WO2020044849A1 - Method for producing nickel sulfate compound - Google Patents

Method for producing nickel sulfate compound Download PDF

Info

Publication number
WO2020044849A1
WO2020044849A1 PCT/JP2019/028455 JP2019028455W WO2020044849A1 WO 2020044849 A1 WO2020044849 A1 WO 2020044849A1 JP 2019028455 W JP2019028455 W JP 2019028455W WO 2020044849 A1 WO2020044849 A1 WO 2020044849A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nickel sulfate
sulfate compound
iron
roasting
Prior art date
Application number
PCT/JP2019/028455
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 左右田
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to AU2019331801A priority Critical patent/AU2019331801B2/en
Publication of WO2020044849A1 publication Critical patent/WO2020044849A1/en
Priority to PH12020500557A priority patent/PH12020500557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a nickel sulfate compound.
  • Priority is claimed on Japanese Patent Application No. 2018-161837 filed on August 30, 2018, the content of which is incorporated herein by reference.
  • nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for applications such as electrolytic nickel plating, electroless nickel plating, and catalyst materials.
  • demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material is expected to be increased as a power source for transportation equipment such as electric vehicles and electronic equipment.
  • stable supply of a high-purity nickel sulfate compound is desired.
  • Examples of impurities that may be contained in the low-purity nickel compound include other metal compounds such as iron, copper, cobalt, manganese, and magnesium.
  • a solvent extraction method has been used as a method for obtaining a high-purity nickel compound.
  • a step of selectively extracting and removing other metal compounds or selectively extracting and extracting nickel compounds is performed.
  • a special agent is required, and the cost is high.
  • Patent Document 1 describes a method for obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing.
  • Patent Document 1 describes sulfuric acid solutions having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) as the sulfuric acid used for the heat treatment. In the case of using concentrated sulfuric acid having a concentration of 95% in Patent Document 1 (Examples 7 to 9), a high temperature of 275 ° C. or higher is required.
  • the iron content coexisting with nickel in the raw material is dissolved in sulfuric acid, so that the consumption of sulfuric acid increases, and hydrogen gas may be generated during the reaction. And so on.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing a nickel sulfate compound capable of producing a nickel sulfate compound even in a gas phase atmosphere.
  • the first aspect of the present invention is to reduce the oxygen partial pressure and the sulfur dioxide partial pressure by making nickel sulfate thermodynamically more stable than nickel oxide in the Ni—SO system and oxidizing in the Fe—SO system.
  • a method for producing a nickel sulfate compound characterized by having a roasting step of heating a nickel-containing raw material containing iron and producing a nickel sulfate compound under conditions where iron is thermodynamically more stable than iron sulfate. is there.
  • a second aspect of the present invention is the method for producing a nickel sulfate compound according to the first aspect, wherein the roasting temperature is in a range of 400 to 750 ° C. in the roasting step.
  • a common logarithm log p (O 2 ) of oxygen partial pressure in units of atmospheric pressure (atm) is in a range of ⁇ 4 to ⁇ 6
  • the common logarithm is a logarithm (log 10 ) with the base being 10.
  • the nickel sulfate compound according to any one of the first to third aspects further comprising a water dissolving step of dissolving the nickel sulfate compound in water after the roasting step. It is a manufacturing method.
  • a fifth aspect of the present invention is characterized in that after the water dissolving step, there is provided a solid-liquid separation step of separating the liquid phase containing the nickel sulfate compound and the solid phase containing the iron component. Is a method for producing a nickel sulfate compound.
  • the nickel-containing raw material includes at least one selected from the group consisting of nickel sulfide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel.
  • a seventh aspect of the present invention is characterized in that, before the roasting step, an oxidizing roasting step of oxidizing and roasting the nickel-containing raw material under conditions different from the roasting step is provided.
  • the nickel-containing raw material contains iron
  • the nickel is converted to a nickel sulfate compound, and the conversion of iron to iron sulfate is suppressed. Can be suppressed, and the production efficiency of the nickel sulfate compound can be improved.
  • the reduction of iron is suppressed, and iron can coexist with the nickel sulfate compound in the form of iron oxide, iron sulfide, and the like. Can be easily processed.
  • the formation of the nickel sulfate compound can be promoted under the condition where the oxygen partial pressure is low and the sulfur dioxide partial pressure is high.
  • iron can be easily removed by preferentially dissolving the nickel sulfate compound.
  • the removal of impurities containing iron from the nickel sulfate compound is facilitated through the solid-liquid separation step.
  • the sixth aspect it is possible to use a nickel-containing raw material that is relatively easy to procure, so that productivity can be improved.
  • the iron content, the sulfur content, and the like contained in the nickel-containing raw material can be oxidized, so that the efficiency of impurity separation after the roasting step can be improved.
  • FIG. 2 is a configuration diagram illustrating a device used in an embodiment.
  • the nickel sulfate is thermodynamically more stable than the nickel oxide in the Ni—SO system, as shown in FIG.
  • a roasting step of heating a nickel-containing raw material to generate a nickel sulfate compound is performed under a condition in which iron oxide is more thermodynamically stable than iron sulfate in the Fe—SO system.
  • FIG. 1 is an example of a conceptual phase diagram of a Ni—SO system and an Fe—SO system.
  • the boundary of each phase in the Ni-SO system is indicated by a dashed line (-----), and the boundary of each phase in the Fe-SO system is indicated by a dashed line (----).
  • the chemical formula attached to the arrow indicates a thermodynamically stable phase on the side from each boundary line toward the arrow.
  • the horizontal axis in the state diagram shown in FIG. 1 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low.
  • the vertical axis in the state diagram shown in FIG. 1 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure.
  • Examples of nickel sulfate contained in the Ni—SO system include NiSO 4 , and examples of nickel oxide include NiO.
  • the boundary line LNi indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable.
  • borderline L Ni than SO 2 partial pressure and the partial pressure of O 2 is high region nickel sulfate is the thermodynamically stable phase.
  • nickel oxide becomes a thermodynamically stable phase.
  • Examples of the iron sulfate contained in the Fe—SO system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 .
  • a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable.
  • iron sulfate becomes a thermodynamically stable phase.
  • the iron oxide becomes a thermodynamically stable phase.
  • Ni Nickel sulfate is a thermodynamically stable phase in the -SO system and iron oxide in the Fe-SO system. Therefore, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S) under the conditions of the overlapping region A, the formation of iron sulfate can be performed even when iron is present in the system. It is possible to convert the nickel content to nickel sulfate while suppressing it.
  • the roasting temperature is preferably in the range of 400 to 750 ° C, more preferably in the range of 550 to 750 ° C. With such a roasting temperature, reduction of iron is suppressed, and iron can coexist with a nickel sulfate compound in a state of iron oxide, iron sulfide, etc. Post-processing can be facilitated. Further, at these temperatures, the carbonate is decomposed, so that it is possible to prevent the carbonate from dissolving in water and remaining as an impurity even in the case where the carbonate is mixed, so that the post-process can be performed. Can be easily processed.
  • the logarithmic log p (O 2 ) of the O 2 partial pressure in units of atmospheric pressure (atm) is preferably in the range of ⁇ 4 to ⁇ 6, and log p (O 2 ) is ⁇ 5.
  • the range of from to -6 is more preferable.
  • the partial pressure of SO 2 in the roasting step is preferably such that the logarithm log p (SO 2 ) of the partial pressure of SO 2 in the unit of atmospheric pressure (atm) is in the range of ⁇ 1 to +1 and the log p (SO 2 ) is in the range of ⁇ 1 to A range of 0 is more preferred.
  • the total pressure of the roasting atmosphere is not excessively increased by setting the partial pressure of SO 2 to about the normal pressure or lower (the common logarithm of the partial pressure is substantially 0 or less), thereby facilitating the handling of the equipment. be able to.
  • the nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains a nickel element.
  • the nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel.
  • the nickel-containing raw material may contain iron or may not contain iron. The iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the lower the iron content in the raw material, the more desirable.
  • the nickel-containing raw material is not limited to one kind, and two or more kinds may be used. When two or more nickel-containing raw materials are used, these raw materials may be supplied in a mixed state, or may be supplied separately.
  • the nickel matte includes, for example, a composition (weight ratio) of 45 to 55% Ni, about 20% Fe, 20 to 25% S, and about 1% or less Co. Further, as a nickel mat whose nickel concentration is increased in a converter, for example, a composition (weight ratio) of about 78% of Ni, about 1% of Co, about 1% of Fe, and about 20% of S can be cited. Ferronickel includes, for example, a composition (weight ratio) of 18 to 23% of Ni, about 1% of Co, and 76 to 81% of Fe.
  • the particle diameter of the nickel-containing raw material Prior to the roasting step, it is preferable to reduce the particle diameter of the nickel-containing raw material by operations such as shredding, pulverization, and attrition. Since the reaction starts from the surface of the raw material in the roasting step, the smaller the particle diameter of the raw material, the shorter the reaction time, which is preferable.
  • the crushing means is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used.
  • the particle size after the pulverization is not particularly limited, but is, for example, about 1 to 1000 ⁇ m, or about 10 to 100 ⁇ m. In the case of a raw material that can be obtained in the form of fine particles, such as limonite ore, it may be supplied to the roasting step as it is.
  • the roasting device for performing the roasting step is not particularly limited, and examples thereof include a rotary kiln, a fluidized bed heating furnace, and an electric furnace.
  • an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting device. These inert gases can also be used as carriers when supplying volatile components such as gas and vapor to the roasting apparatus. If the nickel-containing raw material has a low sulfur content, the sulfur content may be supplied to the roasting step.
  • the source of the sulfur content is not particularly limited, but includes elemental sulfur, sulfur oxide, sulfuric acid, sulfate, sulfide and the like.
  • preliminary oxidation roasting is performed under conditions different from the roasting process for the purpose of oxidizing iron, sulfur, and the like contained in the raw materials.
  • a step may be provided.
  • O 2 gas or the like may be supplied as an oxidizing agent.
  • FIG. 2 schematically illustrates a method for producing a nickel sulfate compound according to the present embodiment.
  • a roasted product 11 containing a nickel sulfate compound is obtained.
  • a solution 21 containing a nickel sulfate compound is obtained in a water dissolving step S2 in which water 20 is supplied to the roasted product 11 and the nickel sulfate compound is dissolved in water.
  • the iron component contained in the roasted product 11 is in a state of being hardly soluble in water such as iron oxide and iron sulfide, it is separated into a solid phase and a liquid phase in the solid-liquid separation step S3.
  • a crude nickel sulfate compound 31 is obtained as a liquid phase, and impurities 32 containing iron and the like are separated as a solid phase. Further, if necessary, for example, a purifying agent 40 is added to the crude nickel sulfate compound 31 to remove coexisting substances such as cobalt, and the purification step S4 is performed to remove impurities 42 such as cobalt.
  • a nickel compound 41 can be obtained.
  • the water added to the roasted product in the water dissolving step is preferably pure water treated so as not to contain impurities.
  • the water treatment method is not particularly limited, but includes one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like.
  • tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. Two or more types of water may be used.
  • the solubility of nickel sulfate in water is highest at 150 ° C., where 100 g of solution contains 55 g of NiSO 4, but even at 0 ° C., 100 g of solution contains 22 g of NiSO 4 . For this reason, it is desirable to carry out the dissolving operation at a temperature lower than the boiling point of water. Further, the solution obtained in the water dissolving step preferably has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable to maintain a heated state with a solution having a higher concentration than that.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method.
  • the apparatus has a high performance of separating fine particles contained in the solid phase.
  • the type of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filtration with a filter aid, and compression squeezing. Pressure filtration is preferred because it allows easy adjustment of the differential pressure and enables rapid separation.
  • Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al).
  • iron sulfate, cobalt sulfate, and the like also dissolve when the nickel sulfate compound is dissolved in water. Further, in water, for example, iron precipitates as an oxide such as FeOOH, Fe 2 O 3 , Fe 3 O 4, etc., and it becomes easy to remove impurities from the nickel sulfate compound.
  • conditions are set such that iron does not easily turn into iron sulfate. Therefore, by passing through the solid-liquid separation step, a crude nickel sulfate compound containing less iron can be obtained.
  • metals having a lower ionization tendency than hydrogen (H), such as copper (Cu), gold (Au), silver (Ag), and platinum group metals (PGM), remain as solids in the water dissolving step. It can be removed by a liquid separation step.
  • the solid removed by the solid-liquid separation step may include compounds such as arsenic (As), lead (Pb), and zinc (Zn), in addition to the impurities described above. Solids containing these impurities can be recycled as valuables.
  • the solution obtained in the water dissolving step and the solid-liquid separation step contains a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. it can.
  • techniques such as solvent extraction, electrodialysis (Electrowinning), electrorefining (Electrorefining), ion exchange, and crystallization are used. Can be used.
  • an extractant that can extract cobalt into a solvent preferentially or selectively over nickel. This allows the nickel sulfate compound to remain in the aqueous solution to allow for efficient purification.
  • the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group.
  • an organic solvent capable of separating the extractant from water may be used as a diluent.
  • the diluent is preferably an organic solvent that is hardly miscible with water.
  • the target nickel sulfate compound may be crystallized from the solution by at least one factor such as a change in temperature, a decrease in the solvent, and the addition of another substance.
  • purification is enabled by leaving at least a part of the impurities in the liquid phase.
  • Specific examples include an evaporation crystallization method and a poor solvent crystallization method.
  • a solution is concentrated by boiling or evaporating under reduced pressure to crystallize a nickel sulfate compound.
  • the poor solvent crystallization method is a crystallization method used in the production of pharmaceuticals and the like.
  • an organic solvent is added to a solution containing a nickel sulfate compound to precipitate a nickel sulfate compound.
  • an organic solvent miscible with water is preferable, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more organic solvents may be used.
  • concentration range in which the organic solvent is miscible with water it is preferable to mix the organic solvent at a concentration to which the organic solvent is added to such an extent that the nickel sulfate compound is precipitated.
  • the organic solvent can be mixed with water at an arbitrary ratio as long as the concentration allows precipitation of the nickel sulfate compound.
  • the organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent to such an extent that crystallization is not hindered.
  • the ratio of water to the organic solvent is not particularly limited, but may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1, for example, 1: 2 to 2: 1.
  • the nickel sulfate compound precipitated by crystallization can be separated from the solution by solid-liquid separation.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method.
  • the metal dissolved in the solution is preferably neutralized and removed from the solution by a method such as precipitation.
  • the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
  • the following effects can be obtained. (1) Since a nickel sulfate compound with high added value can be produced from various nickel-containing raw materials, production can be performed even near a place of demand, and transportation costs can be reduced. (2) A highly pure nickel sulfate compound can be produced. (3) The production of iron sulfate can be suppressed in the roasting step. Further, generation of hydrogen (H 2 ) gas can also be suppressed. (4) The roasted product is a chemical species in which iron is hardly dissolved in water, and nickel is easily dissolved in water as a nickel sulfate compound, so that iron is easily removed. (5) It is possible to easily remove impurities including iron. (6) Equipment cost can be reduced as compared with the conventional method, and existing equipment can be used as a roasting furnace. (7) Before the roasting step, iron contained in the nickel-containing raw material can be oxidized, and the efficiency of iron removal can be improved.
  • Example-1 Roasting test
  • a test of sulfuric acid roasting was performed using the test apparatus 100 shown in FIG. After weighing 5 g of a nickel compound as a sample on the pan 101, the pan 101 was set inside a glass container 102 installed in an electric furnace 103.
  • the glass container 102 was provided with a thermometer 104 such as a thermocouple capable of measuring an ambient temperature, an injection pipe 105 capable of injecting various gases, and an outlet 106 for exhaust gas generated inside.
  • the temperature was raised to a specified temperature in the electric furnace 103, and the sample was steamed.
  • dry air or SO 2 gas containing nitrogen gas can be supplied periodically while always injecting argon gas.
  • the exhaust gas discharged from the outlet 106 passes through the gas analyzer 107 and can be treated by the exhaust gas treatment device 108. Data on various gas volumes and analytical values were collected on a computer.
  • the composition of the nickel compound used in the test was a nickel sulfide alloy in which the content of iron was reduced by converter treatment of a nickel mat, and the composition was as follows. Ni: 78%, Co: 1%, Fe: 1%, S: 20%
  • Sulfuric acid roasting was performed at 680 ° C. on a 5 g sample. Argon gas was purged for 20 minutes until the sample rose to the specified temperature, and after reaching the specified 680 ° C., air was supplied for 20 minutes to burn iron and oxidized to oxidize iron. At the same time as air was injected, the weight of the sample was reduced and the evolution of SO 2 gas was observed. Thereafter, the gas to be injected was switched to SO 2 , and sulfuric acid roasting was performed for 40 minutes while adjusting the O 2 partial pressure and the SO 2 partial pressure. During the sulfuric acid roasting, a certain amount of SO 2 consumption was confirmed. As a result of analyzing the roasted product by X-ray diffraction (XRD), it was confirmed that the iron content was changed to Fe 2 O 3 and the Ni content was changed to NiSO 4 .
  • XRD X-ray diffraction
  • Example-2 Water dissolution test
  • the roasted product produced from 5 g of the nickel compound in Example-1 was put into 100 g of pure water and stirred at 90 ° C. to dissolve. A part of the solution was sampled, and the concentration in the solution was determined for each metal (Ni, Fe, Co) using an atomic absorption spectrometer. Further, from this concentration, the amount contained in the solution, that is, the total amount dissolved in pure water was determined for each metal, and the amount contained in the 5 g sample used for sulfuric acid roasting was set to 100% and dissolved in pure water. The ratio (dissolution rate) was determined. For example, the dissolution rate of Ni means the ratio of Ni dissolved in pure water to Ni contained in the roasted product. Table 1 shows the results of the determination of the dissolution rate.
  • Example 1 From the results, it was confirmed that the iron content in the roasted product was hardly dissolved, and Ni and Co were easily dissolved. This indicates that the sulfuric acid roasting of Example 1 can produce a high-purity nickel sulfate compound having a low iron content.
  • the present invention can be used for the production of various types of nickel compounds or high-purity nickel sulfate compounds useful as raw materials for metallic nickel used in electric parts such as secondary batteries, chemical products, and the like.
  • S1 roasting step
  • S2 water dissolving step
  • S3 solid-liquid separation step
  • S4 refining step
  • 10 nickel-containing raw material
  • 11 roasted product
  • 20 water
  • 21 solution
  • 31 crude nickel sulfate Compound
  • 32 impurities separated in the solid-liquid separation step
  • 40 purification agent
  • 41 purified nickel sulfate compound
  • 42 impurities separated in the purification step.

Abstract

A method for producing a nickel sulfate compound, said method comprising a roasting step for heating a nickel-containing starting material which also contains iron under such conditions, wherein an oxygen partial pressure p(O2) and a sulfur dioxide partial pressure p(SO2) are controlled so that nickel sulfate becomes thermodynamically more stable than nickel oxide in an Ni-S-O system and iron oxide becomes thermodynamically more stable than iron sulfate in an Fe-S-O system, to thereby form the nickel sulfate compound.

Description

硫酸ニッケル化合物の製造方法Method for producing nickel sulfate compound
 本発明は、硫酸ニッケル化合物の製造方法に関する。
 本願は、2018年8月30日に、日本に出願された特願2018-161837号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a nickel sulfate compound.
Priority is claimed on Japanese Patent Application No. 2018-161837 filed on August 30, 2018, the content of which is incorporated herein by reference.
 従来、硫酸ニッケル化合物は、各種のニッケル化合物または金属ニッケルの原料として、電解ニッケルメッキ、無電解ニッケルメッキ、触媒材料等の用途に利用されている。近年、電気自動車等の輸送機器、電子機器等の電源として、ニッケル化合物または金属ニッケルを正極材料に用いた二次電池の需要拡大が見込まれる。高性能な二次電池を得るため、高純度の硫酸ニッケル化合物の安定供給が望まれている。 Conventionally, nickel sulfate compounds have been used as raw materials for various nickel compounds or metallic nickel for applications such as electrolytic nickel plating, electroless nickel plating, and catalyst materials. 2. Description of the Related Art In recent years, demand for secondary batteries using a nickel compound or metallic nickel as a positive electrode material is expected to be increased as a power source for transportation equipment such as electric vehicles and electronic equipment. In order to obtain a high-performance secondary battery, stable supply of a high-purity nickel sulfate compound is desired.
 低純度のニッケル化合物に含まれる可能性がある不純物としては、鉄、銅、コバルト、マンガン、マグネシウム等の、他の金属化合物が挙げられる。従来、高純度のニッケル化合物を得る方法として、溶媒抽出法が挙げられる。溶媒抽出法では、他の金属化合物を選択的に抽出して除去するか、ニッケル化合物を選択的に抽出して取り出す工程が実施される。いずれの場合も、特定の金属イオンを選択的に抽出するためには、特殊な薬剤が必要となり、高コストであった。 不純 物 Examples of impurities that may be contained in the low-purity nickel compound include other metal compounds such as iron, copper, cobalt, manganese, and magnesium. Conventionally, a solvent extraction method has been used as a method for obtaining a high-purity nickel compound. In the solvent extraction method, a step of selectively extracting and removing other metal compounds or selectively extracting and extracting nickel compounds is performed. In any case, in order to selectively extract a specific metal ion, a special agent is required, and the cost is high.
 硫酸ニッケルを製造する方法として、イオン交換法によりニッケル化合物の陰イオンを硫酸根に交換する方法や、硫酸溶液中でニッケル金属粉末を、水素ガスを発生させながら溶解する方法も知られている。また特許文献1には、比重が6.30を超える緑色の酸化ニッケル粉末を硫酸中で加熱処理した後、熱水で浸出(leach)することにより、水溶性の硫酸ニッケルを得る方法が記載されている。特許文献1では、加熱処理に用いる硫酸として、濃度30%~60%の硫酸溶液(クレーム1~5)、濃度95%の濃硫酸(クレーム6~7)が挙げられている。特許文献1で濃度95%の濃硫酸を用いる場合(実施例7~9)には、275℃以上の高温が必要とされている。 As a method for producing nickel sulfate, a method of exchanging anions of nickel compounds for sulfate groups by an ion exchange method and a method of dissolving nickel metal powder in a sulfuric acid solution while generating hydrogen gas are also known. Patent Document 1 describes a method for obtaining water-soluble nickel sulfate by subjecting green nickel oxide powder having a specific gravity of more than 6.30 to heat treatment in sulfuric acid and then leaching with hot water. ing. Patent Document 1 describes sulfuric acid solutions having a concentration of 30% to 60% (claims 1 to 5) and concentrated sulfuric acid having a concentration of 95% (claims 6 to 7) as the sulfuric acid used for the heat treatment. In the case of using concentrated sulfuric acid having a concentration of 95% in Patent Document 1 (Examples 7 to 9), a high temperature of 275 ° C. or higher is required.
米国特許第3002814号明細書US Patent No. 300002814
 液相の硫酸を用いて硫酸ニッケルを得る方法では、原料中でニッケルと共存する鉄分が硫酸に溶解することで硫酸の消費量が多くなること、反応中に水素ガスが発生するおそれがあること等が懸念される。 In the method of obtaining nickel sulfate using liquid-phase sulfuric acid, the iron content coexisting with nickel in the raw material is dissolved in sulfuric acid, so that the consumption of sulfuric acid increases, and hydrogen gas may be generated during the reaction. And so on.
 本発明は、上記事情に鑑みてなされたものであり、気相雰囲気下でも硫酸ニッケル化合物を製造することが可能な硫酸ニッケル化合物の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing a nickel sulfate compound capable of producing a nickel sulfate compound even in a gas phase atmosphere.
 本発明の第1の態様は、酸素分圧および二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下として、鉄分を含むニッケル含有原料を加熱し、硫酸ニッケル化合物を生成させる焙焼工程を有することを特徴とする硫酸ニッケル化合物の製造方法である。 The first aspect of the present invention is to reduce the oxygen partial pressure and the sulfur dioxide partial pressure by making nickel sulfate thermodynamically more stable than nickel oxide in the Ni—SO system and oxidizing in the Fe—SO system. A method for producing a nickel sulfate compound, characterized by having a roasting step of heating a nickel-containing raw material containing iron and producing a nickel sulfate compound under conditions where iron is thermodynamically more stable than iron sulfate. is there.
 本発明の第2の態様は、前記焙焼工程において、焙焼温度が400~750℃の範囲であることを特徴とする第1の態様の硫酸ニッケル化合物の製造方法である。 第 A second aspect of the present invention is the method for producing a nickel sulfate compound according to the first aspect, wherein the roasting temperature is in a range of 400 to 750 ° C. in the roasting step.
 本発明の第3の態様は、前記焙焼工程において、気圧(atm)単位による酸素分圧の常用対数log p(O)が-4~-6の範囲であり、気圧(atm)単位による二酸化硫黄分圧の常用対数log p(SO)が-1~+1の範囲であることを特徴とする第1または第2の態様の硫酸ニッケル化合物の製造方法である。なお、常用対数は、底を10とする対数(log10)である。 In a third aspect of the present invention, in the roasting step, a common logarithm log p (O 2 ) of oxygen partial pressure in units of atmospheric pressure (atm) is in a range of −4 to −6, The method for producing a nickel sulfate compound according to the first or second aspect, wherein a common logarithm log p (SO 2 ) of sulfur dioxide partial pressure is in a range of −1 to +1. The common logarithm is a logarithm (log 10 ) with the base being 10.
 本発明の第4の態様は、前記焙焼工程の後に、前記硫酸ニッケル化合物を水に溶解させる水溶解工程を有することを特徴とする第1~第3のいずれかの態様の硫酸ニッケル化合物の製造方法である。 According to a fourth aspect of the present invention, there is provided the nickel sulfate compound according to any one of the first to third aspects, further comprising a water dissolving step of dissolving the nickel sulfate compound in water after the roasting step. It is a manufacturing method.
 本発明の第5の態様は、前記水溶解工程の後に、前記硫酸ニッケル化合物を含む液相と、鉄分を含む固相とを分離する固液分離工程を有することを特徴とする第4の態様の硫酸ニッケル化合物の製造方法である。 A fifth aspect of the present invention is characterized in that after the water dissolving step, there is provided a solid-liquid separation step of separating the liquid phase containing the nickel sulfate compound and the solid phase containing the iron component. Is a method for producing a nickel sulfate compound.
 本発明の第6の態様は、前記ニッケル含有原料が、ニッケル硫化鉱、ニッケル硫化物、ニッケルマット、酸化ニッケル、フェロニッケルからなる群から選択される1種以上を含むことを特徴とする第1~第5のいずれかの態様の硫酸ニッケル化合物の製造方法である。 In a sixth aspect of the present invention, the nickel-containing raw material includes at least one selected from the group consisting of nickel sulfide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel. To a method for producing a nickel sulfate compound according to any one of the fifth to fifth aspects.
 本発明の第7の態様は、前記焙焼工程の前に、前記焙焼工程とは異なる条件により、ニッケル含有原料の酸化焙焼を行う酸化焙焼工程を有することを特徴とする第1~第6のいずれかの態様の硫酸ニッケル化合物の製造方法である。 A seventh aspect of the present invention is characterized in that, before the roasting step, an oxidizing roasting step of oxidizing and roasting the nickel-containing raw material under conditions different from the roasting step is provided. A method for producing a nickel sulfate compound according to any one of the sixth aspects.
 第1の態様によれば、ニッケル含有原料が鉄分を含む場合であっても、ニッケル分が硫酸ニッケル化合物に変換されると共に、鉄分から硫酸鉄への変換が抑制されるので、鉄分による硫黄分の消費を抑制して、硫酸ニッケル化合物の生成効率を向上することができる。 According to the first aspect, even when the nickel-containing raw material contains iron, the nickel is converted to a nickel sulfate compound, and the conversion of iron to iron sulfate is suppressed. Can be suppressed, and the production efficiency of the nickel sulfate compound can be improved.
 第2の態様によれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。 According to the second aspect, the reduction of iron is suppressed, and iron can coexist with the nickel sulfate compound in the form of iron oxide, iron sulfide, and the like. Can be easily processed.
 第3の態様によれば、酸素分圧が低く、二酸化硫黄分圧が高い条件下により、硫酸ニッケル化合物の生成を促進することができる。 According to the third aspect, the formation of the nickel sulfate compound can be promoted under the condition where the oxygen partial pressure is low and the sulfur dioxide partial pressure is high.
 第4の態様によれば、硫酸ニッケル化合物を優先的に溶解することにより、鉄分の除去を容易にすることができる。 According to the fourth aspect, iron can be easily removed by preferentially dissolving the nickel sulfate compound.
 第5の態様によれば、固液分離工程を経ることで、硫酸ニッケル化合物からの鉄分を含む不純物の除去が容易になる。 According to the fifth aspect, the removal of impurities containing iron from the nickel sulfate compound is facilitated through the solid-liquid separation step.
 第6の態様によれば、比較的調達が容易なニッケル含有原料を用いることができるので、生産性を向上させることができる。 According to the sixth aspect, it is possible to use a nickel-containing raw material that is relatively easy to procure, so that productivity can be improved.
 第7の態様によれば、焙焼工程の前に、ニッケル含有原料に含まれる鉄分、硫黄分等を酸化させることができるので、焙焼工程後の不純物の分離の効率を向上させることができる。 According to the seventh aspect, before the roasting step, the iron content, the sulfur content, and the like contained in the nickel-containing raw material can be oxidized, so that the efficiency of impurity separation after the roasting step can be improved. .
Ni-S-O系およびFe-S-O系の概念的な状態図である。It is a conceptual phase diagram of a Ni-SO system and a Fe-SO system. 実施形態の硫酸ニッケル化合物の製造方法の概略を示す流れ図である。It is a flow chart showing an outline of a manufacturing method of a nickel sulfate compound of an embodiment. 実施例で用いた装置を例示する構成図である。FIG. 2 is a configuration diagram illustrating a device used in an embodiment.
 以下、好適な実施形態に基づいて、本発明を説明する。 Hereinafter, the present invention will be described based on preferred embodiments.
 本実施形態の硫酸ニッケル化合物の製造方法は、図1に示すように、酸素分圧および二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下として、ニッケル含有原料を加熱し、硫酸ニッケル化合物を生成させる焙焼工程を有する。 As shown in FIG. 1, in the method for producing a nickel sulfate compound of the present embodiment, the nickel sulfate is thermodynamically more stable than the nickel oxide in the Ni—SO system, as shown in FIG. In addition, a roasting step of heating a nickel-containing raw material to generate a nickel sulfate compound is performed under a condition in which iron oxide is more thermodynamically stable than iron sulfate in the Fe—SO system.
 図1は、Ni-S-O系およびFe-S-O系の概念的な状態図の一例である。Ni-S-O系における各相の境界線は破線(‐‐‐‐‐)で表示し、Fe-S-O系における各相の境界線は一点鎖線(―・―・―)で表示した。矢印に添えた化学式は、それぞれの境界線から矢印に向かう側で熱力学的に安定な相を示す。図1に示す状態図の横軸はO分圧の対数を示し、右側ほどO分圧が高く、左側ほどO分圧が低い。図1に示す状態図の縦軸はSO分圧の対数を示し、上側ほどSO分圧が高く、下側ほどSO分圧が低い。分圧の単位は、例えば気圧(atm=101325Pa)である。 FIG. 1 is an example of a conceptual phase diagram of a Ni—SO system and an Fe—SO system. The boundary of each phase in the Ni-SO system is indicated by a dashed line (-----), and the boundary of each phase in the Fe-SO system is indicated by a dashed line (----). . The chemical formula attached to the arrow indicates a thermodynamically stable phase on the side from each boundary line toward the arrow. The horizontal axis in the state diagram shown in FIG. 1 shows the logarithm of the partial pressure of O 2, the right side as the O 2 partial pressure is high, the left as O 2 partial pressure is low. The vertical axis in the state diagram shown in FIG. 1 shows the logarithm of the SO 2 partial pressure, the upper as SO 2 partial pressure is high, the lower the lower SO 2 partial pressure. The unit of the partial pressure is, for example, the atmospheric pressure (atm = 101325 Pa).
 Ni-S-O系に含まれる硫酸ニッケルとしては例えばNiSOが挙げられ、酸化ニッケルとしては例えばNiOが挙げられる。図1に示す状態図において、境界線LNiは、硫酸ニッケルが熱力学的に安定な領域と酸化ニッケルが熱力学的に安定な領域との境界線を示す。境界線LNiよりSO分圧およびO分圧が高い領域では、硫酸ニッケルが熱力学的に安定な相となる。また、境界線LNiよりSO分圧およびO分圧が低い領域では、酸化ニッケルが熱力学的に安定な相となる。 Examples of nickel sulfate contained in the Ni—SO system include NiSO 4 , and examples of nickel oxide include NiO. In the state diagram shown in FIG. 1, the boundary line LNi indicates a boundary line between a region where nickel sulfate is thermodynamically stable and a region where nickel oxide is thermodynamically stable. In borderline L Ni than SO 2 partial pressure and the partial pressure of O 2 is high region, nickel sulfate is the thermodynamically stable phase. In a region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line LNi , nickel oxide becomes a thermodynamically stable phase.
 Fe-S-O系に含まれる硫酸鉄としては例えばFeSOおよびFe(SOが挙げられ、酸化鉄としては例えばFeが挙げられる。図1に示す状態図において、境界線LFeは、硫酸鉄が熱力学的に安定な領域と酸化鉄が熱力学的に安定な領域との境界線を示す。境界線LFeよりSO分圧およびO分圧が高い領域では、硫酸鉄が熱力学的に安定な相となる。また、境界線LFeよりSO分圧およびO分圧が低い領域では、酸化鉄が熱力学的に安定な相となる。 Examples of the iron sulfate contained in the Fe—SO system include FeSO 4 and Fe 2 (SO 4 ) 3 , and examples of the iron oxide include Fe 2 O 3 . In the state diagram shown in FIG. 1, a boundary line L Fe indicates a boundary line between a region where iron sulfate is thermodynamically stable and a region where iron oxide is thermodynamically stable. In a region where the SO 2 partial pressure and the O 2 partial pressure are higher than the boundary line L Fe , iron sulfate becomes a thermodynamically stable phase. In a region where the SO 2 partial pressure and the O 2 partial pressure are lower than the boundary line L Fe , the iron oxide becomes a thermodynamically stable phase.
 図1に示す状態図によれば、境界線LFeよりSO分圧およびO分圧が低く、かつ、境界線LNiよりSO分圧およびO分圧が高い領域Aにおいて、Ni-S-O系では硫酸ニッケルが、Fe-S-O系では酸化鉄が、熱力学的に安定な相となる。そこで、この重なり領域Aの条件下で、ニッケル(Ni)、酸素(O)、硫黄(S)を含む系を焙焼することにより、系中に鉄分が共存していても硫酸鉄の生成を抑制しつつ、ニッケル分を硫酸ニッケルに変換することができる。 According to the state diagram shown in FIG. 1, SO 2 partial pressure and the partial pressure of O 2 is lower than the boundary line L Fe, and, SO 2 partial pressure and the partial pressure of O 2 is in the higher region A than the boundary line L Ni, Ni Nickel sulfate is a thermodynamically stable phase in the -SO system and iron oxide in the Fe-SO system. Therefore, by roasting a system containing nickel (Ni), oxygen (O), and sulfur (S) under the conditions of the overlapping region A, the formation of iron sulfate can be performed even when iron is present in the system. It is possible to convert the nickel content to nickel sulfate while suppressing it.
 焙焼温度は、400~750℃の範囲が好ましく、550~750℃の範囲がより好ましい。このような焙焼温度であれば、鉄分の還元が抑制されて、鉄分が酸化鉄、硫化鉄等の状態で硫酸ニッケル化合物と共存し得るので、焙焼生成物において粒子の凝結を抑制し、後工程の処理を容易にすることができる。また、これらの温度であれば、炭酸塩が分解するので、炭酸塩が混入している場合であっても、炭酸塩が水に溶解して不純物として残るのを防止することができ、後工程の処理を容易にすることができる。 The roasting temperature is preferably in the range of 400 to 750 ° C, more preferably in the range of 550 to 750 ° C. With such a roasting temperature, reduction of iron is suppressed, and iron can coexist with a nickel sulfate compound in a state of iron oxide, iron sulfide, etc. Post-processing can be facilitated. Further, at these temperatures, the carbonate is decomposed, so that it is possible to prevent the carbonate from dissolving in water and remaining as an impurity even in the case where the carbonate is mixed, so that the post-process can be performed. Can be easily processed.
 焙焼工程におけるO分圧としては、気圧(atm)単位によるO分圧の常用対数log p(O)が-4~-6の範囲が好ましく、log p(O)が-5~-6の範囲がより好ましい。O分圧を低くすることにより、図1の重なり領域AにおいてもSO分圧が高くなる傾向となるので、硫酸鉄の生成を抑制しつつ、硫酸ニッケルの生成を促進することができる。 As the O 2 partial pressure in the roasting step, the logarithmic log p (O 2 ) of the O 2 partial pressure in units of atmospheric pressure (atm) is preferably in the range of −4 to −6, and log p (O 2 ) is −5. The range of from to -6 is more preferable. By lowering the O 2 partial pressure, the SO 2 partial pressure tends to increase even in the overlapping region A in FIG. 1, so that the production of nickel sulfate can be promoted while suppressing the production of iron sulfate.
 焙焼工程におけるSO分圧としては、気圧(atm)単位によるSO分圧の常用対数log p(SO)が-1~+1の範囲が好ましく、log p(SO)が-1~0の範囲がより好ましい。図1の重なり領域Aの中でも、SO分圧をより高くすることで、硫酸塩の生成を促進することができる。さらに、SO分圧を常圧程度またはそれ以下の範囲(分圧の常用対数が略0以下)とすることで、焙焼雰囲気の全圧も過大にならず、設備の取り扱いを容易にすることができる。 The partial pressure of SO 2 in the roasting step is preferably such that the logarithm log p (SO 2 ) of the partial pressure of SO 2 in the unit of atmospheric pressure (atm) is in the range of −1 to +1 and the log p (SO 2 ) is in the range of −1 to A range of 0 is more preferred. In the overlapping region A in FIG. 1, by further increasing the partial pressure of SO 2 , the production of sulfate can be promoted. Furthermore, the total pressure of the roasting atmosphere is not excessively increased by setting the partial pressure of SO 2 to about the normal pressure or lower (the common logarithm of the partial pressure is substantially 0 or less), thereby facilitating the handling of the equipment. be able to.
 ニッケル含有原料としては、ニッケル元素を含有するのであれば、ニッケル化合物でも、金属ニッケルでもよい。焙焼工程におけるニッケル含有原料は、ニッケル硫化鉱、ニッケル硫化物、ニッケルマット、酸化ニッケル、フェロニッケルからなる群から選択される1種以上を含むことが好ましい。ニッケル含有原料は、鉄分を含んでもよく、あるいは鉄分を含まなくてもよい。鉄分は後工程で硫酸ニッケル化合物から分離されるが、エネルギー消費の観点から、原料中の鉄分が少ないほど望ましい。ニッケル含有原料は、1種に限らず、2種以上を用いてもよい。2種以上のニッケル含有原料を用いる場合は、これらの原料を混合した状態で供給されてもよく、別々に供給されてもよい。 The nickel-containing raw material may be a nickel compound or metallic nickel as long as it contains a nickel element. The nickel-containing raw material in the roasting step preferably contains at least one selected from the group consisting of nickel sulfide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel. The nickel-containing raw material may contain iron or may not contain iron. The iron content is separated from the nickel sulfate compound in a later step, but from the viewpoint of energy consumption, the lower the iron content in the raw material, the more desirable. The nickel-containing raw material is not limited to one kind, and two or more kinds may be used. When two or more nickel-containing raw materials are used, these raw materials may be supplied in a mixed state, or may be supplied separately.
 ニッケルマットとしては、例えばNiが45~55%、Feが約20%、Sが20~25%、Coが約1%以下の組成(重量比)が挙げられる。さらに、転炉でニッケル濃度を上昇させたニッケルマットとして、例えばNiが約78%、Coが約1%、Feが約1%、Sが約20%の組成(重量比)が挙げられる。フェロニッケルとしては、例えばNiが18~23%、Coが約1%、Feが76~81%の組成(重量比)が挙げられる。 The nickel matte includes, for example, a composition (weight ratio) of 45 to 55% Ni, about 20% Fe, 20 to 25% S, and about 1% or less Co. Further, as a nickel mat whose nickel concentration is increased in a converter, for example, a composition (weight ratio) of about 78% of Ni, about 1% of Co, about 1% of Fe, and about 20% of S can be cited. Ferronickel includes, for example, a composition (weight ratio) of 18 to 23% of Ni, about 1% of Co, and 76 to 81% of Fe.
 焙焼工程に先立って、細断、粉砕、磨滅などの操作でニッケル含有原料の粒子径を小さくすることが好ましい。焙焼工程において反応は原料の表面から開始するので、原料の粒子径が小さいほど反応時間が短くなり、好ましい。粉砕手段としては、特に限定されないが、ボールミル、ロッドミル、ハンマーミル、流体エネルギーミル、振動ミル等の1種または2種以上を用いることができる。粉砕後の粒子径は、特に限定されないが、例えば1~1000μm程度、あるいは10~100μm程度が挙げられる。リモナイト鉱石のように、微粒子の状態で入手できる原料の場合は、そのまま焙焼工程に供給してもよい。 Prior to the roasting step, it is preferable to reduce the particle diameter of the nickel-containing raw material by operations such as shredding, pulverization, and attrition. Since the reaction starts from the surface of the raw material in the roasting step, the smaller the particle diameter of the raw material, the shorter the reaction time, which is preferable. The crushing means is not particularly limited, but one or more of a ball mill, a rod mill, a hammer mill, a fluid energy mill, a vibration mill and the like can be used. The particle size after the pulverization is not particularly limited, but is, for example, about 1 to 1000 μm, or about 10 to 100 μm. In the case of a raw material that can be obtained in the form of fine particles, such as limonite ore, it may be supplied to the roasting step as it is.
 焙焼工程を実施する焙焼装置としては、特に限定されず、ロータリーキルン、流動層型の加熱炉、電気炉等が挙げられる。焙焼装置内でO分圧が低い条件を維持するには、窒素(N)、アルゴン(Ar)等の不活性ガスを焙焼装置に供給してもよい。これらの不活性ガスは、気体や蒸気等の揮発性成分を焙焼装置に供給する際の担体として用いることもできる。ニッケル含有原料に硫黄分が少ない場合は、硫黄分を焙焼工程に供給してもよい。硫黄分の供給源としては、特に限定されないが、元素状硫黄、硫黄酸化物、硫酸、硫酸塩、硫化物などが挙げられる。 The roasting device for performing the roasting step is not particularly limited, and examples thereof include a rotary kiln, a fluidized bed heating furnace, and an electric furnace. In order to maintain the condition in which the O 2 partial pressure is low in the roasting device, an inert gas such as nitrogen (N 2 ) or argon (Ar) may be supplied to the roasting device. These inert gases can also be used as carriers when supplying volatile components such as gas and vapor to the roasting apparatus. If the nickel-containing raw material has a low sulfur content, the sulfur content may be supplied to the roasting step. The source of the sulfur content is not particularly limited, but includes elemental sulfur, sulfur oxide, sulfuric acid, sulfate, sulfide and the like.
 なお、重なり領域Aの条件下で焙焼工程を行う前に、原料に含まれる鉄分、硫黄分等を酸化させる等の目的で、前述の焙焼工程とは異なる条件による予備的な酸化焙焼工程を設けてもよい。予備的な酸化焙焼工程においては、酸化剤としてOガス等を供給してもよい。 Before performing the roasting process under the conditions of the overlap region A, preliminary oxidation roasting is performed under conditions different from the roasting process for the purpose of oxidizing iron, sulfur, and the like contained in the raw materials. A step may be provided. In the preliminary oxidation roasting step, O 2 gas or the like may be supplied as an oxidizing agent.
 図2に、本実施形態の硫酸ニッケル化合物の製造方法の概略を例示する。上述したニッケル含有原料10の焙焼工程S1により、硫酸ニッケル化合物を含む焙焼生成物11が得られる。この焙焼生成物11に水20を供給し、硫酸ニッケル化合物を水に溶解させる水溶解工程S2により、硫酸ニッケル化合物を含む溶液21が得られる。上述したように、焙焼生成物11に含まれる鉄分は、酸化鉄、硫化鉄等、水に難溶の状態となるので、固液分離工程S3において固相と液相とに分離することにより、液相として粗製硫酸ニッケル化合物31が得られ、固相として鉄分等を含む不純物32が分離される。さらに必要に応じて、例えばコバルト等の共存物を除去するため、粗製硫酸ニッケル化合物31に精製剤40を加えて、精製工程S4を行うことにより、コバルト等の不純物42が除去された、精製硫酸ニッケル化合物41を得ることができる。 FIG. 2 schematically illustrates a method for producing a nickel sulfate compound according to the present embodiment. By the above-described roasting step S1 of the nickel-containing raw material 10, a roasted product 11 containing a nickel sulfate compound is obtained. A solution 21 containing a nickel sulfate compound is obtained in a water dissolving step S2 in which water 20 is supplied to the roasted product 11 and the nickel sulfate compound is dissolved in water. As described above, since the iron component contained in the roasted product 11 is in a state of being hardly soluble in water such as iron oxide and iron sulfide, it is separated into a solid phase and a liquid phase in the solid-liquid separation step S3. Then, a crude nickel sulfate compound 31 is obtained as a liquid phase, and impurities 32 containing iron and the like are separated as a solid phase. Further, if necessary, for example, a purifying agent 40 is added to the crude nickel sulfate compound 31 to remove coexisting substances such as cobalt, and the purification step S4 is performed to remove impurities 42 such as cobalt. A nickel compound 41 can be obtained.
 水溶解工程で焙焼生成物に添加される水は、不純物を含まないように処理された純水が好ましい。水処理方法としては、特に限定されないが、濾過、膜分離、イオン交換、蒸留、消毒、薬剤処理、吸着などの1種以上が挙げられる。溶解用の水として、水源から得られる上水、工業用水等を用いてもよく、他のプロセスで生じた排水を処理した水を用いてもよい。2種類以上の水を用いてもよい。 (4) The water added to the roasted product in the water dissolving step is preferably pure water treated so as not to contain impurities. The water treatment method is not particularly limited, but includes one or more of filtration, membrane separation, ion exchange, distillation, disinfection, chemical treatment, adsorption and the like. As the water for dissolution, tap water obtained from a water source, industrial water, or the like may be used, or water obtained by treating wastewater generated in another process may be used. Two or more types of water may be used.
 硫酸ニッケルの水への溶解度は、150℃において最も高く、100gの溶液に55gのNiSOが含まれるが、0℃でも100gの溶液に22gのNiSOが含まれる。このため、溶解操作は水の沸点以下で実施することが望ましい。また、水溶解工程で得られる溶液は、NiSOが常温でも析出しない濃度とすることが好ましく、それより高濃度の溶液では加温状態を維持することが好ましい。 The solubility of nickel sulfate in water is highest at 150 ° C., where 100 g of solution contains 55 g of NiSO 4, but even at 0 ° C., 100 g of solution contains 22 g of NiSO 4 . For this reason, it is desirable to carry out the dissolving operation at a temperature lower than the boiling point of water. Further, the solution obtained in the water dissolving step preferably has a concentration at which NiSO 4 does not precipitate even at room temperature, and it is preferable to maintain a heated state with a solution having a higher concentration than that.
 固液分離工程において、固液分離の方法は、特に限定されず、濾過法、遠心分離法、沈降分離法などが挙げられる。望ましくは、固相に含まれる微粒子の分離性能が高い装置とすることが好ましい。例えば、濾過法において、濾過の方式は特に限定されず、重力濾過、減圧濾過、加圧濾過、遠心濾過、濾過助剤添加型濾過、圧搾絞り濾過等が挙げられる。
差圧の調整が容易で、迅速な分離が可能となる加圧濾過が好ましい。
In the solid-liquid separation step, the method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a sedimentation separation method. Desirably, it is preferable that the apparatus has a high performance of separating fine particles contained in the solid phase. For example, in the filtration method, the type of filtration is not particularly limited, and examples thereof include gravity filtration, reduced pressure filtration, pressure filtration, centrifugal filtration, filtration with a filter aid, and compression squeezing.
Pressure filtration is preferred because it allows easy adjustment of the differential pressure and enables rapid separation.
 硫酸ニッケル化合物と共存し得る不純物としては、鉄(Fe)、コバルト(Co)、アルミニウム(Al)等が挙げられる。これらの金属塩が焙焼工程において硫酸塩となっている場合、硫酸ニッケル化合物を水に溶解させたときに、硫酸鉄、硫酸コバルト等も溶解する。さらに、水中では例えば鉄がFeOOH、Fe、Fe等の酸化物等として沈殿し、硫酸ニッケル化合物から不純物の除去が容易になる。本実施形態の焙焼工程は、鉄分が硫酸鉄となりにくい条件を設定しているため、固液分離工程を経ることで、鉄分の少ない粗製の硫酸ニッケル化合物が得られる。 Examples of impurities that can coexist with the nickel sulfate compound include iron (Fe), cobalt (Co), and aluminum (Al). When these metal salts are sulfates in the roasting step, iron sulfate, cobalt sulfate, and the like also dissolve when the nickel sulfate compound is dissolved in water. Further, in water, for example, iron precipitates as an oxide such as FeOOH, Fe 2 O 3 , Fe 3 O 4, etc., and it becomes easy to remove impurities from the nickel sulfate compound. In the roasting step of the present embodiment, conditions are set such that iron does not easily turn into iron sulfate. Therefore, by passing through the solid-liquid separation step, a crude nickel sulfate compound containing less iron can be obtained.
 不純物のうち、例えば銅(Cu)、金(Au)、銀(Ag)、白金族金属(PGM)等、水素(H)よりイオン化傾向が低い金属は、水溶解工程で固体として残るため、固液分離工程により除去することができる。固液分離工程により除去される固体には、上記の不純物のほか、ヒ素(As),鉛(Pb),亜鉛(Zn)等の化合物が含まれ得る。これらの不純物が含まれる固体は、有価物としてリサイクル処理することもできる。 Among the impurities, metals having a lower ionization tendency than hydrogen (H), such as copper (Cu), gold (Au), silver (Ag), and platinum group metals (PGM), remain as solids in the water dissolving step. It can be removed by a liquid separation step. The solid removed by the solid-liquid separation step may include compounds such as arsenic (As), lead (Pb), and zinc (Zn), in addition to the impurities described above. Solids containing these impurities can be recycled as valuables.
 水溶解工程および固液分離工程により得られる溶液は、硫酸ニッケル化合物を主成分とするため、硫酸ニッケル化合物の溶液のまま、あるいは乾燥等により硫酸ニッケル化合物の固体として、輸送し、利用することができる。用途によっては、溶液中の不純物として、例えば硫酸コバルト等を低減することが望まれる場合には、溶媒抽出、電解透析(Electrowinning)、電解精製(Electro refining)、イオン交換、晶析等の技術を利用することができる。 Since the solution obtained in the water dissolving step and the solid-liquid separation step contains a nickel sulfate compound as a main component, it can be transported and used as a solution of the nickel sulfate compound or as a solid of the nickel sulfate compound by drying or the like. it can. Depending on the application, when it is desired to reduce, for example, cobalt sulfate as an impurity in the solution, techniques such as solvent extraction, electrodialysis (Electrowinning), electrorefining (Electrorefining), ion exchange, and crystallization are used. Can be used.
 溶媒抽出の場合は、ニッケルよりもコバルトを優先的または選択的に溶媒中に抽出できる抽出剤を用いることが好ましい。これにより、硫酸ニッケル化合物を水系の溶液中に残して、効率的な精製が可能になる。抽出剤としては、ホスフィン酸基、チオホスフィン酸基等の、金属イオンと結合し得る官能基を有する有機化合物が挙げられる。溶媒抽出においては、希釈剤として、抽出剤を水から分離させることが可能な有機溶媒を用いてもよい。コバルト等の金属イオンと結合した抽出剤を希釈剤に溶解させることにより、抽出剤を大量に使用しなくても、硫酸ニッケル化合物を含有する水溶液からの分離が容易になる。希釈剤は、水と混和しにくい有機溶媒が好ましい。 (4) In the case of solvent extraction, it is preferable to use an extractant that can extract cobalt into a solvent preferentially or selectively over nickel. This allows the nickel sulfate compound to remain in the aqueous solution to allow for efficient purification. Examples of the extractant include organic compounds having a functional group capable of binding to a metal ion, such as a phosphinic acid group and a thiophosphinic acid group. In the solvent extraction, an organic solvent capable of separating the extractant from water may be used as a diluent. By dissolving the extractant combined with metal ions such as cobalt in the diluent, separation from the aqueous solution containing the nickel sulfate compound becomes easy without using a large amount of the extractant. The diluent is preferably an organic solvent that is hardly miscible with water.
 晶析の場合は、温度の変化、溶媒の減少、他の物質の添加等の少なくとも1つの因子により、目的物である硫酸ニッケル化合物を溶液中から結晶化させればよい。この際、不純物の少なくとも一部を液相に残留させることにより、精製が可能になる。具体例としては、蒸発晶析法と貧溶媒晶析法がある。蒸発晶析法は、減圧下で沸騰または蒸発により溶液を濃縮させ、硫酸ニッケル化合物を晶析させる。貧溶媒晶析法は、医薬品製造などで利用されている晶析方法で、例えば硫酸ニッケル化合物を含む溶液に有機溶媒を加えて硫酸ニッケル化合物を析出させる。晶析に用いられる有機溶媒としては、水と混和する有機溶媒が好ましく、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、エチレングリコール、アセトンからなる群から選択される1種以上が挙げられる。2種類以上の有機溶媒が用いられてもよい。有機溶媒が水と混和する濃度範囲については、硫酸ニッケル化合物が析出する程度に有機溶媒が添加された濃度で混和することが好ましい。硫酸ニッケル化合物が析出する濃度であれば、任意の割合で有機溶媒を水に混和することができる。晶析工程で加える有機溶媒は、無水の有機溶媒に限らず、晶析に支障のない程度で含水の有機溶媒であってもよい。水と有機溶媒との比率は、特に限定されないが、例えば1:20~20:1の範囲で設定してもよいが、1:1程度、例えば1:2~2:1が好ましい。 In the case of crystallization, the target nickel sulfate compound may be crystallized from the solution by at least one factor such as a change in temperature, a decrease in the solvent, and the addition of another substance. At this time, purification is enabled by leaving at least a part of the impurities in the liquid phase. Specific examples include an evaporation crystallization method and a poor solvent crystallization method. In the evaporative crystallization method, a solution is concentrated by boiling or evaporating under reduced pressure to crystallize a nickel sulfate compound. The poor solvent crystallization method is a crystallization method used in the production of pharmaceuticals and the like. For example, an organic solvent is added to a solution containing a nickel sulfate compound to precipitate a nickel sulfate compound. As the organic solvent used for crystallization, an organic solvent miscible with water is preferable, and examples thereof include one or more selected from the group consisting of methanol, ethanol, propanol, isopropanol, butyl alcohol, ethylene glycol, and acetone. Two or more organic solvents may be used. As for the concentration range in which the organic solvent is miscible with water, it is preferable to mix the organic solvent at a concentration to which the organic solvent is added to such an extent that the nickel sulfate compound is precipitated. The organic solvent can be mixed with water at an arbitrary ratio as long as the concentration allows precipitation of the nickel sulfate compound. The organic solvent added in the crystallization step is not limited to an anhydrous organic solvent, and may be a water-containing organic solvent to such an extent that crystallization is not hindered. The ratio of water to the organic solvent is not particularly limited, but may be set, for example, in the range of 1:20 to 20: 1, but is preferably about 1: 1, for example, 1: 2 to 2: 1.
 晶析等を経て固体の硫酸ニッケル化合物が得る場合、硫酸ニッケルの無水物、1水和物、2水和物、5水和物、6水和物、7水和物等の状態となっていてもよい。晶析により析出した硫酸ニッケル化合物は、固液分離により溶液から分離することができる。固液分離の方法は、特に限定されないが、濾過法、遠心分離法、沈降分離法などが挙げられる。溶液側に溶解した金属は、中和して沈殿等の方法により溶液から取り除くことが好ましい。浄化された溶液が、水と有機溶媒との混合物が主体とする場合、蒸留等の方法で水と有機溶媒とを分離することができる。 When a solid nickel sulfate compound is obtained through crystallization or the like, the nickel sulfate is in a state of anhydrous, monohydrate, dihydrate, pentahydrate, hexahydrate, heptahydrate and the like. You may. The nickel sulfate compound precipitated by crystallization can be separated from the solution by solid-liquid separation. The method of solid-liquid separation is not particularly limited, and examples thereof include a filtration method, a centrifugation method, and a sedimentation method. The metal dissolved in the solution is preferably neutralized and removed from the solution by a method such as precipitation. When the purified solution is mainly composed of a mixture of water and an organic solvent, the water and the organic solvent can be separated by a method such as distillation.
 本実施形態の硫酸ニッケル化合物の製造方法によれば、次の効果が得られる。
(1)種々のニッケル含有原料から、付加価値の高い硫酸ニッケル化合物を製造することができるので、需要地の近くでも生産が可能となり、輸送費を削減することができる。
(2)高純度の硫酸ニッケル化合物を生成することができる。
(3)焙焼工程において硫酸鉄の生成を抑制することができる。また、水素(H)ガスの発生も抑制することができる。
(4)焙焼生成物は、鉄分が水に溶解しにくい化学種になり、ニッケル分が硫酸ニッケル化合物として水に溶解しやすくなるので、鉄分の除去が容易になる。
(5)鉄分を含む不純物の除去を容易に行うことができる。
(6)従来法に比べて設備コストを低減することができ、焙焼炉として既存の設備を使用することも可能である。
(7)焙焼工程の前に、ニッケル含有原料に含まれる鉄分を酸化させることができ、鉄分除去の効率を向上させることができる。
According to the method for producing a nickel sulfate compound of the present embodiment, the following effects can be obtained.
(1) Since a nickel sulfate compound with high added value can be produced from various nickel-containing raw materials, production can be performed even near a place of demand, and transportation costs can be reduced.
(2) A highly pure nickel sulfate compound can be produced.
(3) The production of iron sulfate can be suppressed in the roasting step. Further, generation of hydrogen (H 2 ) gas can also be suppressed.
(4) The roasted product is a chemical species in which iron is hardly dissolved in water, and nickel is easily dissolved in water as a nickel sulfate compound, so that iron is easily removed.
(5) It is possible to easily remove impurities including iron.
(6) Equipment cost can be reduced as compared with the conventional method, and existing equipment can be used as a roasting furnace.
(7) Before the roasting step, iron contained in the nickel-containing raw material can be oxidized, and the efficiency of iron removal can be improved.
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the present invention has been described based on the preferred embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
 以下、実施例をもって本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.
(実施例-1:焙焼試験)
 図3に示す試験装置100を用いて硫酸焙焼の試験を実施した。受皿101の上にサンプルとして5gのニッケル化合物を計量した後、この受皿101を、電気炉103の中に設置したガラス容器102の内側にセットした。ガラス容器102には雰囲気温度を計測できる熱電対等の温度計104と、各種のガスを注入できる注入管105と、内部で発生した排ガスの出口106を設けた。電気炉103で規定温度に昇温してサンプルを蒸し焼きとした。注入管105においては、常時アルゴンガスを注入しながら、定期的に乾燥空気もしくは窒素ガスを含むSOガスが供給できるようにした。出口106から排出される排ガスは、ガス分析装置107を経て排ガス処理装置108で処理できるようにした。各種のガス量と分析値のデータはコンピュータに収集した。
(Example-1: Roasting test)
A test of sulfuric acid roasting was performed using the test apparatus 100 shown in FIG. After weighing 5 g of a nickel compound as a sample on the pan 101, the pan 101 was set inside a glass container 102 installed in an electric furnace 103. The glass container 102 was provided with a thermometer 104 such as a thermocouple capable of measuring an ambient temperature, an injection pipe 105 capable of injecting various gases, and an outlet 106 for exhaust gas generated inside. The temperature was raised to a specified temperature in the electric furnace 103, and the sample was steamed. In the injection tube 105, dry air or SO 2 gas containing nitrogen gas can be supplied periodically while always injecting argon gas. The exhaust gas discharged from the outlet 106 passes through the gas analyzer 107 and can be treated by the exhaust gas treatment device 108. Data on various gas volumes and analytical values were collected on a computer.
 試験に利用したニッケル化合物の組成は、ニッケルマットの転炉処理により鉄分の含有量を低減したニッケル硫化物合金で、組成は以下の通りであった。
   Ni:78%、Co:1%、Fe:1%、S:20%
The composition of the nickel compound used in the test was a nickel sulfide alloy in which the content of iron was reduced by converter treatment of a nickel mat, and the composition was as follows.
Ni: 78%, Co: 1%, Fe: 1%, S: 20%
 硫酸焙焼は、5gのサンプルに対して680℃で実施した。サンプルが規定温度に昇温するまで20分間は、アルゴンガスをパージし、規定の680℃に到達した後、鉄を酸化させるために、20分間、空気を供給して燃焼させた。空気を注入すると同時にサンプルの重量は減少し、SOガスの発生が見られた。その後、注入するガスをSOに切り替え、O分圧とSO分圧を調整しながら硫酸焙焼を40分間実施した。硫酸焙焼を実施する間、一定のSO消費量が確認された。X線回折(XRD)により焙焼生成物を分析した結果、鉄分はFeに、またNi分はNiSOの形態に変化していることが確認された。 Sulfuric acid roasting was performed at 680 ° C. on a 5 g sample. Argon gas was purged for 20 minutes until the sample rose to the specified temperature, and after reaching the specified 680 ° C., air was supplied for 20 minutes to burn iron and oxidized to oxidize iron. At the same time as air was injected, the weight of the sample was reduced and the evolution of SO 2 gas was observed. Thereafter, the gas to be injected was switched to SO 2 , and sulfuric acid roasting was performed for 40 minutes while adjusting the O 2 partial pressure and the SO 2 partial pressure. During the sulfuric acid roasting, a certain amount of SO 2 consumption was confirmed. As a result of analyzing the roasted product by X-ray diffraction (XRD), it was confirmed that the iron content was changed to Fe 2 O 3 and the Ni content was changed to NiSO 4 .
(実施例-2:水溶解試験)
 実施例-1で5gのニッケル化合物から生成した焙焼生成物を、純水100gの中に入れて90℃で攪拌し溶解した。溶解液の一部をサンプリングし、原子吸光分光分析計を用いて金属ごと(Ni,Fe,Co)に溶解液中の濃度を求めた。さらに、この濃度から溶解液に含まれる量、すなわち純水に溶解した全量を金属ごとに定量し、硫酸焙焼に用いた5gのサンプル中に含まれる量を100%として、純水に溶解した割合(溶解率)を求めた。例えばNiの溶解率は、焙焼生成物に含まれるNiのうち、純水に溶解したNiの割合を意味する。溶解率を求めた結果を表1に示す。
(Example-2: Water dissolution test)
The roasted product produced from 5 g of the nickel compound in Example-1 was put into 100 g of pure water and stirred at 90 ° C. to dissolve. A part of the solution was sampled, and the concentration in the solution was determined for each metal (Ni, Fe, Co) using an atomic absorption spectrometer. Further, from this concentration, the amount contained in the solution, that is, the total amount dissolved in pure water was determined for each metal, and the amount contained in the 5 g sample used for sulfuric acid roasting was set to 100% and dissolved in pure water. The ratio (dissolution rate) was determined. For example, the dissolution rate of Ni means the ratio of Ni dissolved in pure water to Ni contained in the roasted product. Table 1 shows the results of the determination of the dissolution rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から、焙焼生成物中の鉄分は殆ど溶解せず、NiとCoは容易に溶解したことが確認された。これにより、実施例-1の硫酸焙焼によって、鉄分の少ない高純度の硫酸ニッケル化合物を製造できることが分かる。 From the results, it was confirmed that the iron content in the roasted product was hardly dissolved, and Ni and Co were easily dissolved. This indicates that the sulfuric acid roasting of Example 1 can produce a high-purity nickel sulfate compound having a low iron content.
 本発明は、二次電池等の電気部品、化学製品などに利用される各種のニッケル化合物または金属ニッケルの原料として有用な高純度の硫酸ニッケル化合物の製造に利用することができる。 The present invention can be used for the production of various types of nickel compounds or high-purity nickel sulfate compounds useful as raw materials for metallic nickel used in electric parts such as secondary batteries, chemical products, and the like.
S1…焙焼工程、S2…水溶解工程、S3…固液分離工程、S4…精製工程、10…ニッケル含有原料、11…焙焼生成物、20…水、21…溶液、31…粗製硫酸ニッケル化合物、32…固液分離工程で分離される不純物、40…精製剤、41…精製硫酸ニッケル化合物、42…精製工程で分離される不純物。 S1: roasting step, S2: water dissolving step, S3: solid-liquid separation step, S4: refining step, 10: nickel-containing raw material, 11: roasted product, 20: water, 21: solution, 31: crude nickel sulfate Compound, 32: impurities separated in the solid-liquid separation step, 40: purification agent, 41: purified nickel sulfate compound, 42: impurities separated in the purification step.

Claims (7)

  1.  酸素分圧および二酸化硫黄分圧を、Ni-S-O系において硫酸ニッケルが酸化ニッケルよりも熱力学的に安定となり、かつ、Fe-S-O系において酸化鉄が硫酸鉄よりも熱力学的に安定となる条件下として、鉄分を含むニッケル含有原料を加熱し、硫酸ニッケル化合物を生成させる焙焼工程を有することを特徴とする硫酸ニッケル化合物の製造方法。 The oxygen partial pressure and the sulfur dioxide partial pressure were determined to be such that nickel sulfate is thermodynamically more stable than nickel oxide in the Ni—SO system, and iron oxide is more thermodynamic than iron sulfate in the Fe—SO system. A method for producing a nickel sulfate compound, comprising a roasting step of heating a nickel-containing raw material containing an iron component to generate a nickel sulfate compound as a condition to be stable.
  2.  前記焙焼工程において、焙焼温度が400~750℃の範囲であることを特徴とする請求項1に記載の硫酸ニッケル化合物の製造方法。 方法 The method for producing a nickel sulfate compound according to claim 1, wherein in the roasting step, the roasting temperature is in a range of 400 to 750 ° C.
  3.  前記焙焼工程において、気圧(atm)単位による酸素分圧の常用対数log p(O)が-4~-6の範囲であり、気圧(atm)単位による二酸化硫黄分圧の常用対数log p(SO)が-1~+1の範囲であることを特徴とする請求項1または2に記載の硫酸ニッケル化合物の製造方法。 In the roasting step, the common logarithm log p (O 2 ) of the oxygen partial pressure in the unit of atmospheric pressure (atm) is in a range of −4 to −6, and the common logarithm log p of the sulfur dioxide partial pressure in the unit of the atmospheric pressure (atm). 3. The method for producing a nickel sulfate compound according to claim 1, wherein (SO 2 ) is in the range of −1 to +1.
  4.  前記焙焼工程の後に、前記硫酸ニッケル化合物を水に溶解させる水溶解工程を有することを特徴とする請求項1~3のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 (4) The method for producing a nickel sulfate compound according to any one of (1) to (3), further comprising a water dissolving step of dissolving the nickel sulfate compound in water after the roasting step.
  5.  前記水溶解工程の後に、前記硫酸ニッケル化合物を含む液相と、鉄分を含む固相とを分離する固液分離工程を有することを特徴とする請求項4に記載の硫酸ニッケル化合物の製造方法。 5. The method for producing a nickel sulfate compound according to claim 4, further comprising a solid-liquid separation step of separating the liquid phase containing the nickel sulfate compound and the solid phase containing iron after the water dissolving step.
  6.  前記ニッケル含有原料が、ニッケル硫化鉱、ニッケル硫化物、ニッケルマット、酸化ニッケル、フェロニッケルからなる群から選択される1種以上を含むことを特徴とする請求項1~5のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The method according to any one of claims 1 to 5, wherein the nickel-containing raw material includes at least one selected from the group consisting of nickel sulfide ore, nickel sulfide, nickel matte, nickel oxide, and ferronickel. A method for producing the nickel sulfate compound according to the above.
  7.  前記焙焼工程の前に、前記焙焼工程とは異なる条件により、ニッケル含有原料の酸化焙焼を行う酸化焙焼工程を有することを特徴とする請求項1~6のいずれか1項に記載の硫酸ニッケル化合物の製造方法。 The method according to any one of claims 1 to 6, further comprising, before the roasting step, an oxidizing roasting step of oxidizing and roasting the nickel-containing raw material under conditions different from the roasting step. The method for producing a nickel sulfate compound of the present invention.
PCT/JP2019/028455 2018-08-30 2019-07-19 Method for producing nickel sulfate compound WO2020044849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019331801A AU2019331801B2 (en) 2018-08-30 2019-07-19 Method for producing nickel sulfate compound
PH12020500557A PH12020500557A1 (en) 2018-08-30 2020-06-22 Nickel sulfate compound manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-161837 2018-08-30
JP2018161837A JP6539922B1 (en) 2018-08-30 2018-08-30 Method for producing nickel sulfate compound

Publications (1)

Publication Number Publication Date
WO2020044849A1 true WO2020044849A1 (en) 2020-03-05

Family

ID=67212159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028455 WO2020044849A1 (en) 2018-08-30 2019-07-19 Method for producing nickel sulfate compound

Country Status (4)

Country Link
JP (1) JP6539922B1 (en)
AU (1) AU2019331801B2 (en)
PH (1) PH12020500557A1 (en)
WO (1) WO2020044849A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403486A (en) * 2021-06-18 2021-09-17 国家电投集团黄河上游水电开发有限责任公司 Process for removing iron from nickel sulfide concentrate leachate by goethite method
CN113416855A (en) * 2021-06-18 2021-09-21 国家电投集团黄河上游水电开发有限责任公司 Method for preparing nickel sulfate from nickel sulfide concentrate leaching solution
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate
CN115159594B (en) * 2022-08-01 2024-05-14 中伟新材料股份有限公司 Method for preparing metal sulfate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800578B (en) * 2021-08-03 2022-11-15 广东邦普循环科技有限公司 Method for preparing nickel sulfate by using low-nickel ferronickel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087979A (en) * 1973-08-18 1975-07-15
JP2010180439A (en) * 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel from acidic aqueous solution deriving from sulfuric acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE322632B (en) * 1968-09-18 1970-04-13 Boliden Ab
CN103088210B (en) * 2013-01-18 2015-10-21 中南大学 A kind of method of Selectively leaching nickel and molybdenum from nickel-molybdenum ore
CN106957955A (en) * 2017-04-27 2017-07-18 江苏省冶金设计院有限公司 Handle the method and system of lateritic nickel ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087979A (en) * 1973-08-18 1975-07-15
JP2010180439A (en) * 2009-02-04 2010-08-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel from acidic aqueous solution deriving from sulfuric acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAFLAN, BENT ET AL.: "THE REACTION OF NICKEL WITH SO2+O2/SO3 AT 500-900°C", CORROSION SCIENCE, vol. 23, no. 12, 1983, pages 1333 - 1352, XP024357425 *
ILIEV, PETER ET AL.: "THERMODYNAMIC ANALYSIS OF THE SULPHATIZATION PROCESSES TAKING PLACE IN A DUST- GAS FLOW FROM FLASH SMELTING FURNACE", JOURNAL OF CHEMICAL TECHNOLOGY AND METALLURGY, vol. 51, no. 3, 2016, pages 335 - 340 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403486A (en) * 2021-06-18 2021-09-17 国家电投集团黄河上游水电开发有限责任公司 Process for removing iron from nickel sulfide concentrate leachate by goethite method
CN113416855A (en) * 2021-06-18 2021-09-21 国家电投集团黄河上游水电开发有限责任公司 Method for preparing nickel sulfate from nickel sulfide concentrate leaching solution
CN113416855B (en) * 2021-06-18 2022-10-18 国家电投集团黄河上游水电开发有限责任公司 Method for preparing nickel sulfate from nickel sulfide concentrate leaching solution
CN113403486B (en) * 2021-06-18 2023-05-26 国家电投集团黄河上游水电开发有限责任公司 Iron removal process of nickel sulfide concentrate leaching solution by goethite method
CN115159594A (en) * 2022-08-01 2022-10-11 中伟新材料股份有限公司 Method for preparing metal sulfate
CN115159594B (en) * 2022-08-01 2024-05-14 中伟新材料股份有限公司 Method for preparing metal sulfate

Also Published As

Publication number Publication date
JP2020033615A (en) 2020-03-05
AU2019331801A1 (en) 2020-07-02
JP6539922B1 (en) 2019-07-10
PH12020500557A1 (en) 2021-04-19
AU2019331801B2 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2020044849A1 (en) Method for producing nickel sulfate compound
WO2014181721A1 (en) Method for recovering scandium
Nguyen et al. Development of a hydrometallurgical process for the recovery of calcium molybdate and cobalt oxalate powders from spent hydrodesulphurization (HDS) catalyst
JP7246570B2 (en) Method for producing mixed metal salt
WO2021215520A1 (en) Method for producing metal mixture solution and method for producing mixed metal salt
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
EP3132874B1 (en) Method for producing nickel powder having low carbon concentration and low sulfur concentration
JPH02503575A (en) Separation and recovery of nickel and cobalt in ammoniacal systems
JP6891723B2 (en) Method for producing scandium compound, scandium compound
JP5902610B2 (en) Method for producing perrhenic acid aqueous solution from rhenium sulfide
WO2019244527A1 (en) Method for producing nickel sulfate compound
WO2017130692A1 (en) Method for recovering scandium
JP6317196B2 (en) Method for producing perrhenic acid aqueous solution and method for producing potassium perrhenate, ammonium perrhenate and rhenium metal using the same
WO2020075288A1 (en) Method and device for processing nickel oxide ore
WO2020174573A1 (en) Residue processing method and sulfatizing roasting method
JP6352702B2 (en) Method for producing perrhenic acid aqueous solution and method for producing potassium perrhenate, ammonium perrhenate and rhenium metal using the same
JP6317197B2 (en) Method for producing perrhenic acid aqueous solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP7042719B2 (en) Method for manufacturing nickel sulfate compound
WO2020157898A1 (en) Method for treating nickel-containing raw material
JP6314044B2 (en) Method for producing aqueous perrhenic acid solution from crude rhenium sulfide
US9631259B2 (en) Method for producing aqueous solution of perrhenic acid from rhenium sulfide
JP7453727B1 (en) How to extract aluminum
JP7303947B1 (en) Method for producing cobalt solution, method for producing cobalt salt, method for producing nickel solution, and method for producing nickel salt
AU2019444538A1 (en) Method for treating nickel-including raw material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019331801

Country of ref document: AU

Date of ref document: 20190719

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853842

Country of ref document: EP

Kind code of ref document: A1