WO2017187715A1 - Thermochromic film, production method thereof, and thermochromic film/glass composite - Google Patents

Thermochromic film, production method thereof, and thermochromic film/glass composite Download PDF

Info

Publication number
WO2017187715A1
WO2017187715A1 PCT/JP2017/004903 JP2017004903W WO2017187715A1 WO 2017187715 A1 WO2017187715 A1 WO 2017187715A1 JP 2017004903 W JP2017004903 W JP 2017004903W WO 2017187715 A1 WO2017187715 A1 WO 2017187715A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermochromic film
thermochromic
functional layer
resin
optical functional
Prior art date
Application number
PCT/JP2017/004903
Other languages
French (fr)
Japanese (ja)
Inventor
丈範 熊谷
友香子 高
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017187715A1 publication Critical patent/WO2017187715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy

Definitions

  • the present invention relates to a thermochromic film, a thermochromic film-glass composite, and a method for producing a thermochromic film. More specifically, the present invention relates to a thermochromic film having excellent wet heat durability, a thermochromic film-glass composite formed by laminating the thermochromic film, and a method for producing a thermochromic film.
  • the near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
  • Patent Document 1 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
  • Patent Document 2 has a reflection layer laminate in which a large number of low refractive index layers and high refractive index layers are alternately laminated, and by adjusting the layer thickness of each refractive index layer, near infrared light can be obtained.
  • a near-infrared light shielding film that selectively reflects light has been proposed.
  • the near-infrared light shielding film having such a configuration is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high.
  • a low-latitude zone near the equator where the illuminance of sunlight is high.
  • incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
  • thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature.
  • a typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”).
  • VO 2 is known to undergo a phase transition in a temperature range of about 50 to 60 ° C. and exhibit thermochromic properties.
  • thermochromic property can maintain a high thermochromic property and a nanoparticle state in an aqueous dispersion state. This is thought to be due to the fact that the crystal structure of VO 2 changes with the phase transition, the volume increases on the high temperature side, and the oxidation state and high crystallinity of the surface are involved in chromic properties. .
  • the oxidation of VO 2 and the change of the crystal structure are promoted by moisture and oxygen in the atmosphere, and in the thermochromic film containing VO 2 particles, the thermochromic property decreases with time. Is a problem.
  • Patent Document 3 reports that VO 2 is protected with a silane coupling agent and a long-chain alkyl resin, and a polymer emulsion is used as a binder.
  • thermochromic film containing these protected VO 2 particles when the inventor produced a thermochromic film containing these protected VO 2 particles and conducted a durability test on wet heat durability, it was found that the durability was insufficient.
  • JP 2010-222233 A International Publication No. 2013/065679 Special table 2015-513508 gazette
  • thermochromic film having excellent wet heat durability
  • thermochromic film-glass composite formed by laminating it
  • thermochromic film It is to provide a manufacturing method.
  • the optical functional layer containing vanadium dioxide particles of a thermochromic film contains a water-soluble resin and a hydrophobic resin as a binder in a ratio within a specific range.
  • thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, wherein the optical functional layer contains a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and A thermochromic film having a mass ratio value (P 1 / P 2 ) in the range of 0.3 to 10.0.
  • thermochromic film according to item 1 which contains a urethane resin as the hydrophobic resin.
  • thermochromic film according to item 1 or 2 which contains a resin having an amide group as the water-soluble resin.
  • thermochromic film according to item 3 wherein the resin having an amide group is polyvinyl acetamide.
  • thermochromic film according to any one of Items 1 to 4, wherein the water-soluble resin contains gelatin.
  • thermochromic film according to any one of items 1 to 5, wherein the optical functional layer contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000.
  • thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, wherein the optical functional layer contains a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and A thermochromic film having a mass ratio value (P 1 / P 2 ) in a range of 0.3 to 10.0 and containing an organometallic compound in the optical functional layer.
  • thermochromic film according to item 7, wherein the organometallic compound is selected from an organosilane compound, an organotitanium compound, and an organozirconium compound.
  • thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties on a substrate, wherein the optical functional layer comprises a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ). And the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and 70% by mass of the vanadium dioxide particles with respect to the thickness n of the optical functional layer. The above is unevenly distributed in the range of n / 2 from the base material side.
  • thermochromic film-glass composite comprising the thermochromic film according to any one of items 1 to 6 and glass laminated.
  • thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 )), and a step of applying a coating solution for forming an optical functional layer whose mass ratio value (P 1 / P 2 ) is within a range of 0.3 to 10.0.
  • a method for producing a thermochromic film comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 )), and a step of applying a coating solution for forming an optical functional layer whose mass ratio value (P 1 / P 2 ) is within a range of 0.3 to 10.0.
  • thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 )
  • the manufacturing method of the thermochromic film which has the process of apply
  • thermochromic film having excellent wet heat durability a thermochromic film-glass composite formed by laminating the thermochromic film, and a method for producing a thermochromic film can be provided.
  • the optical functional layer of the thermochromic film of the present invention contains a water-soluble resin and a hydrophobic resin together with vanadium dioxide particles. These are considered to function as a binder of the optical functional layer.
  • the water-soluble resin interacts with the vanadium dioxide particles to suppress the aggregation of the particles and stabilize the dispersion, and the hydrophobic resin reduces the water absorption of the resin. It is done.
  • the thickness n of the optical functional layer is reduced by the phase separation of the resin so that the vanadium dioxide particles are lower than n / 2 in the thickness direction of the optical functional layer from the base material.
  • the structure is higher than that of the upper layer, preventing the influence of moisture and oxygen, improving long-term wet heat durability, and effectively blocking moisture and oxygen from entering the optical functional layer from the outside. It is presumed that discoloration and thermochromic deterioration in a high temperature and high humidity environment could be prevented by expressing the effect of this. Further, it is presumed that by containing the organometallic compound, the organometallic compound adsorbs with the vanadium dioxide particles and effectively blocks the intrusion of moisture and oxygen into the optical functional layer, thereby obtaining the same effect. By adopting such a form, it is presumed that a thermochromic film in which high thermochromic properties are maintained for a long time can be produced.
  • thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0.
  • This feature is a technical feature common to the claimed invention.
  • the hydrophobic resin in addition to the improvement of wet heat durability, it is possible to impart flexibility to the optical functional layer by containing a urethane resin, and to further improve the adhesion to the substrate. It is preferable at the point which has the effect to improve.
  • the water-soluble resin preferably contains a resin having an amide group.
  • the resin having an amide group is polyvinyl acetamide.
  • gelatin is contained from the viewpoint of interacting with the VO 2 particles, and particularly capable of stably dispersing the VO 2 particles during coating and drying and preventing aggregation.
  • the optical functional layer contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000, it has an effect of interacting with the VO 2 particle surface, making the VO 2 particle hydrophobic, and improving wet heat durability. Is preferable.
  • thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic, wherein the optical functional layer contains a water-soluble resin (P 1) and the hydrophobic resin (P 2)
  • P 1 / P 2 The mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and the optical functional layer contains an organometallic compound, This is preferable because it effectively blocks oxygen from entering.
  • the organometallic compound is selected from an organosilane compound, an organotitanium compound, and an organozirconium compound.
  • thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic on a substrate, wherein the optical functional layer is a water-soluble resin (P 1) and the hydrophobic resin (P 2)
  • the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and the vanadium dioxide particles have a thickness of 70 with respect to the film thickness n of the optical functional layer. It is preferable from the viewpoint of improving the wet heat durability that the mass% or more is unevenly distributed in the range of n / 2 from the substrate side.
  • thermochromic film of the present invention can be suitably used for a thermochromic film-glass composite formed by laminating the thermochromic film and glass.
  • the method for producing a thermochromic film of the present invention is a method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, and comprising a hydrophobic resin (P 2 ) Containing an aqueous emulsion and a water-soluble resin (P 1 ), and the mass ratio value (P 1 / P 2 ) is within the range of 0.3 to 10.0. It is preferable that it is an aspect which has the process of apply
  • the method for producing a thermochromic film of the present invention is a method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising a hydrophobic resin ( a step of applying an optical functional layer forming coating liquid containing an aqueous emulsion and the water-soluble resin containing P 2) (P 1), is preferably a mode having a step of adding a high temperature and high humidity conditions.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0.
  • thermochromic film of the present invention A typical configuration example of the thermochromic film of the present invention will be described with reference to the drawings.
  • thermochromic film of the present invention is a configuration in which an optical functional layer is formed on a transparent substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film having an optical functional layer containing vanadium dioxide particles, a water-soluble resin, and a hydrophobic resin defined in the present invention.
  • thermochromic film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2.
  • the optical functional layer 3 is present in a state where vanadium dioxide particles are dispersed in a resin binder B1 made of a water-soluble resin and a hydrophobic resin contained in the optical functional layer.
  • This is vanadium dioxide particles constitute the primary particles VO S of vanadium dioxide vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also called aggregates), VO 2 of secondary particles VO M is present.
  • an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
  • the number average particle diameter measured by the total particles of the primary particles VO S and secondary particles VO M of VO 2 particles in the optical function layer 3 is preferably less than 500 nm.
  • the number average particle diameter of the VO 2 particles in the optical functional layer can be determined according to the following method.
  • thermochromic film of the present invention is a hybrid structure in which the optical functional layer also serves as a resin base material.
  • FIG. 2 is a schematic cross-sectional view showing another example of the basic configuration of the thermochromic film 1 of the present invention, in which the transparent substrate 2 and the optical functional layer 3 shown in FIG.
  • the near infrared light shielding layer 4 is laminated on the side opposite to the side on which the optical functional layer 3 of the material 2 is laminated.
  • the thermochromic film of this invention it is good also as a structure which has the near-infrared-light shielding layer 4.
  • FIG. As the near-infrared light shielding layer 4, for example, a layer having a function of shielding at least part of light within a wavelength range of 700 to 1000 nm can be used.
  • thermochromic film 1 the transparent base material 2 and the optical function layer 3 are made into the hybrid optical function layer (2 + 3) comprised by the same layer, and optical function is used as resin which comprises the transparent base material.
  • optical function is used as resin which comprises the transparent base material.
  • the visible light transmittance measured by JIS R3106-1998 is preferably 20% or more, more preferably 30% or more, and further preferably 40% or more. is there.
  • thermochromic film Component materials of thermochromic film
  • the optical functional layer which is a component of the thermochromic film of the present invention, a base material provided if necessary, and the near infrared light shielding layer will be described.
  • optical functional layer contains at least vanadium dioxide, a water-soluble resin, and a hydrophobic resin.
  • Vanadium dioxide is an embodiment of vanadium oxide.
  • Vanadium oxide takes various forms in nature, including V 2 O 5 , H 3 V 2 O 7 ⁇ , H 2 VO 4 ⁇ , HVO 4 2 ⁇ , VO 4 3 ⁇ , VO 2+ , VO 2 , V 3+ , V Examples of the structure include 2 O 3 , V 2+ , V 2 O 2 , and V.
  • the form changes depending on each environmental atmosphere.
  • V 2 O 5 is formed in an acidic environment
  • V 2 O 3 is formed in a reducing environment. Therefore, VO 2 is relatively easy to oxidize and reduce, and the crystal structure changes depending on the surrounding environment.
  • thermochromic properties (automatic light control) exhibits a monoclinic structure
  • VO 2 used in the present invention is a monoclinic crystal.
  • Vanadium dioxide particles The crystal form of the vanadium dioxide particles according to the present invention is preferably rutile VO 2 particles (hereinafter also simply referred to as VO 2 particles) from the viewpoint of efficiently expressing thermochromic properties.
  • the vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
  • the VO 2 particles according to the present invention are preferably present in a state where the number average particle diameter of primary particles and secondary particles is less than 500 nm in the optical functional layer.
  • measurement is preferably performed according to a dynamic light scattering method.
  • the preferred number average particle diameter of the primary particles and secondary particles in the VO 2 particles according to the present invention is less than 500 nm, more preferably in the range of 1 to 200 nm, more preferably in the range of 5 to 100 nm. And most preferably in the range of 5 to 60 nm.
  • the aspect ratio of the VO 2 particles is preferably in the range of 1.0 to 3.0.
  • the VO 2 particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution.
  • the particle diameter of the single crystal is sufficiently small, better thermochromic properties can be exhibited compared to conventional particles.
  • It may contain at least one selected element. By adding such an element, it becomes possible to control the phase transition characteristics (particularly the dimming temperature) of the vanadium dioxide particles.
  • the total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
  • thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0.
  • the mass ratio value (P 1 / P 2 ) is in the range of 1.0 to 5.0.
  • Water-soluble resin and hydrophobic resin are considered to function as a binder for the optical functional layer.
  • the water-soluble resin interacts with the vanadium dioxide particles to suppress the aggregation of the particles and stabilize the dispersion, and the hydrophobic resin reduces the water absorption of the resin. It is done.
  • the optical functional layer has a mass ratio value (P 1 / P 2 ) between the water-soluble resin (P 1 ) and the hydrophobic resin (P 2 ) of less than 0.3, the water resistance is good. In addition, it is difficult to stably disperse the vanadium dioxide particles in the thermochromic film, which is not preferable in that the vanadium dioxide particles aggregate and haze increases. On the other hand, when the value of this ratio exceeds 10.0, when the humidity is increased, the hygroscopicity of the thermochromic film is increased, the thermochromic property is deteriorated, and the durability is inferior.
  • the hydrophobic resin refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. in 100 g of water, more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
  • hydrophobic resin examples include olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); (meth) acrylic resin; vinyl chloride, chlorinated vinyl resin, etc. Halogen-containing polymers; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.
  • olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); (meth) acrylic resin; vinyl chloride, chlorinated vinyl resin, etc.
  • Halogen-containing polymers such as polystyrene, styrene-methyl
  • Polyester such as nylon 6, nylon 66, nylon 610; polyacetal; polycarbonate; urethane resin; polyphenylene oxide; polyphenylene sulfide; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile-butadiene-styrene resin) or ASA resin (acrylonitrile-styrene-acrylate resin) blended with polybutadiene rubber and acrylic rubber; Cellulose Resin; butyral resin and the like.
  • ABS resin acrylonitrile-butadiene-styrene resin
  • ASA resin acrylonitrile-styrene-acrylate resin
  • the urethane resin and the (meth) acrylic resin are effective in that the optical functional layer can be given flexibility in addition to the improvement of wet heat durability, and further has an effect of improving the adhesion to the substrate.
  • a urethane resin is particularly preferable.
  • Urethane resin is a general term for polymers having a urethane bond in the main chain, and is usually obtained by reaction of polyisocyanate and polyol.
  • the polyisocyanate include TDI (toluene diisocyanate), MDI (diphenylmethane diisocyanate), NDI (naphthalene diisocyanate), TODI (tolidine diisocyanate), HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), and the like.
  • the polyol include ethylene glycol, propylene glycol, glycerin and hexanetriol.
  • the isocyanate used in the present invention a polymer obtained by subjecting a polyurethane polymer obtained by the reaction of polyisocyanate and polyol to a chain extension treatment to increase the molecular weight can also be used.
  • the polyisocyanate, polyol, and chain extension treatment described above are described in, for example, “Polyurethane Handbook” (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1987).
  • the (meth) acrylic resin is a polymer composed of an acrylic or methacrylic polymerizable monomer. These may be either a homopolymer or a copolymer. Also included are copolymers of these polymers with other polymers. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included.
  • Hydrophobic resin and ease of formation of the optical functional layer, to uniformly disperse the VO 2 particles in the optical function layer, and in consideration of the homogeneity of such water-soluble resin and a hydrophobic resin, an aqueous emulsion state It is preferable to use what was supplied in (3) with a water-soluble resin.
  • the resin in the state of an aqueous emulsion may be resin fine particles obtained by keeping an oil-soluble monomer in an emulsion state in an aqueous solution containing a dispersant and emulsion polymerization using a polymerization initiator.
  • dispersant used in the polymerization of the emulsion resin generally, in addition to a low molecular weight dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxy
  • a low molecular weight dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxy
  • polymer dispersants such as ethylene nonyl phenyl ether, polyethylene ethylene laurate ether, hydroxyethyl cellulose, and polyvinyl pyrrolidone.
  • Examples of the aqueous emulsion of urethane resin include R-600 (active ingredient concentration: 33%, anionic) in NeoRez (registered trademark) series manufactured by DSM NeoResins + , UW-1005-E manufactured by Ube Industries, Ltd. (Active ingredient concentration: 29.8% by mass), UW-5002 (Active ingredient concentration: 27.9% by mass), UW-5034-E (Active ingredient concentration: 29.8% by mass), UW-5101 (Active ingredient concentration) : 30% by mass), UW-5502 (active ingredient concentration: 29.9% by mass), and the like. Two or more of these may be used in combination.
  • the water-soluble resin refers to a resin that dissolves 1.0 g or more with respect to 100 g of water at 25 ° C.
  • water-soluble resin examples include gelatin, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, cellulose sulfate, dextrin, dextran, dextran sulfate and other sugar derivatives, Naturally derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer Or acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methyl Styrene-Ak Styrene acrylic acid resin such as sulf
  • a water-soluble resin as defined above can be selected. However, it interacts with VO 2 particles, and is particularly water-soluble because it can stably disperse VO 2 particles during coating and drying to prevent aggregation.
  • a resin containing a resin having gelatin or an amide group is preferable.
  • Resin having an amide group examples include polyvinyl acetamide, polyacrylamide, and a polymer of a monomer having an amide group. Copolymerized products with other types of monomers can also be used, and it is also possible to copolymerize with monomers such as acrylic acid and polyvinyl alcohol.
  • any monomer having an amide group can be used as the monomer having an amide group.
  • examples thereof include N-vinylacetamide, Nn-butoxymethylacrylamide, N-isobutoxymethylacrylamide, and N-methoxymethylacrylamide.
  • the resin having an amide group is preferably polyvinyl acetamide or polyacrylamide.
  • Polyvinylacetamide and polyacrylamide have higher molecular weight and better film elongation and fracture properties, and higher resistance to blowing unevenness during drying. Therefore, the weight average molecular weight may be 100,000 or more and 1,000,000 or less. preferable.
  • the resin having an amide group is polyvinyl acetamide. Suitable examples include GE191-103 (manufactured by Showa Denko).
  • the molecular weight of the resin is a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and is a value measured as follows. That is, using an apparatus “HLC-8120GPC” (manufactured by Tosoh Corporation) and a column “TSKguardcolumn + TSKgelSuperHZ-M3 series” (manufactured by Tosoh Corporation), while maintaining the column temperature at 40 ° C., tetrahydrofuran (THF) was used as a carrier solvent at a flow rate of 0.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the sample to be measured (non-crystalline resin) was dissolved in tetrahydrofuran so as to have a concentration of 1 mg / mL under a dissolution condition in which the measurement sample (noncrystalline resin) was treated for 5 minutes using an ultrasonic disperser at room temperature.
  • a sample solution is obtained by processing with a 2 ⁇ m membrane filter, and 10 ⁇ L of this sample solution is injected into the apparatus together with the carrier solvent, detected using a refractive index detector (RI detector), and the molecular weight distribution of the measurement sample.
  • RI detector refractive index detector
  • a calibration curve measured using monodisperse polystyrene standard particles Is used to calculate. Ten polystyrenes are used for calibration curve measurement.
  • gelatin As the gelatin applicable to the present invention, various gelatins that have been widely used in the field of silver halide photographic light-sensitive materials can be applied. For example, in addition to acid-processed gelatin and alkali-processed gelatin, production of gelatin is possible. Enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the process, that is, modified by treatment with a reagent that has an amino group, imino group, hydroxy group, carboxy group as a functional group in the molecule and a group obtained by reaction with it. You may have done. The general method for producing gelatin is well known and is described, for example, in T.W. H. James: The Theory of Photographic Process 4th. ed.
  • a gelatin hardener can be added to the coating solution.
  • the optical functional layer preferably contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000.
  • the molecular weight is 100 or more, the activity is high and the effect as a stabilizer for vanadium dioxide particles is enhanced. Moreover, if molecular weight is 10,000 or less, it will interact with several vanadium dioxide particles, and a favorable stabilization effect will be acquired.
  • any nitrogen-containing compound may be used as long as the molecular weight is within the above range, and it is preferable that the nitrogen atom contributes to the adsorptivity to the surface of the vanadium dioxide particles.
  • nitrogen-containing compounds include compounds having substituents such as amino groups, imide groups, oxazoline groups, carbodiimide groups, aziridine groups, isocyanate groups, thioisocyanate groups, amide groups, benzimidazole compounds, and imidazole compounds. Illustrated.
  • the content of the nitrogen-containing compound is preferably in the range of 1 to 30% by mass with respect to the total mass of the optical functional layer, from the viewpoint that the thermochromic film obtains good thermochromic properties.
  • the nitrogen-containing compound preferably has at least one cationic group as an adsorbing group adsorbed on the surface of the vanadium dioxide particles.
  • the cationic group is easily adsorbed on the surface of the vanadium dioxide particles, and the nitrogen-containing compound and vanadium dioxide are extremely easily interacted with each other.
  • the cationic group refers to a cationic group or a group that can be derived from a cationic group, such as an amino group (—NH), a monoalkylamino group such as a methylamino group or an ethylamino group, a dimethylamino group or a diethylamino group.
  • Examples thereof include a dialkylamino group, an imino group, a guanidino group, and an imide group.
  • the amino group may be (—NH 3 + ) in which a proton is coordinated.
  • a nitrogen atom containing silane coupling agent can also be used suitably, and a diamine silane coupling agent and a diisocyanate group containing silane coupling agent can be used.
  • Examples of commercially available products that can be used include KBM-603 and KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • polyvalent amines are preferably used.
  • dicyclohexylmethanediamine, isophoronediamine, 4,4′-diphenylmethanediamine, diaminoethane, 1,2- or 1,3- Diaminopropane, 1,2- or 1,3- or 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, piperazine, N, N'-bis- (2-aminoethyl) piperazine Bis- (4-aminocyclohexyl) methane, bis- (4-amino-3-butylcyclohexyl) methane, 1,2-, 1,3- and 1,4-diaminocyclohexane, norbornenediamine, hydrazine, adipic acid diacid Hydrazine or the like can be used alone or in combination of two or more.
  • polyethyleneimine etc. can be used
  • the adsorptive group is preferably an amino group, a monoalkylamino group or a dialkylamino group. Furthermore, when the availability of the nitrogen-containing compound is taken into consideration, the nitrogen-containing compound is more preferably one having an amino group.
  • the carbodiimide referred to in the present invention includes a compound having a plurality of carbodiimide structures in the molecule (hereinafter also referred to as “carbodiimide compound”).
  • carbodiimide compound any compound having a plurality of carbodiimide groups in the molecule can be used without particular limitation.
  • Polycarbodiimide is usually synthesized by condensation reaction of organic diisocyanate.
  • the organic group of the organic diisocyanate used for the synthesis of the compound having a plurality of carbodiimide structures in the molecule is not particularly limited, either aromatic, aliphatic, or a mixture thereof can be used.
  • An aliphatic system is particularly preferred from the viewpoint of reactivity.
  • organic isocyanate organic diisocyanate, organic triisocyanate, etc.
  • organic isocyanates aromatic isocyanates, aliphatic isocyanates, and mixtures thereof can be used.
  • 4,4'-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane Diisocyanate, xylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,3-phenylene diisocyanate, etc. are used.
  • organic monoisocyanates isophorone isocyanate, phenyl isocyanate are used. Cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like are used.
  • carbodiimide compound used in the present invention for example, carbodilite V-02-L2, V-02, V-04 (manufactured by Nisshinbo Chemical Co., Ltd.) and the like are commercially available.
  • examples of the benzimidazole compound preferably used in the present invention include benzimidazole, 5-methylbenzimidazole, 2-aminobenzimidazole, 5,6-dimethylbenzimidazole, 1-methylbenzimidazole, 2-methylbenzoic acid.
  • examples include imidazole, 2- (methylthio) benzimidazole, 2-mercaptobenzimidazole, 5-benzimidazolecarboxylic acid, and 5-amino-2-mercaptobenzimidazole. Of these, 5-amino-2-mercaptobenzimidazole, 2-methylbenzimidazole, 5-methylbenzimidazole and the like are preferable.
  • benzimidazole compounds may be used alone or in combination of two or more.
  • the imidazole compound used as the nitrogen-containing compound is a compound having an imidazole skeleton.
  • Examples of the imidazole compound preferably used in the present invention include 1-methylimidazole, 1-butylimidazole, 2-methylimidazole, 2-ethylimidazole, 1-methyl-4-phenylimidazole, 4-methyl-2-phenyl.
  • Examples include imidazole, 2-aminoimidazole, 2-mercapto-1-methylimidazole, 2-ethyl-4-methylimidazole, 4-imidazolecarboxylic acid and the like. Of these, 1-methylimidazole, 2-aminoimidazole, 2-mercapto-1-methylimidazole, 2-ethyl-4-methylimidazole, 4-imidazolecarboxylic acid and the like are preferable.
  • the above imidazole compounds may be used alone or in combination of two or more.
  • Examples of the material having an amide group include low molecular weight polyacrylamide and polyacetamide. Since these have a low molecular weight, they do not hold as binders for coating films, but they can be adsorbed on fine particles to improve dispersibility and stability.
  • the optical functional layer according to the present invention preferably contains an organometallic compound.
  • an organometallic compound By including an organometallic compound in the optical functional layer, it is considered that the organometallic compound adsorbs to the vanadium dioxide particles and effectively blocks moisture and oxygen from entering the optical functional layer, thereby further improving wet heat durability. Can do.
  • the addition amount is preferably in the range of 1 to 30% by mass with respect to the total mass of the optical functional layer.
  • organometallic compounds used in the present invention are preferably organotin compounds, organoiron compounds, organozinc compounds, organosilane compounds, organotitanium compounds, organozirconium compounds, and organobismuth compounds.
  • organotin compounds include dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetoacetonate, tin octylate, tin naphthenate, tin laurate and tin ferzatic acid, and dibutyltin oxide and phthalate.
  • organotin compounds include dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetoacetonate, tin octylate, tin naphthenate, tin laurate and tin ferzatic acid, and dibutyltin oxide and phthalate.
  • examples include a reaction product with an acid ester.
  • organic iron compound and the organic zinc compound examples include tris (acetylacetonato) iron, tris (2,2,6,6-tetramethyl-3,5-heptanedionate) iron, and tris (tetrafluoroacetylacetonate).
  • Iron bis (acetylacetonato) zinc, bis (2,2,6,6-tetramethyl-3,5-heptanedionate) zinc, bis (tetrafluoroacetylacetonato) zinc and the like.
  • organic silane compound examples include, for example, methyltriethoxysilane, trimethylethoxysilane, methyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltrimethoxysilane, n-butyltrimethoxysilane, and n-butyl.
  • Examples of the organic titanium compound include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetramethoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, and titanium.
  • Examples thereof include lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, titanate such as tetrabutyl titanate and tetrapropyl titanate, and titanium tetraacetylacetonate.
  • Examples of the organic zirconium compound include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n-butoxide, zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium di Examples thereof include methacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate), zirconium tetraacetylacetonate and the like.
  • organic bismuth compound examples include bismuth-tris (neodecanoate), bismuth-tris (2-ethylhexoate), and bismuth octylate.
  • the organometallic compound is preferably an organotitanium compound, an organosilane compound, and an organozirconium compound, and more preferably an organotitanium compound.
  • optical additives for optical functional layer Various additives that can be applied to the optical functional layer used in the present invention as long as the effects of the present invention are not impaired are listed below.
  • nonionic surfactants JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266.
  • Optical brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc.
  • Lubricants such as tylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption Examples include various known additives such as agents, dyes, and pigments.
  • VO 2 produced by any method can be applied.
  • a dispersant can be added to VO 2 produced by any method and prepared as a dispersion in an aqueous system.
  • the addition amount of the dispersing agent is preferably in the range of 0.1 to 1.0% by mass.
  • water-based dispersants in addition to low molecular weight dispersants such as alkyl sulfonates, alkyl benzene sulfonates, diethylamine, ethylenediamine, quaternary ammonium salts, polyoxyethylene nonylphenyl ether, polyexethylene lauryl
  • examples include acid ether, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyethylene glycol, hydroxyethyl cellulose, and silane coupling agents, and polyvinyl pyrrolidone or cellulose resin is particularly preferable.
  • These dispersants without drying the VO 2 particles in the dispersion by using the, as described in the examples can be prepared optically functional layer forming coating liquid.
  • an optical functional layer is formed, thereby containing VO 2 particles having a preferred number average particle size in which the number average particle size of primary particles and secondary particles is less than 500 nm.
  • An optical functional layer can be formed.
  • VO 2 particles if necessary, particles such as fine TiO 2 that becomes the core of particle growth are added as nucleus particles, and the VO 2 particles are produced by growing the nucleus particles. You can also.
  • the water-soluble resin binder As the resin binder, after prepared as an aqueous dispersion containing the aforementioned VO 2 particles, without drying the VO 2 particles of the aqueous dispersion, VO 2 particles separated It is preferable to prepare a coating solution for forming an optical functional layer by mixing a water-soluble resin solution and an aqueous emulsion containing a hydrophobic resin in a dispersed state.
  • a substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A).
  • the solution (A) may be an aqueous solution in which the substance (I) is dissolved in water, or may be a suspension in which the substance (I) is dispersed in water.
  • the substance (I) examples include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. .
  • the substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
  • the solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal particles.
  • the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
  • thermochromic properties of the vanadium dioxide particles in particular, the transition temperature can be controlled.
  • this solution (A) may further contain a substance (III) having oxidizing property or reducing property.
  • the substance (III) include hydrogen peroxide (H 2 O 2 ).
  • hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • single crystal particles containing vanadium dioxide (VO 2 ) are obtained.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By increasing the time, the particle diameter and the like of the obtained single crystal particles can be controlled. However, if the processing time is excessively long, the energy consumption increases.
  • the surface of the obtained vanadium dioxide particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide particles is protected, and surface-modified single crystal particles can be obtained.
  • the surface of the vanadium dioxide particles is coated with the resin binder according to the present invention having a glass transition temperature of 65 ° C. or lower.
  • the “coating” referred to in the present invention may be a state where the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide particles, or a part of the particle surface is covered with the resin. It may be in a state. Preferably, a state where 50% or more of the total area of the particle surface is covered is good, and a state where 80% or more is covered is more preferable.
  • VO 2 grinding method There are various methods for making VO 2 into fine particles, but there are various methods such as bead milling, ultrasonic crushing, and high-pressure homogenizer, and any method can be used to produce VO 2 particles.
  • zirconia beads are preferably used from the viewpoint of hardness and price.
  • Impurities such as residues generated in the synthesis process are contained in the dispersion of vanadium dioxide particles prepared by the aqueous synthesis method.
  • these impurities can trigger secondary aggregated particle generation and cause deterioration of the optical functional layer during long-term storage, so it is possible to remove the impurities at the stage of the dispersion. preferable.
  • a method for removing impurities in the aqueous dispersion of vanadium dioxide particles conventionally known means for separating foreign substances and impurities can be applied.
  • the VO 2 particle aqueous dispersion is subjected to centrifugal separation to obtain vanadium dioxide particles. It is possible to remove the impurities in the supernatant, add and disperse the dispersion medium again, or remove the impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation of particles, a method using an ultrafiltration membrane is most preferable.
  • Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
  • thermochromic film of the present invention is a method for manufacturing a thermochromic film producing thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic, hydrophobic resin (P 2)
  • thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties can be produced.
  • the content of vanadium dioxide particles in the coating solution is not particularly limited, but is preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the optical functional layer. Within the range, more preferably within the range of 5 to 30% by mass.
  • the coating solution for forming an optical functional layer contains an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 ), and the mass ratio value (P 1 / P 2 ) is 0.00. It is within the range of 3 to 10.0.
  • the optical functional layer forming coating solution may contain various additives in addition to the binder resin.
  • any additive may be used as long as the effects of the present invention are not impaired.
  • Nonionic surfactants JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, Lubricants and other lubricants, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorption Various known additives such as additives, dyes and pigments can be used.
  • the optical functional layer can be formed on the substrate by applying the prepared coating solution for forming the optical functional layer on the substrate and subjecting it to a drying treatment or a curing treatment as necessary. . In this way, a thermochromic film can be produced.
  • thermochromic film including a base material and an optical functional layer is manufactured.
  • the optical functional layer is used as a basis. It is good also as what manufactures the thermochromic film which peels from a material and consists only of an optical function layer. Moreover, it is good also as what manufactures a thermochromic film by bonding the optical function layer peeled from the base material to another base material.
  • thermochromic film of the present invention preferably includes a step of subjecting the applied optical functional layer to a high temperature and high humidity treatment in addition to the step of applying the optical functional layer forming coating solution.
  • the vanadium dioxide particles are separated from the substrate in the thickness direction of the optical functional layer by phase separation of the water-soluble resin and the hydrophobic resin with respect to the thickness n of the optical functional layer.
  • the n / 2 lower layer has a higher structure than the upper layer, prevents the influence of moisture and oxygen, can improve long-term wet heat durability, and allows moisture and oxygen to enter the optical functional layer from the outside. An effect of efficiently blocking intrusion can be expressed. For this reason, it is possible to prevent the thermochromic film from being discolored in a high-temperature and high-humidity environment and from being deteriorated in thermochromic properties.
  • it is preferable that 70% by mass or more of the vanadium dioxide particles is unevenly distributed in a range of n / 2 in the thickness direction of the optical functional layer with respect to the thickness n of the optical functional layer.
  • Such high-temperature and high-humidity treatment can be performed by known heating means and humidifying means.
  • the treatment temperature is preferably 50 to 90 ° C., more preferably 60 to 80 ° C.
  • the treatment time is 10 to 48 hours, more preferably 10 to 24 hours, although it depends on the treatment temperature.
  • the relative humidity is preferably 80 to 95%, more preferably 85 to 90%.
  • the wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
  • Whether 70% by mass or more of the vanadium dioxide particles are unevenly distributed can be detected by analyzing the element concentration with a field emission electron microscope.
  • thermochromic film Measurement of vanadium dioxide-containing grain content in the direction of the thickness of the optical functional layer.
  • JEM2001F field emission electron microscope
  • EDX JED-2300T manufactured by JEOL
  • an ultrathin section of a thermochromic film was obtained with an acceleration voltage of 200 KV, a beam diameter of 1.0 nm, and a thickness of the thermochromic film.
  • 90 seconds are integrated per location, and the ratio of the number of atoms of each element is obtained from the mass of each element obtained at each measurement point.
  • the vanadium element concentration distribution curve was obtained with respect to the thickness (n) direction of the optical function layer.
  • the base material (transparent base material) applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. From the viewpoint of process suitability, it is preferably a transparent resin film. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the transparent substrate is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, for example, when producing a laminated glass, Followability to the curved glass surface is improved.
  • the transparent substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a stretched film is more preferable when the laminated glass provided with the thermochromic film of the present invention is used as an automobile windshield.
  • the transparent substrate preferably has a thermal shrinkage rate in the range of 0.1 to 3.0% at a temperature of 150 ° C., The content is more preferably in the range of 1.5 to 3.0%, and further preferably in the range of 1.9 to 2.7%.
  • thermochromic film of the present invention examples include a polyolefin film (eg, polyethylene, polypropylene, etc.), a polyester film (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), a polyvinyl chloride, a triacetyl cellulose film, etc. And preferably a polyester film or a triacetyl cellulose film.
  • the polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components.
  • the main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • diol component examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like.
  • polyesters having these as main components from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred.
  • polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
  • particles When using a transparent resin film as a transparent substrate, in order to facilitate handling, particles may be included within a range that does not impair transparency.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together.
  • additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
  • the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., more preferably the treatment temperature is in the range of 100 to 180 ° C.
  • the relaxation rate is preferably within a range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is within a range of 2 to 6%.
  • the relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • the transparent resin film is preferably coated with an undercoat layer coating solution inline on one or both sides during the film formation process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • thermochromic film of the present invention in addition to the optical functional layer, a near infrared light shielding layer having a function of shielding at least part of the light wavelength range within the range of 700 to 1000 nm may be provided. .
  • JP 2012-131130 A JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A.
  • thermochromic film of this invention it can be used as a thermochromic composite body provided with the thermochromic film as a component.
  • a laminated glass can be formed by sandwiching a thermochromic film-glass composite formed by laminating a thermochromic film and glass or a pair of glass constituent members with glass.
  • Thermochromic film-glass composite and laminated glass can be used for various applications. For example, it can be used for automobiles, railway vehicles, airplanes, ships and buildings.
  • Laminated glass can be used for other purposes.
  • the laminated glass is preferably laminated glass for buildings or vehicles.
  • the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
  • the glass member examples include inorganic glass and organic glass (resin glazing).
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • the organic glass (resin glazing) examples include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
  • thermochromic composite composed of a thermochromic film support including glass and a thermochromic film.
  • thermochromic film of the present invention When the thermochromic film of the present invention is attached to a window glass or the like, spraying water on the window and attaching the thermochromic film adhesive layer to the wet glass surface, the so-called water application method has been repositioned and repositioned. Etc. Therefore, it is possible to use an acrylic pressure-sensitive adhesive that has a weak adhesive force in the presence of water.
  • the acrylic pressure-sensitive adhesive used may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable.
  • the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water
  • the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycid
  • This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made.
  • additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made.
  • an ultraviolet absorber is also effective for suppressing deterioration of the thermochromic film due to ultraviolet rays.
  • the thickness of the adhesive layer is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. Conversely, if the thickness is 100 ⁇ m or less, not only the transparency of the thermochromic film is improved, but also after the thermochromic film is attached to the window glass, it does not cause cohesive failure between the adhesive layers when peeled off, and adheres to the glass surface. There is a tendency that there is no remaining agent.
  • additives can be added to the pressure-sensitive adhesive, and preferably an ultraviolet absorber and an antioxidant can be contained.
  • thermochromic film (Preparation of Thermochromic Film 1] (Preparation of VO 2 particle aqueous dispersion 1) Purified water 425 mL, vanadium particles (VO 2, manufactured by Shinko Kagaku) dioxide 74.9g were mixed and 300 ⁇ m zirconia beads for the bead mill using 200 g, using an Apex mill (manufactured by Kotobuki Industries Co., Ltd.), and milling, A VO 2 particle aqueous dispersion was prepared.
  • VO 2 particle aqueous dispersion 1 (solvent: water, 3%) as solid content 9.3 parts by mass Polyvinylacetamide (GE191-103, Showa Denko KK) as solid content 60.5 parts by mass Hydrophobic resin: UW-1005E ( Aqueous urethane emulsion (manufactured by Ube Industries) 30.2 parts by mass as solids (formation of optical functional layer)
  • UW-1005E Aqueous urethane emulsion (manufactured by Ube Industries) 30.2 parts by mass as solids (formation of optical functional layer)
  • the optical function layer forming coating solution 1 prepared above has a layer thickness after drying. Wet application was carried out under the condition of 1.5 ⁇ m, and then hot air of 90 ° C. was blown for 1 minute to dry to form an optical functional layer, whereby a thermochromic film 1 was produced.
  • thermochromic film 1 was prepared in the same manner as in the thermochromic film 1 except that GE191-053 (manufactured by Showa Denko KK) was used instead of GE191-103.
  • thermochromic film 3 The thermochromic film 1 was prepared in the same manner except that the polymer set 305 (polyacrylamide, manufactured by Arakawa Chemical Co., Ltd.) was used instead of the GE191-103.
  • thermochromic film 4 was prepared in the same manner as in the thermochromic film 1 except that G-1419 (gelatin, manufactured by Nitta Gelatin Co., Ltd.) was used instead of GE191-103.
  • thermochromic film 5 A thermochromic film 5 was produced in the same manner as in the thermochromic film 1 except that EG-40 (polyvinyl alcohol, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of GE191-103.
  • EG-40 polyvinyl alcohol, manufactured by Nippon Synthetic Chemical Co., Ltd.
  • thermochromic film 6 The thermochromic film 1 was prepared in the same manner except that the vinyl 6502 (acrylic emulsion, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of the UW-1005E.
  • thermochromic film 7 was prepared in the same manner as in the thermochromic film 1 except that 5 parts by mass of KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a nitrogen-containing compound.
  • thermochromic film 8 A thermochromic film 8 was prepared in the same manner as in the thermochromic film 7 except that 5 parts by mass of V-02-L2 (Nisshinbo Chemical Co., Ltd.) was added as a nitrogen-containing compound.
  • thermochromic film 9 was prepared in the same manner as in the thermochromic film 7 except that 5 parts by mass of GE191-108 (polyvinylacetamide, Showa Denko) was added as a nitrogen-containing compound.
  • thermochromic film 7 In the thermochromic film 7, it produced similarly except having changed the hydrophobic resin into 201.7 mass parts, and produced the thermochromic film 10. FIG.
  • thermochromic film 7 In the thermochromic film 7, it produced similarly except having changed hydrophobic resin into 60.5 mass parts, and produced the thermochromic film 11. FIG. 1
  • thermochromic film 7 was produced in the same manner except that the hydrophobic resin was changed to 12.1 parts by mass, and the thermochromic film 12 was produced.
  • thermochromic film 7 was prepared in the same manner except that the hydrophobic resin was changed to 6.1 parts by mass, and the thermochromic film 13 was prepared.
  • VO 2 particle aqueous dispersion 1 (solvent: water, 3%) 9.3 parts by mass as a solid content
  • Polyvinylacetamide (GE191-103, 5% by Showa Denko KK) 90.7 parts by mass as a solid content 50 ⁇ m in thickness
  • the layer thickness after drying of the coating liquid 1 for forming an optical functional layer prepared above is 1.5 ⁇ m.
  • Wet application was performed under the conditions, followed by drying by blowing warm air of 90 ° C. for 1 minute to form an optical functional layer, thereby producing a thermochromic film 14.
  • thermochromic film 14 was produced in the same manner except that EG-40 was used instead of GE191-103, and the thermochromic film 15 was produced.
  • thermochromic film 16 was produced in the same manner as in the thermochromic film 14 except that an aqueous urethane emulsion UW-1005E was used instead of GE191-103.
  • thermochromic film 17 was prepared in the same manner except that the thermochromic film 1 was mixed so that 83.7 parts by mass of GE191-103 and 7.0 parts by mass of UW-1005E were mixed.
  • thermochromic film 18 was prepared in the same manner except that the thermochromic film 1 was mixed so that GE191-103 was 15.2 parts by mass and UW-1005E was 75.6 parts by mass.
  • thermochromic film 19 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of KBE-803 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added as an organometallic compound.
  • thermochromic film 20 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of TC-400 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
  • thermochromic film 21 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of TC-500 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
  • thermochromic film 22 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of ZC-300 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
  • thermochromic film 23 Example
  • KR44 made by Ajinomoto Fine-Techno
  • thermochromic Film 24 Examples
  • PNVA Polyvinylacetamide GE191-103: (weight average molecular weight 900000 manufactured by Showa Denko KK) GE191-053: (weight average molecular weight 1500,000, Showa Denko) Polymer set 305: polyacrylamide (Arakawa Chemical Co., Ltd., weight average molecular weight 200000) G-1419: Gelatin (weight average molecular weight 150,000 manufactured by Nitta Gelatin) PVA: Polyvinyl alcohol EG-40: (Nippon Synthetic Chemical Co., Ltd.
  • UW-1005E Aqueous urethane emulsion (manufactured by Ube Industries)
  • Mobile 6502 (Acrylic emulsion, Nippon Synthetic Chemical Co., Ltd.)
  • KBE-903 (Molecular weight 221 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • V-02-L2 (Nisshinbo Chemical Co., Ltd.
  • weight average molecular weight 3000 GE191-108: (weight average molecular weight 30000 manufactured by Showa Denko KK) KBE-803: ⁇ -mercaptopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • TC-400 Titanium triethanolamate (Matsumoto Fine Chemical)
  • TC-500 Titanium diethanolaminate (Matsumoto Fine Chemical)
  • ZC-300 Zirconium lactate ammonium salt (manufactured by Matsumoto Fine Chemical)
  • KR44 isopropyl tri (N-aminoethyl-aminoethyl) titanate (manufactured by Ajinomoto Fine Techno)
  • Table 1 the weight average molecular weight of the polymer and the molecular weight of the compound are both shown as molecular weight.
  • thermochromic film ⁇ Evaluation of thermochromic film>
  • the thermochromic films 1 to 24 produced above were evaluated for water resistance and haze after a wet heat test as infrared light transmittance and wet heat durability. Further, the visible light transmittance difference and the color difference were also evaluated as wet heat durability.
  • thermochromic properties The wavelength at 1500 nm was measured using a spectrophotometer V-670 (manufactured by JASCO Corporation). Moreover, the transmittance
  • thermochromic film affixed to the glass before being put in an environment of 85 ° C. and 85% RH and after standing in an environment of 85 ° C.
  • the difference in visible light transmittance and color difference was calculated and given the following rank.
  • the visible light transmittance was calculated according to JIS-A5759_6.3 by measuring a wavelength of 380 to 780 nm using a spectrophotometer (V-670). A smaller change in visible light transmittance difference and color difference is preferable because of good wet heat durability.
  • thermochromic film of the present invention is superior in terms of transmittance difference (thermochromic properties), haze, and water resistance before and after standing at 85 ° C. and 85% RH for 10 days. I understood that. Furthermore, it was found that the visible light transmittance difference and the color difference were excellent before and after standing at 85 ° C. and 85% RH for 20 days.
  • thermochromic films 14 and 15 comparative examples
  • the initial haze is low, but since the binder is made of only a water-soluble resin, there is no water resistance, and the transmittance difference after 85 ° C. and 85% RH (thermochromic) Property) and haze is high.
  • thermochromic film 16 is made of only a hydrophobic resin, VO 2 aggregated during drying and the initial haze increased.
  • thermochromic film 17 since there were few hydrophobic resins with respect to water-soluble resin, it was a result with insufficient water resistance and 85 degreeC85% RH tolerance.
  • the amount of hydrophobic resin is larger than that of the water-soluble resin, the initial haze is increased.
  • the initial haze is generally small, and it is considered that the amide group-containing resin suppressed aggregation of VO 2 .
  • the nitrogen-containing compound or organometallic compound in the present invention is added to these, the wet heat durability is remarkably improved.
  • the urethane emulsion has better haze and water resistance than the acrylic emulsion, and the urethane emulsion is more effective.
  • polyvinylacetamide (PNVA) or gelatin having a urethane bond is more useful as the water-soluble resin.
  • thermochromic film 24 obtained by pasting a film made of the thermochromic film 7 on a glass and treating it at 60 ° C. and 90% RH for 2 days at a high temperature and high humidity
  • the field emission described above is the cross section before the wet heat test. More than 70% of VO 2 particles were observed in type electron microscope, to the film of n thermochromic film was found to be unevenly distributed in the range of n / 2 in the thickness direction from the base side.
  • thermochromic films are a transparent adhesive sheet (LUCIACS CS9621T, manufactured by Nitto Denko Corporation) with a size of 15 mm ⁇ 20 cm of a 1.3 mm thick glass plate (manufactured by Matsunami Glass Industrial Co., Ltd., “Slide Glass White Edge Polish”). Were bonded together to produce a thermochromic film-glass composite, which was confirmed to exhibit good thermochromic properties.
  • LUCIACS CS9621T manufactured by Nitto Denko Corporation
  • thermochromic film containing vanadium dioxide particles which exhibits excellent thermochromic properties and excellent durability, and a thermochromic film provided with the thermochromic film as a constituent element. -It was confirmed that a glass composite could be produced.
  • thermochromic film of the present invention has excellent wet heat durability and can be used as a thermochromic composite including the thermochromic film as a constituent element.
  • a laminated glass can be formed by sandwiching a thermochromic film-glass composite formed by laminating a thermochromic film and glass or a pair of glass constituent members with glass.
  • Thermochromic film-glass composite and laminated glass can be used for various applications. For example, it can be used for automobiles, railway vehicles, airplanes, ships and buildings.
  • Thermochromic film 1
  • Transparent base material (base material) 3
  • Optical functional layer 4
  • Near-infrared light shielding layer B1 Resin binder VO S primary particle VO M secondary particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention addresses the problem of providing: a thermochromic film having excellent moist heat durability; a thermochromic film/glass composite obtained by laminating said film; and a method for producing a thermochromic film. The thermochromic film according to the present invention has an optically functional layer that contains vanadium dioxide particles exhibiting thermochromism, the thermochromic film being characterized in that: the optically functional layer contains a water-soluble resin (P1) and a hydrophobic resin (P2); and the value of the mass ratio between the two resins (P1/P2) falls within a range of 0.3-10.0.

Description

サーモクロミックフィルム、その製造方法及びサーモクロミックフィルム-ガラス複合体Thermochromic film, method for producing the same, and thermochromic film-glass composite
 本発明は、サーモクロミックフィルム、サーモクロミックフィルム-ガラス複合体及びサーモクロミックフィルムの製造方法に関する。より詳しくは、本発明は、優れた湿熱耐久性を有するサーモクロミックフィルム、それを積層してなるサーモクロミックフィルム-ガラス複合体及びサーモクロミックフィルムの製造方法に関する。 The present invention relates to a thermochromic film, a thermochromic film-glass composite, and a method for producing a thermochromic film. More specifically, the present invention relates to a thermochromic film having excellent wet heat durability, a thermochromic film-glass composite formed by laminating the thermochromic film, and a method for producing a thermochromic film.
 近年、車窓から入り込む太陽光の影響によって人肌で感じる暑さを低減するため、高い断熱性又は遮熱性を備えた合わせガラスが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、合わせガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。近赤外光遮蔽フィルムは、車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。 In recent years, in order to reduce the heat felt by human skin due to the influence of sunlight entering from the car window, laminated glass with high heat insulation or heat shielding properties has been distributed on the market. Recently, with the spread of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to laminated glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle. The near-infrared light shielding film can be applied to a vehicle body or a window glass of a building to reduce a load on a cooling facility such as an air conditioner in the vehicle, and is an effective means for energy saving.
 このような近赤外光遮蔽フィルムとしては、赤外線吸収性物質としてITO(インジウム・スズ酸化物)などの導電体を含む光学フィルムが開示されている。また、特許文献1には、赤外線反射層と赤外線吸収層とを有する機能性プラスチックフィルムを含む近赤外光遮蔽フィルムが開示されている。 As such a near infrared light shielding film, an optical film containing a conductor such as ITO (indium tin oxide) as an infrared absorbing substance is disclosed. Patent Document 1 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
 さらに、特許文献2では、低屈折率層と高屈折率層とを交互に多数積層させた反射層積層体を有し、当該各屈折率層の層厚を調整することにより、近赤外光を選択的に反射する近赤外光遮蔽フィルムが提案されている。 Furthermore, Patent Document 2 has a reflection layer laminate in which a large number of low refractive index layers and high refractive index layers are alternately laminated, and by adjusting the layer thickness of each refractive index layer, near infrared light can be obtained. A near-infrared light shielding film that selectively reflects light has been proposed.
 このような構成の近赤外光遮蔽フィルムは、太陽光の照度が高い赤道近傍の低緯度地帯では、その高い近赤外光遮蔽効果により、好ましく利用されている。しかしながら、中緯度~高緯度地帯の冬場においては、逆に、太陽光をできるだけ車内や室内に取り込みたい場合にも、一律に入射光線を遮蔽してしまうという問題がある。 The near-infrared light shielding film having such a configuration is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high. However, in winter in the mid-latitude to high-latitude zones, conversely, there is a problem that incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
 また、このような問題に対し、近赤外光の遮蔽や透過の光学的性質を温度により制御するサーモクロミック材料を適用する方法の検討がなされている。その代表的な材料として、二酸化バナジウム(以下、「VO」ともいう。)が挙げられる。VOは、50~60℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。 In order to solve such a problem, a method of applying a thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature has been studied. A typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”). VO 2 is known to undergo a phase transition in a temperature range of about 50 to 60 ° C. and exhibit thermochromic properties.
 VOは水分散状態で高いサーモクロミック性とナノ粒子状態を維持することができる。これはVOが相転移とともに結晶構造が変化し、高温側ではその体積が増大すること、また、表面の酸化状態や結晶性の高さがクロミック性に関与しているためと考えられている。しかし、大気中の水分と酸素によってVOの酸化や結晶構造の変化が促進されることが知られており、VO粒子を含有するサーモクロミックフィルムでは、時間経過とともにサーモクロミック性が低下することが問題となっている。 VO 2 can maintain a high thermochromic property and a nanoparticle state in an aqueous dispersion state. This is thought to be due to the fact that the crystal structure of VO 2 changes with the phase transition, the volume increases on the high temperature side, and the oxidation state and high crystallinity of the surface are involved in chromic properties. . However, it is known that the oxidation of VO 2 and the change of the crystal structure are promoted by moisture and oxygen in the atmosphere, and in the thermochromic film containing VO 2 particles, the thermochromic property decreases with time. Is a problem.
 例えば、特許文献3ではシランカップリング剤及び長鎖アルキル樹脂でVOを保護し、バインダーとして重合体エマルジョンを使用することが報告されている。 For example, Patent Document 3 reports that VO 2 is protected with a silane coupling agent and a long-chain alkyl resin, and a polymer emulsion is used as a binder.
 しかし、本発明者がこれらの保護されたVO粒子を含有するサーモクロミックフィルムを作製し、湿熱耐久性についての耐久性試験を行ったところ、耐久性が不十分であることが分かった。 However, when the inventor produced a thermochromic film containing these protected VO 2 particles and conducted a durability test on wet heat durability, it was found that the durability was insufficient.
特開2010-222233号公報JP 2010-222233 A 国際公開第2013/065679号International Publication No. 2013/065679 特表2015-513508号公報Special table 2015-513508 gazette
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、優れた湿熱耐久性を有するサーモクロミックフィルム、それを積層してなるサーモクロミックフィルム-ガラス複合体及びサーモクロミックフィルムの製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and circumstances, and the problem to be solved is a thermochromic film having excellent wet heat durability, a thermochromic film-glass composite formed by laminating it, and a thermochromic film. It is to provide a manufacturing method.
 本発明者は、上記課題を解決すべく検討した結果、サーモクロミックフィルムの二酸化バナジウム粒子を含有する光学機能層が、バインダーとして水溶性樹脂と疎水性樹脂を特定の範囲内の比率で含有することで、優れた湿熱耐久性を示すサーモクロミックフィルムが得られることを見いだし、本発明に至った。 As a result of studying to solve the above-mentioned problems, the present inventors have found that the optical functional layer containing vanadium dioxide particles of a thermochromic film contains a water-soluble resin and a hydrophobic resin as a binder in a ratio within a specific range. Thus, it was found that a thermochromic film exhibiting excellent wet heat durability was obtained, and the present invention was achieved.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であることを特徴とするサーモクロミックフィルム。 1. A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, wherein the optical functional layer contains a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and A thermochromic film having a mass ratio value (P 1 / P 2 ) in the range of 0.3 to 10.0.
 2.前記疎水性樹脂として、ウレタン樹脂を含有することを特徴とする第1項に記載のサーモクロミックフィルム。 2. 2. The thermochromic film according to item 1, which contains a urethane resin as the hydrophobic resin.
 3.前記水溶性樹脂として、アミド基を有する樹脂を含有することを特徴とする第1項又は第2項に記載のサーモクロミックフィルム。 3. 3. The thermochromic film according to item 1 or 2, which contains a resin having an amide group as the water-soluble resin.
 4.前記アミド基を有する樹脂が、ポリビニルアセトアミドであることを特徴とする第3項に記載のサーモクロミックフィルム。 4. 4. The thermochromic film according to item 3, wherein the resin having an amide group is polyvinyl acetamide.
 5.前記水溶性樹脂として、ゼラチンを含有することを特徴とする第1項から第4項までのいずれか一項に記載のサーモクロミックフィルム。 5. The thermochromic film according to any one of Items 1 to 4, wherein the water-soluble resin contains gelatin.
 6.前記光学機能層が、分子量100~10000の範囲内である窒素含有化合物を含有することを特徴とする第1項から第5項までのいずれか一項に記載のサーモクロミックフィルム。 6. The thermochromic film according to any one of items 1 to 5, wherein the optical functional layer contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000.
 7.サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層に、有機金属化合物を含有することを特徴とするサーモクロミックフィルム。 7). A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, wherein the optical functional layer contains a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and A thermochromic film having a mass ratio value (P 1 / P 2 ) in a range of 0.3 to 10.0 and containing an organometallic compound in the optical functional layer.
 8.前記有機金属化合物が、有機シラン化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれることを特徴とする第7項に記載のサーモクロミックフィルム。 8. The thermochromic film according to item 7, wherein the organometallic compound is selected from an organosilane compound, an organotitanium compound, and an organozirconium compound.
 9.サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を基材上に有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層の厚さnに対して、前記二酸化バナジウム粒子の70質量%以上が、前記基材側からn/2の範囲に偏在することを特徴とするサーモクロミックフィルム。 9. A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties on a substrate, wherein the optical functional layer comprises a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ). And the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and 70% by mass of the vanadium dioxide particles with respect to the thickness n of the optical functional layer. The above is unevenly distributed in the range of n / 2 from the base material side.
 10.第1項から第6項までのいずれか一項に記載のサーモクロミックフィルムとガラスとが積層してなることを特徴とするサーモクロミックフィルム-ガラス複合体。 10. A thermochromic film-glass composite comprising the thermochromic film according to any one of items 1 to 6 and glass laminated.
 11.サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内である光学機能層形成用塗布液を塗布する工程を有することを特徴とするサーモクロミックフィルムの製造方法。 11. A method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 )), and a step of applying a coating solution for forming an optical functional layer whose mass ratio value (P 1 / P 2 ) is within a range of 0.3 to 10.0. A method for producing a thermochromic film.
 12.サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有する光学機能層形成用塗布液を塗布する工程と、光学機能層を高温高湿処理する工程を有するサーモクロミックフィルムの製造方法。 12 A method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 ) The manufacturing method of the thermochromic film which has the process of apply | coating the coating liquid for optical function layer formation containing, and the process of carrying out high-temperature high-humidity processing of an optical function layer.
 本発明の上記手段により、優れた湿熱耐久性を有するサーモクロミックフィルム、それを積層してなるサーモクロミックフィルム-ガラス複合体及びサーモクロミックフィルムの製造方法を提供することができる。 By the above means of the present invention, a thermochromic film having excellent wet heat durability, a thermochromic film-glass composite formed by laminating the thermochromic film, and a method for producing a thermochromic film can be provided.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のサーモクロミックフィルムの光学機能層には、二酸化バナジウム粒子とともに水溶性樹脂と疎水性樹脂を含有している。これらは、光学機能層のバインダーとして機能すると考えられる。水溶性樹脂が、二酸化バナジウム粒子と相互作用することによって、粒子の凝集を抑制し分散を安定化させ、疎水性樹脂により樹脂の吸水性を低下したために光学機能層の安定性が向上したと考えられる。また、高温高湿処理することにより光学機能層の厚さnに対して、樹脂の相分離により、二酸化バナジウム粒子が基材上から光学機能層の厚さ方向でn/2の下層の方が上層よりも多い構成になり、水分や酸素からの影響を防止し、長期的な湿熱耐久性を向上させることができ、加えて外部から光学機能層への水分や酸素の侵入を効率的に遮断する効果を発現させることにより、高温高湿環境下での変色やサーモクロミック性の低下を防止することができたと推測している。さらに有機金属化合物を含有することで、有機金属化合物が二酸化バナジウム粒子と吸着し光学機能層への水分や酸素の侵入を効率的に遮断し同様の効果が得られたと推測している。このような形態にすることによって、高いサーモクロミック性が長期間保持されたサーモクロミックフィルムを作製することができると推定される。 The optical functional layer of the thermochromic film of the present invention contains a water-soluble resin and a hydrophobic resin together with vanadium dioxide particles. These are considered to function as a binder of the optical functional layer. The water-soluble resin interacts with the vanadium dioxide particles to suppress the aggregation of the particles and stabilize the dispersion, and the hydrophobic resin reduces the water absorption of the resin. It is done. In addition, by performing high-temperature and high-humidity treatment, the thickness n of the optical functional layer is reduced by the phase separation of the resin so that the vanadium dioxide particles are lower than n / 2 in the thickness direction of the optical functional layer from the base material. The structure is higher than that of the upper layer, preventing the influence of moisture and oxygen, improving long-term wet heat durability, and effectively blocking moisture and oxygen from entering the optical functional layer from the outside. It is presumed that discoloration and thermochromic deterioration in a high temperature and high humidity environment could be prevented by expressing the effect of this. Further, it is presumed that by containing the organometallic compound, the organometallic compound adsorbs with the vanadium dioxide particles and effectively blocks the intrusion of moisture and oxygen into the optical functional layer, thereby obtaining the same effect. By adopting such a form, it is presumed that a thermochromic film in which high thermochromic properties are maintained for a long time can be produced.
本発明のサーモクロミックフィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the thermochromic film of the present invention 本発明のサーモクロミックフィルムの構成の他の一例を示す概略断面図Schematic sectional view showing another example of the configuration of the thermochromic film of the present invention
 本発明のサーモクロミックフィルムは、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であることを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。 The thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0. This feature is a technical feature common to the claimed invention.
 本発明の実施態様としては、前記疎水性樹脂として、ウレタン樹脂を含有することが湿熱耐久性の向上に加えて光学機能層に柔軟性を付与することができ、さらに基材との密着性を向上させる効果を有する点で好ましい。 As an embodiment of the present invention, as the hydrophobic resin, in addition to the improvement of wet heat durability, it is possible to impart flexibility to the optical functional layer by containing a urethane resin, and to further improve the adhesion to the substrate. It is preferable at the point which has the effect to improve.
 また、VO粒子と相互作用し、特に塗布乾燥時におけるVO粒子を安定に分散させ凝集を防止できる点で、前記水溶性樹脂として、アミド基を有する樹脂を含有することが好ましい。さらに、前記アミド基を有する樹脂が、ポリビニルアセトアミドであることが、より好ましい。 Moreover, VO 2 and particles interact, in that it can prevent was stably dispersed agglomerate the VO 2 particles especially during coating and drying, as the water-soluble resin preferably contains a resin having an amide group. Furthermore, it is more preferable that the resin having an amide group is polyvinyl acetamide.
 前記水溶性樹脂として、ゼラチンを含有することが、VO粒子と相互作用し、特に塗布乾燥時におけるVO粒子を安定に分散させ凝集を防止できる観点から好ましい。 As the water-soluble resin, it is preferable that gelatin is contained from the viewpoint of interacting with the VO 2 particles, and particularly capable of stably dispersing the VO 2 particles during coating and drying and preventing aggregation.
 また、前記光学機能層が、分子量100~10000の範囲内である窒素含有化合物を含有することが、VO粒子表面と相互作用し、VO粒子を疎水性にし、湿熱耐久性を向上させる効果を有することから好ましい。 In addition, when the optical functional layer contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000, it has an effect of interacting with the VO 2 particle surface, making the VO 2 particle hydrophobic, and improving wet heat durability. Is preferable.
 さらに、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層に、有機金属化合物を含有することが、光学機能層への水分や酸素の侵入を効率的に遮断することから好ましい。 Moreover, a thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic, wherein the optical functional layer contains a water-soluble resin (P 1) and the hydrophobic resin (P 2) The mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and the optical functional layer contains an organometallic compound, This is preferable because it effectively blocks oxygen from entering.
 前記有機金属化合物が、有機シラン化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれることが好ましい。 It is preferable that the organometallic compound is selected from an organosilane compound, an organotitanium compound, and an organozirconium compound.
 また、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を基材上に有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層の膜厚nに対して、前記二酸化バナジウム粒子の70質量%以上が、前記基材側からn/2の範囲に偏在することが湿熱耐久性を向上させる観点から好ましい。 Moreover, a thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic on a substrate, wherein the optical functional layer is a water-soluble resin (P 1) and the hydrophobic resin (P 2) The mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and the vanadium dioxide particles have a thickness of 70 with respect to the film thickness n of the optical functional layer. It is preferable from the viewpoint of improving the wet heat durability that the mass% or more is unevenly distributed in the range of n / 2 from the substrate side.
 本発明のサーモクロミックフィルムは、当該サーモクロミックフィルムとガラスとが積層してなるサーモクロミックフィルム-ガラス複合体に好適に用いることができる。 The thermochromic film of the present invention can be suitably used for a thermochromic film-glass composite formed by laminating the thermochromic film and glass.
 本発明のサーモクロミックフィルムの製造方法としては、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内である光学機能層形成用塗布液を塗布する工程を有する態様であることが好ましい。 The method for producing a thermochromic film of the present invention is a method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, and comprising a hydrophobic resin (P 2 ) Containing an aqueous emulsion and a water-soluble resin (P 1 ), and the mass ratio value (P 1 / P 2 ) is within the range of 0.3 to 10.0. It is preferable that it is an aspect which has the process of apply | coating a coating liquid.
 さらに、本発明のサーモクロミックフィルムの製造方法としては、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有する光学機能層形成用塗布液を塗布する工程と、高温高湿条件を加える工程を有する態様であることが好ましい。 Furthermore, the method for producing a thermochromic film of the present invention is a method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising a hydrophobic resin ( a step of applying an optical functional layer forming coating liquid containing an aqueous emulsion and the water-soluble resin containing P 2) (P 1), is preferably a mode having a step of adding a high temperature and high humidity conditions.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《サーモクロミックフィルム》
 本発明のサーモクロミックフィルムは、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であることを特徴とする。
《Thermochromic film》
The thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0.
 本発明のサーモクロミックフィルムの代表的な構成例について、図を参照して説明する。 A typical configuration example of the thermochromic film of the present invention will be described with reference to the drawings.
 本発明のサーモクロミックフィルムの好ましい態様の一つは、透明基材上に、光学機能層が形成されている構成である。 One of the preferable embodiments of the thermochromic film of the present invention is a configuration in which an optical functional layer is formed on a transparent substrate.
 図1は、本発明で規定する二酸化バナジウム粒子と水溶性樹脂と疎水性樹脂とを含有する光学機能層を有するサーモクロミックフィルムの基本的な構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a thermochromic film having an optical functional layer containing vanadium dioxide particles, a water-soluble resin, and a hydrophobic resin defined in the present invention.
 図1に示すサーモクロミックフィルム1は、透明基材2上に、光学機能層3を積層した構成を有している。この光学機能層3は、光学機能層に含有される水溶性樹脂と疎水性樹脂とからなる樹脂バインダーB1中に、二酸化バナジウム粒子が分散された状態で存在している。この二酸化バナジウム粒子には、二酸化バナジウム粒子が独立して存在している二酸化バナジウムの一次粒子VOと、2個以上の二酸化バナジウム粒子の集合体(凝集体ともいう)を構成している、VOの二次粒子VOが存在している。本発明では、2個以上の二酸化バナジウム粒子の集合体を総括して二次粒子と称し、二次粒子凝集体、又は二次凝集粒子ともいう。 A thermochromic film 1 shown in FIG. 1 has a configuration in which an optical functional layer 3 is laminated on a transparent substrate 2. The optical functional layer 3 is present in a state where vanadium dioxide particles are dispersed in a resin binder B1 made of a water-soluble resin and a hydrophobic resin contained in the optical functional layer. This is vanadium dioxide particles, constitute the primary particles VO S of vanadium dioxide vanadium dioxide particles are present independently, an aggregate of two or more vanadium dioxide particles (also called aggregates), VO 2 of secondary particles VO M is present. In the present invention, an aggregate of two or more vanadium dioxide particles is collectively referred to as secondary particles, and is also referred to as secondary particle aggregates or secondary aggregate particles.
 本発明においては、光学機能層3中におけるVO粒子の一次粒子VO及び二次粒子VOの全粒子による数平均粒子径が、500nm未満であることが好ましい。 In the present invention, the number average particle diameter measured by the total particles of the primary particles VO S and secondary particles VO M of VO 2 particles in the optical function layer 3 is preferably less than 500 nm.
 光学機能層中におけるVO粒子の上記数平均粒子径は、下記の方法に従って求めることができる。 The number average particle diameter of the VO 2 particles in the optical functional layer can be determined according to the following method.
 本発明のサーモクロミックフィルムの好ましい態様の他の一つは、光学機能層が樹脂基材を兼ねたハイブリッド構成である。 Another preferred embodiment of the thermochromic film of the present invention is a hybrid structure in which the optical functional layer also serves as a resin base material.
 図2は、本発明のサーモクロミックフィルム1の基本的な構成の他の一例を示す概略断面図であり、図1で示した透明基材2と光学機能層3が積層され、さらに、透明基材2の光学機能層3が積層された側と反対側に近赤外光遮蔽層4が積層されて構成されている。このように、本発明のサーモクロミックフィルムにおいては、近赤外光遮蔽層4を有する構成としてもよい。近赤外光遮蔽層4としては、例えば、700~1000nmの波長範囲内の光の少なくとも一部を遮蔽する機能を有する層を用いることができる。 FIG. 2 is a schematic cross-sectional view showing another example of the basic configuration of the thermochromic film 1 of the present invention, in which the transparent substrate 2 and the optical functional layer 3 shown in FIG. The near infrared light shielding layer 4 is laminated on the side opposite to the side on which the optical functional layer 3 of the material 2 is laminated. Thus, in the thermochromic film of this invention, it is good also as a structure which has the near-infrared-light shielding layer 4. FIG. As the near-infrared light shielding layer 4, for example, a layer having a function of shielding at least part of light within a wavelength range of 700 to 1000 nm can be used.
 また、サーモクロミックフィルム1の構成としては、透明基材2と光学機能層3を同一層で構成されているハイブリッド光学機能層(2+3)とし、透明基材を構成している樹脂として、光学機能層に含有される樹脂バインダーを用い、当該樹脂バインダー中に、VO粒子が上記VOの一次粒子VOと、二酸化バナジウム粒子の上記二次粒子VOが分散されて、単層で透明基材を兼ね備えた光学機能層を形成してもよい。 Moreover, as a structure of the thermochromic film 1, the transparent base material 2 and the optical function layer 3 are made into the hybrid optical function layer (2 + 3) comprised by the same layer, and optical function is used as resin which comprises the transparent base material. using a resin binder contained in the layer, the resin binder, the primary particles VO S of VO 2 particles above VO 2, and the secondary particles VO M of vanadium dioxide particles are dispersed, the transparent base of a single layer You may form the optical function layer which combines a material.
 本発明のサーモクロミックフィルムの光学特性として、JIS R3106-1998で測定される可視光透過率としては、好ましくは20%以上であり、より好ましくは30%以上であり、さらに好ましくは40%以上である。 As the optical characteristics of the thermochromic film of the present invention, the visible light transmittance measured by JIS R3106-1998 is preferably 20% or more, more preferably 30% or more, and further preferably 40% or more. is there.
 〔サーモクロミックフィルムの各構成材料〕
 以下、本発明のサーモクロミックフィルムの構成要素である光学機能層、必要により設ける基材、近赤外光遮蔽層の詳細について説明する。
[Component materials of thermochromic film]
Hereinafter, the details of the optical functional layer, which is a component of the thermochromic film of the present invention, a base material provided if necessary, and the near infrared light shielding layer will be described.
 〔光学機能層〕
 本発明に係る光学機能層は、二酸化バナジウム、水溶性樹脂及び疎水性樹脂を少なくとも含有する。
(Optical function layer)
The optical functional layer according to the present invention contains at least vanadium dioxide, a water-soluble resin, and a hydrophobic resin.
 〔二酸化バナジウム〕
 本発明に係る二酸化バナジウムは、酸化バナジウムの一態様である。酸化バナジウムは自然界において様々な形態をとり、V、H 、HVO 、HVO 2-、VO 3-、VO2+、VO、V3+、V、V2+、V、V等の構造が挙げられる。それぞれの環境雰囲気によってその形態が変化し、一般的には酸性環境下であればV、還元環境下であればVが形成される。そのため、VOは比較的酸化・還元しやすく、周囲の環境によって結晶構造が変化する。
[Vanadium dioxide]
Vanadium dioxide according to the present invention is an embodiment of vanadium oxide. Vanadium oxide takes various forms in nature, including V 2 O 5 , H 3 V 2 O 7 , H 2 VO 4 , HVO 4 2− , VO 4 3− , VO 2+ , VO 2 , V 3+ , V Examples of the structure include 2 O 3 , V 2+ , V 2 O 2 , and V. The form changes depending on each environmental atmosphere. Generally, V 2 O 5 is formed in an acidic environment, and V 2 O 3 is formed in a reducing environment. Therefore, VO 2 is relatively easy to oxidize and reduce, and the crystal structure changes depending on the surrounding environment.
 サーモクロミック性(自動調光性)を示すVOは単斜晶構造で発現するため、本発明で用いるVOは単斜晶である。 Since VO 2 exhibiting thermochromic properties (automatic light control) exhibits a monoclinic structure, VO 2 used in the present invention is a monoclinic crystal.
 〔二酸化バナジウム粒子〕
 本発明に係る二酸化バナジウム粒子の結晶形は、サーモクロミック性を効率よく発現させる観点から、ルチル型のVO粒子(以下、単に、VO粒子ともいう。)を用いることが好ましい。
[Vanadium dioxide particles]
The crystal form of the vanadium dioxide particles according to the present invention is preferably rutile VO 2 particles (hereinafter also simply referred to as VO 2 particles) from the viewpoint of efficiently expressing thermochromic properties.
 ルチル型のVO粒子は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M型とも呼ばれる。本発明に係る二酸化バナジウム粒子においては、目的を損なわない範囲で、A型、又はB型などの他の結晶型のVO粒子を含んでもよい。 Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called M-type. The vanadium dioxide particles according to the present invention may contain VO 2 particles of other crystal types such as A-type or B-type within a range that does not impair the purpose.
 本発明に係るVO粒子は、光学機能層中において一次粒子及び二次粒子の数平均粒子径が500nm未満で分散されて存在していることが好ましい。 The VO 2 particles according to the present invention are preferably present in a state where the number average particle diameter of primary particles and secondary particles is less than 500 nm in the optical functional layer.
 粒子径の測定方法は種々の測定法を適用することができるが、動的光散乱法に従って測定することが好ましい。 Although various measurement methods can be applied to the particle diameter measurement method, measurement is preferably performed according to a dynamic light scattering method.
 本発明に係るVO粒子における一次粒子及び二次粒子の好ましい数平均粒子径は、500nm未満であるが、更に好ましくは1~200nmの範囲内であり、より好ましくは、5~100nmの範囲内であり、最も好ましくは5~60nmの範囲内である。 The preferred number average particle diameter of the primary particles and secondary particles in the VO 2 particles according to the present invention is less than 500 nm, more preferably in the range of 1 to 200 nm, more preferably in the range of 5 to 100 nm. And most preferably in the range of 5 to 60 nm.
 また、VO粒子のアスペクト比としては、1.0~3.0の範囲内であることが好ましい。 The aspect ratio of the VO 2 particles is preferably in the range of 1.0 to 3.0.
 このような特徴をもつVO粒子では、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒子径が十分に小さいので、従来の粒子に比べて、良好なサーモクロミック性を発揮することができる。 The VO 2 particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution. In addition, since the particle diameter of the single crystal is sufficiently small, better thermochromic properties can be exhibited compared to conventional particles.
 本発明に係るVO粒子では、VOの他に、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)からなる群から選定された、少なくとも一つの元素を含んでいても良い。このような元素の添加により、二酸化バナジウム粒子の相転移特性(特に、調光温度)を制御することが可能となる。なお、最終的に得られる二酸化バナジウム粒子に対する、そのような添加物の総量は、バナジウム(V)原子に対して、0.1~5.0原子%程度で十分である。 In the VO 2 particles according to the present invention, in addition to VO 2 , for example, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir ), Osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P). It may contain at least one selected element. By adding such an element, it becomes possible to control the phase transition characteristics (particularly the dimming temperature) of the vanadium dioxide particles. The total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
 〔水溶性樹脂と疎水性樹脂〕
 本発明のサーモクロミックフィルムは、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であることを特徴とする。好ましくは、質量比の値(P/P)は、1.0~5.0の範囲内である。
[Water-soluble resin and hydrophobic resin]
The thermochromic film of the present invention is a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, the optical functional layer comprising a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0. Preferably, the mass ratio value (P 1 / P 2 ) is in the range of 1.0 to 5.0.
 水溶性樹脂と疎水性樹脂は光学機能層のバインダーとして機能すると考えられる。水溶性樹脂が、二酸化バナジウム粒子と相互作用することによって、粒子の凝集を抑制し分散を安定化させ、疎水性樹脂により樹脂の吸水性を低下したために光学機能層の安定性が向上したと考えられる。 Water-soluble resin and hydrophobic resin are considered to function as a binder for the optical functional layer. The water-soluble resin interacts with the vanadium dioxide particles to suppress the aggregation of the particles and stabilize the dispersion, and the hydrophobic resin reduces the water absorption of the resin. It is done.
 光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)との質量比の値(P/P)が、0.3未満のときは、耐水性は良好となるが、二酸化バナジウム粒子をサーモクロミックフィルム中に安定に分散させることが困難であり、二酸化バナジウム粒子が凝集し、ヘイズが上昇する点で好ましくない。また、この比の値が10.0を超えると高湿化においたとき、サーモクロミックフィルムの吸湿性が高くなり、サーモクロミック性が劣化し、耐久性が劣るため好ましくない。 When the optical functional layer has a mass ratio value (P 1 / P 2 ) between the water-soluble resin (P 1 ) and the hydrophobic resin (P 2 ) of less than 0.3, the water resistance is good. In addition, it is difficult to stably disperse the vanadium dioxide particles in the thermochromic film, which is not preferable in that the vanadium dioxide particles aggregate and haze increases. On the other hand, when the value of this ratio exceeds 10.0, when the humidity is increased, the hygroscopicity of the thermochromic film is increased, the thermochromic property is deteriorated, and the durability is inferior.
 〈疎水性樹脂〉
 本発明において疎水性樹脂とは、100gの水に対し、液温25℃での溶解量が1.0g未満である樹脂をいい、更に好ましくは、溶解量が0.5g未満の樹脂であり、更に好ましくは、溶解量が0.25g未満の樹脂である。
<Hydrophobic resin>
In the present invention, the hydrophobic resin refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. in 100 g of water, more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
 疎水性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー;(メタ)アクリル樹脂;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ウレタン樹脂;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)やASA樹脂(アクリロニトリル-スチレン-アクリレート樹脂);セルロース系樹脂;ブチラール系樹脂等が挙げられる。 Examples of the hydrophobic resin include olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); (meth) acrylic resin; vinyl chloride, chlorinated vinyl resin, etc. Halogen-containing polymers; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc. Polyester; Polyamide such as nylon 6, nylon 66, nylon 610; polyacetal; polycarbonate; urethane resin; polyphenylene oxide; polyphenylene sulfide; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile-butadiene-styrene resin) or ASA resin (acrylonitrile-styrene-acrylate resin) blended with polybutadiene rubber and acrylic rubber; Cellulose Resin; butyral resin and the like.
 これらの中では、湿熱耐久性の向上に加えて光学機能層に柔軟性を付与することができ、さらに基材との密着性を向上させる効果を有する点でウレタン樹脂及び(メタ)アクリル樹脂が好ましく、特にウレタン樹脂が好ましい。 Among these, the urethane resin and the (meth) acrylic resin are effective in that the optical functional layer can be given flexibility in addition to the improvement of wet heat durability, and further has an effect of improving the adhesion to the substrate. A urethane resin is particularly preferable.
 〔ウレタン樹脂〕
 ウレタン樹脂は、主鎖にウレタン結合を有するポリマーの総称であり、通常ポリイソシアネートとポリオールの反応によって得られる。ポリイソシアネートとしては、TDI(トルエンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、NDI(ナフタレンジイソシアネート)、TODI(トリジンジイソシアネート)、HDI(ヘキサメチレンジイソシアネート)、IPDI(イソホロンジイソシアネート)等がある。ポリオールとしてはエチレングリコール、プロピレングリコール、グリセリン、ヘキサントリオール等がある。また、本発明に用いられるイソシアネートとしては、ポリイソシアネートとポリオールの反応によって得られたポリウレタンポリマーに鎖延長処理をして分子量を増大させたポリマーも使用することができる。以上に述べたポリイソシアネート、ポリオール、及び鎖延長処理については、例えば「ポリウレタンハンドブック」(岩田敬治編、日刊工業新聞社、昭和62年発行)において記載されている。
[Urethane resin]
Urethane resin is a general term for polymers having a urethane bond in the main chain, and is usually obtained by reaction of polyisocyanate and polyol. Examples of the polyisocyanate include TDI (toluene diisocyanate), MDI (diphenylmethane diisocyanate), NDI (naphthalene diisocyanate), TODI (tolidine diisocyanate), HDI (hexamethylene diisocyanate), IPDI (isophorone diisocyanate), and the like. Examples of the polyol include ethylene glycol, propylene glycol, glycerin and hexanetriol. As the isocyanate used in the present invention, a polymer obtained by subjecting a polyurethane polymer obtained by the reaction of polyisocyanate and polyol to a chain extension treatment to increase the molecular weight can also be used. The polyisocyanate, polyol, and chain extension treatment described above are described in, for example, “Polyurethane Handbook” (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1987).
 〔(メタ)アクリル樹脂〕
 (メタ)アクリル樹脂は、アクリル系、メタアクリル系の重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体いずれでも差し支えない。また、それら重合体と他のポリマーとの共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。または、ポリエステル溶液、又はポリエステル分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。
[(Meth) acrylic resin]
The (meth) acrylic resin is a polymer composed of an acrylic or methacrylic polymerizable monomer. These may be either a homopolymer or a copolymer. Also included are copolymers of these polymers with other polymers. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included.
 疎水性樹脂は、光学機能層の形成の容易性や、光学機能層中にVO粒子を均一に分散させること、及び水溶性樹脂と疎水性樹脂の均質性等を考慮すると、水性エマルションの状態で供給されたものを水溶性樹脂とともに用いることが好ましい。 Hydrophobic resin, and ease of formation of the optical functional layer, to uniformly disperse the VO 2 particles in the optical function layer, and in consideration of the homogeneity of such water-soluble resin and a hydrophobic resin, an aqueous emulsion state It is preferable to use what was supplied in (3) with a water-soluble resin.
 水性エマルションの状態の樹脂としては、油溶性のモノマーを、分散剤を含む水溶液中でエマルジョン状態に保ち、重合開始剤を用いて乳化重合させた樹脂微粒子であることができる。 The resin in the state of an aqueous emulsion may be resin fine particles obtained by keeping an oil-soluble monomer in an emulsion state in an aqueous solution containing a dispersant and emulsion polymerization using a polymerization initiator.
 エマルジョン樹脂の重合時に使用される分散剤としては、一般的には、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。 As the dispersant used in the polymerization of the emulsion resin, generally, in addition to a low molecular weight dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxy Examples thereof include polymer dispersants such as ethylene nonyl phenyl ether, polyethylene ethylene laurate ether, hydroxyethyl cellulose, and polyvinyl pyrrolidone.
 ウレタン樹脂の水性エマルションとしては、例えばDSM NeoResins社製のNeoRez(登録商標)シリーズのうちR-600(有効成分濃度:33%、アニオン性)、宇部興産(株)製のUW-1005-E(有効成分濃度:29.8質量%)、UW-5002(有効成分濃度27.9質量%)、UW-5034-E(有効成分濃度:29.8質量%)、UW-5101(有効成分濃度:30質量%)、UW-5502(有効成分濃度:29.9質量%)等が挙げられる。これらを2種以上混合して用いても良い。 Examples of the aqueous emulsion of urethane resin include R-600 (active ingredient concentration: 33%, anionic) in NeoRez (registered trademark) series manufactured by DSM NeoResins + , UW-1005-E manufactured by Ube Industries, Ltd. (Active ingredient concentration: 29.8% by mass), UW-5002 (Active ingredient concentration: 27.9% by mass), UW-5034-E (Active ingredient concentration: 29.8% by mass), UW-5101 (Active ingredient concentration) : 30% by mass), UW-5502 (active ingredient concentration: 29.9% by mass), and the like. Two or more of these may be used in combination.
 〈水溶性樹脂〉
 本発明において水溶性樹脂とは、25℃における水100gに対し、1.0g以上溶解する樹脂をいう。
<Water-soluble resin>
In the present invention, the water-soluble resin refers to a resin that dissolves 1.0 g or more with respect to 100 g of water at 25 ° C.
 水溶性樹脂としては、例えば、ゼラチン、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等のタンパク質、セルロース類、アルギン酸ソーダ、セルロース硫酸エステル、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体、増粘多糖類等の天然由来素材や、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。 Examples of the water-soluble resin include gelatin, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, cellulose sulfate, dextrin, dextran, dextran sulfate and other sugar derivatives, Naturally derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer Or acrylic resins such as acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methyl Styrene-Ak Styrene acrylic acid resin such as sulfonic acid copolymer or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene-sodium styrenesulfonate copolymer, styrene-2-hydroxyethyl acrylate copolymer Styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer, vinyl naphthalene-maleic acid copolymer And vinyl acetate copolymers such as vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-acrylic acid copolymer, and salts thereof.
 これらの中から、上記で規定した水溶性を有する樹脂を選ぶことができるが、VO粒子と相互作用し、特に塗布乾燥時におけるVO粒子を安定に分散させ凝集を防止できる点で、水溶性樹脂として、ゼラチン又はアミド基を有する樹脂を含有する樹脂であることが好ましい。 Among these, a water-soluble resin as defined above can be selected. However, it interacts with VO 2 particles, and is particularly water-soluble because it can stably disperse VO 2 particles during coating and drying to prevent aggregation. As the conductive resin, a resin containing a resin having gelatin or an amide group is preferable.
 (アミド基を有する樹脂)
 アミド基を有する樹脂は、例えば、ポリビニルアセトアミド、ポリアクリルアミドやアミド基を有するモノマーの重合体が挙げられる。他種類のモノマーとの共重合した物も使用可能で、アクリル酸やポリビニルアルコール等のモノマーと共重合することも可能である。
(Resin having an amide group)
Examples of the resin having an amide group include polyvinyl acetamide, polyacrylamide, and a polymer of a monomer having an amide group. Copolymerized products with other types of monomers can also be used, and it is also possible to copolymerize with monomers such as acrylic acid and polyvinyl alcohol.
 アミド基を有するモノマーとしては、アミド基を含んでいれば使用することができるが、例として、N-ビニルアセトアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、N-メトキシメチルアクリルアミド、N-t-ブチルアクリルアミド、N,N′-メチレンビスアクリルアミド、N,N′-メチレンビスアクリルアミド、N-メトキシメチルメタクリルアミド、N-t-ブチルアクリルアミドスルホン酸及びN-t-ブチルアクリルアミドスルホン酸等が挙げられる。 As the monomer having an amide group, any monomer having an amide group can be used. Examples thereof include N-vinylacetamide, Nn-butoxymethylacrylamide, N-isobutoxymethylacrylamide, and N-methoxymethylacrylamide. Nt-butylacrylamide, N, N'-methylenebisacrylamide, N, N'-methylenebisacrylamide, N-methoxymethylmethacrylamide, Nt-butylacrylamidesulfonic acid and Nt-butylacrylamidesulfonic acid Etc.
 アミド基を有する樹脂は、ポリビニルアセトアミド又はポリアクリルアミドであることが好ましい。ポリビニルアセトアミド及びポリアクリルアミドは、分子量が高い方が膜の伸びや破断物性が良好であり、乾燥時の吹かれムラに対する耐性が高いことから、重量平均分子量は10万以上100万以下であることが好ましい。特に好ましくは、アミド基を有する樹脂は、ポリビニルアセトアミドである。好適な例としては、GE191-103(昭和電工社製)などが挙げられる。 The resin having an amide group is preferably polyvinyl acetamide or polyacrylamide. Polyvinylacetamide and polyacrylamide have higher molecular weight and better film elongation and fracture properties, and higher resistance to blowing unevenness during drying. Therefore, the weight average molecular weight may be 100,000 or more and 1,000,000 or less. preferable. Particularly preferably, the resin having an amide group is polyvinyl acetamide. Suitable examples include GE191-103 (manufactured by Showa Denko).
 樹脂の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される重量平均分子量(Mw)で、以下のようにして測定される値である。すなわち、装置「HLC-8120GPC」(東ソー社製)及びカラム「TSKguardcolumn+TSKgelSuperHZ-M3連」(東ソー社製)を用い、カラム温度を40℃に保持しながら、キャリア溶媒としてテトラヒドロフラン(THF)を流速0.2mL/minで流し、測定試料(非結晶性樹脂)を室温において超音波分散機を用いて5分間処理を行う溶解条件で濃度1mg/mLになるようにテトラヒドロフランに溶解させ、次いで、ポアサイズ0.2μmのメンブランフィルターで処理して試料溶液を得、この試料溶液10μLを上記のキャリア溶媒とともに装置内に注入し、屈折率検出器(RI検出器)を用いて検出し、測定試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて測定した検量線を用いて算出される。検量線測定用のポリスチレンとしては10点用いる。 The molecular weight of the resin is a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and is a value measured as follows. That is, using an apparatus “HLC-8120GPC” (manufactured by Tosoh Corporation) and a column “TSKguardcolumn + TSKgelSuperHZ-M3 series” (manufactured by Tosoh Corporation), while maintaining the column temperature at 40 ° C., tetrahydrofuran (THF) was used as a carrier solvent at a flow rate of 0. The sample to be measured (non-crystalline resin) was dissolved in tetrahydrofuran so as to have a concentration of 1 mg / mL under a dissolution condition in which the measurement sample (noncrystalline resin) was treated for 5 minutes using an ultrasonic disperser at room temperature. A sample solution is obtained by processing with a 2 μm membrane filter, and 10 μL of this sample solution is injected into the apparatus together with the carrier solvent, detected using a refractive index detector (RI detector), and the molecular weight distribution of the measurement sample. A calibration curve measured using monodisperse polystyrene standard particles Is used to calculate. Ten polystyrenes are used for calibration curve measurement.
 (ゼラチン)
 本発明に適用可能なゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを適用することができ、例えば、酸処理ゼラチン、アルカリ処理ゼラチンの他に、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチン及びゼラチン誘導体、すなわち分子中に官能基としてのアミノ基、イミノ基、ヒドロキシ基、カルボキシ基を持ち、それと反応して得る基を持った試薬で処理し改質したものでもよい。ゼラチンの一般的製造法に関しては良く知られており、例えばT.H.James:The Theory of Photographic Process 4th.ed.1977(Macmillan)55項、科学写真便覧(上)72~75項(丸善)、写真工学の基礎-銀塩写真編119~124(コロナ社)等の記載を参考にすることができる。また、リサーチ・ディスクロージャー誌第176巻、No.17643(1978年12月)のIX項に記載されているゼラチンを挙げることができる。)
 ゼラチンの重量平均分子量は、5000~200000のものを用いることができる。
(gelatin)
As the gelatin applicable to the present invention, various gelatins that have been widely used in the field of silver halide photographic light-sensitive materials can be applied. For example, in addition to acid-processed gelatin and alkali-processed gelatin, production of gelatin is possible. Enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the process, that is, modified by treatment with a reagent that has an amino group, imino group, hydroxy group, carboxy group as a functional group in the molecule and a group obtained by reaction with it. You may have done. The general method for producing gelatin is well known and is described, for example, in T.W. H. James: The Theory of Photographic Process 4th. ed. Reference can be made to descriptions such as 1977 (Macmillan), 55, Scientific Photographic Handbook (above), 72-75 (Maruzen), Fundamental of Photographic Engineering-Silver Salt Photography, 119-124 (Corona). Also, Research Disclosure Magazine Vol. 176, No. And gelatin described in Section IX of 17643 (December, 1978). )
Gelatin having a weight average molecular weight of 5,000 to 200,000 can be used.
 また、必要に応じてゼラチンの硬膜剤を塗布液に添加して用いることもできる。 Further, if necessary, a gelatin hardener can be added to the coating solution.
 〔窒素含有化合物〕
 光学機能層には、分子量100~10000の範囲内の窒素含有化合物が含有されていることが好ましい。分子量が100以上あると、活性が高く、二酸化バナジウム粒子の安定剤としての効果が高くなる。また、分子量が10000以下であれば、複数の二酸化バナジウム粒子と相互作用し、良好な安定化効果が得られる。
[Nitrogen-containing compounds]
The optical functional layer preferably contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000. When the molecular weight is 100 or more, the activity is high and the effect as a stabilizer for vanadium dioxide particles is enhanced. Moreover, if molecular weight is 10,000 or less, it will interact with several vanadium dioxide particles, and a favorable stabilization effect will be acquired.
 窒素含有化合物としては、上記のような分子量の範囲内であればいかなる窒素含有化合物を用いてもよく、窒素原子が二酸化バナジウム粒子の表面に対する吸着性に寄与することが好ましい。 As the nitrogen-containing compound, any nitrogen-containing compound may be used as long as the molecular weight is within the above range, and it is preferable that the nitrogen atom contributes to the adsorptivity to the surface of the vanadium dioxide particles.
 窒素含有化合物としては、例えば、アミノ基、イミド基、オキサゾリン基、カルボジイミド基、アジリジン基、イソシアネート基、チオイソシアネート基、アミド基等の置換基を有する化合物、ベンゾイミダゾール系化合物、イミダゾール系化合物等が例示される。 Examples of nitrogen-containing compounds include compounds having substituents such as amino groups, imide groups, oxazoline groups, carbodiimide groups, aziridine groups, isocyanate groups, thioisocyanate groups, amide groups, benzimidazole compounds, and imidazole compounds. Illustrated.
 また、窒素含有化合物の含有量は、サーモクロミックフィルムが良好なサーモクロミック性を得る観点から、光学機能層の全質量に対して、1~30質量%の範囲内であることが好ましい。 In addition, the content of the nitrogen-containing compound is preferably in the range of 1 to 30% by mass with respect to the total mass of the optical functional layer, from the viewpoint that the thermochromic film obtains good thermochromic properties.
