WO2017006699A1 - Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film - Google Patents

Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film Download PDF

Info

Publication number
WO2017006699A1
WO2017006699A1 PCT/JP2016/067282 JP2016067282W WO2017006699A1 WO 2017006699 A1 WO2017006699 A1 WO 2017006699A1 JP 2016067282 W JP2016067282 W JP 2016067282W WO 2017006699 A1 WO2017006699 A1 WO 2017006699A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
vanadium dioxide
water
containing particles
reaction
Prior art date
Application number
PCT/JP2016/067282
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼向 保彦
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017527144A priority Critical patent/JPWO2017006699A1/en
Publication of WO2017006699A1 publication Critical patent/WO2017006699A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to vanadium dioxide-containing particles having excellent thermochromic properties, and a dispersion and an optical film containing the same.
  • the present invention also relates to these production methods.
  • thermochromic materials are expected.
  • thermochromic material is a material whose optical properties such as transparency can be controlled by temperature. For example, when a thermochromic material is applied to a window glass of a building, it is possible to reflect infrared rays in summer when the temperature is high to block heat, and to transmit infrared rays in winter when the temperature is low. Become.
  • thermochromic material that are currently attracting the most attention is a material containing vanadium dioxide (VO 2 ). It is known that vanadium dioxide exhibits thermochromic properties (property of reversibly changing optical properties depending on temperature, also referred to as “thermochromic property”) during a phase transition near room temperature. Therefore, a material exhibiting an ambient temperature-dependent thermochromic characteristic can be obtained by utilizing this characteristic.
  • vanadium dioxide has several crystal phase polymorphs such as A phase, B phase, C phase and rutile crystal phase (hereinafter also referred to as “R phase”).
  • R phase rutile crystal phase
  • the crystal structure showing the thermochromic characteristics as described above at a relatively low temperature of 100 ° C. or lower is limited to the R phase.
  • the R phase has a monoclinic structure below the phase transition temperature (about 68 ° C.), and has high transmittance for visible light and infrared light.
  • the R phase has a tetragonal structure above the phase transition temperature, and exhibits a property of low infrared transmittance as compared with a monoclinic structure.
  • vanadium dioxide-containing particles When an optical film using such vanadium dioxide-containing particles is applied to a window glass or the like, transparency (having a small haze) is required, the vanadium dioxide-containing particles are not aggregated, and the particle diameter Is preferably nano-order (100 nm or less).
  • Japanese Patent Publication No. 2014-505651 discloses that the composition of a doping vanadium dioxide powder (V 1-x M x O 2 ) is such that the doping element is 0 ⁇ x ⁇ 0.5. It is disclosed that the size and shape of the image can be controlled. In addition, this publication discloses that, as a result, the size of crystal grains of the manufactured doped vanadium dioxide powder can be reduced and made uniform.
  • a reaction precursor treated so that a hydrothermal reaction can be performed more easily is transferred to a hydrothermal reaction autoclave to perform a hydrothermal reaction. Thereafter, a method for dry separation of the hydrothermal reaction product is disclosed.
  • the present inventors have found that the vanadium dioxide-containing particles obtained by the production method disclosed in JP-T-2014-505651 are not sufficiently uniform in particle size, and a part of them is large. It has been found that a particle size component is included, thereby having a wide particle size distribution. And the present inventors discovered that the transparency of the optical film using this vanadium dioxide containing particle
  • JP-A-2014-505651 requires that materials such as vanadium-containing compounds and compounds that react with vanadium-containing compounds used in the reaction be limited in order to obtain particles having a small average particle size. It was lacking in nature.
  • This invention is made
  • a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is treated with water in the presence of subcritical or supercritical water. having thereby thermal reaction method of vanadium dioxide (VO 2) containing particles.
  • VO 2 vanadium dioxide
  • Vanadium dioxide (VO 2 ) -containing particles having an average particle diameter (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30.
  • 1 is a microreactor type flow reactor
  • 2 and 5 are raw material liquid containers
  • 3, 6, and 11 are pipes
  • 4, 7, and 12 are pumps
  • 8 is a cooling pipe.
  • 9, 10 are tanks
  • 13, 14 and 15 are heating media
  • 16 is a microreactor section
  • TC is a temperature sensor.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the notation “(meth) acryl” in the specific names of the compounds represents “acryl” and “methacryl”, and “(meth) acrylate” represents “acrylate” and “methacrylate”.
  • the “acrylic resin” refers to a resin having an acrylic acid ester, a methacrylic acid ester or a derivative thereof as a constituent component of the (co) polymer.
  • the “acrylic resin” includes resins having other monomers as a constituent component of the copolymer in addition to the above monomers.
  • the method for producing vanadium dioxide (VO 2 ) -containing particles having thermochromic characteristics includes a raw material liquid containing a vanadium-containing compound and water, a raw material liquid containing a compound that reacts with the vanadium-containing compound, and water. And a hydrothermal reaction of the reaction liquid obtained by mixing the two in the presence of subcritical or supercritical water. According to the production method of the present embodiment, means for improving the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles is provided.
  • the present inventors presume a mechanism that can solve the above problem by the method for producing vanadium dioxide-containing particles according to an embodiment of the present invention as follows.
  • the size and shape of the doping vanadium dioxide powder is obtained by doping a predetermined element. It was indispensable to control, and lacked versatility.
  • a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing water and a compound that reacts with the vanadium-containing compound is subcritical.
  • the hydrothermal reaction is performed in the presence of water in a supercritical state.
  • the detailed mechanism is unknown, but the crystal growth of the precipitated vanadium dioxide microcrystals is suppressed.
  • the production method according to the present invention can sufficiently reduce the average particle size of the produced vanadium dioxide-containing particles, and can significantly reduce the abundance of components having a large particle size.
  • the manufactured vanadium dioxide-containing particles can achieve both a narrow particle size distribution.
  • Such vanadium dioxide-containing particles can have high thermochromic properties due to the large surface area obtained by reducing the particle size, and have an optical functional layer containing such vanadium dioxide-containing particles.
  • the optical film can obtain high transparency resulting from low visible light scattering due to small particle size and uniformity of particle size.
  • the present invention does not necessarily dope a predetermined doping element as in the technique disclosed in JP-T-2014-505651.
  • the mechanism of the present invention is essentially different from the technique of Japanese Patent Application Laid-Open No. 2014-505651 which controls the size and shape of the doped vanadium dioxide powder by doping a predetermined element. That is, the production method according to the present invention is not only characterized by controlling the particle size and particle size distribution by the raw material forming the vanadium dioxide-containing particles, but mainly by reducing the particle size by hydrothermal reaction conditions. This is because a narrow particle size distribution is achieved.
  • the manufacturing method according to the present invention is excellent in versatility, unlike the technique disclosed in JP-T-2014-505651.
  • vanadium dioxide (VO 2 ) -containing particles refers to “vanadium dioxide-containing particles of the present invention” or “VO 2 -containing particles of the present invention” or simply “vanadium dioxide-containing particles” or “VO 2 -containing particles”. Also called.
  • vanadium dioxide (VO 2 ) -containing particles having thermochromic properties means a transmittance difference ( ⁇ T) (%) under specific conditions used as an evaluation of thermochromic properties in Examples described later. ) Means vanadium dioxide-containing particles having a content of 20% or more.
  • a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is subcritical or supercritical.
  • the hydrothermal reaction in the presence of water is also referred to as a “hydrothermal reaction step”.
  • (A) Hydrothermal reaction step In this step, a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is subcritical. Alternatively, a hydrothermal reaction is performed in the presence of supercritical water. By this step, vanadium dioxide-containing particles are obtained.
  • the vanadium-containing compound (a raw material of vanadium dioxide-containing particles) is not particularly limited, vanadium pentoxide (V) (V 2 O 5), ammonium vanadate (V) (NH 4 VO 3), Vanadium Oxytrichloride (V) (VOCl 3 ), sodium vanadate (V) (NaVO 3 ), vanadyl oxalate (IV) (VOC 2 O 4 ), vanadium oxide sulfate (hereinafter also referred to as vanadyl sulfate) (IV) (VOSO 4 )
  • vanadium oxide sulfate hereinafter also referred to as vanadyl sulfate
  • Examples thereof include those obtained by dissolving divanadium tetroxide (IV) (V 2 O 4 ) or the like with an acid such as sulfuric acid.
  • said vanadium containing compound may be melt
  • a vanadium containing compound may be used individually by 1 type, or may mix and use 2 or more types. These compounds may be hydrated (hydrate).
  • the compound that reacts with the vanadium-containing compound is not particularly limited as long as it can produce vanadium dioxide-containing particles by hydrothermal reaction of the reaction solution, and examples thereof include alkalis and reducing agents.
  • the hydrothermal reaction is (A-1)
  • the vanadium-containing compound is a vanadium (IV) -containing compound, and the compound that reacts with the vanadium-containing compound is performed in a reaction solution containing at least one alkali (hereinafter, also referred to as method 1), or (A-2)
  • the vanadium-containing compound is a vanadium (V) -containing compound, and the compound that reacts with the vanadium-containing compound is carried out in a reaction solution containing a reducing agent (for example, hydrazine and hydrates thereof) ( Hereinafter, also referred to as method 2), Is preferred.
  • a reducing agent for example, hydrazine and hydrates thereof
  • the vanadium (IV) -containing compound (the raw material for the vanadium dioxide-containing particles) is not particularly limited, and can be appropriately selected from those described above.
  • vanadium oxide (IV) sulfate (VOSO 4 ) is preferable from the viewpoint that a by-product is not generated as much as possible after the hydrothermal reaction.
  • a vanadium (IV) containing compound may be used individually by 1 type, or may mix and use 2 or more types.
  • the initial concentration of the vanadium (IV) -containing compound contained in the reaction solution obtained by mixing each raw material solution is not particularly limited as long as the effect of the present invention is obtained, but is preferably 0.1 to 1000 mmol / L. is there. With such a concentration, the vanadium (IV) -containing compound is sufficiently dissolved or dispersed, the average particle size (particle size) of the obtained vanadium dioxide-containing particles is reduced, and the particle size (particle size) distribution is narrow ( By lowering the polydispersity index), the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be further increased.
  • the initial concentration of the vanadium (IV) compound contained in the reaction solution is the average particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles, and the transparency of the optical film containing the vanadium dioxide-containing particles. In view of the above, it is more preferably 20 to 600 mmol / L, still more preferably 50 to 400 mmol / L.
  • said "initial concentration” is the amount of vanadium (IV) -containing compounds in 1 L of the reaction solution before hydrothermal reaction (the total amount when two or more vanadium (IV) -containing compounds are included). is there.
  • the compound that reacts with the vanadium-containing compound that can be used together with the vanadium (IV) -containing compound is preferably an alkali. That is, the hydrothermal reaction is preferably performed in a reaction solution in which the vanadium-containing compound is a vanadium (IV) -containing compound and the compound that reacts with the vanadium-containing compound contains at least one alkali. Furthermore, it is more preferable that the compound that reacts with the vanadium-containing compound consists only of alkali.
  • an alkali means a substance that generates hydroxide ions (OH ⁇ ) in an aqueous solution, and is not only a compound that is ionized to generate hydroxide ions, but also a compound itself. Are not ionized to produce hydroxide ions, but those that eventually produce hydroxide ions are also included.
  • alkali examples include, but are not limited to, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, and potassium bicarbonate.
  • the said alkali can be used individually by 1 type or in combination of 2 or more types.
  • the alkali is preferably ammonia, sodium hydroxide, or potassium hydroxide, more preferably ammonia or sodium hydroxide, and even more preferably ammonia.
  • the amount of alkali in the raw material liquid containing alkali and water is not particularly limited, but is preferably 0.01 to 10 mol / L, more preferably 0.1 to 5 mol / L, for example, 0 More preferably, it is 3 to 3 mol / L.
  • the amount of alkali in the reaction liquid obtained by mixing each raw material liquid is not particularly limited, but includes, for example, a raw material liquid containing a vanadium-containing compound and water, a compound that reacts with the vanadium-containing compound, and water. It is preferable to add an amount such that the pH of the reaction liquid obtained by mixing the raw material liquid is 6.0 to 8.0, and it is more preferable to add an amount that is 6.5 to 7.5. It is more preferable to add an amount of 6.8 to 7.2, and it is particularly preferable to add an amount of 6.9 to 7.1.
  • the vanadium (V) -containing compound (the raw material for the vanadium dioxide-containing particles) is not particularly limited, and can be appropriately selected from those described above. Among these, from the viewpoint of not generating by-products as much as possible after the hydrothermal reaction, divanadium pentoxide, ammonium vanadate (NH 4 VO 3 ), or vanadium trichloride oxide is preferable. From the same viewpoint, the vanadium (V) -containing compound is more preferably divanadium pentoxide and ammonium vanadate, and particularly preferably ammonium vanadate (NH 4 VO 3 ). In addition, the said vanadium (V) containing compound may be used individually by 1 type, or may mix and use 2 or more types.
  • the initial concentration of the vanadium (V) -containing compound contained in the reaction solution is not particularly limited as long as the objective effect of the present invention can be obtained, but is preferably 0.1 to 1000 mmol / L. At such a concentration, the reducing agent acts efficiently, and the particle size of the resulting vanadium dioxide-containing particles is reduced, and the particle size distribution is narrowed (low polydispersity index), and thermochromic properties are further improved. Can be increased.
  • the initial concentration of the vanadium (V) compound contained in the reaction solution is such as the particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles.
  • said "initial concentration" is the amount of vanadium (V) containing compounds in 1 L of reaction liquid before the hydrothermal reaction (the total amount when two or more vanadium (V) containing compounds are included). is there.
  • the compound which reacts with the vanadium containing compound which can be used with a vanadium (V) containing compound is a reducing agent.
  • the reducing agent include oxalic acid and its hydrate, hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .H 2 O), water-soluble vitamins such as ascorbic acid, and derivatives thereof, Examples include sodium erythorbate, BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), antioxidants such as propyl gallate and sodium sulfite, and reducing sugars such as glucose, fructose, glyceraldehyde, lactose and maltose.
  • the said reducing agent can be used individually by 1 type or in combination of 2 or more types.
  • hydrazine or a hydrate thereof is preferable as the reducing agent. That is, the hydrothermal reaction is preferably performed in a reaction solution in which the vanadium-containing compound is a vanadium (V) -containing compound and the compound that reacts with the vanadium-containing compound contains at least one of hydrazine and its hydrate. Furthermore, the compound that reacts with the vanadium-containing compound is preferably only one selected from hydrazine and hydrates thereof, and more preferably only hydrazine hydrate.
  • the amount of the reducing agent in the reaction liquid obtained by mixing each raw material liquid is added to the vanadium (V) -containing compound in an equimolar amount or more in consideration of the pH during the reaction and the amount decomposed during the reaction. It is preferable to do. For example, it is more preferably about 1.01-1.50 mol, and further preferably 1.05-1.30 mol with respect to 1 mol of the vanadium (V) -containing compound.
  • vanadium pentoxide (V) V 2 O 5
  • the vanadium-containing compound By adding hydrogen peroxide, the vanadium-containing compound can be uniformly dissolved.
  • the vanadium-containing compound may be pretreated in the presence of hydrogen peroxide and a reducing agent before the hydrothermal reaction.
  • hydrogen peroxide and a reducing agent are sequentially added, for example, at 20 to 40 ° C., with stirring as necessary, for 0.5 to 10 The reaction can be performed for about an hour.
  • the pH of the reaction liquid obtained by mixing the raw material liquids varies depending on the vanadium (V) -containing compound used, and is preferably adjusted by the amount of reducing agent added.
  • the reducing agent is preferably added in an amount such that the pH is 8.0 to 11.0. More preferably, the amount is from 0.0 to 10.0.
  • the reducing agent is preferably added in such an amount that the pH is 3.5 to 5.5. It is more preferable to add an amount such that becomes 4.0 to 5.0.
  • the water in the raw material liquid containing the vanadium-containing compound and water, and the water in the raw material liquid containing the compound reacting with the vanadium-containing compound and the water are used as a dispersion medium or solvent for the vanadium-containing compound and the compound reacting with the vanadium-containing compound, respectively. It has a function.
  • the reaction liquid obtained by mixing each raw material liquid also contains water as a solvent or a dispersion medium.
  • Water contained in these raw material liquids preferably has few impurities, and is not particularly limited.
  • the water contained in the reaction solution is preferably one having few impurities, and is not particularly limited.
  • distilled water, ion exchange water, pure water, ultrapure water, nitrogen (N 2 ) nanobubble treatment It is preferable to use water or the like.
  • the water in the reaction solution is more preferably nitrogen (N 2 ) nanobubble-treated water.
  • nitrogen (N 2 ) nanobubble-treated water (N 2 nanobubble-treated water) is prepared by mixing (bubbling) nitrogen in water.
  • the use of water treated with nitrogen (N 2 ) nanobubbles can reduce the dissolved oxygen concentration of the water, so that the obtained vanadium dioxide-containing particles can be suppressed / prevented from being oxidized again.
  • the dissolved oxygen concentration of the water treated with nitrogen (N 2 ) nanobubbles is not particularly limited, but is preferably 2 mg / L or less, more preferably 1 mg / L or less (lower limit: 0 mg / L).
  • the water contained in the reaction liquid is water that has been subjected to nitrogen (N 2 ) nanobubble treatment
  • water contained in the raw material liquid containing the vanadium-containing compound and water, or a compound that reacts with the vanadium-containing compound and water are included.
  • at least one of the water contained in the raw material liquid is nitrogen (N 2 ) nanobubble-treated water, so that the water contained in the reaction solution is nitrogen (N 2 ) nanobubble-treated water.
  • condition that the water contained in the reaction solution is nitrogen (N 2 ) nanobubble-treated water is obtained by mixing the raw material solution containing the vanadium-containing compound and water, and the raw material solution containing the vanadium-containing compound and water.
  • it may be achieved by performing nitrogen (N 2 ) nanobubble treatment on water in the reaction solution.
  • the reaction solution further includes a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide-containing particles.
  • the method for adding a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide-containing particles (phase transition modifier) to the reaction solution is not particularly limited, and a known method can be used.
  • a method for adding to the reaction solution it is preferable to add the reaction solution by adding it to a raw material solution containing a vanadium-containing compound and water.
  • the method of adding directly to the reaction liquid before a hydrothermal reaction can also be used.
  • the phase transition regulator is not particularly limited, but tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus, etc. Substances containing elements other than vanadium can be used.
  • the reaction liquid contains the phase change regulator, the phase transition temperature of the obtained vanadium dioxide-containing particles can be lowered.
  • the addition amount of the phase transition modifier is not particularly limited, but the element ratio (atomic ratio) of vanadium contained in the vanadium-containing compound to other elements contained in the phase transition modifier is 50.0: 50.
  • phase transition regulator is not particularly limited, and examples thereof include oxides and ammonium salts of the other elements.
  • phase Examples of transition modulators may include, for example, ammonium tungstate para pentahydrate ((NH 4) 10 W 12 O 41 ⁇ 5H 2 O) and the like.
  • reaction solution is hydrothermally reacted to form vanadium dioxide-containing particles.
  • the “hydrothermal reaction” means a mineral synthesis or alteration reaction, that is, a chemical reaction performed in the presence of high-temperature water, particularly high-temperature and high-pressure water.
  • the hydrothermal reaction in the present invention is carried out in a state where the temperature is 150 ° C. or higher and the pressure is higher than the saturated vapor pressure, that is, water is present in a subcritical or supercritical state.
  • the average particle size (D) of the vanadium dioxide-containing particles formed by the hydrothermal reaction, and the polydispersity index (PDI) representing the particle size distribution The value can be reduced, and the thermochromic property of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be improved.
  • Hydrothermal reaction conditions are not particularly limited as long as the temperature at which water is present in a subcritical or supercritical state is 150 ° C. or higher and the pressure is higher than the saturated vapor pressure, and other conditions (for example, it can be appropriately set according to the amount of reactant, reaction temperature, reaction pressure, reaction time, and the like.
  • the saturated water vapor pressures at 150 ° C., 250 ° C., 270 ° C., and 350 ° C. are 0.48 MPa, 3.98 MPa, 5.51 MPa, and 16.54 MPa, respectively.
  • the temperature is 374.15 ° C. or higher and the pressure is 22.12 MPa or higher, the water is in a supercritical state.
  • the hydrothermal reaction conditions are not particularly limited as long as the temperature and pressure are 150 ° C. or higher as described above and the pressure is higher than the saturated vapor pressure, but the temperature is 270 ° C. to 450 ° C. More preferably, the temperature is 10 ° C., the pressure is 10 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature.
  • the temperature is 270 ° C. or higher, the average particle diameter (D) and the polydispersity index (PDI) can be further reduced.
  • an average particle diameter (D) will have a more suitable magnitude
  • the temperature is 350 to 450 ° C.
  • the pressure is 20 to 40 MPa
  • the pressure is higher than the saturated vapor pressure at the set temperature
  • the temperature is 380 to 400 ° C. It is particularly preferable to conduct the hydrothermal reaction in the presence of supercritical water at a pressure of 25 to 30 MPa.
  • the hydrothermal reaction time is not particularly limited, but is preferably 0.01 seconds to 48 hours. Under these conditions, vanadium dioxide-containing particles having a narrow particle size distribution and a small particle size can be produced more efficiently. Moreover, possibility that the crystallinity of vanadium dioxide containing particle
  • the hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions.
  • the hydrothermal reaction may be performed while stirring. By stirring, vanadium dioxide-containing particles can be more uniformly prepared. Further, the hydrothermal reaction may be carried out in a batch manner or a continuous manner (circulation manner).
  • the hydrothermal reaction can be carried out using an apparatus such as a high-pressure reaction decomposition vessel, an autoclave, a test tube type reaction vessel, a microreactor type flow reactor, or the like.
  • microreactor type flow reactor it is more preferable to use a microreactor type flow reactor.
  • a preferred embodiment of the present invention is a production method in which the hydrothermal reaction is performed using a microreactor type flow reactor.
  • the microreactor type flow reactor is a flow reactor equipped with a microreactor.
  • the microreactor is intended to be a mixing and reactor that utilizes a small space to realize high-speed mixing and reaction.
  • the hydrothermal reaction is carried out under high pressure in the presence of subcritical or supercritical water, so that the average particle size (D) of the vanadium dioxide-containing particles and the polydispersity index (PDI)
  • D average particle size of the vanadium dioxide-containing particles
  • PDI polydispersity index
  • the value can be made extremely small, and particularly excellent thermochromic properties of vanadium dioxide-containing particles and transparency of optical films containing vanadium dioxide-containing particles can be achieved.
  • the hydrothermal reaction is carried out in the presence of subcritical or supercritical water under high pressure, so that the liquid mixing and reaction can be completed in a very short time, and the precipitated vanadium dioxide microcrystals are formed. It is presumed that sufficient time for large crystal growth is not given.
  • the hydrothermal reaction time is preferably 0.01 seconds to 10 seconds.
  • vanadium dioxide-containing particles can be more reliably formed.
  • the polydispersity index (PDI) tends to be smaller.
  • the time is more preferably 0.1 to 5 seconds.
  • FIG. 1 shows a specific structural example of a microreactor type flow reactor.
  • FIG. 1 is a schematic view showing a microreactor type flow reactor according to a preferred embodiment of the present invention.
  • a microreactor type flow reactor 1 includes a raw material liquid container (tank) 2 and a raw material liquid container (tank) 5 for containing a raw material liquid, and a part including a microreactor having a heating medium 14 that performs a hydrothermal reaction.
  • the microreactor section 16 the tank 9 for containing the reaction solution after the hydrothermal reaction, the raw material liquid container 2 and the raw material liquid container 5, and the flow paths (piping) 3 and 6, respectively connecting the tank 9,
  • a pump 4 for circulating the raw material liquid, the reaction liquid and the reaction liquid after the hydrothermal reaction from the raw material liquid container 2 to the tank 9 via the pipe 3, and the raw material liquid via the pipe 6 from the raw material liquid container 5 to the tank 9;
  • a pump 7 is provided for circulating the reaction solution and the reaction solution after the hydrothermal reaction.
  • the microreactor type flow reactor 1 may include a cooling pipe 8 for further cooling the reaction liquid after the hydrothermal reaction, as shown in FIG.
  • a cooling pipe 8 for further cooling the reaction liquid after the hydrothermal reaction, as shown in FIG.
  • it is mixed with the surface modifier, the pH adjuster or the reaction solution after the hydrothermal reaction to be cooled by being added to the reaction solution after the hydrothermal reaction.
  • the tank 10 for containing the cooling medium (for example, water), the surface modifier, the pH adjuster, or the pump 12 for circulating the cooling medium through the pipe 11 may be further included.
  • the microreactor type distribution device 1 may further include heating media 13 and 15 as shown in FIG.
  • the material of the microreactor section 16 through which the raw material liquid, the reaction liquid or the reaction liquid after the hydrothermal reaction flows and the flow paths such as the pipes 3, 6, 11 are not particularly limited, but stainless steel, aluminum, iron, Hastelloy and the like can be mentioned.
  • the length of the flow path is not particularly limited, but is preferably 50 to 10,000 mm, more preferably 100 to 1,000 mm.
  • the gap (inner diameter in the case of piping) of the flow path is not particularly limited, but is preferably 0.001 to 10 mm, more preferably 0.005 to 2 mm. With such a material and shape, the hydrothermal reaction can be effectively carried out at a predetermined speed.
  • the pipes 3, 6 and 11 preferably have the above material, length and inner diameter, but may be the same or different.
  • the speed (circulation speed) at which the reaction liquid passes through (flows through) the microreactor section is not particularly limited, but is preferably 0.01 to 10 mL / second, more preferably 0.1 to 5 mL / second. is there. With such a distribution speed, the hydrothermal reaction can be effectively carried out under predetermined conditions.
  • the reaction liquid after the hydrothermal reaction obtained by the (a) hydrothermal reaction step is replaced with a dispersion medium or a solvent by filtration (for example, ultrafiltration) or centrifugal separation, and the vanadium dioxide-containing particles are exchanged with water or You may wash
  • the obtained vanadium dioxide-containing particles may be dried by any means.
  • the aggregation of vanadium dioxide-containing particles is effectively suppressed / prevented, the size (particle diameter) of vanadium dioxide-containing particles is reduced, the particle size distribution is narrowed, and vanadium dioxide is contained.
  • the dispersion stability and storage stability of the particles can be further improved. Therefore, the haze of the vanadium dioxide-containing particles can be reduced more effectively, and the thermochromic properties can be improved more effectively.
  • examples of the surface modifier include organic silicon compounds, organic titanium compounds, organic aluminum compounds, organic zirconia compounds, surfactants, silicone oils, and the like.
  • the number of reactive groups in the surface modifier is not particularly limited, but is preferably 1 or 2.
  • organosilicon compound used as a surface modifier, for example, hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane (tetraethyl orthosilicate), trimethylsilyl chloride, methyl Triethoxysilane, dimethyldiethoxysilane, decyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltri Ethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, - g
  • SZ6187 made by Toray Dow Silicone Co., Ltd.
  • an organic silicate compound having a low molecular weight and high durability more preferably hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride. More preferably, silane is used.
  • organic titanium compound examples include tetrabutyl titanate, tetraoctyl titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, bis (dioctyl pyrophosphate) oxy Acetate titanate, etc., and chelate compounds such as titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate, titanium phosphate compound, titanium octylene glycolate, titanium lactate ammonium salt, titanium lactate, titanium triethanolaminate, etc.
  • Examples of commercially available products include Prenact (registered trademark) TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.), Preneact (registered trademark) TTS44 (manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like.
  • organoaluminum compound examples include aluminum isopropoxide, aluminum tert-butoxide and the like.
  • organic zirconia compound examples include normal propyl zirconate, normal butyl zirconate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate and the like.
  • the surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • hydrophobic group of the surfactant examples include an alkyl group, a silyl group having an alkyl group, and a fluoroalkyl group.
  • the alkyl group may have an aromatic ring as a substituent.
  • the surfactant only needs to have at least one hydrophilic group and one hydrophobic group as described above in the same molecule, and may have two or more groups.
  • myristyl diethanolamine 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2-hydroxytetra Decylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8 to 18 carbon atoms) benzyldimethylammonium chloride, ethylenebisalkyl (C8-18) Amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, perfluoroalkenyl, perf Oroarukiru compounds.
  • silicone oil examples include straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carrubinol-modified silicone oil, and methacryl-modified. Silicone oil, mercapto modified silicone oil, heterogeneous functional group modified silicone oil, polyether modified silicone oil, methylstyryl modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, higher fatty acid-containing modified silicone oil and fluorine modified silicone And modified silicone oils.
  • straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil
  • amino-modified silicone oil amino-modified silicone oil
  • epoxy-modified silicone oil epoxy-modified silicone oil
  • carboxyl-modified silicone oil carboxyl-modified silicone oil
  • carrubinol-modified silicone oil examples include methacryl-modified.
  • silicone oil examples include straight silicone oil such as dimethyl silicone
  • the surface modifier is appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water or the like and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
  • the number of carbon atoms in the organic functional group introduced by the surface modifier is preferably 1-6.
  • durability can be improved.
  • the solution containing the surface modifier may be adjusted to an appropriate pH value (for example, 2 to 12) using a pH adjuster.
  • limit especially as a pH adjuster The thing similar to the below-mentioned pH adjuster can be used.
  • the addition amount of the surface modifier in the case of using the surface modifier is not particularly limited, but is preferably 0.1 to 100% by mass with respect to the mass of the vanadium dioxide-containing particles obtained by the hydrothermal reaction.
  • the content is more preferably 1 to 10% by mass, and further preferably 1 to 5% by mass.
  • the addition of the surface modifier is preferably started immediately after the hydrothermal reaction (immediately after the end of the reaction) from the viewpoint of modifying the particle surface. Specifically, the addition is preferably performed within 10 seconds from the end of the reaction, and more preferably within 5 seconds.
  • the method for adding the surface modifier is not particularly limited, and a known method can be used.
  • a surface modifier or a solution containing the surface modifier
  • a surface modifier is supplied from the tank 10 to the pump 12 with respect to the reaction liquid immediately after the hydrothermal reaction. Can be mixed by flowing through the pipe 11.
  • the speed at which the solution containing the surface modifier passes (circulates) through the pipe is not particularly limited, but is preferably 0.01 to 10 mL / second, more preferably 0.1 to 5 mL / second.
  • the surface modifier and the vanadium dioxide-containing particles are sufficiently brought into contact with each other, and since the ratio of the organic portion is small, the effect of the surface modifier (inhibition of particle aggregation) is maintained while ensuring durability. Effect, dispersion stability and storage stability) can be exhibited sufficiently effectively.
  • the mixing position of the reaction solution after the hydrothermal reaction and the surface modifier (the installation position of the pipe 11) is not particularly limited, but in order to start adding the surface modifier immediately after the hydrothermal reaction, It is preferable to arrange it immediately after. Further, when the cooling pipe 8 is provided after the microreactor section 16 as in the microreactor type flow reactor 1, it is preferable to arrange the cooling pipe 8 immediately after the microreactor section 16 and before the cooling pipe 8.
  • the addition of the surface modifier immediately after the hydrothermal reaction that is, the addition of the surface modifier performed before the (b) cooling step described later is included in the (a) hydrothermal reaction step. Shall be handled.
  • a pH adjuster may be further added after the hydrothermal reaction.
  • the pH adjuster is not particularly limited, but for example, an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia or the like is used. it can.
  • an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia or the like is used. it can.
  • the pH of the reaction solution after the hydrothermal reaction is, for example, 3 It is preferably from 0.0 to 9.0, more preferably from 4.0 to 7.0. From this, it is preferable that the pH of the reaction liquid after adding the pH adjuster after the hydrothermal reaction is within the above range.
  • the pH adjusting agent may be the same as or different from the alkali and reducing agent used as the compound that reacts with the vanadium-containing compound in the hydrothermal reaction.
  • the pH adjusting agent is appropriately diluted with methanol, ethanol, water or the like and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
  • the method for adding the pH adjuster is not particularly limited, and a known method can be used.
  • a pH adjusting agent or a solution containing the pH adjusting agent
  • a solution containing the pH adjusting agent is supplied from the tank 10 to the pump 12 with respect to the reaction solution immediately after the hydrothermal reaction. Can be mixed by flowing through the pipe 11.
  • the mixing position of the reaction solution after the hydrothermal reaction and the pH adjusting agent (installation position of the pipe 11) is not particularly limited, but in order to start the addition of the surface modifier after the hydrothermal reaction, the microreactor section 16 It is preferable to arrange. Further, in the case of having the cooling pipe 8 after the microreactor section 16 as in the microreactor type flow reactor 1, it may be arranged after the microreactor section 16 and before the cooling pipe 8, It may be arranged after the cooling pipe 8 and before the tank 9.
  • the production method according to one embodiment of the present invention includes a reaction solution after the hydrothermal reaction (containing vanadium dioxide obtained in the above (a) hydrothermal reaction step). It is preferable to further have a cooling step for cooling the dispersion liquid containing particles).
  • the cooling step it is preferable to start cooling the reaction liquid after the hydrothermal reaction within 1 minute after the hydrothermal reaction is performed for a predetermined time (at the end of the reaction), but the entire reaction liquid is cooled within this time. If this is difficult, the reaction solution may be cooled sequentially by a predetermined amount while maintaining the reaction temperature at the reaction temperature with a wide reaction time.
  • the cooling rate can be adjusted as appropriate.
  • the method for cooling the reaction solution after the hydrothermal reaction is not particularly limited, and a known method can be applied in the same manner or appropriately modified.
  • a cooling method for example, a reaction solution after hydrothermal reaction is immersed in a cooling medium while stirring, if necessary, and a reaction liquid after hydrothermal reaction is mixed with a cooling medium (especially water).
  • a gaseous cooling medium for example, liquid nitrogen
  • the method of mixing the reaction liquid after the hydrothermal reaction and the cooling medium is preferable because the cooling rate can be easily controlled.
  • at least the cooling is preferably performed in the microreactor type flow reactor using a cooling pipe connected to the microreactor unit directly or via other components.
  • cooling method using a cooling pipe connected to the microreactor unit directly or via other components will be described.
  • the cooling method which can be used for this invention is not limited to the following method.
  • the reaction liquid after the hydrothermal reaction is cooled by passing (circulating) the flow path of the microreactor type flow reactor.
  • cooling is performed by passing (circulating) the flow path after the microreactor section 16.
  • the microreactor type flow reactor 1 may further include a cooling pipe 8 for further cooling the reaction liquid after the hydrothermal reaction, as shown in FIG.
  • the necessary equipment such as the tank 10 is circulated as described above. It may be a method used for the purpose. At this time, the equipment used for the cooling method may further include a pump 12 for circulating the cooling medium through the pipe 11.
  • cooling medium a cooling medium having a pH adjusting effect obtained by adding a pH adjusting agent may be used.
  • the mixing ratio of the cooling medium with the reaction liquid after the hydrothermal reaction is not particularly limited as long as a desired cooling rate can be achieved.
  • the mixing ratio can be controlled by setting the flow rates of the reaction solution and the cooling medium after the hydrothermal reaction so as to have the above ratio.
  • the temperature of the cooling medium is not particularly limited, but is preferably higher than the phase transition temperature (about 68 ° C.) of vanadium dioxide, and more preferably 70 to 95 ° C.
  • the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is maintained at 70 to 95 ° C. for 5 minutes or longer after the reaction solution after the hydrothermal reaction is mixed with water. More preferably.
  • the purity of the desired rutile-type crystal phase (R phase) vanadium dioxide can be further improved.
  • the upper limit of the time for maintaining the temperature of the mixture of the reaction liquid immediately after the hydrothermal reaction and water is not particularly limited, but it is sufficient if it is 10 minutes or less after mixing the reactant immediately after the hydrothermal reaction with water. It is.
  • the mixture of the reaction liquid after the hydrothermal reaction and the cooling medium is not particularly limited, but the pH is more preferably 4 to 7.
  • the pH is more preferably 4 to 7.
  • grain formation can be improved. Therefore, the purity of vanadium dioxide of the desired rutile type crystal phase (R phase) can be further improved, and the thermochromic properties of the vanadium dioxide-containing particles can be more effectively improved.
  • the means for achieving such a pH value is not particularly limited, and may be achieved by adding the aforementioned pH adjuster to the reaction solution after the hydrothermal reaction before the cooling step. It may be achieved by using a cooling medium mixed with a modifier.
  • the mixing position of the reaction liquid after the hydrothermal reaction and the cooling medium is not particularly limited, but considering the cooling efficiency of the reaction liquid after the hydrothermal reaction, etc.
  • the pipe 11 is preferably connected to the pipe 3 at a distance of 10 to 500 mm from the outlet of the pipe 3 on the tank 9 side.
  • the cooled reaction liquid (cooling liquid) after the hydrothermal reaction is replaced with a dispersion medium or a solvent by filtration (for example, ultrafiltration) or centrifugal separation, and the vanadium dioxide-containing particles are replaced with water or alcohol (for example, ethanol). ) Or the like.
  • the obtained vanadium dioxide-containing particles may be dried by any means.
  • Vanadium dioxide-containing particles Another embodiment of the present invention is vanadium dioxide (VO 2 ) -containing particles having an average particle diameter (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30.
  • PDI polydispersity index
  • the manufacturing method according to an aspect of the present invention provides vanadium dioxide-containing particles having excellent thermochromic properties of vanadium dioxide (VO 2 ) -containing particles and transparency of an optical film including vanadium dioxide-containing particles. Is preferably manufactured by the manufacturing method according to one aspect of the present invention.
  • the vanadium dioxide-containing particles according to an embodiment of the present invention have a small particle size and a narrow particle size distribution.
  • the average particle diameter (D) of the vanadium dioxide-containing particles is not particularly limited, but is preferably 60 nm or less, more preferably 40 nm or less, further preferably 35 nm or less, and 25 nm or less. More preferably, it is particularly preferably 15 nm or less, particularly preferably 10 nm or less, and most preferably 8 nm or less.
  • the lower limit of the average particle diameter (D) (nm) of the vanadium dioxide-containing particles is not particularly limited, but is preferably 2 nm or more.
  • the particle diameter of the vanadium dioxide-containing particles can be measured by an electron microscope observation or a particle diameter measurement method based on a dynamic light scattering method.
  • the fluid is analyzed by the dynamic light scattering (Dynamic Light Scattering, DLS) method using a dynamic light scattering analyzer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). Measure the mechanical diameter.
  • DLS Dynamic Light Scattering
  • the particle size distribution of the vanadium dioxide-containing particles is not particularly limited, but when the polydispersity index (PDI) is used as an index, the polydispersity index (PDI) is preferably less than 0.30. It is more preferably from 01 to 0.25, further preferably from 0.01 to 0.15, particularly preferably from 0.01 to 0.10, and preferably from 0.01 to 0.08. Is most preferred.
  • the vanadium dioxide-containing particles having a particle size distribution exhibiting such a polydispersity index (PDI) can effectively improve the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles.
  • polydispersity index (PDI) indicating the particle size distribution of vanadium dioxide-containing particles adopts a value measured by a method described in Examples described later.
  • Another embodiment of the present invention includes a step of producing vanadium dioxide-containing particles by the production method according to one embodiment of the present invention, and a step of dispersing the vanadium dioxide-containing particles in a dispersion medium. It is a manufacturing method of a liquid. Yet another embodiment of the present invention is a dispersion containing vanadium dioxide-containing particles according to an embodiment of the present invention.
  • the vanadium dioxide-containing particles according to the present invention have a small particle size and a narrow particle size distribution (uniform particle size), by applying a dispersion containing such particles, the thermochromic properties are improved, The effect of haze can be reduced. For this reason, a highly transparent film of an optical film containing vanadium dioxide-containing particles can be provided.
  • reaction liquid after the hydrothermal reaction step or the cooling liquid (reaction liquid) after the cooling process is used as it is, or the reaction liquid or cooling liquid (reaction liquid) after the hydrothermal reaction step is used as water or alcohol.
  • Etc. may be added for dilution, or the dispersion medium of the reaction liquid or cooling liquid (reaction liquid) after the hydrothermal reaction step may be replaced with water or alcohol.
  • the method for dispersing the vanadium dioxide-containing particles is not particularly limited, and for example, ultrasonic waves may be used.
  • the dispersion medium of the dispersion may be composed only of water.
  • an organic solvent of about 0.1 to 10% by mass (in the dispersion), for example, methanol, ethanol, isopropanol, butanol And alcohols such as acetone, ketones such as acetone, and the like.
  • a phosphate buffer, a phthalate buffer, etc. can also be used as a dispersion medium.
  • the dispersion may contain an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phthalic acid, ammonium hydroxide, ammonia, etc., and may be adjusted to a desired pH.
  • an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phthalic acid, ammonium hydroxide, ammonia, etc.
  • the pH of the dispersion is preferably 4-7.
  • the concentration of the vanadium dioxide-containing particles in the dispersion is preferably 0.01 to 40% by mass, and 0.5 to 40% by mass with respect to the total mass of the dispersion. More preferably, it is 1 to 30% by mass.
  • an optical film having an optical functional layer containing the vanadium dioxide particles and a resin can be manufactured.
  • a method for producing such an optical film a process for producing vanadium dioxide-containing particles by a production method according to one embodiment of the present invention, and forming a resin composition containing the vanadium dioxide-containing particles and a resin are formed. It is preferable that it is a manufacturing method of the optical film which has the process of forming an optical function layer by this.
  • a resin, vanadium dioxide-containing particles, and a dispersion medium after preparing a coating liquid containing a step of producing vanadium dioxide-containing particles by a production method according to one aspect of the present invention, a resin, vanadium dioxide-containing particles, and a dispersion medium. And a step of forming an optical functional layer by applying a coating liquid on a transparent substrate and drying it, and a method for producing an optical film comprising a transparent substrate and an optical functional layer.
  • Another embodiment of the present invention includes a transparent substrate and an optical functional layer formed on the transparent substrate, and the optical functional layer contains the vanadium dioxide-containing particles according to one embodiment of the present invention. It is an optical film.
  • the transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. From the viewpoint of suitability, it is preferably a transparent substrate.
  • transparent in the transparent substrate in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80%. That's it.
  • the thickness of the transparent substrate according to one embodiment of the present invention is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. is there. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the curved surface of the glass when bonded to the glass substrate when making laminated glass Follow-up performance is further improved.
  • the transparent substrate according to an embodiment of the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the infrared reflective layer.
  • the content is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
  • the transparent substrate applicable to the optical film according to an embodiment of the present invention is not particularly limited as long as it is transparent, but various transparent resin films are preferably used.
  • a film for example, polyethylene, polypropylene, etc.
  • a polyester film for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride a triacetyl cellulose film, etc.
  • a triacetyl cellulose film preferably a polyester film or a triacetyl cellulose film. More preferably, it is a polyester film.
  • the polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1
  • polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyethylene terephthalate, polyethylene naphthalate, polyesters containing these as main constituents, copolymer polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more of these polyesters A polyester having a mixture as a main constituent is preferred.
  • the transparent resin film is particularly preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a stretched film is more preferable.
  • particles may be contained within a range that does not impair transparency in order to facilitate handling.
  • particles that can be used for the transparent resin film include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide.
  • organic particles such as crosslinked polymer particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a raw material resin (for example, polyester), a method of adding particles directly to an extruder, and the like.
  • additives may be added in addition to the above particles as necessary.
  • additives include stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, ultraviolet absorbers and the like.
  • a transparent resin film that is a transparent substrate can be produced by a conventionally known general method.
  • a dope is prepared by mixing a resin as a material with a solvent, and the dope is cast on a continuous support to form a film, and after partially drying on the continuous support, from the continuous support
  • An unstretched or stretched transparent resin film can be produced by peeling and then sufficiently drying and optionally performing a stretching treatment during and / or after drying.
  • an unstretched transparent resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. .
  • the unstretched transparent resin film is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods such as transparent resin film flow (vertical axis) direction.
  • a stretched transparent resin film can be produced by stretching in the direction perpendicular to the flow direction of the transparent resin film (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin used as the raw material of the transparent resin film, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • the transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film forming process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • the resin used for the undercoat layer coating solution useful for the transparent resin film according to one embodiment of the present invention include polyester resin, (meth) acryl-modified polyester resin, polyurethane resin, acrylic resin, vinyl resin, and vinylidene chloride resin. , Polyethyleneimine vinylidene resin, polyethyleneimine resin, polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
  • optical function layer The optical film which concerns on one form of this invention has an optical function layer containing resin and the vanadium dioxide containing particle
  • the optical film preferably has a structure having an optical functional layer containing a resin and vanadium dioxide-containing particles according to the present invention on the transparent substrate and the transparent substrate.
  • the resin is not particularly limited, and the same resin as that conventionally used for the optical functional layer can be used.
  • a water-soluble polymer can be used.
  • the water-soluble polymer refers to a polymer that dissolves 0.001 g or more in 100 g of water at 25 ° C.
  • Specific examples of the water-soluble polymer include polyvinyl alcohol, polyethyleneimine, gelatin (for example, a hydrophilic polymer typified by gelatin described in JP-A-2006-343391), starch, guar gum, alginate, methylcellulose, and ethylcellulose.
  • the content of the vanadium dioxide-containing particles in the optical functional layer is preferably 1 to 60% by mass with respect to the total mass of the optical functional layer from the viewpoint of obtaining a desired thermochromic property. It is more preferable that
  • additives can be used as long as the effects of the present invention are not impaired.
  • Various applicable additives are listed below.
  • Antifoaming agents such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, Examples include various known additives such as lubricants, infrared absorbers, dyes, and pigments.
  • the method for forming the optical functional layer is not particularly limited, and can be applied in the same manner or appropriately modified except that the vanadium dioxide-containing particles according to one embodiment of the present invention are used. Specifically, a method in which a coating solution containing vanadium dioxide-containing particles is prepared, and the coating solution is coated on a transparent substrate by a wet coating method and dried to form an optical functional layer is preferable.
  • the coating solution preferably contains a resin and vanadium dioxide-containing particles.
  • the coating liquid may be prepared by appropriately adding a resin or a solvent using the reaction liquid after the hydrothermal reaction obtained by the production method according to one aspect of the present invention or the dispersion liquid according to one aspect of the present invention. It may be prepared.
  • the coating liquid is prepared by adding the vanadium dioxide-containing particles obtained by the manufacturing method according to one embodiment of the present invention, the vanadium dioxide-containing particles according to one embodiment of the present invention, and a resin to the dispersion medium. May be.
  • the dispersion medium contained in the coating liquid the same dispersion medium as described in the dispersion liquid and the method for producing the dispersion liquid can be used.
  • the total mass of the resin and vanadium dioxide-containing particles with respect to the total mass of the coating solution is not particularly limited as long as the optical functional layer can be formed by a wet coating method, and is appropriately set according to the required film thickness and film formation conditions. can do.
  • the wet coating method is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419.
  • a roll coating method for example, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419.
  • examples thereof include a slide hopper coating method and an extrusion coating method described in the specification and US Pat. No. 2,761,791.
  • the optical film according to one embodiment of the present invention may further include other layers in addition to the above-described constituent members.
  • the other layers are not particularly limited as long as the effects of the present invention are not hindered.
  • the near-infrared shielding layer, the ultraviolet absorption layer, the gas barrier layer, the corrosion prevention layer, the anchor layer (primer layer), and the adhesive layer are not particularly limited.
  • a hard coat layer a hard coat layer.
  • Comparative Example 2 A suspension prepared in the same manner as in Comparative Example 1 was placed in a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 270 ° C. and 5.51 MPa for 24 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VO 2 vanadium dioxide
  • Example 1 The suspension prepared in the same manner as in Comparative Example 1 was placed in an autoclave capable of being pressurized with compressed nitrogen, pressurized to 10.00 MPa, and hydrothermal reaction treatment was performed at 270 ° C. for 24 hours under this pressure. , Vanadium dioxide (VO 2 ) -containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VO 2 Vanadium dioxide
  • Example 2 A solution (raw material solution 1) in which 0.5 g of vanadium oxide (IV) (VOSO 4 ) is dissolved in ion-exchanged water to 10 mL and a 1 mol / L sodium hydroxide aqueous solution (NaOH, manufactured by Wako Pure Chemical Industries, Ltd.) A solution (raw material liquid 2) that is diluted with ion-exchanged water is put in the raw material liquid container 2 and the raw material liquid container 5 of the microreactor type flow reactor shown in FIG. Immediately after mixing to prepare a reaction solution, hydrothermal reaction treatment was performed at 270 ° C. and 10.00 MPa for 2.0 seconds in the microreactor unit 16 to form vanadium dioxide (VO 2 ) -containing particles. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VSO 4 vanadium oxide
  • VO 2 vanadium
  • Example 3 A hydrothermal reaction treatment was performed in the same manner as in Example 2 except that 1 mol / L ammonia water (ammonia was diluted with ion-exchanged water) was used instead of the 1 mol / L sodium hydroxide aqueous solution, and vanadium dioxide ( VO 2 ) containing particles were formed.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • Example 4 of the raw material solution further ammonium tungstate para pentahydrate in 1 ((NH 4) 10 W 12 O 41 ⁇ 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) vanadium: atomic ratio of tungsten 99:
  • a hydrothermal reaction treatment was performed in the same manner as in Example 2 except that the particles were dissolved so that vanadium dioxide (VO 2 ) -containing particles were formed.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • N 2 nitrogen
  • VO 2 vanadium dioxide
  • Containing particles were formed.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • the nitrogen (N 2 ) nanobubble-treated water is a high density ultrafine bubble generator (Nanokus Co., Ltd., Nanoquick (registered trademark)), and nitrogen gas is ion-exchanged in a sealed system.
  • the dissolved oxygen concentration was about 0.6 mg / L.
  • Example 6 In the microreactor section 16, hydrothermal reaction treatment was performed in the same manner as in Example 5 except that hydrothermal reaction treatment was performed at 400 ° C. and 30.00 MPa for 2.0 seconds to form vanadium dioxide (VO 2 ) -containing particles. did.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • Example 7 Ammonia water (concentration 28% by mass, Wako Pure Chemical Industries, Ltd., special grade) is added to a mixed solution of ethanol (Wako Pure Chemical Industries, Ltd., first grade) 20 mL and pure water 5 mL, and the pH value is 11. 8 solutions were prepared. To this solution, 0.3 g of tetraethyl orthosilicate ((C 2 H 5 O) 4 Si, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added and stirred and mixed at 80 ° C. for 4 hours to obtain a surface modifier. A solution was prepared. This surface modifier solution was charged into the tank 10 of the microreactor type flow reactor shown in FIG.
  • Example 6 immediately after the raw material liquid 1 and the raw material liquid 2 were mixed and subjected to a hydrothermal reaction (within 5 seconds), the surface modifier solution was transferred from the surface modification tank 10 through the pipe 11.
  • the tetraethyl orthosilicate was mixed in an amount of 2% by mass with respect to the mass of the generated vanadium dioxide (VO 2 ) -containing particles.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • Comparative Example 4 A solution prepared in the same manner as in Comparative Example 3 was placed in a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 270 ° C. and 5.51 MPa for 24 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VO 2 vanadium dioxide
  • Example 8 The solution prepared in the same manner as in Comparative Example 3 was put in an autoclave that can be pressurized with compressed nitrogen, pressurized to 10.00 MPa, and subjected to a hydrothermal reaction treatment at 270 ° C. for 24 hours under this pressure. Vanadium (VO 2 ) containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VO 2 vanadium
  • Example 9 A solution (raw material liquid 1) and hydrazine hydrate (N 2 ) containing 0.5 g of ammonium vanadate (NH 4 VO 3 , Wako Pure Chemical Industries, Ltd., special grade) dissolved in ion-exchanged water at 60 ° C. to make 10 mL.
  • a solution obtained by diluting H 4 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd., special grade) to 5% by mass with ion-exchanged water (raw material liquid 2) is a raw material of the microreactor type flow reactor shown in FIG.
  • reaction liquid Immediately after being put in the liquid container 2 and the raw material liquid container 5 and mixed at a mixing ratio of pH 9.5 to obtain a reaction liquid, in the microreactor unit 16 270 ° C., 10.00 MPa, water for 2.0 seconds. Thermal reaction treatment was performed to form particles containing vanadium dioxide (VO 2 ). Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • VO 2 vanadium dioxide
  • Example 10 Further ammonium tungstate para pentahydrate in raw material liquid 1 of Example 9 ((NH 4) 10 W 12 O 41 ⁇ 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) vanadium: atomic ratio of tungsten 99:
  • a hydrothermal reaction treatment was performed in the same manner as in Example 9 except that the particles were dissolved so as to be 1, and vanadium dioxide (VO 2 ) -containing particles were formed.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state.
  • a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • the nitrogen (N 2 ) nanobubble-treated water is a high density ultrafine bubble generator (Nanokus Co., Ltd., Nanoquick (registered trademark)), and nitrogen gas is ion-exchanged in a sealed system.
  • the dissolved oxygen concentration was about 0.6 mg / L.
  • Example 12 In the microreactor section 16, hydrothermal reaction treatment was performed in the same manner as in Example 11 except that hydrothermal reaction treatment was performed at 400 ° C. and 30.00 MPa for 2.0 seconds to form vanadium dioxide (VO 2 ) -containing particles. did.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • Example 13 Ammonia water (concentration 28% by mass, Wako Pure Chemical Industries, Ltd., special grade) is added to a mixed solution of ethanol (Wako Pure Chemical Industries, Ltd., first grade) 20 mL and pure water 5 mL, and the pH value is 11. 8 solutions were prepared. To this solution, 0.3 g of tetraethyl orthosilicate ((C 2 H 5 O) 4 Si, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added and stirred and mixed at 80 ° C. for 4 hours to obtain a surface modifier. A solution was prepared. This surface modifier solution was charged into the tank 10 of the microreactor type flow reactor shown in FIG.
  • Example 12 In the same manner as in Example 12, immediately after the raw material liquid 1 and the raw material liquid 2 were mixed and subjected to the hydrothermal reaction (within 5 seconds), the surface modifier solution was transferred from the surface modification tank 10 through the pipe 11.
  • the tetraethyl orthosilicate was mixed in an amount of 2% by mass with respect to the mass of the generated vanadium dioxide (VO 2 ) -containing particles.
  • the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
  • Each vanadium dioxide-containing particle and water-containing dispersion obtained in each example and each comparative example was adjusted so that the concentration of vanadium dioxide-containing particles was 0.01% by mass with respect to the total mass of the dispersion.
  • the sample for measurement was prepared by mixing with water and dispersing with ultrasonic waves for 15 minutes.
  • a hydrodynamic diameter (nm) was measured by a dynamic light scattering (DLS) method using a dynamic light scattering analyzer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). And based on this, the average particle diameter of the particle diameter distribution by cumulant analysis was calculated
  • the polydispersity index (PDI) is a numerical value calculated on the assumption that the particle size distribution is a normal distribution in the cumulant analysis measured by the dynamic light scattering method (DLS method) in the same manner as the measurement of the average particle size (D). did.
  • Each vanadium dioxide-containing particle dispersion obtained in each example and each comparative example was subjected to a flow rate of 300 ml / min and a hydraulic pressure of 1 bar using Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut-off 5000) manufactured by Sartorius steady. The concentration was adjusted by filtration at (0.1 MPa), and polyvinyl alcohol was mixed so that the vanadium dioxide-containing particles were 10% by mass with respect to the total mass of the polyvinyl alcohol and vanadium dioxide-containing particles.
  • a film for measurement (optical film) having an optical functional layer with a dry film thickness of 3 ⁇ m was prepared by applying and drying on a 50 ⁇ m thick polyethylene terephthalate (PET) substrate manufactured by DuPont Films.
  • each transmittance at a wavelength of 2000 nm at 25 ° C./50% RH and 85 ° C./50% RH was measured, and the calculated transmittance difference ( ⁇ T) (%) was evaluated according to the following evaluation criteria.
  • the measurement was performed by attaching a temperature control unit (manufactured by JASCO Corporation) to a spectrophotometer V-670 (manufactured by JASCO Corporation).
  • ⁇ T transmittance difference
  • O Transmittance difference is 30% or more and less than 40%.
  • Transmittance difference is 20% or more and less than 30%.
  • X Transmittance difference is less than 20%. .
  • or more is acceptable; ⁇ : Less than 1.0% ⁇ : 1.0% or more and less than 1.5% ⁇ ⁇ : 1.5% or more and less than 2.0% ⁇ : 2.0% or more and less than 2.5% X: 2.5% or more.
  • the vanadium dioxide (VO 2 ) -containing particles of the examples according to the present invention were excellent in thermochromic properties and low in haze as compared with those of the comparative examples.
  • the above results are considered to be because the average particle diameter (D) of the vanadium dioxide-containing particles of the examples is small, and the polydispersity index (PDI) is small and the particle diameter (D) is uniform.
  • vanadium dioxide (VO 2 ) -containing particles of the examples it was confirmed that the examples produced using a microreactor type flow reactor were particularly excellent in thermochromic properties and low in haze.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention provides a means for improving thermochromic properties of vanadium dioxide-containing particles and transparency of an optical film that uses the vanadium dioxide-containing particles. The present invention provides a method for producing vanadium dioxide-containing particles, which comprises subjecting a reaction liquid that is obtained by mixing a starting material liquid containing a vanadium-containing compound and water and another starting material liquid containing water and a compound which is reactive with the vanadium-containing compound to a hydrothermal reaction in the presence of water in a subcritical or supercritical state.

Description

二酸化バナジウム含有粒子、ならびにこれを含む分散液および光学フィルム、ならびにこれらの製造方法Vanadium dioxide-containing particles, dispersion liquid and optical film containing the same, and production method thereof
 本発明は、サーモクロミック性に優れる二酸化バナジウム含有粒子、ならびにこれを含む分散液および光学フィルムに関する。また、本発明はこれらの製造方法に関する。 The present invention relates to vanadium dioxide-containing particles having excellent thermochromic properties, and a dispersion and an optical film containing the same. The present invention also relates to these production methods.
 住宅やビル等の建物、および車両のような移動体などの、内部(室内、車両内)と外部環境との間で大きな熱交換が生じる箇所(たとえば窓ガラス)において、省エネ性と、快適性と、を両立するため、サーモクロミック材料の適用が期待されている。 Energy saving and comfort in places where large heat exchange occurs between the interior (indoors, inside the vehicle) and the external environment, such as buildings such as houses and buildings, and vehicles such as vehicles (for example, window glass) Therefore, the application of thermochromic materials is expected.
 「サーモクロミック材料」とは、たとえば透過性のような光学的な性質を、温度により制御することが可能な材料である。たとえば、建物の窓ガラスにサーモクロミック材料を適用した場合、気温の高い夏には赤外線を反射させて熱を遮断し、気温の低い冬には赤外線を透過させて熱を利用することが可能となる。 “Thermochromic material” is a material whose optical properties such as transparency can be controlled by temperature. For example, when a thermochromic material is applied to a window glass of a building, it is possible to reflect infrared rays in summer when the temperature is high to block heat, and to transmit infrared rays in winter when the temperature is low. Become.
 現在最も着目されているサーモクロミック材料の一つに、二酸化バナジウム(VO)を含む材料がある。二酸化バナジウムは室温付近での相転移の際に、サーモクロミック特性(温度により光学特性が可逆的に変化する性質、「サーモクロミック性」ともいう)を示すことが知られている。したがって、この特性を利用することにより、環境温度依存型のサーモクロミック特性を示す材料を得ることができる。 One of the thermochromic materials that are currently attracting the most attention is a material containing vanadium dioxide (VO 2 ). It is known that vanadium dioxide exhibits thermochromic properties (property of reversibly changing optical properties depending on temperature, also referred to as “thermochromic property”) during a phase transition near room temperature. Therefore, a material exhibiting an ambient temperature-dependent thermochromic characteristic can be obtained by utilizing this characteristic.
 ここで、二酸化バナジウムには、A相、B相、C相およびルチル型結晶相(以下、「R相」ともいう)など、いくつかの結晶相の多形が存在する。これらの中でも、前述のようなサーモクロミック特性を100℃以下の比較的低温で示す結晶構造は、R相に限られる。このR相は、相転移温度(約68℃)未満では単斜晶の構造を有し、可視光線および赤外線の透過率が高い。一方、R相は、相転移温度以上では正方晶の構造を有し、単斜晶構造の場合と比べて赤外線の透過率が低いという性質を示す。 Here, vanadium dioxide has several crystal phase polymorphs such as A phase, B phase, C phase and rutile crystal phase (hereinafter also referred to as “R phase”). Among these, the crystal structure showing the thermochromic characteristics as described above at a relatively low temperature of 100 ° C. or lower is limited to the R phase. The R phase has a monoclinic structure below the phase transition temperature (about 68 ° C.), and has high transmittance for visible light and infrared light. On the other hand, the R phase has a tetragonal structure above the phase transition temperature, and exhibits a property of low infrared transmittance as compared with a monoclinic structure.
 このような二酸化バナジウム含有粒子を用いた光学フィルムを、窓ガラス等に応用する場合には、透明性(ヘイズが小さいこと)が要求され、該二酸化バナジウム含有粒子が凝集していないこと、粒子径がナノオーダー(100nm以下)であることが望ましい。 When an optical film using such vanadium dioxide-containing particles is applied to a window glass or the like, transparency (having a small haze) is required, the vanadium dioxide-containing particles are not aggregated, and the particle diameter Is preferably nano-order (100 nm or less).
 かような二酸化バナジウム含有粒子の製造方法として、水熱反応によりR相の二酸化バナジウム粒子を製造する方法が報告されている。 As a method for producing such vanadium dioxide-containing particles, a method for producing R-phase vanadium dioxide particles by a hydrothermal reaction has been reported.
 たとえば、特表2014-505651号公報には、ドーピング二酸化バナジウム粉体(V1-x)の組成をドーピング元素が0<x≦0.5となる組成とすることで、粉体の寸法および形状が制御可能となることが開示されている。また、この公報には、その結果、製造されるドーピング二酸化バナジウム粉体の結晶粒の寸法を小さくし、均一化しうることが開示されている。そして、この公報には、かようなドーピング二酸化バナジウム粉体の製造方法として、水熱反応がより容易に行えるよう処理された反応前駆体を水熱反応オートクレーブに移行して水熱反応を行った後、水熱反応生成物を乾燥分離する方法が開示されている。 For example, Japanese Patent Publication No. 2014-505651 discloses that the composition of a doping vanadium dioxide powder (V 1-x M x O 2 ) is such that the doping element is 0 <x ≦ 0.5. It is disclosed that the size and shape of the image can be controlled. In addition, this publication discloses that, as a result, the size of crystal grains of the manufactured doped vanadium dioxide powder can be reduced and made uniform. In this publication, as a method for producing such a doping vanadium dioxide powder, a reaction precursor treated so that a hydrothermal reaction can be performed more easily is transferred to a hydrothermal reaction autoclave to perform a hydrothermal reaction. Thereafter, a method for dry separation of the hydrothermal reaction product is disclosed.
 しかしながら、特表2014-505651号公報の技術によっては、二酸化バナジウム含有粒子を用いた光学フィルムにおいては十分な透明性が得られなかった。 However, sufficient transparency could not be obtained in the optical film using vanadium dioxide-containing particles by the technique disclosed in JP-T-2014-505651.
 本発明者らは、検討を進めたところ、特表2014-505651号公報に開示された製造方法によって得られた二酸化バナジウム含有粒子は、粒子径の均一化は十分ではなく、その一部に大粒子径成分が含まれることで、広い粒子径分布を有することを発見した。そして、本発明者らは、二酸化バナジウム含有粒子の粒子径分布が広がることで、該二酸化バナジウム含有粒子を用いた光学フィルムの透明性が低下することを見出した。 As a result of investigations, the present inventors have found that the vanadium dioxide-containing particles obtained by the production method disclosed in JP-T-2014-505651 are not sufficiently uniform in particle size, and a part of them is large. It has been found that a particle size component is included, thereby having a wide particle size distribution. And the present inventors discovered that the transparency of the optical film using this vanadium dioxide containing particle | grains falls because the particle diameter distribution of vanadium dioxide containing particle | grains spreads.
 また、特表2014-505651号公報の技術は、小平均粒子径の粒子を得るためには、反応に用いるバナジウム含有化合物やバナジウム含有化合物と反応する化合物等の材料を限定する必要があり、汎用性に欠けるものであった。 In addition, the technique disclosed in JP-A-2014-505651 requires that materials such as vanadium-containing compounds and compounds that react with vanadium-containing compounds used in the reaction be limited in order to obtain particles having a small average particle size. It was lacking in nature.
 本発明は、上記課題に鑑みてなされたものであり、二酸化バナジウム含有粒子のサーモクロミック性および該二酸化バナジウム含有粒子を用いた光学フィルムの透明性を向上しうる手段を提供することを目的とする。 This invention is made | formed in view of the said subject, and it aims at providing the means which can improve the thermochromic property of vanadium dioxide containing particle | grains, and the transparency of the optical film using this vanadium dioxide containing particle | grain. .
 本発明者らは、上記課題に鑑み、鋭意検討を進めた。その結果、以下の手段により上記課題が解決されうることを見出し、本発明を完成させた。 In view of the above-mentioned problems, the present inventors proceeded with intensive studies. As a result, the inventors have found that the above problems can be solved by the following means, and have completed the present invention.
 バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させることを有する、二酸化バナジウム(VO)含有粒子の製造方法。 A reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is treated with water in the presence of subcritical or supercritical water. having thereby thermal reaction method of vanadium dioxide (VO 2) containing particles.
 平均粒子径(D)が60nm以下であり、多分散指数(PDI)が0.30未満である、二酸化バナジウム(VO)含有粒子。 Vanadium dioxide (VO 2 ) -containing particles having an average particle diameter (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30.
本発明の好ましい一形態に係るマイクロリアクター型流通式反応装置の一例を示す概略図である。ここで、1は、マイクロリアクター型流通式反応装置を、2、5は、原料液容器を、3、6、11は、配管を、4、7、12は、ポンプを、8は、冷却管を、9、10は、タンクを、13、14、15は、加熱媒体を、16は、マイクロリアクター部を、TCは、温度センサを、それぞれ表す。It is the schematic which shows an example of the micro reactor type | mold flow-type reaction apparatus which concerns on one preferable form of this invention. Here, 1 is a microreactor type flow reactor, 2 and 5 are raw material liquid containers, 3, 6, and 11 are pipes, 4, 7, and 12 are pumps, and 8 is a cooling pipe. , 9, 10 are tanks, 13, 14 and 15 are heating media, 16 is a microreactor section, and TC is a temperature sensor.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 さらに、本明細書において、化合物の具体名における表記「(メタ)アクリル」は「アクリル」および「メタクリル」を、「(メタ)アクリレート」は「アクリレート」および「メタクリレート」を表す。また、「アクリル樹脂」とは、アクリル酸エステル、メタクリル酸エステルまたはこれらの誘導体を(共)重合体の構成成分とする樹脂を表す。なお、「アクリル樹脂」には、上記単量体以外に、さらに他の単量体を共重合体の構成成分として有する樹脂も含まれる。 Furthermore, in the present specification, the notation “(meth) acryl” in the specific names of the compounds represents “acryl” and “methacryl”, and “(meth) acrylate” represents “acrylate” and “methacrylate”. The “acrylic resin” refers to a resin having an acrylic acid ester, a methacrylic acid ester or a derivative thereof as a constituent component of the (co) polymer. The “acrylic resin” includes resins having other monomers as a constituent component of the copolymer in addition to the above monomers.
 <二酸化バナジウム含有粒子の製造方法>
 本発明の一形態に係るサーモクロミック特性を有する二酸化バナジウム(VO)含有粒子の製造方法は、バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させることを有する。本形態に係る製造方法によれば、二酸化バナジウム含有粒子のサーモクロミック性および該二酸化バナジウム含有粒子を含む光学フィルムの透明性を向上しうる手段が提供される。
<Method for producing vanadium dioxide-containing particles>
The method for producing vanadium dioxide (VO 2 ) -containing particles having thermochromic characteristics according to one aspect of the present invention includes a raw material liquid containing a vanadium-containing compound and water, a raw material liquid containing a compound that reacts with the vanadium-containing compound, and water. And a hydrothermal reaction of the reaction liquid obtained by mixing the two in the presence of subcritical or supercritical water. According to the production method of the present embodiment, means for improving the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles is provided.
 本発明者らは、本発明の一形態に係る二酸化バナジウム含有粒子の製造方法によって、上記課題を解決しうるメカニズムを以下のように推測している。 The present inventors presume a mechanism that can solve the above problem by the method for producing vanadium dioxide-containing particles according to an embodiment of the present invention as follows.
 特表2014-505651号公報をはじめ、従来の二酸化バナジウム含有粒子の製造方法においては、通常、反応温度における飽和蒸気圧にて水熱反応を行っている。かような条件下における長時間の水熱反応では、析出した二酸化バナジウムの微結晶の一部が大きく結晶成長することとなる。その結果、製造された二酸化バナジウム含有粒子は大粒子径の成分を含むこととなり、広い粒子径分布を有することとなる。このとき、たとえ種々の公知の手段を用いて二酸化バナジウム含有粒子の平均粒子径を減少させた場合であっても、二酸化バナジウム含有粒子は、一部の不均一な粒子径成分を含むこととなる。そして、一部の不均一な粒子径成分の存在によって可視光の散乱が促進されることとなるため、従来の方法では該二酸化バナジウム含有粒子を含む光学フィルムの透明性を十分改善することは困難である。 In conventional methods for producing vanadium dioxide-containing particles, including JP 2014-505651, hydrothermal reaction is usually performed at a saturated vapor pressure at the reaction temperature. In a long-time hydrothermal reaction under such conditions, a portion of the precipitated vanadium dioxide microcrystals grows greatly. As a result, the manufactured vanadium dioxide-containing particles contain a component having a large particle size and have a wide particle size distribution. At this time, even if the average particle size of the vanadium dioxide-containing particles is reduced by using various known means, the vanadium dioxide-containing particles will contain some non-uniform particle size components. . In addition, since the scattering of visible light is promoted by the presence of some non-uniform particle size components, it is difficult to sufficiently improve the transparency of the optical film containing the vanadium dioxide-containing particles by the conventional method. It is.
 また、特表2014-505651号公報の技術に関しては、かような反応条件下において小平均粒子径の粒子を得るためには、所定の元素をドープすることでドーピング二酸化バナジウム粉体の寸法および形状を制御することが必須であり、汎用性に欠けるものであった。 In addition, regarding the technique of JP-T-2014-505651, in order to obtain particles having a small average particle diameter under such reaction conditions, the size and shape of the doping vanadium dioxide powder is obtained by doping a predetermined element. It was indispensable to control, and lacked versatility.
 一方、本発明に係る製造方法においては、バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させることを有する。かような条件下においては、詳細なメカニズムは不明であるが、析出した二酸化バナジウムの微結晶の結晶成長が抑制される。これより、本発明に係る製造方法は、製造された二酸化バナジウム含有粒子の平均粒子径を十分に減少させることができ、かつ大粒子径の成分の存在量を著しく減少させることができる。さらに、製造された二酸化バナジウム含有粒子は狭い粒子径分布を両立させることができる。そして、かような二酸化バナジウム含有粒子は、小粒子径化によって得られる大きな表面積に起因して高いサーモクロミック性を有することができ、また、かような二酸化バナジウム含有粒子を含む光学機能層を有する光学フィルムは、小粒子径および粒子径の均一性に起因する可視光の低散乱性に起因する高い透明性を得ることができる。 On the other hand, in the production method according to the present invention, a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing water and a compound that reacts with the vanadium-containing compound is subcritical. Alternatively, the hydrothermal reaction is performed in the presence of water in a supercritical state. Under such conditions, the detailed mechanism is unknown, but the crystal growth of the precipitated vanadium dioxide microcrystals is suppressed. Thus, the production method according to the present invention can sufficiently reduce the average particle size of the produced vanadium dioxide-containing particles, and can significantly reduce the abundance of components having a large particle size. Furthermore, the manufactured vanadium dioxide-containing particles can achieve both a narrow particle size distribution. Such vanadium dioxide-containing particles can have high thermochromic properties due to the large surface area obtained by reducing the particle size, and have an optical functional layer containing such vanadium dioxide-containing particles. The optical film can obtain high transparency resulting from low visible light scattering due to small particle size and uniformity of particle size.
 また、本発明は、かような効果を得るために、特表2014-505651号公報の技術のように所定のドーピング元素をドープすることを必須としない。この理由は、本発明は、所定の元素をドープすることでドーピング二酸化バナジウム粉体の寸法および形状を制御する特表2014-505651号公報の技術とは、本質的にメカニズムが異なるからである。すなわち、本発明に係る製造方法は、二酸化バナジウム含有粒子を形成する原料によって粒子径や粒子径分布を制御することのみを特徴とするものではなく、主に水熱反応条件によって小粒子径化および狭い粒子径分布を達成するものであるからである。これより、本発明に係る製造方法は、特表2014-505651号公報の技術と異なり、汎用性に優れる。 In addition, in order to obtain such an effect, the present invention does not necessarily dope a predetermined doping element as in the technique disclosed in JP-T-2014-505651. This is because the mechanism of the present invention is essentially different from the technique of Japanese Patent Application Laid-Open No. 2014-505651 which controls the size and shape of the doped vanadium dioxide powder by doping a predetermined element. That is, the production method according to the present invention is not only characterized by controlling the particle size and particle size distribution by the raw material forming the vanadium dioxide-containing particles, but mainly by reducing the particle size by hydrothermal reaction conditions. This is because a narrow particle size distribution is achieved. Thus, the manufacturing method according to the present invention is excellent in versatility, unlike the technique disclosed in JP-T-2014-505651.
 なお、上記メカニズムは推測であり、本発明の技術的範囲を制限するものではない。 Note that the above mechanism is speculative and does not limit the technical scope of the present invention.
 本明細書において、「二酸化バナジウム(VO)含有粒子」を「本発明の二酸化バナジウム含有粒子」もしくは「本発明のVO含有粒子」または単に「二酸化バナジウム含有粒子」もしくは「VO含有粒子」とも称する。 In the present specification, “vanadium dioxide (VO 2 ) -containing particles” refers to “vanadium dioxide-containing particles of the present invention” or “VO 2 -containing particles of the present invention” or simply “vanadium dioxide-containing particles” or “VO 2 -containing particles”. Also called.
 また、本明細書において、「サーモクロミック特性を有する二酸化バナジウム(VO)含有粒子」とは、後述の実施例でサーモクロミック性の評価として用いられる特定条件での透過率差(ΔT)(%)が20%以上である二酸化バナジウム含有粒子を意味する。 Further, in this specification, “vanadium dioxide (VO 2 ) -containing particles having thermochromic properties” means a transmittance difference (ΔT) (%) under specific conditions used as an evaluation of thermochromic properties in Examples described later. ) Means vanadium dioxide-containing particles having a content of 20% or more.
 本明細書においては、バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させることを「水熱反応工程」とも称する。 In the present specification, a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is subcritical or supercritical. The hydrothermal reaction in the presence of water is also referred to as a “hydrothermal reaction step”.
 (a)水熱反応工程
 本工程では、バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させる。本工程により、二酸化バナジウム含有粒子が得られる。
(A) Hydrothermal reaction step In this step, a reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is subcritical. Alternatively, a hydrothermal reaction is performed in the presence of supercritical water. By this step, vanadium dioxide-containing particles are obtained.
 バナジウム含有化合物(二酸化バナジウム含有粒子の原料)としては、特に制限されないが、五酸化二バナジウム(V)(V)、バナジン酸アンモニウム(V)(NHVO)、三塩化酸化バナジウム(V)(VOCl)、バナジン酸ナトリウム(V)(NaVO)、シュウ酸バナジル(IV)(VOC)、酸化硫酸バナジウム(以下、硫酸バナジルとも称する)(IV)(VOSO)、四酸化二バナジウム(IV)(V)等を、硫酸等の酸で溶解したものが例示できる。なお、上記のバナジウム含有化合物は、反応液中に溶解していてもよく、分散していてもよい。また、バナジウム含有化合物は1種単独で用いてもよく、または2種以上を混合して用いてもよい。また、これらの化合物としては、水和した状態のもの(水和物)を用いてもよい。 The vanadium-containing compound (a raw material of vanadium dioxide-containing particles) is not particularly limited, vanadium pentoxide (V) (V 2 O 5), ammonium vanadate (V) (NH 4 VO 3), Vanadium Oxytrichloride (V) (VOCl 3 ), sodium vanadate (V) (NaVO 3 ), vanadyl oxalate (IV) (VOC 2 O 4 ), vanadium oxide sulfate (hereinafter also referred to as vanadyl sulfate) (IV) (VOSO 4 ) Examples thereof include those obtained by dissolving divanadium tetroxide (IV) (V 2 O 4 ) or the like with an acid such as sulfuric acid. In addition, said vanadium containing compound may be melt | dissolved in the reaction liquid, and may be disperse | distributed. Moreover, a vanadium containing compound may be used individually by 1 type, or may mix and use 2 or more types. These compounds may be hydrated (hydrate).
 バナジウム含有化合物と反応する化合物としては、反応液を水熱反応させることによって二酸化バナジウム含有粒子を製造することができるものであれば特に制限されないが、たとえばアルカリ、および還元剤等が挙げられる。 The compound that reacts with the vanadium-containing compound is not particularly limited as long as it can produce vanadium dioxide-containing particles by hydrothermal reaction of the reaction solution, and examples thereof include alkalis and reducing agents.
 ここで、水熱反応は、
 (a-1)前記バナジウム含有化合物がバナジウム(IV)含有化合物であり、前記バナジウム含有化合物と反応する化合物が少なくとも1つのアルカリを含む反応液で行われること(以下、方法1ともする)、または
 (a-2)前記バナジウム含有化合物がバナジウム(V)含有化合物であり、前記バナジウム含有化合物と反応する化合物が還元剤(たとえば、ヒドラジンおよびその水和物等)を含む反応液で行われること(以下、方法2とも称する)、
が好ましい。
Here, the hydrothermal reaction is
(A-1) The vanadium-containing compound is a vanadium (IV) -containing compound, and the compound that reacts with the vanadium-containing compound is performed in a reaction solution containing at least one alkali (hereinafter, also referred to as method 1), or (A-2) The vanadium-containing compound is a vanadium (V) -containing compound, and the compound that reacts with the vanadium-containing compound is carried out in a reaction solution containing a reducing agent (for example, hydrazine and hydrates thereof) ( Hereinafter, also referred to as method 2),
Is preferred.
 (a-1)方法1
 上記(a-1)において、バナジウム(IV)含有化合物(二酸化バナジウム含有粒子の原料)は、特に制限されず、上記したもの中から適宜選択できる。これらの中でも、水熱反応後に副生成物をできるだけ生成させないとの観点から、酸化硫酸バナジウム(IV)(VOSO)であることが好ましい。なお、バナジウム(IV)含有化合物は1種単独で用いてもよく、または2種以上を混合して用いてもよい。
(A-1) Method 1
In the above (a-1), the vanadium (IV) -containing compound (the raw material for the vanadium dioxide-containing particles) is not particularly limited, and can be appropriately selected from those described above. Among these, vanadium oxide (IV) sulfate (VOSO 4 ) is preferable from the viewpoint that a by-product is not generated as much as possible after the hydrothermal reaction. In addition, a vanadium (IV) containing compound may be used individually by 1 type, or may mix and use 2 or more types.
 各原料液を混合して得られる反応液に含まれるバナジウム(IV)含有化合物の初期濃度は、本発明の効果が得られる限りにおいて特に制限されないが、好ましくは0.1~1000ミリモル/Lである。このような濃度であれば、バナジウム(IV)含有化合物を十分に溶解または分散し、得られる二酸化バナジウム含有粒子の平均粒子径(粒径)を小さくし、かつ粒子径(粒度)分布を狭く(多分散指数を低く)して、二酸化バナジウム含有粒子のサーモクロミック性、および二酸化バナジウム含有粒子を含む光学フィルムの透明性をより高めることができる。反応液に含まれるバナジウム(IV)化合物の初期濃度は、二酸化バナジウム含有粒子の平均粒子径および粒子径分布、すなわち二酸化バナジウム含有粒子のサーモクロミック性、および二酸化バナジウム含有粒子を含む光学フィルムの透明性などの観点から、より好ましくは20~600ミリモル/Lであり、さらに好ましくは50~400ミリモル/Lである。なお、上記の「初期濃度」とは、水熱反応前における、反応液1L中のバナジウム(IV)含有化合物量(2種以上のバナジウム(IV)含有化合物を含む場合は、その合計量)である。 The initial concentration of the vanadium (IV) -containing compound contained in the reaction solution obtained by mixing each raw material solution is not particularly limited as long as the effect of the present invention is obtained, but is preferably 0.1 to 1000 mmol / L. is there. With such a concentration, the vanadium (IV) -containing compound is sufficiently dissolved or dispersed, the average particle size (particle size) of the obtained vanadium dioxide-containing particles is reduced, and the particle size (particle size) distribution is narrow ( By lowering the polydispersity index), the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be further increased. The initial concentration of the vanadium (IV) compound contained in the reaction solution is the average particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles, and the transparency of the optical film containing the vanadium dioxide-containing particles. In view of the above, it is more preferably 20 to 600 mmol / L, still more preferably 50 to 400 mmol / L. In addition, said "initial concentration" is the amount of vanadium (IV) -containing compounds in 1 L of the reaction solution before hydrothermal reaction (the total amount when two or more vanadium (IV) -containing compounds are included). is there.
 上記(a-1)に記載のように、バナジウム(IV)含有化合物と共に使用されうるバナジウム含有化合物と反応する化合物は、アルカリであることが好ましい。すなわち、水熱反応は、バナジウム含有化合物がバナジウム(IV)含有化合物であり、バナジウム含有化合物と反応する化合物が少なくとも1つのアルカリを含む反応液で行われることが好ましい。さらに、バナジウム含有化合物と反応する化合物がアルカリのみからなることがより好ましい。なお、本願明細書において、アルカリとは、水溶液中において水酸化物イオン(OH)を発生させる物質を意味し、化合物自体が電離して水酸化物イオンを生じさせるものだけではなく、化合物自体が電離して水酸化物イオンを生じさせるわけではないが、結果的に水酸化物イオンを生じるものも含まれるものとする。 As described in (a-1) above, the compound that reacts with the vanadium-containing compound that can be used together with the vanadium (IV) -containing compound is preferably an alkali. That is, the hydrothermal reaction is preferably performed in a reaction solution in which the vanadium-containing compound is a vanadium (IV) -containing compound and the compound that reacts with the vanadium-containing compound contains at least one alkali. Furthermore, it is more preferable that the compound that reacts with the vanadium-containing compound consists only of alkali. In the present specification, an alkali means a substance that generates hydroxide ions (OH ) in an aqueous solution, and is not only a compound that is ionized to generate hydroxide ions, but also a compound itself. Are not ionized to produce hydroxide ions, but those that eventually produce hydroxide ions are also included.
 アルカリとしては、特に制限されないが、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、および炭酸水素カリウム等が挙げられる。上記アルカリは、1種単独でまたは2種以上を組み合わせて用いることができる。 Examples of the alkali include, but are not limited to, ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, and potassium bicarbonate. The said alkali can be used individually by 1 type or in combination of 2 or more types.
 これらの中でも、アルカリは、アンモニア、水酸化ナトリウム、または水酸化カリウムであることが好ましく、アンモニア、または水酸化ナトリウムであることがより好ましく、アンモニアであることがさらに好ましい。 Among these, the alkali is preferably ammonia, sodium hydroxide, or potassium hydroxide, more preferably ammonia or sodium hydroxide, and even more preferably ammonia.
 なお、アルカリおよび水を含む原料液中におけるアルカリの量は、特に制限されないが、たとえば0.01~10mol/Lであることが好ましく、0.1~5mol/Lであることがより好ましく、0.3~3mol/Lであることがさらに好ましい。 The amount of alkali in the raw material liquid containing alkali and water is not particularly limited, but is preferably 0.01 to 10 mol / L, more preferably 0.1 to 5 mol / L, for example, 0 More preferably, it is 3 to 3 mol / L.
 ここで、各原料液を混合して得られる反応液中のアルカリの量は、特に制限されないが、たとえばバナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液のpHが、6.0~8.0となる量を添加することが好ましく、6.5~7.5となる量を添加することがより好ましく、6.8~7.2となる量を添加することがさらに好ましく、6.9~7.1となる量を添加することが特に好ましい。 Here, the amount of alkali in the reaction liquid obtained by mixing each raw material liquid is not particularly limited, but includes, for example, a raw material liquid containing a vanadium-containing compound and water, a compound that reacts with the vanadium-containing compound, and water. It is preferable to add an amount such that the pH of the reaction liquid obtained by mixing the raw material liquid is 6.0 to 8.0, and it is more preferable to add an amount that is 6.5 to 7.5. It is more preferable to add an amount of 6.8 to 7.2, and it is particularly preferable to add an amount of 6.9 to 7.1.
 (a-2)方法2
 また、上記(a-2)において、バナジウム(V)含有化合物(二酸化バナジウム含有粒子の原料)は、特に制限されず、上記したものの中から適宜選択できる。これらの中でも、水熱反応後に副生成物をできるだけ生成させないとの観点から、五酸化二バナジウム、バナジン酸アンモニウム(NHVO)、または三塩化酸化バナジウムが好ましい。同様の観点から、バナジウム(V)含有化合物は、より好ましくは、五酸化二バナジウムおよびバナジン酸アンモニウムであり、特に好ましくはバナジン酸アンモニウム(NHVO)である。なお、上記バナジウム(V)含有化合物は1種単独で用いてもよく、または2種以上を混合して用いてもよい。
(A-2) Method 2
In the above (a-2), the vanadium (V) -containing compound (the raw material for the vanadium dioxide-containing particles) is not particularly limited, and can be appropriately selected from those described above. Among these, from the viewpoint of not generating by-products as much as possible after the hydrothermal reaction, divanadium pentoxide, ammonium vanadate (NH 4 VO 3 ), or vanadium trichloride oxide is preferable. From the same viewpoint, the vanadium (V) -containing compound is more preferably divanadium pentoxide and ammonium vanadate, and particularly preferably ammonium vanadate (NH 4 VO 3 ). In addition, the said vanadium (V) containing compound may be used individually by 1 type, or may mix and use 2 or more types.
 反応液に含まれるバナジウム(V)含有化合物の初期濃度は、本発明の目的効果が得られる限りにおいて特に制限されないが、好ましくは0.1~1000ミリモル/Lである。このような濃度であれば、還元剤が効率よく作用し、得られる二酸化バナジウム含有粒子の粒子径を小さくし、かつ粒子径分布を狭く(多分散指数を低く)して、サーモクロミック性をより高めることができる。反応液に含まれるバナジウム(V)化合物の初期濃度は、二酸化バナジウム含有粒子の粒子径および粒子径分布、すなわち二酸化バナジウム含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性などの観点から、より好ましくは20~600ミリモル/Lであり、さらに好ましくは50~400ミリモル/Lである。なお、上記の「初期濃度」とは、水熱反応前における、反応液1L中のバナジウム(V)含有化合物量(2種以上のバナジウム(V)含有化合物を含む場合は、その合計量)である。 The initial concentration of the vanadium (V) -containing compound contained in the reaction solution is not particularly limited as long as the objective effect of the present invention can be obtained, but is preferably 0.1 to 1000 mmol / L. At such a concentration, the reducing agent acts efficiently, and the particle size of the resulting vanadium dioxide-containing particles is reduced, and the particle size distribution is narrowed (low polydispersity index), and thermochromic properties are further improved. Can be increased. The initial concentration of the vanadium (V) compound contained in the reaction solution is such as the particle size and particle size distribution of the vanadium dioxide-containing particles, that is, the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles. From the viewpoint, it is more preferably 20 to 600 mmol / L, and further preferably 50 to 400 mmol / L. In addition, said "initial concentration" is the amount of vanadium (V) containing compounds in 1 L of reaction liquid before the hydrothermal reaction (the total amount when two or more vanadium (V) containing compounds are included). is there.
 また、バナジウム(V)含有化合物と共に使用されうるバナジウム含有化合物と反応する化合物は、還元剤であることが好ましい。還元剤としては、たとえば、シュウ酸およびその水和物、ヒドラジン(N)およびその水和物(N・HO)、アスコルビン酸などの水溶性ビタミン類とその誘導体、エリソルビン酸ナトリウム、BHT(ジブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)、没食子酸プロピル、亜硫酸ナトリウムなどの酸化防止剤、グルコース、フルクトース、グリセルアルデヒド、ラクトース、マルトースなどの還元糖が例示できる。上記還元剤は、1種単独でまたは2種以上を組み合わせて用いることができる。 Moreover, it is preferable that the compound which reacts with the vanadium containing compound which can be used with a vanadium (V) containing compound is a reducing agent. Examples of the reducing agent include oxalic acid and its hydrate, hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .H 2 O), water-soluble vitamins such as ascorbic acid, and derivatives thereof, Examples include sodium erythorbate, BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), antioxidants such as propyl gallate and sodium sulfite, and reducing sugars such as glucose, fructose, glyceraldehyde, lactose and maltose. The said reducing agent can be used individually by 1 type or in combination of 2 or more types.
 また、これらの中でも、還元剤としてはヒドラジンまたはその水和物が好ましい。すなわち、水熱反応は、バナジウム含有化合物がバナジウム(V)含有化合物であり、前記バナジウム含有化合物と反応する化合物がヒドラジンおよびその水和物の少なくとも一方を含む反応液で行われることが好ましい。さらに、バナジウム含有化合物と反応する化合物がヒドラジンおよびその水和物から選択されるいずれか一方のみであることがより好ましく、ヒドラジン水和物のみであることがさらに好ましい。 Of these, hydrazine or a hydrate thereof is preferable as the reducing agent. That is, the hydrothermal reaction is preferably performed in a reaction solution in which the vanadium-containing compound is a vanadium (V) -containing compound and the compound that reacts with the vanadium-containing compound contains at least one of hydrazine and its hydrate. Furthermore, the compound that reacts with the vanadium-containing compound is preferably only one selected from hydrazine and hydrates thereof, and more preferably only hydrazine hydrate.
 ここで、各原料液を混合して得られる反応液中の還元剤の量は、バナジウム(V)含有化合物に対して反応時のpHや反応中に分解する量も考慮して当モル以上添加することが好ましい。たとえば、バナジウム(V)含有化合物1モルに対して概ね1.01~1.50モルであることがより好ましく、1.05~1.30モルであることがさらに好ましい。 Here, the amount of the reducing agent in the reaction liquid obtained by mixing each raw material liquid is added to the vanadium (V) -containing compound in an equimolar amount or more in consideration of the pH during the reaction and the amount decomposed during the reaction. It is preferable to do. For example, it is more preferably about 1.01-1.50 mol, and further preferably 1.05-1.30 mol with respect to 1 mol of the vanadium (V) -containing compound.
 また、バナジウム含有化合物として五酸化二バナジウム(V)(V)を用いる場合は、水熱反応前に、過酸化水素の存在下で前処理を行うことが好ましい。過酸化水素を添加することにより、バナジウム含有化合物を均一に溶解することができる。または、バナジウム含有化合物は、水熱反応前に、過酸化水素、還元剤の存在下で前処理を行ってもよい。過酸化水素による前処理の後に還元剤による還元反応を採用する場合は、過酸化水素、還元剤を順次添加して、たとえば20~40℃で、必要に応じて攪拌しながら0.5~10時間程度反応を行うことができる。 When vanadium pentoxide (V) (V 2 O 5 ) is used as the vanadium-containing compound, it is preferable to perform pretreatment in the presence of hydrogen peroxide before the hydrothermal reaction. By adding hydrogen peroxide, the vanadium-containing compound can be uniformly dissolved. Alternatively, the vanadium-containing compound may be pretreated in the presence of hydrogen peroxide and a reducing agent before the hydrothermal reaction. When a reduction reaction using a reducing agent is employed after a pretreatment with hydrogen peroxide, hydrogen peroxide and a reducing agent are sequentially added, for example, at 20 to 40 ° C., with stirring as necessary, for 0.5 to 10 The reaction can be performed for about an hour.
 なお、各原料液を混合して得られる反応液のpHは使用するバナジウム(V)含有化合物によって好ましいpHが異なり、還元剤の添加量により調整することが好ましい。還元剤の添加量は、たとえばバナジウム(V)含有化合物としてバナジン酸アンモニウム(NHVO)を用いる場合は、pHが8.0~11.0となる量とすることが好ましく、pHが9.0~10.0となる量とすることがより好ましい。また、還元剤の添加量は、たとえばバナジウム(V)含有化合物として五酸化二バナジウム、または三塩化酸化バナジウムの場合はpHが3.5~5.5となる量を添加することが好ましく、pHが4.0~5.0となる量を添加することがより好ましい。 The pH of the reaction liquid obtained by mixing the raw material liquids varies depending on the vanadium (V) -containing compound used, and is preferably adjusted by the amount of reducing agent added. For example, when ammonium vanadate (NH 4 VO 3 ) is used as the vanadium (V) -containing compound, the reducing agent is preferably added in an amount such that the pH is 8.0 to 11.0. More preferably, the amount is from 0.0 to 10.0. In addition, for example, in the case of vanadium pentoxide or vanadium trichloride as the vanadium (V) -containing compound, the reducing agent is preferably added in such an amount that the pH is 3.5 to 5.5. It is more preferable to add an amount such that becomes 4.0 to 5.0.
 バナジウム含有化合物および水を含む原料液における水、ならびにバナジウム含有化合物と反応する化合物および水を含む原料液における水は、それぞれ、バナジウム含有化合物およびバナジウム含有化合物と反応する化合物に対する分散媒または溶媒としての機能を有する。各原料液を混合して得られる反応液もまた、溶媒または分散媒として水を含むものとなる。 The water in the raw material liquid containing the vanadium-containing compound and water, and the water in the raw material liquid containing the compound reacting with the vanadium-containing compound and the water are used as a dispersion medium or solvent for the vanadium-containing compound and the compound reacting with the vanadium-containing compound, respectively. It has a function. The reaction liquid obtained by mixing each raw material liquid also contains water as a solvent or a dispersion medium.
 これらの原料液に含まれる水は不純物の少ないものが好ましく、特に制限されるものではないが、たとえば蒸留水、イオン交換水、純水、超純水、窒素(N)ナノバブル処理された水等を用いることが好ましく、窒素(N)ナノバブル処理された水を使用することがより好ましい。 Water contained in these raw material liquids preferably has few impurities, and is not particularly limited. For example, distilled water, ion exchange water, pure water, ultrapure water, and water treated with nitrogen (N 2 ) nanobubbles. Etc. are preferably used, and water treated with nitrogen (N 2 ) nanobubbles is more preferably used.
 また、反応液に含まれる水も、同様に不純物の少ないものが好ましく、特に制限されるものではないが、たとえば蒸留水、イオン交換水、純水、超純水、窒素(N)ナノバブル処理された水等を用いることが好ましい。ここで、反応液中における前記水が、窒素(N)ナノバブル処理された水であるであることがより好ましい。 Similarly, the water contained in the reaction solution is preferably one having few impurities, and is not particularly limited. For example, distilled water, ion exchange water, pure water, ultrapure water, nitrogen (N 2 ) nanobubble treatment It is preferable to use water or the like. Here, the water in the reaction solution is more preferably nitrogen (N 2 ) nanobubble-treated water.
 ここで、窒素(N)ナノバブル処理された水(Nナノバブル処理水)は、水中に窒素を混合する(バブリングする)ことによって調製される。窒素(N)ナノバブル処理された水の使用は、水の溶存酸素濃度を低下することができるため、得られる二酸化バナジウム含有粒子が再度酸化されることを抑制・防止できる。そして、窒素(N)ナノバブル処理された水の使用は、得られる二酸化バナジウム含有粒子の粒子径をより小さくし、かつ粒子径分布をより狭く(多分散指数を小さく)することができる。ここで、窒素(N)ナノバブル処理された水の溶存酸素濃度は、特に制限されないが、好ましくは2mg/L以下であり、より好ましくは1mg/L以下(下限:0mg/L)である。 Here, nitrogen (N 2 ) nanobubble-treated water (N 2 nanobubble-treated water) is prepared by mixing (bubbling) nitrogen in water. The use of water treated with nitrogen (N 2 ) nanobubbles can reduce the dissolved oxygen concentration of the water, so that the obtained vanadium dioxide-containing particles can be suppressed / prevented from being oxidized again. The use of nitrogen (N 2) nano bubbles treated water, and a smaller particle size of the resulting vanadium dioxide-containing particles, and can be a particle diameter distribution narrower (smaller polydispersity index). Here, the dissolved oxygen concentration of the water treated with nitrogen (N 2 ) nanobubbles is not particularly limited, but is preferably 2 mg / L or less, more preferably 1 mg / L or less (lower limit: 0 mg / L).
 ここで、反応液に含まれる水が窒素(N)ナノバブル処理された水である場合、バナジウム含有化合物および水を含む原料液に含まれる水、またはバナジウム含有化合物と反応する化合物および水を含む原料液に含まれる水の少なくとも一方が、窒素(N)ナノバブル処理された水であることによって、反応液に含まれる水が窒素(N)ナノバブル処理された水となることが好ましい。また、各原料液に含まれる水の両方が、窒素(N)ナノバブル処理された水であることによって、反応液に含まれる水が窒素(N)ナノバブル処理された水となることがさらに好ましい。 Here, when the water contained in the reaction liquid is water that has been subjected to nitrogen (N 2 ) nanobubble treatment, water contained in the raw material liquid containing the vanadium-containing compound and water, or a compound that reacts with the vanadium-containing compound and water are included. It is preferable that at least one of the water contained in the raw material liquid is nitrogen (N 2 ) nanobubble-treated water, so that the water contained in the reaction solution is nitrogen (N 2 ) nanobubble-treated water. Further, both the water contained in the raw material liquid, nitrogen (N 2) by a nanobubbles treated water, water contained in the reaction liquid nitrogen (N 2) nano bubbles treated to become still more water preferable.
 また、反応液に含まれる水が窒素(N)ナノバブル処理された水であるとの条件は、バナジウム含有化合物および水を含む原料液、およびバナジウム含有化合物および水を含む原料液を混合した後、反応液中の水に対して窒素(N)ナノバブル処理を行うことによって達成されてもよい。 In addition, the condition that the water contained in the reaction solution is nitrogen (N 2 ) nanobubble-treated water is obtained by mixing the raw material solution containing the vanadium-containing compound and water, and the raw material solution containing the vanadium-containing compound and water. Alternatively, it may be achieved by performing nitrogen (N 2 ) nanobubble treatment on water in the reaction solution.
 本発明の一形態に係る製造方法としては、反応液が、二酸化バナジウム含有粒子の相転移温度を調節するための元素を含む物質をさらに含む、製造方法である。 As a production method according to an embodiment of the present invention, the reaction solution further includes a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide-containing particles.
 ここで、二酸化バナジウム含有粒子の相転移温度を調節するための元素を含む物質(相転移調節物質)の反応液への添加方法は、特に制限されず、公知の方法を用いることができる。反応液への添加方法としては、バナジウム含有化合物および水を含む原料液に含まれることで添加される方法で添加されることが好ましい。また、水熱反応前の反応液へ直接添加される方法を用いることもできる。 Here, the method for adding a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide-containing particles (phase transition modifier) to the reaction solution is not particularly limited, and a known method can be used. As a method for adding to the reaction solution, it is preferable to add the reaction solution by adding it to a raw material solution containing a vanadium-containing compound and water. Moreover, the method of adding directly to the reaction liquid before a hydrothermal reaction can also be used.
 ここで、相転移調節物質は、特に制限されないが、タングステン、チタン、モリブデン、ニオブ、タンタル、錫、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム、クロム、鉄、ガリウム、アルミニウム、フッ素、リン等の、バナジウム以外の他の元素を含む物質が使用できる。反応液が上記相転移調節物質を含むことにより、得られる二酸化バナジウム含有粒子の相転移温度を低下させることができる。ここで、相転移調節物質の添加量は特に制限されないが、バナジウム含有化合物に含まれるバナジウムと、相転移調節物質に含まれる他の元素との元素比(原子比率)が、50.0:50.0~99.9:0.1であることが好ましく、70.0:30.0~99.5:0.5であることがより好ましく、80.0:20.0~99.5:0.5であることがさらに好ましく、90.0:10.0~99.5:0.5であることが特に好ましい。また、相転移調節物質の形態は特に制限されないが、上記他の元素の、酸化物、アンモニウム塩等が例示できる。ここで、相転移調節物質の具体例としては、たとえば、タングステン酸アンモニウムパラ五水和物((NH101241・5HO)等を挙げることができる。 Here, the phase transition regulator is not particularly limited, but tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus, etc. Substances containing elements other than vanadium can be used. When the reaction liquid contains the phase change regulator, the phase transition temperature of the obtained vanadium dioxide-containing particles can be lowered. Here, the addition amount of the phase transition modifier is not particularly limited, but the element ratio (atomic ratio) of vanadium contained in the vanadium-containing compound to other elements contained in the phase transition modifier is 50.0: 50. Is preferably 0.0 to 99.9: 0.1, more preferably 70.0: 30.0 to 99.5: 0.5, and 80.0: 20.0 to 99.5: 0.5 is more preferable, and 90.0: 10.0 to 99.5: 0.5 is particularly preferable. Moreover, the form of the phase transition regulator is not particularly limited, and examples thereof include oxides and ammonium salts of the other elements. Here, the phase Examples of transition modulators may include, for example, ammonium tungstate para pentahydrate ((NH 4) 10 W 12 O 41 · 5H 2 O) and the like.
 本工程では、反応液を水熱反応させて二酸化バナジウム含有粒子を形成する。なお、「水熱反応」とは、高温の水、特に高温高圧の水の存在の下に行われる鉱物の合成または変質反応、すなわち化学反応を意味する。 In this step, the reaction solution is hydrothermally reacted to form vanadium dioxide-containing particles. The “hydrothermal reaction” means a mineral synthesis or alteration reaction, that is, a chemical reaction performed in the presence of high-temperature water, particularly high-temperature and high-pressure water.
 本発明における水熱反応は、温度が150℃以上であり、かつ圧力が飽和蒸気圧よりも高い圧力である状態、すなわち水が亜臨界または超臨界状態で存在しているなかで行われることを特徴とする。かような条件により反応を行うことで、常圧高温の場合と異なり、高圧では、水の存在により特異な反応が起こり得ることが知られている。また、シリカやアルミナ等の酸化物の溶解性が向上し、反応速度が向上することも知られている。 The hydrothermal reaction in the present invention is carried out in a state where the temperature is 150 ° C. or higher and the pressure is higher than the saturated vapor pressure, that is, water is present in a subcritical or supercritical state. Features. It is known that by performing the reaction under such conditions, a unique reaction can occur at high pressure due to the presence of water, unlike the case of high pressure at normal pressure. It is also known that the solubility of oxides such as silica and alumina is improved and the reaction rate is improved.
 本発明においては、かような条件で水熱反応を行うことで、水熱反応によって形成される二酸化バナジウム含有粒子の平均粒子径(D)、および粒子径分布を表す多分散指数(PDI)の値を小さくすることができ、二酸化バナジウム含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性を向上することができる。 In the present invention, by performing the hydrothermal reaction under such conditions, the average particle size (D) of the vanadium dioxide-containing particles formed by the hydrothermal reaction, and the polydispersity index (PDI) representing the particle size distribution The value can be reduced, and the thermochromic property of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles can be improved.
 これらの優れた効果は、詳細なメカニズムは不明であるが、かような条件下における水熱反応によって、析出した二酸化バナジウムの微結晶の結晶成長が抑制されることで達成されると推測される。 Although the detailed mechanism is unknown, these excellent effects are presumed to be achieved by suppressing the crystal growth of precipitated vanadium dioxide microcrystals by hydrothermal reaction under such conditions. .
 水熱反応条件は、水が亜臨界または超臨界状態で存在する条件である温度が150℃以上であり、かつ圧力が飽和蒸気圧よりも高い圧力であれば特に制限されず、他の条件(たとえば、反応物の量、反応温度、反応圧力、反応時間など)に応じて適宜設定することができる。 Hydrothermal reaction conditions are not particularly limited as long as the temperature at which water is present in a subcritical or supercritical state is 150 ° C. or higher and the pressure is higher than the saturated vapor pressure, and other conditions ( For example, it can be appropriately set according to the amount of reactant, reaction temperature, reaction pressure, reaction time, and the like.
 ここで、150℃、250℃、270℃および350℃における飽和水蒸気圧はそれぞれ、0.48MPa、3.98MPa、5.51MPaおよび16.54MPaである。また、温度が374.15℃以上であり、かつ圧力が22.12MPa以上であると、水は超臨界状態となる。 Here, the saturated water vapor pressures at 150 ° C., 250 ° C., 270 ° C., and 350 ° C. are 0.48 MPa, 3.98 MPa, 5.51 MPa, and 16.54 MPa, respectively. In addition, when the temperature is 374.15 ° C. or higher and the pressure is 22.12 MPa or higher, the water is in a supercritical state.
 水熱反応条件としては、温度および圧力としては、前述のように150℃以上であり、かつ圧力が飽和蒸気圧よりも高い圧力である状態であれば特に制限されないが、温度が270℃~450℃であり、圧力が10~40MPaであり、かつ圧力が設定温度における飽和蒸気圧よりも高い圧力となる条件であることがより好ましい。温度が270℃以上であると、平均粒子径(D)、および多分散指数(PDI)の値をより小さくすることができる。また、温度が450℃以下であると、平均粒子径(D)がより適切な大きさを有することとなり、サーモクロミック性がより向上する。同様の観点から、温度が350~450℃であり、圧力が20~40MPaであり、かつ圧力が設定温度における飽和蒸気圧よりも高い圧力となる条件であることがさらに好ましく、温度380~400℃、圧力25~30MPaの超臨界水の存在下で水熱反応を行うことが特に好ましい。 The hydrothermal reaction conditions are not particularly limited as long as the temperature and pressure are 150 ° C. or higher as described above and the pressure is higher than the saturated vapor pressure, but the temperature is 270 ° C. to 450 ° C. More preferably, the temperature is 10 ° C., the pressure is 10 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature. When the temperature is 270 ° C. or higher, the average particle diameter (D) and the polydispersity index (PDI) can be further reduced. Moreover, an average particle diameter (D) will have a more suitable magnitude | size as temperature is 450 degrees C or less, and thermochromic property improves more. From the same viewpoint, it is more preferable that the temperature is 350 to 450 ° C., the pressure is 20 to 40 MPa, and the pressure is higher than the saturated vapor pressure at the set temperature, and the temperature is 380 to 400 ° C. It is particularly preferable to conduct the hydrothermal reaction in the presence of supercritical water at a pressure of 25 to 30 MPa.
 水熱反応時間は、特に制限されないが、0.01秒~48時間であることが好ましい。この条件であれば、粒子径分布の狭い、粒子径の小さい二酸化バナジウム含有粒子をより効率よく製造できる。また、二酸化バナジウム含有粒子の結晶性が低くなる可能性をより低減することができる。なお、上記水熱反応は、同じ条件を用いて1段階で行われても、または条件を変化させて多段階で行われてもよい。 The hydrothermal reaction time is not particularly limited, but is preferably 0.01 seconds to 48 hours. Under these conditions, vanadium dioxide-containing particles having a narrow particle size distribution and a small particle size can be produced more efficiently. Moreover, possibility that the crystallinity of vanadium dioxide containing particle | grains becomes low can be reduced more. The hydrothermal reaction may be performed in one stage using the same conditions, or may be performed in multiple stages by changing the conditions.
 水熱反応は、撹拌されながら行われてもよい。撹拌により、二酸化バナジウム含有粒子をより均一に調製できる。また、水熱反応は、バッチ式で実施してもよく、連続式(流通式)に実施してもよい。 The hydrothermal reaction may be performed while stirring. By stirring, vanadium dioxide-containing particles can be more uniformly prepared. Further, the hydrothermal reaction may be carried out in a batch manner or a continuous manner (circulation manner).
 水熱反応は、高圧用反応分解容器、オートクレーブやテストチューブ型反応容器、マイクロリアクター型流通式反応装置等の装置を用いて行うことができる。 The hydrothermal reaction can be carried out using an apparatus such as a high-pressure reaction decomposition vessel, an autoclave, a test tube type reaction vessel, a microreactor type flow reactor, or the like.
 これらの中でも、マイクロリアクター型流通式反応装置を用いることがより好ましい。 Among these, it is more preferable to use a microreactor type flow reactor.
 これより、本発明の好ましい一形態は、水熱反応は、マイクロリアクター型流通式反応装置を用いて行われる製造方法である。 Thus, a preferred embodiment of the present invention is a production method in which the hydrothermal reaction is performed using a microreactor type flow reactor.
 以下、マイクロリアクター型流通式反応装置を用いて水熱反応を行う好ましい形態を説明する。なお、本発明は下記形態に限定されない。 Hereinafter, a preferred embodiment in which a hydrothermal reaction is performed using a microreactor type flow reactor will be described. In addition, this invention is not limited to the following form.
 マイクロリアクター型流通式反応装置とは、マイクロリアクターを備えた流通式反応装置である。 The microreactor type flow reactor is a flow reactor equipped with a microreactor.
 ここで、マイクロリアクターとは、微小な空間を活用し、高速混合および反応を実現する混合および反応器を意図する。 Here, the microreactor is intended to be a mixing and reactor that utilizes a small space to realize high-speed mixing and reaction.
 マイクロリアクターを用いて、水熱反応を高圧下、亜臨界または超臨界状態の水の存在下で実施することにより、二酸化バナジウム含有粒子の平均粒子径(D)、および多分散指数(PDI)の値を極めて小さくすることが可能であり、特に優れた二酸化バナジウム含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性を達成しうる。この理由は、水熱反応を高圧下、亜臨界または超臨界状態の水の存在下で実施することにより、ごく短時間で液混合および反応が完了することとなり、析出した二酸化バナジウムの微結晶が大きく結晶成長するための十分な時間を与えないからであると推測している。 Using a microreactor, the hydrothermal reaction is carried out under high pressure in the presence of subcritical or supercritical water, so that the average particle size (D) of the vanadium dioxide-containing particles and the polydispersity index (PDI) The value can be made extremely small, and particularly excellent thermochromic properties of vanadium dioxide-containing particles and transparency of optical films containing vanadium dioxide-containing particles can be achieved. This is because the hydrothermal reaction is carried out in the presence of subcritical or supercritical water under high pressure, so that the liquid mixing and reaction can be completed in a very short time, and the precipitated vanadium dioxide microcrystals are formed. It is presumed that sufficient time for large crystal growth is not given.
 マイクロリアクター型流通式反応装置を用いて水熱反応を行う場合は、水熱反応時間は、0.01秒~10秒であることが好ましい。0.01秒以上であると、二酸化バナジウム含有粒子をより確実に形成することができる。また、10秒以下であると、多分散指数(PDI)がより小さくなる傾向がある。同様の観点から、0.1秒~5秒であることがより好ましい。 When the hydrothermal reaction is performed using a microreactor type flow reactor, the hydrothermal reaction time is preferably 0.01 seconds to 10 seconds. When it is 0.01 seconds or longer, vanadium dioxide-containing particles can be more reliably formed. If it is 10 seconds or less, the polydispersity index (PDI) tends to be smaller. From the same viewpoint, the time is more preferably 0.1 to 5 seconds.
 マイクロリアクター型流通式反応装置の具体的な構造例を図1に示す。図1は、本発明の好ましい一形態に係るマイクロリアクター型流通式反応装置を示す概略図である。図1において、マイクロリアクター型流通式反応装置1は、原料液を入れる原料液容器(タンク)2および原料液容器(タンク)5、水熱反応を行う、加熱媒体14を有するマイクロリアクターを含む部分である、マイクロリアクター部16、水熱反応後の反応液を入れるためのタンク9、原料液容器2および原料液容器5と、タンク9と、をそれぞれ連結する流路(配管)3および6、原料液容器2からタンク9に配管3を介して原料液、反応液および水熱反応後の反応液を流通させるためのポンプ4、原料液容器5からタンク9に配管6を介して原料液、反応液および水熱反応後の反応液を流通させるためのポンプ7を有する。 Fig. 1 shows a specific structural example of a microreactor type flow reactor. FIG. 1 is a schematic view showing a microreactor type flow reactor according to a preferred embodiment of the present invention. In FIG. 1, a microreactor type flow reactor 1 includes a raw material liquid container (tank) 2 and a raw material liquid container (tank) 5 for containing a raw material liquid, and a part including a microreactor having a heating medium 14 that performs a hydrothermal reaction. The microreactor section 16, the tank 9 for containing the reaction solution after the hydrothermal reaction, the raw material liquid container 2 and the raw material liquid container 5, and the flow paths (piping) 3 and 6, respectively connecting the tank 9, A pump 4 for circulating the raw material liquid, the reaction liquid and the reaction liquid after the hydrothermal reaction from the raw material liquid container 2 to the tank 9 via the pipe 3, and the raw material liquid via the pipe 6 from the raw material liquid container 5 to the tank 9; A pump 7 is provided for circulating the reaction solution and the reaction solution after the hydrothermal reaction.
 マイクロリアクター型流通式反応装置1は、必要であれば、図1に示すように、水熱反応後の反応液をさらに冷却するための冷却管8を備えてもよい。また、後述するが、必要であれば、図1に示すように、水熱反応後の反応液に添加する表面修飾剤、pH調整剤または水熱反応後の反応液に混合して冷却するための冷却媒体(たとえば、水)を入れるためのタンク10、表面修飾剤、pH調整剤または冷却媒体を、配管11を介して流通させるためのポンプ12をさらに有してもよい。また、マイクロリアクター型流通装置1は、必要であれば、図1に示すように、加熱媒体13、15をさらに有してもよい。 If necessary, the microreactor type flow reactor 1 may include a cooling pipe 8 for further cooling the reaction liquid after the hydrothermal reaction, as shown in FIG. In addition, as will be described later, as shown in FIG. 1, if necessary, it is mixed with the surface modifier, the pH adjuster or the reaction solution after the hydrothermal reaction to be cooled by being added to the reaction solution after the hydrothermal reaction. The tank 10 for containing the cooling medium (for example, water), the surface modifier, the pH adjuster, or the pump 12 for circulating the cooling medium through the pipe 11 may be further included. Further, if necessary, the microreactor type distribution device 1 may further include heating media 13 and 15 as shown in FIG.
 なお、原料液、反応液または水熱反応後の反応液が流通するマイクロリアクター部16、および配管3、6、11等の流路の材質は、特に制限されないが、ステンレス鋼、アルミニウム、鉄、ハステロイなどが挙げられる。流路の長さは、特に制限されないが、好ましくは50~10,000mm、より好ましくは100~1,000mmである。また、流路の間隙(配管の場合は内径)は、特に制限されないが、好ましくは0.001~10mm、より好ましくは0.005~2mmである。このような材質、形状の流路であれば、水熱反応を所定の速度で有効に実施できる。 The material of the microreactor section 16 through which the raw material liquid, the reaction liquid or the reaction liquid after the hydrothermal reaction flows and the flow paths such as the pipes 3, 6, 11 are not particularly limited, but stainless steel, aluminum, iron, Hastelloy and the like can be mentioned. The length of the flow path is not particularly limited, but is preferably 50 to 10,000 mm, more preferably 100 to 1,000 mm. Further, the gap (inner diameter in the case of piping) of the flow path is not particularly limited, but is preferably 0.001 to 10 mm, more preferably 0.005 to 2 mm. With such a material and shape, the hydrothermal reaction can be effectively carried out at a predetermined speed.
 なお、配管3、6および11は、上記材質、長さ、内径を有することが好ましいが、それぞれ、同じであってもまたは異なるものであってもよい。 The pipes 3, 6 and 11 preferably have the above material, length and inner diameter, but may be the same or different.
 また、反応液のマイクロリアクター部の流路を通過(流通)させる速度(流通速度)は、特に制限されないが、好ましくは0.01~10mL/秒、より好ましくは0.1~5mL/秒である。このような流通速度であれば、水熱反応を所定の条件で有効に実施できる。 Further, the speed (circulation speed) at which the reaction liquid passes through (flows through) the microreactor section is not particularly limited, but is preferably 0.01 to 10 mL / second, more preferably 0.1 to 5 mL / second. is there. With such a distribution speed, the hydrothermal reaction can be effectively carried out under predetermined conditions.
 上記(a)水熱反応工程によって得られた水熱反応後の反応液は、濾過(たとえば、限外濾過)や遠心分離により、分散媒や溶媒の置換を行い、二酸化バナジウム含有粒子を水やアルコール(たとえば、エタノール)等によって洗浄してもよい。得られた二酸化バナジウム含有粒子は、任意の手段により乾燥してもよい。 The reaction liquid after the hydrothermal reaction obtained by the (a) hydrothermal reaction step is replaced with a dispersion medium or a solvent by filtration (for example, ultrafiltration) or centrifugal separation, and the vanadium dioxide-containing particles are exchanged with water or You may wash | clean with alcohol (for example, ethanol) etc. The obtained vanadium dioxide-containing particles may be dried by any means.
 本発明の一形態に係る製造方法としては、水熱反応直後に、さらに表面修飾剤を添加することが好ましい。 As a production method according to an embodiment of the present invention, it is preferable to add a surface modifier immediately after the hydrothermal reaction.
 表面修飾剤を使用することによって、二酸化バナジウム含有粒子の凝集が有効に抑制・防止され、二酸化バナジウム含有粒子の大きさ(粒子径)をより小さくし、粒子径分布も狭くして、二酸化バナジウム含有粒子の分散安定性および保存安定性をより向上できる。ゆえに、二酸化バナジウム含有粒子のヘイズをより有効に低下し、また、サーモクロミック性をより有効に向上できる。 By using a surface modifier, the aggregation of vanadium dioxide-containing particles is effectively suppressed / prevented, the size (particle diameter) of vanadium dioxide-containing particles is reduced, the particle size distribution is narrowed, and vanadium dioxide is contained. The dispersion stability and storage stability of the particles can be further improved. Therefore, the haze of the vanadium dioxide-containing particles can be reduced more effectively, and the thermochromic properties can be improved more effectively.
 ここで、表面修飾剤としては、たとえば、有機ケイ素化合物、有機チタン化合物、有機アルミニウム化合物、有機ジルコニア化合物、界面活性剤、シリコーンオイル等が挙げられる。表面修飾剤の反応性基の数は、特に制限されないが、1または2であることが好ましい。 Here, examples of the surface modifier include organic silicon compounds, organic titanium compounds, organic aluminum compounds, organic zirconia compounds, surfactants, silicone oils, and the like. The number of reactive groups in the surface modifier is not particularly limited, but is preferably 1 or 2.
 具体的には、表面修飾剤として用いられる有機ケイ素化合物(有機シリケート化合物)としては、たとえば、ヘキサメチルジシラザン、トリメチルエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン(オルトケイ酸テトラエチル)、トリメチルシリルクロライド、メチルトリエトキシシラン、ジメチルジエトキシシラン、デシルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。また、市販のものとしては、たとえば、SZ6187(東レ・ダウシリコーン株式会社製)等を好適に用いることができる。これらのうち、分子量が小さく、高い耐久性を示す有機シリケート化合物を用いることが好ましく、ヘキサメチルジシラザン、テトラエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルシリルクロライドを用いることがより好ましく、テトラエトキシシランを用いることがさらに好ましい。 Specifically, as an organosilicon compound (organic silicate compound) used as a surface modifier, for example, hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane (tetraethyl orthosilicate), trimethylsilyl chloride, methyl Triethoxysilane, dimethyldiethoxysilane, decyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltri Ethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, - glycidoxypropyl methyldimethoxysilane, and the like. Moreover, as a commercially available thing, SZ6187 (made by Toray Dow Silicone Co., Ltd.) etc. can be used conveniently, for example. Among these, it is preferable to use an organic silicate compound having a low molecular weight and high durability, more preferably hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride. More preferably, silane is used.
 有機チタン化合物としては、たとえば、テトラブチルチタネート、テトラオクチルチタネート、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等や、キレート化合物として、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、リン酸チタン化合物、チタンオクチレンギリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタントリエタノールアミネート等が挙げられる。また、市販のものとしては、たとえば、プレンアクト(登録商標)TTS(味の素ファインテクノ株式会社製)、プレンアクト(登録商標)TTS44(味の素ファインテクノ株式会社製)等が挙げられる。 Examples of the organic titanium compound include tetrabutyl titanate, tetraoctyl titanate, tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, bis (dioctyl pyrophosphate) oxy Acetate titanate, etc., and chelate compounds such as titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate, titanium phosphate compound, titanium octylene glycolate, titanium lactate ammonium salt, titanium lactate, titanium triethanolaminate, etc. Is mentioned. Examples of commercially available products include Prenact (registered trademark) TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.), Preneact (registered trademark) TTS44 (manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like.
 有機アルミニウム化合物としては、たとえば、アルミニウムイソプロポキシド、アルミニウムtert-ブトキシド等が挙げられる。 Examples of the organoaluminum compound include aluminum isopropoxide, aluminum tert-butoxide and the like.
 有機ジルコニア化合物としては、たとえば、ノルマルプロピルジルコネート、ノルマルブチルジルコネート、ジルコニウムモノアセチルアセトネート、ジルコニウムテトラアセチルアセトネート等が挙げられる。 Examples of the organic zirconia compound include normal propyl zirconate, normal butyl zirconate, zirconium monoacetylacetonate, zirconium tetraacetylacetonate and the like.
 界面活性剤は、同一分子中に親水基と、疎水基と、を有する化合物である。界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基等が挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的にはアルキル基、アルキル基を有するシリル基、フルオロアルキル基等が挙げられる。ここで、アルキル基は、置換基として芳香環を有していてもよい。界面活性剤は、上記のような親水基と、疎水基と、をそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。このような界面活性剤としては、より具体的には、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、パーフルオロアルケニル、パーフルオロアルキル化合物等が挙げられる。 The surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group, a silyl group having an alkyl group, and a fluoroalkyl group. Here, the alkyl group may have an aromatic ring as a substituent. The surfactant only needs to have at least one hydrophilic group and one hydrophobic group as described above in the same molecule, and may have two or more groups. More specifically, as the surfactant, myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2-hydroxytetra Decylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8 to 18 carbon atoms) benzyldimethylammonium chloride, ethylenebisalkyl (C8-18) Amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, perfluoroalkenyl, perf Oroarukiru compounds.
 シリコーンオイルとしては、たとえば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイルおよびフッ素変性シリコーン等の変性シリコーンオイル等が挙げられる。 Examples of the silicone oil include straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carrubinol-modified silicone oil, and methacryl-modified. Silicone oil, mercapto modified silicone oil, heterogeneous functional group modified silicone oil, polyether modified silicone oil, methylstyryl modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, higher fatty acid-containing modified silicone oil and fluorine modified silicone And modified silicone oils.
 上記表面修飾剤は、ヘキサン、トルエン、メタノール、エタノール、アセトン、水等で適宜希釈して、溶液の形態で水熱反応後の反応液と混合されることが好ましい。また、上記表面修飾剤によって導入される有機官能基中の炭素原子数は、1~6であることが好ましい。これにより耐久性を向上させることができる。また、表面修飾剤を含む溶液は、pH調節剤を用いて適当なpH値(たとえば、2~12)に調節してもよい。ここで、pH調節剤としては、特に制限されず、後述のpH調節剤と同様のものが使用できる。 It is preferable that the surface modifier is appropriately diluted with hexane, toluene, methanol, ethanol, acetone, water or the like and mixed with the reaction solution after the hydrothermal reaction in the form of a solution. The number of carbon atoms in the organic functional group introduced by the surface modifier is preferably 1-6. Thereby, durability can be improved. Further, the solution containing the surface modifier may be adjusted to an appropriate pH value (for example, 2 to 12) using a pH adjuster. Here, it does not restrict | limit especially as a pH adjuster, The thing similar to the below-mentioned pH adjuster can be used.
 表面修飾剤を使用する場合の表面修飾剤の添加量は、特に制限されないが、水熱反応により得られた二酸化バナジウム含有粒子の質量に対して、0.1~100質量%であることが好ましく、1~10質量%であることがより好ましく、1~5質量%であることがさらに好ましい。 The addition amount of the surface modifier in the case of using the surface modifier is not particularly limited, but is preferably 0.1 to 100% by mass with respect to the mass of the vanadium dioxide-containing particles obtained by the hydrothermal reaction. The content is more preferably 1 to 10% by mass, and further preferably 1 to 5% by mass.
 表面修飾剤の添加は、粒子表面を修飾する観点から、水熱反応直後(反応終了時点の直後)に開始することが好ましい。具体的には反応終了時点から10秒以内に添加を行うことが好ましく、5秒以内に添加を行うことがより好ましい。 The addition of the surface modifier is preferably started immediately after the hydrothermal reaction (immediately after the end of the reaction) from the viewpoint of modifying the particle surface. Specifically, the addition is preferably performed within 10 seconds from the end of the reaction, and more preferably within 5 seconds.
 表面修飾剤の添加方法としては、特に制限されず、公知の方法を用いることができる。たとえば図1に記載のマイクロリアクター型流通式反応装置1を用いた場合は、水熱反応直後の反応液に対して、表面修飾剤(または表面修飾剤を含む溶液)を、タンク10からポンプ12で配管11を介して流すことで混合することができる。 The method for adding the surface modifier is not particularly limited, and a known method can be used. For example, when the microreactor type flow reactor 1 shown in FIG. 1 is used, a surface modifier (or a solution containing the surface modifier) is supplied from the tank 10 to the pump 12 with respect to the reaction liquid immediately after the hydrothermal reaction. Can be mixed by flowing through the pipe 11.
 表面修飾剤を含む溶液が配管を通過(流通)する速度(流通速度)は、特に制限されないが、好ましくは0.01~10mL/秒、より好ましくは0.1~5mL/秒である。このような流通速度であれば、表面修飾剤と、二酸化バナジウム含有粒子と、を十分接触させて、有機部位の割合が小さいため耐久性は確保したまま、表面修飾剤による効果(粒子の凝集抑制効果、分散安定性や保存安定性)を十分有効に発揮させることができる。 The speed at which the solution containing the surface modifier passes (circulates) through the pipe (circulation speed) is not particularly limited, but is preferably 0.01 to 10 mL / second, more preferably 0.1 to 5 mL / second. At such a distribution speed, the surface modifier and the vanadium dioxide-containing particles are sufficiently brought into contact with each other, and since the ratio of the organic portion is small, the effect of the surface modifier (inhibition of particle aggregation) is maintained while ensuring durability. Effect, dispersion stability and storage stability) can be exhibited sufficiently effectively.
 水熱反応後の反応液と表面修飾剤との混合位置(配管11の設置位置)は、特に制限されないが、表面修飾剤の添加を水熱反応直後に開始するために、マイクロリアクター部16の直後に配置することが好ましい。また、マイクロリアクター型流通式反応装置1のように、マイクロリアクター部16の後に冷却管8を有する場合は、マイクロリアクター部16の直後であって冷却管8の前に配置することが好ましい。 The mixing position of the reaction solution after the hydrothermal reaction and the surface modifier (the installation position of the pipe 11) is not particularly limited, but in order to start adding the surface modifier immediately after the hydrothermal reaction, It is preferable to arrange it immediately after. Further, when the cooling pipe 8 is provided after the microreactor section 16 as in the microreactor type flow reactor 1, it is preferable to arrange the cooling pipe 8 immediately after the microreactor section 16 and before the cooling pipe 8.
 なお、表面修飾剤と共に、後述のpH調整剤または後述の冷却工程における冷却媒体を用いる場合は、タンク10、配管11およびポンプ12等の必要な設備をそれぞれに対応する形で個別に設けてもよい。また、表面修飾剤およびpH調整剤、表面修飾剤および冷却媒体、または表面修飾剤、pH調整剤および冷却媒体を混合して用いる場合については、これらを混合したものについて、1つの設備を、複数の機能を同時に実現するために使用してもよい。 In addition, when using the below-mentioned pH adjuster or the cooling medium in a below-mentioned cooling process with a surface modifier, necessary equipment, such as the tank 10, the piping 11, and the pump 12, may be provided individually corresponding to each. Good. In addition, in the case of using a mixture of a surface modifier and a pH adjuster, a surface modifier and a cooling medium, or a surface modifier, a pH adjuster and a cooling medium, one facility is used for a mixture of these. May be used to simultaneously realize the functions of
 ここで、本明細書においては、水熱反応直後の表面修飾剤の添加、すなわち後述の(b)冷却工程よりも前に行われる表面修飾剤の添加は(a)水熱反応工程に含まれるものして扱うものとする。 Here, in this specification, the addition of the surface modifier immediately after the hydrothermal reaction, that is, the addition of the surface modifier performed before the (b) cooling step described later is included in the (a) hydrothermal reaction step. Shall be handled.
 本発明の一形態に係る製造方法としては、水熱反応後に、さらにpH調整剤を添加してもよい。 As a production method according to an embodiment of the present invention, a pH adjuster may be further added after the hydrothermal reaction.
 pH調整剤としては、特に制限されないが、たとえば塩酸、硫酸、硝酸、リン酸、シュウ酸(水和物を含む)、水酸化アンモニウム、アンモニア等の有機または無機の酸またはアルカリ等を用いることができる。 The pH adjuster is not particularly limited, but for example, an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, oxalic acid (including hydrate), ammonium hydroxide, ammonia or the like is used. it can.
 水熱反応後の反応液のpHは、二酸化バナジウム含有粒子の粒子径および粒子径分布、ならびに二酸化バナジウム含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性の観点から、たとえば3.0~9.0であることが好ましく、4.0~7.0であることがより好ましい。これより、水熱反応後にpH調整剤を添加した後の反応液のpHは上記範囲内とすることが好ましい。なお、pH調整剤は、水熱反応においてバナジウム含有化合物と反応する化合物として用いたアルカリ、および還元剤等と同じものであってもよいし、異なるものであってもよい。 From the viewpoint of the particle size and particle size distribution of the vanadium dioxide-containing particles, the thermochromic properties of the vanadium dioxide-containing particles, and the transparency of the optical film containing the vanadium dioxide-containing particles, the pH of the reaction solution after the hydrothermal reaction is, for example, 3 It is preferably from 0.0 to 9.0, more preferably from 4.0 to 7.0. From this, it is preferable that the pH of the reaction liquid after adding the pH adjuster after the hydrothermal reaction is within the above range. The pH adjusting agent may be the same as or different from the alkali and reducing agent used as the compound that reacts with the vanadium-containing compound in the hydrothermal reaction.
 上記pH調整剤は、メタノール、エタノール、水等で適宜希釈して、溶液の形態で水熱反応後の反応液と混合されることが好ましい。 It is preferable that the pH adjusting agent is appropriately diluted with methanol, ethanol, water or the like and mixed with the reaction solution after the hydrothermal reaction in the form of a solution.
 pH調整剤の添加方法としては、特に制限されず、公知の方法を用いることができる。たとえば図1に記載のマイクロリアクター型流通式反応装置1を用いた場合は、水熱反応直後の反応液に対して、pH調整剤(またはpH調整剤を含む溶液)を、タンク10からポンプ12で配管11を介して流すことで混合することができる。 The method for adding the pH adjuster is not particularly limited, and a known method can be used. For example, when the microreactor type flow reactor 1 shown in FIG. 1 is used, a pH adjusting agent (or a solution containing the pH adjusting agent) is supplied from the tank 10 to the pump 12 with respect to the reaction solution immediately after the hydrothermal reaction. Can be mixed by flowing through the pipe 11.
 水熱反応後の反応液とpH調整剤との混合位置(配管11の設置位置)は、特に制限されないが、表面修飾剤の添加を水熱反応後に開始するために、マイクロリアクター部16の後に配置することが好ましい。また、マイクロリアクター型流通式反応装置1のように、マイクロリアクター部16の後に冷却管8を有する場合は、マイクロリアクター部16の後であって冷却管8の前に配置してもよいし、冷却管8の後であってタンク9の前に配置されていてもよい。 The mixing position of the reaction solution after the hydrothermal reaction and the pH adjusting agent (installation position of the pipe 11) is not particularly limited, but in order to start the addition of the surface modifier after the hydrothermal reaction, the microreactor section 16 It is preferable to arrange. Further, in the case of having the cooling pipe 8 after the microreactor section 16 as in the microreactor type flow reactor 1, it may be arranged after the microreactor section 16 and before the cooling pipe 8, It may be arranged after the cooling pipe 8 and before the tank 9.
 なお、pH調整剤と共に、前述の表面修飾剤または後述の冷却工程における冷却媒体を用いる場合は、タンク10、配管11およびポンプ12等の必要な設備をそれぞれに対応する形で個別に設けてもよい。また、pH調整剤および表面修飾剤、pH調整剤および冷却媒体、またはpH調整剤、表面修飾剤および冷却媒体を混合して用いる場合については、前述の表面修飾剤の説明に記載したように、これらを混合したものについて、1つの設備を、複数の機能を同時に実現するために使用してもよい。 In addition, when using the above-mentioned surface modifier or the cooling medium in the cooling process described later together with the pH adjuster, necessary equipment such as the tank 10, the pipe 11 and the pump 12 may be individually provided in a corresponding manner. Good. Further, in the case of using a pH adjuster and a surface modifier, a pH adjuster and a cooling medium, or a mixture of a pH adjuster, a surface modifier and a cooling medium, as described in the description of the surface modifier above, For a mixture of these, one facility may be used to simultaneously realize a plurality of functions.
 また、pH調整剤の添加が、後述の(b)冷却工程よりも前に行われる場合は、これらの添加は(a)水熱反応工程に含まれるものとし、後述の(b)冷却工程以後に行われる場合は、(b)冷却工程に含まれるものとする。 Moreover, when addition of a pH adjuster is performed before the below-mentioned (b) cooling process, these addition shall be contained in (a) hydrothermal reaction process, and after the below-mentioned (b) cooling process (B) It shall be included in a cooling process.
 (b)冷却工程
 本発明の一形態に係る製造方法は、(a)水熱反応工程に加えて、水熱反応後の反応液(上記(a)水熱反応工程で得られた二酸化バナジウム含有粒子を含む分散液)を冷却する冷却工程をさらに有することが好ましい。
(B) Cooling step In addition to the (a) hydrothermal reaction step, the production method according to one embodiment of the present invention includes a reaction solution after the hydrothermal reaction (containing vanadium dioxide obtained in the above (a) hydrothermal reaction step). It is preferable to further have a cooling step for cooling the dispersion liquid containing particles).
 冷却工程は、水熱反応を所定時間行って(反応終了時点)から1分以内に、水熱反応後の反応液の冷却を開始することが好ましいが、反応液全量をこの時間内に冷却することが難しい場合は、反応時間に幅を持たせて反応液を反応温度に保ちながら所定量ずつ順次冷却してもよい。 In the cooling step, it is preferable to start cooling the reaction liquid after the hydrothermal reaction within 1 minute after the hydrothermal reaction is performed for a predetermined time (at the end of the reaction), but the entire reaction liquid is cooled within this time. If this is difficult, the reaction solution may be cooled sequentially by a predetermined amount while maintaining the reaction temperature at the reaction temperature with a wide reaction time.
 本工程では、冷却速度は適宜調整することができる。 In this step, the cooling rate can be adjusted as appropriate.
 水熱反応後の反応液の冷却方法は、特に制限されず、公知の方法を同様にしてまたは適宜修飾して適用できる。冷却方法としては、たとえば、水熱反応後の反応液を必要であれば撹拌しながら冷却媒体中に浸漬する方法、水熱反応後の反応液と、冷却媒体(特に水)と、を混合する方法、水熱反応後の反応液にガス状の冷却媒体(たとえば、液体窒素)を通過させる方法などが挙げられる。これらのうち、冷却速度の制御が容易である点から、水熱反応後の反応液と、冷却媒体と、を混合する方法が好ましい。ここで、少なくとも、冷却はマイクロリアクター型流通式反応装置において、マイクロリアクター部に、直接または他の構成部分を介して接続された、冷却管を用いて行われることが好ましい。 The method for cooling the reaction solution after the hydrothermal reaction is not particularly limited, and a known method can be applied in the same manner or appropriately modified. As a cooling method, for example, a reaction solution after hydrothermal reaction is immersed in a cooling medium while stirring, if necessary, and a reaction liquid after hydrothermal reaction is mixed with a cooling medium (especially water). Examples thereof include a method and a method in which a gaseous cooling medium (for example, liquid nitrogen) is passed through the reaction solution after the hydrothermal reaction. Among these, the method of mixing the reaction liquid after the hydrothermal reaction and the cooling medium is preferable because the cooling rate can be easily controlled. Here, at least the cooling is preferably performed in the microreactor type flow reactor using a cooling pipe connected to the microreactor unit directly or via other components.
 マイクロリアクター型流通式反応装置において、マイクロリアクター部に、直接または他の構成部分を介して接続された、冷却管を用いた冷却方法について説明する。なお、本発明に用いることができる冷却方法は下記方法に限定されない。 In the microreactor type flow reactor, a cooling method using a cooling pipe connected to the microreactor unit directly or via other components will be described. In addition, the cooling method which can be used for this invention is not limited to the following method.
 冷却方法としては、水熱反応後の反応液をマイクロリアクター型流通式反応装置の流路を通過(流通)させることにより冷却する。すなわち、図1のマイクロリアクター型流通式反応装置1を例として説明すると、マイクロリアクター部16の後の流路を通過(流通)させることにより冷却を行う。ここで、マイクロリアクター型流通式反応装置1は、必要に応じて、図1に示すように、水熱反応後の反応液をさらに冷却するための冷却管8をさらに備えてもよい。 As a cooling method, the reaction liquid after the hydrothermal reaction is cooled by passing (circulating) the flow path of the microreactor type flow reactor. In other words, taking the microreactor type flow reactor 1 of FIG. 1 as an example, cooling is performed by passing (circulating) the flow path after the microreactor section 16. Here, the microreactor type flow reactor 1 may further include a cooling pipe 8 for further cooling the reaction liquid after the hydrothermal reaction, as shown in FIG.
 また、他の冷却方法としては、水熱反応後の反応液と、冷却媒体と、を混合して冷却することを目的として、前述のようにタンク10等の必要な設備を、冷却媒体の流通のために用いる方法であってもよい。このとき、冷却方法に用いる設備は、冷却媒体を、配管11を介して流通させるためのポンプ12をさらに含んでいてもよい。 In addition, as another cooling method, for the purpose of mixing and cooling the reaction liquid after the hydrothermal reaction and the cooling medium, the necessary equipment such as the tank 10 is circulated as described above. It may be a method used for the purpose. At this time, the equipment used for the cooling method may further include a pump 12 for circulating the cooling medium through the pipe 11.
 また、この場合、冷却媒体としては、pH調整剤を添加することで得られる、pH調整効果を有する冷却媒体を用いてもよい。 In this case, as the cooling medium, a cooling medium having a pH adjusting effect obtained by adding a pH adjusting agent may be used.
 冷却媒体を使用する場合の、冷却媒体の水熱反応後の反応液との混合割合は、所望の冷却速度を達成できる限り、特に制限されない。たとえば、冷却媒体を、水熱反応後の反応液に比して、1~2000倍(体積比)、より好ましくは10~1000倍(体積比)の割合で混合することが好ましい。なお、上記混合割合は、水熱反応後の反応液および冷却媒体の流通速度を上記したような割合になるように設定することによって制御できる。 When using a cooling medium, the mixing ratio of the cooling medium with the reaction liquid after the hydrothermal reaction is not particularly limited as long as a desired cooling rate can be achieved. For example, it is preferable to mix the cooling medium at a ratio of 1 to 2000 times (volume ratio), more preferably 10 to 1000 times (volume ratio) compared to the reaction liquid after the hydrothermal reaction. The mixing ratio can be controlled by setting the flow rates of the reaction solution and the cooling medium after the hydrothermal reaction so as to have the above ratio.
 また、冷却媒体の温度は、特に制限されないが、二酸化バナジウムの相転移温度(約68℃)より高いことが好ましく、70~95℃であることがより好ましい。上記に代えてまたは上記に加えて、水熱反応後の反応液を水と混合してから5分間以上、前記水熱反応直後の反応液と水との混合物の温度を70~95℃に維持することがより好ましい。このような温度に設定することによって、所望のルチル型結晶相(R相)の二酸化バナジウムの純度をより向上できる。なお、水熱反応直後の反応液と水との混合物の温度を維持する時間の上限は、特に制限されないが、水熱反応直後の反応物を水と混合してから10分以下であれば十分である。 The temperature of the cooling medium is not particularly limited, but is preferably higher than the phase transition temperature (about 68 ° C.) of vanadium dioxide, and more preferably 70 to 95 ° C. Instead of the above or in addition to the above, the temperature of the mixture of the reaction solution and water immediately after the hydrothermal reaction is maintained at 70 to 95 ° C. for 5 minutes or longer after the reaction solution after the hydrothermal reaction is mixed with water. More preferably. By setting to such a temperature, the purity of the desired rutile-type crystal phase (R phase) vanadium dioxide can be further improved. In addition, the upper limit of the time for maintaining the temperature of the mixture of the reaction liquid immediately after the hydrothermal reaction and water is not particularly limited, but it is sufficient if it is 10 minutes or less after mixing the reactant immediately after the hydrothermal reaction with water. It is.
 冷却媒体を使用する場合には、水熱反応後の反応液と冷却媒体(好ましくは水)との混合物は、特に制限されないが、pHが4~7であることがより好ましい。当該pHに設定することによって、粒子形成(結晶析出)後の二酸化バナジウム含有粒子の安定性を向上できる。ゆえに、所望のルチル型結晶相(R相)の二酸化バナジウムの純度をより向上し、二酸化バナジウム含有粒子のサーモクロミック性をより有効に向上できる。なお、かようなpHの値の達成手段は、特に制限されず、前述のpH調整剤を冷却工程前の水熱反応後の反応液に添加することで達成されてもよく、冷却工程においてpH調整剤が混合された冷却媒体を用いることで達成されてもよい。 When a cooling medium is used, the mixture of the reaction liquid after the hydrothermal reaction and the cooling medium (preferably water) is not particularly limited, but the pH is more preferably 4 to 7. By setting to the said pH, stability of the vanadium dioxide containing particle | grains after particle | grain formation (crystal precipitation) can be improved. Therefore, the purity of vanadium dioxide of the desired rutile type crystal phase (R phase) can be further improved, and the thermochromic properties of the vanadium dioxide-containing particles can be more effectively improved. The means for achieving such a pH value is not particularly limited, and may be achieved by adding the aforementioned pH adjuster to the reaction solution after the hydrothermal reaction before the cooling step. It may be achieved by using a cooling medium mixed with a modifier.
 冷却媒体を使用する場合について、水熱反応後の反応液と冷却媒体との混合位置(配管11の設置位置)は、特に制限されないが、水熱反応後の反応液の冷却効率などを考慮すると、配管11が、配管3のタンク9側の出口から10~500mmの距離の位置で配管3と連結されていることが好ましい。 In the case of using a cooling medium, the mixing position of the reaction liquid after the hydrothermal reaction and the cooling medium (installation position of the pipe 11) is not particularly limited, but considering the cooling efficiency of the reaction liquid after the hydrothermal reaction, etc. The pipe 11 is preferably connected to the pipe 3 at a distance of 10 to 500 mm from the outlet of the pipe 3 on the tank 9 side.
 なお、冷却媒体と共に、前述の表面修飾剤または前述のpH調整剤を用いる場合は、タンク10、配管11およびポンプ12等の必要な設備をそれぞれに対応する形で個別に設けてもよい。また、冷却媒体および表面修飾剤、または冷却媒体およびpH調整剤、または冷却媒体、pH調整剤および表面修飾剤を混合して用いる場合については、前述の表面修飾剤やpH調整剤の説明に記載したように、これらを混合したものについて、1つの設備を複数の機能を同時に実現するために使用してもよい。 In addition, when using the above-mentioned surface modifier or the above-mentioned pH adjuster with a cooling medium, you may provide individually the required equipments, such as the tank 10, the piping 11, and the pump 12, corresponding to each. In the case of using a cooling medium and a surface modifier, or a cooling medium and a pH adjuster, or a mixture of a cooling medium, a pH adjuster and a surface modifier, described in the description of the surface modifier and the pH adjuster. As described above, for a mixture of these, one facility may be used to simultaneously realize a plurality of functions.
 冷却された水熱反応後の反応液(冷却液)は、濾過(たとえば、限外濾過)や遠心分離により、分散媒や溶媒の置換を行い、二酸化バナジウム含有粒子を水やアルコール(たとえば、エタノール)等によって洗浄してもよい。また、得られた二酸化バナジウム含有粒子は、任意の手段により乾燥してもよい。 The cooled reaction liquid (cooling liquid) after the hydrothermal reaction is replaced with a dispersion medium or a solvent by filtration (for example, ultrafiltration) or centrifugal separation, and the vanadium dioxide-containing particles are replaced with water or alcohol (for example, ethanol). ) Or the like. The obtained vanadium dioxide-containing particles may be dried by any means.
 <二酸化バナジウム含有粒子>
 本発明の他の一形態は、平均粒子径(D)が60nm以下であり、多分散指数(PDI)が0.30未満である、二酸化バナジウム(VO)含有粒子である。本形態に係る二酸化バナジウム含有粒子によれば、二酸化バナジウム含有粒子のサーモクロミック性および該二酸化バナジウム含有粒子を含む光学フィルムの透明性を向上(ヘイズを減少)しうる手段が提供される。本発明の一形態に係る製造方法によって、二酸化バナジウム(VO)含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性に優れる二酸化バナジウム含有粒子が提供されることから、前記粒子は本発明の一形態に係る製造方法によって製造されることが好ましい。
<Vanadium dioxide-containing particles>
Another embodiment of the present invention is vanadium dioxide (VO 2 ) -containing particles having an average particle diameter (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30. According to the vanadium dioxide-containing particles according to the present embodiment, means for improving the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles (reducing haze) is provided. The manufacturing method according to an aspect of the present invention provides vanadium dioxide-containing particles having excellent thermochromic properties of vanadium dioxide (VO 2 ) -containing particles and transparency of an optical film including vanadium dioxide-containing particles. Is preferably manufactured by the manufacturing method according to one aspect of the present invention.
 本発明の一形態に係る二酸化バナジウム含有粒子は、小さい粒子径を有しかつ狭い粒子径分布を示す。ここで、二酸化バナジウム含有粒子の平均粒子径(D)は、特に制限されないが、60nm以下であることが好ましく、40nm以下であることがより好ましく、35nm以下であることがさらに好ましく、25nm以下であることがよりさらに好ましく、15nm以下であることが特に好ましく、10nm以下であることがきわめて好ましく、8nm以下であることが最も好ましい。なお、二酸化バナジウム含有粒子の平均粒子径(D)(nm)の下限は特に制限されないが、2nm以上であることが好ましい。このような粒子径の二酸化バナジウム含有粒子であれば、ヘイズをより良好に下げ、サーモクロミック性をより向上することができる。なお、二酸化バナジウム含有粒子の粒子径は、電子顕微鏡観察や動的光散乱法に基づく粒子径測定法により測定することができる。動的光散乱法に基づいて粒子径を測定する場合、動的光散乱解析装置(DLS-8000、大塚電子株式会社製)を用いて、動的光散乱(Dynamic Light Scattering, DLS)法によって流体力学的直径を測定する。本明細書では、二酸化バナジウム含有粒子の平均粒子径(D)(nm)は、後述の実施例に記載される方法によって測定された値を採用する。 The vanadium dioxide-containing particles according to an embodiment of the present invention have a small particle size and a narrow particle size distribution. Here, the average particle diameter (D) of the vanadium dioxide-containing particles is not particularly limited, but is preferably 60 nm or less, more preferably 40 nm or less, further preferably 35 nm or less, and 25 nm or less. More preferably, it is particularly preferably 15 nm or less, particularly preferably 10 nm or less, and most preferably 8 nm or less. The lower limit of the average particle diameter (D) (nm) of the vanadium dioxide-containing particles is not particularly limited, but is preferably 2 nm or more. With vanadium dioxide-containing particles having such a particle size, haze can be lowered more favorably and thermochromic properties can be further improved. The particle diameter of the vanadium dioxide-containing particles can be measured by an electron microscope observation or a particle diameter measurement method based on a dynamic light scattering method. When measuring the particle diameter based on the dynamic light scattering method, the fluid is analyzed by the dynamic light scattering (Dynamic Light Scattering, DLS) method using a dynamic light scattering analyzer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). Measure the mechanical diameter. In this specification, the value measured by the method described in the below-mentioned Example is employ | adopted for the average particle diameter (D) (nm) of vanadium dioxide containing particle | grains.
 また、二酸化バナジウム含有粒子の粒子径分布は、特に制限されないが、多分散指数(PDI)を指標とした場合に、多分散指数(PDI)が、0.30未満であることが好ましく、0.01~0.25であることがより好ましく、0.01~0.15であることがさらに好ましく、0.01~0.10であることが特に好ましく、0.01~0.08であることが最も好ましい。このような多分散指数(PDI)を示す粒子径分布を有する二酸化バナジウム含有粒子であれば、二酸化バナジウム含有粒子のサーモクロミック性および二酸化バナジウム含有粒子を含む光学フィルムの透明性を有効に向上できる。なお、本明細書において、二酸化バナジウム含有粒子の粒度分布を示す「多分散指数(PDI)」は、後述の実施例に記載される方法によって測定された値を採用する。 Further, the particle size distribution of the vanadium dioxide-containing particles is not particularly limited, but when the polydispersity index (PDI) is used as an index, the polydispersity index (PDI) is preferably less than 0.30. It is more preferably from 01 to 0.25, further preferably from 0.01 to 0.15, particularly preferably from 0.01 to 0.10, and preferably from 0.01 to 0.08. Is most preferred. The vanadium dioxide-containing particles having a particle size distribution exhibiting such a polydispersity index (PDI) can effectively improve the thermochromic properties of the vanadium dioxide-containing particles and the transparency of the optical film containing the vanadium dioxide-containing particles. In this specification, “polydispersity index (PDI)” indicating the particle size distribution of vanadium dioxide-containing particles adopts a value measured by a method described in Examples described later.
 本発明の一形態に係る製造方法により得られた二酸化バナジウム含有粒子、または本発明の一形態に係る二酸化バナジウム含有粒子は、たとえばポリビニルアルコール等の樹脂と混合して遮熱フィルムに利用したり、サーモクロミック顔料に利用したりできる。 The vanadium dioxide-containing particles obtained by the production method according to an aspect of the present invention, or the vanadium dioxide-containing particles according to an aspect of the present invention, for example, mixed with a resin such as polyvinyl alcohol and used for a heat shielding film, It can be used for thermochromic pigments.
 <分散液および分散液の製造方法>
 また、本発明の他の一形態は、本発明の一形態に係る製造方法によって二酸化バナジウム含有粒子を製造する工程と、当該二酸化バナジウム含有粒子を分散媒中に分散させる工程と、を含む、分散液の製造方法である。また、本発明のさらなる他の一形態は、本発明の一形態に係る二酸化バナジウム含有粒子を含有する、分散液である。
<Dispersion and method for producing dispersion>
Another embodiment of the present invention includes a step of producing vanadium dioxide-containing particles by the production method according to one embodiment of the present invention, and a step of dispersing the vanadium dioxide-containing particles in a dispersion medium. It is a manufacturing method of a liquid. Yet another embodiment of the present invention is a dispersion containing vanadium dioxide-containing particles according to an embodiment of the present invention.
 本発明に係る二酸化バナジウム含有粒子は、小粒子径でかつ狭い粒子径分布(均一粒子径)を有するため、このような粒子を含む分散液を塗布することによって、サーモクロミック特性を向上すると共に、ヘイズの影響を低減できる。このため、二酸化バナジウム含有粒子を含む光学フィルムの透明性の高いフィルムを提供できる。 Since the vanadium dioxide-containing particles according to the present invention have a small particle size and a narrow particle size distribution (uniform particle size), by applying a dispersion containing such particles, the thermochromic properties are improved, The effect of haze can be reduced. For this reason, a highly transparent film of an optical film containing vanadium dioxide-containing particles can be provided.
 分散液としては、水熱反応工程後の反応液または冷却工程後の冷却液(反応液)をそのまま用いても、または水熱反応工程後の反応液または冷却液(反応液)に水やアルコール等を添加して希釈したり、水熱反応工程後の反応液または冷却液(反応液)の分散媒を水やアルコール等に交換したりしてもよい。 As the dispersion, the reaction liquid after the hydrothermal reaction step or the cooling liquid (reaction liquid) after the cooling process is used as it is, or the reaction liquid or cooling liquid (reaction liquid) after the hydrothermal reaction step is used as water or alcohol. Etc. may be added for dilution, or the dispersion medium of the reaction liquid or cooling liquid (reaction liquid) after the hydrothermal reaction step may be replaced with water or alcohol.
 二酸化バナジウム含有粒子を分散させる方法は、特に制限されず、たとえば超音波を用いてもよい。 The method for dispersing the vanadium dioxide-containing particles is not particularly limited, and for example, ultrasonic waves may be used.
 分散液の分散媒は、水のみからなるものであってもよいが、たとえば、水に加えて0.1~10質量%(分散液中)程度の有機溶媒、たとえばメタノール、エタノール、イソプロパノール、ブタノール等のアルコール、アセトン等のケトン類等を含んでもよい。また、分散媒としては、リン酸緩衝液、フタル酸緩衝液などを用いることもできる。 The dispersion medium of the dispersion may be composed only of water. For example, in addition to water, an organic solvent of about 0.1 to 10% by mass (in the dispersion), for example, methanol, ethanol, isopropanol, butanol And alcohols such as acetone, ketones such as acetone, and the like. Moreover, as a dispersion medium, a phosphate buffer, a phthalate buffer, etc. can also be used.
 分散液には、塩酸、硫酸、硝酸、リン酸、フタル酸、水酸化アンモニウム、アンモニア等の有機または無機の酸またはアルカリを含有させて、所望のpHに調節してもよい。 The dispersion may contain an organic or inorganic acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phthalic acid, ammonium hydroxide, ammonia, etc., and may be adjusted to a desired pH.
 分散液中での二酸化バナジウム含有粒子の凝集が抑制されるという観点から、分散液のpHは4~7であることが好ましい。 From the viewpoint of suppressing aggregation of vanadium dioxide-containing particles in the dispersion, the pH of the dispersion is preferably 4-7.
 分散液中での二酸化バナジウム含有粒子の濃度は、分散安定性の観点から、分散液の総質量に対して、0.01~40質量%であることが好ましく、0.5~40質量%であることがより好ましく、1~30質量%であることがさらに好ましい。 From the viewpoint of dispersion stability, the concentration of the vanadium dioxide-containing particles in the dispersion is preferably 0.01 to 40% by mass, and 0.5 to 40% by mass with respect to the total mass of the dispersion. More preferably, it is 1 to 30% by mass.
 <光学フィルムおよび光学フィルムの製造方法>
 本発明の一形態に係る二酸化バナジウム粒子を用いることにより、当該二酸化バナジウム粒子および樹脂を含む光学機能層を有する光学フィルムを製造することができる。かような光学フィルムの製造方法としては、本発明の一形態に係る製造方法によって二酸化バナジウム含有粒子を製造する工程と、当該二酸化バナジウム含有粒子と、樹脂と、を含む樹脂組成物を成膜することで光学機能層を形成する工程と、を有する光学フィルムの製造方法であることが好ましい。本発明の他の一形態は、本発明の一形態に係る製造方法によって二酸化バナジウム含有粒子を製造する工程と、樹脂と、二酸化バナジウム含有粒子と、分散媒と、を含む塗布液を調整した後、塗布液を透明基材上に塗布し、乾燥することで光学機能層を形成する工程と、を含む、透明基材および光学機能層を含む、光学フィルムの製造方法である。また、本発明のその他の一形態は、透明基材、ならびに透明基材上に形成される光学機能層を有し、光学機能層が、本発明の一形態に係る二酸化バナジウム含有粒子を含有する、光学フィルムである。
<Optical film and method for producing optical film>
By using the vanadium dioxide particles according to one embodiment of the present invention, an optical film having an optical functional layer containing the vanadium dioxide particles and a resin can be manufactured. As a method for producing such an optical film, a process for producing vanadium dioxide-containing particles by a production method according to one embodiment of the present invention, and forming a resin composition containing the vanadium dioxide-containing particles and a resin are formed. It is preferable that it is a manufacturing method of the optical film which has the process of forming an optical function layer by this. According to another aspect of the present invention, after preparing a coating liquid containing a step of producing vanadium dioxide-containing particles by a production method according to one aspect of the present invention, a resin, vanadium dioxide-containing particles, and a dispersion medium. And a step of forming an optical functional layer by applying a coating liquid on a transparent substrate and drying it, and a method for producing an optical film comprising a transparent substrate and an optical functional layer. Another embodiment of the present invention includes a transparent substrate and an optical functional layer formed on the transparent substrate, and the optical functional layer contains the vanadium dioxide-containing particles according to one embodiment of the present invention. It is an optical film.
 (透明基材)
 ここで、光学フィルムに適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、可撓性の付与および生産適性(製造工程適性)の観点からは、透明基材であることが好ましい。本発明でいう透明基材における「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
(Transparent substrate)
Here, the transparent substrate applicable to the optical film is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. From the viewpoint of suitability, it is preferably a transparent substrate. The term “transparent” in the transparent substrate in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80%. That's it.
 本発明の一形態に係る透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、さらに好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取扱い中にシワ等がより発生しにくくなり、また厚さが200μm以下であれば、合わせガラス作製時、ガラス基材と貼り合わせる際のガラス曲面への追従性がより向上する。 The thickness of the transparent substrate according to one embodiment of the present invention is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. is there. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, the curved surface of the glass when bonded to the glass substrate when making laminated glass Follow-up performance is further improved.
 本発明の一形態に係る透明基材は、光学フィルムのシワの生成や赤外線反射層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることがさらに好ましい。 The transparent substrate according to an embodiment of the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the infrared reflective layer. Preferably, the content is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
 本発明の一形態に係る光学フィルムに適用可能な透明基材としては、上述のように、透明であれば特に制限されることはいが、種々の透明樹脂フィルムを用いることが好ましく、たとえば、ポリオレフィンフィルム(たとえば、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくはポリエステルフィルム、トリアセチルセルロースフィルムであり、より好ましくはポリエステルフィルムである。 As described above, the transparent substrate applicable to the optical film according to an embodiment of the present invention is not particularly limited as long as it is transparent, but various transparent resin films are preferably used. A film (for example, polyethylene, polypropylene, etc.), a polyester film (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, a triacetyl cellulose film, etc. can be used, preferably a polyester film or a triacetyl cellulose film. More preferably, it is a polyester film.
 ポリエステルフィルム(以降、単にポリエステルと称す。)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、およびこれらを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールとからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components. The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among them, polyethylene terephthalate, polyethylene naphthalate, polyesters containing these as main constituents, copolymer polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and two or more of these polyesters A polyester having a mixture as a main constituent is preferred.
 透明樹脂フィルムとしては、二軸配向ポリエステルフィルムであることが特に好ましいが、未延伸または少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明に係る光学フィルムを具備した合わせガラスを、自動車のフロントガラスとして用いられる際に、延伸フィルムがより好ましい。 The transparent resin film is particularly preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. In particular, when the laminated glass provided with the optical film according to the present invention is used as an automobile windshield, a stretched film is more preferable.
 本発明の一形態に係る透明基材として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。当該透明樹脂フィルムに採用可能な粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とする樹脂(たとえばポリエステル等)中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、たとえば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 In the case of using a transparent resin film as a transparent substrate according to an embodiment of the present invention, particles may be contained within a range that does not impair transparency in order to facilitate handling. Examples of particles that can be used for the transparent resin film include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide. And organic particles such as crosslinked polymer particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a raw material resin (for example, polyester), a method of adding particles directly to an extruder, and the like. May be employed, or two methods may be used in combination. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants, dyes, pigments, ultraviolet absorbers and the like.
 透明基材である透明樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。たとえば、材料となる樹脂を溶媒と混合してドープを作製し、ドープを連続支持体上に流延することで製膜を行い、連続支持体上で一部乾燥を行った後に連続支持体から剥離し、その後十分乾燥を行うとともに、任意に乾燥中および/または乾燥後に延伸処理を行うことにより、未延伸または延伸された透明樹脂フィルムを製造することができる。また、たとえば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の透明樹脂フィルムを製造することができる。また、未延伸の透明樹脂フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、透明樹脂フィルムの流れ(縦軸)方向、または透明樹脂フィルムの流れ方向と直角(横軸)方向に延伸することにより延伸透明樹脂フィルムを製造することができる。この場合の延伸倍率は、透明樹脂フィルムの原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。また、前記延伸処理は、予め延伸された透明樹脂フィルムに対してさらに行ってもよい。 A transparent resin film that is a transparent substrate can be produced by a conventionally known general method. For example, a dope is prepared by mixing a resin as a material with a solvent, and the dope is cast on a continuous support to form a film, and after partially drying on the continuous support, from the continuous support An unstretched or stretched transparent resin film can be produced by peeling and then sufficiently drying and optionally performing a stretching treatment during and / or after drying. Further, for example, an unstretched transparent resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. . The unstretched transparent resin film is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods such as transparent resin film flow (vertical axis) direction. Alternatively, a stretched transparent resin film can be produced by stretching in the direction perpendicular to the flow direction of the transparent resin film (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the transparent resin film, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction. Moreover, you may further perform the said extending | stretching process with respect to the transparent resin film previously extended | stretched.
 また、透明樹脂フィルムは、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 Further, the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability. It is preferable that the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
 透明樹脂フィルムは、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、製膜工程中での下引塗布をインライン下引という。本発明の一形態に係る透明樹脂フィルムに対して有用な下引層塗布液に使用する樹脂としては、ポリエステル樹脂、(メタ)アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度が好ましい。 The transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film forming process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating. Examples of the resin used for the undercoat layer coating solution useful for the transparent resin film according to one embodiment of the present invention include polyester resin, (meth) acryl-modified polyester resin, polyurethane resin, acrylic resin, vinyl resin, and vinylidene chloride resin. , Polyethyleneimine vinylidene resin, polyethyleneimine resin, polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating. The coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
 (光学機能層)
 本発明の一形態に係る光学フィルムは、樹脂および本発明に係る二酸化バナジウム含有粒子を含有する光学機能層を有する。光学フィルムは、透明基材、および透明基材上に、樹脂および本発明に係る二酸化バナジウム含有粒子を含有する光学機能層を有する構成であることが好ましい。
(Optical function layer)
The optical film which concerns on one form of this invention has an optical function layer containing resin and the vanadium dioxide containing particle | grains which concern on this invention. The optical film preferably has a structure having an optical functional layer containing a resin and vanadium dioxide-containing particles according to the present invention on the transparent substrate and the transparent substrate.
 ここで、樹脂としては、特に制限されず、従来光学機能層に使用されるのと同様の樹脂が使用できる。好ましくは水溶性高分子が使用できる。ここで、水溶性高分子とは、25℃の水100gに0.001g以上溶解する高分子のことをいう。水溶性高分子の具体例としては、ポリビニルアルコール、ポリエチレンイミン、ゼラチン(たとえば、特開2006-343391号公報記載のゼラチンを代表とする親水性高分子)、デンプン、グアーガム、アルギン酸塩、メチルセルロース、エチルセルロース、ヒドロキシアルキルセルロース、カルボキシアルキルセルロース、ポリ(メタ)アクリルアミド、ポリエチレンイミン、ポリエチレングリコール、ポリアルキレンオキサイド、ポリビニルピロリドン(PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ナフタリンスルホン酸縮合物や、アルブミン、カゼイン等の蛋白質、アルギン酸ソーダ、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体等を挙げることができる。 Here, the resin is not particularly limited, and the same resin as that conventionally used for the optical functional layer can be used. Preferably, a water-soluble polymer can be used. Here, the water-soluble polymer refers to a polymer that dissolves 0.001 g or more in 100 g of water at 25 ° C. Specific examples of the water-soluble polymer include polyvinyl alcohol, polyethyleneimine, gelatin (for example, a hydrophilic polymer typified by gelatin described in JP-A-2006-343391), starch, guar gum, alginate, methylcellulose, and ethylcellulose. , Hydroxyalkyl cellulose, carboxyalkyl cellulose, poly (meth) acrylamide, polyethyleneimine, polyethylene glycol, polyalkylene oxide, polyvinyl pyrrolidone (PVP), polyvinyl methyl ether, carboxyvinyl polymer, poly (meth) acrylic acid, poly (meth) Sodium acrylate, naphthalene sulfonic acid condensate, proteins such as albumin and casein, sodium alginate, dextrin, dextran, dextran sulfate, etc. Mention may be made of a sugar derivatives and the like.
 光学機能層における二酸化バナジウム含有粒子の含有量は、所望のサーモクロミック性を得るとの観点から、光学機能層の総質量に対して1~60質量%であることが好ましく、5~50質量%であることがより好ましい。 The content of the vanadium dioxide-containing particles in the optical functional layer is preferably 1 to 60% by mass with respect to the total mass of the optical functional layer from the viewpoint of obtaining a desired thermochromic property. It is more preferable that
 光学機能層は、本発明の目的とする効果を損なわない範囲で添加剤を使用することができる。適用可能な各種の添加剤を、以下に列挙する。たとえば、特開昭57-74193号公報、特開昭57-87988号公報、および特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、および特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオンまたはノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。 In the optical functional layer, additives can be used as long as the effects of the present invention are not impaired. Various applicable additives are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57- No. 878989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Various surfactants of cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 PH adjustment of fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc. described in No. 219266 , Antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, Examples include various known additives such as lubricants, infrared absorbers, dyes, and pigments.
 光学機能層の形成方法としては、特に制限されず、本発明の一形態に係る二酸化バナジウム含有粒子を使用する以外は、公知の方法を同様にしてまたは適宜修飾して適用することができる。具体的には、二酸化バナジウム含有粒子を含む塗布液を調製し、当該塗布液を湿式塗布方式により透明基材上に塗布、乾燥して光学機能層を形成する方法が好ましい。 The method for forming the optical functional layer is not particularly limited, and can be applied in the same manner or appropriately modified except that the vanadium dioxide-containing particles according to one embodiment of the present invention are used. Specifically, a method in which a coating solution containing vanadium dioxide-containing particles is prepared, and the coating solution is coated on a transparent substrate by a wet coating method and dried to form an optical functional layer is preferable.
 塗布液は、樹脂および二酸化バナジウム含有粒子を含むことが好ましい。また、塗布液は、本発明の一形態に係る製造方法によって得られた水熱反応後の反応液や、本発明の一形態に係る分散液を用いて、適宜樹脂や溶媒を添加することで調製されてもよい。また、塗布液は、本発明の一形態に係る製造方法によって得られた二酸化バナジウム含有粒子や、本発明の一形態に係る二酸化バナジウム含有粒子と、樹脂とを分散媒中に添加することで調製されてもよい。塗布液に含まれる分散媒は、前記分散液および分散液の製造方法において説明したものと同様のものを用いることができる。なお、塗布液の総質量に対する樹脂および二酸化バナジウム含有粒子の合計質量は、湿式塗布方式により光学機能層を形成することができれば特に制限されず、必要な膜厚や成膜条件に応じて適宜設定することができる。 The coating solution preferably contains a resin and vanadium dioxide-containing particles. In addition, the coating liquid may be prepared by appropriately adding a resin or a solvent using the reaction liquid after the hydrothermal reaction obtained by the production method according to one aspect of the present invention or the dispersion liquid according to one aspect of the present invention. It may be prepared. In addition, the coating liquid is prepared by adding the vanadium dioxide-containing particles obtained by the manufacturing method according to one embodiment of the present invention, the vanadium dioxide-containing particles according to one embodiment of the present invention, and a resin to the dispersion medium. May be. As the dispersion medium contained in the coating liquid, the same dispersion medium as described in the dispersion liquid and the method for producing the dispersion liquid can be used. The total mass of the resin and vanadium dioxide-containing particles with respect to the total mass of the coating solution is not particularly limited as long as the optical functional layer can be formed by a wet coating method, and is appropriately set according to the required film thickness and film formation conditions. can do.
 上記方法において、湿式塗布方式としては、特に制限されず、たとえば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、または米国特許第2,761,419号明細書、米国特許第2,761,791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。 In the above method, the wet coating method is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification and US Pat. No. 2,761,791.
 (他の層)
 本発明の一形態に係る光学フィルムは、上記構成部材に加えて、他の層をさらに有していてもよい。ここで、他の層としては、本発明の効果を妨げない限り特に制限されないが、たとえば、近赤外遮蔽層、紫外線吸収層、ガスバリア層、腐食防止層、アンカー層(プライマー層)、接着層、ハードコート層等が挙げられる。
(Other layers)
The optical film according to one embodiment of the present invention may further include other layers in addition to the above-described constituent members. Here, the other layers are not particularly limited as long as the effects of the present invention are not hindered. For example, the near-infrared shielding layer, the ultraviolet absorption layer, the gas barrier layer, the corrosion prevention layer, the anchor layer (primer layer), and the adhesive layer. And a hard coat layer.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively.
 <二酸化バナジウム含有粒子の製造>
 (比較例1)
 酸化硫酸バナジウム(IV)(VOSO)1gをイオン交換水に溶解して10mLとし、撹拌しながら1mol/Lの水酸化ナトリウム(NaOH、和光純薬工業株式会社製をイオン交換水で希釈)水溶液をpH7.0になるまで添加した。この懸濁液(反応液)を50mLのオートクレーブに入れ、250℃、3.98MPaで8時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
<Production of vanadium dioxide-containing particles>
(Comparative Example 1)
Dissolve 1 g of vanadium oxide (IV) sulfate (VOSO 4 ) in ion-exchanged water to 10 mL, 1 mol / L sodium hydroxide (NaOH, diluted by ion-exchanged water, manufactured by Wako Pure Chemical Industries, Ltd.) with stirring Was added until pH 7.0. This suspension (reaction solution) was put into a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 250 ° C. and 3.98 MPa for 8 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (比較例2)
 比較例1と同様に調製した懸濁液を50mLのオートクレーブに入れ、270℃、5.51MPaで24時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Comparative Example 2)
A suspension prepared in the same manner as in Comparative Example 1 was placed in a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 270 ° C. and 5.51 MPa for 24 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例1)
 比較例1と同様に調製した懸濁液を圧縮窒素により加圧可能なオートクレーブに入れ、10.00MPaになるように加圧して、この圧力下において、270℃24時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 1)
The suspension prepared in the same manner as in Comparative Example 1 was placed in an autoclave capable of being pressurized with compressed nitrogen, pressurized to 10.00 MPa, and hydrothermal reaction treatment was performed at 270 ° C. for 24 hours under this pressure. , Vanadium dioxide (VO 2 ) -containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例2)
 酸化硫酸バナジウム(IV)(VOSO)0.5gをイオン交換水で溶解して10mLとした溶液(原料液1)と1mol/Lの水酸化ナトリウム水溶液(NaOH、和光純薬工業株式会社製をイオン交換水で希釈)である溶液(原料液2)を、それぞれ図1に示すマイクロリアクター型流通式反応装置の原料液容器2および原料液容器5に入れて、pH7.0になる混合比で混合して反応液とした直後に、マイクロリアクター部16中で、270℃、10.00MPaで2.0秒間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 2)
A solution (raw material solution 1) in which 0.5 g of vanadium oxide (IV) (VOSO 4 ) is dissolved in ion-exchanged water to 10 mL and a 1 mol / L sodium hydroxide aqueous solution (NaOH, manufactured by Wako Pure Chemical Industries, Ltd.) A solution (raw material liquid 2) that is diluted with ion-exchanged water is put in the raw material liquid container 2 and the raw material liquid container 5 of the microreactor type flow reactor shown in FIG. Immediately after mixing to prepare a reaction solution, hydrothermal reaction treatment was performed at 270 ° C. and 10.00 MPa for 2.0 seconds in the microreactor unit 16 to form vanadium dioxide (VO 2 ) -containing particles. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例3)
 1mol/Lの水酸化ナトリウム水溶液の代わりに、1mol/Lのアンモニア水(アンモニアをイオン交換水で希釈)を用いた以外は実施例2と同様にして、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 3)
A hydrothermal reaction treatment was performed in the same manner as in Example 2 except that 1 mol / L ammonia water (ammonia was diluted with ion-exchanged water) was used instead of the 1 mol / L sodium hydroxide aqueous solution, and vanadium dioxide ( VO 2 ) containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例4)
 実施例2の原料液1にさらにタングステン酸アンモニウムパラ五水和物((NH101241・5HO、和光純薬工業株式会社製)をバナジウム:タングステンの原子比率が99:1になるように溶解した以外は実施例2と同様にして、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
Example 4
Example 2 of the raw material solution further ammonium tungstate para pentahydrate in 1 ((NH 4) 10 W 12 O 41 · 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) vanadium: atomic ratio of tungsten 99: A hydrothermal reaction treatment was performed in the same manner as in Example 2 except that the particles were dissolved so that vanadium dioxide (VO 2 ) -containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例5)
 イオン交換水の代わりに、窒素(N)ナノバブル処理された水(液温=25℃)を使用した以外は実施例2と同様にして、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。なお、上記窒素(N)ナノバブル処理された水は、超高密度ウルトラファインバブル発生装置(株式会社ナノクス製、ナノクイック(登録商標))を用いて、イオン交換水に窒素ガスを密閉系で混合することによって調製され、溶存酸素濃度は約0.6mg/Lであった。
(Example 5)
A hydrothermal reaction treatment was carried out in the same manner as in Example 2 except that nitrogen (N 2 ) nanobubble-treated water (liquid temperature = 25 ° C.) was used instead of ion-exchanged water, and vanadium dioxide (VO 2 ). Containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered. In addition, the nitrogen (N 2 ) nanobubble-treated water is a high density ultrafine bubble generator (Nanokus Co., Ltd., Nanoquick (registered trademark)), and nitrogen gas is ion-exchanged in a sealed system. Prepared by mixing, the dissolved oxygen concentration was about 0.6 mg / L.
 (実施例6)
 マイクロリアクター部16において、400℃30.00MPaで2.0秒間、水熱反応処理を行った以外は実施例5と同様にして水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は超臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 6)
In the microreactor section 16, hydrothermal reaction treatment was performed in the same manner as in Example 5 except that hydrothermal reaction treatment was performed at 400 ° C. and 30.00 MPa for 2.0 seconds to form vanadium dioxide (VO 2 ) -containing particles. did. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例7)
 エタノール(和光純薬工業株式会社製、一級)20mLと、純水5mLとの混合液に、アンモニア水(濃度28質量%、和光純薬工業株式会社製、特級)を加え、pH値が11.8の溶液を調製した。この溶液に、オルトケイ酸テトラエチル((CO)Si、和光純薬工業株式会社製、特級)0.3gを添加し、80℃で4時間、攪拌・混合して、表面修飾剤溶液を調製した。この表面修飾剤溶液を図1に示すマイクロリアクター型流通式反応装置のタンク10に仕込んだ。実施例6と同様に原料液1と、原料液2と、を混合して水熱反応した直後(5秒以内)に、上記表面修飾剤溶液を、表面修飾用タンク10から配管11を介して、生成される二酸化バナジウム(VO)含有粒子の質量に対して、オルトケイ酸テトラエチルが2質量%の量となるように混合した。ここで、水熱反応処理中における反応液中の水は超臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 7)
Ammonia water (concentration 28% by mass, Wako Pure Chemical Industries, Ltd., special grade) is added to a mixed solution of ethanol (Wako Pure Chemical Industries, Ltd., first grade) 20 mL and pure water 5 mL, and the pH value is 11. 8 solutions were prepared. To this solution, 0.3 g of tetraethyl orthosilicate ((C 2 H 5 O) 4 Si, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added and stirred and mixed at 80 ° C. for 4 hours to obtain a surface modifier. A solution was prepared. This surface modifier solution was charged into the tank 10 of the microreactor type flow reactor shown in FIG. As in Example 6, immediately after the raw material liquid 1 and the raw material liquid 2 were mixed and subjected to a hydrothermal reaction (within 5 seconds), the surface modifier solution was transferred from the surface modification tank 10 through the pipe 11. The tetraethyl orthosilicate was mixed in an amount of 2% by mass with respect to the mass of the generated vanadium dioxide (VO 2 ) -containing particles. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (比較例3)
 バナジン酸アンモニウム(NHVO、和光純薬工業株式会社製、特級)0.5gを60℃のイオン交換水で溶解して10mLとし、ヒドラジン水和物(N・HO、和光純薬工業株式会社製、特級)をイオン交換水で5質量%に希釈した水溶液をゆっくり滴下しpH9.5とした。この溶液(反応液)を50mLのオートクレーブに入れ、250℃、3.98MPaで24時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Comparative Example 3)
0.5 g of ammonium vanadate (NH 4 VO 3 , manufactured by Wako Pure Chemical Industries, Ltd., special grade) was dissolved in ion-exchanged water at 60 ° C. to make 10 mL, and hydrazine hydrate (N 2 H 4 .H 2 O, An aqueous solution obtained by diluting Wako Pure Chemical Industries, Ltd. (special grade) to 5% by mass with ion exchange water was slowly added dropwise to adjust the pH to 9.5. This solution (reaction solution) was placed in a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 250 ° C. and 3.98 MPa for 24 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (比較例4)
 比較例3と同様にして調製した溶液を50mLのオートクレーブに入れ、270℃、5.51MPaで24時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Comparative Example 4)
A solution prepared in the same manner as in Comparative Example 3 was placed in a 50 mL autoclave and subjected to a hydrothermal reaction treatment at 270 ° C. and 5.51 MPa for 24 hours to form vanadium dioxide (VO 2 ) -containing particles. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例8)
 比較例3と同様に調製した溶液を圧縮窒素により加圧可能なオートクレーブに入れ、10.00MPaになるように加圧して、この圧力下において、270℃24時間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 8)
The solution prepared in the same manner as in Comparative Example 3 was put in an autoclave that can be pressurized with compressed nitrogen, pressurized to 10.00 MPa, and subjected to a hydrothermal reaction treatment at 270 ° C. for 24 hours under this pressure. Vanadium (VO 2 ) containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例9)
 バナジン酸アンモニウム(NHVO、和光純薬工業株式会製、特級)0.5gを60℃のイオン交換水で溶解して10mLとした溶液(原料液1)とヒドラジン水和物(N・HO、和光純薬工業株式会社製、特級)をイオン交換水で5質量%に希釈した溶液(原料液2)を、それぞれ図1に示すマイクロリアクター型流通式反応装置の原料液容器2および原料液容器5に入れて、pH9.5になる混合比で混合して反応液とした直後に、マイクロリアクター部16中で、270℃、10.00MPaで2.0秒間、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
Example 9
A solution (raw material liquid 1) and hydrazine hydrate (N 2 ) containing 0.5 g of ammonium vanadate (NH 4 VO 3 , Wako Pure Chemical Industries, Ltd., special grade) dissolved in ion-exchanged water at 60 ° C. to make 10 mL. A solution obtained by diluting H 4 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd., special grade) to 5% by mass with ion-exchanged water (raw material liquid 2) is a raw material of the microreactor type flow reactor shown in FIG. Immediately after being put in the liquid container 2 and the raw material liquid container 5 and mixed at a mixing ratio of pH 9.5 to obtain a reaction liquid, in the microreactor unit 16 270 ° C., 10.00 MPa, water for 2.0 seconds. Thermal reaction treatment was performed to form particles containing vanadium dioxide (VO 2 ). Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例10)
 実施例9の原料液1にさらにタングステン酸アンモニウムパラ五水和物((NH101241・5HO、和光純薬工業株式会社製)をバナジウム:タングステンの原子比率が99:1になるように溶解した以外は実施例9と同様にして、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 10)
Further ammonium tungstate para pentahydrate in raw material liquid 1 of Example 9 ((NH 4) 10 W 12 O 41 · 5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) vanadium: atomic ratio of tungsten 99: A hydrothermal reaction treatment was performed in the same manner as in Example 9 except that the particles were dissolved so as to be 1, and vanadium dioxide (VO 2 ) -containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例11)
 イオン交換水の代わりに、窒素(N)ナノバブル処理された水(液温=25℃)を使用した以外は実施例9と同様にして、水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は亜臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。なお、上記窒素(N)ナノバブル処理された水は、超高密度ウルトラファインバブル発生装置(株式会社ナノクス製、ナノクイック(登録商標))を用いて、イオン交換水に窒素ガスを密閉系で混合することによって調製され、溶存酸素濃度は約0.6mg/Lであった。
(Example 11)
A hydrothermal reaction treatment was performed in the same manner as in Example 9 except that water (liquid temperature = 25 ° C) treated with nitrogen (N 2 ) nanobubbles was used instead of ion-exchanged water, and vanadium dioxide (VO 2 ). Containing particles were formed. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a subcritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered. In addition, the nitrogen (N 2 ) nanobubble-treated water is a high density ultrafine bubble generator (Nanokus Co., Ltd., Nanoquick (registered trademark)), and nitrogen gas is ion-exchanged in a sealed system. Prepared by mixing, the dissolved oxygen concentration was about 0.6 mg / L.
 (実施例12)
 マイクロリアクター部16において、400℃30.00MPaで2.0秒間、水熱反応処理を行った以外は実施例11と同様にして水熱反応処理を行い、二酸化バナジウム(VO)含有粒子を形成した。ここで、水熱反応処理中における反応液中の水は超臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
Example 12
In the microreactor section 16, hydrothermal reaction treatment was performed in the same manner as in Example 11 except that hydrothermal reaction treatment was performed at 400 ° C. and 30.00 MPa for 2.0 seconds to form vanadium dioxide (VO 2 ) -containing particles. did. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 (実施例13)
 エタノール(和光純薬工業株式会社製、一級)20mLと、純水5mLとの混合液に、アンモニア水(濃度28質量%、和光純薬工業株式会社製、特級)を加え、pH値が11.8の溶液を調製した。この溶液に、オルトケイ酸テトラエチル((CO)Si、和光純薬工業株式会社製、特級)0.3gを添加し、80℃で4時間、攪拌・混合して、表面修飾剤溶液を調製した。この表面修飾剤溶液を図1に示すマイクロリアクター型流通式反応装置のタンク10に仕込んだ。実施例12と同様に原料液1と、原料液2と、を混合して水熱反応した直後(5秒以内)に、上記表面修飾剤溶液を、表面修飾用タンク10から配管11を介して、生成される二酸化バナジウム(VO)含有粒子の質量に対して、オルトケイ酸テトラエチルが2質量%の量となるように混合した。ここで、水熱反応処理中における反応液中の水は超臨界状態である。その後冷却管8にて冷却を行った後、二酸化バナジウム含有粒子および水を含有する分散液を回収した。
(Example 13)
Ammonia water (concentration 28% by mass, Wako Pure Chemical Industries, Ltd., special grade) is added to a mixed solution of ethanol (Wako Pure Chemical Industries, Ltd., first grade) 20 mL and pure water 5 mL, and the pH value is 11. 8 solutions were prepared. To this solution, 0.3 g of tetraethyl orthosilicate ((C 2 H 5 O) 4 Si, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was added and stirred and mixed at 80 ° C. for 4 hours to obtain a surface modifier. A solution was prepared. This surface modifier solution was charged into the tank 10 of the microreactor type flow reactor shown in FIG. In the same manner as in Example 12, immediately after the raw material liquid 1 and the raw material liquid 2 were mixed and subjected to the hydrothermal reaction (within 5 seconds), the surface modifier solution was transferred from the surface modification tank 10 through the pipe 11. The tetraethyl orthosilicate was mixed in an amount of 2% by mass with respect to the mass of the generated vanadium dioxide (VO 2 ) -containing particles. Here, the water in the reaction solution during the hydrothermal reaction treatment is in a supercritical state. Then, after cooling in the cooling pipe 8, a dispersion containing vanadium dioxide-containing particles and water was recovered.
 実施例1~13および比較例1~4の条件を下記表1および表2に示す。 The conditions of Examples 1 to 13 and Comparative Examples 1 to 4 are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <性能評価>
 上記実施例1~13および比較例1~4で得られた二酸化バナジウム含有粒子について、下記方法に従って、平均粒子径(D)および多分散指数(PDI)を測定した。
<Performance evaluation>
For the vanadium dioxide-containing particles obtained in Examples 1 to 13 and Comparative Examples 1 to 4, the average particle diameter (D) and polydispersity index (PDI) were measured according to the following methods.
 また、上記実施例1~13および比較例1~4で得られた二酸化バナジウム含有粒子について、下記方法に従って、ヘイズおよびサーモクロミック性を評価した。 Further, the haze and thermochromic properties of the vanadium dioxide-containing particles obtained in Examples 1 to 13 and Comparative Examples 1 to 4 were evaluated according to the following methods.
 (平均粒子径(D))
 各実施例および各比較例にて得られた各二酸化バナジウム含有粒子および水を含有する分散液を、それぞれ分散液の総質量に対して二酸化バナジウム含有粒子の濃度が0.01質量%となるよう水と混合し、超音波で15分間分散して測定用サンプルを作製した。動的光散乱解析装置(DLS-8000、大塚電子株式会社製)を用いて、動的光散乱(Dynamic Light Scattering,DLS)法によって、流体力学的直径(nm)を測定した。そして、これに基づいてキュムラント解析による粒子径分布の平均粒子径を求め、この値を平均粒子径(D)(nm)とした。
(Average particle diameter (D))
Each vanadium dioxide-containing particle and water-containing dispersion obtained in each example and each comparative example was adjusted so that the concentration of vanadium dioxide-containing particles was 0.01% by mass with respect to the total mass of the dispersion. The sample for measurement was prepared by mixing with water and dispersing with ultrasonic waves for 15 minutes. A hydrodynamic diameter (nm) was measured by a dynamic light scattering (DLS) method using a dynamic light scattering analyzer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.). And based on this, the average particle diameter of the particle diameter distribution by cumulant analysis was calculated | required, and this value was made into the average particle diameter (D) (nm).
 (多分散指数(PDI))
 多分散指数(PDI)は、上記平均粒子径(D)の測定と同様にして動的光散乱法(DLS法)により測定したキュムラント解析において粒子径分布が正規分布すると仮定して算出した数値とした。
(Polydispersity index (PDI))
The polydispersity index (PDI) is a numerical value calculated on the assumption that the particle size distribution is a normal distribution in the cumulant analysis measured by the dynamic light scattering method (DLS method) in the same manner as the measurement of the average particle size (D). did.
 (サーモクロミック性)
 各実施例および各比較例にて得られた各二酸化バナジウム含有粒子分散液をSartorius stedim社製 ビバフロー50(有効濾過面積50cm、分画分子量5000)を用いて、流速300ml/min、液圧1bar(0.1MPa)で濾過を行うことで濃度調整して、ポリビニルアルコールを、ポリビニルアルコールおよび二酸化バナジウム含有粒子の総質量に対して、二酸化バナジウム含有粒子が10質量%となるように混合し、帝人・デュポンフィルム株式会社製の厚さ50μmポリエチレンテレフタレート(PET)基材上に塗布乾燥し、乾燥膜厚3μmの光学機能層を有する測定用フィルム(光学フィルム)を作製した。
(Thermochromic properties)
Each vanadium dioxide-containing particle dispersion obtained in each example and each comparative example was subjected to a flow rate of 300 ml / min and a hydraulic pressure of 1 bar using Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut-off 5000) manufactured by Sartorius steady. The concentration was adjusted by filtration at (0.1 MPa), and polyvinyl alcohol was mixed so that the vanadium dioxide-containing particles were 10% by mass with respect to the total mass of the polyvinyl alcohol and vanadium dioxide-containing particles. A film for measurement (optical film) having an optical functional layer with a dry film thickness of 3 μm was prepared by applying and drying on a 50 μm thick polyethylene terephthalate (PET) substrate manufactured by DuPont Films.
 各測定用フィルムを25℃/50%RHに24時間保存し、サーモクロミック性の評価を行った。 Each measurement film was stored at 25 ° C./50% RH for 24 hours to evaluate thermochromic properties.
 具体的には、25℃/50%RH、85℃/50%RHにおける波長2000nmでのそれぞれの透過率を測定し、算出される透過率差(ΔT)(%)を下記評価基準に従って評価した。測定は、分光光度計V-670(日本分光株式会社製)に温調ユニット(日本分光株式会社製)を取り付けて行った。ここで、透過率差(ΔT)は大きいほどよいものとし、下記評価において「△」以上であれば許容される;
 ◎: 透過率差が40%以上である
 ○: 透過率差が30%以上40%未満である
 △: 透過率差が20%以上30%未満である
 ×: 透過率差が20%未満である。
Specifically, each transmittance at a wavelength of 2000 nm at 25 ° C./50% RH and 85 ° C./50% RH was measured, and the calculated transmittance difference (ΔT) (%) was evaluated according to the following evaluation criteria. . The measurement was performed by attaching a temperature control unit (manufactured by JASCO Corporation) to a spectrophotometer V-670 (manufactured by JASCO Corporation). Here, the larger the transmittance difference (ΔT) is, the better, and if it is “Δ” or more in the following evaluation, it is acceptable;
A: Transmittance difference is 40% or more. O: Transmittance difference is 30% or more and less than 40%. Δ: Transmittance difference is 20% or more and less than 30%. X: Transmittance difference is less than 20%. .
 (透明性(ヘイズ(Haze)評価)))
 光学フィルムの透明性をヘイズ値によって評価した。上記サーモクロミック性(ΔT)(%)の測定と同様にして作製した各測定用フィルムについて、室温にてヘイズメータ-(日本電色工業株式会社製、NDH5000)を用いてヘイズ(%)を測定した。また、上記に算出されたヘイズ値について、下記の基準に従って評価した。ここで、ヘイズ(%)は小さいほどよいものとし、下記評価において「△」以上であれば許容される;
 ◎ :1.0%未満である
 ○ :1.0%以上1.5%未満である
 ○△:1.5%以上2.0%未満である
 △ :2.0%以上2.5%未満である
 × :2.5%以上である。
(Transparency (haze evaluation)))
The transparency of the optical film was evaluated by the haze value. About each film for a measurement produced similarly to the measurement of the said thermochromic property ((DELTA) T) (%), haze (%) was measured using the haze meter (Nippon Denshoku Industries Co., Ltd. make, NDH5000) at room temperature. . Moreover, the haze value calculated above was evaluated according to the following criteria. Here, the smaller the haze (%), the better. In the following evaluation, “Δ” or more is acceptable;
◎: Less than 1.0% ○: 1.0% or more and less than 1.5% ○ △: 1.5% or more and less than 2.0% △: 2.0% or more and less than 2.5% X: 2.5% or more.
 これらの評価結果を下記表3に示す。 These evaluation results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果から、本発明に係る実施例の二酸化バナジウム(VO)含有粒子は、比較例のものに比して、サーモクロミック性に優れ、ヘイズが低いことが確認された。上記結果は、実施例の二酸化バナジウム含有粒子の平均粒子径(D)が小さく、かつ、多分散指数(PDI)小さく粒子径(D)が揃っているためであると考察される。 From the results of Table 3 above, it was confirmed that the vanadium dioxide (VO 2 ) -containing particles of the examples according to the present invention were excellent in thermochromic properties and low in haze as compared with those of the comparative examples. The above results are considered to be because the average particle diameter (D) of the vanadium dioxide-containing particles of the examples is small, and the polydispersity index (PDI) is small and the particle diameter (D) is uniform.
 また、実施例の二酸化バナジウム(VO)含有粒子の中でも、マイクロリアクター型流通式反応装置を用いて製造した実施例が、特にサーモクロミック性に優れ、ヘイズが低いことが確認された。 Moreover, among the vanadium dioxide (VO 2 ) -containing particles of the examples, it was confirmed that the examples produced using a microreactor type flow reactor were particularly excellent in thermochromic properties and low in haze.
 本出願は、2015年7月9日に出願された日本特許出願番号2015-138167号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2015-138167 filed on July 9, 2015, the disclosure of which is incorporated by reference in its entirety.

Claims (13)

  1.  バナジウム含有化合物および水を含む原料液と、前記バナジウム含有化合物と反応する化合物および水を含む原料液と、を混合して得られる反応液を、亜臨界または超臨界状態の水の存在下で水熱反応させることを有する、二酸化バナジウム(VO)含有粒子の製造方法。 A reaction liquid obtained by mixing a raw material liquid containing a vanadium-containing compound and water and a raw material liquid containing a compound that reacts with the vanadium-containing compound and water is treated with water in the presence of subcritical or supercritical water. having thereby thermal reaction method of vanadium dioxide (VO 2) containing particles.
  2.  前記二酸化バナジウム含有粒子の平均粒子径(D)が60nm以下であり、多分散指数(PDI)が0.30未満である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the vanadium dioxide-containing particles have an average particle size (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30.
  3.  前記バナジウム含有化合物がバナジウム(IV)含有化合物であり、前記バナジウム含有化合物と反応する化合物が少なくとも1つのアルカリを含む、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the vanadium-containing compound is a vanadium (IV) -containing compound, and the compound that reacts with the vanadium-containing compound contains at least one alkali.
  4.  前記バナジウム含有化合物がバナジウム(V)含有化合物であり、前記バナジウム含有化合物と反応する化合物がヒドラジンおよびその水和物の少なくとも一方を含む、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the vanadium-containing compound is a vanadium (V) -containing compound, and the compound that reacts with the vanadium-containing compound includes at least one of hydrazine and a hydrate thereof.
  5.  前記水熱反応は、マイクロリアクター型流通式反応装置を用いて行われる、請求項1~4のいずれか1項に記載に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the hydrothermal reaction is performed using a microreactor type flow reactor.
  6.  前記バナジウム含有化合物および水を含む原料液が、前記二酸化バナジウム含有粒子の相転移温度を調節するための元素を含む物質をさらに含む、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the raw material liquid containing the vanadium-containing compound and water further contains a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide-containing particles.
  7.  前記反応液中における前記水が、窒素(N)ナノバブル処理された水である、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the water in the reaction solution is water treated with nitrogen (N 2 ) nanobubbles.
  8.  前記水熱反応直後に、さらに表面修飾剤を添加する、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein a surface modifier is further added immediately after the hydrothermal reaction.
  9.  請求項1~8のいずれか一項に記載の製造方法によって二酸化バナジウム含有粒子を製造する工程と、
     前記二酸化バナジウム含有粒子を分散媒中に分散させる工程と、
    を含む、分散液の製造方法。
    A step of producing vanadium dioxide-containing particles by the production method according to any one of claims 1 to 8,
    Dispersing the vanadium dioxide-containing particles in a dispersion medium;
    A method for producing a dispersion liquid.
  10.  請求項1~8のいずれか一項に記載の製造方法によって二酸化バナジウム含有粒子を製造する工程と、
     樹脂と、前記二酸化バナジウム含有粒子と、分散媒と、を含む塗布液を調製した後、前記塗布液を透明基材上に塗布し、乾燥することで光学機能層を形成する工程と、
    を含む、
     透明基材および光学機能層を含む、光学フィルムの製造方法。
    A step of producing vanadium dioxide-containing particles by the production method according to any one of claims 1 to 8,
    After preparing a coating liquid containing a resin, the vanadium dioxide-containing particles, and a dispersion medium, a step of forming the optical functional layer by applying the coating liquid on a transparent substrate and drying;
    including,
    The manufacturing method of an optical film containing a transparent base material and an optical function layer.
  11.  平均粒子径(D)が60nm以下であり、多分散指数(PDI)が0.30未満である、二酸化バナジウム(VO)含有粒子。 Vanadium dioxide (VO 2 ) -containing particles having an average particle diameter (D) of 60 nm or less and a polydispersity index (PDI) of less than 0.30.
  12.  請求項11に記載の二酸化バナジウム含有粒子を含有する、分散液。 A dispersion containing the vanadium dioxide-containing particles according to claim 11.
  13.  透明基材、および光学機能層を有し、
     前記光学機能層が、請求項11に記載の二酸化バナジウム含有粒子を含有する、光学フィルム。
    A transparent substrate, and an optical functional layer;
    An optical film in which the optical functional layer contains the vanadium dioxide-containing particles according to claim 11.
PCT/JP2016/067282 2015-07-09 2016-06-09 Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film WO2017006699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527144A JPWO2017006699A1 (en) 2015-07-09 2016-06-09 Vanadium dioxide-containing particles, dispersion liquid and optical film containing the same, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138167 2015-07-09
JP2015138167 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006699A1 true WO2017006699A1 (en) 2017-01-12

Family

ID=57686212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067282 WO2017006699A1 (en) 2015-07-09 2016-06-09 Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film

Country Status (2)

Country Link
JP (1) JPWO2017006699A1 (en)
WO (1) WO2017006699A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208892A1 (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Process for producing vanadium-dioxide-containing particles
JP2019006624A (en) * 2017-06-23 2019-01-17 国立研究開発法人産業技術総合研究所 Nanoparticle of fluorine-doped titanium oxide vanadium and method for producing the same, and dispersion liquid, coating, transparent resin molding and laminate containing the nanoparticle
CN111760543A (en) * 2020-07-01 2020-10-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled
CN113087019A (en) * 2021-05-12 2021-07-09 郑州大学 Preparation of ferromagnetic VO by supercritical fluid technology2Preparation method of (1)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031235A (en) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology Thermochromic microparticle, dispersion thereof, and manufacturing method thereof, as well as dimming coating, dimming film and dimming ink
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2012116737A (en) * 2010-12-03 2012-06-21 National Institute Of Advanced Industrial Science & Technology Method of producing a-phase vanadium dioxide (vo2) particle
JP2013071859A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031235A (en) * 2008-06-30 2010-02-12 National Institute Of Advanced Industrial & Technology Thermochromic microparticle, dispersion thereof, and manufacturing method thereof, as well as dimming coating, dimming film and dimming ink
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2012116737A (en) * 2010-12-03 2012-06-21 National Institute Of Advanced Industrial Science & Technology Method of producing a-phase vanadium dioxide (vo2) particle
JP2013071859A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208892A1 (en) * 2016-05-30 2017-12-07 コニカミノルタ株式会社 Process for producing vanadium-dioxide-containing particles
JPWO2017208892A1 (en) * 2016-05-30 2019-03-28 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles
JP7001052B2 (en) 2016-05-30 2022-01-19 コニカミノルタ株式会社 Method for Producing Vanadium Dioxide-Containing Particles
JP2019006624A (en) * 2017-06-23 2019-01-17 国立研究開発法人産業技術総合研究所 Nanoparticle of fluorine-doped titanium oxide vanadium and method for producing the same, and dispersion liquid, coating, transparent resin molding and laminate containing the nanoparticle
CN111760543A (en) * 2020-07-01 2020-10-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled
CN111760543B (en) * 2020-07-01 2021-08-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled
CN113087019A (en) * 2021-05-12 2021-07-09 郑州大学 Preparation of ferromagnetic VO by supercritical fluid technology2Preparation method of (1)
CN113087019B (en) * 2021-05-12 2022-09-13 郑州大学 Preparation of ferromagnetic VO by supercritical fluid technology 2 Preparation method of (1)

Also Published As

Publication number Publication date
JPWO2017006699A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2016158103A1 (en) Process for producing particles comprising vanadium dioxide
JP7001052B2 (en) Method for Producing Vanadium Dioxide-Containing Particles
WO2017006699A1 (en) Vanadium dioxide-containing particles, dispersion liquid containing same, optical film containing same, method for producing same, method for producing said dispersion liquid, and method for producing said optical film
WO2016017611A1 (en) Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
Huang et al. Effect of polyethylene glycol on hydrophilic TiO2 films: Porosity-driven superhydrophilicity
JP5834789B2 (en) Thin film anti-fogging film
JP6673342B2 (en) Vanadium dioxide-containing particles having thermochromic properties and method for producing the same
JP7173150B2 (en) Method for producing vanadium dioxide-containing particles
JP7088011B2 (en) Production method of vanadium dioxide-containing particles, vanadium dioxide-containing particles and optical film
JP2018058734A (en) Thermochromic vanadium dioxide-containing core-shell particle and production process thereof, and thermochromic film and production process thereof
JP2017214466A (en) Core and shell type thermochromic particle, thermochromic film and manufacturing method of thermochromic particle
WO2017212778A1 (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP6638570B2 (en) Method for producing thermochromic film
WO2021201156A1 (en) Method for manufacturing machining body provided with water-repellent surface and machining body provided with water-repellent surface
JP2018087094A (en) Production method of vanadium dioxide-containing particle, vanadium dioxide-containing particle, fluid dispersion and optical film
Sangchay et al. Photochromic and Self-Cleaning Properties of TiO2–AgCl/TiO2–xCu Thin Film
JP6973409B2 (en) Production method of vanadium dioxide-containing particles, thermochromic film and vanadium dioxide-containing particles
JP2004050410A (en) Laminate
WO2018105238A1 (en) Vanadium-dioxide-containing particles, thermochromic film, and method for producing vanadium-dioxide-containing particles
JP2018087093A (en) Production method of vanadium dioxide-containing particle, preparation method of fluid dispersion, and fluid dispersion
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
JP2018041000A (en) Optical reflection film
JP2017226078A (en) Thermochromic film and thermochromic composite including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821170

Country of ref document: EP

Kind code of ref document: A1