WO2017033533A1 - Thermochromic film and thermochromic composite - Google Patents

Thermochromic film and thermochromic composite Download PDF

Info

Publication number
WO2017033533A1
WO2017033533A1 PCT/JP2016/067606 JP2016067606W WO2017033533A1 WO 2017033533 A1 WO2017033533 A1 WO 2017033533A1 JP 2016067606 W JP2016067606 W JP 2016067606W WO 2017033533 A1 WO2017033533 A1 WO 2017033533A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermochromic
film
particles
functional layer
optical functional
Prior art date
Application number
PCT/JP2016/067606
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 伸一
丈範 熊谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201680048379.0A priority Critical patent/CN107922260A/en
Priority to JP2017536644A priority patent/JPWO2017033533A1/en
Publication of WO2017033533A1 publication Critical patent/WO2017033533A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy

Definitions

  • the present invention relates to a thermochromic film and a thermochromic composite. More specifically, the present invention relates to a thermochromic film containing vanadium dioxide particles having thermochromic properties.
  • the near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
  • an optical film containing a conductor such as ITO (indium tin oxide) as an infrared absorbing substance is disclosed. Also, it has a near infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer, and a reflection layer laminate in which a large number of low refractive index layers and high refractive index layers are alternately laminated.
  • a near-infrared light shielding film that selectively reflects near-infrared light by adjusting the thickness of each refractive index layer has been proposed.
  • the near-infrared light shielding film having such a configuration is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high.
  • a low-latitude zone near the equator where the illuminance of sunlight is high.
  • incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
  • thermochromic material in which the optical properties of near-infrared light shielding and transmission are controlled by temperature has been studied.
  • a typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”).
  • VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
  • thermochromic film as a laminate for dispersing VO 2 particles in a transparent resin and forming a VO 2 dispersed resin layer on a resin substrate (see, for example, Patent Document 1) or doping with molybdenum or the like.
  • a method (for example, refer to Patent Document 2) of providing a thermochromic film by mixing the obtained VO 2 particles with a polyester resin by a T-die method is disclosed.
  • VO 2 particles are synthesized after the particles are filtered and dried, or using a solvent-based coating solution prepared with a binder insoluble in an aqueous solvent, an optical functional film that exhibits thermochromic properties is formed. It was found that the primary particles of the VO 2 particles tend to aggregate to form secondary particles.
  • Patent Document 3 describes that a laminated body is obtained by dispersing a thermochromic material in a water-soluble acrylic resin. However, a thermal barrier layer must be provided, and the thermochromic property is sufficient. There wasn't. Especially in winter, the heat absorbed by the variable property layer was only transferred to the room by heat transfer, which was not sufficient.
  • the present invention has been made in view of the above-described problems and circumstances, and its solution is to provide a thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability. It is.
  • thermochromic film of the present invention has a binder resin having a reactive functional group and water-soluble, and an optical functional layer. It was found that the film thickness and the water content of were within the predetermined ranges, and thus exhibited excellent thermochromic properties and durability, leading to the present invention. That is, the said subject of this invention is solved by the following means.
  • thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting at least thermochromic properties and a binder resin on a transparent substrate,
  • the binder resin has a reactive functional group and is water-soluble;
  • the moisture content of the optical functional layer after being left for 24 hours at 80 ° C. and 80% humidity is in the range of 0.5 to 5.0 g / m 2 , and the film thickness of the optical functional layer is 0
  • thermochromic film according to item 1 wherein the water content is in the range of 0.6 to 2.0 g / m 2 .
  • thermochromic film according to item 1 or 2 which contains a water-soluble cellulose resin as the binder resin.
  • thermo according to claim 1 wherein the optical functional layer further contains at least one of an isocyanate compound, a melamine compound, a carbodiimide compound, and an epoxy compound. Chromic film.
  • thermochromic composite comprising the thermochromic film according to any one of items 1 to 4 as a constituent element.
  • thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability.
  • the VO 2 particles form an optical functional film that exhibits thermochromic properties by using a solvent-based coating solution prepared by filtering and drying after synthesizing the particles or a binder insoluble in an aqueous solvent.
  • the primary particles of the VO 2 particles tend to aggregate to form secondary particles.
  • a water-soluble binder is used without adjusting the amount of water contained in the vanadium dioxide particles and stored at a high temperature and high humidity for a long time, the reduction of the vanadium dioxide particles is promoted, and the vanadium dioxide thermostat. It is considered that the chromic property is impaired or the durability of the film is lowered.
  • thermochromic film which shows the outstanding thermochromic property and durability can be provided.
  • thermochromic film of the present invention is a thermochromic film having an optical functional layer containing at least thermochromic vanadium dioxide particles and a binder resin on a transparent substrate, wherein the binder resin is a reactive functional group. And the water content of the optical functional layer after standing for 24 hours at 80 ° C. and 80% humidity is in the range of 0.5 to 5.0 g / m 2 , and The optical functional layer has a thickness in the range of 0.5 to 5.0 ⁇ m. This feature is a technical feature common to or corresponding to the claimed invention.
  • the water content is more preferably in the range of 0.6 to 2.0 g / m 2 from the viewpoint of manifestation of the effect of the present invention.
  • a water-soluble cellulose resin as the binder resin from the viewpoints of good dispersibility of vanadium dioxide particles, high thermochromic properties, low haze and flexibility.
  • the optical functional layer further contains at least one of an isocyanate compound, a melamine compound, a carbodiimide compound and an epoxy compound from the viewpoint of manifesting the effect of the present invention.
  • thermochromic complex of the present invention preferably includes the thermochromic film of the present invention as a constituent element from the viewpoint of manifesting the effects of the present invention.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • Vanadium dioxide according to the present invention is an embodiment of vanadium oxide.
  • Vanadium oxide takes various forms in nature, including V 2 O 5 , H 3 V 2 O 7 ⁇ , H 2 VO 4 ⁇ , HVO 4 2 ⁇ , VO 4 3 ⁇ , VO 2+ , VO 2 , V 3+ , V Examples of the structure include 2 O 3 , V 2+ , V 2 O 2 , and V.
  • the form changes depending on each environmental atmosphere.
  • V 2 O 5 is formed in an acidic environment
  • V 2 O 3 is formed in a reducing environment. Therefore, VO 2 is relatively easy to oxidize and reduce, and the crystal structure changes depending on the surrounding environment. Since VO 2 exhibiting thermochromic properties (automatic light control) exhibits a monoclinic structure, VO 2 used in the present invention is a monoclinic crystal.
  • the crystal form of the vanadium dioxide particles used in the present invention is preferably rutile VO 2 particles (hereinafter also simply referred to as “VO 2 particles”) from the viewpoint of efficiently expressing thermochromic properties. Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called M-type.
  • the vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
  • the VO 2 particles according to the present invention are preferably present in a state where the number average particle diameter of primary particles and secondary particles is less than 500 nm in the optical functional layer.
  • Various measurement methods can be applied to the particle diameter measurement method, but it is preferable to measure according to the dynamic light scattering method.
  • the preferred number average particle diameter of the primary particles and secondary particles in the VO 2 particles according to the present invention is in the range of 1 to 200 nm, more preferably in the range of 5 to 100 nm, and most preferably in the range of 5 to 60 nm. Is within the range.
  • the aspect ratio of the VO 2 particles is preferably in the range of 1.0 to 3.0.
  • the VO 2 particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution.
  • the particle diameter of the single crystal is sufficiently small, better thermochromic properties can be exhibited compared to conventional particles.
  • a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide particles may be further included.
  • the substance for adjusting the phase transition temperature is not particularly limited, but tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus, etc. are used. it can.
  • the phase transition temperature of a vanadium dioxide particle can be lowered
  • the amount of the above substance added is not particularly limited, but is an amount that is preferably within a range of 0.03 to 1 element, more preferably 0.04 to 0.08 element with respect to 100 elements of vanadium.
  • aqueous dispersion of vanadium dioxide particles In general, synthesis of vanadium dioxide particles, a method of pulverizing the VO 2 sintered body synthesized by the solid phase method, vanadium pentoxide (V 2 O 5) as a raw material, while combining the VO 2 in the liquid phase An aqueous synthesis method in which particles are grown can be mentioned.
  • VO 2 produced by any method can be applied.
  • a dispersant is added to VO 2 produced by any method to prepare an aqueous dispersion. The amount of the dispersant added can be reduced by using water as the solvent, compared with the case of using an organic solvent, and is preferably in the range of 0.1 to 1.0% by mass.
  • dispersants include polyoxyethylene nonylphenyl ether, polyethylene ethylene laurate, hydroxy Examples thereof include ethyl cellulose, polyvinyl pyrrolidone, polyethylene glycol, and hydroxyl ethyl cellulose, and polyvinyl pyrrolidone or cellulose resin is particularly preferable. Then, without drying the VO 2 particles of the aqueous dispersion, it is possible to prepare optically functional layer forming coating solution as described below.
  • an optical functional layer is formed, thereby containing VO 2 particles having a preferred number average particle size of primary particles and secondary particles having a number average particle size of less than 150 nm.
  • An optical functional layer can be formed.
  • particles such as fine TiO 2 that becomes the core of particle growth are added as nucleus particles, and the VO 2 particles are produced by growing the nucleus particles. You can also.
  • the VO 2 particles are separated without drying the VO 2 particles in the aqueous dispersion. It is preferable to prepare a coating solution for forming an optical functional layer by mixing with a water-soluble binder resin solution in a dispersed state.
  • a coating solution for forming an optical functional layer by mixing with a water-soluble binder resin solution in a dispersed state.
  • a substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A).
  • the solution (A) may be an aqueous solution in which the substance (I) is dissolved in water, or may be a suspension in which the substance (I) is dispersed in water.
  • Examples of the substance (I) include vanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride oxide (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like.
  • the substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
  • the solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal particles.
  • the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
  • this solution (A) may further contain a substance (III) having oxidizing property or reducing property.
  • the substance (III) include hydrogen peroxide (H 2 O 2 ).
  • hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • single crystal particles containing vanadium dioxide (VO 2 ) are obtained.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By increasing the time, the particle diameter and the like of the obtained single crystal particles can be controlled. However, if the processing time is excessively long, the energy consumption increases.
  • the surface of the obtained vanadium dioxide particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide particles is protected, and surface-modified single crystal fine particles can be obtained.
  • the surface of the vanadium dioxide particles is coated with the binder resin according to the present invention having a glass transition temperature of 65 ° C. or lower.
  • the “coating” referred to in the present invention may be a state where the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide particles, or a part of the particle surface is covered with the resin. It may be in a state.
  • a state where 50% or more of the total area of the particle surface is covered is good, and a state where 80% or more is covered is more preferable.
  • a dispersion liquid containing VO 2 -containing single crystal particles having thermochromic properties is obtained.
  • VO 2 grinding method There are various methods for making VO 2 into fine particles, but there are various methods such as bead milling, ultrasonic crushing, and high-pressure homogenizer, and any method can be used to produce VO 2 particles.
  • Various beads can be used in the bead mill, but zirconia beads are preferably used from the viewpoint of hardness and price.
  • the dispersion of vanadium dioxide particles prepared by the above-described aqueous synthesis method contains impurities such as residues generated during the synthesis process, which triggers the generation of secondary aggregated particles when forming the optical functional layer.
  • the optical functional layer may be a cause of deterioration during long-term storage, and it is preferable to remove impurities at the stage of the dispersion.
  • a method for removing impurities in the aqueous dispersion of vanadium dioxide particles conventionally known means for separating foreign substances and impurities can be applied.
  • the VO 2 particle aqueous dispersion is subjected to centrifugal separation to obtain vanadium dioxide particles. It is possible to remove the impurities in the supernatant, add and disperse the dispersion medium again, or remove the impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation of particles, a method using an ultrafiltration membrane is most preferable.
  • the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
  • thermochromic film layer structure The typical structural example of the thermochromic film of this invention is demonstrated using a figure.
  • One of the preferable aspects of the thermochromic film of this invention is the structure by which the optical function layer is formed on the transparent base material.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film having an optical functional layer containing vanadium dioxide particles and a binder resin defined in the present invention.
  • thermochromic film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2.
  • This optical functional layer 3 is present in a state where vanadium dioxide particles are dispersed in the binder resin B1 contained in the optical functional layer.
  • This is vanadium dioxide particles constitute the primary particles VO S of vanadium dioxide vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also referred to as aggregates.), secondary particles VO M of VO 2 is present.
  • an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
  • thermochromic film of the present invention has a water content of 0.5 to 5.0 g as measured by the Karl Fischer method (JIS K 0068-2001) after standing at 80 ° C. and 80% humidity for 24 hours. / M 2 and the thickness of the optical functional layer is in the range of 0.5 to 5.0 ⁇ m.
  • the film thickness is preferably in the range of 1.0 to 3.0 ⁇ m.
  • the water content is preferably in the range of 0.6 to 2.0 g / m 2 , more preferably in the range of 0.7 to 1.0 g / m 2 .
  • the water content can be adjusted by the film thickness of the optical functional layer and the binder resin or hardener contained in the optical functional layer.
  • the moisture content can be measured by the Karl Fischer method (JIS K 0068-2001), for example, using a Karl Fischer moisture measuring device CA-31 manufactured by Mitsubishi Chemical.
  • thermochromic film having a film thickness within the above range of the optical functional layer easily breaks when the moisture content is less than 0.5 g / m 2 , and when the moisture content exceeds 5.0 g / m 2 , the reduction of vanadium dioxide proceeds. Too much. Therefore, the optical functional layer of the thermochromic film of the present invention has a film thickness and moisture content within the range, so that the film can be made flexible and the reduction of the vanadium dioxide contained can be advanced to the optimum range. Therefore, it is possible to achieve both excellent thermochromic properties and durability.
  • the number average particle diameter measured by the total particles of the primary particles VO S and secondary particles VO M of VO 2 particles in the optical functional layer 3, is preferably 200nm or less, and more preferably less than 150 nm.
  • the number average particle diameter of the VO 2 particles in the optical functional layer can be determined according to the following method. First, the side surface of the optical functional layer containing vanadium dioxide particles is trimmed using a microtome or the like to expose the cross section of the optical functional layer as shown in FIG. Next, the exposed cross section is photographed at a magnification of 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle diameter is measured for all vanadium dioxide particles present in a certain area of the photographed cross section.
  • TEM transmission electron microscope
  • the vanadium dioxide particles to be measured are preferably in the range of 50 to 300 particles.
  • the photographed vanadium dioxide particle group primary particles and secondary particles are mixed as shown in FIG. 1, and the particle diameter of the primary particles of vanadium dioxide is the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and the diameter is taken as the particle diameter.
  • the secondary particles of vanadium dioxide in which two or more particles are aggregated after obtaining the projected area of the whole aggregate, the projected area is converted into a circle, and the diameter is used as the The aggregated secondary particles are defined as one particle.
  • the number average diameter is obtained for each diameter of the primary particles and secondary particles obtained as described above. Since the cut-out cross-sectional portion has a variation in particle distribution, the measurement of the number-average diameter is carried out for 10 cross-sectional areas of different scenes, the total number-average diameter is obtained, and the number-average particle referred to in the present invention The diameter.
  • thermochromic film of the present invention may have a near-infrared light shielding layer having a function of shielding at least part of light within a wavelength range of 700 to 1000 nm, in addition to the optical functional layer.
  • the visible light transmittance measured by JIS R 3106-1998 is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is.
  • thermochromic film ⁇ Each component of thermochromic film>
  • the optical functional layer which is a constituent element of the thermochromic film of the present invention, a resin base material provided if necessary, and the near infrared light shielding layer will be described.
  • the optical functional layer used in the present invention contains at least vanadium dioxide particles exhibiting thermochromic properties and a resin binder.
  • the vanadium dioxide particles exhibiting thermochromic properties are as described above, and the resin binder has a reactive functional group and is water-soluble.
  • the resin binder according to the present invention is also referred to as “water-soluble binder resin having a reactive functional group”.
  • the binder resin used in the optical functional layer according to the present invention has a reactive functional group and is water-soluble (water-soluble binder resin having a reactive functional group).
  • the water solubility of the binder resin here means the temperature at which the water-soluble resin is most dissolved, and when it is dissolved in water at a concentration of 0.5% by mass, it is filtered through a G2 glass filter (maximum pores 40 to 50 ⁇ m). In this case, the mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble resin.
  • the reactive functional group include a hydroxy group, a methoxy group, a hydroxypropoxy group, an acetoacetyl group, a carbonyl group, and a carboxy group.
  • water-soluble resin having a reactive functional group examples include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer.
  • Acrylic resins such as vinyl acetate-acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid Styrene acrylic resin such as ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer Coalescence, styrene-2-hydroxyl Tyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, st
  • the water-soluble cellulose resin that can be used for forming the optical functional layer according to the present invention is a water-soluble cellulose derivative, for example, carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, Examples thereof include water-soluble cellulose derivatives such as hydroxypropylmethylcellulose, carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose which are carboxylic acid group-containing cellulose resins. Other examples include cellulose derivatives such as nitrocellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
  • the water-soluble binder resin having a reactive functional group is a resin containing 50 mol% or more of repeating units having a hydroxy group.
  • the repeating unit component originally has three hydroxy groups, and a part of the three hydroxy groups is substituted.
  • Constaining 50 mol% or more of a repeating unit component having a hydroxy group means that 50 mol% or more of the repeating unit component having a hydroxy group in this substituent or a repeating unit component in which one or more unsubstituted hydroxy groups remain is contained. Represents.
  • the hardener used in the present invention is not particularly limited as long as it causes a curing reaction with the binder resin.
  • boric acid an isocyanate compound, a melamine compound, a carbodiimide compound, an epoxy compound, or the like can be used.
  • the isocyanate compound include compounds having an isocyanate group such as tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI).
  • Examples of the melamine compound include MX-706 manufactured by Sanwa Chemical Co., Ltd., becamine manufactured by DIC Co., Ltd., Watersol, and Nicaridine manufactured by Nippon Carbide Industries Co., Ltd.
  • carbodiimide compounds there are carbodilites manufactured by Nisshinbo Chemical Co., Ltd., and epoxy compounds such as Denasel manufactured by Nagase ChemteX Co., Ltd. and Epolite manufactured by Kyoeisha Chemical Co., Ltd.
  • the additive concentration ranges from 1 to 50% by mass with respect to the resin.
  • the inside is preferable. Two or more kinds of the above hardeners may be used in combination.
  • optical additives for optical functional layers Various additives that can be applied to the optical functional layer used in the present invention as long as the effects of the present invention are not impaired are listed below.
  • surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc.
  • optical brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters
  • antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers
  • additives such as dyes and pigments.
  • the wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
  • the transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to provide flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable.
  • “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the transparent substrate is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, for example, when producing a laminated glass, Followability to the curved glass surface is improved.
  • the transparent substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the transparent substrate preferably has a thermal shrinkage rate in the range of 0.1 to 3.0% at a temperature of 150 ° C., The content is more preferably in the range of 1.5 to 3.0%, and further preferably in the range of 1.9 to 2.7%.
  • the transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used.
  • polyolefin films for example, polyethylene, polypropylene, etc.
  • Polyester films for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • triacetyl cellulose films and the like, preferably polyester films and triacetyl cellulose films.
  • the polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • particles When using a transparent resin film as a transparent substrate, in order to facilitate handling, particles may be included within a range that does not impair transparency.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together.
  • additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
  • the transparent resin film may be subjected to relaxation treatment or off-line heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., more preferably the treatment temperature is in the range of 100 to 180 ° C.
  • the relaxation rate is preferably within a range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is within a range of 2 to 6%.
  • the relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • the transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
  • thermochromic film of the present invention in addition to the optical functional layer, a near infrared light shielding layer having a function of shielding at least part of the light wavelength range within the range of 700 to 1000 nm may be provided.
  • a near infrared light shielding layer having a function of shielding at least part of the light wavelength range within the range of 700 to 1000 nm.
  • JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A Reference can be made to constituent elements and formation methods described in JP-A-2014-089347.
  • thermochromic film of this invention it can be used as a thermochromic composite body provided with the thermochromic film as a component.
  • a laminated glass can be constituted by being sandwiched between a pair of glass constituent members, and this laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. Laminated glass can be used for other purposes.
  • the laminated glass is preferably laminated glass for buildings or vehicles.
  • the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
  • the glass member examples include inorganic glass and organic glass (resin glazing).
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • the organic glass (resin glazing) examples include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
  • the present invention can also be applied to other than glass, and can be a composite composed of a thermochromic film support including glass and a thermochromic.
  • thermochromic film represents a thermochromic film
  • composite represents a thermochromic complex
  • Water content represents the water content of the optical functional layer.
  • the total thickness of the heat shielding layer and the variable property layer was defined as the thickness of the optical functional layer.
  • thermochromic film 9 g of an aqueous dispersion of vanadium dioxide particles (15% by mass) having a primary particle diameter of 55 nm and 91 g of 5% by mass of polyvinyl alcohol (PVA-124; polymerization degree: 2400, saponification degree: 98 to 99 mol%, manufactured by Kuraray Co., Ltd.) And the coating liquid which mixed 9.1 g of boric acid (5 mass%) as a hardening agent was produced. Next, the coating solution was applied onto a PET film having a thickness of 50 ⁇ m so that the film thickness of the optical functional layer was 1.5 ⁇ m, and dried with hot air at 110 ° C. for 2 minutes to produce a film 101.
  • PVA-124 polymerization degree: 2400, saponification degree: 98 to 99 mol%, manufactured by Kuraray Co., Ltd.
  • the films 102 to 133 were produced in the same manner as the film 101 except that the materials were changed according to Table 1.
  • Table 1 MC represents 5 mass% methylcellulose, and Shin-Etsu Chemical Co., Ltd. product was used.
  • HEC represents 5 mass% hydroxyethyl cellulose, and Shin-Etsu Chemical Co., Ltd. product was used.
  • HPMC represents 5% by mass hydroxypropyl methylcellulose, and one manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • PL represents a polyester resin, and “EASTER” Copolyester 6763 manufactured by Eastman Chemical Co. was used.
  • FP represents a 65% by mass TFE-based curable functional group-containing fluororesin solution, and Zaffle GK570 manufactured by Daikin Industries, Ltd. was used.
  • the types of hardeners are: A: boric acid (manufactured by Kanto Chemical Co., Inc.), B: hexamethylene diisocyanate (manufactured by Asahi Kasei Chemicals Corporation, Duranate (registered trademark) WT30-100), C: polyisocyanate (DIC) Beccamin (registered trademark) M-3), E: aqueous melamine resin (Watersol (registered trademark) S-695 manufactured by DIC Corporation), F: carbodiimide (Carbodilite (registered trademark) manufactured by Nisshinbo Chemical Co., Ltd.) SW-126), G: Epoxy (Nagase ChemteX Corporation Denacol (registered trademark) EX-810), H: Polyisocyanate (Sumika Bayer Urethane Co.
  • a film (optical functional layer) 135 was obtained in the same manner as the film 134 except that the molybdenum-doped vanadium dioxide was changed to 23 parts, and the polyester resin “EASTER” Copolyester 6763 (manufactured by Eastman Chemical) was changed to 77 parts.
  • thermochromic pigment Black TCA1015 manufactured by Sands Co., Ltd.
  • Zeffle GK570 Zeffle GK570
  • N3300 curing agent
  • thermochromic films 101 to 136 produced as described above.
  • the measuring method of water content is as follows.
  • thermochromic films 101 to 136 using a bending tester type 1 (manufactured by Imoto Seisakusho, model IMC-AOF2, mandrel diameter ⁇ 20 mm) based on a bending test method based on JIS K5600-5-1: 1999. Bending tests were performed. The surface of the thermochromic film after the bending test was visually observed, and the flexibility was evaluated according to the following criteria.
  • thermochromic film ⁇ No folding marks or cracks are observed on the surface of the thermochromic film ⁇ : Some bending marks are observed on the surface of the thermochromic film ⁇ : Slight cracks are observed on the surface of the thermochromic film ⁇ : Thermochromic film There are many obvious cracks on the surface.
  • thermochromic complex Each of the produced thermochromic films 101 to 136 is made into a transparent adhesive sheet (manufactured by Nitto Denko Corporation) with a size of 15 cm ⁇ 20 cm of a glass plate having a thickness of 1.3 mm (manufactured by Matsunami Glass Kogyo Co., Ltd., “sliding glass white edge polishing”).
  • thermochromic composites 201 to 236 produced by bonding LUCIACS CS9621T was evaluated.
  • thermochromic evaluation Using the produced thermochromic composites 201 to 236, the following heat resistance in the summer and winter conditions was evaluated, and the thermochromic properties of the thermochromic film were determined.
  • thermochromic complex was placed on the wall of the environmental test chamber at room temperature of 28 ° C. Specifically, an environmental test room was used assuming that the indoor side of the environmental test room is a thermochromic film and the side adjacent to the wall surface is glass, assuming a Japanese cool biz room. A 150 W halogen lamp that assumed the summer sun was lit from a position 50 cm away from the wall surface of the part where the thermochromic complex was placed in the environmental test room. Further, assuming that the thermochromic complex is heated by the accumulation of sunlight irradiation, the thermochromic complex was heated to 70 ° C. with a thermocouple.
  • thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, the temperature after 1 hour was measured under the above conditions, and the evaluation performed according to the following criteria was evaluated as “before wet heat resistance”. .
  • a thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, as in the evaluation before the wet heat resistance. The temperature after 1 hour was measured, and the evaluation performed according to the following criteria was evaluated as “after wet heat resistance”.
  • Temperature after 1 hour is less than 29 ° C, almost no temperature rise due to external light
  • Temperature after 29 hours is 29 °C or more and less than 32 °C ⁇ ⁇ : After 1 hour The temperature is 32 ° C. or more and less than 34 ° C.
  • The temperature after the passage of 1 hour is 34 ° C. or more and less than 36 ° C.
  • The temperature after the passage of 1 hour is 36 ° C. or more, which is a harsh environment.
  • thermochromic composite was placed on the wall of an environmental test room having a room temperature of 20 ° C. Specifically, an environmental test chamber was used assuming that the indoor side of the environmental test room is a thermochromic film and the side adjacent to the wall surface is glass, assuming a Japanese warm biz room. From a position 50 cm away from the wall surface of the part where the thermochromic complex was placed in the environmental test room, a 100 W halogen lamp was used that assumed the winter sun.
  • thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, the temperature after 1 hour was measured under the above conditions, and the evaluation performed according to the following criteria was evaluated as “before wet heat resistance”. .
  • a thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, as in the evaluation before the wet heat resistance. The temperature after 1 hour was measured, and the evaluation performed according to the following criteria was evaluated as “after wet heat resistance”.
  • Temperature after 1 hour is 26 ° C or higher, and heat energy from external light has entered moderately.
  • Temperature after 24 hours is more than 24 ° C and less than 26 ° C. Later temperature is 22 ° C. or more and less than 24 ° C.
  • Temperature after 21 hours is 21 ° C. or more and less than 22 ° C.
  • Many near infrared light is unconditionally shielded and after 1 hour The temperature is less than 21 ° C
  • Haze is less than 2.0% ⁇ : Haze is 2.0% or more and less than 3.0% ⁇ ⁇ : Haze is 3.0% or more and less than 5.0% ⁇ : Haze 5.0% or more and less than 8.0% x: Haze is 8.0% or more
  • thermochromic film of the present invention As can be seen from the results in Table 2, it was found that the flexibility, wet heat resistance, and haze when using the thermochromic film of the present invention were superior to those when using the thermochromic film of the comparative example.
  • thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability can be obtained, and these can be suitably used for near infrared light shielding films and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention addresses the problem of providing a thermochromic film and a thermochromic composite which include vanadium dioxide particles having excellent thermochromic properties and durability. This thermochromic film has, on a transparent substrate, an optically functional layer that includes at least vanadium dioxide particles with thermochromic properties and a binder resin. The thermochromic film is characterized in that: the binder resin has a reactive functional group and is water-soluble; water content of the optically functional layer after being left to stand at 80°C and a humidity of 80% for 24 hours is in the range of 0.5-5.0 g/m2; and the thickness of the optically functional layer is in the range of 0.5-5.0 μm.

Description

サーモクロミックフィルム及びサーモクロミック複合体Thermochromic film and thermochromic composite
 本発明は、サーモクロミックフィルム及びサーモクロミック複合体に関する。より詳しくは、サーモクロミック性を有する二酸化バナジウム粒子を含有するサーモクロミックフィルム等に関する。 The present invention relates to a thermochromic film and a thermochromic composite. More specifically, the present invention relates to a thermochromic film containing vanadium dioxide particles having thermochromic properties.
 近年、車窓から入り込む太陽光の影響によって人肌で感じる暑さを低減するため、高い断熱性又は遮熱性を備えた合わせガラスが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、合わせガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。
 近赤外光遮蔽フィルムは、車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。
In recent years, in order to reduce the heat felt by human skin due to the influence of sunlight entering from a car window, laminated glass having high heat insulating properties or heat shielding properties has been distributed in the market. Recently, with the spread of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to laminated glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle.
The near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
 このような近赤外光遮蔽フィルムとしては、赤外線吸収性物質としてITO(インジウム・スズ酸化物)などの導電体を含む光学フィルムが開示されている。また、赤外線反射層と赤外線吸収層とを有する機能性プラスチックフィルムを含む近赤外光遮蔽フィルムや、低屈折率層と高屈折率層とを交互に多数積層させた反射層積層体を有し、当該各屈折率層の層厚を調整することにより、近赤外光を選択的に反射する近赤外光遮蔽フィルムが提案されている。
 このような構成の近赤外光遮蔽フィルムは、太陽光の照度が高い赤道近傍の低緯度地帯では、その高い近赤外光遮蔽効果により、好ましく利用されている。しかしながら、中緯度~高緯度地帯の冬場においては、逆に、太陽光をできるだけ車内や室内に取り込みたい場合にも、一律に入射光線を遮蔽してしまうという問題がある。
As such a near infrared light shielding film, an optical film containing a conductor such as ITO (indium tin oxide) as an infrared absorbing substance is disclosed. Also, it has a near infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer, and a reflection layer laminate in which a large number of low refractive index layers and high refractive index layers are alternately laminated. A near-infrared light shielding film that selectively reflects near-infrared light by adjusting the thickness of each refractive index layer has been proposed.
The near-infrared light shielding film having such a configuration is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high. However, in winter in the mid-latitude to high-latitude zones, conversely, there is a problem that incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
 このような問題に対し、近赤外光の遮蔽や透過の光学的性質を温度により制御するサーモクロミック材料を適用する方法の検討がなされている。その代表的な材料として、二酸化バナジウム(以下、「VO」ともいう。)が挙げられる。VOは、60℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。 In order to solve such a problem, a method of applying a thermochromic material in which the optical properties of near-infrared light shielding and transmission are controlled by temperature has been studied. A typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”). VO 2 is known to undergo a phase transition in a temperature range of around 60 ° C. and exhibit thermochromic properties.
 VO粒子を透明樹脂中に分散させ、樹脂基材上にVO分散樹脂層を形成する積層体として、サーモクロミックフィルムを提供する方法(例えば、特許文献1参照。)や、モリブデン等をドープしたVO粒子をポリエステル樹脂に混合してTダイ法でサーモクロミックフィルムを提供する方法(例えば、特許文献2参照。)が開示されている。
 しかしながら、VO粒子は、粒子を合成した後に濾過して乾燥させる、又は水系溶剤に不溶なバインダーとともに調製した溶剤系塗布液を用いて、サーモクロミック性を発現する光学機能膜を形成する場合、VO粒子の一次粒子が凝集して、二次粒子を生じやすいことが判明した。そこで、バインダーとして水溶性バインダーを用いることが考えられるが、水溶性バインダーを用いた場合には、高温高湿下にVO粒子が長期間保存されると、サーモクロミック性能が低下することが分かった。
 また、特許文献3には、サーモクロミック材料を水溶性アクリル樹脂に分散させて積層体を得ることが記載されているが、遮熱層を設けなければならず、サーモクロミック性は十分とはいえなかった。特に冬場は、可変性質層が吸収した熱が伝熱により室内に伝わるだけであり、十分ではなかった。
A method of providing a thermochromic film as a laminate for dispersing VO 2 particles in a transparent resin and forming a VO 2 dispersed resin layer on a resin substrate (see, for example, Patent Document 1) or doping with molybdenum or the like. A method (for example, refer to Patent Document 2) of providing a thermochromic film by mixing the obtained VO 2 particles with a polyester resin by a T-die method is disclosed.
However, when VO 2 particles are synthesized after the particles are filtered and dried, or using a solvent-based coating solution prepared with a binder insoluble in an aqueous solvent, an optical functional film that exhibits thermochromic properties is formed. It was found that the primary particles of the VO 2 particles tend to aggregate to form secondary particles. Therefore, it is conceivable to use a water-soluble binder as the binder. However, when the water-soluble binder is used, it is understood that when the VO 2 particles are stored for a long time under high temperature and high humidity, the thermochromic performance is lowered. It was.
Patent Document 3 describes that a laminated body is obtained by dispersing a thermochromic material in a water-soluble acrylic resin. However, a thermal barrier layer must be provided, and the thermochromic property is sufficient. There wasn't. Especially in winter, the heat absorbed by the variable property layer was only transferred to the room by heat transfer, which was not sufficient.
特開2013-184091号公報JP 2013-184091 A 特開2004-346260号公報JP 2004-346260 A 特開2010-247522号公報JP 2010-247522 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、優れたサーモクロミック性及び耐久性を示す二酸化バナジウム粒子を含有するサーモクロミックフィルム及びサーモクロミック複合体を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and its solution is to provide a thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability. It is.
 本発明者は、上記課題を解決すべく上記問題の原因等について検討した結果、本発明のサーモクロミックフィルムは、バインダー樹脂が、反応性官能基を有し、かつ水溶性であり、光学機能層の膜厚及び水分含有量が、所定の範囲内であることで、優れたサーモクロミック性及び耐久性を示すことを見いだし、本発明に至った。
 すなわち、本発明の上記課題は、下記の手段により解決される。
As a result of examining the cause of the above-mentioned problems in order to solve the above problems, the present inventor has found that the thermochromic film of the present invention has a binder resin having a reactive functional group and water-soluble, and an optical functional layer. It was found that the film thickness and the water content of were within the predetermined ranges, and thus exhibited excellent thermochromic properties and durability, leading to the present invention.
That is, the said subject of this invention is solved by the following means.
 1.透明基材上に、少なくともサーモクロミック性を示す二酸化バナジウム粒子とバインダー樹脂を含有する光学機能層を有するサーモクロミックフィルムであって、
 前記バインダー樹脂が、反応性官能基を有し、かつ水溶性であり、
 80℃、湿度80%で24時間放置した後の前記光学機能層の水分含有量が、0.5~5.0g/mの範囲内であり、かつ
 前記光学機能層の膜厚が、0.5~5.0μmの範囲内であることを特徴とするサーモクロミックフィルム。
1. A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting at least thermochromic properties and a binder resin on a transparent substrate,
The binder resin has a reactive functional group and is water-soluble;
The moisture content of the optical functional layer after being left for 24 hours at 80 ° C. and 80% humidity is in the range of 0.5 to 5.0 g / m 2 , and the film thickness of the optical functional layer is 0 A thermochromic film characterized by being in the range of 5 to 5.0 μm.
 2.前記水分含有量が、0.6~2.0g/mの範囲内であることを特徴とする第1項に記載のサーモクロミックフィルム。 2. 2. The thermochromic film according to item 1, wherein the water content is in the range of 0.6 to 2.0 g / m 2 .
 3.前記バインダー樹脂として水溶性セルロース系樹脂を含有することを特徴する第1項又は第2項に記載のサーモクロミックフィルム。 3. The thermochromic film according to item 1 or 2, which contains a water-soluble cellulose resin as the binder resin.
 4.前記光学機能層が、さらにイソシアネート化合物、メラミン系化合物、カルボジイミド系化合物及びエポキシ化合物のうち少なくとも1種類を含有することを特徴とする第1項から第3項までのいずれか一項に記載のサーモクロミックフィルム。 4. 4. The thermo according to claim 1, wherein the optical functional layer further contains at least one of an isocyanate compound, a melamine compound, a carbodiimide compound, and an epoxy compound. Chromic film.
 5.第1項から第4項までのいずれか一項に記載のサーモクロミックフィルムを構成要素として備えていることを特徴とするサーモクロミック複合体。 5. A thermochromic composite comprising the thermochromic film according to any one of items 1 to 4 as a constituent element.
 本発明の上記手段により、優れたサーモクロミック性及び耐久性を示す二酸化バナジウム粒子を含有するサーモクロミックフィルム及びサーモクロミック複合体を提供することができる。 The above-mentioned means of the present invention can provide a thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 前述のとおり、VO粒子は、粒子を合成した後に濾過して乾燥させる、又は水系溶剤に不溶なバインダーとともに調製した溶剤系塗布液を用いて、サーモクロミック性を発現する光学機能膜を形成する場合、VO粒子の一次粒子が凝集して、二次粒子を生じやすい。また、二酸化バナジウム粒子が含有する水分量を調節することなく水溶性バインダーを使用して、高温高湿下に長期間保存されると、二酸化バナジウム粒子の還元が促進されてしまい、二酸化バナジウムのサーモクロミック性が損なわれてしまったり、フィルムの耐久性が低下してしまうと考えられる。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
As described above, the VO 2 particles form an optical functional film that exhibits thermochromic properties by using a solvent-based coating solution prepared by filtering and drying after synthesizing the particles or a binder insoluble in an aqueous solvent. In this case, the primary particles of the VO 2 particles tend to aggregate to form secondary particles. In addition, if a water-soluble binder is used without adjusting the amount of water contained in the vanadium dioxide particles and stored at a high temperature and high humidity for a long time, the reduction of the vanadium dioxide particles is promoted, and the vanadium dioxide thermostat. It is considered that the chromic property is impaired or the durability of the film is lowered.
 具体的には、サーモクロミックフィルム中の光学機能層の水分含有量が0.5g/mより小さいとフィルムが固くなってしまい、折り曲げによりひび割れが起きやすく施工性が悪くなってしまう。一方で、サーモクロミックフィルム中の光学機能層の水分含有量が、5.0g/mより大きいとサーモクロミック性の低下が著しい。
 そこで、サーモクロミックフィルム中の光学機能層に含有される水分量を規定し、さらに樹脂に反応性官能基を導入することにより、二酸化バナジウム粒子の凝集を抑制することができるため、ヘイズを低くすることができる。
 これにより、優れたサーモクロミック性及び耐久性を示すサーモクロミックフィルムを提供することができるものと推察している。
Specifically, if the water content of the optical functional layer in the thermochromic film is less than 0.5 g / m 2 , the film becomes hard, and cracking is likely to occur due to bending, resulting in poor workability. On the other hand, when the water content of the optical functional layer in the thermochromic film is larger than 5.0 g / m 2 , the thermochromic property is significantly lowered.
Therefore, by defining the amount of water contained in the optical functional layer in the thermochromic film and further introducing a reactive functional group into the resin, aggregation of vanadium dioxide particles can be suppressed, so that haze is lowered. be able to.
Thereby, it is guessed that the thermochromic film which shows the outstanding thermochromic property and durability can be provided.
本発明のサーモクロミックフィルムの概略断面図Schematic sectional view of the thermochromic film of the present invention
 本発明のサーモクロミックフィルムは、透明基材上に、少なくともサーモクロミック性を示す二酸化バナジウム粒子とバインダー樹脂を含有する光学機能層を有するサーモクロミックフィルムであって、前記バインダー樹脂が、反応性官能基を有し、かつ水溶性であり、80℃、湿度80%で24時間放置した後の前記光学機能層の水分含有量が、0.5~5.0g/mの範囲内であり、かつ前記光学機能層の膜厚が、0.5~5.0μmの範囲内であることを特徴とする。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 The thermochromic film of the present invention is a thermochromic film having an optical functional layer containing at least thermochromic vanadium dioxide particles and a binder resin on a transparent substrate, wherein the binder resin is a reactive functional group. And the water content of the optical functional layer after standing for 24 hours at 80 ° C. and 80% humidity is in the range of 0.5 to 5.0 g / m 2 , and The optical functional layer has a thickness in the range of 0.5 to 5.0 μm. This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施態様としては、前記水分含有量が、0.6~2.0g/mの範囲内であることが、本発明の効果発現の観点からより好ましい。 As an embodiment of the present invention, the water content is more preferably in the range of 0.6 to 2.0 g / m 2 from the viewpoint of manifestation of the effect of the present invention.
 また、前記バインダー樹脂として水溶性セルロース系樹脂を含有することが、二酸化バナジウム粒子の分散性が良く、高いサーモクロミック性や低いヘイズと柔軟性の観点からより好ましい。 In addition, it is more preferable to contain a water-soluble cellulose resin as the binder resin from the viewpoints of good dispersibility of vanadium dioxide particles, high thermochromic properties, low haze and flexibility.
 また、前記光学機能層が、さらにイソシアネート化合物、メラミン系化合物、カルボジイミド系化合物及びエポキシ化合物のうち少なくとも1種類を含有することが、本発明の効果発現の観点から好ましい。 In addition, it is preferable that the optical functional layer further contains at least one of an isocyanate compound, a melamine compound, a carbodiimide compound and an epoxy compound from the viewpoint of manifesting the effect of the present invention.
 また、本発明のサーモクロミック複合体は、本発明のサーモクロミックフィルムを構成要素として備えていることが、本発明の効果発現の観点から好ましい。 Further, the thermochromic complex of the present invention preferably includes the thermochromic film of the present invention as a constituent element from the viewpoint of manifesting the effects of the present invention.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 〔酸化バナジウム〕
 本発明に係る二酸化バナジウムは、酸化バナジウムの一態様である。酸化バナジウムは自然界において様々な形態をとり、V、H 、HVO 、HVO 2-、VO 3-、VO2+、VO、V3+、V、V2+、V、V等の構造が挙げられる。それぞれの環境雰囲気によってその形態が変化し、一般的には酸性環境下であればV、還元環境下であればVが形成される。そのため、VOは比較的酸化・還元しやすく、周囲の環境によって結晶構造が変化する。
 サーモクロミック性(自動調光性)を示すVOは単斜晶構造で発現するため、本発明で用いるVOは単斜晶である。
[Vanadium oxide]
Vanadium dioxide according to the present invention is an embodiment of vanadium oxide. Vanadium oxide takes various forms in nature, including V 2 O 5 , H 3 V 2 O 7 , H 2 VO 4 , HVO 4 2− , VO 4 3− , VO 2+ , VO 2 , V 3+ , V Examples of the structure include 2 O 3 , V 2+ , V 2 O 2 , and V. The form changes depending on each environmental atmosphere. Generally, V 2 O 5 is formed in an acidic environment, and V 2 O 3 is formed in a reducing environment. Therefore, VO 2 is relatively easy to oxidize and reduce, and the crystal structure changes depending on the surrounding environment.
Since VO 2 exhibiting thermochromic properties (automatic light control) exhibits a monoclinic structure, VO 2 used in the present invention is a monoclinic crystal.
 〔二酸化バナジウム粒子〕
 本発明で用いられる二酸化バナジウム粒子の結晶形は、サーモクロミック性を効率よく発現させる観点から、ルチル型のVO粒子(以下、単に、「VO粒子」ともいう。)を用いることが好ましい。
 ルチル型のVO粒子は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M型とも呼ばれる。本発明に係る二酸化バナジウム粒子においては、目的を損なわない範囲で、A型、又はB型などの他の結晶型のVO粒子を含んでもよい。
 本発明に係るVO粒子は、光学機能層中において一次粒子及び二次粒子の数平均粒子径が500nm未満で分散されて存在していることが好ましい。
 粒子径の測定方法は種々の測定法を適用することができるが、動的光散乱法に従って測定することが好ましい。
[Vanadium dioxide particles]
The crystal form of the vanadium dioxide particles used in the present invention is preferably rutile VO 2 particles (hereinafter also simply referred to as “VO 2 particles”) from the viewpoint of efficiently expressing thermochromic properties.
Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called M-type. The vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
The VO 2 particles according to the present invention are preferably present in a state where the number average particle diameter of primary particles and secondary particles is less than 500 nm in the optical functional layer.
Various measurement methods can be applied to the particle diameter measurement method, but it is preferable to measure according to the dynamic light scattering method.
 本発明に係るVO粒子における一次粒子及び二次粒子の好ましい数平均粒子径は、1~200nmの範囲内であり、より好ましくは、5~100nmの範囲内であり、最も好ましくは5~60nmの範囲内である。
 また、VO粒子のアスペクト比としては、1.0~3.0の範囲内であることが好ましい。
 このような特徴をもつVO粒子では、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒子径が十分に小さいので、従来の粒子に比べて、良好なサーモクロミック性を発揮することができる。
The preferred number average particle diameter of the primary particles and secondary particles in the VO 2 particles according to the present invention is in the range of 1 to 200 nm, more preferably in the range of 5 to 100 nm, and most preferably in the range of 5 to 60 nm. Is within the range.
The aspect ratio of the VO 2 particles is preferably in the range of 1.0 to 3.0.
The VO 2 particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution. In addition, since the particle diameter of the single crystal is sufficiently small, better thermochromic properties can be exhibited compared to conventional particles.
 本発明の目的効果が達成される限りにおいて、二酸化バナジウム粒子の相転移温度を調整するための元素を含む物質をさらに含んでも良い。相転移温度を調整する物質としては、特に制限されないがタングステン、チタン、モリブデン、ニオブ、タンタル、スズ、レニウム、イリジウム、オスミウム、ルテニウム、ゲルマニウム、クロム、鉄、ガリウム、アルミニウム、フッ素及びリン等が使用できる。上記物質を含むことにより、二酸化バナジウム粒子の相転移温度を低下させることができる。上記物質の添加量は特に制限されないが、バナジウム 100元素に対して、好ましくは0.03~1元素、より好ましくは0.04~0.08元素の範囲内となるような量である。 As long as the objective effect of the present invention is achieved, a substance containing an element for adjusting the phase transition temperature of the vanadium dioxide particles may be further included. The substance for adjusting the phase transition temperature is not particularly limited, but tungsten, titanium, molybdenum, niobium, tantalum, tin, rhenium, iridium, osmium, ruthenium, germanium, chromium, iron, gallium, aluminum, fluorine, phosphorus, etc. are used. it can. By containing the said substance, the phase transition temperature of a vanadium dioxide particle can be lowered | hung. The amount of the above substance added is not particularly limited, but is an amount that is preferably within a range of 0.03 to 1 element, more preferably 0.04 to 0.08 element with respect to 100 elements of vanadium.
 (1:二酸化バナジウム粒子水系分散液の製造方法)
 一般に、二酸化バナジウム粒子の合成方法は、固相法により合成されたVO焼結体を粉砕する方法と、五酸化バナジウム(V)を原料として、液相でVOを合成しながら粒子成長させる水系合成法が挙げられる。
 本発明においては、いずれの方法で作製されたVOでも適用することができる。いずれかの方法で作製したVOに分散剤を添加し、水系分散液として調製する。
 分散剤の添加量は、溶媒に水を用いることで、有機溶媒を用いる場合よりも少なくすることができ、0.1~1.0質量%の範囲内であることが好ましい。
 分散剤としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリエチレングリコール、ヒドロキシルエチルセルロース等が挙げられ、特に、ポリビニルピロリドン又はセルロース樹脂であることが好ましい。
 そして、水系分散液中のVO粒子を乾燥させることなく、後述のように光学機能層形成用塗布液を調製することができる。
(1: Method for producing aqueous dispersion of vanadium dioxide particles)
In general, synthesis of vanadium dioxide particles, a method of pulverizing the VO 2 sintered body synthesized by the solid phase method, vanadium pentoxide (V 2 O 5) as a raw material, while combining the VO 2 in the liquid phase An aqueous synthesis method in which particles are grown can be mentioned.
In the present invention, VO 2 produced by any method can be applied. A dispersant is added to VO 2 produced by any method to prepare an aqueous dispersion.
The amount of the dispersant added can be reduced by using water as the solvent, compared with the case of using an organic solvent, and is preferably in the range of 0.1 to 1.0% by mass.
In addition to low molecular weight dispersants such as alkyl sulfonates, alkyl benzene sulfonates, diethylamine, ethylenediamine, and quaternary ammonium salts, dispersants include polyoxyethylene nonylphenyl ether, polyethylene ethylene laurate, hydroxy Examples thereof include ethyl cellulose, polyvinyl pyrrolidone, polyethylene glycol, and hydroxyl ethyl cellulose, and polyvinyl pyrrolidone or cellulose resin is particularly preferable.
Then, without drying the VO 2 particles of the aqueous dispersion, it is possible to prepare optically functional layer forming coating solution as described below.
 この状態の光学機能層形成用塗布液を用いて、光学機能層を形成することにより、一次粒子及び二次粒子の数平均粒子径が150nm未満である好ましい数平均粒子径のVO粒子を含有する光学機能層を形成することができる。
 また、VO粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の粒子を核粒子として添加し、その核粒子を成長させることによりVO粒子を製造することもできる。
By using the coating solution for forming an optical functional layer in this state, an optical functional layer is formed, thereby containing VO 2 particles having a preferred number average particle size of primary particles and secondary particles having a number average particle size of less than 150 nm. An optical functional layer can be formed.
Further, as a method for producing VO 2 particles, if necessary, particles such as fine TiO 2 that becomes the core of particle growth are added as nucleus particles, and the VO 2 particles are produced by growing the nucleus particles. You can also.
 なお、バインダー樹脂として水溶性バインダー樹脂を使用する場合、上述のVO粒子を含む水系分散液として調製した後、水系分散液中のVO粒子を乾燥させることなく、VO粒子が離間している分散状態で水溶性バインダー樹脂溶液と混合して、光学機能層形成用塗布液を調製することが好ましい。
 次いで、本発明に好適な水熱法によるVO粒子の製造方法について、その詳細をさらに説明する。
 以下に、代表的な水熱法によるVO粒子の製造工程を示す。
In addition, when using water-soluble binder resin as binder resin, after preparing as the aqueous dispersion containing the above-mentioned VO 2 particles, the VO 2 particles are separated without drying the VO 2 particles in the aqueous dispersion. It is preferable to prepare a coating solution for forming an optical functional layer by mixing with a water-soluble binder resin solution in a dispersed state.
Next, the details of the method for producing VO 2 particles by the hydrothermal method suitable for the present invention will be described.
Hereinafter, a manufacturing process of the VO 2 particles by typical hydrothermal method.
 (工程1)
 バナジウム(V)を含む物質(I)と、ヒドラジン(N)又はその水和物(N・nHO)と、水とを混ぜて溶液(A)を調製する。この溶液(A)は、物質(I)が水中に溶解した水溶液であっても良いし、物質(I)が水中に分散した懸濁液であっても良い。
 物質(I)としては、例えば、五酸化バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等が挙げられる。なお、物質(I)としては、五価のバナジウム(V)を含む化合物であれば、特に限定されない。ヒドラジン(N)及びその水和物(N・nHO)は、物質(I)の還元剤として機能するものであって、水に容易に溶解する性質を有する。
(Process 1)
A substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A). The solution (A) may be an aqueous solution in which the substance (I) is dissolved in water, or may be a suspension in which the substance (I) is dispersed in water.
Examples of the substance (I) include vanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride oxide (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. The substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
 溶液(A)は、最終的に得られる二酸化バナジウム(VO)の単結晶粒子に元素を添加するため、添加する元素を含む物質(II)を更に含有していてもよい。添加する元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)又はリン(P)が挙げられる。 The solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal particles. Examples of the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
 これらの元素を、最終的に得られる二酸化バナジウム(VO)の単結晶粒子に添加することにより、二酸化バナジウム粒子のサーモクロミック性、特に、転移温度を制御することができる。
 また、この溶液(A)は、酸化性又は還元性を有する物質(III)を更に含有していてもよい。物質(III)としては、例えば、過酸化水素(H)が挙げられる。酸化性又は還元性を有する物質(III)を添加することにより、溶液のpHを調整したり、物質(I)であるバナジウム(V)を含む物質を均一に溶解させたりすることができる。
By adding these elements to the finally obtained vanadium dioxide (VO 2 ) single crystal particles, the thermochromic properties of the vanadium dioxide particles, in particular, the transition temperature can be controlled.
Moreover, this solution (A) may further contain a substance (III) having oxidizing property or reducing property. Examples of the substance (III) include hydrogen peroxide (H 2 O 2 ). By adding the oxidizing or reducing substance (III), the pH of the solution can be adjusted, or the substance containing vanadium (V) as the substance (I) can be uniformly dissolved.
 (工程2)
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(VO)含有の単結晶粒子が得られる。
(Process 2)
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. By the hydrothermal reaction treatment, single crystal particles containing vanadium dioxide (VO 2 ) are obtained.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶粒子の粒子径を小さくすることができるが、過度に粒子径が小さいと、結晶性が低くなる。また、水熱反応処理の時間は、例えば1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶粒子の粒子径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。 The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle diameter of the obtained single crystal particles can be reduced, but if the particle diameter is excessively small, the crystallinity is lowered. The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By increasing the time, the particle diameter and the like of the obtained single crystal particles can be controlled. However, if the processing time is excessively long, the energy consumption increases.
 (工程3)
 必要に応じて、得られた二酸化バナジウム粒子の表面に、樹脂によるコーティング処理又は表面改質処理を行っても良い。これにより、二酸化バナジウム粒子の表面が保護され、表面改質された単結晶微粒子を得ることができる。本発明では、その中でも、二酸化バナジウム粒子の表面をガラス転移温度が65℃以下である、本発明に係るバインダー樹脂で被覆されていることが好ましい態様である。
 なお、本発明でいう「被覆」とは、二酸化バナジウム粒子に対し、当該樹脂により粒子全面が完全に覆われている状態であってもよいし、粒子表面の一部が樹脂により覆われている状態であってもよい。好ましくは、当該粒子表面の全面積の50%以上が被覆されている状態がよく、80%以上被覆されている状態がより好ましい。
 以上の工程1~工程3を経て、サーモクロミック性を有するVO含有の単結晶粒子を含む分散液が得られる。
(Process 3)
If necessary, the surface of the obtained vanadium dioxide particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide particles is protected, and surface-modified single crystal fine particles can be obtained. In the present invention, among these, it is preferable that the surface of the vanadium dioxide particles is coated with the binder resin according to the present invention having a glass transition temperature of 65 ° C. or lower.
The “coating” referred to in the present invention may be a state where the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide particles, or a part of the particle surface is covered with the resin. It may be in a state. Preferably, a state where 50% or more of the total area of the particle surface is covered is good, and a state where 80% or more is covered is more preferable.
Through the steps 1 to 3, a dispersion liquid containing VO 2 -containing single crystal particles having thermochromic properties is obtained.
 〔VOの粉砕方法〕
 VOを微粒子化する方法は種々の方法があるが、ビーズミル、超音波破砕、高圧ホモジナイザー等種々の方法があり、いずれの方法を用いてもVO粒子を作製することができる。
 ビーズミルでは、種々のビーズを用いることができるが、硬度、価格の観点からジルコニアビーズを利用するのが好ましい。
[VO 2 grinding method]
There are various methods for making VO 2 into fine particles, but there are various methods such as bead milling, ultrasonic crushing, and high-pressure homogenizer, and any method can be used to produce VO 2 particles.
Various beads can be used in the bead mill, but zirconia beads are preferably used from the viewpoint of hardness and price.
 〈二酸化バナジウム粒子水系分散液中の不純物の除去処理〉
 上記水系合成法により調製された二酸化バナジウム粒子の分散液中には、合成過程で生じた残渣などの不純物が含まれており、光学機能層を形成する際に、二次凝集粒子発生のきっかけとなり、光学機能層の長期保存での劣化要因となることがあり、分散液の段階で不純物を除去することが好ましい。
 二酸化バナジウム粒子水系分散液中の不純物を除去する方法としては、従来公知の異物や不純物を分離する手段を適用することができ、例えば、VO粒子水系分散液に遠心分離を施し、二酸化バナジウム粒子を沈殿させ、上澄み中の不純物を除去し、再び分散媒を添加、分散する方法でも良いし、限外濾過膜などの交換膜を用いて不純物を系外へ除去する方法でも良いが、二酸化バナジウム粒子の凝集を防止する観点からは、限外濾過膜を用いる方法が最も好ましい。
 限外濾過膜の材質としては、セルロース系、ポリエーテルスルホン系、ポリテトラフルオロエチレン(略称:PTFE)などを挙げることができ、その中でも、ポリエーテルスルホン系、PTFEを用いることが好ましい。
<Removal treatment of impurities in aqueous dispersion of vanadium dioxide particles>
The dispersion of vanadium dioxide particles prepared by the above-described aqueous synthesis method contains impurities such as residues generated during the synthesis process, which triggers the generation of secondary aggregated particles when forming the optical functional layer. The optical functional layer may be a cause of deterioration during long-term storage, and it is preferable to remove impurities at the stage of the dispersion.
As a method for removing impurities in the aqueous dispersion of vanadium dioxide particles, conventionally known means for separating foreign substances and impurities can be applied. For example, the VO 2 particle aqueous dispersion is subjected to centrifugal separation to obtain vanadium dioxide particles. It is possible to remove the impurities in the supernatant, add and disperse the dispersion medium again, or remove the impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation of particles, a method using an ultrafiltration membrane is most preferable.
Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
 <サーモクロミックフィルムの層構成の概要>
 本発明のサーモクロミックフィルムの代表的な構成例について、図を交えて説明する。
 本発明のサーモクロミックフィルムの好ましい態様の一つは、透明基材上に、光学機能層が形成されている構成である。
 図1は、本発明で規定する二酸化バナジウム粒子とバインダー樹脂を含有する光学機能層を有するサーモクロミックフィルムの基本的な構成の一例を示す概略断面図である。
<Summary of thermochromic film layer structure>
The typical structural example of the thermochromic film of this invention is demonstrated using a figure.
One of the preferable aspects of the thermochromic film of this invention is the structure by which the optical function layer is formed on the transparent base material.
FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film having an optical functional layer containing vanadium dioxide particles and a binder resin defined in the present invention.
 図1に示すサーモクロミックフィルム1は、透明基材2上に、光学機能層3を積層した構成を有している。この光学機能層3は、光学機能層に含有されるバインダー樹脂B1中に、二酸化バナジウム粒子が分散された状態で存在している。この二酸化バナジウム粒子には、二酸化バナジウム粒子が独立して存在している二酸化バナジウムの一次粒子VOと、2個以上の二酸化バナジウム粒子の集合体(凝集体ともいう。)を構成している、VOの二次粒子VOが存在している。本発明では、2個以上の二酸化バナジウム粒子の集合体を総括して二次粒子と称し、二次粒子凝集体、又は二次凝集粒子ともいう。 A thermochromic film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2. This optical functional layer 3 is present in a state where vanadium dioxide particles are dispersed in the binder resin B1 contained in the optical functional layer. This is vanadium dioxide particles, constitute the primary particles VO S of vanadium dioxide vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also referred to as aggregates.), secondary particles VO M of VO 2 is present. In the present invention, an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
 (光学機能層の水分含有量・膜厚)
 本発明のサーモクロミックフィルムは、80℃、湿度80%で24時間放置した後、カールフィッシャー法(JIS K 0068-2001)で測定した光学機能層の水分含有量が、0.5~5.0g/mの範囲内であり、かつ光学機能層の膜厚が、0.5~5.0μmの範囲内であることを特徴とする。
 当該膜厚は、好ましくは、1.0~3.0μmの範囲内である。また、水分含有量は、好ましくは、0.6~2.0g/mの範囲内、さらに好ましくは0.7~1.0g/mの範囲内である。本発明のサーモクロミックフィルムは、光学機能層の膜厚と光学機能層に含有されるバインダー樹脂や硬膜剤によって水分含有量を調整することができる。
 水分含有量の測定方法は、カールフィッシャー法(JIS K 0068-2001)で測定でき、例えば三菱化学製カールフィッシャー水分測定装置CA-31を用いて測定することができる。
(Water content and film thickness of optical function layer)
The thermochromic film of the present invention has a water content of 0.5 to 5.0 g as measured by the Karl Fischer method (JIS K 0068-2001) after standing at 80 ° C. and 80% humidity for 24 hours. / M 2 and the thickness of the optical functional layer is in the range of 0.5 to 5.0 μm.
The film thickness is preferably in the range of 1.0 to 3.0 μm. The water content is preferably in the range of 0.6 to 2.0 g / m 2 , more preferably in the range of 0.7 to 1.0 g / m 2 . In the thermochromic film of the present invention, the water content can be adjusted by the film thickness of the optical functional layer and the binder resin or hardener contained in the optical functional layer.
The moisture content can be measured by the Karl Fischer method (JIS K 0068-2001), for example, using a Karl Fischer moisture measuring device CA-31 manufactured by Mitsubishi Chemical.
 本発明の光学機能層の膜厚は、0.5μmより薄いと十分な水分を含有することができず折れやすくなってしまう。また、5.0μmより厚いと可撓性が損なわれてしまう。
 また、光学機能層が前記範囲内の膜厚のサーモクロミックフィルムは、水分含有量が、0.5g/mより少ないと折れやすく、5.0g/mより多いと二酸化バナジウムの還元が進みすぎてしまう。
 よって、本発明のサーモクロミックフィルムの光学機能層が、当該範囲内の膜厚かつ水分含有量であることにより、フィルムを柔軟にするとともに、含有する二酸化バナジウムの還元を最適な範囲に進めることができるため、優れたサーモクロミック性と耐久性を両立することができる。
When the film thickness of the optical functional layer of the present invention is thinner than 0.5 μm, sufficient moisture cannot be contained and the optical function layer is easily broken. On the other hand, if it is thicker than 5.0 μm, flexibility is impaired.
In addition, a thermochromic film having a film thickness within the above range of the optical functional layer easily breaks when the moisture content is less than 0.5 g / m 2 , and when the moisture content exceeds 5.0 g / m 2 , the reduction of vanadium dioxide proceeds. Too much.
Therefore, the optical functional layer of the thermochromic film of the present invention has a film thickness and moisture content within the range, so that the film can be made flexible and the reduction of the vanadium dioxide contained can be advanced to the optimum range. Therefore, it is possible to achieve both excellent thermochromic properties and durability.
 (数平均粒子径)
 また、光学機能層3中におけるVO粒子の一次粒子VO及び二次粒子VOの全粒子による数平均粒子径が、200nm以下であることが好ましく、150nm未満であることがより好ましい。
 光学機能層中におけるVO粒子の上記数平均粒子径は、下記の方法に従って求めることができる。
 はじめに、二酸化バナジウム粒子を含有する光学機能層の側面を、ミクロトーム等を用いてトリミングし、図1に示すような光学機能層の断面を露出させる。
 次いで、露出した断面を、透過型電子顕微鏡(TEM)を用いて、1万~10万倍で撮影する。撮影した断面の一定領域内に存在している全ての二酸化バナジウム粒子について、その粒子径を測定する。この時、測定する二酸化バナジウム粒子としては、50~300個の範囲内であることが好ましい。撮影した二酸化バナジウム粒子群には、図1に示すように一次粒子と二次粒子とが混在しており、二酸化バナジウムの一次粒子の粒子径は、各独立している粒子の直径を測定する。もし、球形でない場合には、粒子の投影面積を円換算し、その直径をもって粒子径とする。
(Number average particle size)
The number average particle diameter measured by the total particles of the primary particles VO S and secondary particles VO M of VO 2 particles in the optical functional layer 3, is preferably 200nm or less, and more preferably less than 150 nm.
The number average particle diameter of the VO 2 particles in the optical functional layer can be determined according to the following method.
First, the side surface of the optical functional layer containing vanadium dioxide particles is trimmed using a microtome or the like to expose the cross section of the optical functional layer as shown in FIG.
Next, the exposed cross section is photographed at a magnification of 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle diameter is measured for all vanadium dioxide particles present in a certain area of the photographed cross section. At this time, the vanadium dioxide particles to be measured are preferably in the range of 50 to 300 particles. In the photographed vanadium dioxide particle group, primary particles and secondary particles are mixed as shown in FIG. 1, and the particle diameter of the primary particles of vanadium dioxide is the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and the diameter is taken as the particle diameter.
 一方、2個以上の粒子が凝集して存在している二酸化バナジウムの二次粒子については、凝集体全体の投影面積を求めたのち、投影面積を円換算し、その直径をもって粒子径と、それらの凝集した二次粒子を1粒子とする。以上のようにして求めた一次粒子と二次粒子の各直径について、数平均直径を求める。切り出した断面部には粒子分布のバラつきがあるため、このような数平均直径の測定について、異なるシーンの断面領域10か所について行い、全体の数平均直径を求め、本発明でいう数平均粒子径とした。 On the other hand, for the secondary particles of vanadium dioxide in which two or more particles are aggregated, after obtaining the projected area of the whole aggregate, the projected area is converted into a circle, and the diameter is used as the The aggregated secondary particles are defined as one particle. The number average diameter is obtained for each diameter of the primary particles and secondary particles obtained as described above. Since the cut-out cross-sectional portion has a variation in particle distribution, the measurement of the number-average diameter is carried out for 10 cross-sectional areas of different scenes, the total number-average diameter is obtained, and the number-average particle referred to in the present invention The diameter.
 本発明のサーモクロミックフィルムにおいては、光学機能層に加えて、700~1000nmの波長範囲内の光の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を有していてもよい。
 本発明のサーモクロミックフィルムの光学特性として、JIS R 3106-1998で測定される可視光透過率としては、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。また、波長900~1400nmの領域に反射率50%を超える領域を有することが好ましい。
The thermochromic film of the present invention may have a near-infrared light shielding layer having a function of shielding at least part of light within a wavelength range of 700 to 1000 nm, in addition to the optical functional layer.
As the optical characteristics of the thermochromic film of the present invention, the visible light transmittance measured by JIS R 3106-1998 is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more. It is. In addition, it is preferable to have a region with a reflectance exceeding 50% in a wavelength region of 900 to 1400 nm.
 《サーモクロミックフィルムの各構成材料》
 以下、本発明のサーモクロミックフィルムの構成要素である光学機能層、必要により設ける樹脂基材、近赤外光遮蔽層の詳細について説明する。
<Each component of thermochromic film>
Hereinafter, the details of the optical functional layer, which is a constituent element of the thermochromic film of the present invention, a resin base material provided if necessary, and the near infrared light shielding layer will be described.
 [光学機能層]
 本発明で用いられる光学機能層は、少なくともサーモクロミック性を示す二酸化バナジウム粒子と、樹脂バインダーを含有している。
 サーモクロミック性を示す二酸化バナジウム粒子は前述のとおりであり、樹脂バインダーについては、反応性官能基を有し、かつ水溶性である。以下、本発明に係る樹脂バインダーは、「反応性官能基を有する水溶性バインダー樹脂」ともいう。
[Optical function layer]
The optical functional layer used in the present invention contains at least vanadium dioxide particles exhibiting thermochromic properties and a resin binder.
The vanadium dioxide particles exhibiting thermochromic properties are as described above, and the resin binder has a reactive functional group and is water-soluble. Hereinafter, the resin binder according to the present invention is also referred to as “water-soluble binder resin having a reactive functional group”.
 (反応性官能基を有する水溶性バインダー樹脂)
 本発明に係る光学機能層において用いるバインダー樹脂は、反応性官能基を有し、かつ水溶性である(反応性官能基を有する水溶性バインダー樹脂)。
 ここでいうバインダー樹脂の水溶性とは、当該水溶性樹脂が最も溶解する温度で、0.5質量%の濃度で水に溶解させた際、G2グラスフィルター(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた前記水溶性樹脂の50質量%以内であるものをいう。
 また、反応性官能基とは、例えば、ヒドロキシ基、メトキシ基、ヒドロキシプロポキシ基、アセトアセチル基、カルボニル基及びカルボキシ基等である。
(Water-soluble binder resin having a reactive functional group)
The binder resin used in the optical functional layer according to the present invention has a reactive functional group and is water-soluble (water-soluble binder resin having a reactive functional group).
The water solubility of the binder resin here means the temperature at which the water-soluble resin is most dissolved, and when it is dissolved in water at a concentration of 0.5% by mass, it is filtered through a G2 glass filter (maximum pores 40 to 50 μm). In this case, the mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble resin.
Examples of the reactive functional group include a hydroxy group, a methoxy group, a hydroxypropoxy group, an acetoacetyl group, a carbonyl group, and a carboxy group.
 本発明に適用可能な反応性官能基を有する水溶性樹脂としては、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩及びセルロース系樹脂が挙げられる。これらの中で、特に好ましい例としては、セルロース系樹脂が挙げられる。 Examples of the water-soluble resin having a reactive functional group applicable to the present invention include polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer. Acrylic resins such as vinyl acetate-acrylic acid ester copolymer or acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid Styrene acrylic resin such as ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer Coalescence, styrene-2-hydroxyl Tyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene -Vinyl acetate copolymers such as maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers, and their salts and cellulose resins Is mentioned. Among these, a cellulose resin is a particularly preferable example.
 (水溶性セルロース系樹脂)
 本発明に係る光学機能層の形成に用いることのできる水溶性セルロース系樹脂としては、水溶性のセルロース誘導体であって、例えば、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性セルロース誘導体や、カルボン酸基含有セルロース系樹脂であるカルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース等を挙げることができる。その他には、ニトロセルロース、セルロースアセテートプロピオネート、酢酸セルロース、セルロース硫酸エステル等のセルロース誘導体を挙げることができる。
(Water-soluble cellulose resin)
The water-soluble cellulose resin that can be used for forming the optical functional layer according to the present invention is a water-soluble cellulose derivative, for example, carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, Examples thereof include water-soluble cellulose derivatives such as hydroxypropylmethylcellulose, carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose which are carboxylic acid group-containing cellulose resins. Other examples include cellulose derivatives such as nitrocellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
 本発明においては、反応性官能基を有する水溶性バインダー樹脂が、ヒドロキシ基を有する繰り返し単位を50モル%以上含有する樹脂であることが好ましい態様の一つである。セルロース系樹脂の場合では、繰り返し単位成分はもともと三つのヒドロキシ基を有し、この三つのヒドロキシ基の一部が置換されている。ヒドロキシ基を有する繰り返し単位成分を50mol%以上含有するとは、この置換基にヒドロキシ基を有する繰り返し単位成分、又は置換されていないヒドロキシ基が一つ以上残った繰り返し単位成分が50mol%以上含有することを表す。 In the present invention, it is one preferred embodiment that the water-soluble binder resin having a reactive functional group is a resin containing 50 mol% or more of repeating units having a hydroxy group. In the case of a cellulosic resin, the repeating unit component originally has three hydroxy groups, and a part of the three hydroxy groups is substituted. “Containing 50 mol% or more of a repeating unit component having a hydroxy group” means that 50 mol% or more of the repeating unit component having a hydroxy group in this substituent or a repeating unit component in which one or more unsubstituted hydroxy groups remain is contained. Represents.
 [硬膜剤]
 本発明で用いられる硬膜剤としては、当該バインダー樹脂と硬化反応を起こすものであれば特に制限はない。
 例えば、ホウ酸やイソシアネート化合物、メラミン系化合物、カルボジイミド系化合物、エポキシ化合物等を用いることができる。イソシアネート化合物としては、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ジフェニルメタンジイソシアネート(MDI)等のイソシアネート基を有する化合物がある。
 市販品としては、旭化成ケミカルズ株式会社製デュラネート(HDI)や三井化学株式会社製タケネート(XDI、IPDI、HDI)、コスモネート(TDI)、東ソー株式会社製ミリオネート(MDI)などがある。メラミン系化合物としては、株式会社三和ケミカル製MX-706、DIC株式会社製ベッカミン、ウォーターゾール、日本カーバイド工業株式会社製ニカレヂンなどがある。カルボジイミド系化合物としては、日清紡ケミカル株式会社製カルボジライト、エポキシ化合物としては、ナガセケムテックス株式会社製デナコール、共栄社化学株式会社製エポライトなどがある添加濃度は樹脂に対して、1~50質量%の範囲内が好ましい。
 また、上記硬膜剤は2種類以上を併用して用いても良い。
[Hardener]
The hardener used in the present invention is not particularly limited as long as it causes a curing reaction with the binder resin.
For example, boric acid, an isocyanate compound, a melamine compound, a carbodiimide compound, an epoxy compound, or the like can be used. Examples of the isocyanate compound include compounds having an isocyanate group such as tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI).
Commercially available products include Duranate (HDI) manufactured by Asahi Kasei Chemicals Corporation, Takenate manufactured by Mitsui Chemicals (XDI, IPDI, HDI), Cosmonate (TDI), Millionate (MDI) manufactured by Tosoh Corporation. Examples of the melamine compound include MX-706 manufactured by Sanwa Chemical Co., Ltd., becamine manufactured by DIC Co., Ltd., Watersol, and Nicaridine manufactured by Nippon Carbide Industries Co., Ltd. As carbodiimide compounds, there are carbodilites manufactured by Nisshinbo Chemical Co., Ltd., and epoxy compounds such as Denasel manufactured by Nagase ChemteX Co., Ltd. and Epolite manufactured by Kyoeisha Chemical Co., Ltd. The additive concentration ranges from 1 to 50% by mass with respect to the resin. The inside is preferable.
Two or more kinds of the above hardeners may be used in combination.
 [光学機能層のその他の添加剤]
 本発明に用いられる光学機能層に、本発明の目的とする効果を損なわない範囲で適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素及び顔料等の公知の各種添加剤などが挙げられる。
[Other additives for optical functional layers]
Various additives that can be applied to the optical functional layer used in the present invention as long as the effects of the present invention are not impaired are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, JP-A-57- No. 878989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Various surfactants such as cation or nonion, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-242 209266, etc., optical brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents Lubricants such as diethylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorbers And various known additives such as dyes and pigments.
 [光学機能層の形成方法]
 上記光学機能層の形成に用いる湿式塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。
[Method for forming optical functional layer]
The wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
 《透明基材》
 本発明に適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英及び透明樹脂フィルム等を挙げることができるが、可撓性の付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。本発明でいう「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
 透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取り扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、例えば合わせガラスを作製する場合、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。
<Transparent substrate>
The transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to provide flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
The thickness of the transparent substrate is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, for example, when producing a laminated glass, Followability to the curved glass surface is improved.
 透明基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸又は少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明のサーモクロミックフィルムを具備した合わせガラスを、自動車のフロントガラスとして用いる場合には、延伸フィルムがより好ましい。
 透明基材は、サーモクロミックフィルムのシワの生成や赤外線反射層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%の範囲内であることがさらに好ましい。
The transparent substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. In particular, when the laminated glass provided with the thermochromic film of the present invention is used as an automobile windshield, a stretched film is more preferable.
From the viewpoint of preventing generation of wrinkles in the thermochromic film and cracking of the infrared reflective layer, the transparent substrate preferably has a thermal shrinkage rate in the range of 0.1 to 3.0% at a temperature of 150 ° C., The content is more preferably in the range of 1.5 to 3.0%, and further preferably in the range of 1.9 to 2.7%.
 本発明のサーモクロミックフィルムに適用可能な透明基材としては、透明であれば特に制限されることはないが、種々の樹脂フィルムを用いることが好ましく、例えば、ポリオレフィンフィルム(例えば、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくはポリエステルフィルム、トリアセチルセルロースフィルムである。 The transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used. For example, polyolefin films (for example, polyethylene, polypropylene, etc.) ), Polyester films (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, triacetyl cellulose films, and the like, preferably polyester films and triacetyl cellulose films.
 ポリエステルフィルム(以降、単にポリエステルと称す。)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、及びこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components. The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 透明基材として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とするポリエステル中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、例えば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 When using a transparent resin film as a transparent substrate, in order to facilitate handling, particles may be included within a range that does not impair transparency. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
 また、透明樹脂フィルムは、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸成膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは処理温度が100~180℃の範囲内である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲内で行われることが好ましく、より好ましくは弛緩率が2~6%の範囲内で処理されることである。弛緩処理された基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。
 透明樹脂フィルムは、成膜過程で片面又は両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、成膜工程中での下引塗布をインライン下引という。
In addition, the transparent resin film may be subjected to relaxation treatment or off-line heat treatment in terms of dimensional stability. The relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., more preferably the treatment temperature is in the range of 100 to 180 ° C. Further, the relaxation rate is preferably within a range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is within a range of 2 to 6%. The relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
The transparent resin film is preferably coated with the undercoat layer coating solution in-line on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
 《近赤外光遮蔽層》
 本発明のサーモクロミックフィルムにおいては、光学機能層に加え、700~1000nmの範囲内の光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を設ける構成とすることもできる。
 本発明に適用可能な近赤外光遮蔽層の詳細については、例えば、特開2012-131130号公報、特開2012-139948号公報、特開2012-185342号公報、特開2013-080178号公報、特開2014-089347号公報等に記載されている構成要素及び形成方法等を参考にすることができる。
《Near-infrared light shielding layer》
In the thermochromic film of the present invention, in addition to the optical functional layer, a near infrared light shielding layer having a function of shielding at least part of the light wavelength range within the range of 700 to 1000 nm may be provided. .
For details of the near-infrared light shielding layer applicable to the present invention, for example, JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A. Reference can be made to constituent elements and formation methods described in JP-A-2014-089347.
 《サーモクロミックフィルムの用途》
 本発明のサーモクロミックフィルムの用途としては、サーモクロミックフィルムを構成要素として備えているサーモクロミック複合体として使用することができる。例えば、1対のガラス構成部材で挟持させて、合わせガラスを構成することができ、この合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。合わせガラスは、これらの用途以外にも使用できる。上記合わせガラスは、建築用又は車両用の合わせガラスであることが好ましい。上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。
《Uses of thermochromic film》
As a use of the thermochromic film of this invention, it can be used as a thermochromic composite body provided with the thermochromic film as a component. For example, a laminated glass can be constituted by being sandwiched between a pair of glass constituent members, and this laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. Laminated glass can be used for other purposes. The laminated glass is preferably laminated glass for buildings or vehicles. The laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
 ガラス部材としては、無機ガラス及び有機ガラス(樹脂グレージング)が挙げられる。無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、及び、グリーンガラス等の着色ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラス(樹脂グレージング)としては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。本発明においては、外部から衝撃が加わって破損した際の安全性の観点からは、無機ガラスであることが好ましい。
 また、ガラス以外にも適用することができ、ガラスを含めたサーモクロミックフィルムの支持体全般とサーモクロミックから構成されている複合体とすることができる。
Examples of the glass member include inorganic glass and organic glass (resin glazing). Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass. The organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate. In the present invention, inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
The present invention can also be applied to other than glass, and can be a composite composed of a thermochromic film support including glass and a thermochromic.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。なお、表中の「フィルム」とはサーモクロミックフィルムを表し、「複合体」とはサーモクロミック複合体を表すものとする。また、「膜厚」とは、光学機能層の膜厚を表し、「水分含有量」とは、光学機能層の水分含有量を表す。ただし、フィルム136については、遮熱層及び可変性質層の合計を光学機能層の膜厚とした。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented. In the table, “film” represents a thermochromic film, and “composite” represents a thermochromic complex. “Film thickness” represents the film thickness of the optical functional layer, and “water content” represents the water content of the optical functional layer. However, for the film 136, the total thickness of the heat shielding layer and the variable property layer was defined as the thickness of the optical functional layer.
 《サーモクロミックフィルムの作製》
 〔フィルム101の作製〕
 一次粒子径55nmの二酸化バナジウム粒子水系分散液(15質量%)9gと、5質量%のポリビニルアルコール(PVA-124;重合度:2400、ケン化度:98~99mol%、株式会社クラレ製)91gと、硬膜剤としてホウ酸(5質量%)9.1gを混合した塗布液を作製した。
 次いで、50μmの厚さのPETフィルム上に光学機能層の膜厚が1.5μmになるように前記塗布液を塗布し、110℃の温風で2分間乾燥させ、フィルム101を作製した。
《Preparation of thermochromic film》
[Production of Film 101]
9 g of an aqueous dispersion of vanadium dioxide particles (15% by mass) having a primary particle diameter of 55 nm and 91 g of 5% by mass of polyvinyl alcohol (PVA-124; polymerization degree: 2400, saponification degree: 98 to 99 mol%, manufactured by Kuraray Co., Ltd.) And the coating liquid which mixed 9.1 g of boric acid (5 mass%) as a hardening agent was produced.
Next, the coating solution was applied onto a PET film having a thickness of 50 μm so that the film thickness of the optical functional layer was 1.5 μm, and dried with hot air at 110 ° C. for 2 minutes to produce a film 101.
 〔フィルム102~133の作製〕
 フィルム102~133は、表1に従って材料を変更した以外はフィルム101と同様に作製した。
 表1中、MCは、5質量%メチルセルロースを表し、信越化学工業社製のものを使用した。HECは、5質量%ヒドロキシエチルセルロースを表し、信越化学工業社製のものを使用した。HPMCは、5質量%ヒドロキシプロピルメチルセルロースを表し、信越化学工業社製のものを使用した。PLは、ポリエステル樹脂を表し、イーストマンケミカル社製“EASTER”Copolyester6763を使用した。FPは、65質量%TFE系硬化性官能基含有フッ素樹脂溶液を表し、ダイキン工業(株)製のゼッフルGK570を使用した。
 また、硬膜剤の種類については、A:ホウ酸(関東化学株式会社製)、B:ヘキサメチレンジイソシアネート(旭化成ケミカルズ(株)製デュラネート(登録商標)WT30-100)、C:ポリイソシアネート(DIC(株)製ベッカミン(登録商標)M-3)、E:水性メラミン樹脂(DIC(株)製ウォーターゾール(登録商標)S-695)、F:カルボジイミド(日清紡ケミカル(株)製カルボジライト(登録商標)SW-126)、G:エポキシ(ナガセケムテックス(株)製デナコール(登録商標)EX-810)、H:ポリイソシアネート(住化バイエルウレタン(株)製スミジュール(登録商標)N3300)を使用した。
[Production of Films 102 to 133]
The films 102 to 133 were produced in the same manner as the film 101 except that the materials were changed according to Table 1.
In Table 1, MC represents 5 mass% methylcellulose, and Shin-Etsu Chemical Co., Ltd. product was used. HEC represents 5 mass% hydroxyethyl cellulose, and Shin-Etsu Chemical Co., Ltd. product was used. HPMC represents 5% by mass hydroxypropyl methylcellulose, and one manufactured by Shin-Etsu Chemical Co., Ltd. was used. PL represents a polyester resin, and “EASTER” Copolyester 6763 manufactured by Eastman Chemical Co. was used. FP represents a 65% by mass TFE-based curable functional group-containing fluororesin solution, and Zaffle GK570 manufactured by Daikin Industries, Ltd. was used.
The types of hardeners are: A: boric acid (manufactured by Kanto Chemical Co., Inc.), B: hexamethylene diisocyanate (manufactured by Asahi Kasei Chemicals Corporation, Duranate (registered trademark) WT30-100), C: polyisocyanate (DIC) Beccamin (registered trademark) M-3), E: aqueous melamine resin (Watersol (registered trademark) S-695 manufactured by DIC Corporation), F: carbodiimide (Carbodilite (registered trademark) manufactured by Nisshinbo Chemical Co., Ltd.) SW-126), G: Epoxy (Nagase ChemteX Corporation Denacol (registered trademark) EX-810), H: Polyisocyanate (Sumika Bayer Urethane Co., Ltd. Sumidur (registered trademark) N3300) did.
 〔フィルム134の作製〕
 バナジルトリイソプロポキシド13.7g、モリブデンペンタエトキシド0.73gをイソプロパノール500mLに溶解した。この溶液にイオン交換水15mLを添加し室温で72時間撹拌後、溶媒を除去した。残渣を解砕後、400℃で2時間焼成し、引き続き水素気流中、450℃で2時間焼成することによりモリブデンドープ二酸化バナジウムを得た。
[Preparation of film 134]
13.7 g of vanadyl triisopropoxide and 0.73 g of molybdenum pentaethoxide were dissolved in 500 mL of isopropanol. To this solution, 15 mL of ion exchange water was added and stirred at room temperature for 72 hours, and then the solvent was removed. After crushing the residue, it was calcined at 400 ° C. for 2 hours, and then calcined in a hydrogen stream at 450 ° C. for 2 hours to obtain molybdenum-doped vanadium dioxide.
 前記モリブデンドープ二酸化バナジウムを3部、ポリエステル樹脂“EASTER”Copolyester6763(イーストマンケミカル社製)を97部の組成で混合後、Tダイ法により、厚さ50μmのフィルム(光学機能層)134を得た。 After mixing 3 parts of the molybdenum-doped vanadium dioxide and 97 parts of a polyester resin “EASTER” Copolyester 6763 (manufactured by Eastman Chemical Co.), a film (optical functional layer) 134 having a thickness of 50 μm was obtained by a T-die method. .
 〔フィルム135の作製〕
 モリブデンドープ二酸化バナジウムを23部、ポリエステル樹脂“EASTER”Copolyester6763(イーストマンケミカル社製)を77部に変更した以外はフィルム134と同様にしてフィルム(光学機能層)135を得た。
[Production of film 135]
A film (optical functional layer) 135 was obtained in the same manner as the film 134 except that the molybdenum-doped vanadium dioxide was changed to 23 parts, and the polyester resin “EASTER” Copolyester 6763 (manufactured by Eastman Chemical) was changed to 77 parts.
 〔フィルム136の作製〕
(遮熱層形成用塗料組成物の調製)
 ゼッフルGK570(ダイキン工業(株)製のTFE系硬化性官能基含有フッ素樹脂溶液。固形分濃度65質量%)49質量部、酸化チタン(堺化学工業(株)製のD918)32質量部及び酢酸ブチル20質量部を混合後、ガラスビーズを投入し、サンドミル分散した。得られた分散液に硬化剤(住化バイエルウレタン(株)製のスミジュールN3300)を6.5質量部混合して遮熱層形成用塗料組成物を調製した。
[Production of Film 136]
(Preparation of a coating composition for forming a thermal barrier layer)
Zeffle GK570 (TFE curable functional group-containing fluororesin solution manufactured by Daikin Industries, Ltd., solid content concentration: 65% by mass), 49 parts by mass, titanium oxide (D918, Sakai Chemical Industry Co., Ltd.), 32 parts by mass, and acetic acid After mixing 20 parts by mass of butyl, glass beads were added and dispersed in a sand mill. The obtained dispersion was mixed with 6.5 parts by mass of a curing agent (Sumidule N3300 manufactured by Sumika Bayer Urethane Co., Ltd.) to prepare a coating composition for forming a thermal barrier layer.
(可変性質層形成用塗料組成物の調製)
 ゼッフルGK570の88質量部にサーモクロミック顔料(サンズ社製の黒 TCA1015)を12質量部混合し、ホモディスパーで混合し得られた分散液に硬化剤(住化バイエルウレタン(株)製のスミジュールN3300)を12.4質量部混合し、可変性質層形成用塗料組成物を調製した。
(Preparation of coating composition for forming variable property layer)
12 parts by mass of thermochromic pigment (Black TCA1015 manufactured by Sands Co., Ltd.) was mixed with 88 parts by mass of Zeffle GK570, and the resulting dispersion was mixed with a homodisper with a curing agent (Sumidule manufactured by Sumika Bayer Urethane Co., Ltd.). N3300) was mixed at 12.4 parts by mass to prepare a coating composition for forming a variable property layer.
(積層体の作製)
 100μmの厚さのPETフィルム上に遮熱層形成用塗料組成物をバーコートにより塗装し、23℃で24時間硬化乾燥させて厚さ60μmの遮熱層を形成した。遮熱層上に可変性質層形成用塗料組成物をバーコートにより塗装し、乾燥させて厚さ50μmの可変性質層を形成した。この積層体を23℃で24時間硬化させて試験用の積層体を作製した。
 以上により作製したサーモクロミックフィルム101~136の構成を、表1に示す。水分含有量の測定方法は以下のとおりである。
(Production of laminate)
A coating composition for forming a thermal barrier layer was applied by bar coating on a PET film having a thickness of 100 μm, and cured and dried at 23 ° C. for 24 hours to form a thermal barrier layer having a thickness of 60 μm. The variable property layer forming coating composition was applied by bar coating on the heat shielding layer and dried to form a variable property layer having a thickness of 50 μm. This laminate was cured at 23 ° C. for 24 hours to prepare a test laminate.
Table 1 shows the structures of the thermochromic films 101 to 136 produced as described above. The measuring method of water content is as follows.
 《水分含有量の測定》
 80℃、湿度80%で24時間放置した後、カールフィッシャー法(JIS K 0068-2001)に基づいて、三菱化学製カールフィッシャー水分測定装置CA-31を用いて測定した。具体的には、得られたサーモクロミックフィルム全体の水分含有量から基材として用いたPETフィルムの水分含有量を引いて、光学機能層の水分含有量を求めた。
<Measurement of moisture content>
After being allowed to stand at 80 ° C. and 80% humidity for 24 hours, the measurement was performed using a Karl Fischer moisture measuring device CA-31 manufactured by Mitsubishi Chemical Corporation based on the Karl Fischer method (JIS K 0068-2001). Specifically, the moisture content of the optical functional layer was determined by subtracting the moisture content of the PET film used as the substrate from the moisture content of the entire thermochromic film obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 《柔軟性評価》
 サーモクロミックフィルム101~136について、JIS K5600-5-1:1999に準拠した屈曲試験法に基づき、屈曲試験機タイプ1(井元製作所社製、型式IMC-AOF2、マンドレル径φ20mm)を用いて、1000回の屈曲試験を行った。
 屈曲試験を行った後のサーモクロミックフィルム表面を、目視観察し、下記の基準に従って柔軟性を評価した。
《Flexibility evaluation》
About the thermochromic films 101 to 136, using a bending tester type 1 (manufactured by Imoto Seisakusho, model IMC-AOF2, mandrel diameter φ20 mm) based on a bending test method based on JIS K5600-5-1: 1999. Bending tests were performed.
The surface of the thermochromic film after the bending test was visually observed, and the flexibility was evaluated according to the following criteria.
  ◎:サーモクロミックフィルム表面に折り曲げ跡やひび割れが観察されない
  ○:サーモクロミックフィルム表面に僅かに折り曲げ跡が観察される
  △:サーモクロミックフィルム表面に微小なひび割れが僅かに観察される
  ×:サーモクロミックフィルム表面に明らかなひび割れが多数発生している
◎: No folding marks or cracks are observed on the surface of the thermochromic film ○: Some bending marks are observed on the surface of the thermochromic film △: Slight cracks are observed on the surface of the thermochromic film ×: Thermochromic film There are many obvious cracks on the surface.
 《サーモクロミック複合体の作製》
 上記作製した各サーモクロミックフィルム101~136を、厚さ1.3mmのガラス板(松浪硝子工業社製、「スライドガラス白縁磨」)のサイズ15cm×20cmに透明粘着シート(日東電工社製、LUCIACS CS9621T)を貼り合わせて作製した各サーモクロミック複合体201~236について評価した。
《Preparation of thermochromic complex》
Each of the produced thermochromic films 101 to 136 is made into a transparent adhesive sheet (manufactured by Nitto Denko Corporation) with a size of 15 cm × 20 cm of a glass plate having a thickness of 1.3 mm (manufactured by Matsunami Glass Kogyo Co., Ltd., “sliding glass white edge polishing”). Each of the thermochromic composites 201 to 236 produced by bonding LUCIACS CS9621T) was evaluated.
 〔サーモクロミック性評価〕
 作製したサーモクロミック複合体201~236を用いて、下記の夏場想定及び冬場想定の湿熱耐性を評価し、サーモクロミックフィルムのサーモクロミック性を判定した。
[Thermochromic evaluation]
Using the produced thermochromic composites 201 to 236, the following heat resistance in the summer and winter conditions was evaluated, and the thermochromic properties of the thermochromic film were determined.
 (夏場想定評価)
 〈測定環境〉
 室温が28℃の環境試験室の壁面に、サーモクロミック複合体を配置した。具体的には、環境試験室の室内側がサーモクロミックフィルム、壁面と隣接する側がガラスとなるように配置し、日本のクールビズ室内を想定した環境試験室を用いた。
 環境試験室のサーモクロミック複合体を配置した部分の壁面から50cm離れた位置より、夏場の太陽を想定した150Wのハロゲンランプを点灯した。
 さらに、太陽光照射の蓄積によりサーモクロミック複合体が加熱されると想定して、サーモクロミック複合体を熱電対で70℃に加熱した。
(Summer evaluation)
<Measurement environment>
The thermochromic complex was placed on the wall of the environmental test chamber at room temperature of 28 ° C. Specifically, an environmental test room was used assuming that the indoor side of the environmental test room is a thermochromic film and the side adjacent to the wall surface is glass, assuming a Japanese cool biz room.
A 150 W halogen lamp that assumed the summer sun was lit from a position 50 cm away from the wall surface of the part where the thermochromic complex was placed in the environmental test room.
Further, assuming that the thermochromic complex is heated by the accumulation of sunlight irradiation, the thermochromic complex was heated to 70 ° C. with a thermocouple.
 〈評価1〉
 環境試験室内のサーモクロミック複合体より1m離れた位置に温度計を設置し、上記条件で1時間経過後の温度を測定し、下記の基準に従って行った評価を「湿熱耐性前」の評価とした。
 また、85℃、湿度85%の環境下で100時間放置した後、湿熱耐性前の評価と同様に、環境試験室内のサーモクロミック複合体より1m離れた位置に温度計を設置し、上記条件で1時間経過後の温度を測定し、下記の基準に従って行った評価を「湿熱耐性後」の評価とした。
<Evaluation 1>
A thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, the temperature after 1 hour was measured under the above conditions, and the evaluation performed according to the following criteria was evaluated as “before wet heat resistance”. .
In addition, after being left in an environment of 85 ° C. and humidity of 85% for 100 hours, a thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, as in the evaluation before the wet heat resistance. The temperature after 1 hour was measured, and the evaluation performed according to the following criteria was evaluated as “after wet heat resistance”.
  ◎:1時間経過後の温度が29℃未満で、外部光による温度上昇がほとんど認められない
  ○:1時間経過後の温度が29℃以上、32℃未満である
 ○△:1時間経過後の温度が32℃以上、34℃未満である
  △:1時間経過後の温度が34℃以上、36℃未満である
  ×:1時間経過後の温度が36℃以上であり、過酷な環境である
◎: Temperature after 1 hour is less than 29 ° C, almost no temperature rise due to external light ○: Temperature after 29 hours is 29 ℃ or more and less than 32 ℃ ○ △: After 1 hour The temperature is 32 ° C. or more and less than 34 ° C. Δ: The temperature after the passage of 1 hour is 34 ° C. or more and less than 36 ° C. ×: The temperature after the passage of 1 hour is 36 ° C. or more, which is a harsh environment.
 (冬場想定評価)
 〈測定環境〉
 室温が20℃の環境試験室の壁面に、サーモクロミック複合体を配置した。具体的には、環境試験室の室内側がサーモクロミックフィルム、壁面と隣接する側がガラスとなるように配置し、日本のウォームビズ室内を想定した環境試験室を用いた。
 環境試験室のサーモクロミック複合体を配置した部分の壁面から50cm離れた位置より、冬場の太陽を想定した100Wのハロゲンランプを点灯した。
(Estimated winter evaluation)
<Measurement environment>
A thermochromic composite was placed on the wall of an environmental test room having a room temperature of 20 ° C. Specifically, an environmental test chamber was used assuming that the indoor side of the environmental test room is a thermochromic film and the side adjacent to the wall surface is glass, assuming a Japanese warm biz room.
From a position 50 cm away from the wall surface of the part where the thermochromic complex was placed in the environmental test room, a 100 W halogen lamp was used that assumed the winter sun.
 〈評価2〉
 環境試験室内のサーモクロミック複合体より1m離れた位置に温度計を設置し、上記条件で1時間経過後の温度を測定し、下記の基準に従って行った評価を「湿熱耐性前」の評価とした。
 また、85℃、湿度85%の環境下で100時間放置した後、湿熱耐性前の評価と同様に、環境試験室内のサーモクロミック複合体より1m離れた位置に温度計を設置し、上記条件で1時間経過後の温度を測定し、下記の基準に従って行った評価を「湿熱耐性後」の評価とした。
<Evaluation 2>
A thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, the temperature after 1 hour was measured under the above conditions, and the evaluation performed according to the following criteria was evaluated as “before wet heat resistance”. .
In addition, after being left in an environment of 85 ° C. and humidity of 85% for 100 hours, a thermometer was installed at a position 1 m away from the thermochromic complex in the environmental test chamber, as in the evaluation before the wet heat resistance. The temperature after 1 hour was measured, and the evaluation performed according to the following criteria was evaluated as “after wet heat resistance”.
  ◎:1時間経過後の温度が26℃以上となり、外部光による熱エネルギーが適度に侵入している
  ○:1時間経過後の温度が24℃以上、26℃未満である
 ○△:1時間経過後の温度が22℃以上、24℃未満である
  △:1時間経過後の温度が21℃以上、22℃未満である
  ×:多くの近赤外光が無条件で遮蔽され、1時間経過後の温度が21℃未満である
◎: Temperature after 1 hour is 26 ° C or higher, and heat energy from external light has entered moderately. ○: Temperature after 24 hours is more than 24 ° C and less than 26 ° C. Later temperature is 22 ° C. or more and less than 24 ° C. Δ: Temperature after 21 hours is 21 ° C. or more and less than 22 ° C. ×: Many near infrared light is unconditionally shielded and after 1 hour The temperature is less than 21 ° C
 《ヘイズの評価》
 上記作製した各サーモクロミック複合体について、85℃、湿度85%の環境下で100時間放置した後、ヘイズメーター(日本電色工業社製、NDH2000)を用いて、ヘイズ(%)を測定し、下記の基準に従ってヘイズの評価を行った。
<Evaluation of haze>
About each produced said thermochromic composite body, after leaving for 100 hours in an environment of 85 degreeC and 85% of humidity, using a haze meter (Nippon Denshoku Industries Co., Ltd. NDH2000), a haze (%) is measured, The haze was evaluated according to the following criteria.
  ◎:ヘイズが2.0%未満である
  ○:ヘイズが2.0%以上、3.0%未満である
 ○△:ヘイズが3.0%以上、5.0%未満である
  △:ヘイズが5.0%以上、8.0%未満である
  ×:ヘイズが8.0%以上である
◎: Haze is less than 2.0% ○: Haze is 2.0% or more and less than 3.0% ○ △: Haze is 3.0% or more and less than 5.0% △: Haze 5.0% or more and less than 8.0% x: Haze is 8.0% or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <評価結果>
 表2の結果から分かるように、本発明のサーモクロミックフィルムを用いた場合の柔軟性、湿熱耐性及びヘイズは、比較例のサーモクロミックフィルムを用いた場合と比べて優れていることが分かった。
<Evaluation results>
As can be seen from the results in Table 2, it was found that the flexibility, wet heat resistance, and haze when using the thermochromic film of the present invention were superior to those when using the thermochromic film of the comparative example.
 本発明により、優れたサーモクロミック性及び耐久性を示す二酸化バナジウム粒子を含有するサーモクロミックフィルム及びサーモクロミック複合体を得ることができ、これらは近赤外光遮蔽フィルム等に好適に利用できる。 According to the present invention, a thermochromic film and a thermochromic composite containing vanadium dioxide particles exhibiting excellent thermochromic properties and durability can be obtained, and these can be suitably used for near infrared light shielding films and the like.
 1 サーモクロミックフィルム
 2 透明基材
 3 光学機能層
 B1 バインダー樹脂
 VO 二酸化バナジウムの一次粒子
 VO 二酸化バナジウムの二次粒子
1 thermochromic film 2 transparent substrate 3 optical function layer B1 binder resin VO S primary particles of vanadium dioxide VO M vanadium dioxide secondary particles

Claims (5)

  1.  透明基材上に、少なくともサーモクロミック性を示す二酸化バナジウム粒子とバインダー樹脂を含有する光学機能層を有するサーモクロミックフィルムであって、
     前記バインダー樹脂が、反応性官能基を有し、かつ水溶性であり、
     80℃、湿度80%で24時間放置した後の前記光学機能層の水分含有量が、0.5~5.0g/mの範囲内であり、かつ
     前記光学機能層の膜厚が、0.5~5.0μmの範囲内であることを特徴とするサーモクロミックフィルム。
    A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting at least thermochromic properties and a binder resin on a transparent substrate,
    The binder resin has a reactive functional group and is water-soluble;
    The moisture content of the optical functional layer after being left for 24 hours at 80 ° C. and 80% humidity is in the range of 0.5 to 5.0 g / m 2 , and the film thickness of the optical functional layer is 0 A thermochromic film characterized by being in the range of 5 to 5.0 μm.
  2.  前記水分含有量が、0.6~2.0g/mの範囲内であることを特徴とする請求項1に記載のサーモクロミックフィルム。 The thermochromic film according to claim 1, wherein the water content is in the range of 0.6 to 2.0 g / m 2 .
  3.  前記バインダー樹脂として水溶性セルロース系樹脂を含有することを特徴する請求項1又は請求項2に記載のサーモクロミックフィルム。 The thermochromic film according to claim 1 or 2, wherein the binder resin contains a water-soluble cellulose resin.
  4.  前記光学機能層が、さらにイソシアネート化合物、メラミン系化合物、カルボジイミド系化合物及びエポキシ化合物のうち少なくとも1種類を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載のサーモクロミックフィルム。 4. The thermo according to claim 1, wherein the optical functional layer further contains at least one of an isocyanate compound, a melamine compound, a carbodiimide compound, and an epoxy compound. 5. Chromic film.
  5.  請求項1から請求項4までのいずれか一項に記載のサーモクロミックフィルムを構成要素として備えていることを特徴とするサーモクロミック複合体。 A thermochromic composite comprising the thermochromic film according to any one of claims 1 to 4 as a constituent element.
PCT/JP2016/067606 2015-08-21 2016-06-14 Thermochromic film and thermochromic composite WO2017033533A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680048379.0A CN107922260A (en) 2015-08-21 2016-06-14 Thermo-color film and thermo-color complex
JP2017536644A JPWO2017033533A1 (en) 2015-08-21 2016-06-14 Thermochromic film and thermochromic composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163289 2015-08-21
JP2015-163289 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033533A1 true WO2017033533A1 (en) 2017-03-02

Family

ID=58099915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067606 WO2017033533A1 (en) 2015-08-21 2016-06-14 Thermochromic film and thermochromic composite

Country Status (3)

Country Link
JP (1) JPWO2017033533A1 (en)
CN (1) CN107922260A (en)
WO (1) WO2017033533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017056897A1 (en) * 2015-10-01 2018-07-19 コニカミノルタ株式会社 Thermochromic film and thermochromic composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206878A (en) * 2011-03-29 2012-10-25 Sekisui Chem Co Ltd Interlayer for laminated glass, laminated glass, and method for producing laminated glass
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
JP2014073955A (en) * 2012-09-12 2014-04-24 Sekisui Chem Co Ltd Vanadium oxide composition, vanadium oxide particle, dispersion containing vanadium oxide particle, interlayer for laminated glass and laminated glass
JP2015063453A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
JP2015063454A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265374A (en) * 2008-01-24 2008-09-17 复旦大学 Intelligent heat-insulating film and its preparing process
JP5625172B2 (en) * 2009-12-28 2014-11-19 東亞合成株式会社 Vanadium dioxide fine particles, production method thereof, and thermochromic film
CN103074002B (en) * 2012-01-19 2014-02-19 佛山佛塑科技集团股份有限公司 Intelligent temperature-control energy-saving composite coating film
CN103073943B (en) * 2012-01-19 2014-09-17 中国科学院上海硅酸盐研究所 Vanadium dioxide intelligent temperature control coating
CN104530872A (en) * 2014-12-30 2015-04-22 佛山金智节能膜有限公司 Intelligent temperature controlling coating with oriented structure and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206878A (en) * 2011-03-29 2012-10-25 Sekisui Chem Co Ltd Interlayer for laminated glass, laminated glass, and method for producing laminated glass
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
JP2014073955A (en) * 2012-09-12 2014-04-24 Sekisui Chem Co Ltd Vanadium oxide composition, vanadium oxide particle, dispersion containing vanadium oxide particle, interlayer for laminated glass and laminated glass
JP2015063453A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
JP2015063454A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017056897A1 (en) * 2015-10-01 2018-07-19 コニカミノルタ株式会社 Thermochromic film and thermochromic composite

Also Published As

Publication number Publication date
CN107922260A (en) 2018-04-17
JPWO2017033533A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
CN106574129B (en) Infrared reflecting paint and infrared reflective coating composition
KR100992515B1 (en) Polyester film for display
WO2016052740A1 (en) Optical film and process for producing optical film
JPWO2016017604A1 (en) Optical film and optical film manufacturing method
WO2017068948A1 (en) Thermochromic film and thermochromic composite
JP6384247B2 (en) Optical film and optical film manufacturing method
JP6465117B2 (en) Manufacturing method of optical film
JP4655476B2 (en) Near infrared absorption filter
TWI249043B (en) Near infrared ray absorption film and process for producing it, near infrared ray absorption film roll and process for producing it, and near infrared ray absorption filter
JP6747450B2 (en) Thermochromic film and thermochromic composite
WO2017033533A1 (en) Thermochromic film and thermochromic composite
WO2017104313A1 (en) Optical film
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
JP2005189742A (en) Near-infrared ray absorption filter
WO2017056897A1 (en) Thermochromic film and thermochromic composite body
WO2018061600A1 (en) Optical functional film, thermochromic film, thermochromic laminate and method for producing thermochromic film
WO2017187715A1 (en) Thermochromic film, production method thereof, and thermochromic film/glass composite
JP3736557B2 (en) Near infrared absorption filter
JP2017226078A (en) Thermochromic film and thermochromic composite including the same
WO2017126224A1 (en) Thermochromic film and thermochromic composite
JP2005189738A (en) Near-infrared ray absorption filter
JP2017214466A (en) Core and shell type thermochromic particle, thermochromic film and manufacturing method of thermochromic particle
WO2017138435A1 (en) Window film
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
JP2017226075A (en) Thermochromic film, thermochromic composite, and production method of thermochromic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838880

Country of ref document: EP

Kind code of ref document: A1