 窒素含有化合物は、二酸化バナジウム粒子の表面に吸着する吸着基として、カチオン性基を少なくとも一つ以上有していることが好ましい。カチオン性基は、二酸化バナジウム粒子の表面に吸着しやすく、窒素含有化合物と、二酸化バナジウムとを極めて相互作用させやすくなる。カチオン性基とは、カチオン基又はカチオン基に誘導され得る基をいい、例えば、アミノ基(-NH)、メチルアミノ基やエチルアミノ基等のモノアルキルアミノ基、ジメチルアミノ基やジエチルアミノ基等のジアルキルアミノ基、イミノ基、グアニジノ基、イミド基等が挙げられる。なお、アミノ基は、プロトンが配位結合した(-NH )であってもよい。また窒素原子含有シランカップリング剤も好適に使用することができ、ジアミンシランカップリング剤やジイソシアネート基含有シランカップリング剤を使用することができる。市販品としては、例えばKBM-603やKBE-903(信越化学工業社製)等を用いることができる。 The nitrogen-containing compound preferably has at least one cationic group as an adsorbing group adsorbed on the surface of the vanadium dioxide particles. The cationic group is easily adsorbed on the surface of the vanadium dioxide particles, and the nitrogen-containing compound and vanadium dioxide are extremely easily interacted with each other. The cationic group refers to a cationic group or a group that can be derived from a cationic group, such as an amino group (—NH), a monoalkylamino group such as a methylamino group or an ethylamino group, a dimethylamino group or a diethylamino group. Examples thereof include a dialkylamino group, an imino group, a guanidino group, and an imide group. The amino group may be (—NH 3 + ) in which a proton is coordinated. Moreover, a nitrogen atom containing silane coupling agent can also be used suitably, and a diamine silane coupling agent and a diisocyanate group containing silane coupling agent can be used. Examples of commercially available products that can be used include KBM-603 and KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 アミノ基を有する化合物としては、多価アミン類を用いることが好ましく、例えば、ジアミンとして、ジシクロヘキシルメタンジアミン、イソホロンジアミン、4,4′-ジフェニルメタンジアミン、ジアミノエタン、1,2-又は1,3-ジアミノプロパン、1,2-又は1,3-又は1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、ピペラジン、N,N′-ビス-(2-アミノエチル)ピペラジン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(4-アミノ-3-ブチルシクロヘキシル)メタン、1,2-、1,3-及び1,4-ジアミノシクロヘキサン、ノルボルネンジアミン、ヒドラジン、アジピン酸ジヒドラジン等を単独又は2種以上併用して使用できる。また、ポリアミン系化合物として、ポリエチレンイミン等を使用でき、市販品としては、例えば、エポミンSP-012(株式会社日本触媒製)等を用いることができる。 As the compound having an amino group, polyvalent amines are preferably used. For example, dicyclohexylmethanediamine, isophoronediamine, 4,4′-diphenylmethanediamine, diaminoethane, 1,2- or 1,3- Diaminopropane, 1,2- or 1,3- or 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, piperazine, N, N'-bis- (2-aminoethyl) piperazine Bis- (4-aminocyclohexyl) methane, bis- (4-amino-3-butylcyclohexyl) methane, 1,2-, 1,3- and 1,4-diaminocyclohexane, norbornenediamine, hydrazine, adipic acid diacid Hydrazine or the like can be used alone or in combination of two or more. Moreover, polyethyleneimine etc. can be used as a polyamine type compound, and Epomin SP-012 (made by Nippon Shokubai Co., Ltd.) etc. can be used as a commercial item, for example.
 上記の中でも、吸着基はアミノ基、モノアルキルアミノ基又はジアルキルアミノ基であることが好ましい。さらに、窒素含有化合物の入手容易性等を考慮すると、窒素含有化合物は、アミノ基を有するものであることがより好ましい。 Among the above, the adsorptive group is preferably an amino group, a monoalkylamino group or a dialkylamino group. Furthermore, when the availability of the nitrogen-containing compound is taken into consideration, the nitrogen-containing compound is more preferably one having an amino group.
 本発明でいう、カルボジイミドとは、分子内にカルボジイミド構造を複数個有する化合物(以下「カルボジイミド系化合物」ともいう。)が含まれる。カルボジイミド系化合物としては、分子内に複数のカルボジイミド基を有する化合物であれば、特に制限なく使用することができる。 The carbodiimide referred to in the present invention includes a compound having a plurality of carbodiimide structures in the molecule (hereinafter also referred to as “carbodiimide compound”). As the carbodiimide compound, any compound having a plurality of carbodiimide groups in the molecule can be used without particular limitation.
 ポリカルボジイミドは、通常、有機ジイソシアネートの縮合反応により合成される。ここで分子内にカルボジイミド構造を複数有する化合物の合成に用いられる有機ジイソシアネートの有機基は特に限定されず、芳香族系、脂肪族系のいずれか、又はそれらの混合系も使用可能であるが、反応性の観点から脂肪族系が特に好ましい。 Polycarbodiimide is usually synthesized by condensation reaction of organic diisocyanate. Here, the organic group of the organic diisocyanate used for the synthesis of the compound having a plurality of carbodiimide structures in the molecule is not particularly limited, either aromatic, aliphatic, or a mixture thereof can be used. An aliphatic system is particularly preferred from the viewpoint of reactivity.
 合成原料としては、有機イソシアネート、有機ジイソシアネート、有機トリイソシアネート等が使用される。有機イソシアネートの例としては、芳香族イソシアネート、脂肪族イソシアネート、及び、それらの混合物が使用可能である。 As the synthetic raw material, organic isocyanate, organic diisocyanate, organic triisocyanate, etc. are used. As examples of organic isocyanates, aromatic isocyanates, aliphatic isocyanates, and mixtures thereof can be used.
 具体的には、4,4′-ジフェニルメタンジイソシアネート、4,4-ジフェニルジメチルメタンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、キシリレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、1,3-フェニレンジイソシアネート等が用いられ、また、有機モノイソシアネートとしては、イソホロンイソシアネート、フェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が使用される。 Specifically, 4,4'-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane Diisocyanate, xylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,3-phenylene diisocyanate, etc. are used. As organic monoisocyanates, isophorone isocyanate, phenyl isocyanate are used. Cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like are used.
 また、本発明に用いるカルボジイミド系化合物は、例えば、カルボジライトV-02-L2、V-02、V-04(日清紡ケミカル(株)製)などが市販品として入手可能である。 As the carbodiimide compound used in the present invention, for example, carbodilite V-02-L2, V-02, V-04 (manufactured by Nisshinbo Chemical Co., Ltd.) and the like are commercially available.
 さらに、本発明において好ましく用いられるベンゾイミダゾール系化合物としては、例えば、ベンゾイミダゾール、5-メチルベンゾイミダゾール、2-アミノベンゾイミダゾール、5,6-ジメチルベンゾイミダゾール、1-メチルベンゾイミダゾール、2-メチルベンゾイミダゾール、2-(メチルチオ)ベンゾイミダゾール、2-メルカプトベンゾイミダゾール、5-ベンゾイミダゾールカルボン酸、5-アミノ-2-メルカプトベンゾイミダゾール等が挙げられる。中でも、5-アミノ-2-メルカプトベンゾイミダゾール、2-メチルベンゾイミダゾール、5-メチルベンゾイミダゾールなどが好ましい。 Further, examples of the benzimidazole compound preferably used in the present invention include benzimidazole, 5-methylbenzimidazole, 2-aminobenzimidazole, 5,6-dimethylbenzimidazole, 1-methylbenzimidazole, 2-methylbenzoic acid. Examples include imidazole, 2- (methylthio) benzimidazole, 2-mercaptobenzimidazole, 5-benzimidazolecarboxylic acid, and 5-amino-2-mercaptobenzimidazole. Of these, 5-amino-2-mercaptobenzimidazole, 2-methylbenzimidazole, 5-methylbenzimidazole and the like are preferable.
 上記ベンゾイミダゾール系化合物は1種単独で使用してもよいし、2種以上を併用してもよい。 The above benzimidazole compounds may be used alone or in combination of two or more.
 本発明において、窒素含有化合物として用いられるイミダゾール系化合物は、イミダゾール骨格を有する化合物である。 In the present invention, the imidazole compound used as the nitrogen-containing compound is a compound having an imidazole skeleton.
 本発明において好ましく用いられるイミダゾール系化合物としては、例えば、1-メチルイミダゾール、1-ブチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、1-メチル-4-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、2-アミノイミダゾール、2-メルカプト-1-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-イミダゾールカルボン酸等が挙げられる。中でも、1-メチルイミダゾール、2-アミノイミダゾール、2-メルカプト-1-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-イミダゾールカルボン酸などが好ましい。 Examples of the imidazole compound preferably used in the present invention include 1-methylimidazole, 1-butylimidazole, 2-methylimidazole, 2-ethylimidazole, 1-methyl-4-phenylimidazole, 4-methyl-2-phenyl. Examples include imidazole, 2-aminoimidazole, 2-mercapto-1-methylimidazole, 2-ethyl-4-methylimidazole, 4-imidazolecarboxylic acid and the like. Of these, 1-methylimidazole, 2-aminoimidazole, 2-mercapto-1-methylimidazole, 2-ethyl-4-methylimidazole, 4-imidazolecarboxylic acid and the like are preferable.
 上記イミダゾール系化合物は1種単独で使用してもよいし、2種以上を併用してもよい。 The above imidazole compounds may be used alone or in combination of two or more.
 アミド基を有する材料として、低分子量のポリアクリルアミドやポリアセトアミドが挙げられる。これらは低分子量であるため、塗膜のバインダーとしては成り立たないが、微粒子に吸着し、分散性や安定性を向上させることができる。 Examples of the material having an amide group include low molecular weight polyacrylamide and polyacetamide. Since these have a low molecular weight, they do not hold as binders for coating films, but they can be adsorbed on fine particles to improve dispersibility and stability.
 〔有機金属化合物〕
 本発明に係る光学機能層に有機金属化合物を含有することが好ましい。有機金属化合物を光学機能層に含有させることにより、有機金属化合物が二酸化バナジウム粒子と吸着し光学機能層への水分や酸素の侵入を効率的に遮断すると考えられ、湿熱耐久性をより向上させることができる。添加量は、光学機能層の全質量に対して、1~30質量%の範囲内であることが好ましい。
[Organic metal compound]
The optical functional layer according to the present invention preferably contains an organometallic compound. By including an organometallic compound in the optical functional layer, it is considered that the organometallic compound adsorbs to the vanadium dioxide particles and effectively blocks moisture and oxygen from entering the optical functional layer, thereby further improving wet heat durability. Can do. The addition amount is preferably in the range of 1 to 30% by mass with respect to the total mass of the optical functional layer.
 本発明に用いられる有機金属化合物としては、有機スズ化合物、有機鉄化合物、有機亜鉛化合物、有機シラン化合物、有機チタン化合物、有機ジルコニウム化合物及び有機ビスマス化合物であることが好ましい。 The organometallic compounds used in the present invention are preferably organotin compounds, organoiron compounds, organozinc compounds, organosilane compounds, organotitanium compounds, organozirconium compounds, and organobismuth compounds.
 有機スズ化合物としては、ジブチルスズジラウレート、ジブチルスズマレエート、ジブチルスズジアセテート、ジブチルスズジアセトアセトナート、オクチル酸スズ、ナフテン酸スズ、ラウリン酸スズ及びフェルザチック酸スズ等のスズカルボン酸塩、並びにジブチルスズオキサイドとフタル酸エステルとの反応物等が挙げられる。 Examples of organotin compounds include dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetoacetonate, tin octylate, tin naphthenate, tin laurate and tin ferzatic acid, and dibutyltin oxide and phthalate. Examples include a reaction product with an acid ester.
 有機鉄化合物及び有機亜鉛化合物としては、例えば、トリス(アセチルアセトナート)鉄、トリス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)鉄、トリス(テトラフルオロアセチルアセトナート)鉄、ビス(アセチルアセトナート)亜鉛、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)亜鉛、ビス(テトラフルオロアセチルアセトナート)亜鉛等が挙げられる。 Examples of the organic iron compound and the organic zinc compound include tris (acetylacetonato) iron, tris (2,2,6,6-tetramethyl-3,5-heptanedionate) iron, and tris (tetrafluoroacetylacetonate). ) Iron, bis (acetylacetonato) zinc, bis (2,2,6,6-tetramethyl-3,5-heptanedionate) zinc, bis (tetrafluoroacetylacetonato) zinc and the like.
 有機シラン化合物の具体例としては、例えばメチルトリエトキシシラン、トリメチルエトキシシラン、メチルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルトリメトキシシラン、n-ブチルトリメトキシシラン、n-ブチルメチルジメトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリエトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン、オクチルトリメトキシシラン、デシルトリエトキシシラン、デシルトリエトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジメトキシシランなどが挙げられる。 Specific examples of the organic silane compound include, for example, methyltriethoxysilane, trimethylethoxysilane, methyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltrimethoxysilane, n-butyltrimethoxysilane, and n-butyl. Methyldimethoxysilane, n-butyltrimethoxysilane, isobutyltriethoxysilane, isobutyltrimethoxysilane, hexyltriethoxysilane, hexylmethyldimethoxysilane, hexyltrimethoxysilane, octyltriethoxysilane, octyltrimethoxysilane, decyltriethoxysilane , Decyltriethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldi Tokishishiran and the like.
 有機チタン化合物としては、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート、テトラブチルチタネート及びテトラプロピルチタネート等のチタン酸エステル、並びにチタンテトラアセチルアセトナート等が挙げられる。 Examples of the organic titanium compound include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetramethoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, and titanium. Examples thereof include lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, titanate such as tetrabutyl titanate and tetrapropyl titanate, and titanium tetraacetylacetonate.
 有機ジルコニウム化合物としては、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジブトキシジルコニウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナート等が挙げられる。 Examples of the organic zirconium compound include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n-butoxide, zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium di Examples thereof include methacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate), zirconium tetraacetylacetonate and the like.
 有機ビスマス化合物としては、ビスマス-トリス(ネオデカノエート)、ビスマス-トリス(2-エチルヘキソエート)及びオクチル酸ビスマス等が挙げられる。 Examples of the organic bismuth compound include bismuth-tris (neodecanoate), bismuth-tris (2-ethylhexoate), and bismuth octylate.
 これらの中では、有機金属化合物は、有機チタン化合物、有機シラン化合物及び有機ジルコニウム化合物であることが好ましく、さらに有機チタン化合物であることが好ましい。 Of these, the organometallic compound is preferably an organotitanium compound, an organosilane compound, and an organozirconium compound, and more preferably an organotitanium compound.
 〔光学機能層のその他の添加剤〕
 本発明に用いられる光学機能層に、本発明の目的とする効果を損なわない範囲で適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
[Other additives for optical functional layer]
Various additives that can be applied to the optical functional layer used in the present invention as long as the effects of the present invention are not impaired are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, and JP-A-57-87989. , JP-A-60-127785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266. Optical brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc. Lubricants such as tylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption Examples include various known additives such as agents, dyes, and pigments.
 (二酸化バナジウム粒子水系分散液の製造方法)
 一般に、二酸化バナジウム粒子の合成方法は、固相法により合成されたVO焼結体を粉砕する方法と、五酸化二バナジウム(V)を原料として、液相でVOを合成しながら粒子成長させる水系合成法が挙げられる。
(Method for producing aqueous dispersion of vanadium dioxide particles)
In general, synthesis of vanadium dioxide particles, a method of pulverizing the VO 2 sintered body synthesized by the solid phase method, vanadium pentoxide and (V 2 O 5) As a raw material, to synthesize the VO 2 in the liquid phase An aqueous synthesis method in which particles are grown is mentioned.
 本発明においては、いずれの方法で作製されたVOでも適用することができる。いずれかの方法で作製したVOに分散剤を添加し、水系にて分散液として調製することができる。 In the present invention, VO 2 produced by any method can be applied. A dispersant can be added to VO 2 produced by any method and prepared as a dispersion in an aqueous system.
 分散剤の添加量は、0.1~1.0質量%の範囲内であることが好ましい。 The addition amount of the dispersing agent is preferably in the range of 0.1 to 1.0% by mass.
 水系の場合の分散剤としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリエチレングリコール、ヒドロキシエチルセルロース、シランカップリング剤等が挙げられ、特に、ポリビニルピロリドン又はセルロース樹脂であることが好ましい。 In the case of water-based dispersants, in addition to low molecular weight dispersants such as alkyl sulfonates, alkyl benzene sulfonates, diethylamine, ethylenediamine, quaternary ammonium salts, polyoxyethylene nonylphenyl ether, polyexethylene lauryl Examples include acid ether, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyethylene glycol, hydroxyethyl cellulose, and silane coupling agents, and polyvinyl pyrrolidone or cellulose resin is particularly preferable.
 これらの分散剤を用いれば分散液中のVO粒子を乾燥させることなく、実施例に記載のように、光学機能層形成用塗布液を調製することができる。 These dispersants without drying the VO 2 particles in the dispersion by using the, as described in the examples can be prepared optically functional layer forming coating liquid.
 この状態の光学機能層形成用塗布液を用いて、光学機能層を形成することにより、一次粒子及び二次粒子の数平均粒子径が500nm未満である好ましい数平均粒子径のVO粒子を含有する光学機能層を形成することができる。 By using the coating solution for forming an optical functional layer in this state, an optical functional layer is formed, thereby containing VO 2 particles having a preferred number average particle size in which the number average particle size of primary particles and secondary particles is less than 500 nm. An optical functional layer can be formed.
 また、VO粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の粒子を核粒子として添加し、その核粒子を成長させることによりVO粒子を製造することもできる。 Further, as a method for producing VO 2 particles, if necessary, particles such as fine TiO 2 that becomes the core of particle growth are added as nucleus particles, and the VO 2 particles are produced by growing the nucleus particles. You can also.
 なお、樹脂バインダーとして水溶性樹脂バインダーを使用するため、上述のVO粒子を含む水系分散液として調製したあと、水系分散液中のVO粒子を乾燥させることなく、VO粒子が離間している分散状態で水溶性樹脂溶液及び疎水性樹脂を含有する水性エマルジョンとを混合して、光学機能層形成用塗布液を調製することが好ましい。 In order to use the water-soluble resin binder as the resin binder, after prepared as an aqueous dispersion containing the aforementioned VO 2 particles, without drying the VO 2 particles of the aqueous dispersion, VO 2 particles separated It is preferable to prepare a coating solution for forming an optical functional layer by mixing a water-soluble resin solution and an aqueous emulsion containing a hydrophobic resin in a dispersed state.
 次いで、本発明に好適な水熱法によるVO粒子の製造方法について、その詳細をさらに説明する。 Next, the details of the method for producing VO 2 particles by the hydrothermal method suitable for the present invention will be described.
 以下に、代表的な水熱法によるVO粒子の製造工程を示す。 Hereinafter, a manufacturing process of the VO 2 particles by typical hydrothermal method.
 (工程1)
 バナジウム(V)を含む物質(I)と、ヒドラジン(N)又はその水和物(N・nHO)と、水とを混ぜて溶液(A)を調製する。この溶液(A)は、物質(I)が水中に溶解した水溶液であっても良いし、物質(I)が水中に分散した懸濁液であっても良い。
(Process 1)
A substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A). The solution (A) may be an aqueous solution in which the substance (I) is dissolved in water, or may be a suspension in which the substance (I) is dispersed in water.
 物質(I)としては、例えば、五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等が挙げられる。なお、物質(I)としては、五価のバナジウム(V)を含む化合物であれば、特に限定されない。ヒドラジン(N)及びその水和物(N・nHO)は、物質(I)の還元剤として機能するものであって、水に容易に溶解する性質を有する。 Examples of the substance (I) include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. . The substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
 溶液(A)は、最終的に得られる二酸化バナジウム(VO)の単結晶粒子に元素を添加するため、添加する元素を含む物質(II)を更に含有していてもよい。添加する元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)又はリン(P)が挙げられる。 The solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal particles. Examples of the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
 これらの元素を、最終的に得られる二酸化バナジウム(VO)の単結晶粒子に添加することにより、二酸化バナジウム粒子のサーモクロミック性、特に、転移温度を制御することができる。 By adding these elements to the finally obtained vanadium dioxide (VO 2 ) single crystal particles, the thermochromic properties of the vanadium dioxide particles, in particular, the transition temperature can be controlled.
 また、この溶液(A)は、酸化性又は還元性を有する物質(III)を更に含有していてもよい。物質(III)としては、例えば、過酸化水素(H)が挙げられる。酸化性又は還元性を有する物質(III)を添加することにより、溶液のpHを調整したり、物質(I)であるバナジウム(V)を含む物質を均一に溶解させたりすることができる。 Moreover, this solution (A) may further contain a substance (III) having oxidizing property or reducing property. Examples of the substance (III) include hydrogen peroxide (H 2 O 2 ). By adding the oxidizing or reducing substance (III), the pH of the solution can be adjusted, or the substance containing vanadium (V) as the substance (I) can be uniformly dissolved.
 (工程2)
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(VO)含有の単結晶粒子が得られる。
(Process 2)
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. By the hydrothermal reaction treatment, single crystal particles containing vanadium dioxide (VO 2 ) are obtained.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶粒子の粒子径を小さくすることができるが、過度に粒子径が小さいと、結晶性が低くなる。また、水熱反応処理の時間は、例えば1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶粒子の粒子径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。 The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle diameter of the obtained single crystal particles can be reduced, but if the particle diameter is excessively small, the crystallinity is lowered. The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. By increasing the time, the particle diameter and the like of the obtained single crystal particles can be controlled. However, if the processing time is excessively long, the energy consumption increases.
 (工程3)
 必要に応じて、得られた二酸化バナジウム粒子の表面に、樹脂によるコーティング処理又は表面改質処理を行っても良い。これにより、二酸化バナジウム粒子の表面が保護され、表面改質された単結晶粒子を得ることができる。本発明では、その中でも、二酸化バナジウム粒子の表面をガラス転移温度が65℃以下である、本発明に係る樹脂バインダーで被覆されていることが好ましい態様である。
(Process 3)
If necessary, the surface of the obtained vanadium dioxide particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide particles is protected, and surface-modified single crystal particles can be obtained. In the present invention, among them, it is a preferable aspect that the surface of the vanadium dioxide particles is coated with the resin binder according to the present invention having a glass transition temperature of 65 ° C. or lower.
 なお、本発明でいう「被覆」とは、二酸化バナジウム粒子に対し、当該樹脂により粒子全面が完全に覆われている状態であってもよいし、粒子表面の一部が樹脂により覆われている状態であってもよい。好ましくは、当該粒子表面の全面積の50%以上が被覆されている状態がよく、80%以上被覆されている状態がより好ましい。 The “coating” referred to in the present invention may be a state where the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide particles, or a part of the particle surface is covered with the resin. It may be in a state. Preferably, a state where 50% or more of the total area of the particle surface is covered is good, and a state where 80% or more is covered is more preferable.
 以上の工程1~工程3を経て、サーモクロミック性を有するVO含有の単結晶粒子を含む分散液が得られる。 Through the steps 1 to 3, a dispersion liquid containing VO 2 -containing single crystal particles having thermochromic properties is obtained.
 〔VOの粉砕方法〕
 VOを微粒子化する方法は種々の方法があるが、ビーズミル、超音波破砕、高圧ホモジナイザー等種々の方法があり、いずれの方法を用いてもVO粒子を作製することができる。
[VO 2 grinding method]
There are various methods for making VO 2 into fine particles, but there are various methods such as bead milling, ultrasonic crushing, and high-pressure homogenizer, and any method can be used to produce VO 2 particles.
 ビーズミルでは、種々のビーズを用いることができるが、硬度、価格の観点からジルコニアビーズを利用するのが好ましい。 In the bead mill, various beads can be used, but zirconia beads are preferably used from the viewpoint of hardness and price.
 〔二酸化バナジウム粒子水系分散液中の不純物の除去処理〕
 上記水系合成法により調製された二酸化バナジウム粒子の分散液中には、合成過程で生じた残渣などの不純物が含まれている。光学機能層を形成する際に、これらの不純物が二次凝集粒子発生のきっかけとなり、光学機能層の長期保存での劣化要因となることがあるため、分散液の段階で不純物を除去することが好ましい。
[Removal of impurities in aqueous dispersion of vanadium dioxide particles]
Impurities such as residues generated in the synthesis process are contained in the dispersion of vanadium dioxide particles prepared by the aqueous synthesis method. When forming the optical functional layer, these impurities can trigger secondary aggregated particle generation and cause deterioration of the optical functional layer during long-term storage, so it is possible to remove the impurities at the stage of the dispersion. preferable.
 二酸化バナジウム粒子水系分散液中の不純物を除去する方法としては、従来公知の異物や不純物を分離する手段を適用することができ、例えば、VO粒子水系分散液に遠心分離を施し、二酸化バナジウム粒子を沈殿させ、上澄み中の不純物を除去し、再び分散媒を添加、分散する方法でも良いし、限外濾過膜などの交換膜を用いて不純物を系外へ除去する方法でも良いが、二酸化バナジウム粒子の凝集を防止する観点からは、限外濾過膜を用いる方法が最も好ましい。 As a method for removing impurities in the aqueous dispersion of vanadium dioxide particles, conventionally known means for separating foreign substances and impurities can be applied. For example, the VO 2 particle aqueous dispersion is subjected to centrifugal separation to obtain vanadium dioxide particles. It is possible to remove the impurities in the supernatant, add and disperse the dispersion medium again, or remove the impurities out of the system using an exchange membrane such as an ultrafiltration membrane. From the viewpoint of preventing aggregation of particles, a method using an ultrafiltration membrane is most preferable.
 限外ろ過膜の材質としては、セルロース系、ポリエーテルスルホン系、ポリテトラフルオロエチレン(略称:PTFE)などを挙げることができ、その中でも、ポリエーテルスルホン系、PTFEを用いることが好ましい。 Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (abbreviation: PTFE). Among these, polyethersulfone and PTFE are preferably used.
 《サーモクロミックフィルムの製造方法》
 本発明のサーモクロミックフィルムの製造方法は、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内である光学機能層形成用塗布液を塗布する工程を有することを特徴とする。
<< Method for producing thermochromic film >>
Method for producing thermochromic film of the present invention is a method for manufacturing a thermochromic film producing thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic, hydrophobic resin (P 2) A coating for forming an optical functional layer containing a water-based emulsion containing water and a water-soluble resin (P 1 ) and having a mass ratio value (P 1 / P 2 ) in the range of 0.3 to 10.0 It has the process of apply | coating a liquid, It is characterized by the above-mentioned.
 具体的には、上記した二酸化バナジウム粒子の製造方法により二酸化バナジウム粒子を製造する工程と、二酸化バナジウム粒子を含有する光学機能層形成用塗布液を調製し、これを塗布する工程とを有することができる。このようにして、サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造することができる。 Specifically, it may have a step of producing vanadium dioxide particles by the above-described method for producing vanadium dioxide particles, and a step of preparing a coating solution for forming an optical functional layer containing vanadium dioxide particles and applying the coating solution. it can. Thus, a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties can be produced.
 (1:光学機能層形成用塗布液の調製)
 具体的には、上記製造方法により二酸化バナジウム粒子を製造した後、当該二酸化バナジウム粒子を含有する塗布液を調製する。
(1: Preparation of coating solution for forming optical functional layer)
Specifically, after producing vanadium dioxide particles by the above production method, a coating solution containing the vanadium dioxide particles is prepared.
 塗布液中の二酸化バナジウム粒子の含有量としては、特に制限はないが、光学機能層全質量に対して5~60質量%の範囲内であることが好ましく、より好ましくは5~40質量%の範囲内であり、更に好ましくは5~30質量%の範囲内である。 The content of vanadium dioxide particles in the coating solution is not particularly limited, but is preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the optical functional layer. Within the range, more preferably within the range of 5 to 30% by mass.
 光学機能層形成用塗布液は、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内である。 The coating solution for forming an optical functional layer contains an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 ), and the mass ratio value (P 1 / P 2 ) is 0.00. It is within the range of 3 to 10.0.
 光学機能層形成用塗布液には、バインダー樹脂の他、各種添加剤が含有されていても良い。そのような添加剤としては、本発明の目的とする効果を損なわなければいずれであっても良い。例えば、特開昭57-74193号公報、特開昭57-87988号公報及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤等が挙げられる。 The optical functional layer forming coating solution may contain various additives in addition to the binder resin. As such an additive, any additive may be used as long as the effects of the present invention are not impaired. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, and JP-A-57-87989. , JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, Lubricants and other lubricants, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducing agents, lubricants, infrared absorption Various known additives such as additives, dyes and pigments can be used.
 (2:光学機能層形成用塗布液の塗布)
 次いで、調製した光学機能層形成用塗布液を、基材上に塗布し、必要に応じて乾燥処理や必要に応じ硬化処理を施すことで、基材上に光学機能層を形成することができる。このようにして、サーモクロミックフィルムを製造することができる。
(2: Application of coating solution for forming optical functional layer)
Next, the optical functional layer can be formed on the substrate by applying the prepared coating solution for forming the optical functional layer on the substrate and subjecting it to a drying treatment or a curing treatment as necessary. . In this way, a thermochromic film can be produced.
 なお、上記したサーモクロミックフィルムの製造方法では、基材と光学機能層とを備えるサーモクロミックフィルムを製造するものとしたが、基材上に光学機能層を形成した後、当該光学機能層を基材から剥離し、光学機能層のみからなるサーモクロミックフィルムを製造するものとしても良い。また、基材から剥離した光学機能層を他の基材に貼合してサーモクロミックフィルムを製造するものとしても良い。 In the above-described method for manufacturing a thermochromic film, a thermochromic film including a base material and an optical functional layer is manufactured. However, after the optical functional layer is formed on the base material, the optical functional layer is used as a basis. It is good also as what manufactures the thermochromic film which peels from a material and consists only of an optical function layer. Moreover, it is good also as what manufactures a thermochromic film by bonding the optical function layer peeled from the base material to another base material.
 (3.高温高湿処理する工程)
 本発明のサーモクロミックフィルムの製造方法としては、光学機能層形成用塗布液を塗布する工程に加えて塗布された光学機能層を高温高湿処理する工程を有することが好ましい。
(3. High temperature and high humidity treatment process)
The method for producing a thermochromic film of the present invention preferably includes a step of subjecting the applied optical functional layer to a high temperature and high humidity treatment in addition to the step of applying the optical functional layer forming coating solution.
 このような高温高湿処理によって、光学機能層の厚さnに対して、水溶性樹脂と疎水性樹脂の相分離により、二酸化バナジウム粒子が、基材上から光学機能層の厚さ方向で、n/2の下層の方が上層よりも多い構成になり、水分や酸素からの影響を防止し、長期的な湿熱耐久性を向上させることができ、外部から光学機能層への水分や酸素の侵入を効率的に遮断する効果を発現させることができる。このため、サーモクロミックフィルムの高温高湿環境下での変色やサーモクロミック性の低下を防止することができる。具体的には、光学機能層の厚さnに対して、二酸化バナジウム粒子の70質量%以上が、光学機能層の厚さ方向で、n/2の範囲に偏在することが好ましい。 By such high-temperature and high-humidity treatment, the vanadium dioxide particles are separated from the substrate in the thickness direction of the optical functional layer by phase separation of the water-soluble resin and the hydrophobic resin with respect to the thickness n of the optical functional layer. The n / 2 lower layer has a higher structure than the upper layer, prevents the influence of moisture and oxygen, can improve long-term wet heat durability, and allows moisture and oxygen to enter the optical functional layer from the outside. An effect of efficiently blocking intrusion can be expressed. For this reason, it is possible to prevent the thermochromic film from being discolored in a high-temperature and high-humidity environment and from being deteriorated in thermochromic properties. Specifically, it is preferable that 70% by mass or more of the vanadium dioxide particles is unevenly distributed in a range of n / 2 in the thickness direction of the optical functional layer with respect to the thickness n of the optical functional layer.
 このような高温高湿処理は、公知の加熱手段及び加湿手段で行うことができる。処理温度としては50~90℃であることが好ましく、60~80℃であることがより好ましい。また、処理時間はとしては、処理温度にもよるが10~48時間、より好ましくは10~24時間である。さらに、相対湿度は80~95%であることが好ましく、より好ましくは85~90%である。 Such high-temperature and high-humidity treatment can be performed by known heating means and humidifying means. The treatment temperature is preferably 50 to 90 ° C., more preferably 60 to 80 ° C. The treatment time is 10 to 48 hours, more preferably 10 to 24 hours, although it depends on the treatment temperature. Further, the relative humidity is preferably 80 to 95%, more preferably 85 to 90%.
 上記光学機能層の形成に用いる湿式塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。 The wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
 二酸化バナジウム粒子の70質量%以上が、偏在しているかどうかは、電界放出型電子顕微鏡による元素濃度の分析によって検出することができる。 Whether 70% by mass or more of the vanadium dioxide particles are unevenly distributed can be detected by analyzing the element concentration with a field emission electron microscope.
 (光学機能層の厚さに方向における二酸化バナジウム含有粒含有量の測定)
 電界放出型電子顕微鏡(HRTEM JEOL製 JEM2001F)とEDX(JEOL製 JED-2300T)を用いて、サーモクロミックフィルムの超薄切片を、加速電圧200KV、ビーム直径径1.0nmで、サーモクロミックフィルムの厚さ方向20nm×幅方向20nmの範囲について、1箇所あたり90秒積算測定を行い、得られた各測定点での各元素の質量から、各元素の原子数の割合を求め、これを元素の濃度とし、光学機機能層の厚さ(n)方向に対し、バナジウム元素の濃度分布曲線を求めた。この濃度分布曲線において、基材側から厚さn/2の範囲までのバナジウム元素の濃度の累計(積分値)が濃度分布曲線全体の累計(積分値)に対して70%以上であるとき二酸化バナジウム粒子の70質量%以上が、基材側に偏在していると判定した。
(Measurement of vanadium dioxide-containing grain content in the direction of the thickness of the optical functional layer)
Using a field emission electron microscope (JEM2001F manufactured by HRTEM JEOL) and EDX (JED-2300T manufactured by JEOL), an ultrathin section of a thermochromic film was obtained with an acceleration voltage of 200 KV, a beam diameter of 1.0 nm, and a thickness of the thermochromic film. In the range of 20 nm in the width direction × 20 nm in the width direction, 90 seconds are integrated per location, and the ratio of the number of atoms of each element is obtained from the mass of each element obtained at each measurement point. The vanadium element concentration distribution curve was obtained with respect to the thickness (n) direction of the optical function layer. In this concentration distribution curve, when the cumulative total (integrated value) of the vanadium element from the substrate side to the thickness n / 2 range is 70% or more with respect to the cumulative total (integrated value) of the entire concentration distribution curve, dioxide dioxide It was determined that 70% by mass or more of the vanadium particles were unevenly distributed on the substrate side.
 〔基材〕
 本発明に適用可能な基材(透明基材)としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、可撓性の付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。本発明でいう「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
〔Base material〕
The base material (transparent base material) applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. From the viewpoint of process suitability, it is preferably a transparent resin film. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取り扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、例えば合わせガラスを作製する場合、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。 The thickness of the transparent substrate is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, for example, when producing a laminated glass, Followability to the curved glass surface is improved.
 透明基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸又は少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明のサーモクロミックフィルムを具備した合わせガラスを、自動車のフロントガラスとして用いる場合には、延伸フィルムがより好ましい。 The transparent substrate is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. In particular, when the laminated glass provided with the thermochromic film of the present invention is used as an automobile windshield, a stretched film is more preferable.
 透明基材は、サーモクロミックフィルムのシワの生成や赤外線反射層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%の範囲内であることがさらに好ましい。 From the viewpoint of preventing generation of wrinkles in the thermochromic film and cracking of the infrared reflective layer, the transparent substrate preferably has a thermal shrinkage rate in the range of 0.1 to 3.0% at a temperature of 150 ° C., The content is more preferably in the range of 1.5 to 3.0%, and further preferably in the range of 1.9 to 2.7%.
 本発明のサーモクロミックフィルムに適用可能な樹脂フィルムとして、例えば、ポリオレフィンフィルム(例えば、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくはポリエステルフィルム、トリアセチルセルロースフィルムである。 Examples of the resin film applicable to the thermochromic film of the present invention include a polyolefin film (eg, polyethylene, polypropylene, etc.), a polyester film (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), a polyvinyl chloride, a triacetyl cellulose film, etc. And preferably a polyester film or a triacetyl cellulose film.
 ポリエステルフィルム(以降、単にポリエステルと称す。)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、及びこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 The polyester film (hereinafter simply referred to as “polyester”) is not particularly limited, but is preferably a polyester having a film-forming property having a dicarboxylic acid component and a diol component as main components. The main constituent dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid, Examples thereof include cyclohexane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid. Examples of the diol component include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis ( 4-Hydroxyphenyl) sulfone, bisphenol fluorene hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol and the like. Among the polyesters having these as main components, from the viewpoints of transparency, mechanical strength, dimensional stability, etc., dicarboxylic acid components such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diol components such as ethylene glycol and 1 Polyester having 1,4-cyclohexanedimethanol as the main constituent is preferred. Among these, polyesters mainly composed of polyethylene terephthalate and polyethylene naphthalate, copolymerized polyesters composed of terephthalic acid, 2,6-naphthalenedicarboxylic acid and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferable.
 透明基材として透明樹脂フィルムを用いる場合、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とするポリエステル中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、例えば、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。 When using a transparent resin film as a transparent substrate, in order to facilitate handling, particles may be included within a range that does not impair transparency. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include stabilizers, lubricants, cross-linking agents, anti-blocking agents, antioxidants, dyes, pigments, and ultraviolet absorbers.
 また、透明樹脂フィルムは、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸成膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは処理温度が100~180℃の範囲内である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲内で行われることが好ましく、より好ましくは弛緩率が2~6%の範囲内で処理されることである。弛緩処理された基材は、オフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 Further, the transparent resin film may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability. The relaxation treatment is preferably carried out in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., more preferably the treatment temperature is in the range of 100 to 180 ° C. Further, the relaxation rate is preferably within a range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is within a range of 2 to 6%. The relaxed substrate is subjected to off-line heat treatment to improve heat resistance and to improve dimensional stability.
 透明樹脂フィルムは、成膜過程で片面又は両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、成膜工程中での下引塗布をインライン下引という。 The transparent resin film is preferably coated with an undercoat layer coating solution inline on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
 〔近赤外光遮蔽層〕
 本発明のサーモクロミックフィルムにおいては、光学機能層に加え、700~1000nmの範囲内の光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を設ける構成とすることもできる。
(Near-infrared light shielding layer)
In the thermochromic film of the present invention, in addition to the optical functional layer, a near infrared light shielding layer having a function of shielding at least part of the light wavelength range within the range of 700 to 1000 nm may be provided. .
 本発明に適用可能な近赤外光遮蔽層の詳細については、例えば、特開2012-131130号公報、特開2012-139948号公報、特開2012-185342号公報、特開2013-080178号公報、特開2014-089347号公報等に記載されている構成要素及び形成方法等を参考にすることができる。 For details of the near-infrared light shielding layer applicable to the present invention, for example, JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A. Reference can be made to constituent elements and formation methods described in JP-A-2014-089347.
 《サーモクロミック-ガラス複合体》
 本発明のサーモクロミックフィルムの用途としては、サーモクロミックフィルムを構成要素として備えているサーモクロミック複合体として使用することができる。例えば、サーモクロミックフィルムとガラスとが積層してなるサーモクロミックフィルム-ガラス複合体や、ガラスと1対のガラス構成部材で挟持させて、合わせガラスを構成することができる。サーモクロミックフィルム-ガラス複合体や合わせガラスは種々の用途に用いることができる。例えば、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。
<< Thermochromic-glass composite >>
As a use of the thermochromic film of this invention, it can be used as a thermochromic composite body provided with the thermochromic film as a component. For example, a laminated glass can be formed by sandwiching a thermochromic film-glass composite formed by laminating a thermochromic film and glass or a pair of glass constituent members with glass. Thermochromic film-glass composite and laminated glass can be used for various applications. For example, it can be used for automobiles, railway vehicles, airplanes, ships and buildings.
 合わせガラスは、これらの用途以外にも使用できる。上記合わせガラスは、建築用又は車両用の合わせガラスであることが好ましい。上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。 Laminated glass can be used for other purposes. The laminated glass is preferably laminated glass for buildings or vehicles. The laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like.
 ガラス部材としては、無機ガラス及び有機ガラス(樹脂グレージング)が挙げられる。無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、及び、グリーンガラス等の着色ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラス(樹脂グレージング)としては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。本発明においては、外部から衝撃が加わって破損した際の安全性の観点からは、無機ガラスであることが好ましい。 Examples of the glass member include inorganic glass and organic glass (resin glazing). Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass. The organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate. In the present invention, inorganic glass is preferred from the viewpoint of safety when it is damaged by an external impact.
 また、ガラス以外にも適用することができ、ガラスを含めたサーモクロミックフィルムの支持体全般とサーモクロミックフィルムから構成されているサーモクロミック複合体とすることもできる。 Also, it can be applied to other than glass, and it can be a thermochromic composite composed of a thermochromic film support including glass and a thermochromic film.
 本発明のサーモクロミックフィルムは、窓ガラス等に貼り合わせる場合、窓に水を吹き付け、濡れた状態のガラス面にサーモクロミックフィルムの粘着層を合わせる貼り方、いわゆる水貼り法が張り直し、位置直し等の観点で用いることができる。そのため、水が存在する湿潤下では粘着力が弱い、アクリル系粘着剤を用いることができる。 When the thermochromic film of the present invention is attached to a window glass or the like, spraying water on the window and attaching the thermochromic film adhesive layer to the wet glass surface, the so-called water application method has been repositioned and repositioned. Etc. Therefore, it is possible to use an acrylic pressure-sensitive adhesive that has a weak adhesive force in the presence of water.
 使用されるアクリル系粘着剤は、溶剤系及びエマルジョン系どちらでもよいが、粘着力等を高めやすいことから、溶剤系粘着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系粘着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した粘着力を付与させ、また水の存在下でもある程度の粘着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。該積層フィルムの粘着剤層には、主ポリマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。 The acrylic pressure-sensitive adhesive used may be either solvent-based or emulsion-based, but is preferably a solvent-based pressure-sensitive adhesive because it is easy to increase the adhesive strength and the like, and among them, those obtained by solution polymerization are preferable. Examples of the raw material for producing such a solvent-based acrylic pressure-sensitive adhesive by solution polymerization include, for example, acrylic acid esters such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and acryl acrylate as main monomers serving as a skeleton, As a comonomer to improve cohesive strength, vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote crosslinking, to give stable adhesive strength, and to maintain a certain level of adhesive strength even in the presence of water Examples of the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycidyl methacrylate. Since the adhesive layer of the laminated film requires a particularly high tack as the main polymer, those having a low glass transition temperature (Tg) such as butyl acrylate are particularly useful.
 この粘着層には、添加剤として、例えば安定剤、界面活性剤、紫外線吸収剤、難燃剤、帯電防止剤、抗酸化剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を含有させることもできる。特に、本発明のように窓貼用として使用する場合は、紫外線によるサーモクロミックフィルムの劣化を抑制するためにも、紫外線吸収剤の添加は有効である。 This adhesive layer contains additives such as stabilizers, surfactants, UV absorbers, flame retardants, antistatic agents, antioxidants, thermal stabilizers, lubricants, fillers, coloring, adhesion modifiers, etc. It can also be made. In particular, when used for window sticking as in the present invention, the addition of an ultraviolet absorber is also effective for suppressing deterioration of the thermochromic film due to ultraviolet rays.
 粘着層の厚さは1~100μmが好ましく、より好ましくは3~50μmである。1μm以上であれば粘着性が向上する傾向にあり、十分な粘着力が得られる。逆に100μm以下であればサーモクロミックフィルムの透明性が向上するだけでなく、サーモクロミックフィルムを窓ガラスに貼り付けた後、剥がしたときに粘着層間で凝集破壊が起こらず、ガラス面への粘着剤残りが無くなる傾向にある。 The thickness of the adhesive layer is preferably 1 to 100 μm, more preferably 3 to 50 μm. If it is 1 micrometer or more, there exists a tendency for adhesiveness to improve and sufficient adhesive force is acquired. Conversely, if the thickness is 100 μm or less, not only the transparency of the thermochromic film is improved, but also after the thermochromic film is attached to the window glass, it does not cause cohesive failure between the adhesive layers when peeled off, and adheres to the glass surface. There is a tendency that there is no remaining agent.
 粘着剤には各種添加剤を添加することができ、好適には紫外線吸収剤、酸化防止剤を含有することができる。 Various additives can be added to the pressure-sensitive adhesive, and preferably an ultraviolet absorber and an antioxidant can be contained.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 《サーモクロミックフィルムの作製》
 〔サーモクロミックフィルム1の作製〕
 (VO粒子水系分散液1の調製)
 純水425mLに、二酸化バナジウム粒子(VO、新興化学社製)74.9g混合し、ビーズミル用の300μmのジルコニアビーズを200g使用し、Apexミル(寿工業社製)を用い、粉砕を行い、VO粒子水系分散液を調製した。
《Preparation of thermochromic film》
[Preparation of Thermochromic Film 1]
(Preparation of VO 2 particle aqueous dispersion 1)
Purified water 425 mL, vanadium particles (VO 2, manufactured by Shinko Kagaku) dioxide 74.9g were mixed and 300μm zirconia beads for the bead mill using 200 g, using an Apex mill (manufactured by Kotobuki Industries Co., Ltd.), and milling, A VO 2 particle aqueous dispersion was prepared.
 (光学機能層形成用塗布液1の調製)
 下記の各構成材料を順次添加、混合及び溶解して、水系の光学機能層形成用塗布液1を添加物の固形分が4質量%になるように水で濃度を調整し、下記組成になるように調製した。
(Preparation of coating solution 1 for forming an optical functional layer)
The following constituent materials are sequentially added, mixed and dissolved, and the concentration of the aqueous optical functional layer forming coating solution 1 is adjusted with water so that the solid content of the additive is 4% by mass, resulting in the following composition. It was prepared as follows.
 VO粒子水系分散液1(溶媒:水、3%)固形分として
                           9.3質量部
 ポリビニルアセトアミド(昭和電工社製 GE191-103)固形分と
して                        60.5質量部
 疎水性樹脂:UW-1005E(水性ウレタンエマルジョン、宇部興産製
)固形分として                   30.2質量部
 (光学機能層の形成)
 厚さが50μmのポリエチレンテレフタレートフィルム(東レ製U40、両面易接着層)の透明基材上に、押出コーターを用いて、上記調製した光学機能層形成用塗布液1を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで90℃の温風を1分間吹きつけて乾燥させて、光学機能層を形成して、サーモクロミックフィルム1を作製した。
VO 2 particle aqueous dispersion 1 (solvent: water, 3%) as solid content 9.3 parts by mass Polyvinylacetamide (GE191-103, Showa Denko KK) as solid content 60.5 parts by mass Hydrophobic resin: UW-1005E ( Aqueous urethane emulsion (manufactured by Ube Industries) 30.2 parts by mass as solids (formation of optical functional layer)
On a transparent substrate of a polyethylene terephthalate film (Toray U40, double-sided easy-adhesion layer) having a thickness of 50 μm, using an extrusion coater, the optical function layer forming coating solution 1 prepared above has a layer thickness after drying. Wet application was carried out under the condition of 1.5 μm, and then hot air of 90 ° C. was blown for 1 minute to dry to form an optical functional layer, whereby a thermochromic film 1 was produced.
 〔サーモクロミックフィルム2の作製〕
 サーモクロミックフィルム1において、GE191-103の代わりにGE191-053(昭和電工社製)にした以外は同様に作製し、サーモロミックフィルム2を作製した。
[Preparation of thermochromic film 2]
The thermochromic film 1 was prepared in the same manner as in the thermochromic film 1 except that GE191-053 (manufactured by Showa Denko KK) was used instead of GE191-103.
 〔サーモクロミックフィルム3の作製〕
 サーモクロミックフィルム1において、GE191-103の代わりにポリマセット305(ポリアクリルアミド、荒川化学社製)にした以外は同様に作製し、サーモロミックフィルム3を作製した。
[Preparation of thermochromic film 3]
The thermochromic film 1 was prepared in the same manner except that the polymer set 305 (polyacrylamide, manufactured by Arakawa Chemical Co., Ltd.) was used instead of the GE191-103.
 〔サーモクロミックフィルム4の作製〕
 サーモクロミックフィルム1において、GE191-103の代わりにG-1419(ゼラチン、新田ゼラチン社製)にした以外は同様に作製し、サーモロミックフィルム4を作製した。
[Preparation of thermochromic film 4]
A thermochromic film 4 was prepared in the same manner as in the thermochromic film 1 except that G-1419 (gelatin, manufactured by Nitta Gelatin Co., Ltd.) was used instead of GE191-103.
 〔サーモクロミックフィルム5の作製〕
 サーモクロミックフィルム1において、GE191-103の代わりにEG-40(ポリビニルアルコール、日本合成化学社製)にした以外は同様に作製し、サーモロミックフィルム5を作製した。
[Preparation of thermochromic film 5]
A thermochromic film 5 was produced in the same manner as in the thermochromic film 1 except that EG-40 (polyvinyl alcohol, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of GE191-103.
 〔サーモクロミックフィルム6の作製〕
 サーモクロミックフィルム1において、UW-1005Eの代わりにモビニール6502(アクリルエマルジョン、日本合成化学社製)にした以外は同様に作製し、サーモロミックフィルム6を作製した。
[Preparation of thermochromic film 6]
The thermochromic film 1 was prepared in the same manner except that the vinyl 6502 (acrylic emulsion, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of the UW-1005E.
 〔サーモクロミックフィルム7の作製〕
 サーモクロミックフィルム1において、窒素含有化合物としてKBE-903(信越化学工業社製)を5質量部添加した以外は同様に作製し、サーモロミックフィルム7を作製した。
[Preparation of thermochromic film 7]
The thermochromic film 7 was prepared in the same manner as in the thermochromic film 1 except that 5 parts by mass of KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a nitrogen-containing compound.
 〔サーモクロミックフィルム8の作製〕
 サーモクロミックフィルム7において、窒素含有化合物としてV-02-L2(日清紡ケミカル社製)を5質量部添加した以外は同様に作製し、サーモロミックフィルム8を作製した。
[Preparation of thermochromic film 8]
A thermochromic film 8 was prepared in the same manner as in the thermochromic film 7 except that 5 parts by mass of V-02-L2 (Nisshinbo Chemical Co., Ltd.) was added as a nitrogen-containing compound.
 〔サーモクロミックフィルム9の作製〕
 サーモクロミックフィルム7において、窒素含有化合物としてGE191-108(ポリビニルアセトアミド、昭和電工社製)を5質量部添加した以外は同様に作製し、サーモロミックフィルム9を作製した。
[Preparation of thermochromic film 9]
A thermochromic film 9 was prepared in the same manner as in the thermochromic film 7 except that 5 parts by mass of GE191-108 (polyvinylacetamide, Showa Denko) was added as a nitrogen-containing compound.
 〔サーモクロミックフィルム10の作製〕
 サーモクロミックフィルム7において、疎水性樹脂を201.7質量部に変更した以外は同様に作製し、サーモロミックフィルム10を作製した。
[Preparation of Thermochromic Film 10]
In the thermochromic film 7, it produced similarly except having changed the hydrophobic resin into 201.7 mass parts, and produced the thermochromic film 10. FIG.
 〔サーモクロミックフィルム11の作製〕
 サーモクロミックフィルム7において、疎水性樹脂を60.5質量部に変更した以外は同様に作製し、サーモロミックフィルム11を作製した。
[Preparation of Thermochromic Film 11]
In the thermochromic film 7, it produced similarly except having changed hydrophobic resin into 60.5 mass parts, and produced the thermochromic film 11. FIG.
 〔サーモクロミックフィルム12の作製〕
 サーモクロミックフィルム7において、疎水性樹脂を12.1質量部に変更した以外は同様に作製し、サーモロミックフィルム12を作製した。
[Preparation of Thermochromic Film 12]
The thermochromic film 7 was produced in the same manner except that the hydrophobic resin was changed to 12.1 parts by mass, and the thermochromic film 12 was produced.
 〔サーモクロミックフィルム13の作製〕
 サーモクロミックフィルム7において、疎水性樹脂を6.1質量部に変更した以外は同様に作製し、サーモロミックフィルム13を作製した。
[Preparation of Thermochromic Film 13]
The thermochromic film 7 was prepared in the same manner except that the hydrophobic resin was changed to 6.1 parts by mass, and the thermochromic film 13 was prepared.
 〔サーモクロミックフィルム14の作製:比較例1〕
 (光学機能層形成用塗布液2の調製)
 下記の各構成材料を順次添加、混合及び溶解して、水系の光学機能層形成用塗布液1を添加物の固形分が4質量%になるように水で濃度を調整し、下記組成になるように調製した。
[Preparation of Thermochromic Film 14: Comparative Example 1]
(Preparation of coating solution 2 for forming an optical functional layer)
The following constituent materials are sequentially added, mixed and dissolved, and the concentration of the aqueous optical functional layer forming coating liquid 1 is adjusted with water so that the solid content of the additive is 4% by mass, resulting in the following composition. It was prepared as follows.
 VO粒子水系分散液1(溶媒:水、3%)固形分として
                           9.3質量部
 ポリビニルアセトアミド(昭和電工社製 GE191-103、5%)固
形分として                     90.7質量部
 厚さが50μmのポリエチレンテレフタレートフィルム(東レ製U40、両面易接着層)の透明基材上に、押出コーターを用いて、上記調製した光学機能層形成用塗布液1を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで90℃の温風を1分間吹きつけて乾燥させて、光学機能層を形成して、サーモクロミックフィルム14を作製した。
VO 2 particle aqueous dispersion 1 (solvent: water, 3%) 9.3 parts by mass as a solid content Polyvinylacetamide (GE191-103, 5% by Showa Denko KK) 90.7 parts by mass as a solid content 50 μm in thickness On the transparent substrate of a polyethylene terephthalate film (Toray U40, double-sided easy-adhesion layer), using an extrusion coater, the layer thickness after drying of the coating liquid 1 for forming an optical functional layer prepared above is 1.5 μm. Wet application was performed under the conditions, followed by drying by blowing warm air of 90 ° C. for 1 minute to form an optical functional layer, thereby producing a thermochromic film 14.
 〔サーモクロミックフィルム15の作製:比較例2〕
 サーモクロミックフィルム14において、GE191-103の代わりにEG-40を使用した以外は同様に作製し、サーモロミックフィルム15を作製した。
[Preparation of Thermochromic Film 15: Comparative Example 2]
The thermochromic film 14 was produced in the same manner except that EG-40 was used instead of GE191-103, and the thermochromic film 15 was produced.
 〔サーモクロミックフィルム16の作製:比較例3〕
 サーモクロミックフィルム14において、GE191-103の代わりに水性ウレタンエマルジョンUW-1005Eを使用した以外は同様に作製し、サーモロミックフィルム16を作製した。
[Preparation of Thermochromic Film 16: Comparative Example 3]
A thermochromic film 16 was produced in the same manner as in the thermochromic film 14 except that an aqueous urethane emulsion UW-1005E was used instead of GE191-103.
 〔サーモクロミックフィルム17の作製:比較例4〕
 サーモクロミックフィルム1において、GE191-103を83.7質量部、UW-1005Eを7.0質量部になるように混合した以外は同様に作製し、サーモロミックフィルム17を作製した。
[Preparation of Thermochromic Film 17: Comparative Example 4]
The thermochromic film 17 was prepared in the same manner except that the thermochromic film 1 was mixed so that 83.7 parts by mass of GE191-103 and 7.0 parts by mass of UW-1005E were mixed.
 〔サーモクロミックフィルム18の作製:比較例5〕
 サーモクロミックフィルム1において、GE191-103を15.2質量部、UW-1005Eを75.6質量部になるように混合した以外は同様に作製し、サーモロミックフィルム18を作製した。
[Preparation of Thermochromic Film 18: Comparative Example 5]
The thermochromic film 18 was prepared in the same manner except that the thermochromic film 1 was mixed so that GE191-103 was 15.2 parts by mass and UW-1005E was 75.6 parts by mass.
 〔サーモクロミックフィルム19の作製:実施例〕
 サーモクロミックフィルム1において、有機金属化合物としてKBE-803(信越化学工業社製)を10質量部添加した以外は同様に作製し、サーモロミックフィルム19を作製した。
[Preparation of Thermochromic Film 19: Examples]
The thermochromic film 19 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of KBE-803 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added as an organometallic compound.
 〔サーモクロミックフィルム20の作製:実施例〕
 サーモクロミックフィルム1において、有機金属化合物としてTC-400(マツモトファインケミカル製)を10質量部添加した以外は同様に作製し、サーモロミックフィルム20を作製した。
[Preparation of Thermochromic Film 20: Example]
The thermochromic film 20 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of TC-400 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
 〔サーモクロミックフィルム21の作製:実施例〕
 サーモクロミックフィルム1において、有機金属化合物としてTC-500(マツモトファインケミカル製)を10質量部添加した以外は同様に作製し、サーモロミックフィルム21を作製した。
[Preparation of Thermochromic Film 21: Examples]
The thermochromic film 21 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of TC-500 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
 〔サーモクロミックフィルム22の作製:実施例〕
 サーモクロミックフィルム1において、有機金属化合物としてZC-300(マツモトファインケミカル製)を10質量部添加した以外は同様に作製し、サーモロミックフィルム22を作製した。
[Preparation of Thermochromic Film 22: Examples]
The thermochromic film 22 was prepared in the same manner as in the thermochromic film 1 except that 10 parts by mass of ZC-300 (manufactured by Matsumoto Fine Chemical) was added as an organometallic compound.
 〔サーモクロミックフィルム23の作製:実施例〕
 サーモクロミックフィルム1において、有機金属化合物としてKR44(味の素ファインテクノ製)を10質量部添加した以外は同様に作製し、サーモロミックフィルム23を作製した。
[Preparation of Thermochromic Film 23: Example]
In the thermochromic film 1, it produced similarly except having added 10 mass parts of KR44 (made by Ajinomoto Fine-Techno) as an organometallic compound, and the thermochromic film 23 was produced.
 〔サーモクロミックフィルム24の作製:実施例〕
 サーモクロミックフィルム7で作製したフィルムを、湿熱テスト前にガラスに貼って60℃90%RH環境下に2日間高温高湿処理した試料を用いた。
[Preparation of Thermochromic Film 24: Examples]
A sample prepared by sticking the film made of the thermochromic film 7 to glass before the wet heat test and treating the film at 60 ° C. and 90% RH for 2 days at high temperature and high humidity was used.
 以下に用いた材料の詳細を示す。
PNVA     :ポリビニルアセトアミド
GE191-103:(昭和電工社製 重量平均分子量900000)
GE191-053:(昭和電工社製 重量平均分子量1500000)
ポリマセット305:ポリアクリルアミド(荒川化学社製 量平均分子量200000)
G-1419   :ゼラチン(新田ゼラチン社製 重量平均分子量150000)
PVA      :ポリビニルアルコール
EG-40    :(日本合成化学社製 重量平均分子量240000)
UW-1005E :水性ウレタンエマルジョン(宇部興産製)
モビニール6502:(アクリルエマルジョン、日本合成化学社製)
KBE-903  :(信越化学工業社製 分子量221)
V-02-L2  :(日清紡ケミカル社製 重量平均分子量3000)
GE191-108:(昭和電工社製 重量平均分子量30000)
KBE-803  :γ-メルカプトプロピルトリエトキシシラン(信越化学工業社製)
TC-400   :チタントリエタノールアミネート(マツモトファインケミカル製)
TC-500   :チタンジエタノールアミネート(マツモトファインケミカル製)
ZC-300   :ジルコニウムラクテートアンモニウム塩(マツモトファインケミカル製)
KR44     :イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート(味の素ファインテクノ製)
 なお、表1では、ポリマーの重量平均分子量と化合物の分子量を、ともに分子量として示した。
Details of the materials used are shown below.
PNVA: Polyvinylacetamide GE191-103: (weight average molecular weight 900000 manufactured by Showa Denko KK)
GE191-053: (weight average molecular weight 1500,000, Showa Denko)
Polymer set 305: polyacrylamide (Arakawa Chemical Co., Ltd., weight average molecular weight 200000)
G-1419: Gelatin (weight average molecular weight 150,000 manufactured by Nitta Gelatin)
PVA: Polyvinyl alcohol EG-40: (Nippon Synthetic Chemical Co., Ltd. weight average molecular weight 240000)
UW-1005E: Aqueous urethane emulsion (manufactured by Ube Industries)
Mobile 6502: (Acrylic emulsion, Nippon Synthetic Chemical Co., Ltd.)
KBE-903: (Molecular weight 221 manufactured by Shin-Etsu Chemical Co., Ltd.)
V-02-L2: (Nisshinbo Chemical Co., Ltd. weight average molecular weight 3000)
GE191-108: (weight average molecular weight 30000 manufactured by Showa Denko KK)
KBE-803: γ-mercaptopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
TC-400: Titanium triethanolamate (Matsumoto Fine Chemical)
TC-500: Titanium diethanolaminate (Matsumoto Fine Chemical)
ZC-300: Zirconium lactate ammonium salt (manufactured by Matsumoto Fine Chemical)
KR44: isopropyl tri (N-aminoethyl-aminoethyl) titanate (manufactured by Ajinomoto Fine Techno)
In Table 1, the weight average molecular weight of the polymer and the molecular weight of the compound are both shown as molecular weight.
 《サーモクロミックフィルムの評価》
 上記作製したサーモクロミックフィルム1~24について、赤外光の透過率、湿熱耐久性として耐水性及び湿熱テスト後のヘイズを評価した。さらに湿熱耐久性として可視光透過率差と色差の評価も行った。
<Evaluation of thermochromic film>
The thermochromic films 1 to 24 produced above were evaluated for water resistance and haze after a wet heat test as infrared light transmittance and wet heat durability. Further, the visible light transmittance difference and the color difference were also evaluated as wet heat durability.
 〔サーモクロミック性の評価〕
 分光光度計V-670(日本分光社製)を用いて、における波長1500nmを測定した。また、加温測定装置を用い、75℃(高温)における波長1500nmでの透過率を測定し、25℃(室温)から75℃(高温)に昇温することによる透過率の低下を、透過率差(%)としてサーモクロミック性を評価した。さらに、湿熱テストとして85℃85%RH環境で10日間静置し、同様に分光光度計を用いて透過率差(%)を測定した。この値の大きい方が、サーモクロミック性が良好であることを示す。
[Evaluation of thermochromic properties]
The wavelength at 1500 nm was measured using a spectrophotometer V-670 (manufactured by JASCO Corporation). Moreover, the transmittance | permeability in wavelength 1500nm in 75 degreeC (high temperature) is measured using a heating measuring apparatus, and the transmittance | permeability fall by heating up from 25 degreeC (room temperature) to 75 degreeC (high temperature) Thermochromic properties were evaluated as a difference (%). Further, as a wet heat test, the sample was allowed to stand for 10 days in an environment of 85 ° C. and 85% RH, and the transmittance difference (%) was similarly measured using a spectrophotometer. The larger this value, the better the thermochromic properties.
 〔ヘイズ〕
 NDH7000(日本電色社製)を用い、サーモクロミック層形成面から光を入射させ、その時の光のヘイズ値を測定した。さらに、湿熱テストとして85℃85%RH環境で10日間静置し、その後におけるヘイズ値を測定した。ヘイズの上昇は、透明性を損なうだけでなく、VO粒子の凝集に起因すると考えられ、優れた湿熱耐久性を有するサーモクロミックフィルムを得るためには、上記した透過率差(%)だけでなくヘイズも良好であることが必要である。
[Haze]
Using NDH7000 (Nippon Denshoku Co., Ltd.), light was incident from the thermochromic layer forming surface, and the haze value of the light at that time was measured. Furthermore, as a wet heat test, it was left to stand at 85 ° C. and 85% RH for 10 days, and then the haze value was measured. The increase in haze not only impairs transparency, but is considered to be caused by aggregation of VO 2 particles. In order to obtain a thermochromic film having excellent wet heat durability, only the transmittance difference (%) described above is used. The haze must be good.
 〔耐水性〕
 サンプルを10cm×10cmの大きさに切り取り、23℃の水に1時間浸漬前後の質量増加を測定し、下記のようなランクをつけた。
5:0.10g未満
4:0.10g以上0.25g未満
3:0.25g以上0.50g未満
2:0.50g以上1.00g未満
1:1.00g以上
 〔透過率差及び色差〕
 ガラスに貼ったサーモクロミックフィルムを分光光度計V-670を用いて、85℃85%RH環境に入れる前と85℃85%RHの環境下で20日間静置後の可視光透過率差及び色差(ΔEab(CIE 1976))を計算し、下記のようなランクをつけた。なお、可視光透過率は、分光光度計(V-670)を用いて波長380~780nmを測定し、JIS-A5759_6.3に従って計算した。可視光透過率差及び色差の変化の少ないほうが湿熱耐久性が良好で好ましい。
〔water resistant〕
The sample was cut into a size of 10 cm × 10 cm, and the increase in mass before and after immersion in water at 23 ° C. for 1 hour was measured, and the following ranks were assigned.
5: Less than 0.10 g 4: 0.10 g or more and less than 0.25 g 3: 0.25 g or more and less than 0.50 g 2: 0.50 g or more and less than 1.00 g 1: 1.00 g or more [Transmittance difference and color difference]
Using a spectrophotometer V-670, the thermochromic film affixed to the glass before being put in an environment of 85 ° C. and 85% RH and after standing in an environment of 85 ° C. and 85% RH for 20 days, the difference in visible light transmittance and color difference (ΔE * ab (CIE 1976)) was calculated and given the following rank. The visible light transmittance was calculated according to JIS-A5759_6.3 by measuring a wavelength of 380 to 780 nm using a spectrophotometer (V-670). A smaller change in visible light transmittance difference and color difference is preferable because of good wet heat durability.
 (可視光透過率差(ΔVLT))
◎: 3%未満
○: 3%以上5%未満
△: 5%以上
 (色差(ΔEab))
○:3未満
△:3以上5未満
×:5以上
 以上の結果を表1に示す。
(Visible light transmittance difference (ΔVLT))
◎: Less than 3% ○: 3% or more and less than 5% △: 5% or more (color difference (ΔE * ab))
○: Less than 3 Δ: 3 or more and less than 5 ×: 5 or more The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、本発明のサーモクロミックフィルムは、透過率差(サーモクロミック性)、ヘイズ、耐水性において、85℃85%RH環境下で10日間静置前後において、優れていることが分かった。さらに、可視光透過率差及び色差においても、85℃85%RH環境下で20日間静置前後において、優れていることが分かった。 As can be seen from the results in Table 1, the thermochromic film of the present invention is superior in terms of transmittance difference (thermochromic properties), haze, and water resistance before and after standing at 85 ° C. and 85% RH for 10 days. I understood that. Furthermore, it was found that the visible light transmittance difference and the color difference were excellent before and after standing at 85 ° C. and 85% RH for 20 days.
 サーモクロミックフィルム14、15(比較例)では、初期ヘイズは低いが、バインダーが水溶性樹脂だけで作られているので、耐水性がない上、85℃85%RH後の透過率差(サーモクロミック性)が低下し、ヘイズも高い。サーモクロミックフィルム16では、疎水性樹脂だけで作られているため、乾燥中にVOが凝集し、初期ヘイズが上昇した。サーモクロミックフィルム17では、水溶性樹脂に対して疎水性樹脂が少ないため、耐水性及び85℃85%RH耐性が不十分な結果だった。サーモクロミックフィルム18では、反対に水溶性樹脂に対して疎水性樹脂が多いため、初期ヘイズが上昇してしまった。 In the thermochromic films 14 and 15 (comparative examples), the initial haze is low, but since the binder is made of only a water-soluble resin, there is no water resistance, and the transmittance difference after 85 ° C. and 85% RH (thermochromic) Property) and haze is high. Since the thermochromic film 16 is made of only a hydrophobic resin, VO 2 aggregated during drying and the initial haze increased. In the thermochromic film 17, since there were few hydrophobic resins with respect to water-soluble resin, it was a result with insufficient water resistance and 85 degreeC85% RH tolerance. On the other hand, in the thermochromic film 18, since the amount of hydrophobic resin is larger than that of the water-soluble resin, the initial haze is increased.
 一方、本発明(サーモクロミックフィルム1~13、19~24)においては、初期ヘイズが全般的に小さいことが特徴として挙げられ、アミド基含有樹脂がVOの凝集を抑制したと考えられる。これらに本発明における窒素含有化合物や有機金属化合物を添加すれば、湿熱耐久性が著しく向上することも分かる。また、アクリルエマルジョンに対して、ウレタンエマルジョンの方がヘイズ及び耐水性が良好であり、ウレタンエマルジョンが有効であることが分かる。また、水溶性樹脂として、ウレタン結合を有するポリビニルアセトアミド(PNVA)やゼラチンの方が有用なことも分かる。 On the other hand, in the present invention (thermochromic films 1 to 13 and 19 to 24), the initial haze is generally small, and it is considered that the amide group-containing resin suppressed aggregation of VO 2 . It can also be seen that if the nitrogen-containing compound or organometallic compound in the present invention is added to these, the wet heat durability is remarkably improved. Moreover, it can be seen that the urethane emulsion has better haze and water resistance than the acrylic emulsion, and the urethane emulsion is more effective. It can also be seen that polyvinylacetamide (PNVA) or gelatin having a urethane bond is more useful as the water-soluble resin.
 さらに、サーモクロミックフィルム7で作製したフィルムをガラスに貼って60℃90%RH環境下に2日間高温高湿処理したサーモクロミックフィルム24の試料を用いて、湿熱テスト前の断面を前述した電界放出型電子顕微鏡で観察したところVO粒子の70%以上が、サーモクロミックフィルムの膜さnに対して、基材側から厚さ方向でn/2の範囲に偏在していることが分かった。 Furthermore, using the sample of the thermochromic film 24 obtained by pasting a film made of the thermochromic film 7 on a glass and treating it at 60 ° C. and 90% RH for 2 days at a high temperature and high humidity, the field emission described above is the cross section before the wet heat test. more than 70% of VO 2 particles were observed in type electron microscope, to the film of n thermochromic film was found to be unevenly distributed in the range of n / 2 in the thickness direction from the base side.
 《サーモクロミックフィルム-ガラス複合体の作製》
 上記作製した各サーモクロミックフィルムを、厚さ1.3mmのガラス板(松浪硝子工業社製、「スライドガラス白縁磨」)のサイズ15cm×20cmに透明粘着シート(日東電工社製、LUCIACS CS9621T)を用いて貼り合わせてサーモクロミックフィルム-ガラス複合体を作製して、良好なサーモクロミック性を示すことを確認した。
<< Production of Thermochromic Film-Glass Composite >>
Each of the produced thermochromic films is a transparent adhesive sheet (LUCIACS CS9621T, manufactured by Nitto Denko Corporation) with a size of 15 mm × 20 cm of a 1.3 mm thick glass plate (manufactured by Matsunami Glass Industrial Co., Ltd., “Slide Glass White Edge Polish”). Were bonded together to produce a thermochromic film-glass composite, which was confirmed to exhibit good thermochromic properties.
 以上の結果より、本発明に記載された方法を用いることにより、優れたサーモクロミック性及び優れた耐久性を示す、二酸化バナジウム粒子を含有するサーモクロミックフィルム及びそれを構成要素として備えたサーモクロミックフィルム-ガラス複合体を作製できたことを確認できた。 From the above results, by using the method described in the present invention, a thermochromic film containing vanadium dioxide particles, which exhibits excellent thermochromic properties and excellent durability, and a thermochromic film provided with the thermochromic film as a constituent element. -It was confirmed that a glass composite could be produced.
 本発明のサーモクロミックフィルムは、優れた湿熱耐久性を有し、サーモクロミックフィルムを構成要素として備えているサーモクロミック複合体として使用することができる。例えば、サーモクロミックフィルムとガラスとが積層してなるサーモクロミックフィルム-ガラス複合体や、ガラスと1対のガラス構成部材で挟持させて、合わせガラスを構成することができる。サーモクロミックフィルム-ガラス複合体や合わせガラスは種々の用途に用いることができる。例えば、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。 The thermochromic film of the present invention has excellent wet heat durability and can be used as a thermochromic composite including the thermochromic film as a constituent element. For example, a laminated glass can be formed by sandwiching a thermochromic film-glass composite formed by laminating a thermochromic film and glass or a pair of glass constituent members with glass. Thermochromic film-glass composite and laminated glass can be used for various applications. For example, it can be used for automobiles, railway vehicles, airplanes, ships and buildings.
 1 サーモクロミックフィルム
 2 透明基材(基材)
 3 光学機能層
 4 近赤外光遮蔽層
 B1 樹脂バインダー
 VO 一次粒子
 VO 二次粒子
1 Thermochromic film 2 Transparent base material (base material)
3 Optical functional layer 4 Near-infrared light shielding layer B1 Resin binder VO S primary particle VO M secondary particle

Claims (12)

  1.  サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であることを特徴とするサーモクロミックフィルム。 A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, wherein the optical functional layer contains a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ), and A thermochromic film having a mass ratio value (P 1 / P 2 ) in the range of 0.3 to 10.0.
  2.  前記疎水性樹脂として、ウレタン樹脂を含有することを特徴とする請求項1に記載のサーモクロミックフィルム。 The thermochromic film according to claim 1, wherein the hydrophobic resin contains a urethane resin.
  3.  前記水溶性樹脂として、アミド基を有する樹脂を含有することを特徴とする請求項1又は請求項2に記載のサーモクロミックフィルム。 The thermochromic film according to claim 1 or 2, wherein the water-soluble resin contains a resin having an amide group.
  4.  前記アミド基を有する樹脂が、ポリビニルアセトアミドであることを特徴とする請求項3に記載のサーモクロミックフィルム。 The thermochromic film according to claim 3, wherein the resin having an amide group is polyvinylacetamide.
  5.  前記水溶性樹脂として、ゼラチンを含有することを特徴とする請求項1から請求項4までのいずれか一項に記載のサーモクロミックフィルム。 The thermochromic film according to any one of claims 1 to 4, wherein the water-soluble resin contains gelatin.
  6.  前記光学機能層が、分子量100~10000の範囲内である窒素含有化合物を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載のサーモクロミックフィルム。 The thermochromic film according to any one of claims 1 to 5, wherein the optical functional layer contains a nitrogen-containing compound having a molecular weight in the range of 100 to 10,000.
  7.  サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層に、有機金属化合物を含有することを特徴とするサーモクロミックフィルム。 A thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic, wherein the optical functional layer contains a water-soluble resin (P 1) and the hydrophobic resin (P 2), the A thermochromic film having a mass ratio value (P 1 / P 2 ) in a range of 0.3 to 10.0 and containing an organometallic compound in the optical functional layer.
  8.  前記有機金属化合物が、有機シラン化合物、有機チタン化合物及び有機ジルコニウム化合物から選ばれることを特徴とする請求項7に記載のサーモクロミックフィルム。 The thermochromic film according to claim 7, wherein the organometallic compound is selected from an organosilane compound, an organotitanium compound, and an organozirconium compound.
  9.  サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を基材上に有するサーモクロミックフィルムであって、前記光学機能層が、水溶性樹脂(P)と疎水性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内であり、前記光学機能層の厚さnに対して、前記二酸化バナジウム粒子の70質量%以上が、前記基材側からn/2の範囲に偏在することを特徴とするサーモクロミックフィルム。 A thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties on a substrate, wherein the optical functional layer comprises a water-soluble resin (P 1 ) and a hydrophobic resin (P 2 ). And the mass ratio value (P 1 / P 2 ) is in the range of 0.3 to 10.0, and 70% by mass of the vanadium dioxide particles with respect to the thickness n of the optical functional layer. The above is unevenly distributed in the range of n / 2 from the base material side.
  10.  請求項1から請求項6までのいずれか一項に記載のサーモクロミックフィルムとガラスとが積層してなることを特徴とするサーモクロミックフィルム-ガラス複合体。 A thermochromic film-glass composite comprising the thermochromic film according to any one of claims 1 to 6 and glass laminated.
  11.  サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有し、その質量比の値(P/P)が、0.3~10.0の範囲内である光学機能層形成用塗布液を塗布する工程を有することを特徴とするサーモクロミックフィルムの製造方法。 A method of manufacturing a thermochromic film producing thermochromic film having an optically functional layer containing vanadium dioxide particles exhibiting thermochromic aqueous emulsion and water-soluble resin containing a hydrophobic resin (P 2) (P 1 )), and a step of applying a coating solution for forming an optical functional layer whose mass ratio value (P 1 / P 2 ) is within a range of 0.3 to 10.0. A method for producing a thermochromic film.
  12.  サーモクロミック性を示す二酸化バナジウム粒子を含有する光学機能層を有するサーモクロミックフィルムを製造するサーモクロミックフィルムの製造方法であって、疎水性樹脂(P)を含有する水性エマルジョンと水溶性樹脂(P)とを含有する光学機能層形成用塗布液を塗布する工程と、光学機能層を高温高湿処理する工程を有するサーモクロミックフィルムの製造方法。
     
    A method for producing a thermochromic film for producing a thermochromic film having an optical functional layer containing vanadium dioxide particles exhibiting thermochromic properties, comprising an aqueous emulsion containing a hydrophobic resin (P 2 ) and a water-soluble resin (P 1 ) The manufacturing method of the thermochromic film which has the process of apply | coating the coating liquid for optical function layer formation containing, and the process of carrying out high-temperature high-humidity processing of an optical function layer.
PCT/JP2017/004903 2016-04-28 2017-02-10 Thermochromic film, production method thereof, and thermochromic film/glass composite WO2017187715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090147A JP2019108409A (en) 2016-04-28 2016-04-28 Thermochromic film, thermochromic film-glass composite, and manufacturing method of thermochromic film
JP2016-090147 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187715A1 true WO2017187715A1 (en) 2017-11-02

Family

ID=60160261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004903 WO2017187715A1 (en) 2016-04-28 2017-02-10 Thermochromic film, production method thereof, and thermochromic film/glass composite

Country Status (2)

Country Link
JP (1) JP2019108409A (en)
WO (1) WO2017187715A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548808B (en) * 2021-08-09 2022-11-18 济南大学 Modified vanadium dioxide three-layer composite film and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346260A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic film and thermochromic glass
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2012250879A (en) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd Thermochromic film, interlayer for laminated glass, laminated glass and pasting film
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2
WO2016052496A1 (en) * 2014-10-03 2016-04-07 コニカミノルタ株式会社 Optical film and process for producing optical film
JP2016075729A (en) * 2014-10-03 2016-05-12 コニカミノルタ株式会社 Optical film and production method of optical film
JP2017042703A (en) * 2015-08-25 2017-03-02 アイシン精機株式会社 Manufacturing method for vehicular vanadium dioxide pellicle and manufacturing method for laminate of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346260A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic film and thermochromic glass
JP2011136873A (en) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd Vanadium dioxide fine particles, manufacturing method and thermo-chromic film
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2012250879A (en) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd Thermochromic film, interlayer for laminated glass, laminated glass and pasting film
JP2013184091A (en) * 2012-03-06 2013-09-19 Kuraray Co Ltd Vo2 dispersion resin layer, method of manufacturing the same, laminate, and composition containing vo2
WO2016052496A1 (en) * 2014-10-03 2016-04-07 コニカミノルタ株式会社 Optical film and process for producing optical film
JP2016075729A (en) * 2014-10-03 2016-05-12 コニカミノルタ株式会社 Optical film and production method of optical film
JP2017042703A (en) * 2015-08-25 2017-03-02 アイシン精機株式会社 Manufacturing method for vehicular vanadium dioxide pellicle and manufacturing method for laminate of the same

Also Published As

Publication number Publication date
JP2019108409A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6365506B2 (en) Laminated polyester film
JP5119478B2 (en) Optical laminated film and adhesion modified substrate film for obtaining the same
JP6528809B2 (en) Laminated polyester film
KR20140038999A (en) Coating film
WO2017068948A1 (en) Thermochromic film and thermochromic composite
CN103796831A (en) Coated film
JP6747450B2 (en) Thermochromic film and thermochromic composite
JPWO2014024570A1 (en) Laminated polyester film
JP2017218593A (en) Laminated polyester film
WO2017187715A1 (en) Thermochromic film, production method thereof, and thermochromic film/glass composite
JP2010066301A (en) Laminated polyester film for light-diffusing sheet
JP5496386B2 (en) Light diffusion polyester film
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
JP6120936B1 (en) Adhesive polyester film laminate
JP4687952B2 (en) Optical laminated polyester film and method for producing the same
JP6531857B2 (en) Method of producing laminated polyester film
WO2017056897A1 (en) Thermochromic film and thermochromic composite body
WO2017126224A1 (en) Thermochromic film and thermochromic composite
JP2017193117A (en) Laminated polyester film
WO2017033533A1 (en) Thermochromic film and thermochromic composite
JP6085656B1 (en) Laminated polyester film
JP2019089342A (en) Laminate
WO2017138435A1 (en) Window film
JP6531715B2 (en) Laminated polyester film
TW201630749A (en) Coated film

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789004

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP