WO2020044882A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2020044882A1
WO2020044882A1 PCT/JP2019/028874 JP2019028874W WO2020044882A1 WO 2020044882 A1 WO2020044882 A1 WO 2020044882A1 JP 2019028874 W JP2019028874 W JP 2019028874W WO 2020044882 A1 WO2020044882 A1 WO 2020044882A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser device
metal member
heat
cooling member
Prior art date
Application number
PCT/JP2019/028874
Other languages
French (fr)
Japanese (ja)
Inventor
信一郎 能崎
真生 川口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2020044882A1 publication Critical patent/WO2020044882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the present disclosure relates to a semiconductor laser device having a semiconductor laser element.
  • semiconductor laser devices Since semiconductor laser devices have advantages such as long life, high efficiency, and small size, they are used as light sources in various fields such as optical disks, displays, vehicle-mounted headlamps, lighting, and laser processing devices. Above all, a semiconductor laser element used for a projector or a laser processing apparatus is required to have a high optical output exceeding 1 watt.
  • FIG. 16 is a diagram showing a semiconductor laser device 100 disclosed in Patent Document 1.
  • a semiconductor laser device 100 disclosed in Patent Document 1 has a semiconductor laser element 110, a heat spreader 120 disposed on the semiconductor laser element 110, and fixed to an upper surface of the heat spreader 120.
  • the semiconductor device includes a Peltier device 130, a heat spreader 140 disposed below the semiconductor laser device 110, and a Peltier device 150 fixed to a lower surface of the heat spreader 140.
  • the Peltier elements 130 and 150 as cooling members are disposed at positions retracted from the front end surface of the semiconductor laser element 110. For this reason, the heat diffusion cross-sectional area of the cooling member near the front end face of the semiconductor laser element 110 becomes narrow, and the heat near the front end face of the semiconductor laser element 110 cannot be efficiently radiated. As a result, the temperature in the vicinity of the front end face of the semiconductor laser device 110 increases, and the optical output decreases and the reliability decreases. As described above, in the semiconductor laser device 100 disclosed in Patent Document 1, the semiconductor laser element cannot be sufficiently cooled.
  • Patent Document 1 discloses the technique. In the semiconductor laser device 100, heat generated by the semiconductor laser element cannot be efficiently dissipated.
  • the present disclosure has been made in order to solve such a problem, and even when a high-power semiconductor laser element is used, a semiconductor laser that can efficiently radiate heat generated in the semiconductor laser element It is intended to provide a device.
  • one aspect of a semiconductor laser device is a semiconductor laser device that emits a laser beam, a first metal member disposed on an n side of the semiconductor laser device, and a semiconductor laser device.
  • a second metal member disposed on the p-side of the device; and a first cooling member connected to the first metal member, wherein the first cooling member protrudes from a front end surface of the semiconductor laser device. It has a protrusion.
  • the semiconductor laser device even when a high-power semiconductor laser device is used, heat generated by the semiconductor laser device can be efficiently radiated.
  • FIG. 1 is a perspective view of the semiconductor laser device according to the first embodiment.
  • FIG. 2 is a top view of the semiconductor laser device according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the semiconductor laser device according to the first embodiment along line III-III in FIG.
  • FIG. 4 is a perspective view showing a state where the first metal member and the first cooling member are removed from the semiconductor laser device according to the first embodiment.
  • FIG. 5 is an enlarged view of a region V surrounded by a broken line in FIG.
  • FIG. 6 is an enlarged cross-sectional view around the front part of the semiconductor laser device in the semiconductor laser device according to the first embodiment.
  • FIG. 7 is an enlarged sectional view of the semiconductor laser device according to the first embodiment.
  • FIG. 8 is a perspective view of the semiconductor laser device according to the second embodiment.
  • FIG. 9 is a sectional view of the semiconductor laser device according to the second embodiment.
  • FIG. 10 is an enlarged cross-sectional view around the front part of the semiconductor laser device in the semiconductor laser device according to the second embodiment.
  • FIG. 11 is a perspective view of the semiconductor laser device according to the third embodiment.
  • FIG. 12 is a sectional view of the semiconductor laser device according to the third embodiment.
  • FIG. 13 is an enlarged cross-sectional view around the front part of the semiconductor laser element in the semiconductor laser device according to the third embodiment.
  • FIG. 14 is a perspective view of a semiconductor laser device according to a modification of the third embodiment.
  • FIG. 15 is an enlarged sectional view of a semiconductor laser device according to a modification of the third embodiment.
  • FIG. 16 is a diagram illustrating a semiconductor laser device disclosed in Patent Document 1.
  • the X axis, the Y axis, and the Z axis represent three axes of a three-dimensional rectangular coordinate system. Therefore, the X axis and the Y axis are axes orthogonal to each other and both are orthogonal to the Z axis.
  • FIG. 1 is a perspective view of a semiconductor laser device 1 according to the first embodiment.
  • FIG. 2 is a top view of the semiconductor laser device 1.
  • FIG. 3 is a cross-sectional view of the semiconductor laser device 1 taken along line III-III in FIG.
  • FIG. 4 is a perspective view showing the semiconductor laser device 1 with the first metal member 20 and the first cooling member 30 removed.
  • FIG. 5 is an enlarged view of a region V surrounded by a broken line in FIG.
  • FIG. 6 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1.
  • the semiconductor laser device 1 includes a semiconductor laser element 10 for emitting laser light, a first metal member 20 and a first cooling member 30 arranged on one side of the semiconductor laser element 10. , A second metal member 40 and a second cooling member 50 arranged on the other side of the semiconductor laser device 10, and a spacer 60.
  • the first metal member 20 and the first cooling member 30 are heat radiation structures disposed on the n-side (n-type semiconductor layer side) of the semiconductor laser device 10. Further, the second metal member 40 and the second cooling member 50 are heat dissipation structures disposed on the p-side (p-type semiconductor layer side) of the semiconductor laser device 10.
  • the semiconductor laser element 10 is an LD (laser diode) chip.
  • the semiconductor laser element 10 is a high-output type semiconductor laser chip, and has, for example, a multi-emitter structure having a plurality of emitters (light emitting points).
  • the semiconductor laser device 10 emits a laser beam on one surface of a semiconductor substrate 11 such as a GaN substrate, the n-type semiconductor layer 12 being a first cladding layer.
  • a light emitting layer 13 (active layer) and a p-type semiconductor layer 14 as a second clad layer having a plurality of ridge portions are sequentially formed.
  • a contact layer 15 and a p-side electrode 16 are formed on each ridge of the p-type semiconductor layer 14.
  • An n-side electrode 17 is formed on the other surface of the semiconductor substrate 11.
  • the n-type semiconductor layer 12, the light emitting layer 13, and the p-type semiconductor layer 14 constitute an optical waveguide.
  • the p-side electrode 16 and the n-side electrode 17 are electrodes for passing a current through the light emitting layer 13.
  • the semiconductor laser device 10 has a double-sided electrode structure in which the p-side electrode 16 and the n-side electrode 17 are located on different surfaces of the semiconductor substrate 11.
  • an insulating layer (current blocking layer) made of SiO 2 or the like is formed on portions (flat portions and side surfaces of the ridge portion) other than the upper surface of the ridge portion of the p-type semiconductor layer 14.
  • the wavelength range of the laser light emitted from the semiconductor laser device 10 is not particularly limited, but is in a range from blue-violet to infrared. As an example, the semiconductor laser device 10 emits blue laser light.
  • the semiconductor laser device 10 is disposed on the second metal member 40 as shown in FIGS. Specifically, it is mounted on a submount 70 arranged in a concave portion 40 a provided in the second metal member 40.
  • the semiconductor laser device 10 is mounted on the submount 70 by junction-down mounting. That is, the semiconductor laser device 10 is mounted such that the light emitting layer 13 of the light emitting layer 13 and the semiconductor substrate 11 of the semiconductor laser device 10 is located on the second metal member 40 side. Specifically, the semiconductor laser device 10 is mounted such that the p-side electrode 16 of the p-side electrode 16 and the n-side electrode 17 is located on the second metal member 40 side.
  • the submount 70 has a main body 71 and a metal layer 72 formed on the surface of the main body 71.
  • the main body 71 is made of a material having a higher thermal conductivity than the second metal member 40.
  • the main body 71 may be either insulating or conductive.
  • the main body 71 is made of single-crystal diamond, polycrystalline diamond, single-crystal silicon carbide (SiC), polycrystalline silicon carbide (SiC), aluminum nitride (AlN), copper diamond, silver diamond, copper tungsten ( It is made of a laminated material such as CuW) or copper / AlN / copper, but is not limited thereto.
  • the metal layer 72 is made of a conductive material such as a metal material.
  • the metal layer 72 is an Au thin film layer made of gold.
  • the shape of the submount 70 is a substantially rectangular parallelepiped. Specifically, the submount 70 has a rectangular plate shape.
  • the semiconductor laser device 10 mounted on the submount 70 is sandwiched between the first metal member 20 and the second metal member 40. That is, the semiconductor laser device 10 is located between the first metal member 20 and the second metal member 40. Further, the semiconductor laser device 10 is electrically connected to each of the first metal member 20 and the second metal member 40.
  • the semiconductor laser element 10 and the first metal member 20 are joined by a first joining member 81 made of a solder material, a ductile metal or the like.
  • the first bonding member 81 is inserted between the n-side electrode 17 of the semiconductor laser device 10 and the first metal member 20.
  • the n-side electrode 17 of the semiconductor laser device 10 and the first metal member 20 are electrically connected.
  • a conductive member other than the first bonding member 81 may exist between the semiconductor laser element 10 and the first metal member 20.
  • the semiconductor laser device 10 and the submount 70 are joined by a second joining member 82 made of AuSn or the like and made of a solder material.
  • the p-side electrode 16 of the semiconductor laser device 10 and the metal layer 72 of the submount 70 are joined by the second joining member 82.
  • the semiconductor laser device 10 and the submount 70 fixed, but also the p-side electrode 16 of the semiconductor laser device 10 and the metal layer 72 of the submount 70 are electrically connected.
  • a conductive member other than the second bonding member 82 may exist between the semiconductor laser element 10 and the second metal member 40.
  • the submount 70 when the submount 70 is insulative, the submount 70 and the second metal member 40 are electrically connected by a gold wire or a solder material.
  • the p-side electrode 16 of the semiconductor laser device 10 and the second metal member 40 can be electrically connected via the submount 70.
  • the metal layer 72 of the submount 70 and the recess 40a of the second metal member 40 may be wire-bonded with the gold wire.
  • the semiconductor laser element 10 is disposed on the submount 70 such that the front end face, which is the laser light emission side end face, is flush with the front end face of the submount 70, but the front end face of the semiconductor laser element 10 is , May protrude from the front end face of the submount 70 or may recede from the front end face of the submount 70.
  • the front end face of the semiconductor laser element 10 is protruding from the front end face of the submount 70, it is possible to suppress the laser light emitted from the semiconductor laser element 10 from being blocked (reflected) by the submount 70.
  • the first metal member 20 and the second metal member 40 are radiators (heat sinks) for dissipating heat generated in the semiconductor laser element 10, and are conductive members forming a current path through which a current supplied to the semiconductor laser element 10 flows. Body. Therefore, the first metal member 20 and the second metal member 40 are preferably made of a metal material having excellent heat conductivity. In the present embodiment, first metal member 20 and second metal member 40 are made of copper. Specifically, the first metal member 20 and the second metal member 40 are copper blocks. The surface of the copper block may be plated with gold.
  • the front end face of the first metal member 20 and the front end face of the second metal member 40 are flush. Further, as shown in FIG. 2, the side end surface of the first metal member 20 and the side end surface of the second metal member 40 are also flush. The front end face of the semiconductor laser device 10 and the front end face of the submount 70 are flush with the front end face of the first metal member 20 and the front end face of the second metal member 40.
  • the first metal member 20 is arranged on the n side of the semiconductor laser device 10. Specifically, the first metal member 20 is arranged so as to face the n-side electrode 17 of the semiconductor laser device 10. In the present embodiment, the first metal member 20 is disposed above the semiconductor laser device 10. As shown in FIG. 2, a first electrode terminal 21 for supplying power to the first metal member 20 is provided at a rear end of the first metal member 20. For example, a power supply line is connected to the first electrode terminal 21. At this time, since the distance between the electrode terminal 21 and the first cooling member 30 is shorter than the distance between the first electrode terminal 21 and the semiconductor laser device 10, the heat generated due to the contact resistance at the first electrode terminal 21 is less. It does not reach the semiconductor laser device 10.
  • the second metal member 40 is arranged at a position facing the first metal member 20.
  • the second metal member 40 is arranged on the p side of the semiconductor laser device 10. Specifically, the second metal member 40 is arranged so as to face the p-side electrode 16 of the semiconductor laser device 10. In the present embodiment, the second metal member 40 is disposed below the semiconductor laser device 10.
  • a second electrode terminal 41 for supplying power to the second metal member 40 is provided at a rear end of the second metal member 40. For example, a power supply line is connected to the second electrode terminal 41.
  • the second metal member 40 has the concave portion 40a on the surface facing the first metal member 20.
  • the concave portion 40a is a concave portion having a shape in which a part of the surface of the second metal member 40 is thinned and dented, and is formed at a central portion on one end side of the upper surface of the second metal member 40. I have.
  • the concave portion 40a is a concave portion having a rectangular shape in plan view and a constant depth. Note that the bottom surface of the concave portion 40a is a flat surface.
  • a submount 70 on which the semiconductor laser device 10 is mounted is joined to the bottom surface of the concave portion 40a. That is, the surface of the submount 70 opposite to the surface to which the semiconductor laser element 10 is bonded faces the bottom surface of the concave portion 40a.
  • the first metal member 20 is overlaid on the second metal member 40 so as to cover the second metal member 40.
  • the spacer 60 is an insulator that insulates and separates the first metal member 20 and the second metal member 40.
  • the spacer 60 is, for example, a rectangular insulating sheet, and is disposed on the surface of the second metal member 40 so as to avoid the recess 40 a of the second metal member 40.
  • the first metal member 20 and the second metal member 40 that are overlapped with the spacer 60 interposed therebetween are fixed by, for example, bolts (not shown). Therefore, the spacer 60 is pressed by the first metal member 20 and the second metal member 40.
  • the first metal member 20 and the second metal member 40 sandwiching the semiconductor laser element 10 are sandwiched between the first cooling member 30 and the second cooling member 50.
  • the first cooling member 30 and the second cooling member 50 are coolers for cooling the first metal member 20 and the second metal member 40.
  • the first cooling member 30 has a portion arranged on the n-side of the semiconductor laser device 10. Specifically, the first cooling member 30 has a portion arranged on the n-side electrode 17 side of the semiconductor laser device 10. More specifically, the first cooling member 30 has a portion disposed on the first metal member 20, and is connected to the first metal member 20.
  • the first cooling member 30 has a first heat transport body 31, a heat absorber 32, and a waste heat body 33.
  • the first heat transporter 31 transports the heat absorbed by the heat absorber 32 to the heat exchanger 33.
  • the first heat transport body 31 has a hollow body 31a and a heat transport liquid 31b sealed in the hollow body 31a.
  • the first heat transport body 31 is a heat pipe.
  • the first heat transport body 31 has, as the hollow body 31a, a sealed long pipe (such as a copper pipe) made of a metal material or the like, and water or alternative fluorocarbon as the heat transport liquid 31b. And the like.
  • the first heat transport body 31 (heat pipe) is bent in an L shape.
  • the heat absorber 32 is a heat absorbing member that absorbs heat from the first metal member 20.
  • the heat absorber 32 is made of metal.
  • the heat absorber 32 is arranged on the first metal member 20 and is connected to the first metal member 20. Specifically, the heat absorber 32 and the first metal member 20 are in surface contact.
  • the heat absorber 32 is provided at one end of the first heat transport body 31. Specifically, the heat absorber 32 is provided so as to cover one end of the first heat transporter 31.
  • the heat-dissipating body 33 is a heat-discharging member that absorbs the heat absorbed by the heat-absorbing body 32 and discharges the heat transported by the first heat transport body 31 to the outside.
  • the heat discharging body 33 is made of metal.
  • the heat discharging body 33 is provided at the other end of the first heat transporting body 31.
  • the exhaust heat body 33 is provided so as to cover the other end of the first heat transport body 31.
  • the heat discharging body 33 is physically connected to the second metal member 40, but is electrically insulated from the second metal member 40.
  • an insulating sheet or grease is inserted between the heat discharging body 33 and the second metal member 40.
  • the semiconductor laser device 1 configured as described above emits a laser beam when connected to an external power supply.
  • power is supplied to the first electrode terminal 21 of the first metal member 20 and the second electrode terminal 41 of the second metal member 40 via a power supply line.
  • a current flows through the semiconductor laser device 1.
  • the flow flows in the order of the second metal member 40 ⁇ the submount 70 (metal layer 72) ⁇ the semiconductor laser device 10 ⁇ the first metal member 20.
  • the semiconductor laser device 10 generates heat.
  • the temperature at the front end face from which the laser light is emitted is higher than that at the rear end face.
  • the first cooling member 30 has the first protrusion 30a protruding from the front end surface of the semiconductor laser device 10. Further, the first protruding portion 30 a also protrudes from the front end surface of the first metal member 20. That is, the first cooling member 30 has a structure protruding from the semiconductor laser element 10 and the first metal member 20.
  • the first cooling member 30 is connected to the first metal member 20 arranged on the n-side of the semiconductor laser device 10, and the first projection protruding from the front end surface of the semiconductor laser device 10 to the first cooling member 30.
  • the heat diffusion cross-sectional area of heat generated near the front end face of semiconductor laser device 10 can be increased.
  • the heat in the vicinity of the front end face of the semiconductor laser device 10 can be efficiently radiated, so that the temperature of the entire semiconductor laser device 10 can be reduced.
  • the semiconductor laser device 1 even when a high-output type semiconductor laser device 10 is used, heat generated in the semiconductor laser device 10 can be effectively radiated. .
  • the distal end of one end of the first heat transport body 31 and the distal end of the heat absorber 32 are included in the first protrusion 30a. That is, the tip of one end of the first heat transport body 31 and the tip of the heat absorber 32 project from the front end face of the semiconductor laser device 10.
  • the first cooling member 30 has a first heat transport body 31 having substantially a cooling function and a distal end portion of a heat absorbing body 32 having substantially a function of absorbing heat of the first metal member 20, and is connected to the semiconductor laser device. 10 can protrude from the front end surface. Therefore, heat near the front end face of the semiconductor laser device 10 can be more efficiently radiated.
  • the second cooling member 50 has a portion arranged on the p side of the semiconductor laser device 10. Specifically, the entire second cooling member 50 is arranged on the p-side electrode 16 side of the semiconductor laser device 10. More specifically, the second cooling member 50 is arranged below the second metal member 40 and is connected to the second metal member 40.
  • the second cooling member 50 has a second heat transport body 51 which is a water cooling mechanism such as a water cooling jacket.
  • the second heat transport body 51 absorbs heat from the second metal member 40 and discharges the heat to the outside.
  • the second heat transport body 51 has a hollow body 51a and a heat transport liquid 51b sealed in the hollow body 51a.
  • the second heat transport body 51 has a metal member having a flow path as the hollow body 51a, and has a cooling medium such as water (refrigerant) or antifreeze as the heat transport liquid 51b.
  • the second cooling member 50 has a second protruding portion 50a protruding from the front end face of the semiconductor laser device 10.
  • the second protrusion 50a further protrudes from the front end surface of the second metal member 40. That is, similarly to the first cooling member 30, the second cooling member 50 has a structure protruding from the semiconductor laser element 10 and the second metal member 40.
  • the second cooling member 50 is connected to the second metal member 40 disposed on the p-side of the semiconductor laser device 10, and the second projection protruding from the front end surface of the semiconductor laser device 10 is connected to the second cooling member 50.
  • the second cooling member 50 By providing 50a, not only the n-side but also the p-side of the semiconductor laser device 10 can increase the heat diffusion cross-sectional area of the heat generated near the front end face of the semiconductor laser device 10. Thereby, the heat in the vicinity of the front end face of the semiconductor laser device 10 can be more efficiently radiated.
  • the tip of the second heat transport body 51 of the second cooling member 50 is included in the second protrusion 50a. That is, the tip of the second heat transport body 51 protrudes from the front end face of the semiconductor laser device 10.
  • the distal end of the second heat transport body 51 having substantially the cooling function in the second cooling member 50 can be made to protrude from the front end surface of the semiconductor laser device 10. Therefore, heat in the vicinity of the front end face of the semiconductor laser device 10 can be more efficiently radiated.
  • FIG. 7 is an enlarged sectional view of the semiconductor laser device 1 according to the first embodiment.
  • the spread angle ⁇ of the laser light emitted from the semiconductor laser element 10 is such that the laser light spreads with respect to an extension of the optical waveguide (specifically, the center of the light emitting layer 13) of the semiconductor laser element 10. It is an angle.
  • the spread angle ⁇ is an angle at which the intensity of light emitted from the front end face (light emission surface) of the semiconductor laser device 10 becomes ⁇ ⁇ ⁇ ⁇ of the maximum intensity.
  • first cooling member 30 and the second cooling member 50 may satisfy the following conditions.
  • the distance from the connection surface between the first metal member 20 and the first cooling member 30 to the first heat transport body 31 of the first cooling member 30 is d11, and Assuming that the distance from the front end face to the tip of the first protruding portion 30a of the first cooling member 30 is L1, it is preferable that the following formula (1) is satisfied.
  • the connection surface between first metal member 20 and first cooling member 30 is the upper surface of first metal member 20 and the lower surface of first cooling member 30 (specifically, Surface).
  • the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 7) orthogonal to the first direction (x direction in FIG. 7) from which the laser light is emitted.
  • the distance between the laser beam and the first cooling member 30 is d12
  • the divergence angle ⁇ of the laser light emitted from the semiconductor laser device 10 and the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
  • the distance from the connection surface between the second metal member 40 and the second cooling member 50 to the second heat transport body 51 of the second cooling member 50 is d21, and the semiconductor laser element Assuming that the distance from the front end surface of the second cooling member 50 to the tip of the second protruding portion 50a of the second cooling member 50 is L2, it is preferable that the following formula (3) is satisfied.
  • the connection surface between the second metal member 40 and the second cooling member 50 is the lower surface of the second metal member 40 and the upper surface of the second cooling member 50.
  • the second metal member 40 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 7) orthogonal to the first direction (x direction in FIG. 7) from which the laser light is emitted.
  • the divergence angle ⁇ of the laser beam emitted from the semiconductor laser device 10 and the distance L2 and the distance d22 have the following relationship (Equation 4). Good to meet.
  • FIG. 8 is a perspective view of a semiconductor laser device 1A according to the second embodiment.
  • FIG. 9 is a sectional view of the semiconductor laser device 1A.
  • FIG. 10 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1A.
  • the semiconductor laser device 1A according to the present embodiment is different from the semiconductor laser device 1 according to the first embodiment in the configuration of the first cooling member.
  • the first cooling member 30 has a configuration including a heat pipe
  • the semiconductor laser device 1A according to the present embodiment has a first heat transport body 31A that is a water cooling mechanism such as a water cooling jacket. That is, in the semiconductor laser device 1A of the present embodiment, both the first cooling member 30A and the second cooling member 50 have a water cooling mechanism, and both the upper and lower sides of the semiconductor laser element 10 are cooled by the water cooling mechanism.
  • the configuration other than the first cooling member is the same as the configuration of the semiconductor laser device 1A of the present embodiment and the semiconductor laser device 1 of the first embodiment.
  • the first heat transporter 31A of the first cooling member 30A absorbs heat from the first metal member 20 and discharges the heat to the outside.
  • the first heat transport body 31A has a hollow body 31Aa and a heat transport liquid 31Ab sealed in the hollow body 31Aa, like the second heat transport body 51.
  • the first heat transport body 31A has a metal member having a flow path as the hollow body 31Aa, and has a cooling medium such as water (refrigerant) or antifreeze as the heat transport liquid 31Ab.
  • the first cooling member 30A has the first protrusion 30a, heat near the front end face of the semiconductor laser element 10 can be efficiently radiated. . As a result, it is possible to suppress a decrease in optical output and a decrease in reliability of the semiconductor laser device 10, and to improve device characteristics of the semiconductor laser device 10.
  • second cooling member 50 since second cooling member 50 has second projecting portion 50a, heat near the front end face of semiconductor laser element 10 can be more efficiently radiated. it can.
  • the first cooling member 30A may satisfy the following conditions, similarly to the first cooling member 30 of the semiconductor laser device 1 of the first embodiment. .
  • the distance from the connection surface between the first metal member 20 and the first cooling member 30A to the first heat transporter 31A of the first cooling member 30A is d11, and the distance from the front end face of the semiconductor laser device 10 to the first Assuming that the distance to the tip of the first protrusion 30a of the cooling member 30A is L1, it is preferable that the following expression (1) is satisfied.
  • the connection surface between first metal member 20 and first cooling member 30A is the upper surface of first metal member 20 and the lower surface of first cooling member 30A.
  • the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 10) orthogonal to the first direction (x direction in FIG. 10) from which the laser light is emitted.
  • the distance between the laser beam and the first cooling member 30A is d12
  • the divergence angle ⁇ of the laser light emitted from the semiconductor laser device 10 and the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
  • the second cooling member 50 preferably satisfies the relations of the above (Equation 3) and (Equation 4) as in the first embodiment.
  • FIG. 11 is a perspective view of a semiconductor laser device 1B according to the third embodiment.
  • FIG. 12 is a sectional view of the semiconductor laser device 1B.
  • FIG. 13 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1B.
  • the semiconductor laser device 1B according to the present embodiment is different from the semiconductor laser device 1 according to the first embodiment in the configuration of the first cooling member and the second cooling member.
  • the first cooling member 30 includes the first heat transport body 31 and the second cooling member 50 includes the second heat transport body 51.
  • each of the first cooling member 30B and the second cooling member 50B is configured only by a metal member.
  • the first cooling member 30B and the second cooling member 50B are configured by a metal block such as a copper block. That is, in the present embodiment, not only the first metal member 20 and the second metal member 40 sandwiching the semiconductor laser element 10 are constituted by metal blocks, but also the first cooling member 30B and the second cooling member 50B are made of metal. It is composed of blocks. In other respects, the configuration of the semiconductor laser device 1B of the present embodiment is the same as that of the semiconductor laser device 1 of the first embodiment.
  • the first cooling member 30B has the first protrusion 30a, heat near the front end face of the semiconductor laser element 10 can be efficiently radiated. . As a result, it is possible to suppress a decrease in optical output and a decrease in reliability of the semiconductor laser device 10, and to improve device characteristics of the semiconductor laser device 10.
  • second cooling member 50B since second cooling member 50B has second projecting portion 50a, heat near the front end face of semiconductor laser element 10 can be more efficiently radiated. it can.
  • the first cooling member 30B and the second cooling member 50B are the same as the first cooling member 30 and the second cooling member 50 of the semiconductor laser device 1 of the first embodiment. Similarly, the following conditions should be satisfied.
  • the distance from the connection surface between the first metal member 20 and the first cooling member 30B to the upper surface of the first cooling member 30B is d13
  • the distance from the front end surface of the semiconductor laser device 10 to the first cooling member 30B is Assuming that the distance to the tip of the one protrusion 30a is L1, it is preferable that the following relationship (Equation 5) is satisfied.
  • the connection surface between first metal member 20 and first cooling member 30B is the upper surface of first metal member 20 and the lower surface of first cooling member 30B. That is, the distance d13 is the thickness of the first cooling member 30B.
  • the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 13) orthogonal to the first direction (x direction in FIG. 13) from which the laser light is emitted.
  • the distance from the laser beam to the connecting surface between the first cooling member 30B and the first cooling member 30B is d12
  • the spread angle ⁇ of the laser light emitted from the semiconductor laser device 10 the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
  • the distance from the connection surface between the second metal member 40 and the second cooling member 50B to the second cooling member 50B is d23
  • the distance from the front end surface of the semiconductor laser device 10 to the second cooling member 50B is d23.
  • the connection surface between second metal member 40 and second cooling member 50B is the lower surface of second metal member 40 and the upper surface of second cooling member 50B. That is, the distance d23 is the thickness of the second cooling member 50B.
  • the second metal member 40 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 13) orthogonal to the first direction (x direction in FIG. 13) from which the laser light is emitted.
  • the divergence angle ⁇ of the laser light emitted from the semiconductor laser element 10 and the distance L2 and the distance d22 have the following relationship (Equation 4). Good to meet.
  • the inclined surface 30b is formed on the lower surface (the surface on the semiconductor laser element 10 side) of the first protrusion 30a of the first cooling member 30B. It may be.
  • the inclined surface 30b is formed such that the thickness of the first protrusion 30a gradually decreases toward the tip of the first protrusion 30a.
  • the inclination angle ⁇ of the inclined surface 30b is cut so that the first cooling member 30B is inclined with respect to the extension of the optical waveguide of the semiconductor laser device 10 (specifically, the center of the light emitting layer 13). It is an angle.
  • the semiconductor laser device 10 has a multi-emitter structure having a plurality of light-emitting points, but is not limited thereto, and may have a single-emitter structure having one light-emitting point.
  • a semiconductor laser array in which a plurality of semiconductor laser chips having a single emitter structure are arranged may be used as the semiconductor laser element.
  • the semiconductor laser device 10 has a ridge stripe structure, but is not limited thereto, and may have an electrode stripe structure.
  • the semiconductor laser element 10 is mounted (junction down mounting) so that the p-side electrode 16 faces the submount 70 (downward).
  • the present invention is not limited to this. 16 (junction-up mounting) so that 16 is on the submount 70 side (upward).
  • the semiconductor laser element 10 is used as the light source.
  • another semiconductor light emitting element such as a super luminescent diode (SLD: Super Luminescent Diode) is used. May be used.
  • SLD super luminescent diode
  • the semiconductor laser device has excellent heat radiation properties, and is used as a light source for image display used in projectors, etc., a processing light source used in laser processing devices, or an illumination light source used in industrial spot lighting and the like. And is particularly useful as a light source for equipment requiring relatively high light output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor laser device (1) according to the present invention is provided with a semiconductor laser element (10) which emits laser light, a first metal member (20) which is arranged on the n-side of the semiconductor laser element (10), a second metal member (40) which is arranged on the p-side of the semiconductor laser element (10), and a first cooling member (30) which is connected to the first metal member (20); and the first cooling member (30) has a first projection part (30a) which protrudes from the front end face of the semiconductor laser element (10).

Description

半導体レーザ装置Semiconductor laser device
 本開示は、半導体レーザ素子を有する半導体レーザ装置に関する。 The present disclosure relates to a semiconductor laser device having a semiconductor laser element.
 なお、本願は、平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構 「高輝度・高効率次世代レーザー技術開発/次々世代加工に向けた新規光源・要素技術開発/高効率加工用GaN系高出力・高ビーム品質半導体レーザーの開発」委託研究、産業技術力強化法第17条の適用を受ける特許出願である。 This application was filed in FY2016 by the New Energy and Industrial Technology Development Organization “High-brightness, high-efficiency next-generation laser technology development / new light source / element technology development for next-generation processing / high-efficiency processing Development of GaN-based semiconductor laser with high power and high beam quality ”is a patent application subject to commissioned research and the application of Article 17 of the Industrial Technology Enhancement Law.
 半導体レーザ素子は、長寿命、高効率及び小型等のメリットがあるため、光ディスク、ディスプレイ、車載ヘッドランプ、照明又はレーザ加工装置等の様々な分野の光源として利用されている。中でも、プロジェクタ又はレーザ加工装置に用いられる半導体レーザ素子は、光出力が1ワットを大きく超える高出力化が望まれている。 Since semiconductor laser devices have advantages such as long life, high efficiency, and small size, they are used as light sources in various fields such as optical disks, displays, vehicle-mounted headlamps, lighting, and laser processing devices. Above all, a semiconductor laser element used for a projector or a laser processing apparatus is required to have a high optical output exceeding 1 watt.
 しかしながら、高出力の半導体レーザ素子では、半導体レーザ素子に流れる電流が大きくなる。この結果、半導体レーザ素子の発熱量が増加し、半導体レーザ素子の温度が上昇してレーザ光の出力が低下する。 However, in a high-power semiconductor laser device, the current flowing through the semiconductor laser device increases. As a result, the amount of heat generated by the semiconductor laser element increases, the temperature of the semiconductor laser element increases, and the output of laser light decreases.
 そこで、従来、半導体レーザ素子の放熱性を高めるために、半導体レーザ素子の上側及び下側の両方に冷却機構を設ける技術が提案されている(例えば特許文献1)。図16は、特許文献1に開示された半導体レーザ装置100を示す図である。 Therefore, conventionally, in order to enhance the heat dissipation of the semiconductor laser device, a technique of providing a cooling mechanism on both the upper side and the lower side of the semiconductor laser device has been proposed (for example, Patent Document 1). FIG. 16 is a diagram showing a semiconductor laser device 100 disclosed in Patent Document 1.
 図16に示すように、特許文献1に開示された半導体レーザ装置100は、半導体レーザ素子110と、半導体レーザ素子110の上に配置されたヒートスプレッダー120と、ヒートスプレッダー120の上面に固定されたペルチェ素子130と、半導体レーザ素子110の下に配置されたヒートスプレッダー140と、ヒートスプレッダー140の下面に固定されたペルチェ素子150とを備える。 As shown in FIG. 16, a semiconductor laser device 100 disclosed in Patent Document 1 has a semiconductor laser element 110, a heat spreader 120 disposed on the semiconductor laser element 110, and fixed to an upper surface of the heat spreader 120. The semiconductor device includes a Peltier device 130, a heat spreader 140 disposed below the semiconductor laser device 110, and a Peltier device 150 fixed to a lower surface of the heat spreader 140.
特開2002-353551号公報JP-A-2002-353551
 しかしながら、特許文献1に開示された半導体レーザ装置100では、冷却部材であるペルチェ素子130及び150が半導体レーザ素子110の前端面よりも後退した位置に配置されている。このため、半導体レーザ素子110の前端面近傍における冷却部材の熱拡散断面積が狭くなり、半導体レーザ素子110の前端面近傍の熱を効率よく放熱することができない。この結果、半導体レーザ素子110の前端面近傍の温度が上昇し、光出力が低下したり信頼性が低下したりする。このように、特許文献1に開示された半導体レーザ装置100では、半導体レーザ素子を十分に冷却することができない。 However, in the semiconductor laser device 100 disclosed in Patent Document 1, the Peltier elements 130 and 150 as cooling members are disposed at positions retracted from the front end surface of the semiconductor laser element 110. For this reason, the heat diffusion cross-sectional area of the cooling member near the front end face of the semiconductor laser element 110 becomes narrow, and the heat near the front end face of the semiconductor laser element 110 cannot be efficiently radiated. As a result, the temperature in the vicinity of the front end face of the semiconductor laser device 110 increases, and the optical output decreases and the reliability decreases. As described above, in the semiconductor laser device 100 disclosed in Patent Document 1, the semiconductor laser element cannot be sufficiently cooled.
 特に、高出力化のために、半導体レーザ素子として、複数の半導体レーザチップが並べられた半導体レーザアレイ又は複数のエミッタを有する半導体レーザチップが用いられた場合には、特許文献1に開示された半導体レーザ装置100では、半導体レーザ素子で発生する熱を効率よく放熱することができない。 In particular, in the case where a semiconductor laser element in which a plurality of semiconductor laser chips are arranged or a semiconductor laser chip having a plurality of emitters is used as a semiconductor laser element for increasing the output, Patent Document 1 discloses the technique. In the semiconductor laser device 100, heat generated by the semiconductor laser element cannot be efficiently dissipated.
 本開示は、このような課題を解決するためになされたものであり、高出力の半導体レーザ素子を用いる場合であっても、半導体レーザ素子で発生する熱を効率よく放熱することができる半導体レーザ装置を提供することを目的とする。 The present disclosure has been made in order to solve such a problem, and even when a high-power semiconductor laser element is used, a semiconductor laser that can efficiently radiate heat generated in the semiconductor laser element It is intended to provide a device.
 上記目的を達成するために、本開示に係る半導体レーザ装置の一態様は、レーザ光を出射する半導体レーザ素子と、前記半導体レーザ素子のn側に配置された第1金属部材と、前記半導体レーザ素子のp側に配置された第2金属部材と、前記第1金属部材に接続された第1冷却部材とを備え、前記第1冷却部材は、前記半導体レーザ素子の前端面から突出する第1突出部を有する。 In order to achieve the above object, one aspect of a semiconductor laser device according to the present disclosure is a semiconductor laser device that emits a laser beam, a first metal member disposed on an n side of the semiconductor laser device, and a semiconductor laser device. A second metal member disposed on the p-side of the device; and a first cooling member connected to the first metal member, wherein the first cooling member protrudes from a front end surface of the semiconductor laser device. It has a protrusion.
 本開示に係る半導体レーザ装置によれば、高出力の半導体レーザ素子を用いる場合であっても、半導体レーザ素子で発生する熱を効率よく放熱することができる。 According to the semiconductor laser device according to the present disclosure, even when a high-power semiconductor laser device is used, heat generated by the semiconductor laser device can be efficiently radiated.
図1は、実施の形態1に係る半導体レーザ装置の斜視図である。FIG. 1 is a perspective view of the semiconductor laser device according to the first embodiment. 図2は、実施の形態1に係る半導体レーザ装置の上面図である。FIG. 2 is a top view of the semiconductor laser device according to the first embodiment. 図3は、図2のIII-III線における実施の形態1に係る半導体レーザ装置の断面図である。FIG. 3 is a cross-sectional view of the semiconductor laser device according to the first embodiment along line III-III in FIG. 図4は、実施の形態1に係る半導体レーザ装置において、第1金属部材及び第1冷却部材を取り外した状態を示す斜視図である。FIG. 4 is a perspective view showing a state where the first metal member and the first cooling member are removed from the semiconductor laser device according to the first embodiment. 図5は、図4の破線で囲まれる領域Vの拡大図である。FIG. 5 is an enlarged view of a region V surrounded by a broken line in FIG. 図6は、実施の形態1に係る半導体レーザ装置における半導体レーザ素子の前方部周辺の拡大断面図である。FIG. 6 is an enlarged cross-sectional view around the front part of the semiconductor laser device in the semiconductor laser device according to the first embodiment. 図7は、実施の形態1に係る半導体レーザ装置の拡大断面図である。FIG. 7 is an enlarged sectional view of the semiconductor laser device according to the first embodiment. 図8は、実施の形態2に係る半導体レーザ装置の斜視図である。FIG. 8 is a perspective view of the semiconductor laser device according to the second embodiment. 図9は、実施の形態2に係る半導体レーザ装置の断面図である。FIG. 9 is a sectional view of the semiconductor laser device according to the second embodiment. 図10は、実施の形態2に係る半導体レーザ装置における半導体レーザ素子の前方部周辺の拡大断面図である。FIG. 10 is an enlarged cross-sectional view around the front part of the semiconductor laser device in the semiconductor laser device according to the second embodiment. 図11は、実施の形態3に係る半導体レーザ装置の斜視図である。FIG. 11 is a perspective view of the semiconductor laser device according to the third embodiment. 図12は、実施の形態3に係る半導体レーザ装置の断面図である。FIG. 12 is a sectional view of the semiconductor laser device according to the third embodiment. 図13は、実施の形態3に係る半導体レーザ装置における半導体レーザ素子の前方部周辺の拡大断面図である。FIG. 13 is an enlarged cross-sectional view around the front part of the semiconductor laser element in the semiconductor laser device according to the third embodiment. 図14は、実施の形態3の変形例に係る半導体レーザ装置の斜視図である。FIG. 14 is a perspective view of a semiconductor laser device according to a modification of the third embodiment. 図15は、実施の形態3の変形例に係る半導体レーザ装置の拡大断面図である。FIG. 15 is an enlarged sectional view of a semiconductor laser device according to a modification of the third embodiment. 図16は、特許文献1に開示された半導体レーザ装置を示す図である。FIG. 16 is a diagram illustrating a semiconductor laser device disclosed in Patent Document 1.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below shows a specific example of the present disclosure. Therefore, numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are merely examples and do not limit the present disclosure. Therefore, among the components in the following embodiments, components that are not described in the independent claims that indicate the highest concept of the present disclosure are described as arbitrary components.
 各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 図 Each drawing is a schematic diagram, and is not necessarily strictly illustrated. Therefore, the scale and the like do not always match in each figure. In each of the drawings, substantially the same components are denoted by the same reference numerals, and redundant description will be omitted or simplified.
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表している。したがって、X軸及びY軸は、互いに直交し、かつ、いずれもZ軸に直交する軸である。 In addition, in this specification and the drawings, the X axis, the Y axis, and the Z axis represent three axes of a three-dimensional rectangular coordinate system. Therefore, the X axis and the Y axis are axes orthogonal to each other and both are orthogonal to the Z axis.
 (実施の形態1)
 まず、実施の形態1に係る半導体レーザ装置1の構成について、図1~図6を用いて説明する。図1は、実施の形態1に係る半導体レーザ装置1の斜視図である。図2は、同半導体レーザ装置1の上面図である。図3は、図2のIII-III線における同半導体レーザ装置1の断面図である。図4は、同半導体レーザ装置1において、第1金属部材20及び第1冷却部材30を取り外した状態を示す斜視図である。図5は、図4の破線で囲まれる領域Vの拡大図である。図6は、同半導体レーザ装置1における半導体レーザ素子10の前方部周辺の拡大断面図である。
(Embodiment 1)
First, the configuration of the semiconductor laser device 1 according to the first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view of a semiconductor laser device 1 according to the first embodiment. FIG. 2 is a top view of the semiconductor laser device 1. FIG. 3 is a cross-sectional view of the semiconductor laser device 1 taken along line III-III in FIG. FIG. 4 is a perspective view showing the semiconductor laser device 1 with the first metal member 20 and the first cooling member 30 removed. FIG. 5 is an enlarged view of a region V surrounded by a broken line in FIG. FIG. 6 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1.
 図1~図3に示すように、半導体レーザ装置1は、レーザ光を出射する半導体レーザ素子10と、半導体レーザ素子10の一方側に配置された第1金属部材20及び第1冷却部材30と、半導体レーザ素子10の他方側に配置された第2金属部材40及び第2冷却部材50と、スペーサ60とを備える。 As shown in FIGS. 1 to 3, the semiconductor laser device 1 includes a semiconductor laser element 10 for emitting laser light, a first metal member 20 and a first cooling member 30 arranged on one side of the semiconductor laser element 10. , A second metal member 40 and a second cooling member 50 arranged on the other side of the semiconductor laser device 10, and a spacer 60.
 本実施の形態において、第1金属部材20及び第1冷却部材30は、半導体レーザ素子10のn側(n型半導体層側)に配置された放熱構造体である。また、第2金属部材40及び第2冷却部材50は、半導体レーザ素子10のp側(p型半導体層側)に配置された放熱構造体である。 In the present embodiment, the first metal member 20 and the first cooling member 30 are heat radiation structures disposed on the n-side (n-type semiconductor layer side) of the semiconductor laser device 10. Further, the second metal member 40 and the second cooling member 50 are heat dissipation structures disposed on the p-side (p-type semiconductor layer side) of the semiconductor laser device 10.
 半導体レーザ素子10は、LD(レーザダイオード)チップである。本実施の形態において、半導体レーザ素子10は、高出力タイプの半導体レーザチップであり、一例として、複数のエミッタ(発光点)を有するマルチエミッタ構造を有する。 The semiconductor laser element 10 is an LD (laser diode) chip. In the present embodiment, the semiconductor laser element 10 is a high-output type semiconductor laser chip, and has, for example, a multi-emitter structure having a plurality of emitters (light emitting points).
 具体的には、図6に示すように、半導体レーザ素子10は、GaN基板等の半導体基板11の一方の面の上に、第1クラッド層であるn型半導体層12、レーザ光を出射する発光層13(活性層)及び複数のリッジ部を有する第2クラッド層であるp型半導体層14が順次形成された構成である。p型半導体層14の各リッジ部の上にはコンタクト層15及びp側電極16が形成されている。また、半導体基板11の他方の面にはn側電極17が形成されている。n型半導体層12、発光層13及びp型半導体層14は、光導波路を構成している。また、p側電極16及びn側電極17は、発光層13に電流を流すための電極である。本実施の形態において、半導体レーザ素子10は、p側電極16及びn側電極17が半導体基板11の異なる面側に位置する両面電極構造を有する。なお、図示されていないが、p型半導体層14のリッジ部上面以外の部分(平坦部及びリッジ部の側面)にはSiO等からなる絶縁層(電流ブロック層)が形成されている。また、半導体レーザ素子10が出射するレーザ光の波長域は、特に限定されるものではないが、青紫色から赤外である。一例として、半導体レーザ素子10は、青色のレーザ光を発する。 Specifically, as shown in FIG. 6, the semiconductor laser device 10 emits a laser beam on one surface of a semiconductor substrate 11 such as a GaN substrate, the n-type semiconductor layer 12 being a first cladding layer. In this configuration, a light emitting layer 13 (active layer) and a p-type semiconductor layer 14 as a second clad layer having a plurality of ridge portions are sequentially formed. On each ridge of the p-type semiconductor layer 14, a contact layer 15 and a p-side electrode 16 are formed. An n-side electrode 17 is formed on the other surface of the semiconductor substrate 11. The n-type semiconductor layer 12, the light emitting layer 13, and the p-type semiconductor layer 14 constitute an optical waveguide. The p-side electrode 16 and the n-side electrode 17 are electrodes for passing a current through the light emitting layer 13. In the present embodiment, the semiconductor laser device 10 has a double-sided electrode structure in which the p-side electrode 16 and the n-side electrode 17 are located on different surfaces of the semiconductor substrate 11. Although not shown, an insulating layer (current blocking layer) made of SiO 2 or the like is formed on portions (flat portions and side surfaces of the ridge portion) other than the upper surface of the ridge portion of the p-type semiconductor layer 14. The wavelength range of the laser light emitted from the semiconductor laser device 10 is not particularly limited, but is in a range from blue-violet to infrared. As an example, the semiconductor laser device 10 emits blue laser light.
 半導体レーザ素子10は、図4及び図5示すように、第2金属部材40の上に配置されている。具体的には、第2金属部材40に設けられた凹部40aに配置されたサブマウント70に実装されている。 (4) The semiconductor laser device 10 is disposed on the second metal member 40 as shown in FIGS. Specifically, it is mounted on a submount 70 arranged in a concave portion 40 a provided in the second metal member 40.
 本実施の形態において、半導体レーザ素子10は、ジャンクションダウン実装によりサブマウント70に実装されている。つまり、半導体レーザ素子10は、半導体レーザ素子10の発光層13及び半導体基板11のうち発光層13の方が第2金属部材40側に位置するように実装されている。具体的には、半導体レーザ素子10は、p側電極16及びn側電極17のうちp側電極16が第2金属部材40側に位置するように実装されている。 In the present embodiment, the semiconductor laser device 10 is mounted on the submount 70 by junction-down mounting. That is, the semiconductor laser device 10 is mounted such that the light emitting layer 13 of the light emitting layer 13 and the semiconductor substrate 11 of the semiconductor laser device 10 is located on the second metal member 40 side. Specifically, the semiconductor laser device 10 is mounted such that the p-side electrode 16 of the p-side electrode 16 and the n-side electrode 17 is located on the second metal member 40 side.
 サブマウント70は、本体71と、本体71の表面に形成された金属層72とを有する。本体71は、第2金属部材40よりも熱伝導率が高い材料によって構成されている。本体71は、絶縁性及び導電性のいずれであってもよい。具体的には、本体71は、単結晶ダイヤモンド、多結晶ダイヤモンド、単結晶の炭化ケイ素(SiC)、多結晶の炭化ケイ素(SiC)、窒化アルミニウム(AlN)、銅ダイヤモンド、銀ダイヤモンド、銅タングステン(CuW)又は銅/AlN/銅といった積層材料等によって構成されているが、これに限定されるものではない。金属層72は、金属材料等の導電性材料によって構成されている。一例として、金属層72は、金からなるAu薄膜層である。なお、サブマウント70の形状は、略直方体である。具体的には、サブマウント70は、矩形の板状である。 The submount 70 has a main body 71 and a metal layer 72 formed on the surface of the main body 71. The main body 71 is made of a material having a higher thermal conductivity than the second metal member 40. The main body 71 may be either insulating or conductive. Specifically, the main body 71 is made of single-crystal diamond, polycrystalline diamond, single-crystal silicon carbide (SiC), polycrystalline silicon carbide (SiC), aluminum nitride (AlN), copper diamond, silver diamond, copper tungsten ( It is made of a laminated material such as CuW) or copper / AlN / copper, but is not limited thereto. The metal layer 72 is made of a conductive material such as a metal material. As an example, the metal layer 72 is an Au thin film layer made of gold. The shape of the submount 70 is a substantially rectangular parallelepiped. Specifically, the submount 70 has a rectangular plate shape.
 サブマウント70に実装された半導体レーザ素子10は、第1金属部材20及び第2金属部材40に挟持されている。つまり、半導体レーザ素子10は、第1金属部材20と第2金属部材40との間に位置している。また、半導体レーザ素子10は、第1金属部材20及び第2金属部材40の各々と電気的に接続される。 The semiconductor laser device 10 mounted on the submount 70 is sandwiched between the first metal member 20 and the second metal member 40. That is, the semiconductor laser device 10 is located between the first metal member 20 and the second metal member 40. Further, the semiconductor laser device 10 is electrically connected to each of the first metal member 20 and the second metal member 40.
 図3~図6に示すように、半導体レーザ素子10と第1金属部材20とは、半田材や延性のある金属等からなる第1接合部材81によって接合されている。具体的には、第1接合部材81は、半導体レーザ素子10のn側電極17と第1金属部材20との間に挿入されている。これにより、半導体レーザ素子10のn側電極17と第1金属部材20とが電気的に接続される。なお、半導体レーザ素子10と第1金属部材20との間には、第1接合部材81以外の導電部材が存在していてもよい。 As shown in FIGS. 3 to 6, the semiconductor laser element 10 and the first metal member 20 are joined by a first joining member 81 made of a solder material, a ductile metal or the like. Specifically, the first bonding member 81 is inserted between the n-side electrode 17 of the semiconductor laser device 10 and the first metal member 20. Thus, the n-side electrode 17 of the semiconductor laser device 10 and the first metal member 20 are electrically connected. Note that a conductive member other than the first bonding member 81 may exist between the semiconductor laser element 10 and the first metal member 20.
 図6に示すように、半導体レーザ素子10とサブマウント70とは、AuSn等からなる半田材等である第2接合部材82によって接合されている。具体的には、半導体レーザ素子10のp側電極16とサブマウント70の金属層72とが第2接合部材82によって接合されている。これにより、半導体レーザ素子10とサブマウント70とが固定されるだけではなく、半導体レーザ素子10のp側電極16とサブマウント70の金属層72とが電気的に接続される。なお、半導体レーザ素子10と第2金属部材40との間には、第2接合部材82以外の導電部材が存在していてもよい。 As shown in FIG. 6, the semiconductor laser device 10 and the submount 70 are joined by a second joining member 82 made of AuSn or the like and made of a solder material. Specifically, the p-side electrode 16 of the semiconductor laser device 10 and the metal layer 72 of the submount 70 are joined by the second joining member 82. Thus, not only is the semiconductor laser device 10 and the submount 70 fixed, but also the p-side electrode 16 of the semiconductor laser device 10 and the metal layer 72 of the submount 70 are electrically connected. Note that a conductive member other than the second bonding member 82 may exist between the semiconductor laser element 10 and the second metal member 40.
 また、図示されていないが、サブマウント70が絶縁性の場合、サブマウント70と第2金属部材40とは、金ワイヤ又は半田材等によって電気的に接続されている。これにより、半導体レーザ素子10のp側電極16と第2金属部材40とをサブマウント70を介して電気的に接続することができる。例えば、サブマウント70と第2金属部材40とを金ワイヤで接続する場合、サブマウント70の金属層72と第2金属部材40の凹部40aとを金ワイヤによってワイヤボンディングすればよい。 Although not shown, when the submount 70 is insulative, the submount 70 and the second metal member 40 are electrically connected by a gold wire or a solder material. Thus, the p-side electrode 16 of the semiconductor laser device 10 and the second metal member 40 can be electrically connected via the submount 70. For example, when connecting the submount 70 and the second metal member 40 with a gold wire, the metal layer 72 of the submount 70 and the recess 40a of the second metal member 40 may be wire-bonded with the gold wire.
 なお、半導体レーザ素子10は、レーザ光の出射側端面である前端面がサブマウント70の前端面と面一となるようにサブマウント70に配置されているが、半導体レーザ素子10の前端面は、サブマウント70の前端面よりも突出していてもよいし、サブマウント70の前端面から後退していてもよい。ただし、半導体レーザ素子10の前端面をサブマウント70の前端面よりも突出させることで、半導体レーザ素子10から出射したレーザ光がサブマウント70で遮蔽(反射)することを抑制できる。 The semiconductor laser element 10 is disposed on the submount 70 such that the front end face, which is the laser light emission side end face, is flush with the front end face of the submount 70, but the front end face of the semiconductor laser element 10 is , May protrude from the front end face of the submount 70 or may recede from the front end face of the submount 70. However, by protruding the front end face of the semiconductor laser element 10 from the front end face of the submount 70, it is possible to suppress the laser light emitted from the semiconductor laser element 10 from being blocked (reflected) by the submount 70.
 第1金属部材20及び第2金属部材40は、半導体レーザ素子10で発生する熱を放熱するための放熱体(ヒートシンク)であるとともに、半導体レーザ素子10に供給する電流が流れる電流経路をなす導電体である。したがって、第1金属部材20及び第2金属部材40は、熱伝導性に優れた金属材料によって構成されているとよい。本実施の形態において、第1金属部材20及び第2金属部材40は、銅によって構成されている。具体的には、第1金属部材20及び第2金属部材40は、銅ブロックである。なお、銅ブロックの表面には、金メッキが施されていてもよい。 The first metal member 20 and the second metal member 40 are radiators (heat sinks) for dissipating heat generated in the semiconductor laser element 10, and are conductive members forming a current path through which a current supplied to the semiconductor laser element 10 flows. Body. Therefore, the first metal member 20 and the second metal member 40 are preferably made of a metal material having excellent heat conductivity. In the present embodiment, first metal member 20 and second metal member 40 are made of copper. Specifically, the first metal member 20 and the second metal member 40 are copper blocks. The surface of the copper block may be plated with gold.
 図3に示すように、第1金属部材20の前端面と第2金属部材40の前端面とは面一である。また、図2に示すように、第1金属部材20の側端面と第2金属部材40の側端面とについても、面一となっている。また、半導体レーザ素子10の前端面及びサブマウント70の前端面は、第1金属部材20の前端面及び第2金属部材40の前端面と面一となっている。 (3) As shown in FIG. 3, the front end face of the first metal member 20 and the front end face of the second metal member 40 are flush. Further, as shown in FIG. 2, the side end surface of the first metal member 20 and the side end surface of the second metal member 40 are also flush. The front end face of the semiconductor laser device 10 and the front end face of the submount 70 are flush with the front end face of the first metal member 20 and the front end face of the second metal member 40.
 図1~図5に示すように、第1金属部材20は、半導体レーザ素子10のn側に配置されている。具体的には、第1金属部材20は、半導体レーザ素子10のn側電極17に対向するように配置されている。本実施の形態において、第1金属部材20は、半導体レーザ素子10の上方に配置されている。図2に示すように、第1金属部材20の後端部には、第1金属部材20に給電を行うための第1電極端子21が設けられている。第1電極端子21には、例えば給電線が接続される。このとき、第1電極端子21と半導体レーザ素子10との距離よりも電極端子21と第1冷却部材30との距離の方が短いため、第1電極端子21での接触抵抗によって発生する熱が半導体レーザ素子10に到達しない。 第 As shown in FIGS. 1 to 5, the first metal member 20 is arranged on the n side of the semiconductor laser device 10. Specifically, the first metal member 20 is arranged so as to face the n-side electrode 17 of the semiconductor laser device 10. In the present embodiment, the first metal member 20 is disposed above the semiconductor laser device 10. As shown in FIG. 2, a first electrode terminal 21 for supplying power to the first metal member 20 is provided at a rear end of the first metal member 20. For example, a power supply line is connected to the first electrode terminal 21. At this time, since the distance between the electrode terminal 21 and the first cooling member 30 is shorter than the distance between the first electrode terminal 21 and the semiconductor laser device 10, the heat generated due to the contact resistance at the first electrode terminal 21 is less. It does not reach the semiconductor laser device 10.
 図1~図5に示すように、第2金属部材40は、第1金属部材20と対向する位置に配置されている。第2金属部材40は、半導体レーザ素子10のp側に配置されている。具体的には、第2金属部材40は、半導体レーザ素子10のp側電極16に対向するように配置されている。本実施の形態において、第2金属部材40は、半導体レーザ素子10の下方に配置されている。図2に示すように、第2金属部材40の後端部には、第2金属部材40に給電を行うための第2電極端子41が設けられている。第2電極端子41には、例えば給電線が接続される。 第 As shown in FIGS. 1 to 5, the second metal member 40 is arranged at a position facing the first metal member 20. The second metal member 40 is arranged on the p side of the semiconductor laser device 10. Specifically, the second metal member 40 is arranged so as to face the p-side electrode 16 of the semiconductor laser device 10. In the present embodiment, the second metal member 40 is disposed below the semiconductor laser device 10. As shown in FIG. 2, a second electrode terminal 41 for supplying power to the second metal member 40 is provided at a rear end of the second metal member 40. For example, a power supply line is connected to the second electrode terminal 41.
 また、上記のように、第2金属部材40は、第1金属部材20と対向する面に凹部40aを有する。本実施の形態において、凹部40aは、第2金属部材40の表面の一部を薄肉で窪ませた形状の窪み部であり、第2金属部材40の上面の一端側の中央部に形成されている。一例として、凹部40aは、平面視形状が矩形で、深さが一定の窪み部である。なお、凹部40aの底面は、平面である。 As described above, the second metal member 40 has the concave portion 40a on the surface facing the first metal member 20. In the present embodiment, the concave portion 40a is a concave portion having a shape in which a part of the surface of the second metal member 40 is thinned and dented, and is formed at a central portion on one end side of the upper surface of the second metal member 40. I have. As an example, the concave portion 40a is a concave portion having a rectangular shape in plan view and a constant depth. Note that the bottom surface of the concave portion 40a is a flat surface.
 凹部40aの底面に、半導体レーザ素子10が実装されたサブマウント70が接合されている。つまり、サブマウント70の半導体レーザ素子10が接合された面とは反対側の面が凹部40aの底面に対面している。 (4) A submount 70 on which the semiconductor laser device 10 is mounted is joined to the bottom surface of the concave portion 40a. That is, the surface of the submount 70 opposite to the surface to which the semiconductor laser element 10 is bonded faces the bottom surface of the concave portion 40a.
 また、半導体レーザ素子10が実装されたサブマウント70を凹部40aに接合した後は、第2金属部材40を覆うようにして第1金属部材20を第2金属部材40に重ね合わせる。 {Circle around (4)} After the submount 70 on which the semiconductor laser element 10 is mounted is joined to the recess 40a, the first metal member 20 is overlaid on the second metal member 40 so as to cover the second metal member 40.
 このとき、第1金属部材20と第2金属部材40とは、スペーサ60を介して重ね合わされる。スペーサ60は、第1金属部材20と第2金属部材40とを絶縁分離する絶縁体である。図4に示すように、スペーサ60は、例えば矩形状の絶縁シートであり、第2金属部材40の凹部40aを避けるように第2金属部材40の表面に配置されている。なお、スペーサ60を介して重ね合わされた第1金属部材20と第2金属部材40とは、例えばボルト(不図示)によって締め付けられて固定される。このため、スペーサ60は、第1金属部材20と第2金属部材40とによって圧接される。 At this time, the first metal member 20 and the second metal member 40 are overlapped with the spacer 60 interposed therebetween. The spacer 60 is an insulator that insulates and separates the first metal member 20 and the second metal member 40. As shown in FIG. 4, the spacer 60 is, for example, a rectangular insulating sheet, and is disposed on the surface of the second metal member 40 so as to avoid the recess 40 a of the second metal member 40. The first metal member 20 and the second metal member 40 that are overlapped with the spacer 60 interposed therebetween are fixed by, for example, bolts (not shown). Therefore, the spacer 60 is pressed by the first metal member 20 and the second metal member 40.
 半導体レーザ素子10を挟む第1金属部材20及び第2金属部材40は、第1冷却部材30及び第2冷却部材50によって挟まれている。第1冷却部材30及び第2冷却部材50は、第1金属部材20及び第2金属部材40を冷却するための冷却器である。 The first metal member 20 and the second metal member 40 sandwiching the semiconductor laser element 10 are sandwiched between the first cooling member 30 and the second cooling member 50. The first cooling member 30 and the second cooling member 50 are coolers for cooling the first metal member 20 and the second metal member 40.
 第1冷却部材30は、半導体レーザ素子10のn側に配置された部分を有する。具体的には、第1冷却部材30は、半導体レーザ素子10のn側電極17側に配置された部分を有する。より具体的には、第1冷却部材30は、第1金属部材20の上に配置された部分を有しており、第1金属部材20に接続されている。 The first cooling member 30 has a portion arranged on the n-side of the semiconductor laser device 10. Specifically, the first cooling member 30 has a portion arranged on the n-side electrode 17 side of the semiconductor laser device 10. More specifically, the first cooling member 30 has a portion disposed on the first metal member 20, and is connected to the first metal member 20.
 図1~図3に示すように、本実施の形態において、第1冷却部材30は、第1熱輸送体31と、吸熱体32と、排熱体33とを有する。 As shown in FIGS. 1 to 3, in the present embodiment, the first cooling member 30 has a first heat transport body 31, a heat absorber 32, and a waste heat body 33.
 第1熱輸送体31は、吸熱体32で吸収した熱を排熱体33に輸送する。具体的には、図3に示すように、第1熱輸送体31は、中空体31aと、中空体31aに封入された熱輸送液31bとを有する。本実施の形態において、第1熱輸送体31は、ヒートパイプである。具体的には、第1熱輸送体31は、中空体31aとして、金属材料等からなる密閉された長尺状のパイプ(銅パイプ等)を有するとともに、熱輸送液31bとして、水又は代替フロン等の冷媒等からなる作動液を有する。なお、本実施の形態において、第1熱輸送体31(ヒートパイプ)は、L字状に折り曲げられている。 The first heat transporter 31 transports the heat absorbed by the heat absorber 32 to the heat exchanger 33. Specifically, as shown in FIG. 3, the first heat transport body 31 has a hollow body 31a and a heat transport liquid 31b sealed in the hollow body 31a. In the present embodiment, the first heat transport body 31 is a heat pipe. Specifically, the first heat transport body 31 has, as the hollow body 31a, a sealed long pipe (such as a copper pipe) made of a metal material or the like, and water or alternative fluorocarbon as the heat transport liquid 31b. And the like. In the present embodiment, the first heat transport body 31 (heat pipe) is bent in an L shape.
 吸熱体32は、第1金属部材20から熱を吸収する熱吸収部材である。一例として、吸熱体32は、金属によって構成されている。吸熱体32は、第1金属部材20の上に配置されており、第1金属部材20に接続されている。具体的には、吸熱体32と第1金属部材20とは面接触している。また、吸熱体32は、第1熱輸送体31の一端に設けられている。具体的には、吸熱体32は、第1熱輸送体31の一端を覆うように設けられている。 (4) The heat absorber 32 is a heat absorbing member that absorbs heat from the first metal member 20. As an example, the heat absorber 32 is made of metal. The heat absorber 32 is arranged on the first metal member 20 and is connected to the first metal member 20. Specifically, the heat absorber 32 and the first metal member 20 are in surface contact. The heat absorber 32 is provided at one end of the first heat transport body 31. Specifically, the heat absorber 32 is provided so as to cover one end of the first heat transporter 31.
 排熱体33は、吸熱体32で吸収して第1熱輸送体31で輸送された熱を外部に排出する熱排出部材である。一例として、排熱体33は、金属によって構成されている。排熱体33は、第1熱輸送体31の他端に設けられている。具体的には、排熱体33は、第1熱輸送体31の他端を覆うように設けられている。本実施の形態において、排熱体33は、第2金属部材40に物理的に接続されているが、電気的には第2金属部材40と絶縁されている。例えば、排熱体33と第2金属部材40との間には絶縁シート又はグリースが挿入されている。 (4) The heat-dissipating body 33 is a heat-discharging member that absorbs the heat absorbed by the heat-absorbing body 32 and discharges the heat transported by the first heat transport body 31 to the outside. As an example, the heat discharging body 33 is made of metal. The heat discharging body 33 is provided at the other end of the first heat transporting body 31. Specifically, the exhaust heat body 33 is provided so as to cover the other end of the first heat transport body 31. In the present embodiment, the heat discharging body 33 is physically connected to the second metal member 40, but is electrically insulated from the second metal member 40. For example, an insulating sheet or grease is inserted between the heat discharging body 33 and the second metal member 40.
 以上のように構成される半導体レーザ装置1は、外部電源に接続されることでレーザ光を出射する。この場合、第1金属部材20の第1電極端子21及び第2金属部材40の第2電極端子41には、給電線を介して電力が供給される。これにより、半導体レーザ装置1に電流が流れる。具体的には、第2金属部材40→サブマウント70(金属層72)→半導体レーザ素子10→第1金属部材20の順に流れる。このとき、半導体レーザ素子10は、熱を発生する。特に、半導体レーザ素子10では、レーザ光が出射する前端面の方が後端面よりも高温になる。 The semiconductor laser device 1 configured as described above emits a laser beam when connected to an external power supply. In this case, power is supplied to the first electrode terminal 21 of the first metal member 20 and the second electrode terminal 41 of the second metal member 40 via a power supply line. Thereby, a current flows through the semiconductor laser device 1. Specifically, the flow flows in the order of the second metal member 40 → the submount 70 (metal layer 72) → the semiconductor laser device 10 → the first metal member 20. At this time, the semiconductor laser device 10 generates heat. In particular, in the semiconductor laser element 10, the temperature at the front end face from which the laser light is emitted is higher than that at the rear end face.
 そこで、本実施の形態における半導体レーザ装置1では、第1冷却部材30が、半導体レーザ素子10の前端面から突出する第1突出部30aを有している。また、第1突出部30aは、さらに、第1金属部材20の前端面からも突出している。つまり、第1冷却部材30は、半導体レーザ素子10及び第1金属部材20に対して突き出た構造になっている。 Therefore, in the semiconductor laser device 1 according to the present embodiment, the first cooling member 30 has the first protrusion 30a protruding from the front end surface of the semiconductor laser device 10. Further, the first protruding portion 30 a also protrudes from the front end surface of the first metal member 20. That is, the first cooling member 30 has a structure protruding from the semiconductor laser element 10 and the first metal member 20.
 このように、半導体レーザ素子10のn側に配置された第1金属部材20に第1冷却部材30を接続し、第1冷却部材30に半導体レーザ素子10の前端面から突出する第1突出部30aを設けることによって、半導体レーザ素子10の前端面近傍で発生する熱の熱拡散断面積を広くすることができる。これにより、半導体レーザ素子10の前端面近傍の熱を効率よく放熱することができるので、半導体レーザ素子10全体の温度を下げることができる。この結果、半導体レーザ素子10の光出力が低下したり信頼性が低下したりすることを抑制することができる。したがって、半導体レーザ素子10のデバイス特性を向上させることができる。 As described above, the first cooling member 30 is connected to the first metal member 20 arranged on the n-side of the semiconductor laser device 10, and the first projection protruding from the front end surface of the semiconductor laser device 10 to the first cooling member 30. By providing 30a, the heat diffusion cross-sectional area of heat generated near the front end face of semiconductor laser device 10 can be increased. Thereby, the heat in the vicinity of the front end face of the semiconductor laser device 10 can be efficiently radiated, so that the temperature of the entire semiconductor laser device 10 can be reduced. As a result, it is possible to suppress a decrease in the optical output of the semiconductor laser device 10 and a decrease in the reliability. Therefore, device characteristics of the semiconductor laser device 10 can be improved.
 特に、本実施の形態における半導体レーザ装置1では、半導体レーザ素子10として、高出力タイプのものを用いた場合であっても、半導体レーザ素子10で発生する熱を効果的に放熱することができる。 In particular, in the semiconductor laser device 1 according to the present embodiment, even when a high-output type semiconductor laser device 10 is used, heat generated in the semiconductor laser device 10 can be effectively radiated. .
 また、本実施の形態における第1冷却部材30では、第1熱輸送体31の一方の端部の先端部及び吸熱体32の先端部が第1突出部30aに含まれている。つまり、第1熱輸送体31の一方の端部の先端部及び吸熱体32の先端部が半導体レーザ素子10の前端面から突出している。 In the first cooling member 30 according to the present embodiment, the distal end of one end of the first heat transport body 31 and the distal end of the heat absorber 32 are included in the first protrusion 30a. That is, the tip of one end of the first heat transport body 31 and the tip of the heat absorber 32 project from the front end face of the semiconductor laser device 10.
 これにより、第1冷却部材30において実質的に冷却機能を有する第1熱輸送体31及び実質的に第1金属部材20の熱を吸熱する機能を有する吸熱体32の先端部を、半導体レーザ素子10の前端面よりも突出させることができる。したがって、半導体レーザ素子10の前端面近傍の熱を一層効率よく放熱することができる。 As a result, the first cooling member 30 has a first heat transport body 31 having substantially a cooling function and a distal end portion of a heat absorbing body 32 having substantially a function of absorbing heat of the first metal member 20, and is connected to the semiconductor laser device. 10 can protrude from the front end surface. Therefore, heat near the front end face of the semiconductor laser device 10 can be more efficiently radiated.
 一方、第2冷却部材50は、半導体レーザ素子10のp側に配置された部分を有する。具体的には、第2冷却部材50は、全体が半導体レーザ素子10のp側電極16側に配置されている。より具体的には、第2冷却部材50は、第2金属部材40の下に配置されており、第2金属部材40に接続されている。 On the other hand, the second cooling member 50 has a portion arranged on the p side of the semiconductor laser device 10. Specifically, the entire second cooling member 50 is arranged on the p-side electrode 16 side of the semiconductor laser device 10. More specifically, the second cooling member 50 is arranged below the second metal member 40 and is connected to the second metal member 40.
 本実施の形態において、第2冷却部材50は、水冷ジャケット等の水冷機構である第2熱輸送体51を有する。第2熱輸送体51は、第2金属部材40から熱を吸収して外部に排出する。具体的には、第2熱輸送体51は、中空体51aと、中空体51aに封入された熱輸送液51bとを有する。本実施の形態において、第2熱輸送体51は、中空体51aとして、流路を有する金属部材を有するとともに、熱輸送液51bとして、水(冷媒)又は不凍液等の冷却媒質を有する。 In the present embodiment, the second cooling member 50 has a second heat transport body 51 which is a water cooling mechanism such as a water cooling jacket. The second heat transport body 51 absorbs heat from the second metal member 40 and discharges the heat to the outside. Specifically, the second heat transport body 51 has a hollow body 51a and a heat transport liquid 51b sealed in the hollow body 51a. In the present embodiment, the second heat transport body 51 has a metal member having a flow path as the hollow body 51a, and has a cooling medium such as water (refrigerant) or antifreeze as the heat transport liquid 51b.
 そして、第2冷却部材50は、半導体レーザ素子10の前端面から突出する第2突出部50aを有する。第2突出部50aは、さらに、第2金属部材40の前端面からも突出している。つまり、第2冷却部材50は、第1冷却部材30と同様に、半導体レーザ素子10及び第2金属部材40に対して突き出た構造になっている。 {Circle around (2)} The second cooling member 50 has a second protruding portion 50a protruding from the front end face of the semiconductor laser device 10. The second protrusion 50a further protrudes from the front end surface of the second metal member 40. That is, similarly to the first cooling member 30, the second cooling member 50 has a structure protruding from the semiconductor laser element 10 and the second metal member 40.
 このように、半導体レーザ素子10のp側に配置された第2金属部材40に第2冷却部材50を接続し、第2冷却部材50に半導体レーザ素子10の前端面から突出する第2突出部50aを設けることで、半導体レーザ素子10のn側だけではなくp側についても半導体レーザ素子10の前端面近傍で発生する熱の熱拡散断面積を広くすることができる。これにより、半導体レーザ素子10の前端面近傍の熱をさらに効率よく放熱することができる。 As described above, the second cooling member 50 is connected to the second metal member 40 disposed on the p-side of the semiconductor laser device 10, and the second projection protruding from the front end surface of the semiconductor laser device 10 is connected to the second cooling member 50. By providing 50a, not only the n-side but also the p-side of the semiconductor laser device 10 can increase the heat diffusion cross-sectional area of the heat generated near the front end face of the semiconductor laser device 10. Thereby, the heat in the vicinity of the front end face of the semiconductor laser device 10 can be more efficiently radiated.
 また、本実施の形態における第2冷却部材50では、第2冷却部材50の第2熱輸送体51の先端部が第2突出部50aに含まれる。つまり、第2熱輸送体51の先端部が半導体レーザ素子10の前端面から突出している。 In the second cooling member 50 of the present embodiment, the tip of the second heat transport body 51 of the second cooling member 50 is included in the second protrusion 50a. That is, the tip of the second heat transport body 51 protrudes from the front end face of the semiconductor laser device 10.
 これにより、第2冷却部材50において実質的に冷却機能を有する第2熱輸送体51の先端部を、半導体レーザ素子10の前端面よりも突出させることができる。したがって、半導体レーザ素子10の前端面近傍の熱をより一層効率よく放熱することができる。 Accordingly, the distal end of the second heat transport body 51 having substantially the cooling function in the second cooling member 50 can be made to protrude from the front end surface of the semiconductor laser device 10. Therefore, heat in the vicinity of the front end face of the semiconductor laser device 10 can be more efficiently radiated.
 以上のように構成される半導体レーザ装置1では、図7に示すように、半導体レーザ素子10から出射するレーザ光は、半導体レーザ素子10の前端面の発光点から広がり角θ(発散角)をもって放射される。図7は、実施の形態1に係る半導体レーザ装置1の拡大断面図である。 In the semiconductor laser device 1 configured as described above, as shown in FIG. 7, laser light emitted from the semiconductor laser element 10 has a divergence angle θ (divergence angle) from a light emitting point on the front end face of the semiconductor laser element 10. Radiated. FIG. 7 is an enlarged sectional view of the semiconductor laser device 1 according to the first embodiment.
 図7に示すように、半導体レーザ素子10から出射するレーザ光の広がり角θは、半導体レーザ素子10の光導波路(具体的には発光層13の中心)の延長線に対してレーザ光が拡がる角度のことである。具体的には、広がり角θは、半導体レーザ素子10の前端面(光出射面)から出射する光の強度が最大強度に対して1/2になる角度である。 As shown in FIG. 7, the spread angle θ of the laser light emitted from the semiconductor laser element 10 is such that the laser light spreads with respect to an extension of the optical waveguide (specifically, the center of the light emitting layer 13) of the semiconductor laser element 10. It is an angle. Specifically, the spread angle θ is an angle at which the intensity of light emitted from the front end face (light emission surface) of the semiconductor laser device 10 becomes に 対 し て of the maximum intensity.
 ここで、第1冷却部材30及び第2冷却部材50については、以下の条件を満たしているとよい。 Here, the first cooling member 30 and the second cooling member 50 may satisfy the following conditions.
 まず、第1冷却部材30については、第1金属部材20と第1冷却部材30との接続面から第1冷却部材30の第1熱輸送体31までの距離をd11とし、半導体レーザ素子10の前端面から第1冷却部材30の第1突出部30aの先端までの距離をL1とすると、以下の(式1)の関係を満たしているとよい。本実施の形態において、第1金属部材20と第1冷却部材30との接続面は、第1金属部材20の上面であるとともに、第1冷却部材30の下面(具体的には吸熱体32の表面)である。 First, as for the first cooling member 30, the distance from the connection surface between the first metal member 20 and the first cooling member 30 to the first heat transport body 31 of the first cooling member 30 is d11, and Assuming that the distance from the front end face to the tip of the first protruding portion 30a of the first cooling member 30 is L1, it is preferable that the following formula (1) is satisfied. In the present embodiment, the connection surface between first metal member 20 and first cooling member 30 is the upper surface of first metal member 20 and the lower surface of first cooling member 30 (specifically, Surface).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 熱はおよそ45°方向に拡散するため、(式1)の関係を満たすことで、第1金属部材20からの熱拡散を阻害しない。つまり、第1冷却部材30の第1突出部30aによって45°方向の熱拡散経路を確保することができる。これにより、半導体レーザ素子10のn側の放熱構造における低熱抵抗化が可能となるので、半導体レーザ素子10の前端面近傍の熱を効果的に放熱することができ、半導体レーザ素子10のデバイス特性を一層向上させることができる。 Since heat is diffused in the direction of about 45 °, by satisfying the relationship of (Equation 1), the heat diffusion from the first metal member 20 is not hindered. That is, the first protrusion 30a of the first cooling member 30 can secure a heat diffusion path in the 45 ° direction. This makes it possible to reduce the thermal resistance in the heat radiation structure on the n-side of the semiconductor laser element 10, so that heat near the front end face of the semiconductor laser element 10 can be effectively radiated, and the device characteristics of the semiconductor laser element 10 can be reduced. Can be further improved.
 また、レーザ光が出射する第1方向(図7のx方向)と直交する第2方向(図7のz方向)における光導波路(具体的には発光層13の中心)から第1金属部材20と第1冷却部材30との接続面までの距離をd12とすると、半導体レーザ素子10から出射するレーザ光の広がり角θと上記距離L1と距離d12とは、以下の(式2)の関係を満たしているとよい。 Further, the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 7) orthogonal to the first direction (x direction in FIG. 7) from which the laser light is emitted. Assuming that the distance between the laser beam and the first cooling member 30 is d12, the divergence angle θ of the laser light emitted from the semiconductor laser device 10, and the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このように(式2)の関係を満たすことで、半導体レーザ素子10から出射したレーザ光が第1冷却部材30の第1突出部30aによって遮蔽されてしまうことを回避することができる。 を 満 た す By satisfying the relationship of (Equation 2) in this way, it is possible to prevent the laser light emitted from the semiconductor laser element 10 from being blocked by the first protrusion 30a of the first cooling member 30.
 また、第2冷却部材50についても同様に、第2金属部材40と第2冷却部材50との接続面から第2冷却部材50の第2熱輸送体51までの距離をd21とし、半導体レーザ素子10の前端面から第2冷却部材50の第2突出部50aの先端までの距離をL2とすると、以下の(式3)の関係を満たしているとよい。本実施の形態において、第2金属部材40と第2冷却部材50との接続面は、第2金属部材40の下面であるとともに、第2冷却部材50の上面である。 Similarly, for the second cooling member 50, the distance from the connection surface between the second metal member 40 and the second cooling member 50 to the second heat transport body 51 of the second cooling member 50 is d21, and the semiconductor laser element Assuming that the distance from the front end surface of the second cooling member 50 to the tip of the second protruding portion 50a of the second cooling member 50 is L2, it is preferable that the following formula (3) is satisfied. In the present embodiment, the connection surface between the second metal member 40 and the second cooling member 50 is the lower surface of the second metal member 40 and the upper surface of the second cooling member 50.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このように(式3)の関係を満たすことで、第2金属部材40からの熱拡散を阻害しない。つまり、第2冷却部材50の第2突出部50aによって45°方向の熱拡散経路を確保することができる。これにより、半導体レーザ素子10のn側の放熱構造だけではなくp側の放熱構造における低熱抵抗化も可能となるので、半導体レーザ素子10の前端面近傍の熱をより一層効果的に放熱することができ、半導体レーザ素子10のデバイス特性を一層向上させることができる。 を 満 た す By satisfying the relationship of (Equation 3), heat diffusion from the second metal member 40 is not hindered. That is, a heat diffusion path in the 45 ° direction can be secured by the second projecting portion 50a of the second cooling member 50. This makes it possible to reduce the thermal resistance not only in the heat radiation structure on the n-side but also in the heat radiation structure on the p-side of the semiconductor laser device 10, so that the heat near the front end face of the semiconductor laser device 10 can be more effectively radiated. Accordingly, the device characteristics of the semiconductor laser device 10 can be further improved.
 また、レーザ光が出射する第1方向(図7のx方向)と直交する第2方向(図7のz方向)における光導波路(具体的には発光層13の中心)から第2金属部材40と第2冷却部材50との接続面までの距離をd22とすると、半導体レーザ素子10から出射するレーザ光の広がり角θと上記距離L2と距離d22とは、以下の(式4)の関係を満たしているとよい。 Further, the second metal member 40 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 7) orthogonal to the first direction (x direction in FIG. 7) from which the laser light is emitted. Assuming that the distance between the laser beam and the connecting surface between the second cooling member 50 and the second cooling member 50 is d22, the divergence angle θ of the laser beam emitted from the semiconductor laser device 10 and the distance L2 and the distance d22 have the following relationship (Equation 4). Good to meet.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように(式4)の関係を満たすことで、半導体レーザ素子10から出射したレーザ光が第2冷却部材50の第2突出部50aによって遮蔽されてしまうことを回避することができる。 を 満 た す By satisfying the relationship of (Equation 4) in this way, it is possible to prevent the laser light emitted from the semiconductor laser element 10 from being blocked by the second protrusion 50a of the second cooling member 50.
 (実施の形態2)
 次に、実施の形態2に係る半導体レーザ装置1Aについて、図8~図10を用いて説明する。図8は、実施の形態2に係る半導体レーザ装置1Aの斜視図である。図9は、同半導体レーザ装置1Aの断面図である。図10は、同半導体レーザ装置1Aにおける半導体レーザ素子10の前方部周辺の拡大断面図である。
(Embodiment 2)
Next, a semiconductor laser device 1A according to a second embodiment will be described with reference to FIGS. FIG. 8 is a perspective view of a semiconductor laser device 1A according to the second embodiment. FIG. 9 is a sectional view of the semiconductor laser device 1A. FIG. 10 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1A.
 本実施の形態における半導体レーザ装置1Aは、上記実施の形態1における半導体レーザ装置1に対して、第1冷却部材の構成が異なる。具体的には、上記実施の形態1における半導体レーザ装置1では、第1冷却部材30がヒートパイプを有する構成であったのに対して、本実施の形態における半導体レーザ装置1Aでは、第1冷却部材30Aが水冷ジャケット等の水冷機構である第1熱輸送体31Aを有する。つまり、本実施の形態における半導体レーザ装置1Aでは、第1冷却部材30Aも第2冷却部材50も水冷機構を有しており、半導体レーザ素子10の上下の両側が水冷機構により冷却されている。なお、第1冷却部材以外の構成については、本実施の形態における半導体レーザ装置1Aと上記実施の形態1における半導体レーザ装置1とは同じ構成である。 半導体 The semiconductor laser device 1A according to the present embodiment is different from the semiconductor laser device 1 according to the first embodiment in the configuration of the first cooling member. Specifically, in the semiconductor laser device 1 according to the first embodiment, the first cooling member 30 has a configuration including a heat pipe, whereas in the semiconductor laser device 1A according to the present embodiment, The member 30A has a first heat transport body 31A that is a water cooling mechanism such as a water cooling jacket. That is, in the semiconductor laser device 1A of the present embodiment, both the first cooling member 30A and the second cooling member 50 have a water cooling mechanism, and both the upper and lower sides of the semiconductor laser element 10 are cooled by the water cooling mechanism. Note that the configuration other than the first cooling member is the same as the configuration of the semiconductor laser device 1A of the present embodiment and the semiconductor laser device 1 of the first embodiment.
 第1冷却部材30Aの第1熱輸送体31Aは、第1金属部材20から熱を吸収して外部に排出する。具体的には、第1熱輸送体31Aは、第2熱輸送体51と同様に、中空体31Aaと、中空体31Aaに封入された熱輸送液31Abとを有する。本実施の形態において、第1熱輸送体31Aは、中空体31Aaとして、流路を有する金属部材を有するとともに、熱輸送液31Abとして、水(冷媒)又は不凍液等の冷却媒質を有する。 The first heat transporter 31A of the first cooling member 30A absorbs heat from the first metal member 20 and discharges the heat to the outside. Specifically, the first heat transport body 31A has a hollow body 31Aa and a heat transport liquid 31Ab sealed in the hollow body 31Aa, like the second heat transport body 51. In the present embodiment, the first heat transport body 31A has a metal member having a flow path as the hollow body 31Aa, and has a cooling medium such as water (refrigerant) or antifreeze as the heat transport liquid 31Ab.
 以上、本実施の形態における半導体レーザ装置1Aにおいても、第1冷却部材30Aが第1突出部30aを有しているので、半導体レーザ素子10の前端面近傍の熱を効率よく放熱することができる。これにより、半導体レーザ素子10の光出力が低下したり信頼性が低下したりすることを抑制することができ、半導体レーザ素子10のデバイス特性を向上させることができる。 As described above, also in the semiconductor laser device 1A of the present embodiment, since the first cooling member 30A has the first protrusion 30a, heat near the front end face of the semiconductor laser element 10 can be efficiently radiated. . As a result, it is possible to suppress a decrease in optical output and a decrease in reliability of the semiconductor laser device 10, and to improve device characteristics of the semiconductor laser device 10.
 また、本実施の形態における半導体レーザ装置1Aにおいても、第2冷却部材50が第2突出部50aを有しているので、半導体レーザ素子10の前端面近傍の熱を一層効率よく放熱することができる。 Further, also in semiconductor laser device 1A of the present embodiment, since second cooling member 50 has second projecting portion 50a, heat near the front end face of semiconductor laser element 10 can be more efficiently radiated. it can.
 また、本実施の形態における半導体レーザ装置1Aにおいても、第1冷却部材30Aは、上記実施の形態1における半導体レーザ装置1の第1冷却部材30と同様に、以下の条件を満たしているとよい。 Also, in the semiconductor laser device 1A of the present embodiment, the first cooling member 30A may satisfy the following conditions, similarly to the first cooling member 30 of the semiconductor laser device 1 of the first embodiment. .
 具体的には、第1金属部材20と第1冷却部材30Aとの接続面から第1冷却部材30Aの第1熱輸送体31Aまでの距離をd11とし、半導体レーザ素子10の前端面から第1冷却部材30Aの第1突出部30aの先端までの距離をL1とすると、以下の(式1)の関係を満たしているとよい。本実施の形態においても、第1金属部材20と第1冷却部材30Aとの接続面は、第1金属部材20の上面であるとともに、第1冷却部材30Aの下面である。 Specifically, the distance from the connection surface between the first metal member 20 and the first cooling member 30A to the first heat transporter 31A of the first cooling member 30A is d11, and the distance from the front end face of the semiconductor laser device 10 to the first Assuming that the distance to the tip of the first protrusion 30a of the cooling member 30A is L1, it is preferable that the following expression (1) is satisfied. Also in the present embodiment, the connection surface between first metal member 20 and first cooling member 30A is the upper surface of first metal member 20 and the lower surface of first cooling member 30A.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このように(式1)の関係を満たすことで、第1金属部材20からの熱拡散を阻害しない。つまり、第1冷却部材30Aの第1突出部30aによって45°方向の熱拡散経路を確保することができる。これにより、半導体レーザ素子10のn側の放熱構造における低熱抵抗化が可能となるので、半導体レーザ素子10の前端面近傍の熱を効果的に放熱することができ、半導体レーザ素子10のデバイス特性を一層向上させることができる。 を 満 た す By satisfying the relationship of (Equation 1) in this way, heat diffusion from the first metal member 20 is not hindered. That is, a heat diffusion path in a 45 ° direction can be secured by the first protrusion 30a of the first cooling member 30A. This makes it possible to reduce the thermal resistance in the heat radiation structure on the n-side of the semiconductor laser element 10, so that heat near the front end face of the semiconductor laser element 10 can be effectively radiated, and the device characteristics of the semiconductor laser element 10 can be reduced. Can be further improved.
 また、レーザ光が出射する第1方向(図10のx方向)と直交する第2方向(図10のz方向)における光導波路(具体的には発光層13の中心)から第1金属部材20と第1冷却部材30Aとの接続面までの距離をd12とすると、半導体レーザ素子10から出射するレーザ光の広がり角θと上記距離L1と距離d12とは、以下の(式2)の関係を満たしているとよい。 Further, the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 10) orthogonal to the first direction (x direction in FIG. 10) from which the laser light is emitted. Assuming that the distance between the laser beam and the first cooling member 30A is d12, the divergence angle θ of the laser light emitted from the semiconductor laser device 10, and the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このように(式2)の関係を満たすことで、半導体レーザ素子10から出射したレーザ光が第1冷却部材30Aの第1突出部30aによって遮蔽されてしまうことを回避することができる。 を 満 た す By satisfying the relationship of (Equation 2) in this way, it is possible to prevent the laser light emitted from the semiconductor laser element 10 from being blocked by the first protrusion 30a of the first cooling member 30A.
 なお、第2冷却部材50については、上記実施の形態1と同様に、上記の(式3)及び(式4)の関係を満たしているとよい。 Note that the second cooling member 50 preferably satisfies the relations of the above (Equation 3) and (Equation 4) as in the first embodiment.
 (実施の形態3)
 次に、実施の形態3に係る半導体レーザ装置1Bについて、図11~図13を用いて説明する。図11は、実施の形態3に係る半導体レーザ装置1Bの斜視図である。図12は、同半導体レーザ装置1Bの断面図である。図13は、同半導体レーザ装置1Bにおける半導体レーザ素子10の前方部周辺の拡大断面図である。
(Embodiment 3)
Next, a semiconductor laser device 1B according to a third embodiment will be described with reference to FIGS. FIG. 11 is a perspective view of a semiconductor laser device 1B according to the third embodiment. FIG. 12 is a sectional view of the semiconductor laser device 1B. FIG. 13 is an enlarged cross-sectional view around the front part of the semiconductor laser element 10 in the semiconductor laser device 1B.
 本実施の形態における半導体レーザ装置1Bは、上記実施の形態1における半導体レーザ装置1に対して、第1冷却部材及び第2冷却部材の構成が異なる。具体的には、上記実施の形態1における半導体レーザ装置1では、第1冷却部材30が第1熱輸送体31を内蔵するとともに第2冷却部材50が第2熱輸送体51を内蔵していたのに対して、本実施の形態における半導体レーザ装置1Bでは、第1冷却部材30B及び第2冷却部材50Bがいずれも金属部材のみによって構成されている。 半導体 The semiconductor laser device 1B according to the present embodiment is different from the semiconductor laser device 1 according to the first embodiment in the configuration of the first cooling member and the second cooling member. Specifically, in the semiconductor laser device 1 according to the first embodiment, the first cooling member 30 includes the first heat transport body 31 and the second cooling member 50 includes the second heat transport body 51. On the other hand, in the semiconductor laser device 1B in the present embodiment, each of the first cooling member 30B and the second cooling member 50B is configured only by a metal member.
 具体的には、第1冷却部材30B及び第2冷却部材50Bは、銅ブロック等の金属ブロックによって構成されている。つまり、本実施の形態では、半導体レーザ素子10を挟む第1金属部材20及び第2金属部材40が金属ブロックによって構成されているだけではなく、第1冷却部材30B及び第2冷却部材50Bも金属ブロックによって構成されている。なお、それ以外の構成については、本実施の形態における半導体レーザ装置1Bと上記実施の形態1における半導体レーザ装置1とは同じ構成である。 Specifically, the first cooling member 30B and the second cooling member 50B are configured by a metal block such as a copper block. That is, in the present embodiment, not only the first metal member 20 and the second metal member 40 sandwiching the semiconductor laser element 10 are constituted by metal blocks, but also the first cooling member 30B and the second cooling member 50B are made of metal. It is composed of blocks. In other respects, the configuration of the semiconductor laser device 1B of the present embodiment is the same as that of the semiconductor laser device 1 of the first embodiment.
 以上、本実施の形態における半導体レーザ装置1Bにおいても、第1冷却部材30Bが第1突出部30aを有しているので、半導体レーザ素子10の前端面近傍の熱を効率よく放熱することができる。これにより、半導体レーザ素子10の光出力が低下したり信頼性が低下したりすることを抑制することができ、半導体レーザ素子10のデバイス特性を向上させることができる。 As described above, also in the semiconductor laser device 1B of the present embodiment, since the first cooling member 30B has the first protrusion 30a, heat near the front end face of the semiconductor laser element 10 can be efficiently radiated. . As a result, it is possible to suppress a decrease in optical output and a decrease in reliability of the semiconductor laser device 10, and to improve device characteristics of the semiconductor laser device 10.
 また、本実施の形態における半導体レーザ装置1Bにおいても、第2冷却部材50Bが第2突出部50aを有しているので、半導体レーザ素子10の前端面近傍の熱を一層効率よく放熱することができる。 Further, also in semiconductor laser device 1B in the present embodiment, since second cooling member 50B has second projecting portion 50a, heat near the front end face of semiconductor laser element 10 can be more efficiently radiated. it can.
 また、本実施の形態における半導体レーザ装置1Bにおいても、第1冷却部材30B及び第2冷却部材50Bは、上記実施の形態1における半導体レーザ装置1の第1冷却部材30及び第2冷却部材50と同様に、以下の条件を満たしているとよい。 Also, in the semiconductor laser device 1B of the present embodiment, the first cooling member 30B and the second cooling member 50B are the same as the first cooling member 30 and the second cooling member 50 of the semiconductor laser device 1 of the first embodiment. Similarly, the following conditions should be satisfied.
 具体的には、第1金属部材20と第1冷却部材30Bとの接続面から第1冷却部材30Bの上面までの距離をd13とし、半導体レーザ素子10の前端面から第1冷却部材30Bの第1突出部30aの先端までの距離をL1とすると、以下の(式5)の関係を満たしているとよい。本実施の形態において、第1金属部材20と第1冷却部材30Bとの接続面は、第1金属部材20の上面であるとともに、第1冷却部材30Bの下面である。つまり、距離d13は、第1冷却部材30Bの厚さである。 Specifically, the distance from the connection surface between the first metal member 20 and the first cooling member 30B to the upper surface of the first cooling member 30B is d13, and the distance from the front end surface of the semiconductor laser device 10 to the first cooling member 30B is Assuming that the distance to the tip of the one protrusion 30a is L1, it is preferable that the following relationship (Equation 5) is satisfied. In the present embodiment, the connection surface between first metal member 20 and first cooling member 30B is the upper surface of first metal member 20 and the lower surface of first cooling member 30B. That is, the distance d13 is the thickness of the first cooling member 30B.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このように(式5)の関係を満たすことで、第1金属部材20からの熱拡散を阻害しない。つまり、第1冷却部材30Bの第1突出部30aによって45°方向の熱拡散経路を確保することができる。これにより、半導体レーザ素子10のn側の放熱構造における低熱抵抗化が可能となるので、半導体レーザ素子10の前端面近傍の熱を効果的に放熱することができ、半導体レーザ素子10のデバイス特性を一層向上させることができる。 を 満 た す By satisfying the relationship of (Equation 5) in this way, heat diffusion from the first metal member 20 is not hindered. In other words, a heat diffusion path in the 45 ° direction can be secured by the first protrusion 30a of the first cooling member 30B. This makes it possible to reduce the thermal resistance in the heat radiation structure on the n-side of the semiconductor laser element 10, so that heat near the front end face of the semiconductor laser element 10 can be effectively radiated, and the device characteristics of the semiconductor laser element 10 can be reduced. Can be further improved.
 また、レーザ光が出射する第1方向(図13のx方向)と直交する第2方向(図13のz方向)における光導波路(具体的には発光層13の中心)から第1金属部材20と第1冷却部材30Bとの接続面までの距離をd12とすると、半導体レーザ素子10から出射するレーザ光の広がり角θと上記距離L1と距離d12とは、以下の(式2)の関係を満たしているとよい。 Further, the first metal member 20 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 13) orthogonal to the first direction (x direction in FIG. 13) from which the laser light is emitted. Assuming that the distance from the laser beam to the connecting surface between the first cooling member 30B and the first cooling member 30B is d12, the spread angle θ of the laser light emitted from the semiconductor laser device 10, the distance L1 and the distance d12 have the following relationship (Equation 2). Good to meet.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このように(式2)の関係を満たすことで、半導体レーザ素子10から出射したレーザ光が第1冷却部材30Bの第1突出部30aによって遮蔽されてしまうことを回避することができる。 を 満 た す By satisfying the relationship of (Equation 2) in this way, it is possible to prevent the laser light emitted from the semiconductor laser element 10 from being blocked by the first protrusion 30a of the first cooling member 30B.
 また、第2冷却部材50Bについても同様に、第2金属部材40と第2冷却部材50Bとの接続面から第2冷却部材50Bまでの距離をd23とし、半導体レーザ素子10の前端面から第2冷却部材50Bの第2突出部50aの先端までの距離をL2とすると、以下の(式6)の関係を満たしているとよい。本実施の形態において、第2金属部材40と第2冷却部材50Bとの接続面は、第2金属部材40の下面であるとともに、第2冷却部材50Bの上面である。つまり、距離d23は、第2冷却部材50Bの厚さである。 Similarly, for the second cooling member 50B, the distance from the connection surface between the second metal member 40 and the second cooling member 50B to the second cooling member 50B is d23, and the distance from the front end surface of the semiconductor laser device 10 to the second cooling member 50B is d23. Assuming that the distance from the cooling member 50B to the tip of the second protrusion 50a is L2, the following relationship (Equation 6) may be satisfied. In the present embodiment, the connection surface between second metal member 40 and second cooling member 50B is the lower surface of second metal member 40 and the upper surface of second cooling member 50B. That is, the distance d23 is the thickness of the second cooling member 50B.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように(式6)の関係を満たすことで、第2金属部材40からの熱拡散を阻害しない。つまり、第2冷却部材50Bの第2突出部50aによって45°方向の熱拡散経路を確保することができる。これにより、半導体レーザ素子10のn側の放熱構造だけではなくp側の放熱構造における低熱抵抗化も可能となるので、半導体レーザ素子10の前端面近傍の熱をより一層効果的に放熱することができ、半導体レーザ素子10のデバイス特性を一層向上させることができる。 を 満 た す By satisfying the relationship of (Equation 6) in this way, heat diffusion from the second metal member 40 is not hindered. That is, a heat diffusion path in the 45 ° direction can be secured by the second protrusion 50a of the second cooling member 50B. This makes it possible to reduce the thermal resistance not only in the heat radiation structure on the n-side but also in the heat radiation structure on the p-side of the semiconductor laser device 10, so that the heat near the front end face of the semiconductor laser device 10 can be more effectively radiated. Accordingly, the device characteristics of the semiconductor laser device 10 can be further improved.
 また、レーザ光が出射する第1方向(図13のx方向)と直交する第2方向(図13のz方向)における光導波路(具体的には発光層13の中心)から第2金属部材40と第2冷却部材50Bとの接続面までの距離をd22とすると、半導体レーザ素子10から出射するレーザ光の広がり角θと上記距離L2と距離d22とは、以下の(式4)の関係を満たしているとよい。 In addition, the second metal member 40 extends from the optical waveguide (specifically, the center of the light emitting layer 13) in a second direction (z direction in FIG. 13) orthogonal to the first direction (x direction in FIG. 13) from which the laser light is emitted. Assuming that the distance between the laser beam and the connecting surface between the second cooling member 50B and the second cooling member 50B is d22, the divergence angle θ of the laser light emitted from the semiconductor laser element 10 and the distance L2 and the distance d22 have the following relationship (Equation 4). Good to meet.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このように(式4)の関係を満たすことで、半導体レーザ素子10から出射したレーザ光が第2冷却部材50Bの第2突出部50aによって遮蔽されてしまうことを回避することができる。 を 満 た す By satisfying the relationship of (Equation 4) in this way, it is possible to prevent the laser light emitted from the semiconductor laser element 10 from being blocked by the second protrusion 50a of the second cooling member 50B.
 なお、図14及び図15に示すように、実施の形態における半導体レーザ装置1Bにおいて、第1冷却部材30Bの第1突出部30aの下面(半導体レーザ素子10側の面)に傾斜面30bが形成されていてもよい。傾斜面30bは、第1突出部30aの先端に向かって第1突出部30aの厚さが漸次薄くなるように形成されている。図15において、傾斜面30bの傾斜角αは、半導体レーザ素子10の光導波路(具体的には発光層13の中心)の延長線に対して第1冷却部材30Bが傾斜してカットされている角度のことである。 As shown in FIGS. 14 and 15, in the semiconductor laser device 1B according to the embodiment, the inclined surface 30b is formed on the lower surface (the surface on the semiconductor laser element 10 side) of the first protrusion 30a of the first cooling member 30B. It may be. The inclined surface 30b is formed such that the thickness of the first protrusion 30a gradually decreases toward the tip of the first protrusion 30a. In FIG. 15, the inclination angle α of the inclined surface 30b is cut so that the first cooling member 30B is inclined with respect to the extension of the optical waveguide of the semiconductor laser device 10 (specifically, the center of the light emitting layer 13). It is an angle.
 このとき、傾斜角αと、上記の距離d12、距離d13、距離L1及び広がり角θとは、以下の(式7)及び(式8)の関係を満たしているとよい。 At this time, it is preferable that the inclination angle α and the distance d12, the distance d13, the distance L1, and the spread angle θ satisfy the following relations (Equation 7) and (Equation 8).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 このように(式7)及び(式8)の関係を満たすことで、半導体レーザ素子10から出射するレーザ光が第1冷却部材30Bの第1突出部30aで遮蔽されることなく、45°方向の熱拡散経路を確保できる第1突出部30aの長さ(距離L1)を長くすることができる。したがって、半導体レーザ素子10の前端面近傍の熱を一層効果的に放熱することができる。 By satisfying the relations of (Equation 7) and (Equation 8) in this manner, the laser light emitted from the semiconductor laser element 10 is not blocked by the first protrusion 30a of the first cooling member 30B, and is not rotated by 45 °. The length (distance L1) of the first protruding portion 30a that can secure the heat diffusion path can be increased. Therefore, heat near the front end face of the semiconductor laser device 10 can be more effectively radiated.
 (その他の変形例)
 以上、本開示に係る半導体レーザ装置について、実施の形態に基づいて説明したが、本開示は、上記実施の形態1~3に限定されるものではない。
(Other modifications)
Although the semiconductor laser device according to the present disclosure has been described based on the embodiments, the present disclosure is not limited to the first to third embodiments.
 例えば、上記実施の形態1~3において、半導体レーザ素子10は、発光点が複数のマルチエミッタ構造としたが、これに限らず、発光点が1つであるシングルエミッタ構造であってもよい。この場合、半導体レーザ素子として、シングルエミッタ構造の半導体レーザチップを複数個並べられた半導体レーザアレイを用いてもよい。 For example, in the first to third embodiments, the semiconductor laser device 10 has a multi-emitter structure having a plurality of light-emitting points, but is not limited thereto, and may have a single-emitter structure having one light-emitting point. In this case, a semiconductor laser array in which a plurality of semiconductor laser chips having a single emitter structure are arranged may be used as the semiconductor laser element.
 また、上記実施の形態1~3において、半導体レーザ素子10は、リッジストライプ構造としたが、これに限らず、電極ストライプ構造であってもよい。  In the first to third embodiments, the semiconductor laser device 10 has a ridge stripe structure, but is not limited thereto, and may have an electrode stripe structure.
 また、上記実施の形態1~3において、半導体レーザ素子10は、p側電極16をサブマウント70側(下向き)となるように実装(ジャンクションダウン実装)したが、これに限らず、p側電極16がサブマウント70側(上向き)となるように実装(ジャンクションアップ実装)してもよい。 In the first to third embodiments, the semiconductor laser element 10 is mounted (junction down mounting) so that the p-side electrode 16 faces the submount 70 (downward). However, the present invention is not limited to this. 16 (junction-up mounting) so that 16 is on the submount 70 side (upward).
 また、上記実施の形態1~3において、光源として半導体レーザ素子10を用いたが、半導体レーザ素子10に代えて、スーパールミネッセントダイオード(SLD:Super Luminescent Diode)等の他の半導体発光素子を用いてもよい。 In the first to third embodiments, the semiconductor laser element 10 is used as the light source. However, instead of the semiconductor laser element 10, another semiconductor light emitting element such as a super luminescent diode (SLD: Super Luminescent Diode) is used. May be used.
 その他、上記の各実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, a form obtained by applying various modifications that can be conceived by those skilled in the art to each of the above-described embodiments, and realized by arbitrarily combining components and functions in each of the embodiments without departing from the gist of the present disclosure. This embodiment is also included in the present disclosure.
 本開示に係る半導体レーザ装置は、放熱性に優れるので、プロジェクタ等に用いられる画像表示用光源、レーザ加工装置に用いられる加工用光源又は産業用スポット照明等に用いられる照明用光源等として利用することができ、特に、比較的に高い光出力を必要とする機器の光源として有用である。 The semiconductor laser device according to the present disclosure has excellent heat radiation properties, and is used as a light source for image display used in projectors, etc., a processing light source used in laser processing devices, or an illumination light source used in industrial spot lighting and the like. And is particularly useful as a light source for equipment requiring relatively high light output.
 1、1A、1B 半導体レーザ装置
 10 半導体レーザ素子
 11 半導体基板
 12 n型半導体層
 13 発光層
 14 p型半導体層
 15 コンタクト層
 16 p側電極
 17 n側電極
 20 第1金属部材
 21 第1電極端子
 30、30A、30B 第1冷却部材
 30a 第1突出部
 30b 傾斜面
 31、31A 第1熱輸送体
 31a、31Aa、51a 中空体
 31b、31Ab、51b 熱輸送液
 32 吸熱体
 33 排熱体
 40 第2金属部材
 40a 凹部
 41 第2電極端子
 50、50B 第2冷却部材
 50a 第2突出部
 51 第2熱輸送体
 60 スペーサ
 70 サブマウント
 71 本体
 72 金属層
 81 第1接合部材
 82 第2接合部材
DESCRIPTION OF SYMBOLS 1, 1A, 1B Semiconductor laser device 10 Semiconductor laser element 11 Semiconductor substrate 12 N-type semiconductor layer 13 Light emitting layer 14 P-type semiconductor layer 15 Contact layer 16 P-side electrode 17 N-side electrode 20 First metal member 21 First electrode terminal 30 , 30A, 30B First cooling member 30a First protruding portion 30b Inclined surface 31, 31A First heat transport body 31a, 31Aa, 51a Hollow body 31b, 31Ab, 51b Heat transport liquid 32 Endothermic body 33 Discharge body 40 Second metal Member 40a Recess 41 Second electrode terminal 50, 50B Second cooling member 50a Second protrusion 51 Second heat transporter 60 Spacer 70 Submount 71 Main body 72 Metal layer 81 First joining member 82 Second joining member

Claims (13)

  1.  レーザ光を出射する半導体レーザ素子と、
     前記半導体レーザ素子のn側に配置された第1金属部材と、
     前記半導体レーザ素子のp側に配置された第2金属部材と、
     前記第1金属部材に接続された第1冷却部材とを備え、
     前記第1冷却部材は、前記半導体レーザ素子の前端面から突出する第1突出部を有する、
     半導体レーザ装置。
    A semiconductor laser element for emitting laser light,
    A first metal member disposed on the n-side of the semiconductor laser element;
    A second metal member disposed on the p-side of the semiconductor laser element;
    A first cooling member connected to the first metal member,
    The first cooling member has a first protrusion protruding from a front end surface of the semiconductor laser device,
    Semiconductor laser device.
  2.  前記第1冷却部材は、第1熱輸送体を有し、
     前記第1熱輸送体の先端部は、前記第1突出部に含まれる、
     請求項1に記載の半導体レーザ装置。
    The first cooling member has a first heat transporter,
    The tip of the first heat transporter is included in the first protrusion,
    The semiconductor laser device according to claim 1.
  3.  前記第1熱輸送体は、中空体と、前記中空体に封入された熱輸送液とを有する、
     請求項2に記載の半導体レーザ装置。
    The first heat transport body has a hollow body, and a heat transport liquid sealed in the hollow body.
    The semiconductor laser device according to claim 2.
  4.  前記第1金属部材と前記第1冷却部材との接続面から前記第1熱輸送体までの距離をd11とし、
     前記半導体レーザ素子の前端面から前記第1突出部の先端までの距離をL1とすると、
     d11≦L1の関係を満たす、
     請求項2又は3に記載の半導体レーザ装置。
    The distance from the connection surface between the first metal member and the first cooling member to the first heat transporter is d11,
    When the distance from the front end face of the semiconductor laser element to the tip of the first protrusion is L1,
    satisfies the relationship of d11 ≦ L1,
    The semiconductor laser device according to claim 2.
  5.  前記半導体レーザ素子から出射するレーザ光の広がり角をθとし、
     前記レーザ光が出射する第1方向と直交する第2方向における前記半導体レーザ素子の光導波路から前記第1金属部材と前記第1冷却部材との接続面までの距離をd12とし、
     前記半導体レーザ素子の前端面から前記第1突出部の先端までの距離をL1とすると、
     L1≦d12/tanθの関係を満たす、
     請求項1~4のいずれか1項に記載の半導体レーザ装置。
    The spread angle of the laser light emitted from the semiconductor laser element is θ,
    The distance from the optical waveguide of the semiconductor laser element to the connection surface between the first metal member and the first cooling member in a second direction orthogonal to the first direction in which the laser light is emitted is d12,
    When the distance from the front end face of the semiconductor laser element to the tip of the first protrusion is L1,
    Satisfying a relationship of L1 ≦ d12 / tan θ,
    The semiconductor laser device according to any one of claims 1 to 4.
  6.  前記第2金属部材に接続された第2冷却部材を備え、
     前記第2冷却部材は、前記半導体レーザ素子の前端面から突出する第2突出部を有する、
     請求項1~5のいずれか1項に記載の半導体レーザ装置。
    A second cooling member connected to the second metal member;
    The second cooling member has a second protrusion protruding from a front end surface of the semiconductor laser device,
    The semiconductor laser device according to any one of claims 1 to 5.
  7.  前記第2冷却部材は、第2熱輸送体を有し、
     前記第2熱輸送体の先端部は、前記第2突出部に含まれる、
     請求項5に記載の半導体レーザ装置。
    The second cooling member has a second heat transporter,
    The tip of the second heat transporter is included in the second protrusion,
    A semiconductor laser device according to claim 5.
  8.  前記第2熱輸送体は、中空体と、前記中空体に封入された熱輸送液とを有する、
     請求項7に記載の半導体レーザ装置。
    The second heat transport body has a hollow body, and a heat transport liquid sealed in the hollow body,
    A semiconductor laser device according to claim 7.
  9.  前記第2金属部材と前記第2冷却部材との接続面から前記第2熱輸送体までの距離をd21とし、
     前記半導体レーザ素子の前端面から前記第2突出部の先端までの距離をL2とすると、
     d21≦L2の関係を満たす、
     請求項7又は8に記載の半導体レーザ装置。
    The distance from the connection surface between the second metal member and the second cooling member to the second heat transporter is d21,
    When a distance from the front end face of the semiconductor laser element to the tip of the second protrusion is L2,
    satisfying the relationship of d21 ≦ L2,
    A semiconductor laser device according to claim 7.
  10.  前記半導体レーザ素子から出射するレーザ光の広がり角をθとし、
     前記レーザ光が出射する第1方向と直交する第2方向における前記半導体レーザ素子の光導波路から前記第2金属部材と前記第2冷却部材との接続面までの距離をd22とし、
     前記半導体レーザ素子の前端面から前記第2突出部の先端までの距離をL2とすると、
     L2≦d22/tanθの関係を満たす、
     請求項6~9のいずれか1項に記載の半導体レーザ装置。
    The spread angle of the laser light emitted from the semiconductor laser element is θ,
    The distance from the optical waveguide of the semiconductor laser element to the connection surface between the second metal member and the second cooling member in a second direction orthogonal to the first direction in which the laser light is emitted is d22,
    When a distance from the front end face of the semiconductor laser element to the tip of the second protrusion is L2,
    Satisfying the relationship of L2 ≦ d22 / tan θ,
    The semiconductor laser device according to any one of claims 6 to 9.
  11.  前記第1突出部における前記半導体レーザ素子側の面に傾斜面が形成されている、
     請求項1~10のいずれか1項に記載の半導体レーザ装置。
    An inclined surface is formed on a surface of the first protrusion on the semiconductor laser element side;
    The semiconductor laser device according to any one of claims 1 to 10.
  12.  前記半導体レーザ素子は、前記第2金属部材の上にジャンクションダウン実装により配置されている、
     請求項1~11のいずれか1項に記載の半導体レーザ装置。
    The semiconductor laser device is disposed on the second metal member by junction-down mounting,
    The semiconductor laser device according to any one of claims 1 to 11.
  13.  前記第2金属部材は、凹部を有し、
     前記半導体レーザ素子は、前記凹部に配置されたサブマウントに実装されている、
     請求項12に記載の半導体レーザ装置。
    The second metal member has a concave portion,
    The semiconductor laser device is mounted on a submount arranged in the concave portion,
    The semiconductor laser device according to claim 12.
PCT/JP2019/028874 2018-08-29 2019-07-23 Semiconductor laser device WO2020044882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160840 2018-08-29
JP2018-160840 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020044882A1 true WO2020044882A1 (en) 2020-03-05

Family

ID=69644355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028874 WO2020044882A1 (en) 2018-08-29 2019-07-23 Semiconductor laser device

Country Status (1)

Country Link
WO (1) WO2020044882A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023207A (en) * 2001-07-10 2003-01-24 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2003152259A (en) * 2001-11-08 2003-05-23 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2004022760A (en) * 2002-06-14 2004-01-22 Oki Electric Ind Co Ltd Laser diode
JP2007281076A (en) * 2006-04-04 2007-10-25 Mitsubishi Electric Corp Semiconductor laser, and mounting member used in semiconductor laser
JP2015176975A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 semiconductor device
WO2016103536A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Semiconductor device
US20170117683A1 (en) * 2015-10-22 2017-04-27 Northrup Grumman Space and Mission Systems Corp. Thermally conductive, current carrying, electrically isolated submount for laser diode arrays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023207A (en) * 2001-07-10 2003-01-24 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2003152259A (en) * 2001-11-08 2003-05-23 Hamamatsu Photonics Kk Semiconductor laser assembly
JP2004022760A (en) * 2002-06-14 2004-01-22 Oki Electric Ind Co Ltd Laser diode
JP2007281076A (en) * 2006-04-04 2007-10-25 Mitsubishi Electric Corp Semiconductor laser, and mounting member used in semiconductor laser
JP2015176975A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 semiconductor device
WO2016103536A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Semiconductor device
US20170117683A1 (en) * 2015-10-22 2017-04-27 Northrup Grumman Space and Mission Systems Corp. Thermally conductive, current carrying, electrically isolated submount for laser diode arrays

Similar Documents

Publication Publication Date Title
US20220052506A1 (en) Light emitting device
US7466732B2 (en) Laser diode package with an internal fluid cooling channel
US20040012958A1 (en) Light emitting device comprising led chip
CN104040809B (en) Semiconductor laser apparatus and method for manufacturing same
US8031751B2 (en) Nitride semiconductor laser device
JP2006313907A (en) Heat radiating structural body and light emitting assembly equipped therewith
EP2378616B1 (en) High-power semiconductor laser and method for manufacturing the same
US6917637B2 (en) Cooling device for laser diodes
JP6304282B2 (en) Semiconductor laser device
WO2017098689A1 (en) Semiconductor light emitting device
JP2019134017A (en) Light-emitting device
JP2014086566A (en) Optical wavelength conversion device
US20230305245A1 (en) Techniques for optical sub-assembly and packaging
CN112636160B (en) Laser device
TWI287300B (en) Semiconductor package structure
WO2020044882A1 (en) Semiconductor laser device
JP2004022760A (en) Laser diode
JP7050045B2 (en) Package, light emitting device, and laser device
JP6431617B2 (en) Laser light source module
JP2007080867A (en) Light emitting device
Nozaki et al. High-power Blue-violet InGaN Laser Diodes for White Spot Lighting Systems
JP2006319011A (en) Peltier module, and semiconductor laser light-emitting device
JP2007005473A (en) Semiconductor light emitting device
JP2006066664A (en) Double-side cooling surface emitting laser device
TWM638537U (en) Packaging structure of miniature high-power quasi-continuous laser diode array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP