイソプロポキシド、アルミニウムtert-ブトキシド等が挙げられる。
<Organic aluminum compound>
Examples of the organic aluminum compound include aluminum isopropoxide and aluminum tert-butoxide.
 〈有機ジルコニア化合物〉
 有機ジルコニア化合物としては、例えば、ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート等が挙げられる。
<Organic zirconia compound>
Examples of the organic zirconia compound include normal propyl zirconate, normal butyl zirconate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate, and the like.
 〈界面活性剤〉
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基等が挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的にはアルキル基、アルキル基を有するシリル基、フルオロアルキル基等が挙げられる。
<Surfactant>
Surfactants are compounds having a hydrophilic group and a hydrophobic group in the same molecule. Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, and a phosphate. And a polyalkylene glycol group. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group, a silyl group having an alkyl group, and a fluoroalkyl group.
 ここで、アルキル基は、置換基として芳香環を有していてもよい。界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。このような界面活性剤としては、より具体的には、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、パーフルオロアルケニル、パーフルオロアルキル化合物等が挙げられる。 Here, the alkyl group may have an aromatic ring as a substituent. The surfactant only needs to have at least one hydrophilic group and one hydrophobic group as described above in the same molecule, and may have two or more of each group. More specifically, examples of such a surfactant include myristyldiethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, and 2-hydroxyethyl-2-hydroxytetra. Decylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8 to 18 carbon atoms) benzyldimethylammonium chloride, ethylenebisalkyl (C8-18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, perfluoroalkenyl, perf Oroarukiru compounds.
 シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル及びフッ素変性シリコーン等の変性シリコーンオイルが挙げられる。 Examples of the silicone oil include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carrubinol-modified silicone oil, and methacryl-modified silicone oil. Silicone oil, mercapto-modified silicone oil, heterofunctional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic specially-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-containing modified silicone oil and fluorine-modified silicone And the like.
 上記表面修飾剤は、ヘキサン、トルエン、メタノール、エタノール、アセトン、水等で適宜希釈して、溶液の形態で水熱反応後の反応液と混合されることが好ましい。また、上記表面修飾剤によって導入される有機官能基中の炭素原子数は、1~6であることが好ましい。これにより耐久性を向上させることができる。また、表面修飾剤を含む溶液は、pH調節剤を用いて適当なpH値(例えば、2~12)に調節してもよい。ここで、pH調節剤としては、特に制限されず、後述のpH調節剤と同様のものが使用できる。 It is preferable that the surface modifier is appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water, or the like, and mixed with the reaction solution after the hydrothermal reaction in the form of a solution. Further, the number of carbon atoms in the organic functional group introduced by the surface modifier is preferably 1 to 6. Thereby, durability can be improved. The solution containing the surface modifying agent may be adjusted to an appropriate pH value (for example, 2 to 12) using a pH adjusting agent. Here, the pH adjuster is not particularly limited, and the same pH adjusters as described below can be used.
 表面修飾剤を使用する場合の表面修飾剤の添加量は、特に制限されないが、水熱反応により得られた二酸化バナジウム含有粒子の質量に対して、0.1~100質量%の範囲内であることが好ましく、1~10質量%の範囲内であることがより好ましい。 When the surface modifier is used, the amount of the surface modifier is not particularly limited, but is in the range of 0.1 to 100% by mass based on the mass of the vanadium dioxide-containing particles obtained by the hydrothermal reaction. Preferably, it is more preferably in the range of 1 to 10% by mass.
 表面修飾剤の添加は、二酸化バナジウム含有粒子表面を修飾する観点から、水熱反応直後(反応終了時点の直後)に開始することが好ましい。具体的には反応終了時点から10秒以内に添加を行うことが好ましく、5秒以内に添加を行うことがより好ましい。 添加 From the viewpoint of modifying the surface of the vanadium dioxide-containing particles, the addition of the surface modifier is preferably started immediately after the hydrothermal reaction (immediately after the end of the reaction). Specifically, the addition is preferably performed within 10 seconds from the end of the reaction, and more preferably within 5 seconds.
 表面修飾剤の添加方法としては、特に制限されず、公知の方法を用いることができる。例えば、図4に記載の流通式反応装置1を用いる場合は、水熱反応直後の反応液に対して、表面修飾剤(又は表面修飾剤を含む溶液)を、タンク10からポンプ12で流路11を介して、加熱部配管17に合流させることで、反応液と混合することができる。 方法 The method for adding the surface modifier is not particularly limited, and a known method can be used. For example, when the flow-type reaction device 1 shown in FIG. 4 is used, a surface modifier (or a solution containing the surface modifier) is supplied from the tank 10 to the reaction solution immediately after the hydrothermal reaction by the pump 12. By joining the heating unit piping 17 via the heating unit 11, it can be mixed with the reaction solution.
 表面修飾剤を含む溶液が流路11を通過(流通)する速度(流通速度)は、特に制限されないが、好ましくは0.01~10mL/秒の範囲内であり、より好ましくは0.1~5mL/秒の範囲内である。 The speed at which the solution containing the surface modifier passes (flows) through the flow channel 11 (flow speed) is not particularly limited, but is preferably in the range of 0.01 to 10 mL / sec, more preferably 0.1 to 10 mL / sec. Within the range of 5 mL / sec.
 このような流通速度であれば、表面修飾剤と二酸化バナジウム含有粒子とを十分接触させて、有機部位の割合が小さいため耐久性は確保したまま、表面修飾剤による効果(粒子の凝集抑制効果、分散安定性や保存安定性)を有効に発揮させることができる。 With such a flow rate, the surface modifier is brought into sufficient contact with the vanadium dioxide-containing particles and the effect of the surface modifier (coagulation suppression effect of particles, Dispersion stability and storage stability).
 水熱反応後の反応液と表面修飾剤との混合位置(配管11の設置位置)は、特に制限されないが、表面修飾剤の添加を水熱反応直後に開始するために、水熱反応部16の出口Bの直後に配置することが好ましい。また、流通式反応装置1のように、水熱反応部16の後に冷却部8を有する場合は、図4で示すように、水熱反応部16の直後であって冷却部8の前に配置することが好ましい。 The mixing position of the reaction solution after the hydrothermal reaction and the surface modifying agent (the installation position of the pipe 11) is not particularly limited, but the addition of the surface modifying agent is started immediately after the hydrothermal reaction. It is preferable to dispose it immediately after the outlet B. In the case where the cooling unit 8 is provided after the hydrothermal reaction unit 16 as in the flow-type reactor 1, the cooling unit 8 is disposed immediately after the hydrothermal reaction unit 16 and before the cooling unit 8 as shown in FIG. Is preferred.
 なお、表面修飾剤と共に、後述のpH調整剤、後述の冷却工程における冷却媒体を用いる場合は、タンク10、流路11及びポンプ12により構成される別ラインを個別に設けてもよい。 In the case where a pH adjuster described later and a cooling medium in a cooling step described later are used together with the surface modifier, another line including the tank 10, the flow path 11, and the pump 12 may be separately provided.
 〔pH調整剤〕
 流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法においては、水熱反応直後の反応液に対し、さらに、タンク10より、流路11を経由してpH調整剤を添加することができる。
(PH adjuster)
In the method for producing vanadium dioxide-containing particles using a flow-type reactor, a pH adjuster can be further added to the reaction solution immediately after the hydrothermal reaction from the tank 10 via the flow path 11.
 pH調整剤としては、特に制限されないが、例えば、塩酸、硫酸、硝酸、リン酸、シュウ酸(水和物を含む)、水酸化アンモニウム、アンモニア等の有機又は無機の酸又はアルカリ等を用いることができる。 The pH adjuster is not particularly limited. For example, an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia, etc. is used. Can be.
 水熱反応後の反応液のpHは、二酸化バナジウム含有粒子の粒子径、粒子径分布、二酸化バナジウム含有粒子のサーモクロミック性及び二酸化バナジウム含有粒子を含む光学フィルムの透明性の観点から、25℃において、3.0~10.0の範囲内であることが好ましく、より好ましくは4.0~9.0の範囲内である。なお、pH調節剤は、水熱反応においてバナジウム含有化合物と反応する化合物として用いたアルカリ、及び還元剤等と同じものであってもよいし、異なるものであってもよい。 PH of the reaction solution after the hydrothermal reaction, the particle size of the vanadium dioxide-containing particles, particle size distribution, from the viewpoint of the transparency of the optical film containing the vanadium dioxide-containing particles thermochromic and vanadium dioxide-containing particles, at 25 ℃ , Preferably in the range of 3.0 to 10.0, more preferably in the range of 4.0 to 9.0. The pH adjuster may be the same as or different from the alkali and the reducing agent used as the compound that reacts with the vanadium-containing compound in the hydrothermal reaction.
 上記pH調整剤は、メタノール、エタノール、水等で適宜希釈して、溶液の形態で水熱反応後の反応液と混合されることが好ましい。 It is preferable that the pH adjuster is appropriately diluted with methanol, ethanol, water, or the like, and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
 pH調整剤の添加方法としては、特に制限されず、公知の方法を用いることができる。例えば、図4に記載の流通式反応装置1を用いる場合は、水熱反応直後の反応液に対して、pH調整剤(又はpH調整剤を含む溶液)を、タンク10からポンプ12で流路11を経由して、反応液と混合することができる。 方法 The method of adding the pH adjuster is not particularly limited, and a known method can be used. For example, when the flow-type reaction device 1 shown in FIG. 4 is used, a pH adjusting agent (or a solution containing the pH adjusting agent) is flowed from the tank 10 to the reaction solution immediately after the hydrothermal reaction by the pump 12. 11 and can be mixed with the reaction solution.
 水熱反応後の反応液とpH調整剤との混合位置(流路11の設置位置)としては、特に制限されないが、表面修飾剤の添加を水熱反応後に開始する観点からは、水熱反応部16の後に配置することが好ましい。また、図4で示す流通式反応装置1において、水熱反応部16の後に冷却部8を有する場合は、水熱反応部16の後であって、冷却部8の前に配置してもよいし、あるいは冷却部8の後であってタンク9の前に配置されていてもよい。 The mixing position of the reaction solution after the hydrothermal reaction and the pH adjusting agent (position where the flow channel 11 is installed) is not particularly limited, but from the viewpoint of starting the addition of the surface modifier after the hydrothermal reaction, Preferably, it is arranged after the part 16. In the flow-type reaction device 1 shown in FIG. 4, when the cooling unit 8 is provided after the hydrothermal reaction unit 16, the cooling unit 8 may be disposed after the hydrothermal reaction unit 16 and before the cooling unit 8. Alternatively, it may be arranged after the cooling unit 8 and before the tank 9.
 なお、pH調整剤と共に、前述の表面修飾剤、や後述の冷却工程における冷却媒体を用いる場合は、タンク10、流路11及びポンプ12より構成される供給ラインは、それぞれ個別に設けてもよい。また、pH調整剤及び表面修飾剤、あるいはpH調整剤及び冷却媒体を混合し、1つの供給ラインにより供給させる方法であってもよい。 When the above-mentioned surface modifier and the cooling medium in the cooling step described below are used together with the pH adjusting agent, the supply lines including the tank 10, the flow path 11, and the pump 12 may be individually provided. . Alternatively, a method may be used in which a pH adjuster and a surface modifier, or a pH adjuster and a cooling medium are mixed and supplied through one supply line.
 また、pH調整剤の添加が、下記で説明する冷却工程よりも前に行われる場合は、これらの添加は水熱反応工程に含まれるものとし、下記の冷却工程以後に行われる場合は、冷却工程に含まれるものとする。 Further, when the addition of the pH adjuster is performed before the cooling step described below, these additions shall be included in the hydrothermal reaction step, and when performed after the cooling step described below, the cooling It shall be included in the process.
 〔二酸化バナジウム含有粒子プロファイル〕
 本発明の二酸化バナジウム含有粒子の製造方法においては、製造される二酸化バナジウム含有粒子の平均一次粒径が1~30nmの範囲内であり、平均結晶子径は1~15nmの範囲内であることを特徴とする。
(Vanadium dioxide-containing particle profile)
In the method for producing vanadium dioxide-containing particles of the present invention, the average primary particle diameter of the produced vanadium dioxide-containing particles is in the range of 1 to 30 nm, and the average crystallite diameter is in the range of 1 to 15 nm. Features.
 二酸化バナジウム含有粒子の平均一次粒径は、1~30nmの範囲内であることを特徴とするが、1~20nmの範囲内であることが好ましい。このような粒子径の二酸化バナジウム含有粒子であれば、ヘイズを良好に下げ、サーモクロミック性を効果的に発現させることができる。なお、二酸化バナジウム含有粒子の粒子径は、電子顕微鏡観察や動的光散乱法に基づく粒子径測定法により測定できる。 平均 The average primary particle diameter of the particles containing vanadium dioxide is characterized by being in the range of 1 to 30 nm, preferably in the range of 1 to 20 nm. With the particles containing vanadium dioxide having such a particle diameter, haze can be reduced favorably and thermochromic properties can be effectively exhibited. The particle diameter of the vanadium dioxide-containing particles can be measured by an electron microscope observation or a particle diameter measuring method based on a dynamic light scattering method.
 二酸化バナジウム含有粒子の粒子径測定に、電子顕微鏡観察を用いる場合、走査型電子顕微鏡(日立社製、Hitachi S-5000型)を用いて測定することができる。本発明では、二酸化バナジウム含有粒子の平均一次粒径(D)(nm)は、下記の方法によって測定することができる。 (4) When electron microscopy is used to measure the particle size of the vanadium dioxide-containing particles, the particle size can be measured using a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.). In the present invention, the average primary particle diameter (D) (nm) of the vanadium dioxide-containing particles can be measured by the following method.
 二酸化バナジウム含有粒子及び水を含有する分散液を、120℃のオーブンで乾燥固化させて紛体とし、測定用の粒子サンプルを調製する。 (4) The dispersion containing the particles containing vanadium dioxide and water is dried and solidified in an oven at 120 ° C. to obtain a powder, and a particle sample for measurement is prepared.
 次いで、得られた粒子サンプルを用い、走査型電子顕微鏡(日立社製、Hitachi S-5000型)によりSEM写真を撮影する。SEM写真(1100nm×950nm)を用いて、粒子径の算出を行う。ここで、粒子径は、面積円相当径を意味する。具体的には、SEM写真において、各粒子の面積を測定し、同一の面積を有する円の直径を粒子の粒子径とした。SEM写真において、寸法および形状が最も普遍的な粒子30個を選定し、粒子30個の平均一次粒径を算出し、その平均値を平均一次粒径(D)(nm)とした。 Next, using the obtained particle sample, an SEM photograph is taken with a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.). The particle diameter is calculated using an SEM photograph (1100 nm × 950 nm). Here, the particle diameter means an area circle equivalent diameter. Specifically, in the SEM photograph, the area of each particle was measured, and the diameter of a circle having the same area was defined as the particle diameter of the particle. In the SEM photograph, 30 particles having the most universal size and shape were selected, the average primary particle size of the 30 particles was calculated, and the average value was defined as the average primary particle size (D) (nm).
 また、二酸化バナジウム含有粒子の平均結晶子径は、1~15nmの範囲内であることを特徴とするが、1~10nmの範囲内であることがさらに好ましい。 Further, the average crystallite diameter of the vanadium dioxide-containing particles is characterized by being in the range of 1 to 15 nm, but is more preferably in the range of 1 to 10 nm.
 本発明に係る「結晶子」とは、多結晶粒子中において完全な単結晶として存在する微小結晶の最大の領域をいう。 「The“ crystallite ”according to the present invention refers to the largest region of a microcrystal present as a complete single crystal in polycrystalline particles.
 図5は、本発明に係る二酸化バナジウム含有粒子の粒子構造の一例を示す模式図である。 FIG. 5 is a schematic view showing an example of the particle structure of the vanadium dioxide-containing particles according to the present invention.
 図5に示すように、本発明に係る二酸化バナジウム含有粒子Pは、複数の結晶子CLにより形成されている。スラリー原料液に、事前に脱塩処理を施すこと、及び水熱反応処理時の温度及び時間によって、結晶子CLの成長速度を変化させることにより、酸化バナジウム含有粒子の平均結晶子径として、1~15nmの範囲内に制御させることができる。なお、図5に示すDは、二酸化バナジウム含有粒子Pの平均一次粒径である。 As shown in FIG. 5, the vanadium dioxide-containing particles P according to the present invention are formed by a plurality of crystallites CL. By subjecting the slurry raw material liquid to a desalting treatment in advance, and changing the growth rate of the crystallite CL depending on the temperature and time during the hydrothermal reaction treatment, the average crystallite diameter of the vanadium oxide-containing particles is 1 It can be controlled within the range of 1515 nm. In addition, D shown in FIG. 5 is an average primary particle size of the vanadium dioxide-containing particles P.
 一般に、得られた平均結晶子径Aは、結晶粒子中で同一方向に成長している結晶の大きさを表している。平均結晶子径Aが小さいということは、結晶粒子中において、特定の同一方向に成長している結晶子CLが小さいということである。事前に脱塩処理を施したスラリー原料液を適用することにより、結晶子CLが成長するため、平均一次粒径Dに対し、平均結晶子径Aが大きい結晶粒子ができる。 Generally, the obtained average crystallite diameter A represents the size of the crystal growing in the same direction in the crystal grain. The small average crystallite diameter A means that the crystallite CL growing in a specific same direction in the crystal grain is small. Since the crystallite CL grows by applying the slurry raw material liquid that has been subjected to the desalting treatment in advance, crystal particles having an average crystallite diameter A larger than the average primary particle diameter D are formed.
 本発明に係る平均結晶子径Aは、XRD(X-ray diffraction)測定により、下式(1)に示すシェラー(Scherrer)の式を用いて計算することができる。 平均 The average crystallite diameter A according to the present invention can be calculated by XRD (X-ray diffraction) measurement using the Scherrer formula shown in the following formula (1).
 式(1)
   A=Kλ/βcosθ
 上記式(1)において、Kはシェラー定数であり、λはX線波長である。βは、回折線の半値幅である。θは回折線に関するブラッグ角である。
Equation (1)
A = Kλ / βcosθ
In the above equation (1), K is a Scherrer constant, and λ is an X-ray wavelength. β is the half value width of the diffraction line. θ is the Bragg angle for the diffraction line.
 《光学フィルム》
 本発明に係る二酸化バナジウム含有粒子は、光学フィルムに好ましく用いることができる。ここでいう光学フィルムとは、透明基材、及び透明基材上に形成される光学機能層を有し、当該光学機能層が、樹脂及び本発明に係る二酸化バナジウム(VO)含有粒子を含有する構成からなるサーモクロミック性を発現するフィルムである。
《Optical film》
The vanadium dioxide-containing particles according to the present invention can be preferably used for an optical film. The optical film referred to here has a transparent substrate and an optical functional layer formed on the transparent substrate, and the optical functional layer contains a resin and the vanadium dioxide (VO 2 ) -containing particles according to the present invention. This is a film that exhibits thermochromic properties and has a configuration that:
 光学フィルムに適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、フレキシブル性の付与や生産適性(ロールtoロール適性)の観点から、透明樹脂フィルムであることが好ましい。本発明でいう透明基材における「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。 The transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. Examples of the substrate include flexibility and production suitability (roll-to-roll suitability). From the viewpoint, a transparent resin film is preferable. The term “transparent” in the transparent substrate according to the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80%. That is all.
 本発明において、透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、さらに好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、合わせガラス作製時、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。 に お い て In the present invention, the thickness of the transparent substrate is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, the glass curved surface when bonding to the glass substrate during production of laminated glass. Followability is improved.
 本発明において、透明基材は、光学フィルムのシワの生成や赤外線反射層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることがさらに好ましい。 In the present invention, the transparent substrate has a heat shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing wrinkles of the optical film and cracking of the infrared reflective layer. Is more preferably in the range of 1.5 to 3.0%, and still more preferably 1.9 to 2.7%.
 本発明において、光学フィルムに適用可能な透明基材としては、上述のように、透明であれば特に制限されることはなく、種々の透明樹脂フィルムを用いることができ、例えば、ポリオレフィンフィルム(例えば、ポリエチレンフィルム、ポリプロピレンフィルム等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等)、ポリ塩化ビニルフィルム、トリアセチルセルロースフィルム等を用いることができ、好ましくはポリエステルフィルム、トリアセチルセルロースフィルムであり、より好ましくはポリエステルフィルムである。 In the present invention, as described above, the transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and various transparent resin films can be used. For example, a polyolefin film (for example, , A polyethylene film, a polypropylene film, etc.), a polyester film (eg, a polyethylene terephthalate film, a polyethylene naphthalate film, etc.), a polyvinyl chloride film, a triacetyl cellulose film, etc., and preferably a polyester film, a triacetyl cellulose film. And more preferably a polyester film.
 ポリエステルフィルムを構成するポリエステルとしては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも、透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びこれらを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールとからなる共重合ポリエステル、及びこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。 ポ リ エ ス テ ル The polyester constituting the polyester film is not particularly limited, but is preferably a film-forming polyester having a dicarboxylic acid component and a diol component as main components. The main components of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfondicarboxylic acid, diphenyletherdicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexanedicarboxylic acid, diphenyldicarboxylic acid, diphenylthioetherdicarboxylic acid, diphenylketonedicarboxylic acid, and phenylindanedicarboxylic acid. The diol component includes ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among polyesters containing these as main components, terephthalic acid or 2,6-naphthalenedicarboxylic acid as a dicarboxylic acid component, ethylene glycol or Polyesters containing 1,4-cyclohexanedimethanol as the main constituent are preferred. Among them, polyethylene terephthalate, polyethylene naphthalate, polyesters containing these as main constituents, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more of these polyesters Polyesters whose main constituent is a mixture are preferred.
 透明樹脂フィルムとしては、二軸配向ポリエステルフィルムであることが特に好ましいが、未延伸又は少なくとも一方に延伸された一軸延伸ポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明において光学フィルムを具備した合わせガラスを、自動車のフロントガラスとして用いられる際に、延伸フィルムがより好ましい。 特 に The transparent resin film is particularly preferably a biaxially oriented polyester film, but a uniaxially stretched polyester film that has not been stretched or at least one stretched can also be used. Stretched films are preferred from the viewpoint of improving strength and suppressing thermal expansion. In particular, when the laminated glass provided with the optical film is used as a windshield of an automobile in the present invention, a stretched film is more preferable.
 本発明において、透明基材として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で微粒子を含有させてもよい。当該透明樹脂フィルムに適用可能な微粒子としては、例えば、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機微粒子や、架橋高分子微粒子、シュウ酸カルシウム等の有機微粒子を挙げることができる。また、微粒子を添加する方法としては、フィルムを形成する原料とする樹脂(例えば、ポリエステル等)中に、微粒子を含有させる方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。透明樹脂フィルムには必要に応じて上記微粒子の他にも各種添加剤を加えてもよい。このような添加剤としては、例えば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 In the present invention, when a transparent resin film is used as the transparent substrate, fine particles may be contained within a range that does not impair the transparency, in order to facilitate handling. Examples of the fine particles applicable to the transparent resin film include inorganic fine particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide. And organic fine particles such as crosslinked polymer fine particles and calcium oxalate. Examples of the method for adding the fine particles include a method in which the fine particles are contained in a resin (for example, polyester or the like) as a raw material for forming a film, a method in which the fine particles are directly added to an extruder, and the like. Either method may be adopted, or two methods may be used in combination. If necessary, various additives may be added to the transparent resin film in addition to the fine particles. Examples of such additives include stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
 透明基材である透明樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を溶媒と混合してドープを調製し、当該ドープを連続支持体上に流延することで製膜を行い、連続回転する無端の支持体上で一部乾燥を行った後に、無端支持体から剥離し、その後十分乾燥を行うとともに、任意に乾燥中や乾燥後に延伸処理を行うことにより、未延伸又は延伸された透明樹脂フィルムを製造する溶液流延法により作製することができる。また、例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の透明樹脂フィルムを製造する、溶融流延法により作製することができる。 透明 The transparent resin film as the transparent substrate can be manufactured by a conventionally known general method. For example, a resin as a material was mixed with a solvent to prepare a dope, the dope was cast on a continuous support, a film was formed, and a partial rotation was performed on a continuously rotating endless support. Later, peeling off from the endless support, and then performing sufficient drying, and optionally performing a stretching treatment during or after drying, to produce an unstretched or stretched transparent resin film by a solution casting method. Can be. Further, for example, a resin as a material is melted by an extruder, extruded by an annular die or a T die, and quenched to produce a substantially amorphous, unoriented, unstretched transparent resin film. It can be produced by a drawing method.
 また、未延伸の透明樹脂フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、透明樹脂フィルムの搬送方向(縦軸方向、MD方向)又は透明樹脂フィルムの搬送方向とは直角の横軸方向(幅手方向、TD方向)に延伸することにより、延伸透明樹脂フィルムを製造することができる。この場合の延伸倍率は、透明樹脂フィルムの原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍の範囲内で延伸することが好ましい。また、当該延伸処理は、予め延伸された透明樹脂フィルムに対してさらに行ってもよい。 Further, the transport direction of the transparent resin film (vertical direction) can be obtained by a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, or tubular simultaneous biaxial stretching of the unstretched transparent resin film. , MD direction) or a transverse axis direction (width direction, TD direction) perpendicular to the transport direction of the transparent resin film, whereby a stretched transparent resin film can be produced. The stretching ratio in this case can be appropriately selected according to the resin used as the raw material of the transparent resin film, but it is preferable that the stretching is performed in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction. The stretching treatment may be further performed on a transparent resin film that has been stretched in advance.
 透明樹脂フィルムは、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は、例えば、ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃の範囲内で行われることが好ましく、より好ましい処理温度は100~180℃の範囲内である。また搬送方向、横軸方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%の範囲内で処理されることである。弛緩処理された基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 The transparent resin film may be subjected to a relaxation treatment or an off-line heat treatment in view of dimensional stability. It is preferable that the relaxation treatment is performed, for example, in a step of stretching after heat setting in a polyester film stretching film-forming step, in a transverse stretching tenter, or in winding up after leaving the tenter. The relaxation treatment is preferably performed at a processing temperature of 80 to 200 ° C, and more preferably at a temperature of 100 to 180 ° C. It is preferable that the treatment is carried out at a relaxation rate in the range of 0.1 to 10% in both the transport direction and the horizontal axis direction, and it is more preferable that the treatment is carried out at a relaxation rate in the range of 2 to 6%. The substrate subjected to the relaxation treatment is subjected to off-line heat treatment so that the heat resistance is improved and the dimensional stability is further improved.
 透明樹脂フィルムは、製膜過程で片面又は両面にインラインで下引層塗布液を塗布することができる。透明樹脂フィルムに対して有用な下引層塗布液に使用する樹脂としては、ポリエステル樹脂、(メタ)アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂及びゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度とすることができる。 The undercoat layer coating liquid can be applied to one or both surfaces of the transparent resin film in-line during the film formation process. The resins used in the undercoat layer coating solution useful for transparent resin films include polyester resins, (meth) acrylic modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, and polyethylene. Examples include an imine resin, a polyvinyl alcohol resin, a modified polyvinyl alcohol resin, and gelatin, and any of them can be preferably used. Conventionally known additives can be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating and the like. The coating amount of the undercoat layer can be about 0.01 to 2 g / m 2 (dry state).
 光学フィルムの透明基材上には、樹脂及び本発明に係る二酸化バナジウム含有粒子を含有する光学機能層が設けられる。 光学 On the transparent substrate of the optical film, an optical functional layer containing the resin and the vanadium dioxide-containing particles according to the present invention is provided.
 ここで、樹脂としては、特に制限されず、広く一般に光学フィルムの光学機能層に使用されるのと同様の樹脂が使用でき、好ましくは水溶性高分子が使用できる。ここでいう「水溶性高分子」とは、25℃の水100gに0.001g以上溶解する高分子のことをいう。水溶性高分子の具体例としては、ポリビニルアルコール、ポリエチレンイミン、ゼラチン(例えば、特開2006-343391号公報記載のゼラチンを代表とする親水性高分子)、デンプン、グアーガム、アルギン酸塩、メチルセルロース、エチルセルロース、ヒドロキシアルキルセルロース、カルボキシアルキルセルロース、ポリ(メタ)アクリルアミド、ポリエチレンイミン、ポリエチレングリコール、ポリアルキレンオキサイド、ポリビニルピロリドン(PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ナフタリンスルホン酸縮合物や、アルブミン、カゼイン等の蛋白質、アルギン酸ソーダ、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体などを挙げることができる。 Here, the resin is not particularly limited, and the same resins as those generally used for the optical functional layer of the optical film can be used, and preferably, a water-soluble polymer can be used. The term “water-soluble polymer” as used herein refers to a polymer that can be dissolved in 100 g of water at 25 ° C. in an amount of 0.001 g or more. Specific examples of the water-soluble polymer include polyvinyl alcohol, polyethyleneimine, gelatin (for example, a hydrophilic polymer represented by gelatin described in JP-A-2006-343391), starch, guar gum, alginate, methylcellulose, and ethylcellulose. , Hydroxyalkyl cellulose, carboxyalkyl cellulose, poly (meth) acrylamide, polyethylene imine, polyethylene glycol, polyalkylene oxide, polyvinyl pyrrolidone (PVP), polyvinyl methyl ether, carboxyvinyl polymer, poly (meth) acrylic acid, poly (meth) Proteins such as sodium acrylate, naphthalenesulfonic acid condensate, albumin, casein, sodium alginate, dextrin, dextran, dextran sulfate, etc. , And the like derivatives.
 光学機能層における二酸化バナジウム含有粒子の含有量は、所望のサーモクロミック性を得る観点から、光学機能層の総質量に対して1~60質量%の範囲内であることが好ましく、5~50質量%の範囲内であることがより好ましい。 The content of the vanadium dioxide-containing particles in the optical functional layer is preferably in the range of 1 to 60% by mass relative to the total mass of the optical functional layer, from the viewpoint of obtaining desired thermochromic properties, and 5 to 50% by mass. % Is more preferable.
 光学機能層には、本発明の目的とする効果を損なわない範囲で、従来公知の各種添加剤を使用することができる。適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報等に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。 従 来 Conventionally known various additives can be used in the optical functional layer as long as the effects intended by the present invention are not impaired. Various additives that can be applied are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476, etc., JP-A-57-74192, JP-A-57-74192, Discoloration inhibitors, anions described in JP-A-87989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091 and JP-A-3-13376. , Cationic or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-Hei. Fluorescent brightening agents described in JP-A-219266, pH adjusting agents such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide and potassium carbonate, defoaming , Diethylene glycol and other lubricants, preservatives, fungicides, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption And various known additives such as agents, dyes, and pigments.
 光学フィルムの製造方法(光学機能層の形成方法)としては、特に制限されず、本発明に係る二酸化バナジウム含有粒子を使用する以外は、公知の方法と同様にして、又は適宜修正して適用できる。具体的には、二酸化バナジウム含有粒子を含む塗布液を調製し、当該塗布液を湿式塗布方式により透明基材上に塗布、乾燥して光学機能層を形成する方法が好ましい。 The method for producing the optical film (the method for forming the optical functional layer) is not particularly limited, and can be applied in the same manner as a known method, or appropriately modified, except for using the vanadium dioxide-containing particles according to the present invention. . Specifically, a method of preparing a coating solution containing vanadium dioxide-containing particles, coating the coating solution on a transparent substrate by a wet coating method, and drying to form an optical functional layer is preferable.
 上記方法において、湿式塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。 In the above method, the wet coating method is not particularly limited, and examples thereof include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide type curtain coating method, and US Pat. No. 2,761,419, Examples thereof include a slide hopper coating method and an extrusion coating method described in Japanese Patent No. 2761791.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。なお、各図の説明で、構成要件の後に記載の数字は、各図に記載の符号を表す。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. Unless otherwise specified, “%” and “parts” mean “% by mass” and “parts by mass”, respectively. In the description of each drawing, the numbers described after the constituent requirements represent the reference numerals described in each drawing.
 《二酸化バナジウム含有粒子の調製》
 〔二酸化バナジウム含有粒子101の調製〕
 (スラリー原料液Aの調製)
 原料液1として酸化硫酸バナジウム(IV)(VOSO)19.0gをイオン交換水に溶解して300mLとし、この液を撹拌しながら、アルカリとして3.0mol/LのNH水溶液を68mL添加して、スラリー原料液Aを調製した。
<< Preparation of particles containing vanadium dioxide >>
[Preparation of vanadium dioxide-containing particles 101]
(Preparation of slurry raw material liquid A)
19.0 g of vanadium (IV) oxide (VOSO 4 ) was dissolved in ion-exchanged water to 300 mL as the raw material liquid 1, and 68 mL of an aqueous 3.0 mol / L NH 3 solution was added as an alkali while stirring this liquid. Thus, a slurry raw material liquid A was prepared.
 (スラリー原料液Aの脱塩処理)
 次いで、酸化硫酸バナジウム(IV)とアルカリを含むスラリー原料液Aに下記遠心分離法による脱塩処理1を施して、脱塩処理済みのスラリー原料液1を調製した。
(Desalination of slurry raw material liquid A)
Next, the slurry raw material liquid A containing vanadium (IV) oxide sulfate and alkali was subjected to desalting treatment 1 by the following centrifugation method to prepare a desalted slurry raw material liquid 1.
 〈脱塩処理1〉
 公知の遠心分離装置を用い、30℃で上記酸化硫酸バナジウム(IV)とアルカリを含むスラリー原料液Aに遠心分離処理による固液分離を行った後、水系の分離液の一部を系外に排出し、その後、排出したのと同容量のイオン交換水を追加添加し、その後分散処理を行い、この操作を繰り返して、不要の塩類を排出して、スラリー原料液の電気伝導率を1mS/m、pHを3.0mol/LのNH水溶液を用いて7.5に調整して、脱塩処理済みのスラリー原料液1を調製した。
<Desalination 1>
Using a known centrifugal separator, a solid-liquid separation is performed by centrifugation at 30 ° C. on the slurry raw material liquid A containing vanadium (IV) oxide sulfate and alkali, and then a part of the aqueous separation liquid is removed from the system. Then, the same volume of ion-exchanged water as that discharged was added, and then the dispersion treatment was performed. This operation was repeated to discharge unnecessary salts, and the electric conductivity of the slurry raw material liquid was set to 1 mS / m and pH were adjusted to 7.5 using a 3.0 mol / L aqueous NH 3 solution to prepare a desalted slurry raw material liquid 1.
 (水熱反応処理)
 次いで、上記脱塩処理を施したスラリー原料液1について、図3及び図4に記載の水熱反応部を有する流通式反応装置を用い、下記の方法に従って、二酸化バナジウム含有粒子101を調製した。
(Hydrothermal reaction treatment)
Next, with respect to the slurry raw material liquid 1 subjected to the desalting treatment, vanadium dioxide-containing particles 101 were prepared according to the following method using a flow-type reaction apparatus having a hydrothermal reaction section shown in FIGS.
 図3及び図4に記載のスラリー原料液容器5に、原料液1として上記の方法で脱塩処理を施した酸化硫酸バナジウム(IV)とアルカリを含み、電気伝導率(mS/m)が1mS/m、pHが7.5であるスラリー原料液1を貯留した。一方、図3及び図4に記載のイオン交換水容器2には、原料液2としてイオン交換水を収納した。 The slurry raw material container 5 shown in FIGS. 3 and 4 contains vanadium (IV) oxide desalted by the above-described method and an alkali as the raw material liquid 1 and has an electric conductivity (mS / m) of 1 mS. / M and a slurry raw material liquid 1 having a pH of 7.5 were stored. On the other hand, ion-exchanged water was stored as the raw material liquid 2 in the ion-exchanged water container 2 shown in FIGS.
 酸化硫酸バナジウム(IV)とアルカリを含む脱塩処理済みのスラリー原料液1は、スラリー原料液容器5から流路6内をポンプ7により送液し、加熱媒体15で、25℃で、30MPaの条件となるように加圧した。 The desalted slurry raw material liquid 1 containing vanadium (IV) oxide sulfate and alkali is sent from the slurry raw material liquid container 5 to the inside of the flow path 6 by the pump 7, and is heated by the heating medium 15 at 25 ° C. and 30 MPa. Pressure was applied to meet the conditions.
 一方、原料液2であるイオン交換水は、脱気処理後、イオン交換水容器2から流路3内をポンプ4により送液し、加熱媒体13で、440℃で、30MPaの条件で加熱加圧して、超臨界水を得た。 On the other hand, the ion-exchanged water, which is the raw material liquid 2, is degassed and then sent from the ion-exchanged water container 2 to the inside of the flow path 3 by the pump 4, and heated with the heating medium 13 at 440 ° C. and 30 MPa. Press to obtain supercritical water.
 次いで、図3及び図4で示す合流点MPで、酸化硫酸バナジウム(IV)とアルカリを含むスラリー原料液1と、超臨界水であるイオン交換水を、体積比として、スラリー原料液1:イオン交換水=1:4となる条件で混合して、反応液を形成し、超臨界を維持した状態で、反応液を水熱反応部である水熱反応部16に送液した。水熱反応部では、加熱媒体14内に配置されている加熱部配管17に送液した。加熱配管部17における水熱反応条件としては、440℃、30MPaの条件で、処理時間(通過時間)として5秒となる条件で行い、二酸化バナジウム(VO)含有粒子101を形成した。次いで、冷却部8にて反応液を冷却し、二酸化バナジウム含有粒子101及び水を含有する分散液1を調製した。 Next, at the confluence point MP shown in FIGS. 3 and 4, the slurry raw material liquid 1 containing vanadium (IV) oxide sulfate and the alkali, and the ion exchange water as supercritical water were used as a volume ratio of the slurry raw material liquid 1: ion The mixture was mixed under the condition of exchanged water = 1: 4 to form a reaction solution, and the reaction solution was sent to the hydrothermal reaction section 16 as a hydrothermal reaction section while maintaining the supercritical state. In the hydrothermal reaction section, the liquid was sent to the heating section piping 17 arranged in the heating medium 14. The hydrothermal reaction conditions in the heating pipe section 17 were performed at 440 ° C. and 30 MPa, and the treatment time (passing time) was set to 5 seconds, to form particles 101 containing vanadium dioxide (VO 2 ). Next, the reaction liquid was cooled in the cooling unit 8 to prepare the dispersion liquid 1 containing the vanadium dioxide-containing particles 101 and water.
 〔二酸化バナジウム含有粒子102の調製〕
 上記二酸化バナジウム含有粒子101の調製において、遠心分離法による脱塩処理1を施して調製したスラリー原料液1に代えて、下記の限外濾過法による脱塩処理2を施して調製したスラリー原料液2を用いた以外は同様にして、二酸化バナジウム含有粒子102を調製した。
[Preparation of vanadium dioxide-containing particles 102]
In the preparation of the above-mentioned particles 101 containing vanadium dioxide, instead of the slurry raw material liquid 1 prepared by subjecting to desalination treatment 1 by a centrifugal separation method, a slurry raw material liquid prepared by carrying out desalination treatment 2 by the following ultrafiltration method In the same manner except that No.2 was used, vanadium dioxide-containing particles 102 were prepared.
 (脱塩処理済みのスラリー原料液2の調製)
 〈脱塩処理2〉
 図2に記載の限外濾過装置50を用いて、30℃の酸化硫酸バナジウム(IV)とアルカリを含むスラリー原料液Aに限外濾過法による脱塩処理2を施して、脱塩処理済みのスラリー原料液2を調製した。
(Preparation of desalted slurry raw material liquid 2)
<Desalination 2>
The slurry raw material liquid A containing vanadium (IV) oxide sulfate and alkali at 30 ° C. was subjected to desalination treatment 2 by ultrafiltration using the ultrafiltration apparatus 50 shown in FIG. A slurry raw material liquid 2 was prepared.
 調整釜51に、液温が30℃のスラリー原料液A(52、初期電気伝導率:3400mS/m)を貯留して、循環ポンプ54を用いて循環させながら、限外濾過部55で、スラリー原料A1中の塩類を含む水分を排出口56より、排出量V1で排出し、次いで、アンモニア添加よりpHを10.0に調整したイオン交換水58のストック釜57より、供給ライン59を経由して、限外濾過部55における排出量V1と同容量のpH10のイオン交換水58を添加量V2で添加した。電気伝導率計60により、脱塩したスラリー原料液52の電気伝導率(mS/m)を測定しながらこの操作を繰り返し行い、スラリー原料液52の25℃における電気伝導率(mS/m)が3000mS/mとなった時点で、脱塩操作を終了し、その後分散処理を行い、脱塩処理済みのスラリー原料液2を調製した。この時の脱塩処理済みのスラリー原料液2の25℃で測定したpHは10.2であった。 The slurry raw material liquid A (52, initial electric conductivity: 3400 mS / m) having a liquid temperature of 30 ° C. is stored in the adjusting pot 51, and is circulated using the circulation pump 54. The water containing salt in the raw material A1 is discharged at a discharge amount V1 from a discharge port 56, and then from a stock tank 57 of ion-exchanged water 58 whose pH has been adjusted to 10.0 by adding ammonia via a supply line 59. Thus, ion-exchanged water 58 having the same volume as the discharged amount V1 in the ultrafiltration unit 55 and having a pH of 10 was added in an added amount V2. This operation is repeated while measuring the electric conductivity (mS / m) of the desalted slurry raw material liquid 52 with the electric conductivity meter 60, and the electric conductivity (mS / m) of the slurry raw material liquid 52 at 25 ° C. At the time of reaching 3000 mS / m, the desalting operation was terminated, and then the dispersion treatment was performed to prepare the slurry raw material liquid 2 after the desalination treatment. At this time, the pH of the desalted slurry raw material liquid 2 measured at 25 ° C. was 10.2.
 〔二酸化バナジウム含有粒子103の調製〕
 上記二酸化バナジウム含有粒子102の調製において、水熱反応装置として、水熱反応部を有する流通式反応装置に代えて、下記のオートクレーブを用いた以外は同様にして、二酸化バナジウム含有粒子103を調製した。
[Preparation of vanadium dioxide-containing particles 103]
In the preparation of the vanadium dioxide-containing particles 102, vanadium dioxide-containing particles 103 were prepared in the same manner as the hydrothermal reactor, except that the following autoclave was used instead of a flow-type reactor having a hydrothermal reactor. .
 (水熱反応処理:オートクレーブ)
 脱塩処理済みのスラリー原料液2(電気伝導率:3000mS/m、pH:10.2)を、内容積が500mLのオートクレーブに入れ、300℃、8.6MPaで6時間の水熱反応処理を行い、二酸化バナジウム含有粒子103を形成した。次いで、反応液を冷却して、二酸化バナジウム含有粒子103を含有する分散液を調製した。
(Hydrothermal reaction treatment: autoclave)
The desalted slurry raw material liquid 2 (electric conductivity: 3000 mS / m, pH: 10.2) is placed in an autoclave having an internal volume of 500 mL, and subjected to a hydrothermal reaction treatment at 300 ° C. and 8.6 MPa for 6 hours. Thus, vanadium dioxide-containing particles 103 were formed. Next, the reaction liquid was cooled to prepare a dispersion liquid containing the vanadium dioxide-containing particles 103.
 〔二酸化バナジウム含有粒子104の調製〕
 上記二酸化バナジウム含有粒子102の調製において、脱塩処理済みのスラリー原料液2に代えて、30℃のスラリー原料液Aを用いた限外濾過法で、脱塩処理条件を適宜変更して、電気伝導率が100mS/m、pHが8.0のスラリー原料液3(脱塩処理3)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子104を調製した。
[Preparation of vanadium dioxide-containing particles 104]
In the preparation of the vanadium dioxide-containing particles 102, the desalination treatment conditions were appropriately changed by ultrafiltration using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 2, and A slurry raw material liquid 3 having a conductivity of 100 mS / m and a pH of 8.0 (desalting treatment 3) was prepared, and vanadium dioxide-containing particles 104 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子105の調製〕
 上記二酸化バナジウム含有粒子102の調製において、脱塩処理済みのスラリー原料液2に代えて、30℃のスラリー原料液Aを用いた限外濾過法で、脱塩処理条件を適宜変更して電気伝導率が620mS/m、pHが9.2のスラリー原料液4(脱塩処理4)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子105を調製した。
[Preparation of vanadium dioxide-containing particles 105]
In the preparation of the above-mentioned vanadium dioxide-containing particles 102, the desalination treatment conditions were appropriately changed by an ultrafiltration method using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 2, and the electric conductivity was changed. A slurry raw material liquid 4 (desalting treatment 4) having a rate of 620 mS / m and a pH of 9.2 was prepared, and vanadium dioxide-containing particles 105 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子106の調製〕
 上記二酸化バナジウム含有粒子102の調製において、脱塩処理済みのスラリー原料液2に代えて、30℃のスラリー原料液Aを用いた限外濾過法で、脱塩処理条件を適宜変更して、電気伝導率が1000mS/m、pHが10.7のスラリー原料液5(脱塩処理5)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子106を調製した。
[Preparation of vanadium dioxide-containing particles 106]
In the preparation of the vanadium dioxide-containing particles 102, the desalination treatment conditions were appropriately changed by ultrafiltration using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 2, and A slurry raw material liquid 5 having a conductivity of 1000 mS / m and a pH of 10.7 (desalting treatment 5) was prepared, and vanadium dioxide-containing particles 106 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子107の調製〕
 上記二酸化バナジウム含有粒子101の調製において、脱塩処理済みのスラリー原料液1に代えて、30℃のスラリー原料液Aを用いた遠心分離法で、脱塩処理条件を適宜変更して、電気伝導率が620mS/m、pHが8.0のスラリー原料液6(脱塩処理6)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子107を調製した。
[Preparation of vanadium dioxide-containing particles 107]
In the preparation of the above-mentioned particles 101 containing vanadium dioxide, the conditions of the desalting treatment were appropriately changed by a centrifugal separation method using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 1 to obtain an electric conduction. A slurry raw material liquid 6 (desalting treatment 6) having a rate of 620 mS / m and a pH of 8.0 was prepared, and vanadium dioxide-containing particles 107 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子108の調製〕
 上記二酸化バナジウム含有粒子107の調製において、電気伝導率が620mS/m、pHが8.0のスラリー原料液6(脱塩処理6)を用い、流通式反応装置における水熱反応条件を、反応温度を195℃、反応圧力を10MPa、処理時間を2秒に、それぞれ変更した以外は同様にして、二酸化バナジウム含有粒子108を調製した。
(Preparation of vanadium dioxide-containing particles 108)
In the preparation of the above-mentioned particles 107 containing vanadium dioxide, a slurry raw material liquid 6 having a conductivity of 620 mS / m and a pH of 8.0 (desalting treatment 6) was used. 195 ° C., the reaction pressure was 10 MPa, and the treatment time was 2 seconds, except that the vanadium dioxide-containing particles 108 were prepared in the same manner.
 〔二酸化バナジウム含有粒子109の調製〕
 上記二酸化バナジウム含有粒子107の調製において、電気伝導率が620mS/m、pHが8.0のスラリー原料液6(脱塩処理6)を用い、流通式反応装置における水熱反応条件として、処理時間を2秒に変更した以外は同様にして、二酸化バナジウム含有粒子109を調製した。
[Preparation of vanadium dioxide-containing particles 109]
In the preparation of the above-mentioned particles 107 containing vanadium dioxide, a slurry raw material liquid 6 (desalting treatment 6) having an electric conductivity of 620 mS / m and a pH of 8.0 was used. Was changed to 2 seconds to prepare vanadium dioxide-containing particles 109 in the same manner.
 〔二酸化バナジウム含有粒子110の調製〕
 上記二酸化バナジウム含有粒子102の調製において、脱塩処理済みのスラリー原料液2に代えて、30℃のスラリー原料液Aを用いた限外濾過法で、脱塩処理条件を適宜変更して電気伝導率が200mS/m、pHが11.8のスラリー原料液7(脱塩処理7)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子110を調製した。
[Preparation of vanadium dioxide-containing particles 110]
In the preparation of the above-mentioned vanadium dioxide-containing particles 102, the desalination treatment conditions were appropriately changed by an ultrafiltration method using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 2, and the electric conductivity was changed. A slurry raw material liquid 7 having a rate of 200 mS / m and a pH of 11.8 (desalting treatment 7) was prepared, and vanadium dioxide-containing particles 110 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子111の調製〕
 上記二酸化バナジウム含有粒子104の調製において、脱塩処理済みのスラリー原料液3に代えて、30℃のスラリー原料液Aを用いた限外濾過法で、脱塩処理条件を適宜変更して電気伝導率が100mS/m、pHが5.5のスラリー原料液8(脱塩処理8)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子111を調製した。
[Preparation of vanadium dioxide-containing particles 111]
In the preparation of the above-mentioned vanadium dioxide-containing particles 104, the electric conduction was performed by appropriately changing the desalting treatment conditions by an ultrafiltration method using a slurry raw material liquid A at 30 ° C. instead of the desalted slurry raw material liquid 3. A slurry raw material liquid 8 (desalting treatment 8) having a rate of 100 mS / m and a pH of 5.5 was prepared, and vanadium dioxide-containing particles 111 were prepared in the same manner except that this was used.
 〔二酸化バナジウム含有粒子112の調製〕
 上記二酸化バナジウム含有粒子105の調製において、スラリー原料液Aの限外濾過時の処理温度を50℃に変更した以外は同様にして調製した電気伝導率が620mS/m、pHが8.0のスラリー原料液9(脱塩処理9)を用いた以外は同様にして、二酸化バナジウム含有粒子112の調製を調製した。
[Preparation of vanadium dioxide-containing particles 112]
In preparing the vanadium dioxide-containing particles 105, a slurry having an electric conductivity of 620 mS / m and a pH of 8.0 was prepared in the same manner except that the treatment temperature during the ultrafiltration of the slurry raw material liquid A was changed to 50 ° C. Preparation of vanadium dioxide-containing particles 112 was prepared in the same manner except that the raw material liquid 9 (desalting treatment 9) was used.
 〔二酸化バナジウム含有粒子113の調製〕
 上記二酸化バナジウム含有粒子105の調製において、スラリー原料液Aを下記スラリー原料液Bに変更し、かつ、脱塩処理条件を適宜変更して電気伝導率が620mS/m、pHが8.0のスラリー原料液10(脱塩処理10)を調製し、これを用いた以外は同様にして、二酸化バナジウム含有粒子113を調製した。
[Preparation of vanadium dioxide-containing particles 113]
In the preparation of the vanadium dioxide-containing particles 105, the slurry raw material liquid A was changed to the following slurry raw material liquid B, and the desalting treatment conditions were appropriately changed to obtain a slurry having an electric conductivity of 620 mS / m and a pH of 8.0. A raw material liquid 10 (desalting treatment 10) was prepared, and vanadium dioxide-containing particles 113 were prepared in the same manner except that this was used.
 (スラリー原料液Bの調製)
 原料液1として酸化硫酸バナジウム(IV)(VOSO)19.0gをイオン交換水に溶解して300mLとし、この液を撹拌しながら、アルカリとして3.0mol/LのNaOH水溶液を68mL添加して、スラリー原料液Bを調製した。
(Preparation of slurry raw material liquid B)
As a raw material liquid 1, 19.0 g of vanadium (IV) oxide (VOSO 4 ) was dissolved in ion-exchanged water to 300 mL, and while stirring this liquid, 68 mL of a 3.0 mol / L NaOH aqueous solution was added as an alkali while stirring. And a slurry raw material liquid B was prepared.
 〔二酸化バナジウム含有粒子114の調製〕
 上記二酸化バナジウム含有粒子105の調製において、スラリー原料液Aの限外濾過時のpHを8.0に変更し、かつ流通式反応装置における水熱反応条件を、反応温度を380℃、処理時間を10秒に、それぞれ変更した以外は同様にして、二酸化バナジウム含有粒子114を調製した。
[Preparation of vanadium dioxide-containing particles 114]
In the preparation of the vanadium dioxide-containing particles 105, the pH during ultrafiltration of the slurry raw material liquid A was changed to 8.0, and the hydrothermal reaction conditions in the flow-type reactor were changed to a reaction temperature of 380 ° C., and a treatment time of At 10 seconds, vanadium dioxide-containing particles 114 were prepared in the same manner, except that each was changed.
 〔二酸化バナジウム含有粒子115の調製〕
 上記二酸化バナジウム含有粒子105の調製において、スラリー原料液Aの限外濾過時のpHを8.0に変更し、かつ流通式反応装置における水熱反応条件として、反応温度を380℃に変更した以外は同様にして、二酸化バナジウム含有粒子115を調製した。
[Preparation of vanadium dioxide-containing particles 115]
In the preparation of the vanadium dioxide-containing particles 105, the pH during ultrafiltration of the slurry raw material liquid A was changed to 8.0, and the reaction temperature was changed to 380 ° C. as hydrothermal reaction conditions in a flow reactor. Prepared vanadium dioxide-containing particles 115 in the same manner.
 〔二酸化バナジウム含有粒子116の調製〕
 上記二酸化バナジウム含有粒子106の調製において、流通式反応装置における水熱反応条件を、反応温度を390℃、反応圧力を28.0MPa、処理時間を60秒に、それぞれ変更した以外は同様にして、二酸化バナジウム含有粒子116を調製した。
[Preparation of vanadium dioxide-containing particles 116]
In the preparation of the vanadium dioxide-containing particles 106, the hydrothermal reaction conditions in a flow-type reactor were the same except that the reaction temperature was changed to 390 ° C., the reaction pressure was changed to 28.0 MPa, and the treatment time was changed to 60 seconds. Vanadium dioxide-containing particles 116 were prepared.
 〔二酸化バナジウム含有粒子117の調製〕
 上記二酸化バナジウム含有粒子106の調製において、流通式反応装置における水熱反応条件を、反応温度を410℃、反応圧力を35.0MPa、処理時間を10秒に、それぞれ変更した以外は同様にして、二酸化バナジウム含有粒子117を調製した。
[Preparation of vanadium dioxide-containing particles 117]
In the preparation of the vanadium dioxide-containing particles 106, the hydrothermal reaction conditions in the flow-type reactor, the reaction temperature was 410 ° C., the reaction pressure was 35.0 MPa, and the treatment time was 10 seconds. Vanadium dioxide-containing particles 117 were prepared.
 以上により調製した各二酸化バナジウム含有粒子の詳細を、表Iに示す。 詳細 The details of each vanadium dioxide-containing particle prepared as described above are shown in Table I.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《光学フィルムの作製》
 〔光学フィルム101の作製〕
 厚さが50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300、両面易接着層付)上に、下記組成の光学機能層形成用塗布液1を、ダイコーターを用いて乾燥膜厚が2.0μmになるように塗布量を調整して湿式塗布を行い、90℃で1分間乾燥させて、サーモクロミックフィルムである光学フィルム101を作製した。
<< Preparation of optical film >>
[Preparation of Optical Film 101]
On a polyethylene terephthalate film having a thickness of 50 μm (A4300 manufactured by Toyobo, with a double-sided easy-adhesion layer), a coating liquid 1 for forming an optical functional layer having the following composition was dried with a die coater to a dry film thickness of 2.0 μm. The wet coating was performed by adjusting the coating amount, and the coating was dried at 90 ° C. for 1 minute to produce an optical film 101 as a thermochromic film.
 〈光学機能層形成用塗布液1の調製〉
 二酸化バナジウム含有粒子101を含む分散液 9.3質量部(固形分)
 樹脂バインダー:(ポリ-N-ビニルアセトアミド、商品名:GE191-103、昭和電工社製、分子量900000)     90.7質量部
 上記の各構成材料を順次添加、混合及び溶解し、固形分濃度が3.0質量%になるように水で希釈し、水系の光学機能層形成用塗布液1を調製した。
<Preparation of coating liquid 1 for forming optical functional layer>
9.3 parts by mass (solid content) of dispersion containing vanadium dioxide-containing particles 101
Resin binder: (poly-N-vinylacetamide, trade name: GE191-103, manufactured by Showa Denko KK, molecular weight 900000) 90.7 parts by mass The above-mentioned constituent materials are sequentially added, mixed and dissolved, and the solid content concentration is 3 The mixture was diluted with water so as to have a concentration of 0.0% by mass to prepare a water-based coating liquid 1 for forming an optical functional layer.
 〔光学フィルム102~117の作製〕
 上記光学フィルム101の作製において、光学機能層形成用塗布液1の調製に用いた二酸化バナジウム含有粒子101を、それぞれ二酸化バナジウム含有粒子102~117に変更した以外は同様にして、光学フィルム102~117を作製した。
[Production of optical films 102 to 117]
In the production of the optical film 101, the optical films 102 to 117 were prepared in the same manner except that the vanadium dioxide-containing particles 101 used in the preparation of the optical functional layer forming coating liquid 1 were changed to vanadium dioxide-containing particles 102 to 117, respectively. Was prepared.
 《二酸化バナジウム含有粒子及び光学フィルムの評価》
 〔二酸化バナジウム含有粒子の評価〕
 上記調製した各二酸化バナジウム含有粒子について、下記の各評価を行った。
<< Evaluation of vanadium dioxide-containing particles and optical films >>
(Evaluation of vanadium dioxide-containing particles)
Each of the vanadium dioxide-containing particles prepared above was evaluated as follows.
 (平均結晶子径の測定)
 各二酸化バナジウム含有粒子について、粉末X線回折装置(リガク社製、MiniFlexII)を用いて粒子30個について結晶子径を測定し、その平均値を求めた。X線源としては、CuKα線を使用し、平均結晶子径は、X線回折のメインピーク((011)面)を用いて、下式(1)のシェラーの式により算出した。
(Measurement of average crystallite diameter)
With respect to each vanadium dioxide-containing particle, the crystallite diameter of 30 particles was measured using a powder X-ray diffractometer (manufactured by Rigaku, MiniFlex II), and the average value was determined. CuKα rays were used as the X-ray source, and the average crystallite diameter was calculated by the Scherrer equation of the following equation (1) using the main peak ((011) plane) of X-ray diffraction.
 式(1)
   D=Kλ/βcosθ
 上記式(1)において、Kはシェラー定数であり、λはX線波長である。βは、回折線の半値幅である。θは回折線に関するブラッグ角である。
Equation (1)
D = Kλ / βcosθ
In the above equation (1), K is a Scherrer constant, and λ is an X-ray wavelength. β is the half value width of the diffraction line. θ is the Bragg angle for the diffraction line.
 次いで、上記測定した平均結晶子径について、下記のランクで分類した。 Next, the average crystallite diameters measured above were classified according to the following ranks.
 〇:平均結晶子径が、1nm以上、15nm以下
 ×:平均結晶子径が、15nmを超えている
 (平均一次粒径の測定)
 上記調製した各二酸化バナジウム含有粒子及び水を含有する分散液を、120℃のオーブンで乾燥固化させて紛体とし、測定用の粒子サンプルを調製した。
〇: Average crystallite size is 1 nm or more and 15 nm or less ×: Average crystallite size exceeds 15 nm (measurement of average primary particle size)
The dispersion containing each of the vanadium dioxide-containing particles and water prepared above was dried and solidified in an oven at 120 ° C. to obtain a powder, and a particle sample for measurement was prepared.
 次いで、得られた粒子サンプルを用い、走査型電子顕微鏡(日立社製、Hitachi S-5000型)によりSEM写真を撮影した。撮影したSEM写真(1100nm×950nm)を用いて、粒子径の算出を行った。二酸化バナジウム含有粒子の粒子径は、面積円相当径を適用し、SEM写真において、各二酸化バナジウム含有粒子の面積を測定し、同一の面積を有する円の直径をもって、二酸化バナジウム含有粒子の粒子径とした。SEM写真において、寸法および形状が最も普遍的な粒子30個を選定し、粒子30個の平均一次粒径を算出し、その平均値を平均一次粒径D(nm)とした。 Next, using the obtained particle sample, an SEM photograph was taken with a scanning electron microscope (Hitachi S-5000, manufactured by Hitachi, Ltd.). The particle diameter was calculated using the taken SEM photograph (1100 nm × 950 nm). The particle diameter of the vanadium dioxide-containing particles, the area circle equivalent diameter is applied, the area of each vanadium dioxide-containing particle is measured in the SEM photograph, and the diameter of the circle having the same area is determined as the particle diameter of the vanadium dioxide-containing particles. did. In the SEM photograph, 30 particles having the most universal dimensions and shapes were selected, the average primary particle size of the 30 particles was calculated, and the average value was defined as the average primary particle size D (nm).
 次いで、上記測定した平均一次粒径について、下記のランクで分類した。 Next, the average primary particle size measured above was classified according to the following rank.
 ◎:平均一次粒径が、1nm以上、20nm以下
 ○:平均一次粒径が、20nmを超えて、30nm以下
 △:平均一次粒径が、30nmを超えて、40nm以下
 ×:平均一次粒径が、40nmを超えている。
◎: Average primary particle size is 1 nm or more and 20 nm or less :: Average primary particle size is more than 20 nm and 30 nm or less Δ: Average primary particle size is more than 30 nm and 40 nm or less ×: Average primary particle size is , 40 nm.
 〔光学フィルムの評価〕
 (ヘイズの評価)
 上記作製した各光学フィルムについて、室温にて、ヘイズメーター(日本電色工業社製、NDH2000)を用いて、ヘイズ(%)を測定し、下記の基準に従ってヘイズの評価を行った。
(Evaluation of optical film)
(Evaluation of haze)
The haze (%) of each of the optical films prepared above was measured at room temperature using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH2000), and the haze was evaluated according to the following criteria.
 ◎:ヘイズが、1.5%未満である
 ○:ヘイズが、1.5%以上、2.0%未満である
 △:ヘイズが、2.0%以上、3.0%未満である
 ×:ヘイズが、3.0%以上である。
◎: Haze is less than 1.5% :: Haze is 1.5% or more and less than 2.0% Δ: Haze is 2.0% or more and less than 3.0% ×: Haze is 3.0% or more.
 (遮熱性の評価(ΔTSERの評価))
 上記作製した各光学フィルムについて、サーモクロミック性の尺度である遮熱性(TSER)差(ΔTSER)を評価した。
(Evaluation of heat insulation (Evaluation of ΔTSER))
For each of the optical films produced above, the thermal barrier property (TSER) difference (ΔTSER), which is a measure of thermochromic properties, was evaluated.
 具体的には、分光光度計(積分球使用、株式会社日立製作所製、U-4000型)を用いて300~2500nmの波長領域において、2nmおきの光透過率及び光反射率を、各光学フィルムの温度が低温時(10℃)と、高温時(80℃)の条件下で測定した。 Specifically, using a spectrophotometer (using an integrating sphere, U-4000, manufactured by Hitachi, Ltd.), the light transmittance and light reflectance of every 2 nm in the wavelength region of 300 to 2500 nm are measured for each optical film. The temperature was measured at low temperature (10 ° C.) and high temperature (80 ° C.).
 次いで、JIS R 3106:1998に記載の方法に従い、日射反射率R(DS)と日射透過率T(DS)を求めた後、下記式(2)から算出される低温時と高温時の遮熱性能(TSER、%)を求め、次いで、式(3)に従ってΔTSER(%)を算出し、下記評価基準に従って遮熱性を評価した。 Next, the solar reflectance R (DS) and the solar transmittance T (DS) are determined according to the method described in JIS {R} 3106: 1998, and then the heat shield at low and high temperatures calculated from the following equation (2). The performance (TSER,%) was obtained, and then ΔTSER (%) was calculated according to the equation (3), and the heat shielding property was evaluated according to the following evaluation criteria.
 式(2)
   TSER(%)=((100-T(DS)-R(DS))×0.7143)+R(DS)
 式(3)
   ΔTSER(%)=TSER(高温)-TSER(低温)
 ○:ΔTSERが、13.0%以上である
 △:ΔTSERが、8.0%以上、13.0%未満である
 ×:ΔTSERが、8.0%未満である。
Equation (2)
TSER (%) = ((100−T (DS) −R (DS)) × 0.7143) + R (DS)
Equation (3)
ΔTSER (%) = TSER (high temperature)-TSER (low temperature)
:: ΔTSER is 13.0% or more Δ: ΔTSER is 8.0% or more and less than 13.0% X: ΔTSER is less than 8.0%.
 以上により得られた結果を、表IIに示す。 The results obtained above are shown in Table II.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表IIに記載の結果より明らかなように、水熱反応前に、バナジウム含有化合物を含むスラリー原料液に脱塩処理を施し、スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、かつ25℃における電気伝導率を10~1000mS/mの範囲内としたのち、水熱合成法により処理することにより、二酸化バナジウム含有粒子の平均一次粒径を1~30nmの範囲内、平均結晶子径を1~15nmの範囲内とすることができ、当該二酸化バナジウム含有粒子を適用した光学フィルムは、優れたサーモクロミック性(ΔTSER)と透明性(ヘイズ耐性)を両立させることができることを確認することができた。 As is clear from the results shown in Table II, before the hydrothermal reaction, the slurry raw material liquid containing the vanadium-containing compound was subjected to a desalting treatment, and the pH of the slurry raw material liquid at 25 ° C. was adjusted to 8.0 to 11.0. After the electric conductivity at 25 ° C. is in the range of 10 to 1000 mS / m, the particles are treated by a hydrothermal synthesis method so that the average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm. The optical film to which the vanadium dioxide-containing particles are applied can achieve both excellent thermochromic properties (ΔTSER) and transparency (haze resistance). I was able to confirm that I could.
 本発明の二酸化バナジウム含有粒子の製造方法により製造した二酸化バナジウム含有粒子は、平均粒径が小さく、低ヘイズで、サーモクロミック性に優れ、室内や車両内等の内部環境と外部環境との間で大きな熱交換が生じる箇所、例えば、建築用窓ガラスや車体用窓ガラス等においては、省エネルギー化と快適性の確保を両立することができる光学フィルム等に好適に利用できる。 The vanadium dioxide-containing particles produced by the method for producing vanadium dioxide-containing particles of the present invention have a small average particle size, a low haze, excellent thermochromic properties, and a property between an internal environment such as a room or a vehicle and an external environment. In places where large heat exchange occurs, for example, architectural window glass and vehicle body window glass, it can be suitably used as an optical film or the like that can achieve both energy saving and comfortableness.
 1 流通式反応装置
 2 イオン交換水容器
 3、6、11、18 流路(配管)
 4、7、12 ポンプ
 5 スラリー原料液容器
 8 冷却部
 9、10 タンク
 13、14、15 加熱媒体
 16 水熱反応部
 17 加熱部配管
 19 制御弁
 C 冷却媒体
 IN 加熱媒体の入口
 OUT 加熱媒体の出口
 L 加熱部配管のライン長
 MP 合流点
 TC 温度センサー
 50 限外濾過装置
 51 調整釜
 52 スラリー原料液
 53 配管
 54 循環ポンプ
 55 限外濾過部
 56 排出口
 57 補充用pH調整水ストック釜
 58 補充用pH調整水
 59 補充用pH調整水供給ライン
 60 電気伝導計
 61 pHメーター
 V1 排出量
 V2 補充用pH調整水の添加量
 A 平均結晶子径
 CL 結晶子
 D 粒子径
 P 二酸化バナジウム含有粒子
DESCRIPTION OF SYMBOLS 1 Flow-type reaction apparatus 2 Ion exchange water container 3, 6, 11, 18 Flow path (piping)
4, 7, 12 Pump 5 Slurry raw material liquid container 8 Cooling unit 9, 10 Tank 13, 14, 15 Heating medium 16 Hydrothermal reaction unit 17 Heating unit piping 19 Control valve C Cooling medium IN Heating medium inlet OUT Heating medium outlet L Line length of heating section piping MP Junction point TC Temperature sensor 50 Ultrafiltration device 51 Regulating pot 52 Slurry raw material liquid 53 Pipe 54 Circulation pump 55 Ultrafiltration section 56 Discharge port 57 Replenishing pH adjusting water stock pot 58 Refilling pH Adjustment water 59 Replenishment pH adjustment water supply line 60 Electrical conductivity meter 61 pH meter V1 Emission V2 Replenishment pH adjustment water addition amount A Average crystallite size CL Crystallite D Particle size P Vanadium dioxide-containing particles

Claims (4)

  1.  水熱反応部を有する流通式反応装置を用いた二酸化バナジウム含有粒子の製造方法であって、
     少なくとも下記の第1ステップ~第3ステップを有し:
     第1ステップ:少なくともバナジウム含有化合物、反応調整剤及び水を含有するスラリー原料液を調製するステップ
     第2ステップ:前記スラリー原料液に脱塩処理を施すステップ
     第3ステップ:前記脱塩処理を施したスラリー原料液と、超臨界又は亜臨界状態の水とを混合した反応液を用いる水熱反応法により、二酸化バナジウム含有粒子を製造するステップ
     上記第2ステップにおいて、前記スラリー原料液の25℃におけるpHを8.0~11.0の範囲内とし、
     25℃における電気伝導率を10~1000mS/mの範囲内に維持し、
     前記二酸化バナジウム含有粒子の平均一次粒径を1~30nmの範囲内とし、かつ、
     平均結晶子径を1~15nmの範囲内になるように調整して製造する
     ことを特徴とする二酸化バナジウム含有粒子の製造方法。
    A method for producing vanadium dioxide-containing particles using a flow reactor having a hydrothermal reaction section,
    It has at least the following first to third steps:
    First step: a step of preparing a slurry raw material liquid containing at least a vanadium-containing compound, a reaction modifier, and water Second step: a step of subjecting the slurry raw material liquid to a desalting treatment Third step: applying the desalting treatment A step of producing vanadium dioxide-containing particles by a hydrothermal reaction method using a reaction liquid obtained by mixing a slurry raw material liquid and water in a supercritical or subcritical state. In the second step, the pH of the slurry raw material liquid at 25 ° C. Within the range of 8.0 to 11.0,
    Maintaining the electrical conductivity at 25 ° C. within the range of 10 to 1000 mS / m;
    The average primary particle diameter of the vanadium dioxide-containing particles is in the range of 1 to 30 nm, and
    A method for producing vanadium dioxide-containing particles, wherein the particles are produced by adjusting the average crystallite diameter to fall within a range of 1 to 15 nm.
  2.  前記スラリー原料液から塩類を除去する脱塩処理が、限外濾過装置を用いて行うことを特徴とする請求項1に記載の二酸化バナジウム含有粒子の製造方法。 The method for producing vanadium dioxide-containing particles according to claim 1, wherein the desalting treatment for removing salts from the slurry raw material liquid is performed using an ultrafiltration device.
  3.  前記スラリー原料液から塩類を除去する脱塩処理が、液温30℃以下で行うことを特徴とする請求項1又は請求項2に記載の二酸化バナジウム含有粒子の製造方法。 3. The method for producing vanadium dioxide-containing particles according to claim 1, wherein the desalting treatment for removing salts from the slurry raw material liquid is performed at a liquid temperature of 30 ° C. or lower.
  4.  前記前記第3ステップにおける反応液を構成する水が、超臨界状態の水であることを特徴とする請求項1から請求項3までのいずれか一項に記載の二酸化バナジウム含有粒子の製造方法。 水 The method for producing vanadium dioxide-containing particles according to any one of claims 1 to 3, wherein water constituting the reaction solution in the third step is water in a supercritical state.
PCT/JP2019/030815 2018-08-31 2019-08-06 Method for producing vanadium dioxide-containing particles WO2020044981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020540202A JP7173150B2 (en) 2018-08-31 2019-08-06 Method for producing vanadium dioxide-containing particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162942 2018-08-31
JP2018162942 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044981A1 true WO2020044981A1 (en) 2020-03-05

Family

ID=69644279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030815 WO2020044981A1 (en) 2018-08-31 2019-08-06 Method for producing vanadium dioxide-containing particles

Country Status (2)

Country Link
JP (1) JP7173150B2 (en)
WO (1) WO2020044981A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032357A (en) * 2020-09-07 2022-03-15 중앙대학교 산학협력단 Method of preparing high purity vanadium dioxide based on hydrothermal syntheses and high purity vanadium dioxide prepared by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140252A (en) * 2010-12-28 2012-07-26 Taki Chem Co Ltd Metal oxide sol, and method for producing the same
WO2016158894A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, method for preparing dispersion liquid, dispersion liquid and optical film
JP2016191015A (en) * 2015-03-31 2016-11-10 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particle having thermochromic property
WO2017208892A1 (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Process for producing vanadium-dioxide-containing particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140252A (en) * 2010-12-28 2012-07-26 Taki Chem Co Ltd Metal oxide sol, and method for producing the same
WO2016158894A1 (en) * 2015-03-31 2016-10-06 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, method for preparing dispersion liquid, dispersion liquid and optical film
JP2016191015A (en) * 2015-03-31 2016-11-10 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particle having thermochromic property
WO2017208892A1 (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Process for producing vanadium-dioxide-containing particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032357A (en) * 2020-09-07 2022-03-15 중앙대학교 산학협력단 Method of preparing high purity vanadium dioxide based on hydrothermal syntheses and high purity vanadium dioxide prepared by the same
KR102410773B1 (en) 2020-09-07 2022-06-21 중앙대학교 산학협력단 Method of preparing high purity vanadium dioxide based on hydrothermal syntheses and high purity vanadium dioxide prepared by the same

Also Published As

Publication number Publication date
JP7173150B2 (en) 2022-11-16
JPWO2020044981A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP7001052B2 (en) Method for Producing Vanadium Dioxide-Containing Particles
WO2016158103A1 (en) Process for producing particles comprising vanadium dioxide
Chen et al. Synthesis of titanium dioxide (TiO2) nanomaterials
WO2016017611A1 (en) Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
WO2016052740A1 (en) Optical film and process for producing optical film
WO2017006699A1 (en) Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film
Riaz et al. Controlled nanostructuring of TiO 2 nanoparticles: a sol–gel approach
WO2020044981A1 (en) Method for producing vanadium dioxide-containing particles
WO2022007756A1 (en) Titanium dioxide material and preparation method therefor, dispersion improvement method, and application thereof
JP2018058734A (en) Thermochromic vanadium dioxide-containing core-shell particle and production process thereof, and thermochromic film and production process thereof
JP7088011B2 (en) Production method of vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
JPWO2016052496A1 (en) Optical film and optical film manufacturing method
Luan et al. Research on different preparation methods of new photocatalysts
WO2017212778A1 (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP6638570B2 (en) Method for producing thermochromic film
JP2017214466A (en) Core and shell type thermochromic particle, thermochromic film and manufacturing method of thermochromic particle
JP2019135272A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
Sangchay et al. Photochromic and Self-Cleaning Properties of TiO2–AgCl/TiO2–xCu Thin Film
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
WO2018110062A1 (en) Vanadium dioxide-containing particles, thermochromic film and vanadium dioxide-containing particle production method
JP2018087093A (en) Production method of vanadium dioxide-containing particle, preparation method of fluid dispersion, and fluid dispersion
WO2018105238A1 (en) Vanadium-dioxide-containing particles, thermochromic film, and method for producing vanadium-dioxide-containing particles
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
Zhang et al. Solvothermal synthesis of mesoporous TiO 2 microspheres with tailored pore size and specific surface area
JP6520698B2 (en) Method for producing vanadium dioxide-containing particles and method for producing vanadium dioxide-containing particle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855600

Country of ref document: EP

Kind code of ref document: A1