WO2020044576A1 - 表示制御装置、表示制御方法及び表示制御プログラム - Google Patents

表示制御装置、表示制御方法及び表示制御プログラム Download PDF

Info

Publication number
WO2020044576A1
WO2020044576A1 PCT/JP2018/038795 JP2018038795W WO2020044576A1 WO 2020044576 A1 WO2020044576 A1 WO 2020044576A1 JP 2018038795 W JP2018038795 W JP 2018038795W WO 2020044576 A1 WO2020044576 A1 WO 2020044576A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
cross
display control
sectional image
unit
Prior art date
Application number
PCT/JP2018/038795
Other languages
English (en)
French (fr)
Inventor
敏 山崎
Original Assignee
ハーツテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハーツテクノロジー株式会社 filed Critical ハーツテクノロジー株式会社
Priority to JP2019514143A priority Critical patent/JP6679804B1/ja
Publication of WO2020044576A1 publication Critical patent/WO2020044576A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to a display control device, a display control method, and a display control program.
  • Tomography is performed, for example, on a body axis section, a sagittal section, a coronal section, or the like, and may be displayed side by side on the display unit.
  • inspection data of a subject is read, at least one virtual contraband image is inserted into a 3D inspection image obtained from the inspection data, and at least one virtual contraband image is inserted in a selected area.
  • a security check CT system that provides feedback on the inclusion of a security check CT is described.
  • the location of the main tracheal bifurcation is determined from a plurality of CT images, and the x-, y-, and z-coordinates for each pixel in each CT image with the main tracheal bifurcation as the origin are determined for voxels.
  • a CT alignment system that displays a 3D model as coordinates is described.
  • the present invention provides a display control device, a display control method, and a display control that can easily grasp a three-dimensional positional relationship between a plurality of cut surfaces when displaying a cross-sectional image obtained by cutting an object with the plurality of cut surfaces.
  • a display control device a display control method, and a display control that can easily grasp a three-dimensional positional relationship between a plurality of cut surfaces when displaying a cross-sectional image obtained by cutting an object with the plurality of cut surfaces.
  • the display control device includes a first cross-sectional image obtained by cutting an object on a first surface and a second cross-sectional image obtained by cutting the object on a second surface that intersects the first surface.
  • a first display control unit that causes the display unit to display the image as viewed in plan, a first cross-sectional image that is displayed on the display unit along the first surface, and a second cross-sectional image that is displayed on the display unit along the second surface
  • a plurality of cutting modes can be switched by switching between a display mode in which a plurality of cross-sectional images obtained by cutting an object on a plurality of planes in a plan view and a display mode in which the cross-sectional images are displayed along the cut plane.
  • the three-dimensional positional relationship of the surface can be easily grasped.
  • the image processing apparatus may further include a third display control unit that causes the display unit to display a second animation that transits from the display by the second display control unit to the display by the first display control unit.
  • displaying the first animation or the second animation makes it easier to grasp the three-dimensional positional relationship between the plurality of cut surfaces.
  • the second display control unit changes the first cross-sectional image so as to follow the movement of the first surface based on an input for moving the first surface in a first direction intersecting the first surface.
  • the second cross-sectional image may be changed so as to follow the movement of the second surface based on an input for moving the second surface in a second direction intersecting the second surface.
  • the three-dimensional positional relationship of the plurality of cut surfaces can be easily grasped by changing the cross-sectional image following the movement of the cut surface.
  • the first display control unit may be configured to change the display by the switching unit after at least one of the first tomographic image and the second tomographic image is changed by the second display control unit.
  • the first cross-sectional image and the changed second cross-sectional image may be displayed on the display unit as viewed in plan.
  • the display mode when the cross-sectional image is changed by moving the cut plane, the display mode can be switched to the display mode in which the plurality of cross-sectional images are viewed in a plan view, and the three-dimensional positional relationship of the plurality of cut planes is grasped.
  • each cross-sectional image can be confirmed in detail.
  • the second display control unit may cause the display unit to display a third cross-sectional image obtained by cutting the target object on the third surface separated from the first surface in the first direction along the third surface.
  • the object can be observed from more various cuts.
  • the first direction may be a normal direction of the first surface
  • the second direction may be a normal direction of the second surface
  • the moving direction of the first surface and the second surface can be easily grasped, and it becomes easy to change the first sectional image and the second sectional image to desired images.
  • the first surface and the second surface may be orthogonal.
  • the positional relationship between the first surface and the second surface can be easily grasped, and the three-dimensional positional relationship between the plurality of cut surfaces can be easily grasped.
  • a display control method includes a first cross-sectional image obtained by cutting an object at a first surface and a second cross-sectional image obtained by cutting the object at a second surface that intersects the first surface.
  • a plurality of cutting modes can be switched by switching between a display mode in which a plurality of cross-sectional images obtained by cutting an object on a plurality of planes in a plan view and a display mode in which the cross-sectional images are displayed along the cut plane.
  • the three-dimensional positional relationship of the surface can be easily grasped.
  • a display control program includes a computer provided in a display control device, which controls a computer to provide a first cross-sectional image obtained by cutting an object on a first surface and a second surface intersecting the object with the first surface.
  • a first display control unit that causes the display unit to display the second cross-sectional image cut in step 2 and the first cross-sectional image along the first surface, and displays the second cross-sectional image in the second cross-sectional image. It functions as a second display control unit that causes the display unit to display along two surfaces, and a switching unit that switches between display by the first display control unit and display by the second display control unit based on the input.
  • a plurality of cutting modes can be switched by switching between a display mode in which a plurality of cross-sectional images obtained by cutting an object on a plurality of planes in a plan view and a display mode in which the cross-sectional images are displayed along the cut plane.
  • the three-dimensional positional relationship of the surface can be easily grasped.
  • ADVANTAGE OF THE INVENTION when displaying the cross-sectional image which cut
  • a program is provided.
  • FIG. 2 is a diagram illustrating functional blocks of the display control device according to the first embodiment of the present invention. It is a figure showing the physical composition of the display control device concerning this embodiment.
  • 5 is a first example of a cross-sectional image displayed in a second display mode of the display control device according to the embodiment. 5 is a first example of a cross-sectional image displayed in a first display mode of the display control device according to the embodiment.
  • It is an example of the 1st animation and the 2nd animation displayed by the display control device concerning this embodiment.
  • It is a 2nd example of the cross section image displayed in the 2nd display mode of the display control device concerning this embodiment.
  • It is a 2nd example of the cross section image displayed in the 1st display mode of the display control device concerning this embodiment.
  • 5 is a flowchart of a display control process executed by the display control device according to the embodiment. It is the 1st example of the section picture displayed on the 2nd display mode of the display control device concerning a 2nd embodiment. 5 is a first example of a cross-sectional image displayed in a first display mode of the display control device according to the embodiment. 5 is a flowchart of a display control process executed by the display control device according to the embodiment.
  • the present embodiment an embodiment according to one aspect of the present invention (hereinafter, referred to as “the present embodiment”) will be described with reference to the drawings.
  • the components denoted by the same reference numerals have the same or similar configurations.
  • FIG. 1 is a diagram showing functional blocks of a display control device 10 according to the first embodiment of the present invention.
  • the display control device 10 according to the first embodiment includes a communication unit 10d, an input unit 10e, a display unit 10f, a storage unit 11, a first display control unit 12, a second display control unit 13, a third display control unit 14, and a switching unit.
  • a unit 15 is provided.
  • the imaging device 50 may be an X-ray CT device or an MRI device, and may be a device that captures a cross-sectional image of the object 100 by an existing technology.
  • the imaging device 50 captures a cross-sectional image of the target object 100 cut in three orthogonal planes, or performs MPR (Multi Planar Reconstruction) that forms a cross-sectional image of the target object 100 cut in an arbitrary plane.
  • MPR Multi Planar Reconstruction
  • a curved-MPR for forming a cross-sectional image obtained by cutting the target object 100 at an arbitrary curved surface may be performed.
  • the target object 100 is an object to be photographed by the photographing device 50, and may be, for example, a person or an animal, or an article to be inspected. Further, the target object 100 may be a virtual object, for example, an object formed of polygons.
  • the communication network N may be any communication network such as a LAN (Local Area Network) or the Internet.
  • the display control device 10 is connected to the photographing device 50 via the communication network N by the communication unit 10d, and acquires a cross-sectional image of the object 100 photographed by the photographing device 50.
  • the storage unit 11 stores at least temporarily the acquired cross-sectional image.
  • the first display control unit 12 views a first cross-sectional image of the target object 100 cut on the first surface and a second cross-sectional image of the target object 100 cut on the second surface that intersects the first surface in plan view. Is displayed on the display unit 10f as shown in FIG.
  • the display mode by the first display control unit 12 is referred to as a first display mode.
  • the first display control unit 12 may display the first slice image and the second slice image side by side on one plane.
  • the first surface and the second surface may be flat or curved.
  • the first surface and the second surface may be orthogonal to each other. In this case, the positional relationship between the first surface and the second surface can be easily grasped, and the three-dimensional positional relationship between the plurality of cut surfaces can be grasped.
  • the first display control unit 12 may cause the display unit 10f to display a third cross-sectional image obtained by cutting the object 100 along a third surface other than the first surface and the second surface, or may display four or more cross-sectional images. May be displayed on the display unit 10f.
  • the first display control unit 12 When the target object 100 is a virtual object, the first display control unit 12 generates a first cross-sectional image obtained by cutting the virtual object on the first surface and a second cross-sectional image obtained by cutting the virtual object on the second surface.
  • the display unit 10f may be configured by polygons and the like, and may be displayed on the display unit 10f so as to be viewed in plan.
  • the second display control unit 13 causes the display unit 10f to display the first slice image along the first surface and causes the display unit 10f to display the second slice image along the second surface.
  • the display mode by the second display control unit 13 is referred to as a second display mode.
  • the second display control unit 13 displays the first cross-sectional image.
  • the image may be displayed so as to overlap the XY plane, and the second cross-sectional image may be displayed so as to overlap the YZ plane.
  • the second display control unit 13 may cause the display unit 10f to display a third cross-sectional image obtained by cutting the object 100 along a third surface other than the first surface and the second surface, or may display four or more cross-sectional images. May be displayed on the display unit 10f.
  • the second display control unit 13 When the target object 100 is a virtual object, the second display control unit 13 generates a first cross-sectional image obtained by cutting the virtual object on the first surface and a second cross-sectional image obtained by cutting the virtual object on the second surface.
  • the first section image may be displayed on the display unit 10f along the first surface, and the second section image may be displayed on the display unit 10f along the second surface.
  • the switching unit 15 switches between display by the first display control unit 12 and display by the second display control unit 13 based on an input from the input unit 10e.
  • the user can three-dimensionally grasp the positional relationship between the first cross-sectional image and the second cross-sectional image by displaying the cross-sectional image by the second display control unit 13, switch the display mode, and change the display mode.
  • the first cross-sectional image and the second cross-sectional image can be viewed in a plan view and the details can be observed.
  • the first display mode in which the plurality of cross-sectional images obtained by cutting the target object 100 in a plurality of planes is viewed in a plan view, and the cross-sectional image is displayed along the cut plane.
  • the display mode By switching the display mode to the second display mode, the three-dimensional positional relationship between the plurality of cut surfaces can be easily grasped.
  • the third display control unit 14 switches the display by the first display control unit 12 to the second display control unit when the switching unit 15 switches the display by the first display control unit 12 and the display by the second display control unit 13.
  • the display unit 10f causes the display unit 10f to display a first animation that transitions to a display by the display control unit 13 or a second animation that transitions from a display by the second display control unit 13 to a display by the first display control unit 12.
  • a plurality of images are displayed. It becomes easier to grasp the three-dimensional positional relationship of the cut surface.
  • FIG. 2 is an image showing a physical configuration of the display control device 10 according to the present embodiment.
  • the display control device 10 includes a CPU (Central Processing Unit) 10 a corresponding to an arithmetic unit, a RAM (Random Access Memory) 10 b corresponding to the storage unit 11, a ROM (Read Only Memory) 10 c corresponding to the storage unit 11, It has a communication unit 10d, an input unit 10e, and a display unit 10f. These components are connected to each other via a bus so that data can be transmitted and received.
  • a case will be described in which the display control device 10 is configured by one computer, but the display control device 10 may be implemented by combining a plurality of computers.
  • the configuration illustrated in FIG. 2 is an example, and the display control device 10 may have configurations other than these, or may not have some of these configurations.
  • the CPU 10a is a control unit that performs control relating to execution of a program stored in the RAM 10b or the ROM 10c and calculates and processes data.
  • the CPU 10a is an arithmetic unit that executes a program (display control program) for controlling the display of a cross-sectional image.
  • the CPU 10a receives various data from the input unit 10e and the communication unit 10d, and displays a calculation result of the data on the display unit 10f and stores the calculation result in the RAM 10b and the ROM 10c.
  • the RAM 10b is a storage unit in which data can be rewritten, and may be composed of, for example, a semiconductor storage element.
  • the RAM 10b may store a display control program executed by the CPU 10a, a cross-sectional image, and the like. These are merely examples, and the RAM 10b may store data other than these or some of them may not be stored.
  • the ROM 10c is a storage unit from which data can be read out of the storage unit, and may be configured by, for example, a semiconductor storage element.
  • the ROM 10c may store, for example, a display control program or data that is not rewritten.
  • the communication unit 10d is an interface that connects the display control device 10 to another device such as the photographing device 50.
  • the communication unit 10d may be connected to a communication network N such as a LAN.
  • the input unit 10e accepts data input from a user, and may include, for example, a keyboard, a pointing device, and a touch panel.
  • the display unit 10f visually displays the calculation result by the CPU 10a, and may be configured by, for example, an LCD (Liquid Crystal Display).
  • the display unit 10f may display a cross-sectional image acquired from the imaging device 50.
  • the display control program may be provided by being stored in a computer-readable storage medium such as the RAM 10b or the ROM 10c, or may be provided via the communication network N connected by the communication unit 10d.
  • the CPU 10a executes the display control program to realize the various operations described with reference to FIG. Note that these physical configurations are merely examples, and are not necessarily independent configurations.
  • the display control device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a and the RAM 10b or the ROM 10c are integrated.
  • FIG. 3 is a first example of a cross-sectional image displayed in the second display mode of the display control device 10 according to the present embodiment.
  • three cross-sectional images obtained by cutting the object 100 along three different planes are displayed along the cut planes.
  • an upper cross-sectional image T1 obtained by cutting the target object 100 at an XY plane that intersects the Z axis at a predetermined position
  • a front cross-sectional image F1 obtained by cutting the target object 100 at a YZ plane that intersects the X axis at a predetermined position.
  • a right-side cross-sectional image S1 obtained by cutting the object 100 along an XZ plane that intersects the Y axis at a predetermined position.
  • the upper cross-sectional image T1, the front cross-sectional image F1, and the right cross-sectional image S1 are displayed so as to be orthogonal to each other and intersect with each other.
  • the user arbitrarily adjusts the observation direction (the direction of the virtual camera) of the upper cross-sectional image T1, the front cross-sectional image F1, and the right cross-sectional image S1, and adjusts the upper cross-sectional image T1, the front cross-sectional image F1, and the right cross-sectional image from various angles. S1 can be observed.
  • a check box CB indicated as “3D” is displayed and is checked.
  • the display control device 10 displays a plurality of cross-sectional images of the object 100 in the second display mode by the second display control unit 13.
  • the display control device 10 displays a plurality of cross-sectional images of the object 100 in the first display mode by the first display control unit 12.
  • the display in the first display mode will be described in detail with reference to the following drawings.
  • the switching unit 15 of the display control device 10 switches between the display by the first display control unit 12 and the display by the second display control unit 13 based on the input to the check box CB.
  • FIG. 4 is a first example of a cross-sectional image displayed in the first display mode of the display control device 10 according to the present embodiment.
  • the upper cross-sectional image T1, the front cross-sectional image F1, and the right cross-sectional image S1 obtained by cutting the object 100 along three different planes are displayed on the same plane as viewed in plan.
  • the check box CB indicated as “3D” is unchecked, indicating that the cross-sectional image is displayed in the first display mode.
  • the upper parameter P1 for adjusting the position of the cutting plane for photographing the upper cross-sectional image T1 and the front cross-sectional image F1 are displayed.
  • a front parameter P2 for adjusting the position of the cut plane to be photographed and a right parameter P3 for adjusting the position of the cut plane for photographing the right cross-sectional image S1 are displayed.
  • the user can change the cross-sectional image by moving the slide bars of the upper parameter P1, the front parameter P2, and the right parameter P3 by using the input device 10e such as a pointing device or a touch panel to change the position of the cut surface.
  • the second display control unit 13 is configured to output a first screen (for example, an XY plane that intersects the Z axis at a predetermined position) in a first direction (for example, the Z axis direction) that intersects the first plane, based on an input that moves
  • the first slice image (for example, the upper slice image T1) may be changed so as to follow the movement of one surface.
  • the input for moving the first surface may be an input for moving the slide bar of the upper parameter P1.
  • the second display control unit 13 is configured to move a second surface (for example, a YZ plane that intersects the X axis at a predetermined position) in a second direction (for example, the X axis direction) that intersects the second surface.
  • the second cross-sectional image (for example, the front cross-sectional image F1) is changed so as to follow the movement of the second surface.
  • the input for moving the second surface may be an input for moving the slide bar of the front parameter P2.
  • the upper parameter P1 is “76”
  • the front parameter P2 is “723”
  • the right parameter P3 is “744”.
  • the three-dimensional positional relationship of the plurality of cut planes can be easily grasped.
  • the user changes the cross-sectional image by moving the position of the cut plane while three-dimensionally grasping the positional relationship of the cut plane in the second display mode, switches to the first display mode, and observes a plurality of cross-sectional images side by side. be able to.
  • the first direction may be a normal direction of the first surface
  • the second direction may be a normal direction of the second surface.
  • the first direction is the normal direction of the XY plane intersecting the Z axis at a predetermined position, that is, the Z axis direction
  • the second direction is the normal direction of the YZ plane intersecting the X axis at a predetermined position. That is, the X-axis direction.
  • FIG. 5 is an example of the first animation A1 and the second animation A2 displayed by the third display control unit 14 of the display control device 10 according to the present embodiment.
  • the upper section image, the front section image, and the right section image displayed in the first display mode M1 by the first display control unit 12 are shown at the left end, and the second display mode is displayed by the second display control unit 13 at the right end.
  • the upper cross-sectional image, the front cross-sectional image, and the right cross-sectional image displayed by M2 are shown.
  • FIG. 2 shows a first animation A1 that transitions from the first display mode M1 to the second display mode M2, and a second animation A2 that transitions from the second display mode M2 to the first display mode M1.
  • the first animation A1 and the second animation A2 may be animations of about 0.6 seconds that smoothly transition between the first display mode M1 and the second display mode M2, respectively.
  • the user can visually recognize an intermediate state between the planar first display mode M1 and the stereoscopic second display mode M2 by the first animation A1 and the second animation A2, and the first display mode M1 And the second display mode M2 can be grasped more accurately. This makes it easier to grasp the three-dimensional positional relationship between the plurality of cut surfaces.
  • FIG. 6 is a second example of a cross-sectional image displayed in the second display mode of the display control device 10 according to the present embodiment.
  • the upper cross-sectional image T1 is the same, and the YZ plane that intersects the X-axis at a predetermined position is moved in the minus direction df of the X-axis to obtain a front cross-sectional image.
  • F1 is changed to the front cross-sectional image F2
  • the XZ plane that intersects the Y axis at a predetermined position is moved in the negative direction ds of the Y axis
  • the right cross-sectional image S1 is changed to the right cross-sectional image S2.
  • the upper parameter P1 is “76”
  • the front parameter P2 is “606”
  • the right parameter P3 is “626”.
  • the front parameter P2 of this example is decreased by 117, and accordingly, the position of the YZ plane on the X axis moves in the minus direction of the X axis, and The front cross-sectional image F2 is displayed.
  • the right parameter P3 of this example is decreased by 118, and accordingly, the position of the XZ plane on the Y axis moves in the minus direction of the Y axis.
  • the right cross-sectional image S2 at the position is displayed.
  • FIG. 7 is a second example of a cross-sectional image displayed in the first display mode of the display control device 10 according to the present embodiment.
  • the same upper-side cross-sectional image T1, front-side cross-sectional image F2, and right-side cross-sectional image S2 as in FIG. 6 are displayed as viewed in plan.
  • the upper parameter P1 is “76”
  • the front parameter P2 is “606”
  • the right parameter P3 is “626”.
  • the first display control unit 12 switches the switching unit after the second display control unit 13 changes at least one of the first cross-sectional image (for example, the upper cross-sectional image T1) and the second cross-sectional image (for example, the front cross-sectional image F1).
  • the display unit 10f displays the first cross-sectional image (for example, the upper cross-sectional image T1) after the change and the second cross-sectional image (for example, the front cross-sectional image F2) after the change in plan view.
  • the user freely adjusts the upper parameter P1, the front parameter P2, and the right parameter P3 in both the first display mode by the first display controller 12 and the second display mode by the second display controller 13.
  • the display mode can be switched to the first display mode in which the plurality of cross-sectional images are viewed in a plan view, and the three-dimensional positional relationship of the plurality of cut planes is grasped.
  • each cross-sectional image can be confirmed in detail.
  • FIG. 8 is a flowchart of a display control process executed by the display control device 10 according to the present embodiment.
  • the display control device 10 receives an input for moving the XY plane, the YZ plane, and the XZ plane or an input for switching between the first display mode and the second display mode (S10).
  • the display control device 10 determines whether the display mode specified after receiving the input is the second display mode (S11), and if the display mode is the second display mode (S11: YES), immediately after switching the display mode. Is determined (S12).
  • "immediately after the switching of the display mode” refers to a period from the reception of the switching of the display mode to the end of the display of the transition animation, for example, 0.6 seconds after the reception of the switching of the display mode.
  • the display control device 10 displays the upper cross-sectional image along the XY plane, displays the front cross-sectional image along the YZ plane, and displays the right cross-sectional image along the XZ plane. (S13).
  • the display control device 10 may display a cross-sectional image obtained by cutting the target object 100 along an arbitrary surface, may display a cross-sectional image obtained by cutting the target object 100 along a curved surface, or may display four or more cross-sectional images. May be.
  • the display control apparatus 10 controls the upper cross-sectional image, the front cross-sectional image, and the right cross-sectional image to follow the movement of the XY plane, the YZ plane, and the XZ plane. Change the cross-sectional image.
  • the display control device 10 determines whether the display mode has just been switched. If not (S14: NO), the upper cross-sectional image, the front cross-sectional image, and the right cross-sectional image are displayed on the same plane (S15). Further, when the display control device 10 receives an input for moving the XY plane, the YZ plane, and the XZ plane that specifies the cutting plane, the upper cross-sectional image is displayed so as to follow the movement of the XY plane, the YZ plane, and the XZ plane. Change the front-side cross-sectional image and the right-side cross-sectional image.
  • the display control device 10 displays the first animation or the second animation (S16).
  • the display control device 10 displays the first animation immediately after switching from the first display mode to the second display mode, and displays the second animation when immediately after switching from the second display mode to the first display mode. Is displayed.
  • the display control device 10 receives an input for moving the XY plane, the YZ plane, and the XZ plane or an input for switching between the first display mode and the second display mode (S10). The above processing is repeatedly executed. Finally, when the display is to be ended (S17: YES), the display control device 10 ends the display control process.
  • FIG. 9 is a first example of a cross-sectional image displayed in the second display mode of the display control device 10 according to the second embodiment.
  • six cross-sectional images obtained by cutting the object 100 along six different surfaces are displayed along the cut surfaces.
  • an upper cross-sectional image T3a obtained by cutting the object 100 at the first XY plane intersecting the Z axis at the first position, and a lower part of the object 100 cut at the second XY plane intersecting the Z axis at the second position.
  • the left cross-sectional image S3b is
  • the upper cross-sectional image T3a, the front cross-sectional image F3a, and the right cross-sectional image S3a are displayed so as to be orthogonal to each other and to intersect each other.
  • the lower cross-sectional image T3b, the rear cross-sectional image F3b, and the left cross-sectional image S3b are also displayed so as to be orthogonal to each other and intersect with each other.
  • the upper cross-sectional image T3a and the lower cross-sectional image T3b are parallel
  • the front cross-sectional image F3a and the rear cross-sectional image F3b are parallel
  • the right cross-sectional image S3a and the left cross-sectional image S3b are parallel.
  • the second display control unit 13 is configured to separate a third surface (for example, the Z axis and the second axis) from a first surface (for example, a first XY surface that intersects the Z axis at the first position) in a first direction (for example, the Z axis direction).
  • a third cross-sectional image (for example, a lower cross-sectional image T3b) obtained by cutting the target object 100 at the second XY plane intersecting at the position may be displayed on the display unit 10f along the third plane.
  • the second display control unit 13 displays the cross-sectional image inside a region surrounded by the intersection line of the plurality of cut planes so that one closed curved surface is formed by the plurality of cross-sectional images, and The cross-sectional image is not displayed or is displayed transparently outside the region surrounded by the line.
  • the second display control unit 13 of the display control device 10 according to the first embodiment also displays the cross-sectional image outside the region surrounded by the intersection of the plurality of cut planes.
  • the second display control unit 13 may display the cross-sectional image in any display format. However, as the number of cross-sectional images to be displayed increases, the visibility may be improved by the display format according to the present embodiment.
  • the check box CB indicated as “3D” is checked, indicating that the cross-sectional image is displayed in the second display mode.
  • an upper parameter P1a for adjusting the position of the cutting plane for photographing the upper sectional image T3a, a lower parameter P1b for adjusting the position of the cutting plane for photographing the lower sectional image T3b, and a front sectional image F3a The front parameter P2a for adjusting the position of the cutting plane for photographing the image, the rear parameter P2b for adjusting the position of the cutting plane for photographing the rear sectional image F3b, and the position of the cutting plane for photographing the right sectional image S3a are adjusted.
  • a right parameter P3a and a left parameter P3b for adjusting the position of the cutting plane for capturing the left cross-sectional image S3b are displayed.
  • the user moves the slide bar of the upper parameter P1a, the lower parameter P1b, the front parameter P2a, the rear parameter P2b, the right parameter P3a, and the left parameter P3b by using the input unit 10e such as a pointing device or a touch panel to change the position of the cutting plane.
  • the input unit 10e such as a pointing device or a touch panel
  • FIG. 10 is a first example of a cross-sectional image displayed in the first display mode of the display control device 10 according to the present embodiment.
  • the upper cross-sectional image T3a, the lower cross-sectional image T3b, the front cross-sectional image F3a, the rear cross-sectional image F3b, the right cross-sectional image S3a, and the left cross-sectional image S3b obtained by cutting the object 100 along six different planes are each planar. It is displayed as if viewed.
  • the upper cross-sectional image T3a, the front cross-sectional image F3a, and the right cross-sectional image S3a are displayed on the same plane, and the lower cross-sectional image T3b, the rear cross-sectional image F3b, and the left cross-sectional image S3b are displayed on another plane parallel to the plane.
  • the user arbitrarily adjusts the observation direction (the direction of the virtual camera) of the plurality of cross-sectional images, and focuses on the upper cross-sectional image T3a, the front cross-sectional image F3a, and the right cross-sectional image S3a, or selects the lower cross-sectional image T3b.
  • the rear cross-sectional image F3b and the left cross-sectional image S3b can be mainly observed.
  • the upper parameter P1a, the lower parameter P1b, the front parameter P2a, the rear parameter P2b, the right parameter P3a, and the left parameter P3b are cut while switching between the first display mode and the second display mode.
  • the plane can be moved to change the cross-sectional image. Illustration of the change of the cut surface before and after the change is omitted.
  • a first animation that transitions from the first display mode to the second display mode and a second animation that transitions from the second display mode to the first display mode are displayed.
  • FIG. 11 is a flowchart of a display control process executed by the display control device 10 according to the present embodiment.
  • the display control device 10 receives an input for moving the first XY plane, the second XY plane, the first YZ plane, the second YZ plane, the first XZ plane, and the second XZ plane, or an input for switching between the first display mode and the second display mode. (S20).
  • the display control device 10 determines whether the display mode specified after receiving the input is the second display mode (S21), and if the display mode is the second display mode (S11: YES), immediately after switching the display mode. Is determined (S22).
  • "immediately after the switching of the display mode” refers to a period from the reception of the switching of the display mode to the end of the display of the transition animation, for example, 0.6 seconds after the reception of the switching of the display mode.
  • the display control device 10 displays the upper cross-sectional image along the first XY plane, displays the lower cross-sectional image along the second XY plane, and displays the front cross-sectional image on the first YZ plane.
  • the rear cross-sectional image is displayed along the second YZ plane
  • the right cross-sectional image is displayed along the first XZ plane
  • the left cross-sectional image is displayed along the second XZ plane (S23).
  • the display control device 10 may display a cross-sectional image obtained by cutting the target object 100 along an arbitrary surface, may display a cross-sectional image obtained by cutting the target object 100 along a curved surface, or may display seven or more cross-sectional images. May be.
  • the display control apparatus 10 receives an input for moving the first XY plane, the second XY plane, the first YZ plane, the second YZ plane, the first YZ plane, and the second XZ plane
  • the display control apparatus 10 receives the first XY plane, the second XY plane, and the first YZ plane.
  • the upper sectional image, the lower sectional image, the front sectional image, the rear sectional image, the right sectional image, and the left sectional image are changed so as to follow the movement of the plane, the second YZ plane, the first XZ plane, and the second XZ plane.
  • the display control device 10 determines whether the display mode has just been switched. If it is not immediately after the switching (S24), the upper cross-sectional image, the front cross-sectional image, and the right cross-sectional image are displayed on the same plane, and the lower cross-sectional image, the rear cross-sectional image, and the left cross-sectional image are displayed in the same other plane. It is displayed on a plane (S25).
  • the display control device 10 receives an input for moving the first XY plane, the second XY plane, the first YZ plane, the second YZ plane, the first XZ plane, and the second XZ plane for specifying the cut plane, the first XY plane, the first XY plane, Upper cross-sectional image, lower cross-sectional image, front cross-sectional image, rear cross-sectional image, right cross-sectional image, and left cross-sectional image so as to follow the movement of the 2XY plane, the first YZ plane, the second YZ plane, the first XZ plane, and the second XZ plane. Change the image.
  • the display control device 10 displays the first animation or the second animation (S26).
  • the display control device 10 displays the first animation immediately after switching from the first display mode to the second display mode, and displays the second animation when immediately after switching from the second display mode to the first display mode. Is displayed.
  • the display control device 10 inputs or moves the first XY plane, the second XY plane, the first YZ plane, the second YZ plane, the first XZ plane, and the second XZ plane.
  • An input for switching between the mode and the second display mode is received (S20), and the above processing is repeatedly executed.
  • the display control device 10 ends the display control process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Processing Or Creating Images (AREA)

Abstract

複数の切断面で対象物を切断した断面画像を表示する場合に、複数の切断面の3次元的な位置関係を容易に把握できる表示制御装置、表示制御方法及び表示制御プログラムを提供する。表示制御装置10は、対象物100を第1面で切断した第1断面画像と、対象物を第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部10fに表示させる第1表示制御部12と、第1断面画像を第1面に沿って表示部10fに表示させ、第2断面画像を第2面に沿って表示部10fに表示させる第2表示制御部13と、入力に基づいて、第1表示制御部12による表示と第2表示制御部13による表示とを切り替える切替部15と、を備える。

Description

表示制御装置、表示制御方法及び表示制御プログラム
 本発明は、表示制御装置、表示制御方法及び表示制御プログラムに関する。
 従来、X線CT(Computer Tomography)やMRI(Magnetic Resonance Imaging)等の断層撮影技術が用いられている。断層撮影は、例えば体軸断面、矢状断面及び冠状断面等で行われて、表示部に並べて表示されることがある。
 例えば下記特許文献1には、被検体の検査データを読み取り、検査データから得られた3D検査画像に少なくとも1つの仮想禁制品画像を挿入して、選択された領域に少なくとも1つの仮想禁制品画像が含まれることに関するフィードバックを提供するセキュリティーチェックCTシステムが記載されている。
 また、下記特許文献2には、複数のCT画像から主気管分岐部の場所を決定し、主気管分岐部を原点とした各CT画像における各ピクセルに対するx座標、y座標及びz座標をボクセルに対する座標として3Dモデルを表示するCT整列システムが記載されている。
特開2016-8966号公報 特表2017-523826号公報
 複数の切断面に関する断面画像を並べて表示する場合、それぞれの切断面を調整できるようにすることがある。ユーザは、切断面を調整して、所望の部位を複数の方向から観察することができる。
 しかしながら、2以上の切断面で同一の部位を観察しようとしたり、複数の切断面の3次元的な位置関係を把握しようとしたりする場合、調整が困難な場合があった。
 そこで、本発明は、複数の切断面で対象物を切断した断面画像を表示する場合に、複数の切断面の3次元的な位置関係を容易に把握できる表示制御装置、表示制御方法及び表示制御プログラムを提供する。
 本発明の一態様に係る表示制御装置は、対象物を第1面で切断した第1断面画像と、対象物を第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1表示制御部と、第1断面画像を第1面に沿って表示部に表示させ、第2断面画像を第2面に沿って表示部に表示させる第2表示制御部と、入力に基づいて、第1表示制御部による表示と第2表示制御部による表示とを切り替える切替部と、を備える。
 この態様によれば、複数の面で対象物を切断した複数の断面画像を平面視する表示モードと、断面画像をその切断面に沿って表示する表示モードとを切り替えられることで、複数の切断面の3次元的な位置関係を容易に把握できる。
 上記態様において、切替部により、第1表示制御部による表示と第2表示制御部による表示とを切り替える場合に、第1表示制御部による表示から第2表示制御部による表示へ遷移する第1アニメーション又は第2表示制御部による表示から第1表示制御部による表示へ遷移する第2アニメーションを表示部に表示させる第3表示制御部をさらに備えてもよい。
 この態様によれば、第1アニメーション又は第2アニメーションを表示することで、複数の切断面の3次元的な位置関係をさらに把握しやすくなる。
 上記態様において、第2表示制御部は、第1面を、第1面と交差する第1方向に移動させる入力に基づいて、第1面の移動に追随するように第1断面画像を変更し、第2面を、第2面と交差する第2方向に移動させる入力に基づいて、第2面の移動に追随するように第2断面画像を変更してもよい。
 この態様によれば、切断面の移動に追随して断面画像を変更することで、複数の切断面の3次元的な位置関係を容易に把握できる。
 上記態様において、第1表示制御部は、第2表示制御部により第1断面画像及び第2断面画像の少なくともいずれかが変更された後に、切替部による表示の切り替えが行われた場合、変更後の第1断面画像及び変更後の第2断面画像をそれぞれ平面視するように表示部に表示させてもよい。
 この態様によれば、切断面を移動させて断面画像が変更された場合に、複数の断面画像を平面視する表示モードに切り替えることができ、複数の切断面の3次元的な位置関係を把握しつつ、それぞれの断面画像を詳細に確認できる。
 上記態様において、第2表示制御部は、第1面から第1方向に離間した第3面で対象物を切断した第3断面画像を、第3面に沿って表示部に表示させてもよい。
 この態様によれば、第3断面画像を第3面に沿って表示することで、対象物をより多様な切り口から観察できる。
 上記態様において、第1方向は、第1面の法線方向であり、第2方向は、第2面の法線方向であってもよい。
 この態様によれば、第1面及び第2面の移動方向が容易に把握でき、第1断面画像及び第2断面画像を所望の画像に変更することが行いやすくなる。
 上記態様において、第1面と第2面は、直交してもよい。
 この態様によれば、第1面と第2面の位置関係が把握しやすくなり、複数の切断面の3次元的な位置関係が把握しやすくなる。
 本発明の他の態様に係る表示制御方法は、対象物を第1面で切断した第1断面画像と、対象物を第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1ステップと、第1断面画像を第1面に沿って表示部に表示させ、第2断面画像を第2面に沿って表示部に表示させる第2ステップと、入力に基づいて、第1ステップによる表示と第2ステップによる表示とを切り替える第3ステップと、を含む。
 この態様によれば、複数の面で対象物を切断した複数の断面画像を平面視する表示モードと、断面画像をその切断面に沿って表示する表示モードとを切り替えられることで、複数の切断面の3次元的な位置関係を容易に把握できる。
 本発明の他の態様に係る表示制御プログラムは、表示制御装置に備えられたコンピュータを、対象物を第1面で切断した第1断面画像と、対象物を第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1表示制御部、第1断面画像を第1面に沿って表示部に表示させ、第2断面画像を第2面に沿って表示部に表示させる第2表示制御部、及び入力に基づいて、第1表示制御部による表示と第2表示制御部による表示とを切り替える切替部、として機能させる。
 この態様によれば、複数の面で対象物を切断した複数の断面画像を平面視する表示モードと、断面画像をその切断面に沿って表示する表示モードとを切り替えられることで、複数の切断面の3次元的な位置関係を容易に把握できる。
 本発明によれば、複数の切断面で対象物を切断した断面画像を表示する場合に、複数の切断面の3次元的な位置関係を容易に把握できる表示制御装置、表示制御方法及び表示制御プログラムが提供される。
本発明の第1実施形態に係る表示制御装置の機能ブロックを示す図である。 本実施形態に係る表示制御装置の物理的構成を示す図である。 本実施形態に係る表示制御装置の第2表示モードで表示される断面画像の第1例である。 本実施形態に係る表示制御装置の第1表示モードで表示される断面画像の第1例である。 本実施形態に係る表示制御装置により表示される第1アニメーション及び第2アニメーションの例である。 本実施形態に係る表示制御装置の第2表示モードで表示される断面画像の第2例である。 本実施形態に係る表示制御装置の第1表示モードで表示される断面画像の第2例である。 本実施形態に係る表示制御装置により実行される表示制御処理のフローチャートである。 第2実施形態に係る表示制御装置の第2表示モードで表示される断面画像の第1例である。 本実施形態に係る表示制御装置の第1表示モードで表示される断面画像の第1例である。 本実施形態に係る表示制御装置により実行される表示制御処理のフローチャートである。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」と表記する。)を、図面に基づいて説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る表示制御装置10の機能ブロックを示す図である。第1実施形態に係る表示制御装置10は、通信部10d、入力部10e、表示部10f、記憶部11、第1表示制御部12、第2表示制御部13、第3表示制御部14及び切替部15を備える。
 撮影装置50は、X線CT装置であったり、MRI装置であったりしてよく、既存の技術により対象物100の断面画像を撮影するものであってよい。撮影装置50は、対象物100を直交する3平面で切断した断面画像を撮影したり、対象物100を任意の平面で切断した断面画像を構成するMPR(Multi Planar Reconstruction)を行うものであったり、対象物100を任意の曲面で切断した断面画像を構成するcurved-MPRを行うものであったりしてよい。
 対象物100は、撮影装置50の撮影対象となる物であり、例えば、人や動物であったり、検査対象の物品であったりしてよい。また、対象物100は、仮想物体であってもよく、例えばポリゴンで構成された物体であってもよい。通信ネットワークNは、LAN(Local Area Network)やインターネット等の任意の通信網であってよい。
 表示制御装置10は、通信部10dにより通信ネットワークNを介して撮影装置50と接続され、撮影装置50により撮影された対象物100の断面画像を取得する。記憶部11は、取得された断面画像を少なくとも一時的に記憶する。対象物100が仮想物体の場合、撮影装置50により断面画像を撮影する必要はなく、記憶部11は、仮想物体に関する情報を記憶する。
 第1表示制御部12は、対象物100を第1面で切断した第1断面画像と、対象物100を第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部10fに表示させる。以下、第1表示制御部12による表示モードを第1表示モードと呼ぶ。第1表示制御部12は、第1断面画像及び第2断面画像を1つの平面に並べて表示してよい。第1面及び第2面は、平面であっても曲面であってもよい。また、第1面と第2面は、直交していてよく、その場合、第1面と第2面の位置関係が把握しやすくなり、複数の切断面の3次元的な位置関係が把握しやすくなる。なお、第1表示制御部12は、対象物100を第1面及び第2面以外の第3面で切断した第3断面画像を表示部10fに表示させてもよいし、4以上の断面画像を表示部10fに表示させてもよい。また、対象物100が仮想物体である場合、第1表示制御部12は、仮想物体を第1面で切断した第1断面画像と、仮想物体を第2面で切断した第2断面画像とをポリゴン等から構成し、それぞれ平面視するように表示部10fに表示させてよい。
 第2表示制御部13は、第1断面画像を第1面に沿って表示部10fに表示させ、第2断面画像を第2面に沿って表示部10fに表示させる。以下、第2表示制御部13による表示モードを第2表示モードと呼ぶ。例えば、第1面がZ軸と所定の位置で交わるXY面であり、第2面がX軸と所定の位置で交わるYZ面である場合、第2表示制御部13は、第1断面画像を当該XY面に重なるように表示させ、第2断面画像を当該YZ面に重なるように表示させてよい。なお、第2表示制御部13は、対象物100を第1面及び第2面以外の第3面で切断した第3断面画像を表示部10fに表示させてもよいし、4以上の断面画像を表示部10fに表示させてもよい。また、対象物100が仮想物体である場合、第2表示制御部13は、仮想物体を第1面で切断した第1断面画像と、仮想物体を第2面で切断した第2断面画像とをポリゴン等から構成し、第1断面画像を第1面に沿って表示部10fに表示させ、第2断面画像を第2面に沿って表示部10fに表示させてよい。
 切替部15は、入力部10eからの入力に基づいて、第1表示制御部12による表示と第2表示制御部13による表示とを切り替える。ユーザは、第2表示制御部13による断面画像の表示によって、第1断面画像及び第2断面画像の位置関係を立体的に把握することができ、表示モードを切り替えて、第1表示制御部12による断面画像の表示によって、第1断面画像及び第2断面画像を平面視して詳細を観察することができる。このように、本実施形態に係る表示制御装置10によれば、複数の面で対象物100を切断した複数の断面画像を平面視する第1表示モードと、断面画像をその切断面に沿って表示する第2表示モードとを切り替えられることで、複数の切断面の3次元的な位置関係を容易に把握できる。
 第3表示制御部14は、切替部15により、第1表示制御部12による表示と第2表示制御部13による表示とを切り替える場合に、第1表示制御部12による表示から第2表示制御部13による表示へ遷移する第1アニメーション又は第2表示制御部13による表示から第1表示制御部12による表示へ遷移する第2アニメーションを表示部10fに表示させる。第2表示制御部13による立体的な断面画像の表示と、第1表示制御部12による平面的な断面画像の表示との間を繋ぐ第1アニメーション又は第2アニメーションを表示することで、複数の切断面の3次元的な位置関係をさらに把握しやすくなる。
 図2は、本実施形態に係る表示制御装置10の物理的構成を示す画像である。表示制御装置10は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部11に相当するRAM(Random Access Memory)10bと、記憶部11に相当するROM(Read Only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。なお、本例では表示制御装置10が一台のコンピュータで構成される場合について説明するが、表示制御装置10は、複数のコンピュータが組み合わされて実現されてもよい。また、図2で示す構成は一例であり、表示制御装置10はこれら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。
 CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う制御部である。CPU10aは、断面画像の表示を制御するプログラム(表示制御プログラム)を実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bやROM10cに格納したりする。
 RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行する表示制御プログラムや断面画像等を記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。
 ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば表示制御プログラムや、書き換えが行われないデータを記憶してよい。
 通信部10dは、表示制御装置10を撮影装置50等の他の機器に接続するインターフェースである。通信部10dは、LAN等の通信ネットワークNに接続されてよい。
 入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード、ポインティングディバイス及びタッチパネルを含んでよい。
 表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、撮影装置50から取得した断面画像を表示してよい。
 表示制御プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークNを介して提供されてもよい。表示制御装置10では、CPU10aが表示制御プログラムを実行することにより、図1を用いて説明した様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、表示制御装置10は、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。
 図3は、本実施形態に係る表示制御装置10の第2表示モードで表示される断面画像の第1例である。本例では、対象物100を3つの異なる面で切断した3つの断面画像を、それぞれ切断面に沿うように表示している。具体的には、Z軸と所定の位置で交わるXY面で対象物100を切断した上側断面画像T1と、X軸と所定の位置で交わるYZ面で対象物100を切断した前側断面画像F1と、Y軸と所定の位置で交わるXZ面で対象物100を切断した右側断面画像S1と、を表示している。
 上側断面画像T1、前側断面画像F1及び右側断面画像S1は、それぞれ直交し、互いに交わるように表示されている。ユーザは、上側断面画像T1、前側断面画像F1及び右側断面画像S1の観察方向(仮想カメラの方向)を任意に調整して、様々な角度から上側断面画像T1、前側断面画像F1及び右側断面画像S1を観察することができる。
 同図には、「3D」と示されたチェックボックスCBが表示されており、チェックがされている。チェックボックスCBがチェックされている場合、表示制御装置10は、第2表示制御部13による第2表示モードで対象物100の複数の断面画像を表示する。一方、チェックボックスCBのチェックが外されると、表示制御装置10は、第1表示制御部12による第1表示モードで対象物100の複数の断面画像を表示する。第1表示モードによる表示について、次図を用いて詳細に説明する。表示制御装置10の切替部15は、チェックボックスCBに対する入力に基づいて、第1表示制御部12による表示と第2表示制御部13による表示とを切り替える。
 図4は、本実施形態に係る表示制御装置10の第1表示モードで表示される断面画像の第1例である。本例では、対象物100を3つの異なる面で切断した上側断面画像T1、前側断面画像F1及び右側断面画像S1を、それぞれ平面視するように同一平面に表示している。同図では、「3D」と示されたチェックボックスCBのチェックが外されており、第1表示モードで断面画像を表示していることを示している。
 また、図3に示す第2表示モードの場合及び図4に示す第1表示モードの場合いずれも、上側断面画像T1を撮影する切断面の位置を調整する上側パラメータP1と、前側断面画像F1を撮影する切断面の位置を調整する前側パラメータP2と、右側断面画像S1を撮影する切断面の位置を調整する右側パラメータP3と、が表示されている。ユーザは、ポインティングディバイスやタッチパネル等の入力部10eにより、上側パラメータP1、前側パラメータP2及び右側パラメータP3のスライドバーを動かし、切断面の位置を変更して、断面画像を変更することができる。
 第2表示制御部13は、第1面(例えばZ軸と所定の位置で交わるXY面)を、第1面と交差する第1方向(例えばZ軸方向)に移動させる入力に基づいて、第1面の移動に追随するように第1断面画像(例えば上側断面画像T1)を変更してよい。ここで、第1面を移動させる入力は、上側パラメータP1のスライドバーを移動させる入力であってよい。また、第2表示制御部13は、第2面(例えばX軸と所定の位置で交わるYZ面)を、第2面と交差する第2方向(例えばX軸方向)に移動させる入力に基づいて、第2面の移動に追随するように第2断面画像(例えば前側断面画像F1)を変更する。ここで、第2面を移動させる入力は、前側パラメータP2のスライドバーを移動させる入力であってよい。
 図3及び図4に示す例の場合、上側パラメータP1は「76」であり、前側パラメータP2は「723」であり、右側パラメータP3は「744」である。ユーザは、これらのパラメータの値を増減することで、切断面の位置を移動させ、切断面の移動に追随するように断面画像を変更することができる。
 このように、切断面の移動に追随して断面画像を変更することで、複数の切断面の3次元的な位置関係を容易に把握できる。ユーザは、第2表示モードで切断面の位置関係を立体的に把握しながら切断面の位置を移動させて断面画像を変更し、第1表示モードに切り替えて、複数の断面画像を並べて観察することができる。
 また、第1方向は、第1面の法線方向であり、第2方向は、第2面の法線方向であってよい。本例では、第1方向は、Z軸と所定の位置で交わるXY面の法線方向、すなわちZ軸方向であり、第2方向は、X軸と所定の位置で交わるYZ面の法線方向、すなわちX軸方向である。このように第1方向及び第2方向を定めることで、第1面及び第2面の移動方向が容易に把握でき、第1断面画像及び第2断面画像を所望の画像に変更することが行いやすくなる。
 図5は、本実施形態に係る表示制御装置10の第3表示制御部14により表示される第1アニメーションA1及び第2アニメーションA2の例である。同図では、左端に第1表示制御部12によって第1表示モードM1で表示されている上側断面画像、前側断面画像及び右側断面画像を示し、右端に第2表示制御部13によって第2表示モードM2で表示されている上側断面画像、前側断面画像及び右側断面画像を示している。また、同図では、第1表示モードM1から第2表示モードM2に遷移する第1アニメーショA1と、第2表示モードM2から第1表示モードM1に遷移する第2アニメーショA2とを示している。
 第1アニメーションA1と第2アニメーションA2は、それぞれ第1表示モードM1と第2表示モードM2の間を滑らかに遷移する0.6秒程度のアニメーションであってよい。ユーザは、第1アニメーションA1及び第2アニメーションA2によって、平面的な第1表示モードM1と、立体的な第2表示モードM2との中間的な状態を視認することができ、第1表示モードM1と第2表示モードM2の対応関係をより正確に把握することができる。これにより、複数の切断面の3次元的な位置関係がさらに把握しやすくなる。
 図6は、本実施形態に係る表示制御装置10の第2表示モードで表示される断面画像の第2例である。本例では、図3に示した第1例と比較して、上側断面画像T1が同一であり、X軸と所定の位置で交わるYZ面がX軸のマイナス方向dfに移動されて前側断面画像F1が前側断面画像F2に変更され、Y軸と所定の位置で交わるXZ面がY軸のマイナス方向dsに移動されて右側断面画像S1が右側断面画像S2に変更されている。
 本例の場合、上側パラメータP1は「76」であり、前側パラメータP2は「606」であり、右側パラメータP3は「626」である。図3に示した第1例と比較して、本例の前側パラメータP2は、117減少しており、それに伴ってYZ面のX軸における位置がX軸のマイナス方向に移動し、その位置における前側断面画像F2が表示されている。また、図3に示した第1例と比較して、本例の右側パラメータP3は、118減少しており、それに伴ってXZ面のY軸における位置がY軸のマイナス方向に移動し、その位置における右側断面画像S2が表示されている。
 図7は、本実施形態に係る表示制御装置10の第1表示モードで表示される断面画像の第2例である。本例では、図6と同じ上側断面画像T1、前側断面画像F2及び右側断面画像S2を平面視するように表示している。本例においても、上側パラメータP1は「76」であり、前側パラメータP2は「606」であり、右側パラメータP3は「626」である。
 第1表示制御部12は、第2表示制御部13により第1断面画像(例えば上側断面画像T1)及び第2断面画像(例えば前側断面画像F1)の少なくともいずれかが変更された後に、切替部15による表示の切り替えが行われた場合、変更後の第1断面画像(例えば上側断面画像T1)及び変更後の第2断面画像(例えば前側断面画像F2)をそれぞれ平面視するように表示部10fに表示させる。ユーザは、第1表示制御部12による第1表示モードと、第2表示制御部13による第2表示モードとのいずれにおいても、上側パラメータP1、前側パラメータP2及び右側パラメータP3を自由に調整して断面画像を変更し、チェックボックスCBのチェックを切り替えることで、第1表示モードと第2表示モードとを行き来することができる。このように、切断面を移動させて断面画像が変更された場合に、複数の断面画像を平面視する第1表示モードに切り替えることができ、複数の切断面の3次元的な位置関係を把握しつつ、それぞれの断面画像を詳細に確認できる。
 図8は、本実施形態に係る表示制御装置10により実行される表示制御処理のフローチャートである。はじめに、表示制御装置10は、XY面、YZ面及びXZ面を移動させる入力又は第1表示モードと第2表示モードを切り替える入力を受け付ける(S10)。
 表示制御装置10は、入力を受け付けた後に指定されている表示モードが第2表示モードであるかを判定し(S11)、第2表示モードである場合(S11:YES)、表示モードの切り替え直後であるか判定する(S12)。ここで、表示モードの切り替え直後とは、表示モードの切り替えを受け付けてから遷移アニメーションの表示を終了する前までの期間をいい、例えば表示モードの切り替えを受け付けてから0.6秒間である。
 切り替え直後でない場合(S12:NO)、表示制御装置10は、上側断面画像をXY面に沿って表示し、前側断面画像をYZ面に沿って表示し、右側断面画像をXZ面に沿って表示する(S13)。なお、表示制御装置10は、対象物100を任意の面で切断した断面画像を表示してよく、対象物100を曲面で切断した断面画像を表示してよいし、4以上の断面画像を表示してもよい。また、表示制御装置10は、XY面、YZ面及びXZ面を移動させる入力を受け付けた場合、XY面、YZ面及びXZ面の移動に追随するように、上側断面画像、前側断面画像及び右側断面画像を変更する。
 一方、入力を受け付けた後に指定されている表示モードが第2表示モードでない場合(S11:NO)、すなわち第1表示モードである場合、表示制御装置10は、表示モードの切り替え直後であるか判定し(S14)、切り替え直後でない場合(S14:NO)、上側断面画像、前側断面画像及び右側断面画像を同一平面に表示する(S15)。また、表示制御装置10は、切断面を指定するXY面、YZ面及びXZ面を移動させる入力を受け付けた場合、XY面、YZ面及びXZ面の移動に追随するように、上側断面画像、前側断面画像及び右側断面画像を変更する。
 表示モードの切り替え直後の場合(S12:YES、S14:YES)、表示制御装置10は、第1アニメーション又は第2アニメーションを表示する(S16)。表示制御装置10は、第1表示モードから第2表示モードに切り替えられた直後の場合、第1アニメーションを表示し、第2表示モードから第1表示モードに切り替えられた直後の場合、第2アニメーションを表示する。
 その後、表示を終了しない場合(S17:NO)、表示制御装置10は、XY面、YZ面及びXZ面を移動させる入力又は第1表示モードと第2表示モードを切り替える入力を受け付け(S10)、以上の処理を繰り返し実行する。最後に、表示を終了する場合(S17:YES)、表示制御装置10は、表示制御処理を終了する。
[第2実施形態]
 図9は、第2実施形態に係る表示制御装置10の第2表示モードで表示される断面画像の第1例である。本例では、対象物100を6つの異なる面で切断した6つの断面画像を、それぞれ切断面に沿うように表示している。具体的には、Z軸と第1の位置で交わる第1XY面で対象物100を切断した上側断面画像T3aと、Z軸と第2の位置で交わる第2XY面で対象物100を切断した下側断面画像T3bと、X軸と第1の位置で交わる第1YZ面で対象物100を切断した前側断面画像F3aと、X軸と第2の位置で交わる第2YZ面で対象物100を切断した後側断面画像F3bと、Y軸と第1の位置で交わる第1XZ面で対象物100を切断した右側断面画像S3aと、Y軸と第2の位置で交わる第2XZ面で対象物100を切断した左側断面画像S3bと、を表示している。
 上側断面画像T3a、前側断面画像F3a及び右側断面画像S3aは、それぞれ直交し、互いに交わるように表示されている。また、同図では視認できないが、下側断面画像T3b、後側断面画像F3b及び左側断面画像S3bも、それぞれ直交し、互いに交わるように表示されている。そして、上側断面画像T3aと下側断面画像T3bは平行であり、前側断面画像F3aと後側断面画像F3bは平行であり、右側断面画像S3aと左側断面画像S3bは平行である。ユーザは、複数の断面画像の観察方向(仮想カメラの方向)を任意に調整して、様々な角度から断面画像を観察することができる。
 第2表示制御部13は、第1面(例えばZ軸と第1の位置で交わる第1XY面)から第1方向(例えばZ軸方向)に離間した第3面(例えばZ軸と第2の位置で交わる第2XY面)で対象物100を切断した第3断面画像(例えば下側断面画像T3b)を、第3面に沿って表示部10fに表示させてよい。第3断面画像を第3面に沿って表示することで、対象物100をより多様な切り口から観察できる。
 本実施形態では、第2表示制御部13は、複数の断面画像によって一つの閉曲面が構成されるように、複数の切断面の交線で囲まれる領域の内側に断面画像を表示し、交線で囲まれる領域の外側には断面画像を表示しないか又は透明表示する。これに対して、第1実施形態に係る表示制御装置10の第2表示制御部13は、複数の切断面の交線で囲まれる領域の外側にも断面画像を表示する。第2表示制御部13は、いずれの表示形式で断面画像を表示してもよいが、表示する断面画像の枚数が多くなるほど、本実施形態の表示形式により視認性が向上する場合がある。
 図9に示す例では、「3D」と示されたチェックボックスCBがチェックされており、第2表示モードで断面画像を表示していることを示している。また、本例では、上側断面画像T3aを撮影する切断面の位置を調整する上側パラメータP1aと、下側断面画像T3bを撮影する切断面の位置を調整する下側パラメータP1bと、前側断面画像F3aを撮影する切断面の位置を調整する前側パラメータP2aと、後側断面画像F3bを撮影する切断面の位置を調整する後側パラメータP2bと、右側断面画像S3aを撮影する切断面の位置を調整する右側パラメータP3aと、左側断面画像S3bを撮影する切断面の位置を調整する左側パラメータP3bと、が表示されている。ユーザは、ポインティングディバイスやタッチパネル等の入力部10eにより、上側パラメータP1a、下側パラメータP1b、前側パラメータP2a、後側パラメータP2b、右側パラメータP3a及び左側パラメータP3bのスライドバーを動かし、切断面の位置を変更して、断面画像を変更することができる。
 図10は、本実施形態に係る表示制御装置10の第1表示モードで表示される断面画像の第1例である。本例では、対象物100を6つの異なる面で切断した上側断面画像T3a、下側断面画像T3b、前側断面画像F3a、後側断面画像F3b、右側断面画像S3a及び左側断面画像S3bを、それぞれ平面視するように表示している。また、上側断面画像T3a、前側断面画像F3a及び右側断面画像S3aは同一平面に表示され、その平面と平行な他の平面に下側断面画像T3b、後側断面画像F3b及び左側断面画像S3bが表示されている。ユーザは、複数の断面画像の観察方向(仮想カメラの方向)を任意に調整して、上側断面画像T3a、前側断面画像F3a及び右側断面画像S3aを重点的に観察したり、下側断面画像T3b、後側断面画像F3b及び左側断面画像S3bを重点的に観察したりすることができる。
 本実施形態においても、第1表示モードと第2表示モードを行き来しながら、上側パラメータP1a、下側パラメータP1b、前側パラメータP2a、後側パラメータP2b、右側パラメータP3a及び左側パラメータP3bを調整して切断面を移動させ、断面画像を変更することができる。変更前後の切断面の変化については、図示を省略する。また、本実施形態においても、第1表示モードから第2表示モードに遷移する第1アニメーションと、第2表示モードから第1表示モードに遷移する第2アニメーションとが表示される。
 図11は、本実施形態に係る表示制御装置10により実行される表示制御処理のフローチャートである。はじめに、表示制御装置10は、第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面を移動させる入力又は第1表示モードと第2表示モードを切り替える入力を受け付ける(S20)。
 表示制御装置10は、入力を受け付けた後に指定されている表示モードが第2表示モードであるかを判定し(S21)、第2表示モードである場合(S11:YES)、表示モードの切り替え直後であるか判定する(S22)。ここで、表示モードの切り替え直後とは、表示モードの切り替えを受け付けてから遷移アニメーションの表示を終了する前までの期間をいい、例えば表示モードの切り替えを受け付けてから0.6秒間である。
 切り替え直後でない場合(S22:NO)、表示制御装置10は、上側断面画像を第1XY面に沿って表示し、下側断面画像を第2XY面に沿って表示し、前側断面画像を第1YZ面に沿って表示し、後側断面画像を第2YZ面に沿って表示し、右側断面画像を第1XZ面に沿って表示し、左側断面画像を第2XZ面に沿って表示する(S23)。なお、表示制御装置10は、対象物100を任意の面で切断した断面画像を表示してよく、対象物100を曲面で切断した断面画像を表示してよいし、7以上の断面画像を表示してもよい。また、表示制御装置10は、第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面を移動させる入力を受け付けた場合、第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面の移動に追随するように、上側断面画像、下側断面画像、前側断面画像、後側断面画像、右側断面画像及び左側断面画像を変更する。
 一方、入力を受け付けた後に指定されている表示モードが第2表示モードでない場合(S21:NO)、すなわち第1表示モードである場合、表示制御装置10は、表示モードの切り替え直後であるか判定し(S24)、切り替え直後でない場合(S24:NO)、上側断面画像、前側断面画像及び右側断面画像を同一平面に表示し、下側断面画像、後側断面画像及び左側断面画像を他の同一平面に表示する(S25)。また、表示制御装置10は、切断面を指定する第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面を移動させる入力を受け付けた場合、第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面の移動に追随するように、上側断面画像、下側断面画像、前側断面画像、後側断面画像、右側断面画像及び左側断面画像を変更する。
 表示モードの切り替え直後の場合(S22:YES、S24:YES)、表示制御装置10は、第1アニメーション又は第2アニメーションを表示する(S26)。表示制御装置10は、第1表示モードから第2表示モードに切り替えられた直後の場合、第1アニメーションを表示し、第2表示モードから第1表示モードに切り替えられた直後の場合、第2アニメーションを表示する。
 その後、表示を終了しない場合(S27:NO)、表示制御装置10は、第1XY面、第2XY面、第1YZ面、第2YZ面、第1XZ面及び第2XZ面を移動させる入力又は第1表示モードと第2表示モードを切り替える入力を受け付け(S20)、以上の処理を繰り返し実行する。最後に、表示を終了する場合(S27:YES)、表示制御装置10は、表示制御処理を終了する。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 

Claims (9)

  1.  対象物を第1面で切断した第1断面画像と、前記対象物を前記第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1表示制御部と、
     前記第1断面画像を前記第1面に沿って前記表示部に表示させ、前記第2断面画像を前記第2面に沿って前記表示部に表示させる第2表示制御部と、
     入力に基づいて、前記第1表示制御部による表示と前記第2表示制御部による表示とを切り替える切替部と、
     を備える表示制御装置。
  2.  前記切替部により、前記第1表示制御部による表示と前記第2表示制御部による表示とを切り替える場合に、前記第1表示制御部による表示から前記第2表示制御部による表示へ遷移する第1アニメーション又は前記第2表示制御部による表示から前記第1表示制御部による表示へ遷移する第2アニメーションを前記表示部に表示させる第3表示制御部をさらに備える、
     請求項1に記載の表示制御装置。
  3.  前記第2表示制御部は、
     前記第1面を、前記第1面と交差する第1方向に移動させる入力に基づいて、前記第1面の移動に追随するように前記第1断面画像を変更し、
     前記第2面を、前記第2面と交差する第2方向に移動させる入力に基づいて、前記第2面の移動に追随するように前記第2断面画像を変更する、
     請求項1又は2に記載の表示制御装置。
  4.  前記第1表示制御部は、前記第2表示制御部により前記第1断面画像及び前記第2断面画像の少なくともいずれかが変更された後に、前記切替部による表示の切り替えが行われた場合、変更後の前記第1断面画像及び変更後の前記第2断面画像をそれぞれ平面視するように前記表示部に表示させる、
     請求項3に記載の表示制御装置。
  5.  前記第2表示制御部は、前記第1面から前記第1方向に離間した第3面で前記対象物を切断した第3断面画像を、前記第3面に沿って前記表示部に表示させる、
     請求項3又は4に記載の表示制御装置。
  6.  前記第1方向は、前記第1面の法線方向であり、前記第2方向は、前記第2面の法線方向である、
     請求項3から5のいずれか一項に記載の表示制御装置。
  7.  前記第1面と前記第2面は、直交する、
     請求項1から6のいずれか一項に記載の表示制御装置。
  8.  対象物を第1面で切断した第1断面画像と、前記対象物を前記第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1ステップと、
     前記第1断面画像を前記第1面に沿って前記表示部に表示させ、前記第2断面画像を前記第2面に沿って前記表示部に表示させる第2ステップと、
     入力に基づいて、前記第1ステップによる表示と前記第2ステップによる表示とを切り替える第3ステップと、
     を含む表示制御方法。
  9.  表示制御装置に備えられたコンピュータを、
     対象物を第1面で切断した第1断面画像と、前記対象物を前記第1面と交差する第2面で切断した第2断面画像と、をそれぞれ平面視するように表示部に表示させる第1表示制御部、
     前記第1断面画像を前記第1面に沿って前記表示部に表示させ、前記第2断面画像を前記第2面に沿って前記表示部に表示させる第2表示制御部、及び
     入力に基づいて、前記第1表示制御部による表示と前記第2表示制御部による表示とを切り替える切替部、
     として機能させる表示制御プログラム。
     
PCT/JP2018/038795 2018-08-30 2018-10-18 表示制御装置、表示制御方法及び表示制御プログラム WO2020044576A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514143A JP6679804B1 (ja) 2018-08-30 2018-10-18 表示制御装置、表示制御方法及び表示制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161675 2018-08-30
JP2018-161675 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020044576A1 true WO2020044576A1 (ja) 2020-03-05

Family

ID=69645142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038795 WO2020044576A1 (ja) 2018-08-30 2018-10-18 表示制御装置、表示制御方法及び表示制御プログラム

Country Status (2)

Country Link
JP (1) JP6679804B1 (ja)
WO (1) WO2020044576A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192A (ja) * 1996-04-15 1998-01-06 Olympus Optical Co Ltd 超音波画像診断装置
JPH11219448A (ja) * 1998-01-30 1999-08-10 Hitachi Medical Corp 画像表示方法
JP2017176381A (ja) * 2016-03-29 2017-10-05 ザイオソフト株式会社 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243033A (ja) * 2010-05-19 2011-12-01 Univ Of Tsukuba 立体の展開図作成方法および展開図作成装置、型枠製造装置および型枠製造方法、立体物、立体物の製造装置および製造方法、並びにプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192A (ja) * 1996-04-15 1998-01-06 Olympus Optical Co Ltd 超音波画像診断装置
JPH11219448A (ja) * 1998-01-30 1999-08-10 Hitachi Medical Corp 画像表示方法
JP2017176381A (ja) * 2016-03-29 2017-10-05 ザイオソフト株式会社 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム

Also Published As

Publication number Publication date
JP6679804B1 (ja) 2020-04-15
JPWO2020044576A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5824537B2 (ja) 情報処理装置および情報処理方法
US9684169B2 (en) Image processing apparatus and image processing method for viewpoint determination
US8860714B2 (en) Apparatus and method for generating stereoscopic viewing image based on three-dimensional medical image, and a computer readable recording medium on which is recorded a program for the same
US9466146B2 (en) Image processing apparatus, image processing method and data structure of image file
US9741167B1 (en) Method and system for providing an image of a virtual space to a head mounted display
CN102892018B (zh) 图像处理系统、装置、方法以及医用图像诊断装置
JP5312932B2 (ja) 医用三次元画像の表示制御プログラムおよび医用三次元画像の表示方法
JP2016057947A (ja) 仮想空間表示装置、仮想空間表示方法及びプログラム
CN100382762C (zh) 图像处理装置及图像处理方法
JP2009291276A (ja) 投影画像作成装置、方法およびプログラム
WO2014145452A4 (en) Enhancements for displaying and viewing tomosynthesis images
KR20120021212A (ko) 화상표시장치 및 화상표시 방법
KR20170134592A (ko) 가상 육면체 모델에 기초한 가상 3차원 모델 생성
US9215441B2 (en) Image processing apparatus, non-transitory computer readable recording medium, and image processing method
WO2011118208A1 (ja) 切削シミュレーション装置
JP6618260B2 (ja) 情報処理装置、情報処理方法、プログラム
JP2017120558A (ja) 情報処理装置、情報処理方法、およびプログラム
JP2021135776A (ja) 情報処理装置、情報処理方法、およびプログラム
WO2020044576A1 (ja) 表示制御装置、表示制御方法及び表示制御プログラム
JP2005107972A (ja) 複合現実感提示方法、複合現実感提示装置
Shao et al. Development of a 1: 1 Scale True Perception Virtual Reality System for design review in automotive industry
JP2012075728A (ja) 医用画像表示装置及びこれを用いた投影像作成方法
US10634891B2 (en) Medical observation device, lens driving control device, lens driving control method, and video microscope device
JP4609960B2 (ja) 画像処理装置
JP2004089599A (ja) 画像表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019514143

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932117

Country of ref document: EP

Kind code of ref document: A1