US20230305245A1 - Techniques for optical sub-assembly and packaging - Google Patents

Techniques for optical sub-assembly and packaging Download PDF

Info

Publication number
US20230305245A1
US20230305245A1 US18/321,380 US202318321380A US2023305245A1 US 20230305245 A1 US20230305245 A1 US 20230305245A1 US 202318321380 A US202318321380 A US 202318321380A US 2023305245 A1 US2023305245 A1 US 2023305245A1
Authority
US
United States
Prior art keywords
tec
diode
die
sipho
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/321,380
Inventor
ZhiZhong Tang
Wenjing Liang
Kevin Kinichi Masuda
Pradeep Srinivasan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aeva Technologies Inc
Original Assignee
Aeva Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aeva Inc filed Critical Aeva Inc
Priority to US18/321,380 priority Critical patent/US20230305245A1/en
Assigned to Aeva, Inc. reassignment Aeva, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MASUDA, Kevin, LIANG, WENJING, SRINIVASAN, PRADEEP, TANG, ZHIZHONG
Publication of US20230305245A1 publication Critical patent/US20230305245A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4271Cooling with thermo electric cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/645Heat extraction or cooling elements the elements being electrically controlled, e.g. Peltier elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/02365Fixing laser chips on mounts by clamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00

Definitions

  • the present disclosure is related to optical sub-assemblies for diodes and packaging methods for such optical sub-assemblies.
  • the present disclosure describes various embodiments of optical sub-assemblies and methods that, among other things, increase cooling of laser diodes within such sub-assemblies.
  • the present disclosure relates to an optical sub-assembly including a diode submount structure; a diode mounted to the diode submount; and a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC.
  • the diode submount structure is a silicon photonics (SiPho) die.
  • the SiPho die includes a waveguide, wherein light from the diode can exit the optical sub-assembly via the waveguide.
  • the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering the waveguide.
  • the SiPho die overhangs the TEC by between 1-2 mm.
  • the underfill material is a thermally conductive and electrically insulating material.
  • the diode submount structure is an aluminum nitride sub-mount structure.
  • the TEC directly cools the diode mounted between the diode submount structure and the TEC.
  • the TEC includes a top surface facing away from a housing with electrical interconnects, and a bottom surface mounted to the housing, and the diode is directly connected to the top surface of the TEC.
  • the optical sub-assembly also includes one or more integrated circuits electrically connected to the diode submount structure. In an embodiment, the one or more integrated circuits are positioned between the diode submount structure and the TEC.
  • the present disclosure relates to a method of cooling an optical sub-assembly including operating a diode mounted to the diode submount; and cooling the diode with a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC.
  • the diode submount structure is a silicon photonics (SiPho) die.
  • the SiPho die includes a waveguide, and light from the diode exits the SiPho die via the waveguide.
  • the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering the waveguide.
  • the diode submount structure is an aluminum nitride sub-mount structure.
  • cooling the diodes includes directly cooling the diode mounted between the diode submount structure and the TEC.
  • the method also includes cooling one or more integrated circuits electrically connected to the diode submount structure.
  • the present disclosure relates to a system for cooling diodes, including: a housing with electrical interconnects; a thermoelectric cooler (TEC) positioned on the housing; a silicon photonics (SiPho) die; and a number of diodes mounted to the SiPho die.
  • TEC thermoelectric cooler
  • SiPho silicon photonics
  • the system also includes one or more integrated circuits positioned between the SiPho die and the TEC and in direct thermal communication with both the SiPho die and the TEC.
  • FIG. 1 illustrates an example optical sub-assembly according to embodiments of the present disclosure.
  • FIG. 2 is a flow diagram of an example method of cooling an optical sub-assembly, according to an embodiment of the present disclosure.
  • FIG. 3 is a three dimensional model of an example optical sub-assembly according to embodiments of the present disclosure.
  • FIGS. 4 A- 4 B show thermal field models of an example sub-assembly according to embodiments of the present disclosure compared to conventional techniques.
  • the optical sub-assemblies disclosed herein have good thermal dissipation capabilities and deliver high optical power with low total electrical power consumption.
  • the optical sub-assemblies disclosed include a diode submount structure, such as a silicon photonics (SiPho) die or ceramics substrate, and at least one laser or semiconductor optical amplifier (SOA) diode.
  • the ceramics substrate is made of high thermal conductive materials such as aluminum nitride (AlN) with metallization on the surface for electrical connection.
  • the optical sub-assemblies also include one or more thermoelectric coolers (TEC) or heat sink.
  • TEC thermoelectric coolers
  • a SiPho die used as a submount for the laser diodes can include at least one waveguide device to couple and transmit the light from the laser diode.
  • One electrode of the laser diode can be bonded on the SiPho die, and the lasering light can be coupled into the waveguide in the SiPho die.
  • Another electrode of the laser diode can be attached to the TEC such that the TEC can control the laser diode temperature.
  • a thermally conductive epoxy underfill material or solder material such as Sn—Au, Pb—Sn, Sn—Ag—Cu, Indium, etc.
  • any thermally conductive and electrically insulating material can be used, such as fillers, gel type pastes, phase change thermal interface materials, or a liquid phase material that is electrically insulating and thermally conductive.
  • a liquid phase material could be held in place, for example, by the surface tension because of the small gaps between the silicon submount structure and the TEC device.
  • FIG. 1 illustrates an example optical sub-assembly 100 according to embodiments of the present disclosure.
  • the TEC 103 is positioned on a housing 101
  • the diode submount structure 105 such as a SiPho die, is positioned such that one or more laser diode 107 and SOA diode 108 are sandwiched between the submount structure 105 and the TEC 103 .
  • This optical sub-assembly cools the laser diode 107 and SOA diode 108 more effectively, delivers higher optical power output, and consumes less total electrical energy.
  • both the laser diode 107 and the SOA diode 108 are edge light emitting devices.
  • one or more IC die 109 can also be positioned between the submount structure 105 and the TEC 103 .
  • the TEC can also directly cool the IC die 109 .
  • only one TEC is shown in this embodiment, one skilled in the art will appreciate that multiple TECs can be implemented within the scope of the present disclosure.
  • the submount structure 105 can include a SiPho die, or an AlN submount structure.
  • An electrical circuit can be printed on the top of an AlN layer of the TEC cooling side.
  • the SiPho die has TSV structure inside the silicon, and IC die 109 can be on another side of the SiPho die.
  • the TEC 103 can include a top surface facing away from the housing 101 and a bottom surface that is mounted on or in contact with the housing 101 .
  • One or more electrical interconnects can be made between the TEC 103 and the housing 101 , as shown in FIG. 1 .
  • the laser diodes 107 and SOA diode 108 can be formed on or in contact with the top surface of the TEC 103 .
  • the submount structure 105 includes a SiPho die, which also includes a waveguide.
  • the waveguide can be used to guide light from the laser diode 107 and SOA diode out of the optical sub-assembly 100 .
  • the SiPho die can be positioned over the TEC 103 to create an overhang 113 , in order to prevent an underfill material 115 from covering the waveguide.
  • solder connections 111 can be used to connect the SiPho die with the TEC 103 , and an underfill material 115 can fill the space between the SiPho die and the TEC 103 .
  • the SiPho die can overhang the TEC by between 1-2 mm.
  • the underfill material 115 can be a thermally conductive material in order to provide further cooling and heat dissipation for the SiPho die and the laser diode 107 and SOA diode.
  • the laser diode 107 or SOA diode 108 could be p-side (anode) bonded on the Sipho die with SN-AU alloy or other soldering material, or thermally conductive paste like Ag-epoxy.
  • the n-side (cathode) of the diodes could be bonded on the TEC top AlN ceramics using Sn—Au alloy or soldering material, or thermally conductive epoxy paste.
  • the heat generated in the quantum well region of the diodes spreads in both directions—up to the Sipho die and also down to the AlN ceramics, which is the top of the TEC devices.
  • a thermally conductive paste or underfill epoxy material 115 can be dispensed to facilitate heat spread horizontally within the material 105 and vertically from the Sipho die to AlN ceramics on the TEC 103 .
  • the underfill material 115 could be a thermally conductive epoxy such as commercially available Masterbond two-part epoxy EP30TC, which has a thermal conductivity of about 2.8 W/k ⁇ m with aluminum nitride as the thermal conductive fillers.
  • the underfill material conductivity can be as high as 6 W/k ⁇ m such as commercial YINCAE SMT 158D8 underfill.
  • the typical underfill material 115 bond line thickness between the Sipho die and TEC 105 can be around 100 um or less, which is largely defined by the laser diode 107 and SOA diode 108 thickness, which is typically around 100 um or less.
  • the techniques disclosed herein provide significantly improved thermal dissipation from the laser diode 107 and SOA diode 108 junction to the TEC 105 or the outside environment.
  • the submount structure 105 also serves as a heat spreader or heat dissipater for the diodes 107 , 108 , along with the TEC 105 .
  • the heat generated in the laser quantum well, or junction which is a hot spot and in a very small volume of the material, can spread out from the junction to the laser body and out to the submount.
  • the TEC device 105 can include many pellets (e.g. BiTe diodes), in some embodiments, sandwiched between top and bottom ceramics (e.g. AlN). The top and bottom AlN ceramics in the TEC can also further spread out heat for more effective cooling by the TEC.
  • FIG. 2 is a flow diagram of an example method of cooling an optical sub-assembly, according to an embodiment of the present disclosure.
  • the method begins at operation 201 by operating the laser diode 107 and SOA diode 108 .
  • the diodes 107 , 108 are positioned between a TEC 103 and a diode submount structure 105 , such as an AlN submount structure or a SiPho die.
  • the submount structure 105 is a SiPho die that includes a waveguide, and the laser diode 107 and SOA diode 108 can emit light out of the SiPho die via the waveguide.
  • the SiPho die can overhang the TEC 103 by between 1-2 mm in order to prevent underfill material 115 from covering the waveguide.
  • the method continues at operation 203 with cooling the laser diode 107 and/or SOA diode 108 sandwiched between the submount material (AlN or silicon) and TEC top layer AlN.
  • the sandwiched packaging structure disclosed herein achieves lower thermal impedance (from the laser junction to TEC top AlN cold surface).
  • the reduction in thermal impedance can be the result of heat spreading in more than one direction in the sandwiched structure—from the junction to the TEC AlN, as well as from the junction to the top submount.
  • Additional cooling can be provided by the conductive underfill material between the submount and the TEC AlN cold side. The thermal performance difference is discussed in more detail in reference to FIGS. 4 A- 4 B below.
  • the method optionally continues at operation 205 with cooling one or more IC die 109 using the TEC 103 .
  • the IC die 109 can also be positioned between the submount structure 105 and the TEC 103 . In such cases, the TEC 103 can also directly cool the IC die 109 .
  • FIG. 3 is a three dimensional model of an example optical sub-assembly according to embodiments of the present disclosure.
  • a laser 307 is sandwiched between a silicon die or submount structure 305 and a TEC device 303 .
  • a thermally conductive underfill material 315 is used to fill the space between the submount structure 305 and the TEC device 303 , as well as improve heat dissipation.
  • a common n-type InP substrate based InGaAsP edge emitting quantum well laser diode was used with dimensions of 400 um length, 250 um width, and 100 um thickness.
  • This laser 307 can be attached on the silicon die 305 with p-side attached using Au—Sn solder alloy, and with the laser light coupled into the silicon waveguide with high positional tolerance (typically sub-micrometer in all x/y/z directions) for high coupling efficiency.
  • a small volume of optically transparent and index matching epoxy may also be dispensed between the laser output and waveguide for further improving the light coupling efficiency.
  • the TEC top AlN cold side can include dimensions of 3000 ⁇ 2000 um area, and 1000 um thickness, in this example embodiment.
  • the TEC could be replaced by a heat sink in some embodiments, if the laser diode was passively cooled by thermal convection and radiation.
  • the laser 307 is sandwiched between the silicon die 305 and TEC 303 top AlN cold side. Accounting for the thickness of the laser 307 , the 100 um height gap between silicon die 305 and TEC 303 top AlN was filled with thermally conductive underfill material 315 .
  • This material could be underfill type epoxy with thermally conductive but electrically insulating fillers, or gel type paste or phase change thermal interface materials.
  • FIGS. 4 A- 4 B show thermal field models of an example sub-assembly according to embodiments of the present disclosure compared to conventional techniques.
  • FIG. 4 A illustrates a thermal model of the design described in FIG. 3 , where the laser is sandwiched between the silicon die 401 and the TEC device 403 .
  • FIG. 4 B illustrates a thermal model of a design where a laser 406 is mounted on a silicon die 402 , which is then mounted on a TEC device 404 .
  • the laser thermal heat generation during operation is assumed to be 1 Watt. All the heat was generated in the laser quantum well active junction region uniformly.
  • the TEC top cold AlN was set at 50 degrees Celsius, and air temperature at 25 degrees Celsius. All the heat convection and radiation were set to normal conditions.
  • the modelled FEM (Finite Element Modeling) thermal fields are shown in FIGS. 4 A- 4 B .
  • a gap filler material with thermal conductivity of 5K/W ⁇ m was used for FIG. 4 A .
  • the laser junction active region temperature for the embodiments disclosed herein and shown in FIG. 4 A is around 95 degrees Celsius. This is almost 20 degrees lower compared to the design in FIG. 4 B , which had a laser junction active region temperature as high as around 114 degrees Celsius.
  • the packaging techniques disclosed herein provide significantly improved cooling over alternative designs.
  • Coupled along with its derivatives, is used to indicate that two or more elements interact with each other. These coupled elements may or may not be in direct physical or electrical contact with each other.
  • the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances.
  • the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
  • the terms “first,” “second,” “third,” “fourth,” etc. as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A method of cooling an optical sub-assembly includes operating a diode mounted to a diode submount structure and cooling the diode with a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 17/494,415 filed on Oct. 5, 2021, the entire contents of which are incorporated herein by reference in its entirety.
  • FIELD OF INVENTION
  • The present disclosure is related to optical sub-assemblies for diodes and packaging methods for such optical sub-assemblies.
  • BACKGROUND
  • A number of non-trivial challenges arise when designing and operating optical sub-assemblies for laser diodes. Heat generated by the laser diodes can decrease efficiency. In conventional optical sub-assemblies, a diode submount structure is mounted on a TEC device, and diodes are positioned on the submount. According to such designs, the TEC cools the laser diodes through the submount structure, and the diodes dissipate heat generally only in one direction through the submount structure and the TEC device. Therefore, a need exists for an optical sub-assembly that more effectively cools diode devices.
  • SUMMARY
  • The present disclosure describes various embodiments of optical sub-assemblies and methods that, among other things, increase cooling of laser diodes within such sub-assemblies.
  • According to one aspect, the present disclosure relates to an optical sub-assembly including a diode submount structure; a diode mounted to the diode submount; and a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC. In an embodiment, the diode submount structure is a silicon photonics (SiPho) die. In an embodiment, the SiPho die includes a waveguide, wherein light from the diode can exit the optical sub-assembly via the waveguide. In an embodiment, the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering the waveguide. In an embodiment, the SiPho die overhangs the TEC by between 1-2 mm. In an embodiment, the underfill material is a thermally conductive and electrically insulating material. In an embodiment, the diode submount structure is an aluminum nitride sub-mount structure. In an embodiment, the TEC directly cools the diode mounted between the diode submount structure and the TEC. In an embodiment, the TEC includes a top surface facing away from a housing with electrical interconnects, and a bottom surface mounted to the housing, and the diode is directly connected to the top surface of the TEC. In an embodiment, the optical sub-assembly also includes one or more integrated circuits electrically connected to the diode submount structure. In an embodiment, the one or more integrated circuits are positioned between the diode submount structure and the TEC.
  • According to another aspect, the present disclosure relates to a method of cooling an optical sub-assembly including operating a diode mounted to the diode submount; and cooling the diode with a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC. In an embodiment, the diode submount structure is a silicon photonics (SiPho) die. In an embodiment, the SiPho die includes a waveguide, and light from the diode exits the SiPho die via the waveguide. In an embodiment, the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering the waveguide. In an embodiment, the diode submount structure is an aluminum nitride sub-mount structure. In an embodiment, cooling the diodes includes directly cooling the diode mounted between the diode submount structure and the TEC. In an embodiment, the method also includes cooling one or more integrated circuits electrically connected to the diode submount structure.
  • According to another aspect, the present disclosure relates to a system for cooling diodes, including: a housing with electrical interconnects; a thermoelectric cooler (TEC) positioned on the housing; a silicon photonics (SiPho) die; and a number of diodes mounted to the SiPho die. Each of the diodes is positioned between the SiPho die and the TEC and in direct thermal communication with both the SiPho die and the TEC. In an embodiment, the system also includes one or more integrated circuits positioned between the SiPho die and the TEC and in direct thermal communication with both the SiPho die and the TEC.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • For a more complete understanding of the various examples, reference is now made to the following detailed description taken in connection with the accompanying drawings in which like identifiers correspond to like elements.
  • FIG. 1 illustrates an example optical sub-assembly according to embodiments of the present disclosure.
  • FIG. 2 is a flow diagram of an example method of cooling an optical sub-assembly, according to an embodiment of the present disclosure.
  • FIG. 3 is a three dimensional model of an example optical sub-assembly according to embodiments of the present disclosure.
  • FIGS. 4A-4B show thermal field models of an example sub-assembly according to embodiments of the present disclosure compared to conventional techniques.
  • DETAILED DESCRIPTION
  • The present disclosure describes various examples of optical sub-assemblies and packaging methods for optical sub-assemblies. In some embodiments, the optical sub-assemblies disclosed herein have good thermal dissipation capabilities and deliver high optical power with low total electrical power consumption. The optical sub-assemblies disclosed include a diode submount structure, such as a silicon photonics (SiPho) die or ceramics substrate, and at least one laser or semiconductor optical amplifier (SOA) diode. Typically, the ceramics substrate is made of high thermal conductive materials such as aluminum nitride (AlN) with metallization on the surface for electrical connection. The optical sub-assemblies also include one or more thermoelectric coolers (TEC) or heat sink.
  • In one embodiment, a SiPho die used as a submount for the laser diodes can include at least one waveguide device to couple and transmit the light from the laser diode. One electrode of the laser diode can be bonded on the SiPho die, and the lasering light can be coupled into the waveguide in the SiPho die. Another electrode of the laser diode can be attached to the TEC such that the TEC can control the laser diode temperature. A thermally conductive epoxy underfill material or solder material (such as Sn—Au, Pb—Sn, Sn—Ag—Cu, Indium, etc. metal material or alloys) can be dispensed between the SiPho die and the TEC in order to further cool the laser temperature effectively and boost the optical power output. In some embodiments, any thermally conductive and electrically insulating material can be used, such as fillers, gel type pastes, phase change thermal interface materials, or a liquid phase material that is electrically insulating and thermally conductive. A liquid phase material could be held in place, for example, by the surface tension because of the small gaps between the silicon submount structure and the TEC device.
  • FIG. 1 illustrates an example optical sub-assembly 100 according to embodiments of the present disclosure. In this embodiment, the TEC 103 is positioned on a housing 101, and the diode submount structure 105, such as a SiPho die, is positioned such that one or more laser diode 107 and SOA diode 108 are sandwiched between the submount structure 105 and the TEC 103. This optical sub-assembly cools the laser diode 107 and SOA diode 108 more effectively, delivers higher optical power output, and consumes less total electrical energy. In the embodiment shown in FIG. 2 , both the laser diode 107 and the SOA diode 108 are edge light emitting devices. In some embodiments, as shown in FIG. 1 , one or more IC die 109 can also be positioned between the submount structure 105 and the TEC 103. In such cases, the TEC can also directly cool the IC die 109. Although only one TEC is shown in this embodiment, one skilled in the art will appreciate that multiple TECs can be implemented within the scope of the present disclosure.
  • In some embodiments, the submount structure 105 can include a SiPho die, or an AlN submount structure. An electrical circuit can be printed on the top of an AlN layer of the TEC cooling side. In another embodiment, the SiPho die has TSV structure inside the silicon, and IC die 109 can be on another side of the SiPho die.
  • The TEC 103 can include a top surface facing away from the housing 101 and a bottom surface that is mounted on or in contact with the housing 101. One or more electrical interconnects can be made between the TEC 103 and the housing 101, as shown in FIG. 1 . The laser diodes 107 and SOA diode 108 can be formed on or in contact with the top surface of the TEC 103.
  • In an embodiment, the submount structure 105 includes a SiPho die, which also includes a waveguide. The waveguide can be used to guide light from the laser diode 107 and SOA diode out of the optical sub-assembly 100. The SiPho die can be positioned over the TEC 103 to create an overhang 113, in order to prevent an underfill material 115 from covering the waveguide. As can be seen in FIG. 1 , solder connections 111 can be used to connect the SiPho die with the TEC 103, and an underfill material 115 can fill the space between the SiPho die and the TEC 103. In some embodiments, the SiPho die can overhang the TEC by between 1-2 mm. The underfill material 115 can be a thermally conductive material in order to provide further cooling and heat dissipation for the SiPho die and the laser diode 107 and SOA diode.
  • In an embodiment, the laser diode 107 or SOA diode 108 could be p-side (anode) bonded on the Sipho die with SN-AU alloy or other soldering material, or thermally conductive paste like Ag-epoxy. The n-side (cathode) of the diodes could be bonded on the TEC top AlN ceramics using Sn—Au alloy or soldering material, or thermally conductive epoxy paste. In such an embodiment, the heat generated in the quantum well region of the diodes spreads in both directions—up to the Sipho die and also down to the AlN ceramics, which is the top of the TEC devices. Between the Sipho die 105 and the TEC 103, a thermally conductive paste or underfill epoxy material 115 can be dispensed to facilitate heat spread horizontally within the material 105 and vertically from the Sipho die to AlN ceramics on the TEC 103.
  • In an embodiment, the underfill material 115 could be a thermally conductive epoxy such as commercially available Masterbond two-part epoxy EP30TC, which has a thermal conductivity of about 2.8 W/k·m with aluminum nitride as the thermal conductive fillers. When diamond is used as the filler, the underfill material conductivity can be as high as 6 W/k·m such as commercial YINCAE SMT 158D8 underfill. The typical underfill material 115 bond line thickness between the Sipho die and TEC 105 can be around 100 um or less, which is largely defined by the laser diode 107 and SOA diode 108 thickness, which is typically around 100 um or less. These dimensions are merely used as examples, and are not intended to limit the invention to a particular size range for components. Compared to conventional subassemblies, the techniques disclosed herein provide significantly improved thermal dissipation from the laser diode 107 and SOA diode 108 junction to the TEC 105 or the outside environment.
  • In some embodiments, the submount structure 105 also serves as a heat spreader or heat dissipater for the diodes 107, 108, along with the TEC 105. The heat generated in the laser quantum well, or junction, which is a hot spot and in a very small volume of the material, can spread out from the junction to the laser body and out to the submount. The TEC device 105 can include many pellets (e.g. BiTe diodes), in some embodiments, sandwiched between top and bottom ceramics (e.g. AlN). The top and bottom AlN ceramics in the TEC can also further spread out heat for more effective cooling by the TEC.
  • FIG. 2 is a flow diagram of an example method of cooling an optical sub-assembly, according to an embodiment of the present disclosure.
  • The method begins at operation 201 by operating the laser diode 107 and SOA diode 108. As discussed above, the diodes 107, 108 are positioned between a TEC 103 and a diode submount structure 105, such as an AlN submount structure or a SiPho die. In some embodiments, the submount structure 105 is a SiPho die that includes a waveguide, and the laser diode 107 and SOA diode 108 can emit light out of the SiPho die via the waveguide. In such embodiments, the SiPho die can overhang the TEC 103 by between 1-2 mm in order to prevent underfill material 115 from covering the waveguide.
  • The method continues at operation 203 with cooling the laser diode 107 and/or SOA diode 108 sandwiched between the submount material (AlN or silicon) and TEC top layer AlN. Compared to the prior art, the sandwiched packaging structure disclosed herein achieves lower thermal impedance (from the laser junction to TEC top AlN cold surface). The reduction in thermal impedance can be the result of heat spreading in more than one direction in the sandwiched structure—from the junction to the TEC AlN, as well as from the junction to the top submount. Additional cooling can be provided by the conductive underfill material between the submount and the TEC AlN cold side. The thermal performance difference is discussed in more detail in reference to FIGS. 4A-4B below.
  • In some embodiments, the method optionally continues at operation 205 with cooling one or more IC die 109 using the TEC 103. In some embodiments, the IC die 109 can also be positioned between the submount structure 105 and the TEC 103. In such cases, the TEC 103 can also directly cool the IC die 109.
  • FIG. 3 is a three dimensional model of an example optical sub-assembly according to embodiments of the present disclosure. In this embodiment, a laser 307 is sandwiched between a silicon die or submount structure 305 and a TEC device 303. A thermally conductive underfill material 315 is used to fill the space between the submount structure 305 and the TEC device 303, as well as improve heat dissipation. In the embodiment shown in FIG. 3 , a common n-type InP substrate based InGaAsP edge emitting quantum well laser diode was used with dimensions of 400 um length, 250 um width, and 100 um thickness. This laser 307 can be attached on the silicon die 305 with p-side attached using Au—Sn solder alloy, and with the laser light coupled into the silicon waveguide with high positional tolerance (typically sub-micrometer in all x/y/z directions) for high coupling efficiency. A small volume of optically transparent and index matching epoxy may also be dispensed between the laser output and waveguide for further improving the light coupling efficiency. The TEC top AlN cold side can include dimensions of 3000×2000 um area, and 1000 um thickness, in this example embodiment. One skilled in the art will recognize that the TEC could be replaced by a heat sink in some embodiments, if the laser diode was passively cooled by thermal convection and radiation.
  • The laser 307 is sandwiched between the silicon die 305 and TEC 303 top AlN cold side. Accounting for the thickness of the laser 307, the 100 um height gap between silicon die 305 and TEC 303 top AlN was filled with thermally conductive underfill material 315. This material could be underfill type epoxy with thermally conductive but electrically insulating fillers, or gel type paste or phase change thermal interface materials.
  • FIGS. 4A-4B show thermal field models of an example sub-assembly according to embodiments of the present disclosure compared to conventional techniques. FIG. 4A illustrates a thermal model of the design described in FIG. 3 , where the laser is sandwiched between the silicon die 401 and the TEC device 403. In comparison, FIG. 4B illustrates a thermal model of a design where a laser 406 is mounted on a silicon die 402, which is then mounted on a TEC device 404.
  • In the thermal field modelling, for simplicity, the laser thermal heat generation during operation is assumed to be 1 Watt. All the heat was generated in the laser quantum well active junction region uniformly. The TEC top cold AlN was set at 50 degrees Celsius, and air temperature at 25 degrees Celsius. All the heat convection and radiation were set to normal conditions. The modelled FEM (Finite Element Modeling) thermal fields are shown in FIGS. 4A-4B. In the thermal FEM modeling, a gap filler material with thermal conductivity of 5K/W·m was used for FIG. 4A.
  • Comparing the performance of the two designs, the laser junction active region temperature for the embodiments disclosed herein and shown in FIG. 4A is around 95 degrees Celsius. This is almost 20 degrees lower compared to the design in FIG. 4B, which had a laser junction active region temperature as high as around 114 degrees Celsius. In other words, the packaging techniques disclosed herein provide significantly improved cooling over alternative designs.
  • The preceding description sets forth numerous specific details such as examples of specific systems, components, methods, and so forth, in order to provide a thorough understanding of several examples in the present disclosure. It will be apparent to one skilled in the art, however, that at least some examples of the present disclosure may be practiced without these specific details. In other instances, well-known components or methods are not described in detail or are presented in simple block diagram form in order to avoid unnecessarily obscuring the present disclosure. Thus, the specific details set forth are merely exemplary. Particular examples may vary from these exemplary details and still be contemplated to be within the scope of the present disclosure.
  • Any reference throughout this specification to “one example” or “an example” means that a particular feature, structure, or characteristic described in connection with the examples are included in at least one example. Therefore, the appearances of the phrase “in one example” or “in an example” in various places throughout this specification are not necessarily all referring to the same example.
  • The term “coupled,” along with its derivatives, is used to indicate that two or more elements interact with each other. These coupled elements may or may not be in direct physical or electrical contact with each other.
  • Although the operations of the methods herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operation may be performed, at least in part, concurrently with other operations. Instructions or sub-operations of distinct operations may be performed in an intermittent or alternating manner.
  • The above description of illustrated implementations of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific implementations of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. The words “example” or “exemplary” are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example” or “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the words “example” or “exemplary” is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Furthermore, the terms “first,” “second,” “third,” “fourth,” etc. as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.

Claims (20)

What is claimed is:
1. A method of cooling an optical sub-assembly comprising:
operating a diode mounted to a diode submount structure; and
cooling the diode with a thermoelectric cooler (TEC) in thermal contact with the diode, wherein the diode is positioned between the diode submount structure and the TEC.
2. The method of claim 1, wherein the diode submount structure is a silicon photonics (SiPho) die.
3. The method of claim 2, wherein the SiPho die comprises a waveguide, and light from the diode exits the SiPho die via the waveguide.
4. The method of claim 3, wherein the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering the waveguide.
5. The method of claim 4, wherein the SiPho die overhangs the TEC by between 1-2 mm.
6. The method of claim 1, wherein the diode submount structure is an aluminum nitride sub-mount structure.
7. The method of claim 1, wherein cooling the diode comprises directly cooling the diode mounted between the diode submount structure and the TEC.
8. The method of claim 1, further comprising:
cooling one or more integrated circuits electrically connected to the diode submount structure.
9. The method of claim 8, wherein the one or more integrated circuits are positioned between the diode submount structure and the TEC.
10. The method of claim 1, wherein the TEC includes a top surface facing away from a housing with electrical interconnects, and a bottom surface mounted to the housing, and the diode is directly connected to the top surface of the TEC.
11. A system for cooling diodes, comprising:
a housing with electrical interconnects;
a thermoelectric cooler (TEC) positioned on the housing;
a silicon photonics (SiPho) die; and
a plurality of diodes mounted to the SiPho die, wherein each of the plurality of diodes are positioned between the SiPho die and the TEC and in direct thermal communication with both the SiPho die and the TEC.
12. The system of claim 11, further comprising one or more integrated circuits positioned between the SiPho die and the TEC and in direct thermal communication with both the SiPho die and the TEC.
13. The system of claim 12, wherein the one or more integrated circuits are electrically coupled to the SiPho die.
14. The system of claim 11, wherein the SiPho die is offset from the TEC in a horizontal direction.
15. The system of claim 14, wherein the SiPho die is positioned over the TEC and overhangs the TEC to prevent an underfill material from covering an output waveguide.
16. The system of claim 15, wherein the SiPho die overhangs the TEC by between 1-2 mm.
17. The system of claim 15, wherein the underfill material is a thermally conductive and electrically insulating material.
18. The system of claim 11, wherein each of the plurality of diodes comprises a light emitting diode for emitting an optical beam.
19. The system of claim 18, wherein the SiPho die comprises a plurality of waveguides, wherein the optical beam emitted by each of the plurality of diodes exits the SiPho die via a corresponding waveguide of the plurality of waveguides.
20. The system of claim 11, wherein the TEC includes a top surface facing away from a housing with electrical interconnects, and a bottom surface mounted to the housing, and each of the plurality of diodes is directly connected to the top surface of the TEC.
US18/321,380 2021-10-05 2023-05-22 Techniques for optical sub-assembly and packaging Pending US20230305245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/321,380 US20230305245A1 (en) 2021-10-05 2023-05-22 Techniques for optical sub-assembly and packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/494,415 US11789221B2 (en) 2021-10-05 2021-10-05 Techniques for device cooling in an optical sub-assembly
US18/321,380 US20230305245A1 (en) 2021-10-05 2023-05-22 Techniques for optical sub-assembly and packaging

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/494,415 Continuation US11789221B2 (en) 2021-10-05 2021-10-05 Techniques for device cooling in an optical sub-assembly

Publications (1)

Publication Number Publication Date
US20230305245A1 true US20230305245A1 (en) 2023-09-28

Family

ID=85775133

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/494,415 Active 2041-10-06 US11789221B2 (en) 2021-10-05 2021-10-05 Techniques for device cooling in an optical sub-assembly
US18/321,380 Pending US20230305245A1 (en) 2021-10-05 2023-05-22 Techniques for optical sub-assembly and packaging

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/494,415 Active 2041-10-06 US11789221B2 (en) 2021-10-05 2021-10-05 Techniques for device cooling in an optical sub-assembly

Country Status (1)

Country Link
US (2) US11789221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220045478A1 (en) * 2020-08-06 2022-02-10 Applied Optoelectronics, Inc. Techniques for thermal management within optical subassembly modules

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602860A (en) * 1995-04-19 1997-02-11 Optelecom, Inc. Laser thermal control using thermoelectric cooler
US6081037A (en) * 1998-06-22 2000-06-27 Motorola, Inc. Semiconductor component having a semiconductor chip mounted to a chip mount
US6272157B1 (en) * 1999-01-11 2001-08-07 Agere Systems Optoelectronics Guardian Corp. Apparatus and method for calibrating a wavelength stabilized laser
US6252726B1 (en) * 1999-09-02 2001-06-26 Lightlogic, Inc. Dual-enclosure optoelectronic packages
WO2003012938A1 (en) * 2001-07-27 2003-02-13 General Instrument Corporation Inexpensive analog laser module
TW200735494A (en) * 2004-06-29 2007-09-16 Tdk Corp Heat-conducting member, laser diode attachment auxiliary member, optical head using the same, and optical recording/reproducing apparatus using the same
WO2006088859A2 (en) * 2005-02-16 2006-08-24 Applied Materials, Inc. Optical coupling to ic chip
US7899105B1 (en) * 2005-06-15 2011-03-01 Cvi Laser, Llc Temperature control system for a frequency converted diode laser
CN102315354B (en) * 2010-06-29 2013-11-06 展晶科技(深圳)有限公司 Packaging structure of light emitting diode
US8905632B2 (en) * 2011-11-29 2014-12-09 Cisco Technology, Inc. Interposer configuration with thermally isolated regions for temperature-sensitive opto-electronic components
US9570883B2 (en) * 2011-12-28 2017-02-14 Intel Corporation Photonic package architecture
US8879589B2 (en) * 2012-03-20 2014-11-04 Jds Uniphase Corporation Stabilizing beam pointing of a frequency-converted laser system
US9236277B2 (en) * 2012-08-10 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit with a thermally conductive underfill and methods of forming same
JP6200642B2 (en) * 2012-11-30 2017-09-20 日本オクラロ株式会社 Optical device
US9468085B2 (en) * 2012-12-29 2016-10-11 Zephyr Photonics Inc. Method and apparatus for implementing optical modules in high temperatures
US9628184B2 (en) * 2013-11-05 2017-04-18 Cisco Technology, Inc. Efficient optical communication device
CN106664139B (en) * 2014-07-11 2020-05-15 阿卡西亚通信有限公司 Multi-channel coherent transceiver and related apparatus and methods
US9754617B2 (en) * 2015-02-23 2017-09-05 Seagate Technology Llc Laser diode unit with enhanced thermal conduction to slider
CN104717018B (en) * 2015-03-25 2017-07-11 青岛海信宽带多媒体技术有限公司 A kind of optical module
US10168497B2 (en) * 2015-06-15 2019-01-01 Rwth Aachen Self-alignment for apparatus comprising photonic device
JP6739154B2 (en) * 2015-08-21 2020-08-12 日本ルメンタム株式会社 Optical module
US9871153B2 (en) * 2015-09-24 2018-01-16 Elenion Technologies, Inc. Photodetector with integrated temperature control element formed at least in part in a semiconductor layer
US10290619B2 (en) * 2016-01-04 2019-05-14 Infinera Corporation Photonic integrated circuit package
US9651751B1 (en) * 2016-03-10 2017-05-16 Inphi Corporation Compact optical transceiver by hybrid multichip integration
JP6849907B2 (en) * 2016-12-01 2021-03-31 富士通株式会社 Optical module and manufacturing method of optical module
JP6880777B2 (en) * 2017-01-27 2021-06-02 富士通株式会社 Optical module
KR101873259B1 (en) * 2017-02-02 2018-07-02 순천대학교 산학협력단 Method for manufacturing micro-array light emitting diode and apparatus for lighting
JP2019021866A (en) * 2017-07-21 2019-02-07 住友電工デバイス・イノベーション株式会社 Semiconductor laser device
WO2019025858A1 (en) * 2017-08-01 2019-02-07 Rockley Photonics Limited Module with transmit optical subassemby and receive optical subassembly
EP3503316B1 (en) * 2017-12-20 2023-08-30 Finisar Corporation An integrated optical transceiver
US11410919B2 (en) * 2017-12-30 2022-08-09 Intel Corporation Stacked silicon die architecture with mixed flipcip and wirebond interconnect
US10615567B1 (en) * 2018-02-14 2020-04-07 Inphi Corporation Packaging of a directly modulated laser chip in photonics module
US10775576B2 (en) * 2018-03-01 2020-09-15 Ayar Labs, Inc. Thermal management system for multi-chip-module and associated methods
JP2019175986A (en) * 2018-03-28 2019-10-10 住友電気工業株式会社 Optical module
US10481355B2 (en) * 2018-04-20 2019-11-19 Sicoya Gmbh Optical assembly
US11817364B2 (en) * 2018-06-25 2023-11-14 Intel Corporation BGA STIM package architecture for high performance systems
JP2020042114A (en) * 2018-09-07 2020-03-19 日本電信電話株式会社 Optical circuit
US10637208B1 (en) * 2018-11-02 2020-04-28 Inphi Corporation Silicon photonics based tunable laser
US11811195B2 (en) * 2019-03-01 2023-11-07 Neophotonics Corporation Method for wavelength control of silicon photonic external cavity tunable laser
WO2020225578A1 (en) * 2019-05-07 2020-11-12 Mellanox Technologies Ltd Heat removal from silicon photonics chip using a recessed side-by-side thermal dissipation layout
US20220181289A1 (en) * 2020-12-07 2022-06-09 Intel Corporation Through-substrate underfill formation for an integrated circuit assembly

Also Published As

Publication number Publication date
US20230103569A1 (en) 2023-04-06
US11789221B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US7466732B2 (en) Laser diode package with an internal fluid cooling channel
US9158078B2 (en) Laser module
CN110809841B (en) Semiconductor laser device
EP2378616B1 (en) High-power semiconductor laser and method for manufacturing the same
US20230305245A1 (en) Techniques for optical sub-assembly and packaging
KR20010114224A (en) Semiconductor radiation emitter package
US20230068239A1 (en) Thermal Management System for Multi-Chip-Module and Associated Methods
JP2004207367A (en) Light emitting diode and light emitting diode arrangement plate
US20060005947A1 (en) Light emitting chip apparatuses with a thermally superconducting heat transfer medium for thermal management
US20110222567A1 (en) optoelectronic transistor outline (to)-can header assembly having a configuration that improves heat dissipation and reduces thermal resistance
US10748836B2 (en) Semiconductor laser module and method for manufacturing the same
US7430870B2 (en) Localized microelectronic cooling
JP4893601B2 (en) Light source device
US6621839B1 (en) Method for contacting a high-power diode laser bar and a high-power diode laser bar-contact arrangement of electrical contacts with minor thermal function
CN114637079B (en) Optical module
Zhang et al. Analysis of thermal characteristics based on a new type diode laser packaging structure
JP2007221109A (en) Semiconductor element, semiconductor module, and electronic apparatus
JP2010109321A (en) Light emitting device, and manufacturing method thereof
CN104718672B (en) photoelectric subassembly
US7873086B2 (en) Semiconductor device
JP2002094170A (en) Optical module
JP2005026333A (en) Semiconductor laser equipment
JPH09307018A (en) Semiconductor element and manufacture thereof
Xie et al. Optimization of thermal management techniques for low cost optoelectronic packages
WO2020044882A1 (en) Semiconductor laser device

Legal Events

Date Code Title Description
AS Assignment

Owner name: AEVA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, ZHIZHONG;LIANG, WENJING;MASUDA, KEVIN;AND OTHERS;SIGNING DATES FROM 20210928 TO 20210930;REEL/FRAME:063718/0347

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION