WO2016158603A1 - Method for producing rutile vanadium dioxide-containing particle and method for producing optical film - Google Patents

Method for producing rutile vanadium dioxide-containing particle and method for producing optical film Download PDF

Info

Publication number
WO2016158603A1
WO2016158603A1 PCT/JP2016/059135 JP2016059135W WO2016158603A1 WO 2016158603 A1 WO2016158603 A1 WO 2016158603A1 JP 2016059135 W JP2016059135 W JP 2016059135W WO 2016158603 A1 WO2016158603 A1 WO 2016158603A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing particles
vanadium dioxide
rutile
producing
optical film
Prior art date
Application number
PCT/JP2016/059135
Other languages
French (fr)
Japanese (ja)
Inventor
丈範 熊谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016158603A1 publication Critical patent/WO2016158603A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy

Definitions

  • the present invention relates to a method for producing rutile vanadium dioxide-containing particles and a method for producing an optical film. More specifically, the present invention relates to a production method capable of easily synthesizing a large amount of rutile vanadium dioxide-containing particles exhibiting thermochromic properties.
  • the near-infrared light shielding film By applying the near-infrared light shielding film to the body window or the window glass of the building, it is possible to reduce the load on the cooling equipment such as the air conditioner in the vehicle, which is an effective means for saving energy.
  • an optical film containing a conductor such as ITO (tin-doped indium oxide) as an infrared absorbing substance is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-222233 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
  • the near-infrared light shielding film having such a structure is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high.
  • a low-latitude zone near the equator where the illuminance of sunlight is high.
  • incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
  • thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature to the near-infrared light shielding film.
  • a typical material is vanadium dioxide (IV) (hereinafter also referred to as “VO 2 ”).
  • VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
  • the optical film using the characteristics of VO 2 can shield near-infrared light that causes heat at a high temperature, and can exhibit characteristics that transmit near-infrared light at a low temperature.
  • near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, external light energy can be taken in.
  • VO 2 As a specific example of VO 2 having such characteristics, a method for obtaining vanadium dioxide (IV) (VO 2 ) nanoparticles by hydrothermal synthesis using a vanadium compound and hydrazine or a hydrate thereof is disclosed.
  • the vanadium compound By using the hydrothermal synthesis method, the vanadium compound can be dissolved and precipitated, so that it is possible to produce fine particles on the order of several tens of nm.
  • a method of providing a thermochromic film as a laminate in which VO 2 nanoparticles prepared by the hydrothermal synthesis method are dispersed in a transparent resin to form a VO 2 dispersed resin layer on a resin substrate for example, a patent Reference 2 is disclosed.
  • a method for preparing VO 2 fine particles by treating vanadium pentoxide with hydrogen peroxide and then pulverizing and heat-treating (see, for example, Patent Document 3).
  • hydrazine is used as a reducing agent
  • SUS316 generally used in a synthesis kettle is corroded
  • a problem that a large amount cannot be synthesized is cited as a problem.
  • the heat treatment is performed at a temperature of 600 ° C. or higher, there is a problem that it is also unsuitable for mass synthesis and has a relatively large particle size. Therefore, a method capable of easily synthesizing a large amount of VO 2 particles exhibiting thermochromic properties is required.
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a production method capable of easily mass-producing rutile vanadium dioxide-containing particles exhibiting thermochromic properties. Moreover, it is providing the manufacturing method of the optical film containing the said vanadium dioxide containing particle
  • the present inventor paid attention to the fact that the subcritical state via the hydrothermal synthesis method dissolves the metal in the process of examining the cause of the above-mentioned problem, and the starting material of the hydrothermal synthesis method.
  • vanadium dioxide (IV) exhibiting thermochromic properties can be synthesized by using a vanadium compound containing tetravalent vanadium (IV) as a raw material.
  • this method it was found that the corrosion of the synthesis kettle due to the action of hydrazine can be suppressed, and a large amount of vanadium (IV) dioxide-containing particles exhibiting thermochromic properties can be synthesized, leading to the present invention.
  • a method for producing rutile vanadium dioxide-containing particles having thermochromic properties A method for producing rutile vanadium dioxide-containing particles, characterized in that rutile vanadium dioxide-containing particles having a number average particle diameter in the range of 1 to 500 nm are formed by hydrothermal synthesis using a tetravalent vanadium compound as a raw material. .
  • tetravalent vanadium compound an element selected from tungsten, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine and phosphorus is used as a raw material.
  • a method for producing an optical film having an optical functional layer on a substrate Coating for forming an optical functional layer by dispersing rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of items 1 to 6 in a resin binder.
  • a method for producing an optical film comprising: preparing a liquid, and applying and drying the coating solution for forming an optical functional layer on the substrate by a wet coating method to form the optical functional layer.
  • a method for producing an optical film containing rutile vanadium dioxide-containing particles in a resin substrate Preparing a dope containing at least a resin and rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of items 1 to 6;
  • Patent Document 1 The method disclosed in Patent Document 1 is a method in which pentavalent vanadium (IV) is formed by reducing pentavalent vanadium (V) with hydrazine and then thermochromic by a hydrothermal synthesis method. Although it is a method of synthesizing the contained particles, it has been found that vanadium dioxide (IV) -containing particles exhibiting thermochromic properties can be synthesized by hydrothermal synthesis using tetravalent vanadium (IV) as a starting material.
  • hydrazine which is a reducing agent
  • SUS316 commonly used in a synthesis kettle is corroded. It can solve the problem and the problem of inhibiting the formation of vanadium dioxide (IV) -containing particles by metal ions eluted from the reaction vessel due to the corrosion, promotes the generation of fine particles of the order of several tens of nm, and can be synthesized in large quantities It is guessed.
  • the method for producing the rutile vanadium dioxide-containing particles of the present invention comprises using a tetravalent vanadium (IV) compound as a raw material and hydrolyzing the rutile vanadium dioxide (IV) having a number average particle diameter in the range of 1 to 500 nm. ) Containing particles.
  • This feature is a technical feature common to the inventions according to claims 1 to 8.
  • the tetravalent vanadium (IV) compound is selected from vanadium dioxide (IV), vanadium oxydichloride (IV) and vanadium oxysulfate (IV) from the viewpoint of manifesting the effects of the present invention. It is preferable from the viewpoint of stable mass synthesis.
  • the hydrothermal synthesis method is preferably performed under reducing conditions, and the hydrothermal synthesis method achieves a high yield by adding hydrogen peroxide or hydrazine as a reducing agent in the hydrothermal reaction liquid. From this viewpoint, this is a preferred embodiment.
  • the number average particle diameter of the rutile-type vanadium dioxide (IV) -containing particles is in the range of 1 to 100 nm. Even when the rutile-type vanadium dioxide (IV) -containing particles are contained in an optical film, increase in haze is suppressed, and transparent thermochromic optics From the viewpoint of obtaining a film, it is preferable.
  • the manufacturing method of the optical film of this invention is a manufacturing method of the optical film which has an optical function layer on a base material, Comprising: The rutile type vanadium dioxide (IV) as described in any one of 1st term
  • the rutile vanadium dioxide (IV) -containing particles produced by the method for producing the contained particles are dispersed in a resin binder to prepare a coating solution for forming an optical functional layer. It is preferable to form the optical functional layer by applying and drying on the substrate by a coating method.
  • Another method for producing an optical film containing rutile vanadium dioxide (IV) -containing particles in a resin base material wherein at least the resin and any one of items 1 to 6
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the method for producing the rutile vanadium dioxide-containing particles of the present invention comprises using a tetravalent vanadium (IV) compound as a raw material and hydrolyzing the rutile vanadium dioxide (IV) having a number average particle diameter in the range of 1 to 500 nm. ) Containing particles.
  • Vanadium dioxide (IV) -containing particles are attracting attention as a material exhibiting a thermochromic phenomenon in which optical properties such as light absorptivity and light reflectance change reversibly with temperature.
  • the crystal structure of the vanadium dioxide (IV) -containing particles includes several crystal phases such as A phase, B phase, C phase and R phase (so-called “rutile-type crystal phase”). There are polymorphs.
  • the crystal structure showing the thermochromic phenomenon as described above is limited to the R phase. Since this R phase has a monoclinic structure below the transition temperature, it is also called an M phase.
  • the vanadium dioxide (IV) -containing particles in order to exhibit substantially excellent thermochromic properties, are not agglomerated and the average particle size is on the order of nanometers. It is desirable that the particles have an isotropic shape.
  • hydrazine is not used in the hydrothermal synthesis method or a small amount is used, so that SUS316 generally used in a synthesis kettle is not corroded and is also a feature of the hydrothermal synthesis method.
  • a large amount of vanadium dioxide (IV) -containing particles on the order of several tens of nanometers can be synthesized.
  • thermochromic automatic dimming
  • rutile Type VO 2 containing particles are used.
  • the rutile VO 2 -containing particles have a monoclinic structure below the transition temperature, they are also called an M phase.
  • the VO 2 -containing particles according to the present invention may contain other crystal-type VO 2 -containing particles such as an A phase or a B phase as long as the purpose is not impaired.
  • the crystal structure can be determined by XRD (X-ray diffraction) measurement, and can be performed using a commercially available X-ray diffractometer, for example, an X-ray diffractometer manufactured by Rigaku Corporation.
  • the VO 2 -containing particles according to the present invention have a number average particle diameter in the range of 1 to 500 nm.
  • the number average particle diameter is the diameter if the VO 2 -containing particles are isotropic, and if not, the projected area of the particles is converted into a circle and the diameter is taken as the particle diameter.
  • Various measuring methods can be applied to the measuring method of the number average particle size.
  • a particle is photographed with a scanning electron microscope, and the diameter of a circle having an area equal to the projected area of the particle is defined as the particle size. It is preferable to measure the two- containing particles, obtain the arithmetic average value of these, and use this as the number average particle diameter, or the method of measuring according to the dynamic light scattering method.
  • a measurement method using a dynamic light scattering method described below is preferable.
  • the prepared VO 2 -containing particles are each mixed with water at a concentration of 1% by mass and dispersed with ultrasonic waves for 15 minutes to prepare a measurement sample. Since the appropriate concentration range varies depending on each device, the concentration is appropriately concentrated or diluted.
  • the particle size which becomes 80% cumulative Determine the number average particle size.
  • the preferred number average particle diameter of the VO 2 -containing particles according to the present invention is 500 nm or less, more preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 60 nm.
  • the aspect ratio of the VO 2 -containing particles is preferably in the range of 1.0 to 3.0.
  • the VO 2 -containing particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good.
  • the single crystal since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
  • the CV value (coefficient of variation) of the particle size distribution of the VO 2 -containing particles is preferably 40% or less, and more preferably 30% or less.
  • the optical film containing such VO 2 -containing particles can suppress the generation of haze and can improve the visible light transmittance.
  • the VO 2 -containing particles according to the present invention include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), and iridium (Ir). Selected from osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P) May be included.
  • the total amount of the additive with respect to the finally obtained VO 2 -containing particles is about 0.1 to 5.0 atomic% with respect to the vanadium (IV) atom.
  • the method for producing VO 2 -containing particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a method of vanadium pentoxide (V 2 O 5 ).
  • a method of pulverizing a VO 2 sintered body synthesized by a solid phase method and a method of vanadium pentoxide (V 2 O 5 ).
  • V 2 O 5 vanadium pentoxide
  • the average particle size is small, in that it is possible to suppress the variation in particle size, the tetravalent vanadium (IV) compound as a starting material, VO 2 content in the liquid phase
  • a hydrothermal synthesis method is used in which particles are grown while particles are synthesized.
  • the details of the water-based synthesis method using the supercritical state are disclosed in, for example, paragraph numbers (0011) and (0015) to (0018) of JP-A-2010-58984. ) Can be referred to.
  • a solution (A) is prepared by mixing a raw material (a) containing a tetravalent vanadium (IV) compound and water.
  • This solution may be an aqueous solution in which the raw material (a) is dissolved in water, or a suspension in which the raw material (a) is dispersed in water.
  • the yield of VO 2 -containing particles can be increased by adding a small amount of a reducing agent, and hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) or It is preferable to use hydrogen peroxide.
  • Examples of the raw material (a) include vanadium dioxide (IV) (VO 2 ), vanadium oxydichloride (IV) (VOCl 2 ), vanadium oxysulfate (IV) (VOSO 4 ), oxovanadium oxalate (IV) (IV) C 2 O 5 V) and hydrates thereof (C 2 O 5 V ⁇ 5H 2 O), vanadium tetrachloride (IV) (VCl 4 ) and the like.
  • the raw material (I) is not particularly limited as long as it is a compound containing tetravalent vanadium (V), but vanadium dioxide (IV) (VO 2 ), vanadium oxydichloride (IV) (VOCl 2 ) and Vanadium oxysulfate (IV) (VOSO 4 ) is preferred.
  • the shape of the raw material is not particularly limited, and may be a particle shape, a plate shape, or a lump shape.
  • the solution (A) preferably further contains a raw material (b) containing the element to be doped in order to dope the VO 2 single crystal particles finally obtained with the element.
  • the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
  • thermochromic properties of the VO 2 -containing particles in particular, the transition temperature can be controlled.
  • this solution (A) further contains the reducing material (c).
  • the raw material (c) include hydrogen peroxide (H 2 O 2 ) and hydrazine (N 2 H 4 ).
  • H 2 O 2 hydrogen peroxide
  • N 2 H 4 hydrazine
  • the pH of the solution can be adjusted, or the raw material containing vanadium (IV) as the raw material (a) can be uniformly dissolved.
  • the preferred concentration of the reducing agent is preferably 15% by mass or less, more preferably 10% by mass or less.
  • Step 2 a hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • single crystal particles containing vanadium dioxide (IV) (VO 2 ) are obtained.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By making the time longer, the particle size and the like of the obtained single crystal particles can be controlled. However, an excessively long treatment time increases the energy consumption.
  • hydrothermal reaction treatment may be performed in a batch manner or a continuous manner.
  • a suspension containing VO 2 -containing particles having thermochromic properties is obtained. Thereafter, the VO 2 -containing particles according to the present invention are obtained from the suspension by filtration, washing, drying, and the like.
  • Step 3 is a step of performing coating treatment or surface modification treatment with a resin on the surface of the obtained VO 2 -containing particles as necessary. Thereby, the surface of the VO 2 -containing particles is protected, and surface-modified single crystal particles can be obtained.
  • the “coating” referred to in the present invention may be a state in which the entire surface of the particle is completely covered with the resin with respect to the VO 2 -containing particles, or a part of the particle surface is covered with the resin. It may be in a state. Preferably, 50% or more of the total area of the particle surface is covered.
  • thermochromic properties a dispersion liquid containing VO 2 -containing particles having thermochromic properties is obtained.
  • the dispersion of the VO 2 -containing particles prepared by the aqueous synthesis method contains impurities such as residues generated in the synthesis process, and the optical functional layer is formed using the VO 2 -containing particles. In addition, it may cause generation of secondary agglomerated particles, which may cause deterioration in long-term storage of the optical functional layer, and it is preferable to remove impurities at the stage of the dispersion in advance.
  • the VO 2 -containing particle dispersion As a method for removing impurities in the VO 2 -containing particle dispersion, conventionally known means for separating foreign substances and impurities can be applied.
  • the VO 2 -containing particle dispersion is subjected to centrifugal separation to contain VO 2.
  • a method of precipitating particles, removing impurities in the supernatant, adding and dispersing the dispersion medium again, or removing impurities out of the system using an exchange membrane such as an ultrafiltration membrane may be used. 2 From the viewpoint of preventing aggregation of the contained particles, a method using an ultrafiltration membrane is most preferable.
  • Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
  • an optical functional layer is provided on a substrate, and the present invention is applied.
  • VO 2 -containing particles are dispersed in a resin binder to prepare an optical functional layer forming coating solution, and the optical functional layer forming coating solution is applied and dried on the substrate by a wet coating method. It is preferable to obtain an optical film having the optical functional layer.
  • a dope containing at least a resin and the VO 2 -containing particles is prepared, and the dope is allowed to flow. It is preferable to form an optical film by stretching.
  • the hydrothermal synthesis method is applied, and an aqueous dispersion containing VO 2 -containing particles is prepared by an aqueous synthesis method, without drying the VO 2 -containing particles in the aqueous dispersion,
  • the number average particle diameter of the primary particles and the secondary particles is less than 500 nm by preparing an optical functional layer forming coating solution and forming the optical functional layer using the optical functional layer forming coating solution in this state.
  • An optical functional layer according to the present invention containing VO 2 -containing particles having a preferred number average particle diameter can be formed.
  • aqueous binder resin As the binder resin, after prepared as an aqueous dispersion containing the aforementioned VO 2 containing particles, without drying the VO 2 containing particles of an aqueous dispersion, VO 2 containing particles separated It is preferable to prepare a coating solution for forming an optical functional layer by mixing with an aqueous binder resin solution in a dispersed state.
  • One of the preferred embodiments of the optical film of the present invention is a configuration in which the optical functional layer according to the present invention is formed on a transparent substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of an optical film having an optical functional layer which is a first embodiment containing VO 2 -containing particles and a binder resin according to the present invention.
  • An optical film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2.
  • the optical functional layer 3 of the first embodiment is present in a state where VO 2 -containing particles (VO 2 ) are dispersed in the binder resin B1 contained in the optical functional layer according to the present invention.
  • the number average particle diameter of the VO 2 -containing particles in the optical functional layer 3 is preferably 500 nm or less as described above.
  • optical film according to the present invention is a hybrid structure in which the optical functional layer also serves as a resin base material.
  • FIG. 2 is a schematic cross-sectional view showing another example of the basic configuration of the optical film of the present invention, in which the transparent substrate 2 and the optical functional layer 3 shown in FIG.
  • the binder resin B2 contained in the optical functional layer according to the present invention is used as the resin constituting the hybrid optical functional layer (2 + 3), which is an embodiment of the present invention, and constituting the transparent substrate.
  • VO 2 -containing particles are dispersed to form an optical functional layer having a single layer and a transparent substrate.
  • optical film according to the present invention various functional layers may be provided as necessary in addition to the constituent layers described above.
  • the total thickness of the optical film according to the present invention is not particularly limited, but is in the range of 250 to 1500 ⁇ m, preferably in the range of 400 to 1200 ⁇ m, more preferably in the range of 600 to 1000 ⁇ m, Particularly preferably, it is in the range of 750 to 900 ⁇ m.
  • the visible light transmittance measured by JIS R3106 is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is. In addition, it is preferable to have a region with a reflectance exceeding 50% in a wavelength region of 900 to 1400 nm.
  • optical function layer preferably contains at least VO 2 -containing particles and a binder resin.
  • the solvent replacement step is composed of a concentration step for concentrating the dispersion containing VO 2 -containing particles and a solvent dilution step for adding the solvent to the concentrate for dilution, and is composed of a concentration step followed by a solvent dilution step. This is preferably a step of preparing a non-aqueous solvent dispersion containing VO 2 -containing particles by repeating the treatment operation twice or more.
  • concentration means used in the step of concentrating the dispersion containing specific VO 2 -containing particles an ultrafiltration method is preferred.
  • the solvent applicable to the solvent replacement treatment used in the present invention is an organic solvent, preferably a non-aqueous organic solvent.
  • it is a step of preparing a solvent dispersion containing VO 2 -containing particles by replacing water, which is a medium constituting the aqueous dispersion containing VO 2 -containing particles, with an organic solvent.
  • the solvent is not particularly limited and may be appropriately selected.
  • examples thereof include ketone solvents such as acetone, dimethyl ketone and methyl ethyl ketone, alcohol solvents such as methanol, ethanol and isopropyl alcohol, and chlorine solvents such as chloroform and methylene chloride.
  • Solvents aromatic solvents such as benzene and toluene, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, glycol ether solvents such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether, dioxane, hexane, octane, diethyl ether, Any material that dissolves the hydrophobic binder resin to be applied at the same time, such as dimethylformamide, can be used.
  • water can be contained to some extent, and is 30% by mass or less, preferably 10% by mass or less, and particularly preferably 5.0% by mass or less. It is. Moreover, a minimum is 0.01 mass% or more, Preferably it is 0.05 mass% or more, Most preferably, it is 0.1 mass%. Therefore, the water content is particularly preferably in the range of 0.1 to 5.0% by mass. If the water content in the solvent dispersion is 30% by mass or less, the film forming property of the coexisting hydrophobic binder can be prevented at the time of forming the optical functional layer, and the haze can be reduced to 0.01% by mass.
  • the change width between the infrared transmittance and the infrared shielding rate at the time of temperature change can be increased to some extent.
  • the water content is 5.0% by mass or less, it is possible to further suppress the influence of the oxidation of the VO 2 -containing particles and the film forming property of the coexisting binder, and maintain the haze at a lower level. Can do.
  • permeability and infrared shielding factor at the time of a temperature change can further be expanded, and it is preferable conditions.
  • ultrafiltration method used in the solvent replacement treatment examples include Research Disclosure No. 1; 10208 (1972), no. 13122 (1975) and no. 16351 (1977) and the like can be referred to. Pressure differences and flow rates that are important as operating conditions can be selected with reference to the characteristic curves described in Haruhiko Oya's “Membrane Utilization Technology Handbook”, Koshobo Publishing (1978), p275.
  • ultrafiltration membranes organic membranes, flat plate types, spiral types, cylindrical types, hollow fiber types, hollow fiber types, etc., already incorporated as modules, are available at Asahi Kasei Corporation, Daicel Chemical Co., Ltd. ( Although commercially available from Toray Industries, Inc. and Nitto Denko Corporation, etc., ceramic films such as NGK Co., Ltd. and Noritake Corporation are preferred as the solvent-resistant film.
  • Vivaflow 50 (effective filtration area 50 cm 2 , fractional molecular weight 5000) manufactured by Sartorius steady is used as a filtration membrane, and ultrafiltration is performed at a flow rate of 300 ml / min (minutes), a hydraulic pressure of 100 kPa, and room temperature.
  • ultrafiltration device having a filtration membrane made of polyethersulfone and a molecular weight cut off of 300,000 (Pericon 2 cassette, manufactured by Nihon Millipore Corporation).
  • FIG. 3 is a schematic process diagram showing an example of a solvent replacement processing apparatus applicable to the present invention.
  • the solvent replacement processing apparatus 10 shown in FIG. 3 includes a preparation tank 11 for storing the dispersion liquid 12 containing the prepared VO 2 -containing particles, a solvent stock tank 17 storing a solvent 18 for dilution, and a solvent 18.
  • An ultrafiltration unit 15 is disposed as a concentrating means in the solvent supply line 19 to be added to the preparation tank 11, the circulation line 13 for circulating the preparation tank 11 by the circulation pump 14, and the circulation line 13.
  • Step (A) A dispersion liquid containing the VO 2 -containing particles prepared by the above method is stored as a dispersion liquid 12 in the preparation kettle 11 and is circulated by a circulation pump 14 while being circulated in the dispersion liquid at the ultrafiltration unit 15.
  • the water is discharged from the discharge port 16 and concentrated to a predetermined concentration. As a standard of concentration, it concentrates to 20 volume% with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the dispersion.
  • Step (B) Next, 80% by mass of the solvent 18 is added from the solvent stock kettle 17 via the solvent supply line 19 to the dispersion 12 concentrated to 20% by volume, and sufficiently stirred and mixed. A primary solvent-substituted dispersion 12 is prepared.
  • Step (C) Next, in the same manner as in the above step (A), the medium (water + solvent) in the dispersion is discharged 16 outside the system by the ultrafiltration unit 15 while being circulated by the circulation pump P. Concentrate again to a concentration of 20% by volume.
  • Step (D) Next, in the same manner as in the above step (B), 80% by mass of the solvent 18 is added from the solvent stock kettle 17 via the solvent supply line 19 to the concentrated dispersion, and the mixture is sufficiently stirred. Mixing is performed to prepare the first solvent-dispersed dispersion liquid 12.
  • Step (E) Finally, the concentration and solvent dilution operations in Step (A) and Step (B) are repeated at least twice, so that the water content is within the range of 0.1 to 5.0% by mass.
  • a solvent dispersion containing the adjusted VO 2 -containing particles is prepared.
  • the water content can be determined by measuring by, for example, the Fisher method.
  • binder resin In the optical functional layer according to the present invention, the following hydrophobic binder resin can be used as the binder resin.
  • the hydrophobic binder resin here means a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
  • hydrophobic binder resin applicable to the present invention, a hydrophobic resin or a resin obtained by polymerizing in a curing process using a hydrophobic binder resin monomer is preferable.
  • hydrophobic binder resin examples include olefin-based polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); vinyl chloride, chlorinated vinyl resin and the like.
  • Halogen polymer such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Polyamides such as nylon 6, nylon 66 and nylon 610; polyacetal; polycarbonate; polyphenylene oxide; polyphenylene sulfide; polyether ether ketone; And the like (acrylate resin acrylonitrile - - styrene) polybutadiene rubber, ABS resin containing an acrylic rubber (acrylonitrile - - butadiene-styrene resin) and ASA resin; polyether sulfone; polyoxyethylene benzylidene alkylene; polyamideimide.
  • polyester such as polyethylene terephthalate, polybutylene terephthalate
  • hydrophobic binder resin a resin that uses a monomer of a hydrophobic binder resin and is polymerized in a curing treatment step can be exemplified, and its representative hydrophobic binder resin material Is a compound that is cured by irradiation with active energy rays, and specifically includes a radical polymerizable compound that is cured by a polymerization reaction with radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction with cationic active species. be able to.
  • radical polymerizable compound examples include a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid.
  • Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned.
  • cationic polymerizable compound various known cationic polymerizable monomers can be used.
  • cationic polymerizable monomers JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
  • photopolymerization initiator it is preferable to contain a photopolymerization initiator together with the above compound.
  • a photopolymerization initiator any known photopolymerization initiators published in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) may be used. it can.
  • the hydrophobic binder resin applicable to the present invention is not particularly limited.
  • any of the above hydrophobic binder resins having a glass transition temperature of 65 ° C. or lower may be used.
  • LP050 ester resin, manufactured by Nihon Gosei
  • Byron 245 esteer resin, manufactured by Toyobo
  • ESREC BL-10 butyral resin, manufactured by Sekisui Chemical
  • Dialnal BR-117 acrylic resin, manufactured by Mitsubishi Rayon
  • hydrophobic binder resin that can be suitably applied to the present invention is not particularly limited, and for example, any of the hydrophobic binder resins having a glass transition temperature of 75 ° C. or higher may be used.
  • Byron UR4800 esteer urethane resin, manufactured by Toyobo
  • Byron GK880 ester, manufactured by Toyobo
  • ESREC KS-10 butyral resin, manufactured by Sekisui Chemical
  • Dianal BR-80 acrylic resin, Mitsubishi Rayon
  • an aqueous binder resin can also be used as the binder resin.
  • the aqueous binder resin is a resin that dissolves 1.0 g or more with respect to 100 g of water at 25 ° C. Moreover, after making it melt
  • Dextrin dextran, saccharide derivatives such as dextran sulfate, naturally-derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylic Acrylic resins such as nitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid Acid-acrylic acid ester Polymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, or styrene-acrylic acid resin such as styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene
  • a polymer containing 50 mol% or more of repeating unit components having a hydroxy group which has a high affinity with VO 2 -containing particles and has a high effect of preventing aggregation of particles even during film formation drying, is preferable.
  • examples thereof include celluloses, polyvinyl alcohols, and acrylic resins having a hydroxy group.
  • polyvinyl alcohols and celluloses can be most preferably used.
  • ultraviolet LED ultraviolet laser
  • mercury arc lamp xenon arc lamp
  • low-pressure mercury lamp fluorescent lamp
  • carbon arc lamp tungsten-halogen copying lamp
  • sunlight can be used.
  • an electron beam it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
  • the optical functional layer according to the present invention when a hydrophobic binder resin is used as the binder resin used in the present invention, as illustrated in FIG.
  • a solvent dispersion containing VO 2 -containing particles and a solvent are added to and dissolved in the hydrophobic resin, which is a constituent material, to prepare a dope for film formation, and then used in film formation known in the art using the dope.
  • a method of forming a hybrid optical functional layer, which is the second embodiment also serving as a resin base material, can be suitably used by the solution pouring method.
  • hydrophobic binder resin examples include resin materials that are conventionally used in the production of optical films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyester such as polyester, polyethylene, polypropylene, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like
  • PC polycarbonate
  • PC norbornene resin
  • poly Tylpentene polyetherketone
  • polyimide polyimide
  • PES polyethersulfone
  • PES polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, arton
  • cycloolefin resins such as (trade name, manufactured by
  • the solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
  • a hybrid optical functional layer that also serves as a transparent substrate is formed by a solution casting method.
  • additives for optical functional layers Various additives that can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired are listed below.
  • surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters
  • antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers
  • additives such as dyes and pigments.
  • Method for forming optical functional layer is not particularly limited, as the method of forming the optically functional layer 3 as the first embodiment, the case of using a hydrophobic binder resin as the binder resin, VO 2 containing As the particles, VO 2 -containing particles prepared by an aqueous synthesis method are used, and after the surface of the VO 2 -containing particles is coated with a binder resin having a glass transition temperature of 65 ° C. or lower, a solvent replacement step is performed without passing through a dry state. To prepare a solvent dispersion containing VO 2 -containing particles.
  • an aqueous optical functional layer forming coating solution is prepared, and the optical functional layer forming coating solution is applied onto a transparent substrate by a wet coating method and dried.
  • the method of forming the optical functional layer 3 as an embodiment is one of the preferable forming methods.
  • the wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
  • a solution pouring method can be applied as a method for forming a hybrid optical functional layer that also serves as a resin substrate according to the second embodiment.
  • a solution pouring method can be applied. Described in Japanese Patent Laid-Open No. 067074, Japanese Laid-Open Patent Publication No. 2013-123868, Japanese Laid-Open Patent Publication No. 2013-202979, Japanese Laid-Open Patent Publication No. 2014-066958, Japanese Laid-Open Patent Publication No. 2014-095729, Japanese Laid-Open Patent Publication No. 2014-159082, and the like. It can be formed according to a solution casting film forming method.
  • the transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable.
  • “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, when producing laminated glass, to the curved glass surface when bonding to the glass substrate The follow-up performance is improved.
  • the transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a stretched film is more preferable.
  • the transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the infrared reflective layer. Is more preferable, being in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
  • the transparent substrate applicable to the optical film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used.
  • polyolefin films for example, polyethylene, polypropylene, etc.
  • Polyester films for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride for example, polyvinyl chloride, triacetyl cellulose films and the like can be used, and polyester films and triacetyl cellulose films are preferable.
  • the polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • particles may be contained within a range that does not impair transparency.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together.
  • additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
  • a transparent resin film that is a transparent substrate can be produced by a conventionally known general method.
  • an unstretched transparent resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched transparent resin film is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods such as transparent resin film flow (vertical axis) direction.
  • a stretched transparent resin film can be produced by stretching in the direction perpendicular to the flow direction of the transparent resin film (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin that is the raw material of the transparent resin film, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • undercoat layer coating solution inline on one side or both sides in the film forming process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • [3] Near-infrared shielding layer In the optical film according to the present invention, in addition to the optical functional layer, a configuration is provided in which a near-infrared light shielding layer having a function of shielding at least part of the light wavelength range of 700 to 1000 nm is provided. It can also be.
  • JP 2012-131130 A JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A.
  • a laminated glass can be formed by being sandwiched between a pair of glass constituent members. Can be used for ships and buildings. Laminated glass can be used for other purposes.
  • the laminated glass is preferably laminated glass for buildings or vehicles.
  • the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
  • the glass member examples include inorganic glass and organic glass (resin glazing).
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • the organic glass (resin glazing) examples include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
  • Example 1 Preparation of Rutile VO 2 Containing Particles and Preparation of Optical Film >> [Preparation of optical film 1] (Preparation of rutile VO 2 -containing particle dispersion 1) After mixing 0.9 g of vanadium dioxide (IV) particles (VO 2 , number average particle diameter 20 ⁇ m, manufactured by STREAM CHEMICALS) as raw materials with 30 ml of pure water, the pH was adjusted to 4.5 with ammonia, It is put in a commercially available autoclave for hydrothermal reaction treatment (HM-19G-U, manufactured by Sanai Kagaku Co., which is provided with a 50 ml volume carbon fiber-containing PTFE inner cylinder in a SUS main body), and then at 270 ° C.
  • IV vanadium dioxide
  • a rutile VO 2 -containing particle dispersion 2 was prepared in the same manner except that vanadium oxychloride (IV) was used instead of the vanadium dioxide (IV) particles of the rutile VO 2 -containing particle dispersion 2 to prepare a rutile VO 2 -containing particle dispersion 3,
  • the optical film 3 was produced by the same method as the production of the optical functional layer.
  • a rutile VO 2 -containing particle dispersion 4 was prepared in the same manner except that vanadium (IV) oxysulfate was used in place of the vanadium dioxide (IV) particles of the rutile VO 2 -containing particle dispersion 2 to produce the rutile VO 2 -containing particle dispersion 4.
  • the optical film 4 was produced by the same method as the production of the functional layer.
  • a rutile VO 2 containing particle dispersion 1 was prepared in the same manner except that hydrogen peroxide as a reducing agent was added to the rutile VO 2 containing particle dispersion 1 in an amount of 8% as a molar ratio to VO 2 , thereby producing a rutile VO 2 containing particle dispersion 6.
  • the optical film 6 was produced by the same method as the production of the functional layer.
  • a rutile VO 2 -containing particle dispersion 6 was prepared in the same manner except that 1.02 g of ammonium tungstate parapentahydrate was added to the raw material of the rutile VO 2 -containing particle dispersion 6 to prepare a rutile VO 2 -containing particle dispersion 7, and the optical functional layer
  • An optical film 7 was produced by the same method as in the production of.
  • optical film 8 Produced in the same manner except that 2% of hydrazine (N 2 H 2 ) was added in place of hydrogen peroxide as a reducing agent for the rutile VO 2 -containing particle dispersion 7 to produce a rutile VO 2 -containing particle dispersion 8. And the optical film 8 was produced by the method similar to preparation of the said optical function layer.
  • ⁇ Dope composition Methylene chloride 487 parts by weight Ethanol 45 parts by weight
  • the visible light transmittance is a predetermined value according to the solution casting film forming method described in Japanese Patent Application Laid-Open No. 2014-095729 and Japanese Patent Application Laid-Open No. 2014-159082.
  • the optical film 12 which is a hybrid optical functional layer was produced by adjusting the concentration so as to add fine particles.
  • Optical Film 14 Optical Film of Comparative Example 1
  • rutile VO 2 containing particle dispersion 1 As a raw material rutile VO 2 containing particle dispersion 1, was prepared in the same manner except for the use of vanadium pentoxide (V Ltd. 2 O 5, STREAM CHEMICALS Inc.), V 2 O 5 containing particle dispersion 14 Prepared. Using this dispersion, an optical film 14 of Comparative Example 1 was produced by the same method as the production of the optical functional layer.
  • Optical Film 15 Optical Film of Comparative Example 2
  • a rutile VO 2 -containing particle dispersion 9 was prepared in the same manner except that the concentration of hydrazine was 25% and hydrogen peroxide 8%, and a rutile VO 2 -containing particle dispersion 15 was prepared to prepare the optical functional layer.
  • the optical film 15 of the comparative example 2 was produced.
  • Table 1 shows the structures of the optical films 1 to 15 produced as described above.
  • the number-average particle size measured rutile VO 2 containing particles For the fine particle dispersion prepared as described above, the number average particle diameter was measured by a dynamic light scattering method according to the following method. The measurement was performed three times, the average value of the obtained particle diameters was confirmed, and the average value of the three measurements was taken as the number average particle diameter.
  • the prepared VO 2 -containing particles were each mixed with water at a concentration of 1% by mass and dispersed with ultrasonic waves for 15 minutes to prepare a measurement sample. Since the appropriate range of the concentration varies depending on each sample, the concentration was appropriately concentrated or diluted.
  • CV value of particle size distribution A value obtained by multiplying the value obtained by dividing the standard deviation of the individual particle diameters obtained by the measurement of the number average particle diameter by the average particle diameter by 100 was obtained, and this was used as the CV value of the particle size distribution. That is, the CV value is a value calculated by the following formula.
  • Each of the optical films prepared above is made of a transparent adhesive sheet (manufactured by Nitto Denko Corporation, LUCIACS CS9621T) in a size of 15 cm ⁇ 20 cm of a 1.3 mm thick glass plate (manufactured by Matsunami Glass Industry Co., Ltd., “Slide Glass White Edge Polish”).
  • the optical film laminated glass was prepared for each of the optical films prepared as described above.
  • thermochromic properties can be synthesized by hydrothermal synthesis using a tetravalent vanadium (IV) compound as a raw material.
  • tetravalent vanadium (IV) By using tetravalent vanadium (IV), it was found that the amount of hydrazine used can be suppressed to a very small amount, so that corrosion of the SUS kettle can be suppressed and large-scale synthesis can also be performed. Further, by doping a small amount of the reducing agent and the metal it was found to be synthesized VO 2 containing particles showing high thermochromic a small particle diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a method for producing, easily and on a large scale, rutile vanadium dioxide-containing particles that exhibit thermochromic properties. This method for producing rutile vanadium dioxide-containing particles is a method for producing rutile vanadium dioxide-containing particles having thermochromic properties and is characterized in forming the rutile vanadium dioxide-containing particles having a number average particle size in the range of 1-500 nm by a hydrothermal synthetic method starting from a tetravalent vanadium compound.

Description

ルチル型二酸化バナジウム含有粒子の製造方法、及び光学フィルムの製造方法Method for producing rutile vanadium dioxide-containing particles and method for producing optical film
 本発明は、ルチル型二酸化バナジウム含有粒子の製造方法、及び光学フィルムの製造方法に関する。より詳しくは、本発明は、サーモクロミック性を示すルチル型二酸化バナジウム含有粒子を容易に大量合成できる製造方法に関する。 The present invention relates to a method for producing rutile vanadium dioxide-containing particles and a method for producing an optical film. More specifically, the present invention relates to a production method capable of easily synthesizing a large amount of rutile vanadium dioxide-containing particles exhibiting thermochromic properties.
 近年、車窓から入り込む太陽光の影響によって人肌で感じる熱さを遮り、高い断熱性又は遮熱性を備えた合わせガラスが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、合わせガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。 In recent years, laminated glass with high heat insulation or heat shielding properties, which blocks the heat felt by human skin due to the influence of sunlight entering from the car window, is on the market. Recently, with the spread of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to laminated glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle.
 近赤外光遮蔽フィルムを車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。 By applying the near-infrared light shielding film to the body window or the window glass of the building, it is possible to reduce the load on the cooling equipment such as the air conditioner in the vehicle, which is an effective means for saving energy.
 このような近赤外線遮蔽フィルムとしては、赤外線吸収性物質としてITO(錫ドープ酸化インジウム)などの導電体を含む光学フィルムが開示されている。また、特開2010-222233号公報には、赤外線反射層と赤外線吸収層とを有する機能性プラスチックフィルムを含む近赤外光遮蔽フィルムが開示されている。 As such a near-infrared shielding film, an optical film containing a conductor such as ITO (tin-doped indium oxide) as an infrared absorbing substance is disclosed. Japanese Patent Application Laid-Open No. 2010-222233 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
 一方、国際公開第2013/065679号には、低屈折率層と高屈折率層とを交互に多数積層させた反射層積層体を有し、当該各屈折率層の層厚を調整することにより、近赤外光を選択的に反射する近赤外光遮蔽フィルムが提案されている。 On the other hand, International Publication No. 2013/065679 has a reflective layer laminate in which a large number of low refractive index layers and high refractive index layers are alternately laminated, and by adjusting the thickness of each refractive index layer. A near infrared light shielding film that selectively reflects near infrared light has been proposed.
 このような構成よりなる近赤外光遮蔽フィルムは、太陽光の照度が高い赤道近傍の低緯度地帯では、その高い近赤外光遮蔽効果により、好ましく利用されている。しかしながら、中緯度~高緯度地帯の冬場においては、逆に、太陽光をできるだけ車内や室内に取り込みたい場合にも、一律に入射光線を遮蔽してしまうという問題がある。 The near-infrared light shielding film having such a structure is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high. However, in winter in the mid-latitude to high-latitude zones, conversely, there is a problem that incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
 上記問題に対し、近赤外光遮蔽フィルムに対し、近赤外光の遮蔽や透過の光学的性質を温度により制御するサーモクロミック材料を適用する方法の検討がなされている。その代表的な材料として、二酸化バナジウム(IV)(以下、「VO」とも記す。)が挙げられる。VOは、60℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。 In order to solve the above-described problems, a method of applying a thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature to the near-infrared light shielding film has been studied. A typical material is vanadium dioxide (IV) (hereinafter also referred to as “VO 2 ”). VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
 すなわち、このVOの特性を利用した光学フィルムにより、高温になると熱の原因となる近赤外光を遮蔽し、低い温度では近赤外光を透過する特性を発現することが可能となる。これにより、夏場の暑い時は近赤外光を遮蔽して室内の温度上昇を抑制し、冬場の寒い時は、外部からの光エネルギーを取り込むことができるようになる。 In other words, the optical film using the characteristics of VO 2 can shield near-infrared light that causes heat at a high temperature, and can exhibit characteristics that transmit near-infrared light at a low temperature. As a result, when the summertime is hot, near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, external light energy can be taken in.
 このような特性を備えたVOの具体例としては、水熱合成により、バナジウム化合物と、ヒドラジン又はその水和物により、二酸化バナジウム(IV)(VO)のナノ微粒子を得る方法が開示されている(例えば、特許文献1参照。)。水熱合成法を使用することにより、バナジウム化合物を溶解、析出させることができるため、数十nmオーダーの微粒子を製造することができる。また、上記水熱合成法により調製したVOナノ粒子を透明樹脂中に分散させ、樹脂基材上にVO分散樹脂層を形成する積層体として、サーモクロミックフィルムを提供する方法(例えば、特許文献2参照。)が開示されている。また、五酸化バナジウムを過酸化水素で処理した後に粉砕して、加熱処理することでVO微粒子を調製する方法(例えば、特許文献3参照。)が開示されている。前者の方法は、還元剤としてヒドラジンが用いられているため、一般的に合成釜に用いられているSUS316を腐食してしまう問題があり、大量合成できないことが問題として挙げられる。また、後者の方法の場合、600℃以上の温度で加熱処理するため、こちらも大量合成には不向きで且つ粒子径が比較的大きいものができるという問題がある。そのため、サーモクロミック性を示すVO粒子を容易に大量合成できる方法が必要とされている。 As a specific example of VO 2 having such characteristics, a method for obtaining vanadium dioxide (IV) (VO 2 ) nanoparticles by hydrothermal synthesis using a vanadium compound and hydrazine or a hydrate thereof is disclosed. (For example, refer to Patent Document 1). By using the hydrothermal synthesis method, the vanadium compound can be dissolved and precipitated, so that it is possible to produce fine particles on the order of several tens of nm. Also, a method of providing a thermochromic film as a laminate in which VO 2 nanoparticles prepared by the hydrothermal synthesis method are dispersed in a transparent resin to form a VO 2 dispersed resin layer on a resin substrate (for example, a patent Reference 2) is disclosed. Also disclosed is a method for preparing VO 2 fine particles by treating vanadium pentoxide with hydrogen peroxide and then pulverizing and heat-treating (see, for example, Patent Document 3). In the former method, since hydrazine is used as a reducing agent, there is a problem that SUS316 generally used in a synthesis kettle is corroded, and a problem that a large amount cannot be synthesized is cited as a problem. In the case of the latter method, since the heat treatment is performed at a temperature of 600 ° C. or higher, there is a problem that it is also unsuitable for mass synthesis and has a relatively large particle size. Therefore, a method capable of easily synthesizing a large amount of VO 2 particles exhibiting thermochromic properties is required.
特開2011-178825号公報JP 2011-178825 A 特開2013-184091号公報JP 2013-184091 A 特開2011-136873号公報JP 2011-136873 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、サーモクロミック性を示すルチル型二酸化バナジウム含有粒子を容易に大量合成できる製造方法を提供することである。また、当該二酸化バナジウム含有粒子を含有する光学フィルムの製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a production method capable of easily mass-producing rutile vanadium dioxide-containing particles exhibiting thermochromic properties. Moreover, it is providing the manufacturing method of the optical film containing the said vanadium dioxide containing particle | grains.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、水熱合成法で経由する亜臨界状態が金属を溶解することに着目し、水熱合成法の出発物質として、4価のバナジウム(IV)を含むバナジウム化合物を原料として使用することで、サーモクロミック性を示す二酸化バナジウム(IV)を合成できることを見出した。本手法を用いれば、ヒドラジンの作用による合成釜の腐食を抑えることができ、サーモクロミック性を示す二酸化バナジウム(IV)含有粒子を大量合成できることを見いだし、本発明に至った。 In order to solve the above-mentioned problems, the present inventor paid attention to the fact that the subcritical state via the hydrothermal synthesis method dissolves the metal in the process of examining the cause of the above-mentioned problem, and the starting material of the hydrothermal synthesis method. As a result, it was found that vanadium dioxide (IV) exhibiting thermochromic properties can be synthesized by using a vanadium compound containing tetravalent vanadium (IV) as a raw material. By using this method, it was found that the corrosion of the synthesis kettle due to the action of hydrazine can be suppressed, and a large amount of vanadium (IV) dioxide-containing particles exhibiting thermochromic properties can be synthesized, leading to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.サーモクロミック性を有するルチル型二酸化バナジウム含有粒子の製造方法であって、
 4価のバナジウム化合物を原料として、水熱合成法によって、数平均粒子径が1~500nmの範囲内のルチル型二酸化バナジウム含有粒子を形成することを特徴とするルチル型二酸化バナジウム含有粒子の製造方法。
1. A method for producing rutile vanadium dioxide-containing particles having thermochromic properties,
A method for producing rutile vanadium dioxide-containing particles, characterized in that rutile vanadium dioxide-containing particles having a number average particle diameter in the range of 1 to 500 nm are formed by hydrothermal synthesis using a tetravalent vanadium compound as a raw material. .
 2.前記4価のバナジウム化合物が、二酸化バナジウム、オキシ二塩化バナジウム及びオキシ硫酸バナジウムから選択されることを特徴とする第1項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 2. 2. The method for producing rutile vanadium dioxide-containing particles according to claim 1, wherein the tetravalent vanadium compound is selected from vanadium dioxide, vanadium oxydichloride, and vanadium oxysulfate.
 3.前記水熱合成法が、還元条件下で行われることを特徴とする第1項又に第2項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 3. The method for producing rutile vanadium dioxide-containing particles according to item 1 or 2, wherein the hydrothermal synthesis method is performed under reducing conditions.
 4.前記水熱合成法が、水熱反応液に還元剤として過酸化水素又はヒドラジンを含有させることを特徴とする第1項から第3項までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 4. 4. The rutile vanadium dioxide-containing particles according to any one of items 1 to 3, wherein the hydrothermal synthesis method includes hydrogen peroxide or hydrazine as a reducing agent in a hydrothermal reaction liquid. Manufacturing method.
 5.前記数平均粒子径が、1~100nmの範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 5. The method for producing rutile vanadium dioxide-containing particles according to any one of items 1 to 4, wherein the number average particle diameter is in the range of 1 to 100 nm.
 6.前記4価のバナジウム化合物とともに、タングステン、モリブデン、ニオブ、タンタル、スズ、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム、クロム、鉄、ガリウム、アルミニウム、フッ素及びリンから選択される元素を原料として用いることを特徴とする第1項から第5項までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 6. Along with the tetravalent vanadium compound, an element selected from tungsten, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine and phosphorus is used as a raw material. The manufacturing method of the rutile type vanadium dioxide containing particle | grains as described in any one of Claim 1 to 5 characterized by the above-mentioned.
 7.基材上に光学機能層を有する光学フィルムの製造方法であって、
 第1項から第6項までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法によって製造されたルチル型二酸化バナジウム含有粒子を、樹脂バインダー中に分散して光学機能層形成用塗布液を調製し、当該光学機能層形成用塗布液を、湿式塗布方式により、前記基材上に塗布及び乾燥して、前記光学機能層を形成することを特徴とする光学フィルムの製造方法。
7). A method for producing an optical film having an optical functional layer on a substrate,
Coating for forming an optical functional layer by dispersing rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of items 1 to 6 in a resin binder. A method for producing an optical film, comprising: preparing a liquid, and applying and drying the coating solution for forming an optical functional layer on the substrate by a wet coating method to form the optical functional layer.
 8.樹脂基材中にルチル型二酸化バナジウム含有粒子を含有する光学フィルムの製造方法であって、
 少なくとも樹脂と、第1項から第6項までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法によって製造されたルチル型二酸化バナジウム含有粒子とを含有するドープを調製し、当該ドープを流延することによって製膜することを特徴とする光学フィルムの製造方法。
8). A method for producing an optical film containing rutile vanadium dioxide-containing particles in a resin substrate,
Preparing a dope containing at least a resin and rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of items 1 to 6; A method for producing an optical film, wherein the film is formed by casting.
 本発明の上記手段により、サーモクロミック性を示すルチル型二酸化バナジウム含有粒子を容易に大量合成できる製造方法を提供することができる。また、当該二酸化バナジウム含有粒子を含有する光学フィルムの製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a production method capable of easily mass-producing rutile vanadium dioxide-containing particles exhibiting thermochromic properties. Moreover, the manufacturing method of the optical film containing the said vanadium dioxide containing particle | grain can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 前記特許文献1で開示されている方法は、ヒドラジンで五価のバナジウム(V)を還元させて4価バナジウム(IV)を形成後に、水熱合成法によりサーモクロミック性を示す二酸化バナジウム(IV)含有粒子を合成する手法であるが、出発原料として4価のバナジウム(IV)を用い水熱合成することで、サーモクロミック性を示す二酸化バナジウム(IV)含有粒子を合成できることを見出した。 The method disclosed in Patent Document 1 is a method in which pentavalent vanadium (IV) is formed by reducing pentavalent vanadium (V) with hydrazine and then thermochromic by a hydrothermal synthesis method. Although it is a method of synthesizing the contained particles, it has been found that vanadium dioxide (IV) -containing particles exhibiting thermochromic properties can be synthesized by hydrothermal synthesis using tetravalent vanadium (IV) as a starting material.
 本発明の製造方法であれば、水熱合成法に還元剤であるヒドラジンを用いないか、用いても少量であるために、一般的に合成釜に用いられているSUS316を腐食してしまうという問題や、当該腐食によって反応容器から溶出する金属イオンによる二酸化バナジウム(IV)含有粒子の生成阻害という問題を解決することができ、数十nmオーダーの微粒子の生成を促進し、大量に合成できるものと推察される。 According to the production method of the present invention, hydrazine, which is a reducing agent, is not used in the hydrothermal synthesis method, or even if it is used in a small amount, SUS316 commonly used in a synthesis kettle is corroded. It can solve the problem and the problem of inhibiting the formation of vanadium dioxide (IV) -containing particles by metal ions eluted from the reaction vessel due to the corrosion, promotes the generation of fine particles of the order of several tens of nm, and can be synthesized in large quantities It is guessed.
本発明に係る光学フィルムの基本的な構成の一例を示す概略断面図Schematic sectional view showing an example of the basic configuration of the optical film according to the present invention 本発明に係る光学フィルムの基本的な構成の他の一例を示す概略断面図Schematic sectional view showing another example of the basic configuration of the optical film according to the present invention 本発明に適用可能な溶媒置換処理装置の一例を示す概略工程図Schematic process drawing showing an example of a solvent replacement processing apparatus applicable to the present invention
 本発明のルチル型二酸化バナジウム含有粒子の製造方法は、4価のバナジウム(IV)化合物を原料として、水熱合成法によって、数平均粒子径が1~500nmの範囲内のルチル型二酸化バナジウム(IV)含有粒子を形成することを特徴とする。この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 The method for producing the rutile vanadium dioxide-containing particles of the present invention comprises using a tetravalent vanadium (IV) compound as a raw material and hydrolyzing the rutile vanadium dioxide (IV) having a number average particle diameter in the range of 1 to 500 nm. ) Containing particles. This feature is a technical feature common to the inventions according to claims 1 to 8.
 本発明の実施態様としては、本発明の効果発現の観点から、前記4価のバナジウム(IV)化合物が、二酸化バナジウム(IV)、オキシ二塩化バナジウム(IV)及びオキシ硫酸バナジウム(IV)から選択されることが、安定に大量合成する観点から、好ましい。 As an embodiment of the present invention, the tetravalent vanadium (IV) compound is selected from vanadium dioxide (IV), vanadium oxydichloride (IV) and vanadium oxysulfate (IV) from the viewpoint of manifesting the effects of the present invention. It is preferable from the viewpoint of stable mass synthesis.
 また、前記水熱合成法が、還元条件下で行われることは好ましく、前記水熱合成法が、水熱反応液に還元剤として過酸化水素又はヒドラジンを含有させることが、高い収率を実現する観点から、好ましい実施態様である。 Further, the hydrothermal synthesis method is preferably performed under reducing conditions, and the hydrothermal synthesis method achieves a high yield by adding hydrogen peroxide or hydrazine as a reducing agent in the hydrothermal reaction liquid. From this viewpoint, this is a preferred embodiment.
 前記ルチル型二酸化バナジウム(IV)含有粒子の数平均粒子径は、1~100nmの範囲内であることが、光学フィルムに含有させた場合でも、ヘイズの上昇が抑制され、透明なサーモクロミック性光学フィルムを得る観点から、好ましい。 The number average particle diameter of the rutile-type vanadium dioxide (IV) -containing particles is in the range of 1 to 100 nm. Even when the rutile-type vanadium dioxide (IV) -containing particles are contained in an optical film, increase in haze is suppressed, and transparent thermochromic optics From the viewpoint of obtaining a film, it is preferable.
 また、前記4価のバナジウム(IV)化合物とともに、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)から選択される元素を原料として用いることが、サーモクロミック性、特に、転移温度を制御する観点から、好ましい。 In addition to the tetravalent vanadium (IV) compound, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium ( Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P) as an element It is preferable to use it from the viewpoint of controlling the thermochromic property, particularly the transition temperature.
 本発明の光学フィルムの製造方法は、基材上に光学機能層を有する光学フィルムの製造方法であって、第1項から第6項までのいずれか一項に記載のルチル型二酸化バナジウム(IV)含有粒子の製造方法によって製造されたルチル型二酸化バナジウム(IV)含有粒子を、樹脂バインダー中に分散して光学機能層形成用塗布液を調製し、当該光学機能層形成用塗布液を、湿式塗布方式により、前記基材上に塗布及び乾燥して前記光学機能層を形成することが、好ましい。 The manufacturing method of the optical film of this invention is a manufacturing method of the optical film which has an optical function layer on a base material, Comprising: The rutile type vanadium dioxide (IV) as described in any one of 1st term | claim to 6th term | claim ) The rutile vanadium dioxide (IV) -containing particles produced by the method for producing the contained particles are dispersed in a resin binder to prepare a coating solution for forming an optical functional layer. It is preferable to form the optical functional layer by applying and drying on the substrate by a coating method.
 また別の製造方法として樹脂基材中にルチル型二酸化バナジウム(IV)含有粒子を含有する光学フィルムの製造方法であって、少なくとも樹脂と、第1項から第6項までのいずれか一項に記載のルチル型二酸化バナジウム(IV)含有粒子の製造方法によって製造されたルチル型二酸化バナジウム(IV)含有粒子とを含有するドープを調製し、当該ドープを流延することによって製膜することが、好ましい。 Another method for producing an optical film containing rutile vanadium dioxide (IV) -containing particles in a resin base material, wherein at least the resin and any one of items 1 to 6 Preparing a dope containing rutile-type vanadium dioxide (IV) -containing particles produced by the method for producing rutile-type vanadium dioxide (IV) -containing particles described above, and casting the dope to form a film; preferable.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明のルチル型二酸化バナジウム含有粒子の製造方法の概要≫
 本発明のルチル型二酸化バナジウム含有粒子の製造方法は、4価のバナジウム(IV)化合物を原料として、水熱合成法によって、数平均粒子径が1~500nmの範囲内のルチル型二酸化バナジウム(IV)含有粒子を形成することを特徴とする。
<< Outline of Production Method of Rutile Type Vanadium Dioxide-Containing Particles of the Present Invention >>
The method for producing the rutile vanadium dioxide-containing particles of the present invention comprises using a tetravalent vanadium (IV) compound as a raw material and hydrolyzing the rutile vanadium dioxide (IV) having a number average particle diameter in the range of 1 to 500 nm. ) Containing particles.
 二酸化バナジウム(IV)含有粒子は、温度変化によって光吸収率や光反射率等の光学特性が可逆的に変化するサーモクロミック現象を示す材料として注目されている。
 ここで、二酸化バナジウム(IV)含有粒子の結晶構造には、A相、B相、C相及びR相(いわゆる「ルチル型の結晶相」のことをいう。)など、いくつかの結晶相の多形が存在する。この中でも、前述のようなサーモクロミック現象を示す結晶構造は、R相に限られる。このR相は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれている。このような二酸化バナジウム(IV)含有粒子において、実質的に優良なサーモクロミック性を発現させるためには、二酸化バナジウム(IV)含有粒子が凝集していないこと、平均粒子径がナノメートルオーダーであること、粒子が等方的な形状を有していることが望ましい。
Vanadium dioxide (IV) -containing particles are attracting attention as a material exhibiting a thermochromic phenomenon in which optical properties such as light absorptivity and light reflectance change reversibly with temperature.
Here, the crystal structure of the vanadium dioxide (IV) -containing particles includes several crystal phases such as A phase, B phase, C phase and R phase (so-called “rutile-type crystal phase”). There are polymorphs. Among these, the crystal structure showing the thermochromic phenomenon as described above is limited to the R phase. Since this R phase has a monoclinic structure below the transition temperature, it is also called an M phase. In such vanadium dioxide (IV) -containing particles, in order to exhibit substantially excellent thermochromic properties, the vanadium dioxide (IV) -containing particles are not agglomerated and the average particle size is on the order of nanometers. It is desirable that the particles have an isotropic shape.
 本発明によれば、水熱合成法にヒドラジンを用いないか、用いても少量であるために、一般的に合成釜に用いられているSUS316を腐食せず、水熱合成法の特徴でもある数十nmオーダーの二酸化バナジウム(IV)含有粒子を大量合成できるものである。 According to the present invention, hydrazine is not used in the hydrothermal synthesis method or a small amount is used, so that SUS316 generally used in a synthesis kettle is not corroded and is also a feature of the hydrothermal synthesis method. A large amount of vanadium dioxide (IV) -containing particles on the order of several tens of nanometers can be synthesized.
 <本発明のルチル型二酸化バナジウム(IV)含有粒子の製造方法の構成>
 以下、ルチル型二酸化バナジウム(IV)含有粒子を、VO含有粒子として説明する。
<Configuration of production method of rutile vanadium dioxide (IV) -containing particles of the present invention>
Hereinafter, the rutile vanadium dioxide (IV) -containing particles will be described as VO 2 -containing particles.
 〔1〕VO含有粒子の製造方法
 〔1.1〕VO含有粒子
 本発明に係るVO含有粒子の結晶形は、サーモクロミック性(自動調光性)を効率よく発現させる観点から、ルチル型のVO含有粒子を用いる。
[1] VO 2 manufacturing method of containing particles [1.1] VO 2 crystalline form of VO 2 containing particles of the containing particles present invention, thermochromic (automatic dimming) from the viewpoint of efficient expression, rutile Type VO 2 containing particles are used.
 ルチル型のVO含有粒子は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれる。本発明に係るVO含有粒子においては、目的を損なわない範囲で、A相、あるいはB相などの他の結晶型のVO含有粒子を含んでもよい。結晶構造は、XRD(X‐ray diffraction)測定によって決定することができ、市販のX線回折装置、例えばリガク社製のX線回折装置等を用いて行うことができる。 Since the rutile VO 2 -containing particles have a monoclinic structure below the transition temperature, they are also called an M phase. The VO 2 -containing particles according to the present invention may contain other crystal-type VO 2 -containing particles such as an A phase or a B phase as long as the purpose is not impaired. The crystal structure can be determined by XRD (X-ray diffraction) measurement, and can be performed using a commercially available X-ray diffractometer, for example, an X-ray diffractometer manufactured by Rigaku Corporation.
 本発明に係るVO含有粒子は、数平均粒子径が1~500nmの範囲内である。 The VO 2 -containing particles according to the present invention have a number average particle diameter in the range of 1 to 500 nm.
 ここでいう数平均粒子径は、VO含有粒子が等方であればその直径を、等方でない場合は、粒子の投影面積を円換算し、その直径をもって粒径とする。 As used herein, the number average particle diameter is the diameter if the VO 2 -containing particles are isotropic, and if not, the projected area of the particles is converted into a circle and the diameter is taken as the particle diameter.
 数平均粒子径の測定方法は種々の測定法を適用することができる。 Various measuring methods can be applied to the measuring method of the number average particle size.
 例えば、本発明に係る数平均分子量を測定する方法としては、粒子を走査型電子顕微鏡で撮影し、粒子の投影面積に等しい面積を有する円の直径を粒径と定義し、100個程度のVO含有粒子について測定し、これらの算術平均値を求め、これを数平均粒径とする方法や、動的光散乱法に従って測定する方法等が好ましい。好ましくは、下記説明する動的光散乱法を用いる測定方法である。 For example, as a method for measuring the number average molecular weight according to the present invention, a particle is photographed with a scanning electron microscope, and the diameter of a circle having an area equal to the projected area of the particle is defined as the particle size. It is preferable to measure the two- containing particles, obtain the arithmetic average value of these, and use this as the number average particle diameter, or the method of measuring according to the dynamic light scattering method. A measurement method using a dynamic light scattering method described below is preferable.
 〈動的光散乱法による数平均粒子径の測定方法〉 
 作製したVO含有粒子を、それぞれ1質量%の濃度で水に混合し、超音波で15分間分散して測定用サンプルを作製する。濃度は各装置により適正な範囲が異なるため、適宜濃縮又は希釈して用いる。
<Method of measuring number average particle size by dynamic light scattering method>
The prepared VO 2 -containing particles are each mixed with water at a concentration of 1% by mass and dispersed with ultrasonic waves for 15 minutes to prepare a measurement sample. Since the appropriate concentration range varies depending on each device, the concentration is appropriately concentrated or diluted.
 作製した測定用サンプルについて、島津製作所製のレーザー回折式粒度分布測定装置を用いて得られた粒子径分布から、小径側から体積基準で累積分布を描いた場合に累積80%となる粒径を求め、数平均粒子径とする。 About the produced measurement sample, when the cumulative distribution is drawn on a volume basis from the small diameter side from the particle size distribution obtained using a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation, the particle size which becomes 80% cumulative Determine the number average particle size.
 本発明に係るVO含有粒子における好ましい数平均粒子径は、500nm以下であるが、更に好ましくは1~100nmの範囲内であり、より好ましくは5~60nmの範囲内である。VO含有粒子のアスペクト比としては、1.0~3.0の範囲内であることが好ましい。 The preferred number average particle diameter of the VO 2 -containing particles according to the present invention is 500 nm or less, more preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 60 nm. The aspect ratio of the VO 2 -containing particles is preferably in the range of 1.0 to 3.0.
 このような特徴をもつVO含有粒子は、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒径が十分に小さいので、従来の微粒子に比べて、良好なサーモクロミック性を発揮することができる。 Since the VO 2 -containing particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good. In addition, since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
 また、VO含有粒子の粒径分布のCV値(変動係数)は、40%以下であることが好ましく、30%以下であることがより好ましい。このようなVO含有粒子を含有する光学フィルムは、ヘイズの発生を抑制でき、また、可視光透過率を向上させることができる。 In addition, the CV value (coefficient of variation) of the particle size distribution of the VO 2 -containing particles is preferably 40% or less, and more preferably 30% or less. The optical film containing such VO 2 -containing particles can suppress the generation of haze and can improve the visible light transmittance.
 (粒径分布のCV値の測定方法)
 上記数平均粒子径の測定で求めた個々の粒子径の標準偏差を平均粒子径で除した値に100を乗じた値を求め、これを粒径分布のCV値とした。すなわち、当該CV値は下記式により、計算される値である。
(Measurement method of CV value of particle size distribution)
A value obtained by multiplying the value obtained by dividing the standard deviation of the individual particle diameters obtained by the measurement of the number average particle diameter by the average particle diameter by 100 was obtained, and this was used as the CV value of the particle size distribution. That is, the CV value is a value calculated by the following formula.
  粒径分布のCV値[%]=粒子径の標準偏差/平均粒子径×100
 本発明に係るVO含有粒子は、VOの他に、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)から選択される元素を含んでいても良い。このような元素の添加により、VO含有粒子の相転移特性(特に、調光温度)を制御することが可能となる。なお、最終的に得られるVO含有粒子に対する、上記添加物の総量は、バナジウム(IV)原子に対して、0.1~5.0原子%程度で十分である。
CV value [%] of particle size distribution = standard deviation of particle size / average particle size × 100
In addition to VO 2 , the VO 2 -containing particles according to the present invention include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), and iridium (Ir). Selected from osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P) May be included. By adding such an element, it becomes possible to control the phase transition characteristics (particularly the light control temperature) of the VO 2 -containing particles. It should be noted that the total amount of the additive with respect to the finally obtained VO 2 -containing particles is about 0.1 to 5.0 atomic% with respect to the vanadium (IV) atom.
 〔1.2〕VO含有粒子の製造方法
 一般に、VO含有粒子の製造方法は、固相法により合成されたVO焼結体を粉砕する方法と、五酸化バナジウム(V)を原料として、液相でVOを合成しながら粒子成長させる水系合成法が挙げられる。
[1.2] Method for Producing VO 2 -Containing Particles Generally, the method for producing VO 2 -containing particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a method of vanadium pentoxide (V 2 O 5 ). As a raw material, an aqueous synthesis method in which particles are grown while synthesizing VO 2 in a liquid phase can be used.
 本発明に係るVO含有粒子の製造方法としては、平均粒子径が小さく、粒径のばらつきを抑制することができる点で、4価バナジウム(IV)化合物を原料として、液相でVO含有粒子を合成しながら粒子成長させる水熱合成法を採用する。また、超臨界状態を用いた水系合成法(超臨界水熱合成法ともいう。)の詳細については、例えば、特開2010-58984号公報の段落番号(0011)、同(0015)~(0018)に記載されている製造方法を参照することができる。 As a method for producing VO 2 containing particles according to the present invention, the average particle size is small, in that it is possible to suppress the variation in particle size, the tetravalent vanadium (IV) compound as a starting material, VO 2 content in the liquid phase A hydrothermal synthesis method is used in which particles are grown while particles are synthesized. The details of the water-based synthesis method using the supercritical state (also referred to as supercritical hydrothermal synthesis method) are disclosed in, for example, paragraph numbers (0011) and (0015) to (0018) of JP-A-2010-58984. ) Can be referred to.
 本発明に好適な水熱合成法によるVO含有粒子の製造方法について、その詳細をさらに説明する。 The details of the method for producing VO 2 -containing particles by the hydrothermal synthesis method suitable for the present invention will be further described.
 以下に、代表的な水熱合成法によるVO含有粒子の製造工程を示す。 Hereinafter, a manufacturing process of the VO 2 containing particles according to a typical hydrothermal synthesis method.
 [工程1]
 4価バナジウム(IV)化合物を含む原料(a)と水を混ぜて溶液(A)を調製する。この溶液は、原料(a)が水中に溶解した水溶液であっても良いし、原料(a)が水中に分散した懸濁液であっても良い。本反応は少量の還元剤を添加することにより、VO含有粒子の収率を上げることができ、ヒドラジン(N)及びその水和物(N・nHO)若しくは、過酸化水素を用いることが好ましい。
[Step 1]
A solution (A) is prepared by mixing a raw material (a) containing a tetravalent vanadium (IV) compound and water. This solution may be an aqueous solution in which the raw material (a) is dissolved in water, or a suspension in which the raw material (a) is dispersed in water. In this reaction, the yield of VO 2 -containing particles can be increased by adding a small amount of a reducing agent, and hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) or It is preferable to use hydrogen peroxide.
 原料(a)としては、例えば、二酸化バナジウム(IV)(VO)、オキシ二塩化バナジウム(IV)(VOCl)、オキシ硫酸バナジウム(IV)(VOSO)、シュウ酸オキソバナジウム(IV)(CV)及びその水和物(CV・5HO)、四塩化バナジウム(IV)(VCl)等が挙げられる。なお、原料(I)としては、4価のバナジウム(V)を含む化合物であれば、特に限定されないが、二酸化バナジウム(IV)(VO)、オキシ二塩化バナジウム(IV)(VOCl)及びオキシ硫酸バナジウム(IV)(VOSO)であることが好ましい。原料の形状は特に限定はなく、粒子状、板状、塊状であってもよい。 Examples of the raw material (a) include vanadium dioxide (IV) (VO 2 ), vanadium oxydichloride (IV) (VOCl 2 ), vanadium oxysulfate (IV) (VOSO 4 ), oxovanadium oxalate (IV) (IV) C 2 O 5 V) and hydrates thereof (C 2 O 5 V · 5H 2 O), vanadium tetrachloride (IV) (VCl 4 ) and the like. The raw material (I) is not particularly limited as long as it is a compound containing tetravalent vanadium (V), but vanadium dioxide (IV) (VO 2 ), vanadium oxydichloride (IV) (VOCl 2 ) and Vanadium oxysulfate (IV) (VOSO 4 ) is preferred. The shape of the raw material is not particularly limited, and may be a particle shape, a plate shape, or a lump shape.
 溶液(A)は、最終的に得られるVOの単結晶粒子に元素をドープするため、ドープする元素を含む原料(b)を更に含有することが好ましい。添加する元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)又はリン(P)が挙げられる。 The solution (A) preferably further contains a raw material (b) containing the element to be doped in order to dope the VO 2 single crystal particles finally obtained with the element. Examples of the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
 これらの元素を、最終的に得られるVO含有粒子にドープすることにより、VO含有粒子のサーモクロミック性、特に、転移温度を制御することができる。 By doping these elements into the finally obtained VO 2 -containing particles, the thermochromic properties of the VO 2 -containing particles, in particular, the transition temperature can be controlled.
 また、この溶液(A)は、還元性を有する原料(c)を更に含有していることが好ましい。原料(c)としては、例えば、過酸化水素(H)又はヒドラジン(N)が挙げられる。還元性を有する原料を添加することにより、溶液のpHを調整したり、原料(a)であるバナジウム(IV)を含む原料を均一に溶解させたりすることができる。
これらの原料(c)は高濃度に添加すると還元もしくは酸化が進行し過ぎて、サーモクロミック性を示すVOを合成することができない。還元剤の好適な濃度としては、15質量%以下が好ましく、より好ましくは10質量%以下が好ましい。
Moreover, it is preferable that this solution (A) further contains the reducing material (c). Examples of the raw material (c) include hydrogen peroxide (H 2 O 2 ) and hydrazine (N 2 H 4 ). By adding a reducing raw material, the pH of the solution can be adjusted, or the raw material containing vanadium (IV) as the raw material (a) can be uniformly dissolved.
When these raw materials (c) are added at a high concentration, reduction or oxidation proceeds excessively, and VO 2 exhibiting thermochromic properties cannot be synthesized. The preferred concentration of the reducing agent is preferably 15% by mass or less, more preferably 10% by mass or less.
 [工程2]
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(IV)(VO)含有の単結晶粒子が得られる。
[Step 2]
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. By the hydrothermal reaction treatment, single crystal particles containing vanadium dioxide (IV) (VO 2 ) are obtained.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶粒子の粒径を小さくすることができるが、過度に粒径が小さいと、結晶性が低くなる。また、水熱反応処理の時間は、例えば1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶粒子の粒径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。 The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle size of the obtained single crystal particles can be reduced. However, if the particle size is excessively small, the crystallinity is lowered. The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By making the time longer, the particle size and the like of the obtained single crystal particles can be controlled. However, an excessively long treatment time increases the energy consumption.
 なお、水熱反応処理は、バッチ式で実施しても良く、連続式に実施しても良い。 Note that the hydrothermal reaction treatment may be performed in a batch manner or a continuous manner.
 以上の工程により、サーモクロミック性を有するVO含有粒子を含む懸濁液が得られる。その後、懸濁液から、ろ過、洗浄、乾燥などによって、本発明に係るVO含有粒子が得られる。 Through the above steps, a suspension containing VO 2 -containing particles having thermochromic properties is obtained. Thereafter, the VO 2 -containing particles according to the present invention are obtained from the suspension by filtration, washing, drying, and the like.
 また、VO含有粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の微粒子を核粒子として添加し、その核粒子を成長させることによりVO含有粒子を製造することもできる。 Further, as a method for producing VO 2 -containing particles, if necessary, fine TiO 2 particles that become the core of particle growth are added as core particles, and the core particles are grown to produce VO 2 -containing particles. You can also
 (工程3)
 工程3は必要に応じて、得られたVO含有粒子の表面に、樹脂によるコーティング処理又は表面改質処理を行う工程である。これにより、VO含有粒子の表面が保護され、表面改質された単結晶粒子を得ることができる。
(Process 3)
Step 3 is a step of performing coating treatment or surface modification treatment with a resin on the surface of the obtained VO 2 -containing particles as necessary. Thereby, the surface of the VO 2 -containing particles is protected, and surface-modified single crystal particles can be obtained.
 なお、本発明でいう「被覆」とは、VO含有粒子に対し、当該樹脂により粒子全面が完全に覆われている状態であってもよいし、粒子表面の一部が樹脂により覆われている状態であってもよい。好ましくは、当該粒子表面の全面積の50%以上が被覆されている状態がよい。 The “coating” referred to in the present invention may be a state in which the entire surface of the particle is completely covered with the resin with respect to the VO 2 -containing particles, or a part of the particle surface is covered with the resin. It may be in a state. Preferably, 50% or more of the total area of the particle surface is covered.
 以上の工程1~工程3を経て、サーモクロミック性を有するVO含有粒子を含む分散液が得られる。 Through the steps 1 to 3, a dispersion liquid containing VO 2 -containing particles having thermochromic properties is obtained.
 [VO含有粒子分散液の不純物の除去処理]
 上記水系合成法により調製されたVO含有粒子の分散液中には、合成過程での生じた残渣などの不純物が含まれており、当該VO含有粒子を用いて光学機能層を形成する際に、二次凝集粒子発生のきっかけとなり、光学機能層の長期保存での劣化要因となることがあり、予め分散液の段階で不純物を除去することが好ましい。
[Removal of impurities from VO 2 -containing particle dispersion]
The dispersion of the VO 2 -containing particles prepared by the aqueous synthesis method contains impurities such as residues generated in the synthesis process, and the optical functional layer is formed using the VO 2 -containing particles. In addition, it may cause generation of secondary agglomerated particles, which may cause deterioration in long-term storage of the optical functional layer, and it is preferable to remove impurities at the stage of the dispersion in advance.
 VO含有粒子分散液中の不純物を除去する方法としては、従来公知の異物や不純物を分離する手段を適用することができ、例えば、VO含有粒子分散液に遠心分離を施し、VO含有粒子を沈殿させ、上澄み中の不純物を除去し、再び分散媒を添加、分散する方法でも良いし、限外濾過膜などの交換膜を用いて不純物を系外へ除去する方法でも良いが、VO含有粒子の凝集を防止する観点からは、限外濾過膜を用いる方法が最も好ましい。 As a method for removing impurities in the VO 2 -containing particle dispersion, conventionally known means for separating foreign substances and impurities can be applied. For example, the VO 2 -containing particle dispersion is subjected to centrifugal separation to contain VO 2. A method of precipitating particles, removing impurities in the supernatant, adding and dispersing the dispersion medium again, or removing impurities out of the system using an exchange membrane such as an ultrafiltration membrane may be used. 2 From the viewpoint of preventing aggregation of the contained particles, a method using an ultrafiltration membrane is most preferable.
 限外ろ過膜の材質としては、セルロース系、ポリエーテルスルホン系、ポリテトラフルオロエチレン(略称:PTFE)などを挙げることができ、その中でも、ポリエーテルスルホン系、PTFEを用いることが好ましい。 Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
 〔2〕光学フィルムの製造方法
 本発明に係るVO含有粒子を用いて光学フィルムを得る製造方法としては、第1の実施態様として、基材上に光学機能層を有し、本発明に係るVO含有粒子を、樹脂バインダー中に分散して光学機能層形成用塗布液を調製し、当該光学機能層形成用塗布液を、湿式塗布方式により、前記基材上に塗布及び乾燥して、当該光学機能層を有する光学フィルムを得ることが、好ましい。
[2] Manufacturing method of optical film As a manufacturing method for obtaining an optical film using the VO 2 -containing particles according to the present invention, as a first embodiment, an optical functional layer is provided on a substrate, and the present invention is applied. VO 2 -containing particles are dispersed in a resin binder to prepare an optical functional layer forming coating solution, and the optical functional layer forming coating solution is applied and dried on the substrate by a wet coating method. It is preferable to obtain an optical film having the optical functional layer.
 また、本発明に係るVO含有粒子を用いて光学フィルムを得る製造方法としては、第2の実施態様として、少なくとも樹脂と前記VO含有粒子とを含有するドープを調製し、当該ドープを流延することによって製膜して光学フィルムを得ることが好ましい。 Moreover, as a manufacturing method for obtaining an optical film using VO 2 -containing particles according to the present invention, as a second embodiment, a dope containing at least a resin and the VO 2 -containing particles is prepared, and the dope is allowed to flow. It is preferable to form an optical film by stretching.
 また、本発明においては、前記水熱合成法を適用し、かつ、水系合成法によりVO含有粒子を含む水系分散液として調製し、水系分散液中のVO含有粒子を乾燥させることなく、光学機能層形成用塗布液を調製し、この状態の光学機能層形成用塗布液を用いて、光学機能層を形成することにより、一次粒子及び二次粒子の数平均粒径が500nm未満である好ましい数平均粒径のVO含有粒子を含有する本発明に係る光学機能層を形成することができる。 Further, in the present invention, the hydrothermal synthesis method is applied, and an aqueous dispersion containing VO 2 -containing particles is prepared by an aqueous synthesis method, without drying the VO 2 -containing particles in the aqueous dispersion, The number average particle diameter of the primary particles and the secondary particles is less than 500 nm by preparing an optical functional layer forming coating solution and forming the optical functional layer using the optical functional layer forming coating solution in this state. An optical functional layer according to the present invention containing VO 2 -containing particles having a preferred number average particle diameter can be formed.
 なお、バインダー樹脂として水系バインダー樹脂を使用する場合、上述のVO含有粒子を含む水系分散液として調製したあと、水系分散液中のVO含有粒子を乾燥させることなく、VO含有粒子が離間している分散状態で水系バインダー樹脂溶液と混合して、光学機能層形成用塗布液を調製することが好ましい。 When using the aqueous binder resin as the binder resin, after prepared as an aqueous dispersion containing the aforementioned VO 2 containing particles, without drying the VO 2 containing particles of an aqueous dispersion, VO 2 containing particles separated It is preferable to prepare a coating solution for forming an optical functional layer by mixing with an aqueous binder resin solution in a dispersed state.
 以下、本発明に係る光学フィルム及び光学フィルムの製造方法について説明する。 Hereinafter, the optical film and the method for producing the optical film according to the present invention will be described.
 〔2.1〕光学フィルムの層構成の概要
 本発明に係る光学フィルムの代表的な構成例について、図を交えて説明する。
[2.1] Outline of Layer Configuration of Optical Film A typical configuration example of the optical film according to the present invention will be described with reference to the drawings.
 本発明の光学フィルムの好ましい態様の一つは、透明基材上に、本発明に係る光学機能層が形成されている構成である。 One of the preferred embodiments of the optical film of the present invention is a configuration in which the optical functional layer according to the present invention is formed on a transparent substrate.
 図1は、本発明に係るVO含有粒子とバインダー樹脂を含有する第1の実施態様である光学機能層を有する光学フィルムの基本的な構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of an optical film having an optical functional layer which is a first embodiment containing VO 2 -containing particles and a binder resin according to the present invention.
 図1に示す光学フィルム1は、透明基材2上に、光学機能層3を積層した構成を有している。この第1の実施態様の光学機能層3は、本発明に係る光学機能層に含有されるバインダー樹脂B1中に、VO含有粒子(VO)が分散された状態で存在している。 An optical film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2. The optical functional layer 3 of the first embodiment is present in a state where VO 2 -containing particles (VO 2 ) are dispersed in the binder resin B1 contained in the optical functional layer according to the present invention.
 本発明においては、光学機能層3中におけるVO含有粒子の数平均粒子径は前述のとおり、500nm以下であることが好ましい。 In the present invention, the number average particle diameter of the VO 2 -containing particles in the optical functional layer 3 is preferably 500 nm or less as described above.
 本発明に係る光学フィルムの好ましい態様の他の一つは、光学機能層が樹脂基材を兼ねたハイブリッド構成である。 Another preferred embodiment of the optical film according to the present invention is a hybrid structure in which the optical functional layer also serves as a resin base material.
 図2は、本発明の光学フィルムの基本的な構成の他の一例を示す概略断面図であり、図1で示した透明基材2と光学機能層3が同一層で構成されている第2の実施態様であるハイブリッド光学機能層(2+3)で構成されており、透明基材を構成している樹脂として、本発明に係る光学機能層に含有されるバインダー樹脂B2を用い、当該バインダー樹脂B2中に、VO含有粒子が分散されて、単層で透明基材を兼ね備えた光学機能層を形成している構成である。 FIG. 2 is a schematic cross-sectional view showing another example of the basic configuration of the optical film of the present invention, in which the transparent substrate 2 and the optical functional layer 3 shown in FIG. The binder resin B2 contained in the optical functional layer according to the present invention is used as the resin constituting the hybrid optical functional layer (2 + 3), which is an embodiment of the present invention, and constituting the transparent substrate. In this structure, VO 2 -containing particles are dispersed to form an optical functional layer having a single layer and a transparent substrate.
 本発明に係る光学フィルムとしては、上記説明した各構成層の他に、必要に応じて、各種機能層を設けてもよい。 As the optical film according to the present invention, various functional layers may be provided as necessary in addition to the constituent layers described above.
 本発明に係る光学フィルムの総厚としては、特に制限はないが、250~1500μmの範囲内であり、好ましくは400~1200μmの範囲内であり、さらに好ましくは600~1000μmの範囲内であり、特に好ましくは750~900μmの範囲内である。 The total thickness of the optical film according to the present invention is not particularly limited, but is in the range of 250 to 1500 μm, preferably in the range of 400 to 1200 μm, more preferably in the range of 600 to 1000 μm, Particularly preferably, it is in the range of 750 to 900 μm.
 本発明に係る光学フィルムの光学特性として、JIS R3106(1998)で測定される可視光透過率としては、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。また、波長900~1400nmの領域に反射率50%を超える領域を有することが好ましい。 As an optical characteristic of the optical film according to the present invention, the visible light transmittance measured by JIS R3106 (1998) is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is. In addition, it is preferable to have a region with a reflectance exceeding 50% in a wavelength region of 900 to 1400 nm.
 〔2.2〕光学フィルムの各構成材料
 以下、本発明に係る光学フィルムの構成要素である光学機能層の詳細について説明する。
[2.2] Each constituent material of the optical film Hereinafter, details of the optical functional layer which is a constituent element of the optical film according to the present invention will be described.
 〔2.2.1〕光学機能層
 本発明に係る光学機能層は、少なくともVO含有粒子と、バインダー樹脂を含有していることが好ましい。
[2.2.1] Optical Function Layer The optical function layer according to the present invention preferably contains at least VO 2 -containing particles and a binder resin.
 [VO含有粒子を含む溶媒分散液の調製方法:溶媒置換処理)
 本発明においては、上記水系合成法によりVO含有粒子を含む水系分散液を調製した後、水系分散液として、VO含有粒子が乾燥過程を経ることなく、溶媒置換工程によりVO含有粒子を含む溶媒分散液を調製することが好ましい。
[Method for preparing solvent dispersion containing VO 2 -containing particles: solvent substitution treatment]
In the present invention, after preparing an aqueous dispersion containing the VO 2 containing particles by the aqueous synthesis, as an aqueous dispersion, without VO 2 containing particles through the drying process, the VO 2 containing particles by solvent substitution step It is preferred to prepare a solvent dispersion containing.
 上記溶媒置換工程としては、VO含有粒子を含む分散液を濃縮する濃縮工程と、濃縮液に溶媒を添加して希釈する溶媒希釈工程より構成され、濃縮工程とそれに続く溶媒希釈工程で構成される処理操作を2回以上繰り返して、VO含有粒子を含む非水系の溶媒分散液を調製する工程であることが好ましい。 The solvent replacement step is composed of a concentration step for concentrating the dispersion containing VO 2 -containing particles and a solvent dilution step for adding the solvent to the concentrate for dilution, and is composed of a concentration step followed by a solvent dilution step. This is preferably a step of preparing a non-aqueous solvent dispersion containing VO 2 -containing particles by repeating the treatment operation twice or more.
 具体的なVO含有粒子を含む分散液の濃縮工程で用いる濃縮手段としては、限外濾過方法であることが好ましい。 As the concentration means used in the step of concentrating the dispersion containing specific VO 2 -containing particles, an ultrafiltration method is preferred.
 以下、溶媒置換処理の詳細な方法について説明する。 Hereinafter, a detailed method of the solvent replacement process will be described.
 本発明に用いられる溶媒置換処理で適用可能な溶媒は、有機溶媒であり、好ましくは、非水系の有機溶媒である。最終的には、VO含有粒子を含む水系分散液を構成している媒体である水を、有機溶媒に置換して、VO含有粒子を含む溶媒分散液を調製する工程である。溶媒分散液とすることにより、光学機能層を形成するバインダー樹脂との相溶性が向上し、均一性の高い光学機能層を形成することができる。 The solvent applicable to the solvent replacement treatment used in the present invention is an organic solvent, preferably a non-aqueous organic solvent. Finally, it is a step of preparing a solvent dispersion containing VO 2 -containing particles by replacing water, which is a medium constituting the aqueous dispersion containing VO 2 -containing particles, with an organic solvent. By using a solvent dispersion, compatibility with the binder resin forming the optical functional layer is improved, and an optical functional layer with high uniformity can be formed.
 溶媒としては、特に制限はなく適宜選択することができるが,例えば、アセトン、ジメチルケトン、メチルエチルケトン等のケトン系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、クロロホルム、塩化メチレン等の塩素系溶媒、ベンゼン、トルエン等の芳香族系溶媒,酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒,エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶媒、ジオキサン、ヘキサン、オクタン、ジエチルエーテル、ジメチルホルムアミド等、同時に適用する疎水性バインダー樹脂を溶解させるものであれば使用可能である。 The solvent is not particularly limited and may be appropriately selected. Examples thereof include ketone solvents such as acetone, dimethyl ketone and methyl ethyl ketone, alcohol solvents such as methanol, ethanol and isopropyl alcohol, and chlorine solvents such as chloroform and methylene chloride. Solvents, aromatic solvents such as benzene and toluene, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, glycol ether solvents such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether, dioxane, hexane, octane, diethyl ether, Any material that dissolves the hydrophobic binder resin to be applied at the same time, such as dimethylformamide, can be used.
 本発明に係るVO含有粒子を含む溶媒分散液においては、水分をある程度含有することができ、30質量%以下であり、好ましくは10質量%以下であり、特に好ましくは5.0質量%以下である。また、下限は、0.01質量%以上であり、好ましくは0.05質量%以上であり、特に好ましくは0.1質量%である。したがって、水分含有量としては、0.1~5.0質量%の範囲内であることが特に好ましい態様である。当該溶媒分散液中の水分が30質量%以下であれば、光学機能層形成時に、共存する疎水性バインダーの造膜性を阻害することがなく、低ヘイズとすることができ、0.01質量%以上であれば温度変化時の赤外線透過率と赤外線遮蔽率との変化幅をある程度大きくすることができる。特に、含水率が5.0質量%以下であれば、VO含有粒子の酸化防止と、共存するバインダーの造膜性に対する影響を更に抑制することができ、ヘイズもより低いレベルに維持することができる。また、0.1質量%以上とすることにより、温度変化時の赤外線透過率と赤外線遮蔽率との変化幅をさらに拡大することができ、好ましい条件である。 In the solvent dispersion containing the VO 2 -containing particles according to the present invention, water can be contained to some extent, and is 30% by mass or less, preferably 10% by mass or less, and particularly preferably 5.0% by mass or less. It is. Moreover, a minimum is 0.01 mass% or more, Preferably it is 0.05 mass% or more, Most preferably, it is 0.1 mass%. Therefore, the water content is particularly preferably in the range of 0.1 to 5.0% by mass. If the water content in the solvent dispersion is 30% by mass or less, the film forming property of the coexisting hydrophobic binder can be prevented at the time of forming the optical functional layer, and the haze can be reduced to 0.01% by mass. % Or more, the change width between the infrared transmittance and the infrared shielding rate at the time of temperature change can be increased to some extent. In particular, if the water content is 5.0% by mass or less, it is possible to further suppress the influence of the oxidation of the VO 2 -containing particles and the film forming property of the coexisting binder, and maintain the haze at a lower level. Can do. Moreover, by setting it as 0.1 mass% or more, the change width of the infrared rays transmittance | permeability and infrared shielding factor at the time of a temperature change can further be expanded, and it is preferable conditions.
 上記溶媒置換処理で用いる限外濾過方法としては、例えば、リサーチ・ディスクロージャー(Research Disclosure)No.10208(1972)、No.13122(1975)及びNo.16351(1977)などを参照することができる。操作条件として重要な圧力差や流量は、大矢春彦著「膜利用技術ハンドブック」幸書房出版(1978)、p275に記載の特性曲線を参考に選定することができる。
 限外濾過膜は、膜材質として、有機膜では、すでにモジュールとして組み込まれた平板型、スパイラル型、円筒型、中空糸型、ホローファイバー型などが旭化成(株)、ダイセル化学(株)、(株)東レ、(株)日東電工などから市販されているが、耐溶媒性のある膜としては、日本ガイシ(株)、(株)ノリタケなどのセラミック膜が好ましい。
Examples of the ultrafiltration method used in the solvent replacement treatment include Research Disclosure No. 1; 10208 (1972), no. 13122 (1975) and no. 16351 (1977) and the like can be referred to. Pressure differences and flow rates that are important as operating conditions can be selected with reference to the characteristic curves described in Haruhiko Oya's “Membrane Utilization Technology Handbook”, Koshobo Publishing (1978), p275.
For ultrafiltration membranes, organic membranes, flat plate types, spiral types, cylindrical types, hollow fiber types, hollow fiber types, etc., already incorporated as modules, are available at Asahi Kasei Corporation, Daicel Chemical Co., Ltd. ( Although commercially available from Toray Industries, Inc. and Nitto Denko Corporation, etc., ceramic films such as NGK Co., Ltd. and Noritake Corporation are preferred as the solvent-resistant film.
 具体的には、例えば、濾過膜としてSartorius stedim社製ビバフロー50(有効濾過面積50cm、分画分子量5000)を用い、流速300ml/min(分)、液圧100kPa、室温で限外濾過を行う方法や、ポリエーテルスルホン製で分画分子量が30万の濾過膜を有する限外濾過装置(日本ミリポア株式会社製 ペリコン2カセット)等を挙げることができる。 Specifically, for example, Vivaflow 50 (effective filtration area 50 cm 2 , fractional molecular weight 5000) manufactured by Sartorius steady is used as a filtration membrane, and ultrafiltration is performed at a flow rate of 300 ml / min (minutes), a hydraulic pressure of 100 kPa, and room temperature. Examples thereof include an ultrafiltration device having a filtration membrane made of polyethersulfone and a molecular weight cut off of 300,000 (Pericon 2 cassette, manufactured by Nihon Millipore Corporation).
 具体的な本発明に好ましい溶媒置換処理について、図を交えて説明する。 Specific solvent replacement treatment preferable for the present invention will be described with reference to the drawings.
 図3は、本発明に適用可能な溶媒置換処理装置の一例を示す概略工程図である。 FIG. 3 is a schematic process diagram showing an example of a solvent replacement processing apparatus applicable to the present invention.
 図3に示す溶媒置換処理装置10は、上記調製したVO含有粒子を含む分散液12を貯留するための調製釜11、希釈用の溶媒18を貯留している溶媒ストック釜17、溶媒18を調製釜11に添加する溶媒供給ライン19、調製釜11を、循環ポンプ14により循環させる循環ライン13、循環ライン13の経路内に濃縮手段として、限外濾過部15が配置されている。 The solvent replacement processing apparatus 10 shown in FIG. 3 includes a preparation tank 11 for storing the dispersion liquid 12 containing the prepared VO 2 -containing particles, a solvent stock tank 17 storing a solvent 18 for dilution, and a solvent 18. An ultrafiltration unit 15 is disposed as a concentrating means in the solvent supply line 19 to be added to the preparation tank 11, the circulation line 13 for circulating the preparation tank 11 by the circulation pump 14, and the circulation line 13.
 工程(A)調製釜11に、分散液12として、上記方法で調製したVO含有粒子を含む分散液を貯留して、循環ポンプ14により循環させながら、限外濾過部15で、分散液中の水分を排出口16より排出して、所定の濃度まで濃縮する。濃縮の目安としては、初期体積に対し20体積%まで濃縮する。これ以上に過度の濃縮を行うと、粒子密度の上昇に伴う粒子凝集が生じるため、避けることが好ましい。また、この濃縮操作においては、分散液を乾燥させないことが重要である。 Step (A) A dispersion liquid containing the VO 2 -containing particles prepared by the above method is stored as a dispersion liquid 12 in the preparation kettle 11 and is circulated by a circulation pump 14 while being circulated in the dispersion liquid at the ultrafiltration unit 15. The water is discharged from the discharge port 16 and concentrated to a predetermined concentration. As a standard of concentration, it concentrates to 20 volume% with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the dispersion.
 工程(B)次いで、20体積%まで濃縮した分散液12に対し、溶媒ストック釜17より溶媒供給ライン19を経由して、溶媒18を80質量%相当添加し、十分に撹拌混合して、第1次の溶媒置換した分散液12を調製する。 Step (B) Next, 80% by mass of the solvent 18 is added from the solvent stock kettle 17 via the solvent supply line 19 to the dispersion 12 concentrated to 20% by volume, and sufficiently stirred and mixed. A primary solvent-substituted dispersion 12 is prepared.
 工程(C)次いで、上記工程(A)と同様にして、循環ポンプPにより循環させながら、限外濾過部15で、分散液中の媒体(水+溶媒)を系外に排出16して、再び20体積%の濃度まで濃縮する。 Step (C) Next, in the same manner as in the above step (A), the medium (water + solvent) in the dispersion is discharged 16 outside the system by the ultrafiltration unit 15 while being circulated by the circulation pump P. Concentrate again to a concentration of 20% by volume.
 工程(D)次いで、上記工程(B)と同様にして、濃縮した分散液に対し、溶媒ストック釜17より溶媒供給ライン19を経由して、溶媒18を80質量%相当添加し、十分に撹拌混合して、第1次の溶媒置換した分散液12を調製する。 Step (D) Next, in the same manner as in the above step (B), 80% by mass of the solvent 18 is added from the solvent stock kettle 17 via the solvent supply line 19 to the concentrated dispersion, and the mixture is sufficiently stirred. Mixing is performed to prepare the first solvent-dispersed dispersion liquid 12.
 工程(E)最終的には、工程(A)及び工程(B)による濃縮及び溶媒希釈操作を、少なくとも2回以上繰り返して、水分含有量を0.1~5.0質量%の範囲内に調整したVO含有粒子を含有する溶媒分散液を調製する。なお、水分含有量は、例えば、フィッシャー法等により測定して求めることができる。 Step (E) Finally, the concentration and solvent dilution operations in Step (A) and Step (B) are repeated at least twice, so that the water content is within the range of 0.1 to 5.0% by mass. A solvent dispersion containing the adjusted VO 2 -containing particles is prepared. The water content can be determined by measuring by, for example, the Fisher method.
 [バインダー樹脂]
 本発明に係る光学機能層においては、バインダー樹脂として、以下の疎水性バインダー樹脂を使用できる。
[Binder resin]
In the optical functional layer according to the present invention, the following hydrophobic binder resin can be used as the binder resin.
 ここでいう疎水性バインダー樹脂とは、100gの水に対し、液温25℃での溶解量が1.0g未満である樹脂をいい、さらに好ましくは、溶解量が0.5g未満の樹脂であり、さらに好ましくは、溶解量が0.25g未満の樹脂である。 The hydrophobic binder resin here means a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
 本発明に適用可能な疎水性バインダー樹脂としては、疎水性樹脂、又は疎水性バインダー樹脂の単量体を用い、硬化処理工程で重合した樹脂であることが好ましい。 As the hydrophobic binder resin applicable to the present invention, a hydrophobic resin or a resin obtained by polymerizing in a curing process using a hydrophobic binder resin monomer is preferable.
 本発明に適用可能な疎水性バインダー樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)やASA樹脂(アクリロニトリル-スチレン-アクリレート樹脂)等が挙げられる。 Examples of the hydrophobic binder resin applicable to the present invention include olefin-based polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); vinyl chloride, chlorinated vinyl resin and the like. Halogen polymer; styrene polymer such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Polyamides such as nylon 6, nylon 66 and nylon 610; polyacetal; polycarbonate; polyphenylene oxide; polyphenylene sulfide; polyether ether ketone; And the like (acrylate resin acrylonitrile - - styrene) polybutadiene rubber, ABS resin containing an acrylic rubber (acrylonitrile - - butadiene-styrene resin) and ASA resin; polyether sulfone; polyoxyethylene benzylidene alkylene; polyamideimide.
 また、本発明に適用可能な疎水性バインダー樹脂に一種として、疎水性バインダー樹脂の単量体を用い、硬化処理工程でポリマー化する樹脂を挙げることができ、その代表的な疎水性バインダー樹脂材料としては、活性エネルギー線の照射により硬化する化合物であり、具体的にはラジカル活性種による重合反応により硬化するラジカル重合性化合物、及びカチオン活性種によるカチオン重合反応により硬化するカチオン重合性化合物を挙げることができる。 In addition, as a kind of hydrophobic binder resin applicable to the present invention, a resin that uses a monomer of a hydrophobic binder resin and is polymerized in a curing treatment step can be exemplified, and its representative hydrophobic binder resin material Is a compound that is cured by irradiation with active energy rays, and specifically includes a radical polymerizable compound that is cured by a polymerization reaction with radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction with cationic active species. be able to.
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物が挙げられ、ラジカル重合可能なエチレン性不飽和結合を有する化合物の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等の不飽和カルボン酸及びそれらの塩、エステル、ウレタン、アミドや無水物、アクリロニトリル、スチレン、さらに種々の不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等のラジカル重合性化合物が挙げられる。具体的には、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、ビス(4-アクリロキシポリエトキシフェニル)プロパン、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、N-メチロールアクリルアミド、ジアセトンアクリルアミド、エポキシアクリレート等のアクリル酸誘導体、メチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン等のメタクリル誘導体、その他、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物の誘導体が挙げられる。 Examples of the radical polymerizable compound include a compound having an ethylenically unsaturated bond capable of radical polymerization. Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid. , Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned. Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, bis (4-acryloxypolyethoxyphenyl) propane, neopentyl glycol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol Tetraacrylate, dipentaery Acrylic acid derivatives such as lithol tetraacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, oligoester acrylate, N-methylolacrylamide, diacetoneacrylamide, epoxy acrylate, methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate , Lauryl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylol Methacryl derivatives such as tan trimethacrylate, trimethylolpropane trimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane, and other derivatives of allyl compounds such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate Is mentioned.
 カチオン重合性化合物としては、各種公知のカチオン重合性のモノマーが使用できる。例えば、特開平6-9714号公報、特開2001-31892号公報、特開2001-40068号公報、特開2001-55507号公報、特開2001-310938号公報、特開2001-310937号公報、特開2001-220526号公報に例示されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。 As the cationic polymerizable compound, various known cationic polymerizable monomers can be used. For example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
 上記化合物と共に光重合開始剤を含有することが好ましい。光重合開始剤としては、「UV・EB硬化技術の応用と市場」(シーエムシー出版、田畑米穂監修/ラドテック研究会編集)などに掲載されているあらゆる公知の光重合開始剤を用いることができる。 It is preferable to contain a photopolymerization initiator together with the above compound. As the photopolymerization initiator, any known photopolymerization initiators published in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) may be used. it can.
 本発明に適用可能な疎水性バインダー樹脂としては、特に限定されず、例えば、上記疎水性バインダー樹脂のうち、ガラス転移温度が65℃以下の樹脂であれば何でもよく、具体的には、ポリエスターLP050(エステル系樹脂、日本合成製)、バイロン245(エステル系樹脂、東洋紡製)、エスレックBL-10(ブチラール系樹脂、積水化学製)、ダイヤナールBR-117(アクリル系樹脂、三菱レイヨン製)などの市販品であってもよい。 The hydrophobic binder resin applicable to the present invention is not particularly limited. For example, any of the above hydrophobic binder resins having a glass transition temperature of 65 ° C. or lower may be used. LP050 (ester resin, manufactured by Nihon Gosei), Byron 245 (ester resin, manufactured by Toyobo), ESREC BL-10 (butyral resin, manufactured by Sekisui Chemical), Dialnal BR-117 (acrylic resin, manufactured by Mitsubishi Rayon) Commercial products such as
 また、本発明に好適に適用可能な疎水性バインダー樹脂としては、特に限定されず、例えば、上記疎水性バインダー樹脂のうち、ガラス転移温度が75℃以上の樹脂であれば何でもよく、具体的には、バイロンUR4800(エステルウレタン系樹脂、東洋紡製)、バイロンGK880(エステル系、東洋紡製)、エスレックKS-10(ブチラール系樹脂、積水化学製)、ダイヤナールBR-80(アクリル系樹脂、三菱レイヨン製)などの市販品であってもよい。 In addition, the hydrophobic binder resin that can be suitably applied to the present invention is not particularly limited, and for example, any of the hydrophobic binder resins having a glass transition temperature of 75 ° C. or higher may be used. Are: Byron UR4800 (ester urethane resin, manufactured by Toyobo), Byron GK880 (ester, manufactured by Toyobo), ESREC KS-10 (butyral resin, manufactured by Sekisui Chemical), Dianal BR-80 (acrylic resin, Mitsubishi Rayon) (Commercially available) or the like.
 また、本発明に係る光学機能層においては、バインダー樹脂として、水系バインダー樹脂も使用できる。 In the optical functional layer according to the present invention, an aqueous binder resin can also be used as the binder resin.
 ここでいう水系バインダー樹脂とは、25℃における水100gに対し、1.0g以上溶解する樹脂である。また、熱水に溶解させた後、25℃で同様に溶解している樹脂も、本発明でいう水系バインダー樹脂として定義する。 Here, the aqueous binder resin is a resin that dissolves 1.0 g or more with respect to 100 g of water at 25 ° C. Moreover, after making it melt | dissolve in a hot water, the resin similarly melt | dissolved at 25 degreeC is also defined as the water-system binder resin said by this invention.
 本発明に係る光学機能層の形成に有用な水系バインダー樹脂としては、例えば、ゼラチン類、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等の蛋白質、セルロース類、アルギン酸ソーダ、セルロース硫酸エステル、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体、増粘多糖類等の天然由来素材や、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。 Examples of the aqueous binder resin useful for forming the optical functional layer according to the present invention include gelatins, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, and cellulose sulfate. , Dextrin, dextran, saccharide derivatives such as dextran sulfate, naturally-derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylic Acrylic resins such as nitrile copolymer, vinyl acetate-acrylic acid ester copolymer, or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid Acid-acrylic acid ester Polymer, styrene-α-methylstyrene-acrylic acid copolymer, or styrene-acrylic acid resin such as styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, Styrene-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer Vinyl acetate copolymers such as polymers, vinyl naphthalene-maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers, and the like Salt.
 中でも、VO含有粒子との親和性が高く、膜形成の乾燥時にも粒子の凝集を防ぐ効果の高い、ヒドロキシ基を有する繰り返し単位成分を50mol%以上含有するポリマーであることが好ましく、こうしたポリマーとしては、セルロース類、ポリビニルアルコール類、ヒドロキシ基を有するアクリル系樹脂などを挙げることができ、その中でも、ポリビニルアルコール類、セルロース類が最も好ましく利用できる。 Among them, a polymer containing 50 mol% or more of repeating unit components having a hydroxy group, which has a high affinity with VO 2 -containing particles and has a high effect of preventing aggregation of particles even during film formation drying, is preferable. Examples thereof include celluloses, polyvinyl alcohols, and acrylic resins having a hydroxy group. Among them, polyvinyl alcohols and celluloses can be most preferably used.
 本発明においては、各構成材料と、VO含有粒子を含む溶媒分散液とを含む光学機能層形成用塗布液を、例えば、透明基材上に塗布した後、その後、紫外線又は電子線等の活性エネルギー線を照射する。これにより形成した光学機能層薄膜を構成する組成物は速やかに硬化する。 In the present invention, after applying a coating liquid for forming an optical functional layer containing each constituent material and a solvent dispersion containing VO 2 -containing particles, for example, on a transparent substrate, thereafter, ultraviolet rays, electron beams, etc. Irradiate active energy rays. The composition which comprises the optical function layer thin film formed by this hardens | cures rapidly.
 活性エネルギー線の光源としては、紫外線を照射する場合には、例えば紫外線LED、紫外線レーザー、水銀アークランプ、キセノンアークランプ、低圧水銀灯、螢光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ及び太陽光を使用することができる。電子線により硬化させる場合には、通常300eVの以下のエネルギーの電子線で硬化させるが、1~5Mradの照射量で瞬時に硬化させることも可能である。 As the light source of the active energy ray, when irradiating ultraviolet rays, for example, ultraviolet LED, ultraviolet laser, mercury arc lamp, xenon arc lamp, low-pressure mercury lamp, fluorescent lamp, carbon arc lamp, tungsten-halogen copying lamp and sunlight Can be used. In the case of curing with an electron beam, it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
 一方、本発明に用いられるバインダー樹脂として、疎水性バインダー樹脂を使用する場合の本発明に係る光学機能層の他の形成方法としては、図2にその構成を例示するように、透明基材の構成材料である前記疎水性樹脂に、VO含有粒子を含む溶媒分散液及び溶媒を添加、溶解して、製膜用ドープを調製した後、当該ドープを用いて従来公知のフィルム製膜で用いられている溶液流涎法により、樹脂基材を兼ねた第2の実施態様であるハイブリッド光学機能層を形成する方法も好適に用いることができる。 On the other hand, as another forming method of the optical functional layer according to the present invention when a hydrophobic binder resin is used as the binder resin used in the present invention, as illustrated in FIG. A solvent dispersion containing VO 2 -containing particles and a solvent are added to and dissolved in the hydrophobic resin, which is a constituent material, to prepare a dope for film formation, and then used in film formation known in the art using the dope. A method of forming a hybrid optical functional layer, which is the second embodiment also serving as a resin base material, can be suitably used by the solution pouring method.
 上記方法で適用可能な疎水性バインダー樹脂としては、従来光学フィルムの製膜で用いられている樹脂材料を挙げることができ、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the hydrophobic binder resin that can be applied by the above method include resin materials that are conventionally used in the production of optical films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN). Such as polyester, polyethylene, polypropylene, cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate, and the like Derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (abbreviation: PC), norbornene resin, poly Tylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, arton Examples thereof include cycloolefin resins such as (trade name, manufactured by JSR) and Apel (trade name, manufactured by Mitsui Chemicals).
 また、溶媒としては、特に制限はないが、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。 The solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
 上記各構成材料を混合、調製したドープを用いて、溶液流延法により透明基材を兼ねたハイブリッド光学機能層を製膜する。 Using the dope prepared by mixing and preparing the above constituent materials, a hybrid optical functional layer that also serves as a transparent substrate is formed by a solution casting method.
 [光学機能層のその他の添加剤]
 本発明に係る光学機能層に、本発明の目的とする効果を損なわない範囲で適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
[Other additives for optical functional layers]
Various additives that can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57- No. 878989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Various surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers And various known additives such as dyes and pigments.
 [光学機能層の形成方法]
 本発明に係る光学機能層の形成方法としては、特に制限はないが、第1の実施態様である光学機能層3の形成方法としては、バインダー樹脂として疎水性バインダー樹脂を用いる場合、VO含有粒子として、水系合成法により調製したVO含有粒子を用い、当該VO含有粒子の表面をガラス転移温度が65℃以下であるバインダー樹脂で被覆したのち、乾燥状態を経ることなく、溶媒置換工程によりVO含有粒子を含む溶媒分散液を調製する。その後、バインダー樹脂と混合することで、水系の光学機能層形成用塗布液を調製し、当該光学機能層形成用塗布液を湿式塗布方式により、透明基材上に塗布、乾燥して第1の実施態様である光学機能層3を形成する方法が好ましい形成方法のひとつである。
[Method for forming optical functional layer]
As a method of forming an optical functional layer according to the present invention is not particularly limited, as the method of forming the optically functional layer 3 as the first embodiment, the case of using a hydrophobic binder resin as the binder resin, VO 2 containing As the particles, VO 2 -containing particles prepared by an aqueous synthesis method are used, and after the surface of the VO 2 -containing particles is coated with a binder resin having a glass transition temperature of 65 ° C. or lower, a solvent replacement step is performed without passing through a dry state. To prepare a solvent dispersion containing VO 2 -containing particles. Thereafter, by mixing with a binder resin, an aqueous optical functional layer forming coating solution is prepared, and the optical functional layer forming coating solution is applied onto a transparent substrate by a wet coating method and dried. The method of forming the optical functional layer 3 as an embodiment is one of the preferable forming methods.
 上記光学機能層の形成に用いる湿式塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。 The wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
 また、第2の実施態様である樹脂基材を兼ねたハイブリッド光学機能層を形成する方法としては、溶液流涎法を適用することができ、具体的な製膜方法としては、例えば、特開2013-067074号公報、特開2013-123868号公報、特開2013-202979号公報、特開2014-066958号公報、特開2014-095729号公報、特開2014-159082号公報等に記載されている溶液流延製膜法に従って、形成することができる。 In addition, as a method for forming a hybrid optical functional layer that also serves as a resin substrate according to the second embodiment, a solution pouring method can be applied. Described in Japanese Patent Laid-Open No. 067074, Japanese Laid-Open Patent Publication No. 2013-123868, Japanese Laid-Open Patent Publication No. 2013-202979, Japanese Laid-Open Patent Publication No. 2014-066958, Japanese Laid-Open Patent Publication No. 2014-095729, Japanese Laid-Open Patent Publication No. 2014-159082, and the like. It can be formed according to a solution casting film forming method.
 [透明基材]
 本発明に適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、可撓性の付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。本発明でいう「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
[Transparent substrate]
The transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 本発明に係る透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、合わせガラス作製時、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。 The thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, when producing laminated glass, to the curved glass surface when bonding to the glass substrate The follow-up performance is improved.
 本発明に係る透明基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸又は少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明の光学フィルムを具備した合わせガラスを、自動車のフロントガラスとして用いられる際に、延伸フィルムがより好ましい。 The transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. In particular, when the laminated glass provided with the optical film of the present invention is used as an automobile windshield, a stretched film is more preferable.
 本発明に係る透明基材は、光学フィルムのシワの生成や赤外線反射層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることがさらに好ましい。 The transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the infrared reflective layer. Is more preferable, being in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
 本発明の光学フィルムに適用可能な透明基材としては、透明であれば特に制限されることはいが、種々の樹脂フィルムを用いることが好ましく、例えば、ポリオレフィンフィルム(例えば、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくはポリエステルフィルム、トリアセチルセルロースフィルムである。 The transparent substrate applicable to the optical film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used. For example, polyolefin films (for example, polyethylene, polypropylene, etc.), Polyester films (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, triacetyl cellulose films and the like can be used, and polyester films and triacetyl cellulose films are preferable.
 ポリエステルフィルム(以降、単にポリエステルと称す。)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、及びこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components. The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 本発明に係る透明基材として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とするポリエステル中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、例えば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 In the case of using a transparent resin film as the transparent substrate according to the present invention, in order to facilitate handling, particles may be contained within a range that does not impair transparency. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
 透明基材である透明樹脂フィルムは、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の透明樹脂フィルムを製造することができる。また、未延伸の透明樹脂フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、透明樹脂フィルムの流れ(縦軸)方向、又は透明樹脂フィルムの流れ方向と直角(横軸)方向に延伸することにより延伸透明樹脂フィルムを製造することができる。この場合の延伸倍率は、透明樹脂フィルムの原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。 A transparent resin film that is a transparent substrate can be produced by a conventionally known general method. For example, an unstretched transparent resin film that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. The unstretched transparent resin film is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods such as transparent resin film flow (vertical axis) direction. Alternatively, a stretched transparent resin film can be produced by stretching in the direction perpendicular to the flow direction of the transparent resin film (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin that is the raw material of the transparent resin film, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、透明樹脂フィルムは、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 Further, the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability. It is preferable that the relaxation treatment is performed in a process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
 透明樹脂フィルムは、製膜過程で片面又は両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、製膜工程中での下引塗布をインライン下引という。 In the transparent resin film, it is preferable to apply the undercoat layer coating solution inline on one side or both sides in the film forming process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
 〔3〕近赤外遮蔽層
 本発明に係る光学フィルにおいては、光学機能層に加え、700~1000nmの光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を設ける構成とすることもできる。
[3] Near-infrared shielding layer In the optical film according to the present invention, in addition to the optical functional layer, a configuration is provided in which a near-infrared light shielding layer having a function of shielding at least part of the light wavelength range of 700 to 1000 nm is provided. It can also be.
 本発明に適用可能な近赤外光遮蔽層の詳細については、例えば、特開2012-131130号公報、特開2012-139948号公報、特開2012-185342号公報、特開2013-080178号公報、特開2014-089347号公報等に記載されている構成要素及び形成方法等を参考にすることができる。 For details of the near-infrared light shielding layer applicable to the present invention, for example, JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A. Reference can be made to constituent elements and formation methods described in JP-A-2014-089347.
 〔4〕光学フィルムの用途
 本発明に係る光学フィルムの用途としては、1対のガラス構成部材で挟持させて、合わせガラスを構成することができ、この合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。合わせガラスは、これらの用途以外にも使用できる。上記合わせガラスは、建築用又は車両用の合わせガラスであることが好ましい。上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。
[4] Application of optical film As an application of the optical film according to the present invention, a laminated glass can be formed by being sandwiched between a pair of glass constituent members. Can be used for ships and buildings. Laminated glass can be used for other purposes. The laminated glass is preferably laminated glass for buildings or vehicles. The laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
 ガラス部材としては、無機ガラス及び有機ガラス(樹脂グレージング)が挙げられる。無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、及び、グリーンガラス等の着色ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラス(樹脂グレージング)としては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。本発明においては、外部から衝撃が加わって破損した際の安全性の観点からは、無機ガラスであることが好ましい。 Examples of the glass member include inorganic glass and organic glass (resin glazing). Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass. The organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate. In the present invention, inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 《ルチル型VO含有粒子の作製及び光学フィルムの作製》
 〔光学フィルム1の作製〕
 (ルチル型VO含有粒子分散液1の調製)
 純水30mlに、原料として二酸化バナジウム(IV)粒子(VO、数平均粒子径20μm、STREAM CHEMICALS社製)0.9gを混合後4時間撹拌し、アンモニアでpHを4.5に調整後、市販の水熱反応処理用オートクレーブ(三愛科学社製 HM-19G-U、SUS製本体に50ml容積のカーボン繊維含有PTFE製内筒を備える構成。)内に入れ、100℃で8時間、引き続き270℃で24時間、水熱反応処理を施して、ルチル型VO含有粒子が2.9質量%の濃度で分散されている水系のルチル型VO含有粒子分散液1を調製した。
Example 1
<< Preparation of Rutile VO 2 Containing Particles and Preparation of Optical Film >>
[Preparation of optical film 1]
(Preparation of rutile VO 2 -containing particle dispersion 1)
After mixing 0.9 g of vanadium dioxide (IV) particles (VO 2 , number average particle diameter 20 μm, manufactured by STREAM CHEMICALS) as raw materials with 30 ml of pure water, the pH was adjusted to 4.5 with ammonia, It is put in a commercially available autoclave for hydrothermal reaction treatment (HM-19G-U, manufactured by Sanai Kagaku Co., which is provided with a 50 ml volume carbon fiber-containing PTFE inner cylinder in a SUS main body), and then at 270 ° C. for 8 hours, followed by 270 A hydrothermal reaction treatment was carried out at 24 ° C. for 24 hours to prepare an aqueous rutile VO 2 -containing particle dispersion 1 in which rutile VO 2 -containing particles were dispersed at a concentration of 2.9% by mass.
 (光学機能層形成用塗布液1の調製)
 下記の各構成材料を順次添加、混合及び溶解して、溶媒系の光学機能層形成用塗布液1を調製した。
(Preparation of coating solution 1 for forming an optical functional layer)
The following constituent materials were sequentially added, mixed and dissolved to prepare a solvent-based coating solution 1 for forming an optical functional layer.
 3質量%のルチル型VO含有粒子分散液1(溶媒:水)  28質量部
 5質量%のポリビニルピロリドンK-30(日本触媒社製) 60質量部
 (光学機能層の形成)
 厚さが50μmのポリエチレンテレフタレートフィルム(東レ製U40、両面易接着層)の透明基材上に、押出コーターを用いて、上記調製した光学機能層形成用塗布液1を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで110℃の温風を2分間吹きつけて乾燥させて、光学機能層を形成して、図1に記載の構成の光学フィルム1を作製した。
3% by mass of rutile VO 2 -containing particle dispersion 1 (solvent: water) 28 parts by mass 5% by mass of polyvinylpyrrolidone K-30 (manufactured by Nippon Shokubai Co., Ltd.) 60 parts by mass (formation of optical functional layer)
On a transparent substrate of a polyethylene terephthalate film (Toray U40, double-sided easy-adhesion layer) having a thickness of 50 μm, using an extrusion coater, the optical function layer forming coating solution 1 prepared above has a layer thickness after drying. Wet application was performed under the condition of 1.5 μm, and then hot air of 110 ° C. was blown for 2 minutes to dry to form an optical functional layer, thereby producing an optical film 1 having the configuration shown in FIG.
 〔光学フィルム2の作製〕
 ルチル型VO含有粒子分散液1の原料にタングステン酸アンモニウムパラ五水和物((NH)101241・5HO)を0.061g(1.87原子%)添加した以外は同様に作製し、ルチル型VO含有粒子分散液2を作製し、前記光学機能層の作製と同様の方法により、光学フィルム2を作製した。
[Preparation of optical film 2]
Rutile VO 2 containing particle dispersion liquid 1 of the raw material to the ammonium tungstate para pentahydrate ((NH 4) 10 W 12 O 41 · 5H 2 O) and 0.061 g (1.87 atom%) except for the added Produced in the same manner, a rutile VO 2 -containing particle dispersion 2 was produced, and an optical film 2 was produced by the same method as the production of the optical functional layer.
 〔光学フィルム3の作製〕
 ルチル型VO含有粒子分散液2の二酸化バナジウム(IV)粒子の代わりにオキシ二塩化バナジウム(IV)を用いた以外は同様に作製し、ルチル型VO含有粒子分散液3を作製し、前記光学機能層の作製と同様の方法により、光学フィルム3を作製した。
[Preparation of optical film 3]
A rutile VO 2 -containing particle dispersion 2 was prepared in the same manner except that vanadium oxychloride (IV) was used instead of the vanadium dioxide (IV) particles of the rutile VO 2 -containing particle dispersion 2 to prepare a rutile VO 2 -containing particle dispersion 3, The optical film 3 was produced by the same method as the production of the optical functional layer.
 〔光学フィルム4の作製〕
 ルチル型VO含有粒子分散液2の二酸化バナジウム(IV)粒子の代わりにオキシ硫酸バナジウム(IV)を用いた以外は同様に作成し、ルチル型VO含有粒子分散液4を作製し、前記光学機能層の作製と同様の方法によりし、光学フィルム4を作製した。
[Preparation of optical film 4]
A rutile VO 2 -containing particle dispersion 4 was prepared in the same manner except that vanadium (IV) oxysulfate was used in place of the vanadium dioxide (IV) particles of the rutile VO 2 -containing particle dispersion 2 to produce the rutile VO 2 -containing particle dispersion 4. The optical film 4 was produced by the same method as the production of the functional layer.
 〔光学フィルム5の作製〕
 ルチル型VO含有粒子分散液2の二酸化バナジウム(IV)粒子の代わりにシュウ酸オキソバナジウム・5水和物(IV)(CV・5HO)を用いた以外は同様に作製し、ルチル型VO含有粒子分散液5を作成し、前記光学機能層の作製と同様の方法により、光学フィルム5を作製した。
[Preparation of optical film 5]
Produced in the same manner except that oxovanadium oxalate pentahydrate (IV) (C 2 O 5 V · 5H 2 O) was used in place of the vanadium dioxide (IV) particles in the rutile VO 2 -containing particle dispersion 2. Then, a rutile-type VO 2 -containing particle dispersion 5 was prepared, and an optical film 5 was prepared by the same method as that for the optical functional layer.
 〔光学フィルム6の作製〕
 ルチル型VO含有粒子分散液1に還元剤として過酸化水素を、VOに対するモル比として8%添加した以外は同様に作製し、ルチル型VO含有粒子分散液6を作製し、前記光学機能層の作製と同様の方法により、光学フィルム6を作製した。
[Preparation of optical film 6]
A rutile VO 2 containing particle dispersion 1 was prepared in the same manner except that hydrogen peroxide as a reducing agent was added to the rutile VO 2 containing particle dispersion 1 in an amount of 8% as a molar ratio to VO 2 , thereby producing a rutile VO 2 containing particle dispersion 6. The optical film 6 was produced by the same method as the production of the functional layer.
 〔光学フィルム7の作製〕
 ルチル型VO含有粒子分散液6の原料にタングステン酸アンモニウムパラ五水和物を1.02g添加した以外は同様に作製し、ルチル型VO含有粒子分散液7を作製し、前記光学機能層の作製と同様の方法により、光学フィルム7を作製した。
[Preparation of optical film 7]
A rutile VO 2 -containing particle dispersion 6 was prepared in the same manner except that 1.02 g of ammonium tungstate parapentahydrate was added to the raw material of the rutile VO 2 -containing particle dispersion 6 to prepare a rutile VO 2 -containing particle dispersion 7, and the optical functional layer An optical film 7 was produced by the same method as in the production of.
 〔光学フィルム8の作製〕
 ルチル型VO含有粒子分散液7の還元剤として過酸化水素の代わりに、ヒドラジン(N)を2%添加した以外は同様に作製し、ルチル型VO含有粒子分散液8を作製し、前記光学機能層の作製と同様の方法により、光学フィルム8を作製した。
[Preparation of optical film 8]
Produced in the same manner except that 2% of hydrazine (N 2 H 2 ) was added in place of hydrogen peroxide as a reducing agent for the rutile VO 2 -containing particle dispersion 7 to produce a rutile VO 2 -containing particle dispersion 8. And the optical film 8 was produced by the method similar to preparation of the said optical function layer.
 〔光学フィルム9の作製〕
 ルチル型VO含有粒子分散液7の還元剤に過酸化水素に加えて、ヒドラジンを2%添加した以外は同様に作製し、ルチル型VO含有粒子分散液9を作製し、前記光学機能層の作製と同様の方法により、光学フィルム9を作製した。
[Preparation of optical film 9]
In addition to hydrogen peroxide reducing agents rutile VO 2 containing particle dispersion liquid 7, except for adding hydrazine 2% was prepared in the same manner to prepare a rutile-type VO 2 containing particle dispersion liquid 9, wherein the optical functional layer The optical film 9 was produced by the same method as that for production.
 〔光学フィルム10の作製〕
 ルチル型VO含有粒子分散液7のタングステン酸アンモニウムパラ五水和物の代わりに、Biを0.15g添加した以外は同様に作製し、ルチル型VO含有粒子分散液10を作製し、前記光学機能層の作製と同様の方法により、光学フィルム10を作製した。
[Preparation of optical film 10]
Instead of rutile VO 2 ammonium tungstate para pentahydrate containing particle dispersion liquid 7, except that the Bi 2 O 3 was added 0.15g was produced in the same manner, producing a rutile VO 2 containing particle dispersion 10 And the optical film 10 was produced by the method similar to preparation of the said optical function layer.
 〔光学フィルム11の作製〕
 ルチル型VO含有粒子分散液7のタングステン酸アンモニウムパラ五水和物の代わりに、SnOを0.05g添加した以外は同様に作製し、ルチル型VO含有粒子分散液11を作製し、前記光学機能層の作製と同様の方法により、光学フィルム11を作製した。
[Preparation of optical film 11]
In place of the ammonium tungstate parapentahydrate of the rutile-type VO 2 -containing particle dispersion 7, a rutile-type VO 2 -containing particle dispersion 11 was prepared in the same manner except that 0.05 g of SnO 3 was added. The optical film 11 was produced by the same method as the production of the optical functional layer.
 〔光学フィルム12の作製〕
 (VO含有粒子分散液12の調製:限外濾過処理)
 上記調製したルチル型VO含有粒子分散液7を20℃に保った状態で、系内循環させる形で接続したポリエーテルスルホン製で分画分子量が30万の濾過膜を有する限外濾過装置(日本ミリポア株式会社製 ペリコン2カセット)を具備した図3に記載の溶媒置換処理装置を用いて濃縮操作を行い、初期のVO含有粒子分散液7の体積を100%とした時、20体積%まで濃縮した後、エチルアルコールを添加して、100体積%とし、粒子濃度が3質量%の溶媒系のルチル型VO含有粒子分散液12を調製した。
[Preparation of optical film 12]
(Preparation of VO 2 -containing particle dispersion 12: ultrafiltration treatment)
An ultrafiltration device having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000 connected in a circulating manner in the system while maintaining the above-prepared rutile VO 2 -containing particle dispersion 7 at 20 ° C. Concentration operation was carried out using the solvent displacement treatment apparatus shown in FIG. 3 equipped with Nihon Millipore Co., Ltd. Pericon 2 cassette), and the volume of the initial VO 2 -containing particle dispersion 7 was set to 100%. Then, ethyl alcohol was added to a volume of 100% by volume, and a solvent-based rutile VO 2 containing particle dispersion 12 having a particle concentration of 3% by mass was prepared.
 上記調製したルチル型VO含有粒子分散液2中の水分含有量をカールフィッシャー法により測定した結果、4.05質量%であった。 Result of the moisture content of the rutile type VO 2 containing particles in the dispersion 2 prepared above was measured by the Karl Fischer method, was 4.05 wt%.
 (ドープの調製)
 はじめに、加圧溶解タンクに下記に示すメチレンクロライドとエタノールを添加した。有機溶媒の入った加圧溶解タンクに、セルローストリアセテート及び上記調製したルチル型VO含有粒子分散液12を攪拌しながら投入した。これを加熱し、攪拌しながら、セルローストリアセテートを溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
(Preparation of dope)
First, methylene chloride and ethanol shown below were added to the pressure dissolution tank. Cellulose triacetate and the above prepared rutile VO 2 -containing particle dispersion 12 were charged into a pressure dissolution tank containing an organic solvent while stirring. While this was heated and stirred, cellulose triacetate was dissolved, and this was added to Azumi Filter Paper No. The dope was prepared by filtration using 244.
 〈ドープの組成〉
 メチレンクロライド                  487質量部
 エタノール                       45質量部
 疎水性ポリマー樹脂:セルローストリアセテート(リンター綿から合成さ
れたセルローストリアセテート、アセチル基置換度=2.88、Mn=15
万、Mw=30万)
                            100質量部
 ルチル型VO含有粒子分散液12            33質量部
 (製膜)
 上記混合したルチル型VO含有粒子分散液12を用い、特開2014-095729号公報及び特開2014-159082号公報に記載されている溶液流延製膜法に従って、可視光透過率が所定の濃度になるように調整して微粒子を加え、ハイブリッド光機能層である光学フィルム12を作製した。
<Dope composition>
Methylene chloride 487 parts by weight Ethanol 45 parts by weight Hydrophobic polymer resin: cellulose triacetate (cellulose triacetate synthesized from linter cotton, degree of acetyl substitution = 2.88, Mn = 15
10,000, Mw = 300,000)
100 parts by mass Rutile VO 2 -containing particle dispersion 12 33 parts by mass (film formation)
Using the mixed rutile-type VO 2 -containing particle dispersion 12, the visible light transmittance is a predetermined value according to the solution casting film forming method described in Japanese Patent Application Laid-Open No. 2014-095729 and Japanese Patent Application Laid-Open No. 2014-159082. The optical film 12 which is a hybrid optical functional layer was produced by adjusting the concentration so as to add fine particles.
 〔光学フィルム13の作製〕
 ルチル型VO含有粒子分散液1を水熱合成を行う前に、窒素をバブリングして、窒素を溶解させた。それ以外は同様の方法で作製し、ルチル型VO含有粒子分散液13を作製し、前記光学機能層の作製と同様の方法により、光学フィルム13を作製した。
[Preparation of optical film 13]
Prior to hydrothermal synthesis of the rutile VO 2 -containing particle dispersion 1, nitrogen was bubbled to dissolve the nitrogen. Otherwise, the same method was used to prepare a rutile-type VO 2 -containing particle dispersion 13, and the optical film 13 was prepared by the same method as the optical functional layer.
 〔光学フィルム14の作製:比較例1の光学フィルム〕
 ルチル型VO含有粒子分散液1の原料として、五酸化バナジウム(V、STREAM CHEMICALS社製)を用いた以外は同様の方法で作製したところ、V含有粒子分散液14が調製された。当該分散液を用いて、前記光学機能層の作製と同様の方法により、比較例1の光学フィルム14を作製した。
[Preparation of Optical Film 14: Optical Film of Comparative Example 1]
As a raw material rutile VO 2 containing particle dispersion 1, was prepared in the same manner except for the use of vanadium pentoxide (V Ltd. 2 O 5, STREAM CHEMICALS Inc.), V 2 O 5 containing particle dispersion 14 Prepared. Using this dispersion, an optical film 14 of Comparative Example 1 was produced by the same method as the production of the optical functional layer.
 〔光学フィルム15の作製:比較例2の光学フィルム〕
 ルチル型VO含有粒子分散液9のヒドラジンの濃度を25%、過酸化水素8%にした以外は同様に作製し、ルチル型VO含有粒子分散液15を作製し、前記光学機能層の作製と同様の方法により、比較例2の光学フィルム15を作製した。
[Preparation of Optical Film 15: Optical Film of Comparative Example 2]
A rutile VO 2 -containing particle dispersion 9 was prepared in the same manner except that the concentration of hydrazine was 25% and hydrogen peroxide 8%, and a rutile VO 2 -containing particle dispersion 15 was prepared to prepare the optical functional layer. By the same method, the optical film 15 of the comparative example 2 was produced.
 以上により作製した光学フィルム1~15の構成を、表1に示す。 Table 1 shows the structures of the optical films 1 to 15 produced as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《ルチル型VO含有粒子の数平均粒子径測定》
 上記のように作製した微粒子分散液について、下記の方法に従って、数平均粒子径を動的光散乱法にて測定した。3回の測定を行い、それぞれ得られる粒子径の平均値を確認し、3回測定の平均値を数平均粒子径とした。
 作製したVO含有粒子を、それぞれ1質量%の濃度で水に混合し、超音波で15分間分散して測定用サンプルを作製した。濃度は各サンプルにより適正な範囲が異なるため、適宜濃縮又は希釈して用いた。作製した測定用サンプルについて、島津製作所製のレーザー回折式粒度分布測定装置を用いて得られた粒子径分布から、小径側から体積基準で累積分布を描いた場合に累積80%となる粒径を求め、数平均粒子径とした。
"The number-average particle size measured rutile VO 2 containing particles"
For the fine particle dispersion prepared as described above, the number average particle diameter was measured by a dynamic light scattering method according to the following method. The measurement was performed three times, the average value of the obtained particle diameters was confirmed, and the average value of the three measurements was taken as the number average particle diameter.
The prepared VO 2 -containing particles were each mixed with water at a concentration of 1% by mass and dispersed with ultrasonic waves for 15 minutes to prepare a measurement sample. Since the appropriate range of the concentration varies depending on each sample, the concentration was appropriately concentrated or diluted. About the produced measurement sample, when the cumulative distribution is drawn on a volume basis from the small diameter side from the particle size distribution obtained using a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation, the particle size which becomes 80% cumulative The number average particle diameter was determined.
 《粒子径分布のCV値の測定方法》
 上記数平均粒子径の測定で求めた個々の粒子径の標準偏差を平均粒子径で除した値に100を乗じた値を求め、これを粒径分布のCV値とした。すなわち、当該CV値は下記式により、計算される値である。
<< Measurement method of CV value of particle size distribution >>
A value obtained by multiplying the value obtained by dividing the standard deviation of the individual particle diameters obtained by the measurement of the number average particle diameter by the average particle diameter by 100 was obtained, and this was used as the CV value of the particle size distribution. That is, the CV value is a value calculated by the following formula.
  粒子径分布のCV値[%]=粒子径の標準偏差/平均粒子径×100
 《SUS腐食確認実験》
 上記実施例及び比較例の水熱合成時において、SUSのテストピースを水熱反応容器に入れ、それぞれ同じように水熱合成を行った。反応後、SUSの外観を確認した。
CV value [%] of particle size distribution = standard deviation of particle size / average particle size × 100
<< SUS corrosion confirmation experiment >>
During the hydrothermal synthesis of the above examples and comparative examples, SUS test pieces were placed in a hydrothermal reaction vessel, and hydrothermal synthesis was performed in the same manner. After the reaction, the appearance of SUS was confirmed.
 《XRDによる結晶構造の確認》
 上記作製した各二酸化バナジウム(IV)含有粒子分散液を用いて、溶媒を除去した後、X線回折装置(リガク社製)を用いて下記測定条件でXRD測定を行った。
<< Confirmation of crystal structure by XRD >>
After removing the solvent using each of the prepared vanadium dioxide (IV) -containing particle dispersions, XRD measurement was performed using the X-ray diffractometer (manufactured by Rigaku Corporation) under the following measurement conditions.
 測定角2θ=10~70°
 散乱スリット:1/3°
 サンプリング幅:0.02°
 スキャン速度:1.2°/min
 上記XRD測定により得られたXRDチャートから、2θ=27.8°のピーク強度から、VO含有粒子のピーク強度を比較して、相(M相)を同定した。
Measurement angle 2θ = 10 to 70 °
Scattering slit: 1/3 °
Sampling width: 0.02 °
Scan speed: 1.2 ° / min
From the XRD chart obtained by the XRD measurement, the peak intensity of VO 2 -containing particles was compared from the peak intensity of 2θ = 27.8 °, and the phase (M phase) was identified.
 《光学フィルム貼合ガラスの作製》
 上記作製した各光学フィルムを、厚さ1.3mmのガラス板(松浪硝子工業社製、「スライドガラス白縁磨」)のサイズ15cm×20cmに透明粘着シート(日東電工社製、LUCIACS CS9621T)を用いて貼り合わせて光学フィルム貼合ガラスを上記作製した各光学フィルムについて作製した。
<< Production of optical film laminated glass >>
Each of the optical films prepared above is made of a transparent adhesive sheet (manufactured by Nitto Denko Corporation, LUCIACS CS9621T) in a size of 15 cm × 20 cm of a 1.3 mm thick glass plate (manufactured by Matsunami Glass Industry Co., Ltd., “Slide Glass White Edge Polish”). The optical film laminated glass was prepared for each of the optical films prepared as described above.
 《ヘイズの評価》
 上記作製した各光学フィルムの各サンプルについて、ヘイズメータ-(日本電色工業社製、NDH2000)を用いて、ヘイズ(%)を測定した。
 《透過率の測定》
 日本分校社製の紫外可視近赤外分光光度計「V-670」を用いて、測定試料の透過率を250nmから2500nmまで透過光を測定セルが25℃及び80℃になった時の透過率を測定し、可視光(380nm~780nm)平均透過率及び1200nmの透過率を測定した。1200nm透過率測定時のそれぞれの温度の透過率の差をΔTとした。
<Evaluation of haze>
About each sample of each produced said optical film, haze (%) was measured using the haze meter- (Nippon Denshoku Industries Co., Ltd. make, NDH2000).
<Measurement of transmittance>
Using UV-Vis near-infrared spectrophotometer “V-670” manufactured by Nihon Shogakusha Co., Ltd. Transmittance of measured sample from 250 nm to 2500 nm Transmittance when cell is 25 ° C and 80 ° C The average transmittance of visible light (380 nm to 780 nm) and the transmittance of 1200 nm were measured. The difference in transmittance at each temperature when measuring the transmittance at 1200 nm was defined as ΔT.
 <評価結果>
 表1の結果からわかるように、4価バナジウム(IV)化合物を原料に用いて、水熱合成することによって、サーモクロミック性を示すルチル型VO含有粒子を合成できることが示された。4価バナジウム(IV)を用いることによって、ヒドラジンの使用量を極少量に抑えることができるため、SUS釜の腐食を抑えることができることが分かり、大量合成もできることが分かった。また、少量の還元剤及び金属をドープすることによって、小粒径で高いサーモクロミック性を示すVO含有粒子を合成できることが分かった。
<Evaluation results>
As can be seen from the results in Table 1, it was shown that rutile VO 2 -containing particles exhibiting thermochromic properties can be synthesized by hydrothermal synthesis using a tetravalent vanadium (IV) compound as a raw material. By using tetravalent vanadium (IV), it was found that the amount of hydrazine used can be suppressed to a very small amount, so that corrosion of the SUS kettle can be suppressed and large-scale synthesis can also be performed. Further, by doping a small amount of the reducing agent and the metal it was found to be synthesized VO 2 containing particles showing high thermochromic a small particle diameter.
 これらの結果からわかるように本発明の手法を用いることによって、SUS釜の腐食が抑えられ、小粒径でサーモクロミック性の高いルチル型VO含有粒子を合成することができる。 As can be seen from these results, by using the method of the present invention, it is possible to synthesize rutile VO 2 -containing particles having a small particle size and high thermochromic properties, with the corrosion of the SUS kettle being suppressed.
 本発明により、サーモクロミック性を示すルチル型二酸化バナジウム(IV)含有粒子を容易に大量合成できる製造方法を提供することができ、当該二酸化バナジウム(IV)含有粒子を有する遮熱用の光学フィルムは、建築用又は車両用の合わせガラスに好適に用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a production method capable of easily synthesizing a large amount of rutile vanadium dioxide (IV) -containing particles exhibiting thermochromic properties, and an optical film for heat shielding having the vanadium dioxide (IV) -containing particles is provided. It can be suitably used for laminated glass for buildings or vehicles.
 1 光学フィルム
 2 透明基材
 3 光学機能層
 2+3 ハイブリッド光学機能層
 10 溶媒置換処理装置
 11 調製釜
 12 二酸化バナジウム(IV)含有粒子を含む分散液
 13 循環ライン
 14 循環ポンプ
 15 限外濾過部
 16 排出口
 17 溶媒ストック釜
 18 溶媒
 19 溶媒供給ライン
 B1、B2 バインダー樹脂
DESCRIPTION OF SYMBOLS 1 Optical film 2 Transparent base material 3 Optical functional layer 2 + 3 Hybrid optical functional layer 10 Solvent substitution processing apparatus 11 Preparation kettle 12 Dispersion liquid containing vanadium dioxide (IV) containing particle 13 Circulation line 14 Circulation pump 15 Ultrafiltration part 16 Outlet 17 Solvent Stock Pot 18 Solvent 19 Solvent Supply Line B1, B2 Binder Resin

Claims (8)

  1.  サーモクロミック性を有するルチル型二酸化バナジウム含有粒子の製造方法であって、
     4価のバナジウム化合物を原料として、水熱合成法によって、数平均粒子径が1~500nmの範囲内のルチル型二酸化バナジウム含有粒子を形成することを特徴とするルチル型二酸化バナジウム含有粒子の製造方法。
    A method for producing rutile vanadium dioxide-containing particles having thermochromic properties,
    A method for producing rutile vanadium dioxide-containing particles, characterized in that rutile vanadium dioxide-containing particles having a number average particle diameter in the range of 1 to 500 nm are formed by hydrothermal synthesis using a tetravalent vanadium compound as a raw material. .
  2.  前記4価のバナジウム化合物が、二酸化バナジウム、オキシ二塩化バナジウム及びオキシ硫酸バナジウムから選択されることを特徴とする請求項1に記載のルチル型二酸化バナジウム含有粒子の製造方法。 The method for producing rutile vanadium dioxide-containing particles according to claim 1, wherein the tetravalent vanadium compound is selected from vanadium dioxide, vanadium oxydichloride, and vanadium oxysulfate.
  3.  前記水熱合成法が、還元条件下で行われることを特徴とする請求項1又請求項2に記載のルチル型二酸化バナジウム含有粒子の製造方法。 The method for producing rutile vanadium dioxide-containing particles according to claim 1 or 2, wherein the hydrothermal synthesis method is carried out under reducing conditions.
  4.  前記水熱合成法が、水熱反応液に還元剤として過酸化水素又はヒドラジンを含有させることを特徴とする請求項1から請求項3までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 The rutile vanadium dioxide-containing particles according to any one of claims 1 to 3, wherein the hydrothermal synthesis method includes hydrogen peroxide or hydrazine as a reducing agent in a hydrothermal reaction liquid. Manufacturing method.
  5.  前記数平均粒子径が、1~100nmの範囲内であることを特徴とする請求項1から請
    求項4までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。
    The method for producing rutile vanadium dioxide-containing particles according to any one of claims 1 to 4, wherein the number average particle diameter is in the range of 1 to 100 nm.
  6.  前記4価のバナジウム化合物とともに、タングステン、モリブデン、ニオブ、タンタル、スズ、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム、クロム、鉄、ガリウム、アルミニウム、フッ素及びリンから選択される元素を原料として用いることを特徴とする請求項1から請求項5までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法。 Along with the tetravalent vanadium compound, an element selected from tungsten, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine and phosphorus is used as a raw material. The method for producing rutile vanadium dioxide-containing particles according to any one of claims 1 to 5, characterized in that:
  7.  基材上に光学機能層を有する光学フィルムの製造方法であって、
     請求項1から請求項6までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法によって製造されたルチル型二酸化バナジウム含有粒子を、樹脂バインダー中に分散して光学機能層形成用塗布液を調製し、当該光学機能層形成用塗布液を、湿式塗布方式により、前記基材上に塗布及び乾燥して、前記光学機能層を形成することを特徴とする光学フィルムの製造方法。
    A method for producing an optical film having an optical functional layer on a substrate,
    Coating for forming an optical functional layer by dispersing rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of claims 1 to 6 in a resin binder. A method for producing an optical film, comprising: preparing a liquid, and applying and drying the coating solution for forming an optical functional layer on the substrate by a wet coating method to form the optical functional layer.
  8.  樹脂基材中にルチル型二酸化バナジウム含有粒子を含有する光学フィルムの製造方法であって、
     少なくとも樹脂と、請求項1から請求項6までのいずれか一項に記載のルチル型二酸化バナジウム含有粒子の製造方法によって製造されたルチル型二酸化バナジウム含有粒子とを含有するドープを調製し、当該ドープを流延することによって製膜することを特徴とする光学フィルムの製造方法。
    A method for producing an optical film containing rutile vanadium dioxide-containing particles in a resin substrate,
    A dope containing at least a resin and rutile vanadium dioxide-containing particles produced by the method for producing rutile vanadium dioxide-containing particles according to any one of claims 1 to 6 is prepared, and the dope is prepared A method for producing an optical film, wherein the film is formed by casting.
PCT/JP2016/059135 2015-03-30 2016-03-23 Method for producing rutile vanadium dioxide-containing particle and method for producing optical film WO2016158603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068791A JP2018087092A (en) 2015-03-30 2015-03-30 Manufacturing method of rutile type vanadium dioxide (iv)-containing particle, and manufacturing method of optical film
JP2015-068791 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158603A1 true WO2016158603A1 (en) 2016-10-06

Family

ID=57006055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059135 WO2016158603A1 (en) 2015-03-30 2016-03-23 Method for producing rutile vanadium dioxide-containing particle and method for producing optical film

Country Status (2)

Country Link
JP (1) JP2018087092A (en)
WO (1) WO2016158603A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830511A (en) * 2010-05-18 2010-09-15 中国科学院上海硅酸盐研究所 Preparation method of rutile phase vanadium dioxide hollow sphere and application
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
CN102502824A (en) * 2011-11-15 2012-06-20 武汉大学 Preparation method for vanadium dioxide and doped powder thereof
US20130101848A1 (en) * 2011-09-29 2013-04-25 Sarbajit Banerjee Doped Nanoparticles and Methods of Making and Using Same
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
CN101830511A (en) * 2010-05-18 2010-09-15 中国科学院上海硅酸盐研究所 Preparation method of rutile phase vanadium dioxide hollow sphere and application
US20130101848A1 (en) * 2011-09-29 2013-04-25 Sarbajit Banerjee Doped Nanoparticles and Methods of Making and Using Same
CN102502824A (en) * 2011-11-15 2012-06-20 武汉大学 Preparation method for vanadium dioxide and doped powder thereof
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2

Also Published As

Publication number Publication date
JP2018087092A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016052740A1 (en) Optical film and process for producing optical film
WO2016017604A1 (en) Optical film and method for manufacturing optical film
JP6384247B2 (en) Optical film and optical film manufacturing method
WO2015146673A1 (en) Highly transparent film having durability in terms of sunlight, sunlight control film, infrared reflective film and film mirror
JP6465117B2 (en) Manufacturing method of optical film
JP2016188939A (en) Optical film
WO2016006388A1 (en) Optical film
WO2018092502A1 (en) Thermochromic composition and thermochromic film
WO2017104313A1 (en) Optical film
JP2017096986A (en) Optical film, infrared reflective film using the same, and laminated glass
JP6747450B2 (en) Thermochromic film and thermochromic composite
JP2018058734A (en) Thermochromic vanadium dioxide-containing core-shell particle and production process thereof, and thermochromic film and production process thereof
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
JP6638570B2 (en) Method for producing thermochromic film
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
WO2017212778A1 (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2016158620A1 (en) Optical film
WO2017073183A1 (en) Thermochromic film and method for producing thermochromic film
JP2019135272A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP2019135273A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2020044981A1 (en) Method for producing vanadium dioxide-containing particles
KR20170120886A (en) HIGH REFRACTIVE TiO2 AND METHOD OF PRODUCING A HIGH REFRACTIVE DISPERSION USING THE SAME
WO2018061600A1 (en) Optical functional film, thermochromic film, thermochromic laminate and method for producing thermochromic film
WO2017033533A1 (en) Thermochromic film and thermochromic composite
JP2018145063A (en) Vanadium dioxide-containing particle, method for producing vanadium dioxide-containing particle dispersion liquid, thermochromic film and method for producing the same, and aggregate of vanadium dioxide-containing particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP