WO2020042945A1 - 链路中断的处理方法和设备 - Google Patents

链路中断的处理方法和设备 Download PDF

Info

Publication number
WO2020042945A1
WO2020042945A1 PCT/CN2019/101314 CN2019101314W WO2020042945A1 WO 2020042945 A1 WO2020042945 A1 WO 2020042945A1 CN 2019101314 W CN2019101314 W CN 2019101314W WO 2020042945 A1 WO2020042945 A1 WO 2020042945A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay node
link
message
node
relay
Prior art date
Application number
PCT/CN2019/101314
Other languages
English (en)
French (fr)
Inventor
陈喆
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19856025.2A priority Critical patent/EP3846546B1/en
Priority to EP23210309.3A priority patent/EP4301082A3/en
Priority to KR1020217009539A priority patent/KR102442932B1/ko
Priority to US17/272,214 priority patent/US20210204348A1/en
Publication of WO2020042945A1 publication Critical patent/WO2020042945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and a device for processing a link interruption.
  • a terminal In a wireless backhaul network, a terminal (UE) is connected to one of the wireless relay nodes. As the terminal moves, the terminal enters the coverage of another wireless relay node.
  • the terminal Under the relay architecture of the fourth generation mobile communication (4G) system, there is usually only one wireless relay node, and under the relay architecture of the 5G system, the terminal can connect to the network through multiple wireless relay nodes.
  • 4G fourth generation mobile communication
  • the terminal can connect to the network through multiple wireless relay nodes.
  • Donor NB donor base station
  • An object of the embodiments of the present disclosure is to provide a method and a device for processing a link interruption of a wireless relay node, which can restore the connection between the terminal and the donor base station when a wireless network link fails.
  • a method for processing a link interruption, which is applied to a first relay node on a wireless backhaul path of a first terminal includes:
  • the first relay node releases the connection between the first relay node and the second relay node after detecting that a higher-level wireless link on the wireless backhaul path fails;
  • the second relay node is a next-level relay node of the first relay node on the wireless backhaul path.
  • another method for processing a link interruption, which is applied to a second relay node on a wireless backhaul path of a first terminal includes:
  • the second relay node releases the connection between the second relay node and the first relay node after the first relay node detects a failure of an upper-level wireless link on the wireless backhaul path;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • another method for processing a link interruption in a relay network which is applied to a relay node on a wireless backhaul path of a first terminal, includes:
  • the relay node releases the connection between the relay node and all terminals after the upper link of the wireless backhaul path fails; and, there is a next stage of the relay node on the wireless backhaul path
  • an upper-layer link failure indication message is sent to the next-level relay node.
  • another method for processing a link interruption in a relay network, which is applied to a target relay node in a wireless backhaul path of a first terminal includes:
  • the target relay node executes corresponding processing according to a pre-configured processing policy and a position relationship between itself and a failed link where a link failure occurs;
  • the target relay node executes the steps of the method for processing a link interruption according to the first aspect of the embodiments of the present disclosure
  • the target relay node executes the steps of the method for processing a link interruption according to the second aspect of the embodiments of the present disclosure
  • the target relay node executes the third aspect of the embodiment of the present disclosure. Steps in the method of handling a link outage.
  • a first relay node is provided.
  • the first relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a transceiver, a memory, and a processor. And a program stored on the memory and executable on the processor; wherein,
  • the processor is configured to read a program in a memory and execute the following process: after detecting a failure of an upper-level wireless link on the wireless backhaul path, releasing the first relay node and the second relay node the connection between;
  • the second relay node is a next-level relay node of the first relay node on the wireless backhaul path.
  • a first relay node is provided.
  • the first relay node is a relay node on a wireless backhaul path of a first terminal, and includes:
  • a release unit configured to release the connection between the first relay node and the second relay node after detecting a failure of an upper-level wireless link on the wireless backhaul path;
  • the second relay node is a next-level relay node of the first relay node on the wireless backhaul path.
  • a second relay node is provided.
  • the second relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a transceiver, a memory, and a processor. And a program stored on the memory and executable on the processor; wherein,
  • the processor is configured to read a program in the memory and execute the following process: after the first relay node detects that a previous wireless link on the wireless backhaul path fails, release the second relay node and the A connection between the first relay nodes;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • a second relay node is provided.
  • the second relay node is a relay node on a wireless backhaul path of a first terminal, and includes:
  • a release unit configured to release the connection between the second relay node and the first relay node after the first relay node detects a failure of a higher-level wireless link on the wireless backhaul path;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • a relay node is provided.
  • the relay node is located on a wireless backhaul path of a first terminal, and includes a transceiver, a memory, a processor, and a memory stored on the memory and A program executable on the processor; wherein,
  • the processor is configured to read a program in the memory and execute the following process: after the upper link of the wireless backhaul path fails, release the connection between the relay node and all terminals;
  • the transceiver is configured to send an upper-layer link failure indication message to a lower-level relay node when the next-level relay node of the relay node exists on the wireless backhaul path.
  • a relay node is provided.
  • the relay node is located on a wireless backhaul path of a first terminal, and includes:
  • a release unit configured to release a connection between the relay node and all terminals after an upper link of the wireless backhaul path fails
  • the transceiver unit is configured to send an upper-layer link failure indication message to the next-level relay node when the next-level relay node of the relay node exists on the wireless backhaul path.
  • a target relay node is provided.
  • the target relay node is located in a wireless backhaul path of a first terminal, and includes: a transceiver, a memory, a processor, and A program on the memory and executable on the processor; wherein,
  • the processor is configured to read a program in a memory and execute the following process: execute corresponding processing according to a pre-configured processing strategy and a position relationship between the processing link and a failed link where a link failure occurs; wherein,
  • the target relay node When the target relay node is configured with a first processing policy, and the target relay node is a relay node at the first end of the failed link, the first end is that the failed link is close to The one end on the first terminal side executes the steps of the method for processing a link interruption according to the first aspect of the embodiments of the present disclosure;
  • the target relay node When the target relay node is configured with the first processing policy, and the target relay node is a relay node next to the relay node at the first end of the failed link, the present disclosure is executed. Steps of the method for processing a link interruption according to the second aspect of the embodiment;
  • the method for processing a link interruption is executed. A step of.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein the computer program, when executed by a processor, implements the steps of accessing as described above.
  • the connection between the relay node and the lower-level relay node is released to prompt the lower-level relay node to reselect.
  • the access node, or the connection between the relay node and the terminal is released, so as to prompt the terminal to select the access node again, so that the connection between the terminal and the donor base station can be restored.
  • 1 is a schematic structural diagram of a related art 5G mobile communication system
  • FIG. 2 is a schematic diagram of a user plane protocol stack architecture of a related art 5G mobile communication system
  • FIG. 3 is a schematic diagram of a protocol stack architecture of a control plane of a related art 5G mobile communication system
  • FIG. 4 is a schematic diagram of an application scenario of a method for processing a link interruption according to an embodiment of the present disclosure
  • FIG. 5 is a first flowchart of a method for processing a link interruption according to an embodiment of the present disclosure
  • FIG. 6 is a second flowchart of a method for processing a link interruption according to an embodiment of the present disclosure
  • FIG. 7 is a third flowchart of a method for processing a link interruption according to an embodiment of the present disclosure.
  • FIG. 8 is one of application example diagrams of a method for processing a link interruption according to an embodiment of the present disclosure
  • FIG. 9 is a second application example diagram of a method for processing a link interruption according to an embodiment of the present disclosure.
  • FIG. 10 is a third application example diagram of a method for processing a link interruption according to an embodiment of the present disclosure.
  • FIG. 11 is one of the structural diagrams of the first relay node according to the embodiment of the present disclosure.
  • FIG. 12 is a second schematic structural diagram of a first relay node according to an embodiment of the present disclosure.
  • FIG. 13 is one of the schematic structural diagrams of a second relay node according to an embodiment of the present disclosure.
  • FIG. 14 is a second schematic structural diagram of a second relay node according to an embodiment of the present disclosure.
  • 15 is one of the structural schematic diagrams of a relay node according to an embodiment of the present disclosure.
  • 16 is a second schematic structural diagram of a relay node according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a target relay node according to an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as more preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • GNB NR NodeB
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the 5G basic user plane protocol layer includes: Service Data Adaptation Protocol (SDAP), Packet Data Convergence Protocol (PDCP), Radio Link Layer Control Protocol (Radio Link Control, RLC), and Media Access control (Media, Access Control, MAC) and physical layer (PHY).
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Layer Control Protocol
  • Media Access control Media, Access Control, MAC
  • PHY physical layer
  • the control plane protocol layer includes: non-access stratum (NAS), radio resource control (RRC), PDCP, RLC, MAC, and PHY. Schematic diagrams of the protocol stack architecture of the user plane and control plane are shown in Figure 2 and Figure 3, respectively.
  • the wireless communication system may be a 5G system, an evolved long term evolution (evolved long term evolution, eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved long term evolution
  • FIG. 4 shows an application scenario of a method for processing a link interruption according to an embodiment of the present disclosure.
  • the wireless relay nodes 1-6 in FIG. 4 constitute a wireless backhaul network, in which a network-side node (such as a base station) is established to pass through wireless relay node 1, wireless relay node 2, wireless relay node 6 to the terminal in order. Multi-hop return path.
  • a network-side node such as a base station
  • wireless relay node 6 to the terminal in order.
  • Multi-hop return path Taking a 5G system as an example, the wireless relay node in FIG. 4 may be an integrated access and backhaul node (IAB node).
  • the IAB node may have a complete base station function, or may only have a data forwarding function similar to a base station.
  • the network-side node connected by the wired interface is the base station, and the embodiment of the present disclosure is also referred to as a donor base station (Donor base station, also referred to as DgNB).
  • Donor base station communicates with the wireless relay node through a wireless interface.
  • Wireless relay nodes also communicate through wireless interfaces.
  • the donor base stations provided in the embodiments of the present disclosure are usually connected by wires, and the donor base stations and the core network nodes are also usually connected by wires.
  • the donor base station in the embodiment of the present disclosure may be a commonly used base station, an evolved base station (eNB), or a network-side device (such as a next-generation base station) in a 5G system. , GNB) or transmission and reception points (TRP).
  • the wireless relay node in the embodiment of the present disclosure may have a complete base station function, or may only have a data forwarding function similar to a base station.
  • the terminal in the embodiment of the present disclosure may be a mobile phone (or cell phone), or other devices capable of sending or receiving wireless signals, including user equipment (UE), personal digital assistant (PDA), wireless modem, wireless communication device, and handheld device.
  • UE user equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • CPE Customer Equipment
  • the previous hop node of a wireless relay node refers to the previous hop node in the wireless backhaul path of the terminal, which passes through one or more wireless relay nodes in sequence from the donor base station.
  • the previous hop node of a wireless relay node is the node on the donor base station side that is closer to the wireless relay node in the wireless backhaul path.
  • the next hop node of a wireless relay node is the next-level node of the wireless relay node that is close to the terminal side in the wireless backhaul path.
  • a method for processing a link interruption when applied to a first wireless relay node on a wireless backhaul path of a first terminal, includes:
  • step 51 the first relay node releases the connection between the first relay node and the second relay node when it detects that a higher-level wireless link on the wireless backhaul path fails.
  • the first relay node may be a relay node directly connected to the donor base station on the wireless backhaul path, or may be a relay node connected to the donor base station through other relay nodes, and the first relay node There is also a relay node between the relay node and the terminal.
  • the second relay node is a relay node next to the first relay node on the wireless backhaul path, that is, adjacent to the first relay node in the wireless backhaul path, and Close to the relay node on the terminal side.
  • the upper-level wireless link of the first relay node on the wireless backhaul path refers to the wireless link between the first-relay node and its upper-level node, specifically, the upper-level node It can be another relay node or a donor base station.
  • the first relay node detects the wireless link between itself and the donor base station. When the link fails, the connection between the first relay node and the second relay node will be released. If the first-level node of the first relay node on the wireless backhaul path is another relay node, when the first relay node detects that a wireless link between itself and the other relay node fails, The connection between the first relay node and the second relay node will be released.
  • the first-level node of the first relay node on the wireless backhaul path is another relay node, when the first relay node detects that a wireless link between itself and the other relay node fails, The connection between the first relay node and the second relay node will be released.
  • the first relay node in the embodiment of the present disclosure detects that the wireless link between the first relay node and the upper-level node fails, it will release itself and the next-level relay node (that is, A second relay node), thereby prompting the second relay node to access the donor base station through another relay node again, so as to restore the first terminal to restore the connection between the terminal and the donor base station.
  • the next-level relay node that is, A second relay node
  • the first relay node may send a first indication message that the upper link fails to the second relay node, and the first indication message is used to indicate a second The relay node initiates link reselection; the second relay node initiates link reselection after receiving the first indication message; the process in which the first relay node initiates link reselection at the second relay node And releases its connection with the second relay node.
  • the first relay node can release the connection with the second relay node, and the second relay node can access the other relay nodes through link reselection, thereby restoring the first terminal to the donor.
  • the connection of the base station is a first indication message that the upper link fails to the second relay node, and the first indication message is used to indicate a second The relay node initiates link reselection; the second relay node initiates link reselection after receiving the first indication message; the process in which the first relay node initiates link reselection at the second relay node And releases its connection with the second
  • the first relay node may also release the connection between the relay node and all terminals, so as to cause the first relay node to download. And the first relay node may use the second relay node as a higher-level relay node to access the second relay node.
  • the terminal under a certain relay node refers to a terminal located in the coverage area of the relay node and accessing the network through the relay node.
  • the first relay node may send a parameter configuration message to adjust the handover parameters to the second relay node, and the parameter configuration message is used to reduce the measurement report triggered by the event. Reporting threshold so as to make the second relay node more prone to cell switching. In this way, the first relay node can release the connection between itself and the second relay node during the process of the second relay node switching to another relay node (assuming a third relay node).
  • the handover parameter may specifically be a measurement report parameter.
  • the threshold value for the second relay node to report the measurement report of the neighboring cell is reduced, so that the second relay node can more easily send a measurement report to promote the first relay node.
  • the first relay node may update the reporting threshold of the measurement report triggered by the event through the parameter configuration message, so that the measurement report is easier to report.
  • the triggering conditions for an event-triggered measurement report reported by the related technology are:
  • Mn represents the measurement result of the neighboring cell
  • Ofn represents the specific frequency offset of the neighboring cell
  • Ocn represents the specific offset of the neighboring cell
  • Hys represents the event hysteresis parameter
  • Thresh represents the event threshold.
  • the event threshold Thresh may be lowered, for example, it is set to 0, so that the above-mentioned event is more easily triggered, thereby making it easier for the second relay node to switch from the first relay node To other relay nodes.
  • the above event trigger is only an example of one possible event, and the present disclosure is not limited thereto.
  • the first relay node detects that the wireless link fails, It may also disconnect itself from the terminal under the relay node, or use the second relay node as a higher-level relay node to access the second relay node.
  • the first relay node may send a second indication message that the upper link fails to the second relay node, and the second indication message is used to instruct the second relay node to adjust a handover parameter to reduce the event triggered by the fourth relay node due to an event.
  • a reporting threshold of the measurement report, the fourth relay node is a next-level relay node of the second relay node on the wireless backhaul path.
  • the second relay node may use a process similar to that of the first relay node to send a parameter configuration message for adjusting the handover parameters to the next-level node (that is, the fourth relay node).
  • the parameter configuration message is used to reduce the reporting threshold of the measurement report triggered by the event, so as to make the fourth relay node more prone to cell switching.
  • the second relay node can release the connection between itself and the fourth relay node during the process of the fourth relay node switching to another relay node.
  • the second relay node after receiving the second instruction message, the second relay node also It may disconnect itself from the terminal under the relay node, or use the fourth relay node as a higher-level relay node to access the fourth relay node.
  • the second relay node may also indicate an upper link failure indication message to the fourth relay node.
  • the last-level relay node in the wireless backhaul path that is, the relay node accessed by the terminal
  • the last-level relay node fails to switch to other relay nodes, the last level The relay node disconnects itself from the terminal under the relay node, so as to cause the first terminal to reselect and select another relay node for access.
  • the preset time may be preset by the donor base station to each relay node, or may be determined by each relay node (such as the first relay node) according to a service quality requirement of a service carried by the wireless backhaul path. .
  • the first relay node may send a first radio resource control (RRC) reconfiguration message to the second relay node, where the first RRC reconfiguration message carries
  • RRC radio resource control
  • MIB main information block
  • the second relay node After receiving the first RRC reconfiguration message, the second relay node will disconnect from the first relay node, so that the first relay node can disconnect from the first relay node at the second relay node. In the process of connecting the following nodes, the connection between the first relay node and the second relay node is released.
  • the first relay node may broadcast a master information block (MIB) message, and the MIB message carries a forbidden access to the first medium.
  • MIB master information block
  • the MIB parameters of the cell of the relay node and send a paging message to the idle or inactive terminal under the first relay node, and send the second RRC reconfiguration to the connected terminal under the first relay node Message, the second RRC reconfiguration message carries a MIB parameter of a cell forbidden to access the first relay node.
  • the terminal receiving the paging message will receive the broadcast MIB message and obtain the MIB parameters, and the terminal receiving the second RRC reconfiguration message will also obtain the MIB parameters, so that these terminals will disconnect from the first A relay node is connected, and another relay node is selected for access.
  • the link interruption processing method in the embodiment of the present disclosure has been described mainly from the first relay node side, and the following description will be made from the second relay node side.
  • the method for processing a link interruption provided by an embodiment of the present disclosure, when applied to a second wireless relay node on a wireless backhaul path of a first terminal includes:
  • Step 61 The second relay node releases the connection between the second relay node and the first relay node after the first relay node detects a failure of an upper-level wireless link on the wireless backhaul path;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • the second relay node will release the communication between the second relay node and the first relay node. Connection, which will cause the second relay node to reconnect to other relay nodes through link reselection, thereby ensuring that the communication link of the first terminal is not affected by the wireless link of the first level of the first wireless relay node Impact of failure.
  • the specific link reselection process is similar to the cell switching of the terminal, which is not specifically limited in this embodiment of the present disclosure.
  • the second relay node may receive a first indication message of an upper link failure sent by the first relay node, and the first indication message is used to indicate The second relay node initiates link reselection; then, the second relay node initiates link reselection according to the first instruction message, and releases its connection with the first relay node.
  • the following processing may also be performed:
  • the second relay node may trigger the first terminal to reselect or switch to another relay node through a cell; for example, The second relay node may disconnect itself from the terminal under the relay node, so that all terminals, including the first terminal, perform cell reselection or handover.
  • the second relay node may send a third indication message of an upper link failure to the fourth relay node.
  • the three indication messages are used to instruct the fourth relay node to initiate link reselection.
  • the fourth relay node may adopt a processing method similar to the above-mentioned second relay node, up to the last-stage relay node.
  • the second relay node may determine whether there is an accessible upper-level relay node in the following manner:
  • the second relay node periodically searches for and updates the available upper-level relay node that can be accessed according to a preset search period, and after receiving the first instruction message, if the available upper-level relay node is If the first relay node is empty or only includes the first relay node, it is determined that there is no accessible upper relay node.
  • the preset search period may be configured by the donor base station or set by the second relay node.
  • This method searches and updates the information of the available upper relay nodes periodically, so that after receiving the first instruction message, it can quickly determine whether there is an accessible upper relay node based on the information of the currently available upper relay nodes. , So that the service of the first terminal can be quickly restored.
  • the second relay node After receiving the first instruction message, the second relay node searches for an accessible upper-level relay node, and if no other relay node except the first relay node is searched, it is determined that no relay node exists. The upper relay node to access.
  • This method searches after receiving the first instruction message, which can reduce the search workload of the second relay node and reduce the workload of the second relay node.
  • the second relay node receives a parameter configuration message for adjusting a handover parameter sent by the first relay node, and the parameter configuration message is used to reduce an event triggered measurement.
  • Reporting threshold the second relay node reports a measurement report according to the parameter configuration message, and switches according to the control of the first relay node, and switches to another relay node (assuming a third relay node) ), Release its connection with the first relay node.
  • the second relay node after the second relay node receives the parameter configuration message, if it has not yet switched to the third relay node after a preset time, it may also be measured in the following manner: the second relay node receives A second instruction message sent by the first relay node to indicate a failure of an upper link, the second instruction message is used to instruct the second relay node to adjust a handover parameter; the second relay node forwards to the fourth relay The node sends a parameter configuration message for adjusting handover parameters, and the parameter configuration message is used to reduce a reporting threshold of a measurement report triggered by the fourth relay node due to an event.
  • the fourth relay node can be caused to reselect to another relay node other than the second relay node.
  • the second relay node may send an instruction message to the fourth relay node to indicate that the upper link fails, and the fourth relay node receives After the above instruction message is sent, a parameter configuration message for adjusting handover parameters is sent to the next-level relay node (assuming it exists), and the parameter configuration message is used to reduce the reporting threshold of the measurement report triggered by the next-level relay node due to an event. The above process is repeated until the last-level relay node in the wireless backhaul path. If the last-level relay node still fails to switch to another relay node, the last-level relay node disconnects itself from the terminal under this relay node, so as to prompt the first terminal to reselect and select another relay node. Node for access.
  • the preset time may be preset by the donor base station to each relay node, or may be determined by each relay node (such as the first relay node) according to a service quality requirement of a service carried by the wireless backhaul path. .
  • the second relay node receives a first RRC reconfiguration message sent by the first relay node, and the first RRC reconfiguration message carries access forbidden MIB parameters of the cell of the first relay node; the second relay node releases the first relay node's connection with the first relay node during the process of disconnecting from the first relay node according to the first RRC reconfiguration message. Connection. Subsequently, the second relay node may re-access other relay nodes to restore the communication link of the first terminal.
  • an embodiment of the present disclosure also provides another method for processing a link interruption in a link relay network, which will be described in detail below.
  • a method for processing a link interruption provided by an embodiment of the present disclosure, when applied to a wireless relay node on a wireless backhaul path of a first terminal, includes:
  • step 71 the relay node releases the connection between the relay node and all terminals after an upper-level link of the wireless backhaul path fails; and, the relay node exists on the wireless backhaul path.
  • the next-level relay node sends an upper-layer link failure indication message to the next-level relay node.
  • the upper-level link of the relay node on the wireless backhaul path refers to any one or more links between the relay node and the donor base station.
  • the relay node may also release the connection between the relay node and all terminals, so as to prompt these terminals to reselect the medium selected for access.
  • the relay node may send a parameter configuration message for adjusting a handover parameter to a terminal under the relay node, and the parameter configuration message is used to reduce a reporting threshold of an event-triggered measurement report; or the relay node Broadcast a MIB message, the MIB message carries MIB parameters of a cell forbidden to access the relay node, and sends a paging message to an idle or inactive terminal under the relay node, and to the relay A terminal in a connected state under the node sends an RRC reconfiguration message, where the RRC reconfiguration message carries a master information block MIB parameter of a cell forbidden to access the relay node.
  • the relay node may send an upper-link failure indication message to its next-level relay node (if any) after the upper-link fails, and the upper-link failure indication message is used to indicate the upper-link A failure occurred.
  • This message will be sent hop by hop by the relay node on the wireless backhaul path to the last level relay node on the wireless backhaul path, that is, the relay node accessed by the first terminal.
  • the last-level relay node can release the connection between this relay node and all terminals (including the first terminal). In this way, the first terminal can re-select the relay node to access to restore the first terminal to the donor. Communication link between base stations.
  • the relay node may go to the next level after detecting that the wireless link between itself and the donor base station fails.
  • the relay node sends the upper link failure indication message. If the relay node is not a relay node that directly accesses the donor base station in the wireless backhaul path, the relay node may receive the superior link failure indication message sent by the superior relay node, or When it detects that the link between the relay node and the upper-level relay node fails, the lower-level node (if any) sends an upper-link failure indication message.
  • the upper link failure indication message can be sent hop by hop until the last relay node on the wireless backhaul path, and the relay node of the upper link failure indication message will release its connection with all terminals. In this way, these terminals are urged to re-select the relay nodes that are accessed to ensure the communication of these terminals.
  • the link interruption processing method of the present disclosure has been described through the two embodiments above. It should be noted that the solutions in the above two embodiments can be configured and used according to specific scenarios. The above two schemes can coexist in the network. For example, if you use the solution in Figure 7-8, you can reduce the amount of data that needs to be forwarded, and if you use the solution in Figure 5-6, you can reduce the signaling overhead in the network.
  • the donor base station keeps the wireless backhaul paths of all the terminals. Therefore, the donor base station determines the number of terminals connected to the lower-level relay node where a link failure occurs. 8 programs.
  • the donor base station configures the wireless backhaul path to occur in the wireless backhaul path according to the number of terminals connected to the lower-level relay nodes (which may include all relay nodes in the lower-level link) where the link failure occurs.
  • the lower-level relay node of the failed link adopts the solution in FIG. 7, that is, performs the action described in step 71 above, and configures a chain occurrence in the wireless backhaul path when the number of terminals does not exceed the preset threshold.
  • the node at the upper level of the link that fails the path adopts the solution described in FIG. 5 and performs the action of step 51 to configure the node at the next level of the link that has failed the link in the wireless backhaul path. , Perform the operation of step 61.
  • the relay node in the wireless backhaul path can receive the processing strategy configured by the donor base station, and the processing strategy includes a first strategy (corresponding to FIG. 5-6) and a second strategy (corresponding to FIG. 7).
  • the target relay node After a link failure occurs on the wireless backhaul path of the first terminal, the target relay node performs corresponding processing according to a pre-configured processing strategy and a position relationship between itself and the failed link where the link failure occurs.
  • a first processing policy is configured on the target relay node, and the target relay node is a relay node at a first end of the failed link.
  • the first end is where the failed link is close to At the end of the first terminal side, at this time, the target relay node performs the action of step 51 above, that is, the target relay node regards itself as the first relay node in step 51 above, and executes the corresponding Actions, for example, the first relay node releases the connection between the first relay node and the second relay node after detecting that a higher-level wireless link on the wireless backhaul path fails.
  • a first processing strategy is configured on the target relay node, and the target relay node is a relay node next to the relay node at the first end of the failed link.
  • the relay node performs the action in step 61 above, and the target relay node uses itself as the second relay node in step 61 above to perform the corresponding action.
  • the second relay node detects the first relay node. After the failure of the upper-level wireless link on the wireless backhaul path, the connection between the second relay node and the first relay node is released, and so on.
  • the target relay node When the target relay node is configured with a second processing strategy, and the failed link is an upper-level link of the target relay node, the target relay node will perform the action of step 71 above, for example, the target Following the node's failure of an upper-level link on the wireless backhaul path, the connection between this relay node and all terminals is released; and a next-level relay of the target relay node exists on the wireless backhaul path When it is a node, it sends an upper-layer link failure indication message to the next-level relay node.
  • FIG. 8 shows a specific application scenario of the embodiment of the present disclosure.
  • the UE is connected to IAB2 through IAB6, and then to IAB1 through IAB2, and IAB1 is connected to Donor NB.
  • IAB1 detects that the wireless link between itself and Donor NBNB fails, so IAB1 triggers the link recovery process.
  • IAB1 sends a reminder message to IAB2, and IAB2 restores the link by itself.
  • This mode 1 further specifically includes modes 1a-1c.
  • the IAB1 sends an indication message that the upper-layer link fails to the IAB2.
  • IAB2 receives the above-mentioned instruction message sent by IAB1, IAB2 triggers active link reselection. As shown in FIG. 9, IAB2 enters the idle state, and may reselect to IAB4, and enters Donor NBNB through IAB4.
  • IAB1 has two options:
  • IAB1 releases its connection with all UEs, so that the UE connected to IAB1 can find other IAB nodes to re-access by itself.
  • IAB1 is reversely connected to IAB2 as a lower node of IAB2.
  • IAB2 If IAB2 receives the indication of IAB1's superior link failure, IAB2 cannot find a suitable superior node, as shown in Figure 10, IAB2 forwards the indication message of forwarding the superior link failure to IAB6, and IAB6 looks for a new node Switch.
  • IAB6 receives the above-mentioned instruction message sent by IAB2, IAB2 triggers active link reselection. As shown in FIG. 10, IAB6 enters the idle state and may reselect to IAB4, and enters Donor NBNB through IAB4.
  • IAB2 can also be handled in two ways:
  • IAB2 closes the connection between itself and all UEs, and lets the UE connected to IAB2 find other IAB nodes by itself
  • IAB2 is connected to IAB6 in the reverse direction as a lower node of IAB6.
  • the gNB configures the period, or the IAB generates the period itself.
  • the search is performed every cycle. If the search is not available, it defaults to no appropriate superior node.
  • IAB2 forwards to IAB6 immediately after receiving the indication message from the IAB1 that the upper link fails.
  • IAB2 When IAB2 receives the superior link failure indication message from IAB1, it starts to search for the appropriate superior node that can switch to the past. If it is not searched, it will forward the received upper link failure indication message from IAB1 to IAB6.
  • IAB1 adjusts the handover parameters of IAB2, thereby triggering the handover of the IAB2 cell to other IABs, such as IAB4.
  • IAB1 can send an indication to IAB2 that the upper link fails when IAB2 is not handed out for a preset time defined by the timer Message, after receiving the above instruction message, IAB2 adjusts the handover parameters of IAB6 to let IAB6 try to switch to another higher-level IAB node.
  • timers can be implemented in the following ways:
  • DgNB configures the timer timer1 of the IAB node.
  • IAB1 adjusts the switching parameters of IAB2, for example, after sending a parameter configuration message, timer1 is started.
  • timer1 times out, if IAB2 has not yet switched out, IAB1 sends an indication message to IAB2 that the upper-level link has failed.
  • IAB2 receives it, adjust the IAB6 switching parameters and continue to use method 1b to let IAB6 switch to another higher-level IAB node .
  • the IAB node analyzes the acceptable delay requirement based on the QoS of the service carried by the wireless backhaul path and generates timer1 itself. Then, similar processing in the above-mentioned 1) manner is adopted, and details are not described herein again.
  • Method 1c Adjust the MIB parameters so that neither the UE nor the subordinate IAB can access.
  • MIB parameter table An example of the MIB parameter table is as follows:
  • Each IAB broadcasts its own MIB message.
  • the MIB message belongs to the RRC message. Because the IAB may not have the RRC function, the MIB messages broadcast by the IAB are usually configured by the DgNB. However, in FIG. 8, because RLF (radio link failure) occurs between the terminal wireless function (MT, Mobile Terminal) of IAB1 and DgNB, IAB1 cannot obtain a new MIB message from DgNB. Because IAB1 knows that RLF has occurred, IAB1 can set MIB messages on its own to prevent UE and lower-level IAB nodes from accessing IAB1.
  • RLF radio link failure
  • IAB1 sets the cellBarred parameter in the MIB message to ⁇ barred ⁇ , and then uses the NR technology in the related technology to notify the UE.
  • IAB1 may broadcast a MIB message carrying the above cellBarred parameter, and then send a paging message to idle and inactive UEs to trigger these UEs to receive the broadcasted MIB message, thereby obtaining the above cellBarred parameter, and then release Connection to IAB1.
  • IAB1 can send an RRC connection reconfiguration message for switching part of the bandwidth (BWP), and carry the above MIB message content (including the cellBarred parameter) in the RRC connection reconfiguration message, so that the connected UE obtains
  • BWP bandwidth
  • Method 2 UE restores the link
  • IAB1 sends an upper link failure indication message to IAB2.
  • IAB2 does not trigger link reselection, but continues to forward the upper link failure indication message to the lower IAB node IAB6.
  • the last level relay node such as IAB6.
  • IAB1, IAB2, and IAB6 release the connection between themselves and all terminals.
  • the specific release method can be:
  • the parameter configuration message is used to reduce the reporting threshold of the measurement report triggered by the event; or broadcast the main MIB message, the MIB message carries the access forbidden
  • the MIB parameter of the cell of the relay node and sending a paging message to the idle or inactive terminal under the relay node, and sending an RRC reconfiguration message to the connected terminal under the relay node,
  • the RRC reconfiguration message carries MIB parameters of a cell forbidden to access the relay node.
  • Donor gNB saves the paths of all UEs, so in Donor gNB may decide whether to adopt method 1 or method 2 according to the number of UEs connected to the lower-level IAB node where the link failure occurs. How the donor NB obtains the UEs connected to the IAB nodes at all levels is not specifically limited in this embodiment of the present disclosure.
  • the first relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a processor 1101, Transceiver 1102, memory 1103 and bus interface, of which:
  • the first wireless relay node 1100 further includes a program stored on the memory 1103 and executable on the processor 1101.
  • the processor 1101 is configured to read a program in a memory and execute the following process: after detecting a failure of an upper-level wireless link on the wireless backhaul path, releasing the first relay node and the second relay Connection between nodes;
  • the second relay node is a next-level relay node of the first relay node on the wireless backhaul path.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1101 and various circuits of the memory represented by the memory 1103 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1102 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 may store data used by the processor 1101 when performing operations.
  • the processor 1101 is further configured to control the transceiver 1102 to send a first indication message that the upper link fails to the second relay node, and the first indication message is used to instruct the second relay node Initiating link reselection; and in the process of initiating link reselection by the second relay node, releasing its connection with the second relay node.
  • the processor 1101 is further configured to release the connection between the relay node and all terminals after detecting that the wireless link fails, or use the second relay node as an upper link.
  • a first-level relay node accesses the second relay node.
  • the processor 1101 is further configured to control the transceiver 1102 to send a parameter configuration message for adjusting a handover parameter to the second relay node, where the parameter configuration message is used to reduce a reporting threshold of an event-triggered measurement report. .
  • the transceiver 1102 is further configured to send the parameter configuration message to the second relay node if the second relay node has not yet switched to the third relay node after a preset time.
  • the relay node sends a second indication message for the failure of the upper link, and the second indication message is used to instruct the second relay node to adjust the handover parameters to reduce the reporting threshold of the measurement report triggered by the fourth relay node due to the event.
  • the fourth relay node is a next-level relay node of the second relay node on the wireless backhaul path.
  • the processor 1101 is further configured to disconnect itself from a terminal under the relay node after detecting that the wireless link fails, or use the second relay node as An upper relay node accesses the second relay node.
  • the preset time is pre-configured by the donor base station or determined by the first relay node according to a quality of service requirement of a service carried by the wireless backhaul path.
  • the processor 1101 is further configured to control the transceiver 1102 to send a first radio resource control RRC reconfiguration message to a second relay node, and the first radio resource control RRC reconfiguration message carries a prohibition.
  • the transceiver 1102 is further configured to broadcast a master information block MIB message after the processor 1101 detects that the wireless link fails, and the master information block MIB message carries a forbidden access section.
  • a MIB parameter of a cell of a relay node and sends a paging message to a terminal in an idle or inactive state under the first relay node, and a terminal in a connected state under the first relay node
  • a second radio resource control RRC reconfiguration message where the second radio resource control RRC reconfiguration message carries a master information block MIB parameter of a cell forbidden to access the first relay node.
  • an embodiment of the present disclosure provides another structure of the first wireless relay node 120.
  • the first relay node is a relay node on a wireless backhaul path of the first terminal, as shown in FIG.
  • the first wireless relay node 120 includes:
  • a release unit 121 configured to release the connection between the first relay node and the second relay node after detecting a failure of an upper-level wireless link on the wireless backhaul path;
  • the second relay node is a next-level relay node of the first relay node on the wireless backhaul path.
  • the release unit includes:
  • a first sending unit configured to send a first indication message that an upper link fails to the second relay node, where the first indication message is used to instruct the second relay node to initiate link reselection;
  • the first relay node releases its connection with the second relay node during the process of the link reselection initiated by the second relay node.
  • the first relay node further includes:
  • a first access management unit configured to release the connection between the relay node and all terminals after detecting that the wireless link fails, or use the second relay node as a higher-level relay Node, accessing the second relay node.
  • the release unit includes:
  • the second sending unit is configured to send a parameter configuration message for adjusting a handover parameter to the second relay node, where the parameter configuration message is used to reduce a reporting threshold of the measurement report triggered by the event.
  • the third sending unit of the first relay node is configured to, after sending the parameter configuration message, if the second relay node has not yet switched to the third relay node after a preset time, Sending to the second relay node a second indication message that the upper link fails, the second indication message is used to instruct the second relay node to adjust handover parameters to reduce a measurement report triggered by the fourth relay node due to an event A reporting threshold, the fourth relay node is a next-level relay node of the second relay node on the wireless backhaul path.
  • the second access management unit of the first relay node is configured to disconnect itself from a terminal under the relay node after detecting that the wireless link fails, or,
  • the second relay node is an upper-level relay node and accesses the second relay node.
  • the preset time is pre-configured by the donor base station or determined by the first relay node according to a quality of service requirement of a service carried by the wireless backhaul path.
  • the release unit includes:
  • a fourth sending unit configured to send a first radio resource control RRC reconfiguration message to the second relay node, where the first radio resource control RRC reconfiguration message carries main information of a cell forbidden to access the first relay node Block MIB parameters; and in a process in which the second relay node disconnects from the first relay node, the connection between the first relay node and the second relay node is released.
  • the first access node third access management unit is configured to broadcast a main information block MIB message after detecting that the wireless link fails, and the main information block MIB message carries a prohibited access.
  • Enter the MIB parameters of the cell of the first relay node and send a paging message to the idle or inactive terminal under the first relay node, and to the connected state under the first relay node
  • the terminal sends a second radio resource control RRC reconfiguration message, where the second radio resource control RRC reconfiguration message carries a master information block MIB parameter of a cell forbidden to access the first relay node.
  • an embodiment of the present disclosure provides a schematic structural diagram of a second wireless relay node 1300.
  • the second relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a processor 1301, Transceiver 1302, memory 1303, and bus interface, of which:
  • the second wireless relay node 1300 further includes a program stored on the memory 1303 and executable on the processor 1301.
  • the processor 1301 is configured to read a program in a memory and execute the following process: after the first relay node detects that a wireless link of a higher level on the wireless backhaul path fails, release the second relay node Connection with the first relay node;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1301 and various circuits of the memory represented by the memory 1303 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1302 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1303 may store data used by the processor 1301 when performing operations.
  • the transceiver 1302 is configured to receive a first indication message of an upper link failure sent by a first relay node, and the first indication message is used to instruct a second relay node to initiate link reselection;
  • the processor 1301 is further configured to initiate link reselection according to the first instruction message, and release a connection between the processor and the first relay node.
  • the processor 1301 is further configured to, after receiving the first indication message, if it is determined that there is no accessible upper-level relay node, the second relay node is the first relay node.
  • the second relay node triggers the first terminal to reselect or switch to another relay node through a cell; when the second relay node is not an access of the first terminal
  • the second relay node sends a third indication message that the upper link fails to the fourth relay node, and the third indication message is used to instruct the fourth relay node to initiate link reselection.
  • the processor 1301 is further configured to periodically search for and update the available upper-level relay nodes that can be accessed according to a preset search period, and after receiving the first indication message, if the If the available upper relay node is empty or includes only the first relay node, it is determined that there is no accessible upper relay node; or, the second relay node searches after receiving the first indication message.
  • the accessible upper-level relay node if no relay node other than the first relay node is found, it is determined that there is no accessible upper-level relay node.
  • the transceiver 1302 is further configured to receive a parameter configuration message for adjusting a handover parameter sent by the second relay node, where the parameter configuration message is used to reduce a reporting threshold of an event-triggered measurement report;
  • the processor 1301 is further configured to release the connection between the processor 1301 and the first relay node during the handover to the third relay node according to the parameter configuration message.
  • the transceiver 1302 is further configured to, after receiving the parameter configuration message, if it has not switched to the third relay node within a preset time, receive the instruction sent by the first relay node to indicate to the superior A second indication message for a link failure, the second indication message is used to instruct a second relay node to adjust a handover parameter; and a parameter configuration message for adjusting a handover parameter is sent to a fourth relay node, the parameter configuration message is used to reduce The reporting threshold of the fourth relay node's measurement report triggered by the event.
  • the transceiver 1302 is further configured to receive a first radio resource control RRC reconfiguration message sent by a first relay node, where the first radio resource control RRC reconfiguration message carries a first access prohibition.
  • the processor 1301 is further configured to control the RRC reconfiguration message according to the first radio resource, and release the connection with the first relay node during the disconnection process with the first relay node.
  • an embodiment of the present disclosure provides another structure of the second relay node 140, where the second relay node is a relay node on a wireless backhaul path of the first terminal, as shown in FIG. 14,
  • the second relay node 140 includes:
  • a release unit 141 configured to release a connection between the second relay node and the first relay node after the first relay node detects a failure of an upper-level wireless link on the wireless backhaul path;
  • the first relay node is an upper-level relay node of the second relay node on the wireless backhaul path.
  • the release unit is further configured to receive a first indication message that an upper-layer link fails sent by the first relay node, and the first indication message is used to instruct a second relay node to initiate link reselection; According to the first instruction message, a link reselection is initiated to release the connection between itself and the first relay node.
  • the second wireless relay node 140 further includes:
  • a reselection switching unit configured to, after receiving the first indication message, if it is determined that there is no accessible upper-level relay node, the second relay node is an access node of the first terminal When the second relay node triggers the first terminal to reselect or switch to another relay node through a cell; when the second relay node is not an access node of the first terminal, the first terminal The second relay node sends a third indication message that the upper link fails to the fourth relay node, and the third indication message is used to instruct the fourth relay node to initiate link reselection.
  • the second wireless relay node 140 further includes:
  • a judging unit configured to periodically search for and update an available upper-level relay node that can be accessed according to a preset search period; and after receiving the first instruction message, if the available upper-level relay node is empty or Including only the first relay node, it is determined that there is no accessible upper relay node; or, after receiving the first instruction message, searching for an accessible upper relay node, if not found Other relay nodes except the first relay node determine that there is no higher-level relay node that can be accessed.
  • the release unit is further configured to receive a parameter configuration message for adjusting a handover parameter sent by the second relay node, and the parameter configuration message is used to reduce a reporting threshold of an event-triggered measurement report; according to the parameter configuration Message, in the process of switching to the third relay node, it releases its connection with the first relay node.
  • the second wireless relay node 140 further includes:
  • An adjusting unit configured to receive an instruction sent by the first relay node to the superior when the second relay node receives the parameter configuration message and does not switch to the third relay node within a preset time.
  • a second indication message for a link failure the second indication message is used to instruct a second relay node to adjust a handover parameter; and a parameter configuration message for adjusting a handover parameter is sent to a fourth relay node, and the parameter configuration message is used to reduce The reporting threshold of the fourth relay node's measurement report triggered by the event.
  • the release unit is further configured to receive a first radio resource control RRC reconfiguration message sent by the first relay node, where the first radio resource control RRC reconfiguration message carries a prohibition on access to the first relay The main information block MIB parameter of the node's cell; according to the first radio resource control RRC reconfiguration message, in the process of disconnecting the connection with the first relay node, the connection with the first relay node is released.
  • an embodiment of the present disclosure provides a schematic structural diagram of a relay node 1500.
  • the relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a processor 1501, a transceiver 1502, and a memory. 1503 and bus interface, of which:
  • the relay node 1500 further includes a program stored on the memory 1503 and executable on the processor 1501.
  • the processor 1501 is configured to read a program in a memory and execute the following process: after the upper link of the wireless backhaul path fails, release the connection between the relay node and all terminals;
  • the transceiver is configured to send an upper-layer link failure indication message to a lower-level relay node when the next-level relay node of the relay node exists on the wireless backhaul path.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1501 and various circuits of the memory represented by the memory 1503 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1502 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 1501 is responsible for managing the bus architecture and general processing, and the memory 1503 can store data used by the processor 1501 when performing operations.
  • the processor 1501 is configured to detect that a wireless link between the relay node and a node at a higher level fails before releasing the connection between the relay node and all terminals; or, receive the previous node. An upper-layer link failure indication message sent by the primary relay node.
  • the processor 1501 is further configured to control the transceiver to send a parameter configuration message for adjusting a handover parameter to a terminal under the relay node, where the parameter configuration message is used to reduce an event triggered measurement report reporting Threshold; or, broadcast a main information block MIB message, the main information block MIB message carries a main information block MIB parameter of a cell forbidden to access the relay node, and sends an idle state or an inactive state to the relay node
  • the terminal sends a paging message, and sends a radio resource control RRC reconfiguration message to a terminal in a connected state under the relay node, where the radio resource control RRC reconfiguration message carries a message that prohibits access to a cell of the relay node Main information block MIB parameter.
  • an embodiment of the present disclosure provides another structure of a relay node 160.
  • the relay node is a relay node on a wireless backhaul path of a first terminal.
  • the relay node 160 includes:
  • a release unit 161 configured to release the connection between the relay node and all terminals after the upper link of the wireless backhaul path fails
  • the transceiver unit 162 is configured to send an upper-layer link failure indication message to the next-level relay node when the next-level relay node of the relay node exists on the wireless backhaul path.
  • the transceiver unit 162 is further configured to detect a failure of the wireless link between the relay node and the upper node before the release unit releases the connection between the relay node and all terminals; or , Receiving an upper link failure indication message sent by the upper relay node.
  • the transceiver unit 162 is further configured to send a parameter configuration message for adjusting a handover parameter to a terminal under the relay node, where the parameter configuration message is used to reduce a reporting threshold of an event-triggered measurement report; or broadcast A main information block MIB message, which carries the main information block MIB parameters of a cell that is prohibited from accessing the relay node and sends a page to an idle or inactive terminal under the relay node A message, and sending a radio resource control RRC reconfiguration message to a terminal in a connected state under the relay node, the radio resource control RRC reconfiguration message carrying a master information block MIB parameter of a cell forbidden to access the relay node .
  • the target relay node is a relay node on a wireless backhaul path of a first terminal, and includes: a processor 1701, and a transceiver 1702. , Memory 1703 and bus interface, of which:
  • the relay node 1700 further includes a program stored on the memory 1703 and executable on the processor 1701.
  • the processor 1701 is configured to read a program in a memory and execute the following processes:
  • the target relay node When the target relay node is configured with a first processing policy, and the target relay node is a relay node at the first end of the failed link, the first end is that the failed link is close to The end on the first terminal side releases the connection between the target relay node and the second relay node after detecting a failure of an upper-level wireless link on the wireless backhaul path;
  • the relay node is a next-level relay node of the target relay node on the wireless backhaul path;
  • the target relay node When the target relay node is configured with the first processing policy, and the target relay node is a relay node next to the relay node at the first end of the failed link, the target node is released.
  • the target relay node When the target relay node is configured with a second processing policy, and the failed link is an upper link of the target relay node, after the upper link of the wireless backhaul path fails, the target is released.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1701 and various circuits of the memory represented by the memory 1703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1702 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 1701 is responsible for managing the bus architecture and general processing, and the memory 1703 may store data used by the processor 1701 when performing operations.
  • the processor 1701 is further configured to: when the target relay node is configured with a first processing policy, and the target relay node is a relay node at a first end of the failed link, The steps performed by the processor 1101 in FIG. 11 are performed.
  • the processor 1701 is further configured to: when the target relay node is configured with the first processing policy, and the target relay node is a relay at the first end of the failed link When the node is a next-level relay node, the steps performed by the processor 1301 in FIG. 13 are performed.
  • the processor 1701 is further configured to execute the method shown in FIG. 15 when the target relay node is configured with a second processing policy and the failed link is an upper link of the target relay node. Steps performed by the processor 1501.
  • the steps of the method or algorithm described in connection with the present disclosure may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions may be composed of corresponding software modules, and the software modules may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, mobile hard disk, read-only optical disk, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC can be located in a core network interface device.
  • the processor and the storage medium can also exist as discrete components in the core network interface device.
  • the functions described in this disclosure may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • the embodiments of the present disclosure may be provided as a method, a system, or a program product. Therefore, the embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the embodiments of the present disclosure may take the form of a program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present disclosure are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and program products according to embodiments of the present disclosure. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by program instructions. These program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine such that instructions executed by the processor of the computer or other programmable data processing device generate instructions for A device that implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instruction device Achieve the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • program instructions may also be loaded onto a computer or other programmable data processing device, such that a series of steps are performed on the computer or other programmable device to produce a computer-implemented process, and the instructions executed on the computer or other programmable device Provides steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSP), digital signal processing devices (DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other for performing functions described in this disclosure Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing functions described in this disclosure Electronic unit or combination thereof.
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Bus Control (AREA)
  • Advance Control (AREA)

Abstract

本公开实施例提供一种链路中断的处理方法和设备,中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径上的第一中继节点,包括:第一中继节点在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。

Description

链路中断的处理方法和设备
相关申请的交叉引用
本申请主张在2018年8月31日在中国提交的中国专利申请No.201811015469.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,具体涉及一种链路中断的处理方法和设备。
背景技术
移动通信系统未来发展中,为了更好的满足用户需求,极大提升网络容量和吞吐量,必将会引入更多的传输节点和更大的传输带宽。在第五代通信技术(fifth-generation,5G)网络中,接入站点数目极大提高,但并不能保证所有的接入站点均具有有线回程的条件,因此引入了无线中继节点。为了进一步扩展网络覆盖,多跳中继也被允许。
在无线回程网络中,终端(UE)连接其中一个无线中继节点,随着终端的移动,终端进入另一个无线中继节点的覆盖范围。在第四代移动通信(4G)系统的中继架构下,通常只有一个无线中继节点,而在5G系统的中继架构下,终端可以通过多个无线中继节点连接至网络。当一个无线中继节点出现故障或者连接失败,为了保障业务,需要恢复终端到施主基站(Donor gNB)连接的方案。
发明内容
本公开实施例的一个目的在于提供一种无线中继节点的链路中断的处理方法和设备,可以在无线网络链路发生故障时恢复终端到施主基站的连接。
根据本公开实施例的第一方面,提供了一种链路中断的处理方法,应用于第一终端的无线回程路径上的第一中继节点,包括:
第一中继节点在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
根据本公开实施例的第二方面,提供了另一种链路中断的处理方法,应用于第一终端的无线回程路径上的第二中继节点,包括:
第二中继节点在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
根据本公开实施例的第三方面,提供了另一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径上的中继节点,包括:
所述中继节点在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;以及,在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
根据本公开实施例的第四方面,提供了另一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径中的目标中继节点,包括:
所述目标中继节点根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理;其中,
在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,所述第一端是所述失败链路靠近于第一终端侧的一端,所述目标中继节点执行本公开实施例的第一方面所述的链路中断的处理方法的步骤;
在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,所述目标中继节点执行本公开实施例的第二方面所述的链路中断的处理方法的步骤;
在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,所述目标中继节点执行本公开实施例的第三方面所述链路中断的处理方法的步骤。
根据本公开实施例的第六方面,提供了一种第一中继节点,所述第一中继节点为第一终端的无线回程路径上的中继节点,包括:收发机、存储器、 处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述处理器,用于读取存储器中的程序,执行下列过程:在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
根据本公开实施例的第七方面,提供了一种第一中继节点,所述第一中继节点为第一终端的无线回程路径上的中继节点,包括:
释放单元,用于在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
根据本公开实施例的第八方面,提供了一种第二中继节点,所述第二中继节点是第一终端的无线回程路径上的中继节点,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述处理器,用于读取存储器中的程序,执行下列过程:在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
根据本公开实施例的第九方面,提供了一种第二中继节点,所述第二中继节点是第一终端的无线回程路径上的中继节点,包括:
释放单元,用于在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
根据本公开实施例的第十方面,提供了一种中继节点,所述中继节点位于第一终端的无线回程路径上,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述处理器,用于读取存储器中的程序,执行下列过程:在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;
所述收发机,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
根据本公开实施例的第十一方面,提供了一种中继节点,所述中继节点位于第一终端的无线回程路径上,包括:
释放单元,用于在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;
收发单元,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
根据本公开实施例的第十二方面,提供了一种目标中继节点,所述目标中继节点位于第一终端的无线回程路径中,其中,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
所述处理器,用于读取存储器中的程序,执行下列过程:根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理;其中,
在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,所述第一端是所述失败链路靠近于第一终端侧的一端,执行本公开实施例的第一方面所述的链路中断的处理方法的步骤;
在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,执行本公开实施例的第二方面所述的链路中断的处理方法的步骤;
在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,执行本公开实施例的第三方面所述链路中断的处理方法的步骤。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如上所述的接入的步骤。
本公开实施例提供的链路中断的处理方法和设备,在中继节点的上级无 线链路发生故障时,通过释放该中继节点与下级中继节点的连接,以促使下级中继节点重新选择接入节点,或者释放该中继节点与终端之间连接,以促使终端重新选择接入节点,从而可以恢复终端到施主基站的连接。
附图说明
通过阅读下文可选的实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选的实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为相关技术的5G移动通信系统的一种架构结构示意图;
图2为相关技术的5G移动通信系统的用户平面的协议栈架构示意图;
图3为相关技术的5G移动通信系统的控制平面的协议栈架构示意图;
图4为本公开实施例的链路中断的处理方法的一种应用场景示意图;
图5为本公开实施例的链路中断的处理方法的流程图之一;
图6为本公开实施例的链路中断的处理方法的流程图之二;
图7为本公开实施例的链路中断的处理方法的流程图之三;
图8为本公开实施例的链路中断的处理方法的应用示例图之一;
图9为本公开实施例的链路中断的处理方法的应用示例图之二;
图10为本公开实施例的链路中断的处理方法的应用示例图之三;
图11为本公开实施例的第一中继节点的结构示意图之一;
图12为本公开实施例的第一中继节点的结构示意图之二;
图13为本公开实施例的第二中继节点的结构示意图之一;
图14为本公开实施例的第二中继节点的结构示意图之二;
图15为本公开实施例的中继节点的结构示意图之一;
图16为本公开实施例的中继节点的结构示意图之二;
图17为本公开实施例的目标中继节点的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了更好的理解的本公开实施例的技术方案,首先介绍以下技术点:
(1)关于5G移动通信系统的介绍。
在5G移动通信系统中,网络侧的节点之间大多采用有线连接,gNB(NR NodeB)之间通过有线链路连接,gNB和核心网节点,例如接入和移动性管理功能(Access and Mobility Management Function,AMF)实体,用户面功能(User Plane Function,UPF)实体等,之间也是采取有线链路连接,参见图1。
(2)关于5G无线协议架构的介绍。
5G基本用户平面协议层包括:业务数据适配协议(Service Data Adaptation Protocol,SDAP)、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)、无线链路层控制协议(Radio Link Control,RLC)、媒体接入控制(Media Access Control,MAC)和物理层(PHY)。控制平面协议层包括:非接入层(Non-access stratum,NAS)、无线资源控制(Radio Resource Control,RRC)、PDCP、RLC、MAC和PHY。用户平面和控制平面的协议栈架构示意图分别如图2和图3所示。
下面结合附图介绍本公开的实施例。本公开实施例提供的链路中断的处 理方法和设备可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
图4给出了本公开实施例的链路中断的处理方法的一种应用场景。图4中的无线中继节点1-6组成了无线回程网络,其中建立了从网络侧节点(如基站)依次经过无线中继节点1、无线中继节点2、无线中继节点6到终端的多跳回传路径。以5G系统为例,图4中的无线中继节点可以是集成接入与回传节点(Integrated Access and Backhaul node,IAB node)。IAB节点可以具有完整的基站功能,也可能仅具有类似于基站的数据转发功能。有线接口连接的网络侧节点即为基站,本公开实施例也称之为施主基站(Donor基站,也称之为DgNB)。Donor基站与无线中继节点之间通过无线接口进行通信。无线中继节点之间也通过无线接口通信。
本公开实施例提供的施主基站之间通常是有线连接,施主基站与核心网节点之间通常也采用有线连接。本公开实施例的施主基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。本公开实施例的无线中继节点,可能具有完整的基站功能,也可能仅具有类似于基站的数据转发功能。本公开实施例的终端具体可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备(UE)、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的客户终端(Customer Premise Equipment,CPE)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
在本公开实施例中,某个无线中继节点的上一跳节点,是指在从施主基站开始,依次经过一个或多个的无线中继节点直至终端的无线回程路径中的上一跳节点,也就是说,某个无线中继节点的上一跳节点,是该无线中继节点在上述无线回程路径中靠近于施主基站侧的上一级节点。类似地,某个无线中继节点的下一跳节点,是该无线中继节点在上述无线回程路径中靠近于 终端侧的下一级节点。
请参照图5,本公开实施例提供的链路中断的处理方法,在应用于第一终端的无线回程路径上的第一无线中继节点时,包括:
步骤51,第一中继节点在检测到所述无线回程路径上的上一级无线链路发生失败时,释放第一中继节点与第二中继节点之间的连接。
这里,所述第一中继节点可以是所述无线回程路径上直接与施主基站连接的中继节点,也可以是通过其他中继节点与施主基站连接的中继节点,并且,所述第一中继节点与终端之间还存在有中继节点。所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点,即在所述无线回程路径中与所述第一中继节点相邻,且靠近于终端侧的中继节点。所述第一中继节点在所述无线回程路径上的上一级无线链路是指:所述第一中继节点与其上一级节点之间的无线链路,具体地,上一级节点可以是其他中继节点或施主基站。
以上步骤中,如果第一中继节点是直接与施主基站连接,即第一中继节点的上一级节点为施主基站,则第一中继节点在检测到自身与施主基站之间的无线链路发生失败时,将释放第一中继节点与第二中继节点之间的连接。如果第一中继节点在所述无线回程路径上的上一级节点为其他中继节点,则第一中继节点在检测到自身与该其他中继节点之间的无线链路发生失败时,将释放第一中继节点与第二中继节点之间的连接。具体地,检测无线链路失败的实现方式可以参考相关技术,本公开实施例对此不作具体限定。
通过以上步骤,本公开实施例的第一中继节点在检测到本第一中继节点与上一级节点之间的无线链路发生失败时,将释放自身与下一级中继节点(即第二中继节点)之间的连接,从而促使第二中继节点重新通过另外的中继节点接入至施主基站,以恢复第一终端可以恢复终端到施主基站的连接。
可选地,作为第一种实现方式,上述步骤51中,第一中继节点可以向第二中继节点发送上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;第二中继节点接收到所述第一指示消息后,发起链路重选;所述第一中继节点在第二中继节点发起链路重选的过程中,释放自身与第二中继节点的连接。通过以上过程,第一中继节点可以释放与第 二中继节点之间的连接,第二中继节点则可以通过链路重选,接入到其他中继节点,从而恢复第一终端到施主基站的连接。
在上述第一种实现方式中,第一中继节点在检测到所述无线链路发生失败后,还可以释放本中继节点与所有终端之间的连接,以促使本第一中继节点下的终端重选选择接入的中继节点;或者,第一中继节点可以将所述第二中继节点作为上一级中继节点,接入所述第二中继节点。这里,本文中,所述的某个中继节点下的终端,是指位于该中继节点覆盖范围内,通过该中继节点接入至网络的终端。
可选地,作为第二种实现方式,上述步骤51中,第一中继节点可以向第二中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限,以促使第二中继节点更容易发生小区切换。这样,第一中继节点可以在第二中继节点切换到其他中继节点(假设为第三中继节点)的过程中,释放自身与第二中继节点之间的连接。
这里,切换参数具体可以是测量上报参数,通过调整测量上报参数,降低第二中继节点上报邻小区测量报告的阈值,使得第二中继节点更容易发送测量报告,以促使第一中继节点控制第二中继节点进行切换。第一中继节点可以通过上述参数配置消息,更新事件触发的测量报告的上报门限,使得测量报告更容易上报。
例如,相关技术的一种事件触发的测量报告上报的触发条件为:
Mn+Ofn+Ocn–Hys>Thresh
这里,Mn表示邻小区的测量结果,Ofn表示邻小区特定频率偏置,Ocn表示邻小区小区特定偏置,Hys表示事件迟滞参数,Thresh表示事件门限。在上述第二种实现方式中,可以调低上述事件门限Thresh,例如,将其设置为0,从而使得上述事件更容易被触发,进而使得第二中继节点更容易从第一中继节点切换至其他中继节点。需要指出的是,以上事件触发仅为一种可能的事件的示例,本公开并不局限于此。
进一步地,为了保证接入至第一中继节点的终端或中继节点的通信,在上述第二种实现方式中,所述第一中继节点在检测到所述无线链路发生失败后,还可以断开自身与本中继节点下的终端的连接,或者,以所述第二中继 节点为上一级中继节点,接入所述第二中继节点。
在上述第二种实现方式中,第一中继节点在发送所述参数配置消息之后,若超过预设时间所述第二中继节点仍未切换至第三中继节点,则第一中继节点可以向所述第二中继节点发送上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数,以降低第四中继节点因事件触发的测量报告的上报门限,所述第四中继节点是所述第二中继节点在所述无线回程路径上的下一级中继节点。这样,第二中继节点收到上述第二指示消息后,可以采用类似于第一中继节点的处理,向下一级节点(即第四中继节点)发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限,以促使第四中继节点更容易发生小区切换。这样,第二中继节点可以在第四中继节点切换到其他中继节点的过程中,释放自身与第四中继节点之间的连接。类似地,为了保证接入至第二中继节点的终端或中继节点的通信,在上述第二种实现方式中,所述第二中继节点在接收到所述第二指示消息后,还可以断开自身与本中继节点下的终端的连接,或者,以所述第四中继节点为上一级中继节点,接入所述第四中继节点。
类似地,若第四中继节点未在预设时间切换至第二中继节点之外的其他中继节点,第二中继节点还可以向第四中继节点发生上级链路失败的指示消息,以此类推,直至所述无线回程路径中的最后一级中继节点(即终端接入的中继节点)若最后一级中继节点未能成功切换至其他中继节点,则最后一级中继节点断开自身与本中继节点下的终端的连接,以促使第一终端重选选择其他中继节点进行接入。
这里,所述预设时间可以是施主基站预先配置给各个中继节点的,或者是各个中继节点(如第一中继节点)根据所述无线回程路径承载的业务的服务质量要求自行确定的。
可选地,作为第三种实现方式,上述步骤51中,第一中继节点可以向第二中继节点发送第一无线资源控制(RRC)重配置消息,所述第一RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块(MIB)参数,例如,可以携带取值为barred的cell Barred参数,以禁止其他节点或终端接入第一中继节点。第二中继节点收到所述第一RRC重配置消息后,将断开与第一中 继节点的连接,从而所述第一中继节点可以在第二中继节点断开与第一中继节点连接的过程中,释放第一中继节点与第二中继节点之间的连接。
在上述第三种实现方式中,所述第一中继节点在检测到所述无线链路发生失败后,可以广播主信息块(MIB)消息,所述MIB消息携带有禁止接入第一中继节点的小区的MIB参数,并向第一中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向第一中继节点下的连接态的终端发送第二RRC重配置消息,所述第二RRC重配置消息携带有禁止接入第一中继节点的小区的MIB参数。这样,收到上述寻呼消息的终端将接收广播的MIB消息并获得上述MIB参数,而收到上述第二RRC重配置消息的终端也将获得上述MIB参数,从而这些终端都将断开与第一中继节点的连接,并重新选择其他中继节点进行接入。
以上主要从第一中继节点侧描述了本公开实施例的链路中断的处理方法,下面将从第二中继节点侧进行说明。
请参数图6,本公开实施例提供的链路中断的处理方法,在应用于第一终端的无线回程路径上的第二无线中继节点时,包括:
步骤61,第二中继节点在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
以上步骤中,在第一中继节点检测到该第一中继节点的上一级无线链路发生失败后,第二中继节点将释放第二中继节点与第一中继节点之间的连接,从而将促使第二中继节点通过链路重选,重新接入至其他中继节点,从而可以保证第一终端的通信链路不受第一无线中继节点的上一级无线链路失败的影响。具体的链路重选过程类似于终端的小区切换,本公开实施例对此不作具体限定。
对应于上述第一种实现方式,在上述步骤61中,所述第二中继节点可以接收第一中继节点发送的上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;然后,所述第二中继节点根据所述第一指示消息,发起链路重选,释放自身与第一中继节点的连接。
这里,所述第二中继节点接收到所述第一指示消息后,若确定不存在可以接入的上级中继节点,还可以进行如下处理:
1)在所述第二中继节点是所述第一终端的接入节点时,所述第二中继节点可以触发所述第一终端通过小区重选或切换至其他中继节点;例如,第二中继节点可以断开自身与本中继节点下的终端的连接,使包括第一终端在内的所有终端进行小区重选或切换。
2)在所述第二中继节点不是所述第一终端的接入节点时,所述第二中继节点可以向第四中继节点发送上级链路失败的第三指示消息,所述第三指示消息用于指示第四中继节点发起链路重选。后续,第四中继节点可以采用类似上述第二中继节点的处理方式,直至最后一级中继节点。
这里,第二中继节点可以按照以下方式确定是否存在可以接入的上级中继节点:
1)第二中继节点按照预设搜索周期,周期性搜索并更新可以接入的可用上级中继节点,以及,在接收到所述第一指示消息后,若所述可用上级中继节点为空或仅包括所述第一中继节点,则确定不存在可以接入的上级中继节点。
这里,所述预设搜索周期可以是施主基站配置的,或者由第二中继节点自行设置的。该方式通过周期性搜索并更新可用上级中继节点的信息,从而在收到第一指示消息后,可以根据当前的可用上级中继节点的信息,快速确定是否存在可以接入的上级中继节点,从而可以快速的恢复第一终端的业务。
2)第二中继节点在接收到所述第一指示消息后,搜索可以接入的上级中继节点,若未搜索到除第一中继节点外的其他中继节点,则确定不存在可以接入的上级中继节点。
该方式在收到第一指示消息后进行搜索,可以减少第二中继节点的搜索工作量,降低第二中继节点的工作负荷。
对应于上述第二种实现方式,在上述步骤61中,所述第二中继节点接收第一中继节点发送的调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;所述第二中继节点根据所述参数配置消息,上报测量报告,并根据第一中继节点的控制进行切换,在切换至其他 中继节点(假设为第三中继节点)的过程中,释放自身与第一中继节点的连接。
这里,在所述第二中继节点接收到所述参数配置消息后,若超过预设时间仍未切换至第三中继节点时,还可以按照以下方式测量:所述第二中继节点接收第一中继节点发送的用于指示上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数;所述第二中继节点向第四中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低第四中继节点因事件触发的测量报告的上报门限。通过以上处理,可以促使第四中继节点重选至第二中继节点外的其他中继节点。类似地,如果超过预设时间,第四中继节点仍未切换成功,则第二中继节点可以向第四中继节点发送用于指示上级链路失败的指示消息,第四中继节点收到上述指示消息后,向下一级中继节点(假设存在)发送调整切换参数的参数配置消息,所述参数配置消息用于降低下一级中继节点因事件触发的测量报告的上报门限。重复以上处理,直至所述无线回程路径中的最后一级中继节点。若最后一级中继节点仍未能成功切换至其他中继节点,则最后一级中继节点断开自身与本中继节点下的终端的连接,以促使第一终端重选选择其他中继节点进行接入。
这里,所述预设时间可以是施主基站预先配置给各个中继节点的,或者是各个中继节点(如第一中继节点)根据所述无线回程路径承载的业务的服务质量要求自行确定的。
对应于上述第三种实现方式,在上述步骤61中,所述第二中继节点接收第一中继节点发送的第一RRC重配置消息,所述第一RRC重配置消息携带有禁止接入第一中继节点的小区的MIB参数;所述第二中继节点根据所述第一RRC重配置消息,在断开与第一中继节点连接的过程中,释放与第一中继节点之间的连接。后续,第二中继节点可以重新接入其他中继节点,以恢复第一终端的通信链路。
以上分别从第一中继节点和第二中继节点侧介绍了本公开实施例提供的一种链路中继网络中的链路中断的处理方法。接下来,本公开实施例还提供了另一种链路中继网络中的链路中断的处理方法,下面将详细说明。
请参照图7,本公开实施例提供的链路中断的处理方法,在应用于第一终端的无线回程路径上的无线中继节点时,包括:
步骤71,所述中继节点在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;以及,在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
这里,所述中继节点在所述无线回程路径上的上级链路,是指所述中继节点到施主基站之间的任一段或多段链路。
在上述步骤71中,所述中继节点在所述无线回程路径的上级链路失败后,还可以释放本中继节点与所有终端之间的连接,以促使这些终端重选选择接入的中继节点。具体地,所述中继节点可以向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;或者,所述中继节点广播MIB消息,所述MIB消息携带有禁止接入本中继节点的小区的MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连接态的终端发送RRC重配置消息,所述RRC重配置消息携带有禁止接入本中继节点的小区的主信息块MIB参数。
通过以上步骤,所述中继节点在上级链路失败后,可以向其下一级中继节点(若存在)发送上级链路失败指示消息,该上级链路失败指示消息用于指示上级链路发生失败。该消息将被无线回程路径上的中继节点逐跳转发至无线回程路径上的最后一级中继节点,即第一终端接入的中继节点。最后一级中继节点可以释放本中继节点与所有终端(包括第一终端在内)之间的连接,这样,第一终端可以重新选择接入的中继节点,以恢复第一终端到施主基站之间的通信链路。
具体地,在上述步骤71中,如果所述中继节点自身直接接入施主基站,则所述中继节点可以在检测到自身与施主基站之间的无线链路发生失败后,向下一级中继节点发送所述上级链路失败指示消息。如果所述中继节点不是所述无线回程路径中直接接入施主基站的中继节点,那么所述中继节点可以在接收到上一级中继节点发送的上级链路失败指示消息后,或者检测到其与上一级中继节点间的链路失败时,向下一级节点(若存在)发送上级链路失 败指示消息。
通过以上步骤,可以逐跳转发上级链路失败指示消息,直至所述无线回程路径上的最后一级中继节点,上级链路失败指示消息的中继节点,将释放自身与所有终端的连接,从而促使这些终端重选接入的中继节点,保障这些终端的通信。
以上通过两个实施例分别介绍了本公开的链路中断的处理方法。需要说明的是,以上两个实施例的方案可以根据具体场景来配置使用。上述两种方案可以在网络中并存。例如,若采用图7-8的方案,可以减少需要前传的数据量,而采用图5-6的方案,则可以减少网络中的信令开销。本公开实施例中,施主基站保存有所有终端的无线回程路径,因此施主基站在发生链路失败的下级中继节点所连接的终端数量来决定到底采用图5-6的方案或是图7-8的方案。例如,施主基站根据发生链路失败的下级中继节点(可以包括下级链路中的所有中继节点)所连接的终端数量,在终端数量超过预设阈值时,配置所述无线回程路径中发生链路失败的链路的下级中继节点采用图7的方案,即执行上文中步骤71所述的动作,而在终端数量未超过所述预设阈值时,配置所述无线回程路径中发生链路失败的链路的上一级节点采用图5所述的方案,执行步骤51的动作,配置所述无线回程路径中发生链路失败的链路的下一级节点采用图6所述的方案,执行步骤61的动作。
这样,所述无线回程路径中的中继节点可以接收施主基站配置的处理策略,所述处理策略包括第一策略(对应于图5-6)和第二策略(对应于图7)。在第一终端的无线回程路径发生链路失败后,目标中继节点根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理。
其中,在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点,这里,第一端是所述失败链路靠近于第一终端侧的一端,此时,所述目标中继节点执行上文中步骤51的动作,即所述目标中继节点将自身作为上文中步骤51中的第一中继节点,执行对应的动作,例如,第一中继节点在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接,等等。
在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点,此时,所述目标中继节点执行上文中步骤61的动作,所述目标中继节点将自身作为上文中步骤61中的第二中继节点,执行对应的动作,例如,第二中继节点在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接,等等。
在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,目标中继节点将执行上文中步骤71的动作,例如,目标中继节点在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;以及,在所述无线回程路径上存在所述目标中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
各个相关中继节点的具体执行动作,可以参考上文中相应部分的介绍,为节约篇幅,此处不再赘述。
以上介绍了本公开实施例的链路中断的处理方法,为更好的理解上述实施例,下面将进一步通过附图和具体示例进行说明。需要说明的是,下文附图及示例中的终端以UE为例,中继节点均以IAB为例,施主基站以Donor gNB为例进行描述,但本公开并不局限于此。
图8给出了本公开实施例的一个具体应用场景。图8中,UE通过IAB6连接到IAB2,再通过IAB2连接到IAB1,IAB1连接到Donor gNB。IAB1检测到自身与Donor gNB之间的无线链路失败,因此IAB1触发链路恢复过程。
参考图5-6的实现方式,IAB1给IAB2发送提示消息,IAB2自行恢复链路。
对于IAB2自行恢复链路的方法,有如下三种方式1-3:
方式1:IAB节点负责优先恢复
该方式1具体的还包括方式1a-1c。
方式1a:新信令指示法
在方式1a中,IAB1给IAB2发送上一级链路失败的指示消息。当IAB2收到IAB1发送的上述指示消息后,IAB2触发主动链路重选,如图9所示,IAB2进入空闲状态,并可能重选到IAB4,通过IAB4进入至Donor gNB。
另外,为了保证连接到IAB1的UE也可以继续业务,IAB1有两种选择:
1)IAB1释放自身与所有UE的连接,从而让连接到IAB1的UE自行寻找其他IAB节点重新接入。
2)IAB1反向连接到IAB2,作为IAB2的下级节点。
如果IAB2收到IAB1的上级链路失败指示后,IAB2并不能找到合适的上级节点,那么如图10所示,IAB2将转发上级链路失败的指示消息转发给IAB6,由IAB6寻找新的节点进行切换。当IAB6收到IAB2发送的上述指示消息后,IAB2触发主动链路重选,如图10所示,IAB6进入空闲状态,并可能重选到IAB4,通过IAB4进入至Donor gNB。
与IAB1的行为类似,IAB2也可以有两种处理方式:
1)IAB2关掉自身与所有UE之间的连接,让连接到IAB2的UE自行寻找其他IAB节点
2)IAB2反向连接到IAB6,作为IAB6的下级节点。
这里,IAB2确定没有合适的上级节点的方式有如下两种:
1)周期性搜索:
gNB配置周期,或者IAB自己产生周期。每周期搜索一次,如果搜索不到,那么就默认为没有合适的上级节点。IAB2当收到IAB1发来的上级链路失败的指示消息后,立刻转给IAB6。
2)事件触发寻找:
当IAB2收到IAB1发来的上级链路失败指示消息后,开始搜寻合适的可以切换过去的上级节点。如果没有搜索到,则将接收到IAB1发来的上级链路失败的指示消息转给IAB6。
方式1b:切换参数调整法
在这种方式中,IAB1调整IAB2的切换参数,从而触发IAB2小区切换到其他IAB,比如IAB4。
如果由于IAB1调整切换参数并不恰当,或者网络中没有合适的IAB4可供IAB2切换,则可以在定时器定义的一段预设时间IAB2仍未切换出去时,IAB1给IAB2发送上级链路失败的指示消息,IAB2收到上述指示消息后,调 整IAB6的切换参数,让IAB6试着切换到别的上级IAB节点。
这里,上述定时器的实现方式有以下几种:
1)DgNB配置IAB节点的定时器timer1,当IAB1调整IAB2的切换参数时,例如,发送了参数配置消息后,启动timer1。当timer1超时时,如果IAB2还没有切换出去,IAB1给IAB2发送上级链路失败的指示消息,IAB2收到后,调整IAB6的切换参数,继续使用方法1b的方法让IAB6切换到别的上级IAB节点。
2)IAB节点根据无线回程路径承载业务的QoS,分析出可以接受的时延要求,并自己产生timer1。然后,采用上述第1)种方式的类似处理,此处不再赘述。
方法1c:调整MIB参数让UE和下级IAB都不会接入。
MIB参数表的一种示例如下:
Figure PCTCN2019101314-appb-000001
每个IAB都广播自己的MIB消息。MIB消息属于RRC消息。由于IAB可能没有RRC功能,因此IAB广播的MIB消息通常是DgNB配置的。但是,在图8中,由于IAB1的终端无线功能(MT,Mobile Terminal)和DgNB之间发生了RLF(无线链路失败),IAB1不能够从DgNB获取新的MIB消息。由于IAB1自己知道发生了RLF,因此IAB1可以自行设置MIB消息,以禁止UE和下级IAB节点接入IAB1。
例如,IAB1将MIB消息中的cellBarred参数设置成{barred},然后用相关技术中的NR技术通知UE。具体地,IAB1可以广播携带有上述cellBarred 参数的MIB消息,然后向空闲状态和非激活态UE发送寻呼(paging)消息,以触发这些UE接收广播的MIB消息,从而获得上述cellBarred参数,进而释放与IAB1之间的连接。对于连接态UE,IAB1可以采用发送用于切换部分带宽(BWP)的RRC连接重配置消息,并在RRC连接重配置消息中携带上述MIB消息内容(包括有上述cellBarred参数),从而连接态UE获得上述cellBarred参数,进而释放与IAB1之间的连接。
方式2:UE恢复链路
在这种方式中,IAB1给IAB2发送上级链路失败的指示消息,IAB2收到消息后,并不进行触发链路重选,而是继续向下级IAB节点IAB6转发上级链路失败的指示消息,通过逐级转发,直到无线回程路径上的最后一级中继节点。最后一级中继节点,如IAB6。IAB1、IAB2和IAB6释放自身与所有终端之间的连接,具体的释放方式可以是:
向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;或者,广播主MIB消息,所述MIB消息携带有禁止接入本中继节点的小区的MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连接态的终端发送RRC重配置消息,所述RRC重配置消息携带有禁止接入本中继节点的小区的MIB参数。
方式3:Donor gNB配置
对于上述提出的两种方式,可能在网络中并存。对于方式2,当UE数量较大时候,将会给网络带来较大信令开销。对于方式1,会带来大量数据前传。而Donor gNB保存了所有UE的路径,因此在Donor gNB可能会根据在发生链路失败的下级IAB节点所连接的UE数量来决定到底采用方式1还是方式2。Donor gNB如何获取各级IAB节点所连接的UE,本公开实施例对此不做具体限定。
以上介绍了本公开实施例的链路中断的处理方法。下面将进一步提供实施上述方法的设备。
请参考图11,本公开实施例提供了第一无线中继节点1100的一结构示意 图,所述第一中继节点为第一终端的无线回程路径上的中继节点,包括:处理器1101、收发机1102、存储器1103和总线接口,其中:
在本公开实施例中,第一无线中继节点1100还包括:存储在存储器上1103并可在处理器1101上运行的程序。
所述处理器1101,用于读取存储器中的程序,执行下列过程:在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
可选地,所述处理器1101,还用于控制所述收发机1102向第二中继节点发送上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;以及,在第二中继节点发起链路重选的过程中,释放自身与第二中继节点的连接。
可选地,所述处理器1101,还用于在检测到所述无线链路发生失败后,释放本中继节点与所有终端之间的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
可选地,所述处理器1101,还用于控制所述收发机1102向第二中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限。
可选地,所述收发机1102,还用于在发送所述参数配置消息之后,若超过预设时间所述第二中继节点仍未切换至第三中继节点,则向所述第二中继 节点发送上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数,以降低第四中继节点因事件触发的测量报告的上报门限,所述第四中继节点是所述第二中继节点在所述无线回程路径上的下一级中继节点。
可选地,所述处理器1101,还用于在检测到所述无线链路发生失败后,断开自身与本中继节点下的终端的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
可选地,所述预设时间是施主基站预先配置的,或者是第一中继节点根据所述无线回程路径承载的业务的服务质量要求确定的。
可选地,所述处理器1101,还用于控制所述收发机1102向第二中继节点发送第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;以及,在第二中继节点断开与第一中继节点连接的过程中,释放第一中继节点与第二中继节点之间的连接。
可选地,所述收发机1102,还用于在所述处理器1101检测到所述无线链路发生失败后,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入第一中继节点的小区的主信息块MIB参数,并向第一中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向第一中继节点下的连接态的终端发送第二无线资源控制RRC重配置消息,所述第二无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数。
请参照图12,本公开实施例提供了第一无线中继节点120的另一种结构,所述第一中继节点为第一终端的无线回程路径上的中继节点,如图12所示,该第一无线中继节点120包括:
释放单元121,用于在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
可选地,所述释放单元包括:
第一发送单元,用于向第二中继节点发送上级链路失败的第一指示消息, 所述第一指示消息用于指示第二中继节点发起链路重选;
所述第一中继节点在第二中继节点发起链路重选的过程中,释放自身与第二中继节点的连接。
可选地,所述第一中继节点还包括:
第一接入管理单元,用于在检测到所述无线链路发生失败后,释放本中继节点与所有终端之间的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
可选地,所述释放单元包括:
第二发送单元,用于向第二中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限。
可选地,所述第一中继节点第三发送单元,用于在发送所述参数配置消息之后,若超过预设时间所述第二中继节点仍未切换至第三中继节点,则向所述第二中继节点发送上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数,以降低第四中继节点因事件触发的测量报告的上报门限,所述第四中继节点是所述第二中继节点在所述无线回程路径上的下一级中继节点。
可选地,所述第一中继节点第二接入管理单元,用于在检测到所述无线链路发生失败后,断开自身与本中继节点下的终端的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
可选地,所述预设时间是施主基站预先配置的,或者是第一中继节点根据所述无线回程路径承载的业务的服务质量要求确定的。
可选地,所述释放单元包括:
第四发送单元,用于向第二中继节点发送第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;以及,在第二中继节点断开与第一中继节点连接的过程中,释放第一中继节点与第二中继节点之间的连接。
可选地,所述第一中继节点第三接入管理单元,用于在检测到所述无线链路发生失败后,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入第一中继节点的小区的主信息块MIB参数,并向第一中继节点下的 空闲态或非激活态的终端发送寻呼消息,以及,向第一中继节点下的连接态的终端发送第二无线资源控制RRC重配置消息,所述第二无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数。
请参考图13,本公开实施例提供了第二无线中继节点1300的一结构示意图,所述第二中继节点为第一终端的无线回程路径上的中继节点,包括:处理器1301、收发机1302、存储器1303和总线接口,其中:
在本公开实施例中,第二无线中继节点1300还包括:存储在存储器上1303并可在处理器1301上运行的程序。
所述处理器1301,用于读取存储器中的程序,执行下列过程:在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1301负责管理总线架构和通常的处理,存储器1303可以存储处理器1301在执行操作时所使用的数据。
可选地,所述收发机1302,用于接收第一中继节点发送的上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;
所述处理器1301,还用于根据所述第一指示消息,发起链路重选,释放自身与第一中继节点的连接。
可选地,所述处理器1301,还用于在接收到所述第一指示消息后,若确定不存在可以接入的上级中继节点,则在所述第二中继节点是所述第一终端的接入节点时,所述第二中继节点触发所述第一终端通过小区重选或切换至其他中继节点;在所述第二中继节点不是所述第一终端的接入节点时,所述 第二中继节点向第四中继节点发送上级链路失败的第三指示消息,所述第三指示消息用于指示第四中继节点发起链路重选。
可选地,所述处理器1301,还用于按照预设搜索周期,周期性搜索并更新可以接入的可用上级中继节点,以及,在接收到所述第一指示消息后,若所述可用上级中继节点为空或仅包括所述第一中继节点,则确定不存在可以接入的上级中继节点;或者,第二中继节点在接收到所述第一指示消息后,搜索可以接入的上级中继节点,若未搜索到除第一中继节点外的其他中继节点,则确定不存在可以接入的上级中继节点。
可选地,所述收发机1302,还用于接收第二中继节点发送的调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;
所述处理器1301,还用于根据所述参数配置消息,在切换至第三中继节点的过程中,释放自身与第一中继节点的连接。
可选地,所述收发机1302,还用于接收到所述参数配置消息后,若超过预设时间仍未切换至第三中继节点时,接收第一中继节点发送的用于指示上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数;向第四中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低第四中继节点因事件触发的测量报告的上报门限。
可选地,所述收发机1302,还用于接收第一中继节点发送的第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;
所述处理器1301,还用于根据所述第一无线资源控制RRC重配置消息,在断开与第一中继节点连接的过程中,释放与第一中继节点之间的连接。
请参照图14,本公开实施例提供了第二中继节点140的另一种结构,所述第二中继节点为第一终端的无线回程路径上的中继节点,如图14所示,该第二中继节点140包括:
释放单元141,用于在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的 上一级中继节点。
可选地,所述释放单元,还用于接收第一中继节点发送的上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;根据所述第一指示消息,发起链路重选,释放自身与第一中继节点的连接。
可选地,第二无线中继节点140还包括:
重选切换单元,用于在接收到所述第一指示消息后,若确定不存在可以接入的上级中继节点,则在所述第二中继节点是所述第一终端的接入节点时,所述第二中继节点触发所述第一终端通过小区重选或切换至其他中继节点;在所述第二中继节点不是所述第一终端的接入节点时,所述第二中继节点向第四中继节点发送上级链路失败的第三指示消息,所述第三指示消息用于指示第四中继节点发起链路重选。
可选地,第二无线中继节点140还包括:
判断单元,用于按照预设搜索周期,周期性搜索并更新可以接入的可用上级中继节点,以及,在接收到所述第一指示消息后,若所述可用上级中继节点为空或仅包括所述第一中继节点,则确定不存在可以接入的上级中继节点;或者,在接收到所述第一指示消息后,搜索可以接入的上级中继节点,若未搜索到除第一中继节点外的其他中继节点,则确定不存在可以接入的上级中继节点。
可选地,所述释放单元,还用于接收第二中继节点发送的调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;根据所述参数配置消息,在切换至第三中继节点的过程中,释放自身与第一中继节点的连接。
可选地,第二无线中继节点140还包括:
调整单元,用于在所述第二中继节点接收到所述参数配置消息后,若超过预设时间仍未切换至第三中继节点时,接收第一中继节点发送的用于指示上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数;向第四中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低第四中继节点因事件触发的测量报告的上报门限。
可选地,所述释放单元,还用于接收第一中继节点发送的第一无线资源 控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;根据所述第一无线资源控制RRC重配置消息,在断开与第一中继节点连接的过程中,释放与第一中继节点之间的连接。
请参考图15,本公开实施例提供了中继节点1500的一结构示意图,所述中继节点为第一终端的无线回程路径上的中继节点,包括:处理器1501、收发机1502、存储器1503和总线接口,其中:
在本公开实施例中,中继节点1500还包括:存储在存储器上1503并可在处理器1501上运行的程序。
所述处理器1501,用于读取存储器中的程序,执行下列过程:在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;
所述收发机,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1501代表的一个或多个处理器和存储器1503代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1502可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1501负责管理总线架构和通常的处理,存储器1503可以存储处理器1501在执行操作时所使用的数据。
可选地,所述处理器1501,用于在释放本中继节点与所有终端之间的连接之前,检测到自身与上一级节点之间的无线链路发生失败;或者,接收到上一级中继节点发送的上级链路失败指示消息。
可选地,所述处理器1501,还用于控制所述收发机向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;或者,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入本中继节点的小区的主信息块MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连 接态的终端发送无线资源控制RRC重配置消息,所述无线资源控制RRC重配置消息携带有禁止接入本中继节点的小区的主信息块MIB参数。
请参照图16,本公开实施例提供了中继节点160的另一种结构,所述中继节点为第一终端的无线回程路径上的中继节点,如图16所示,该中继节点160包括:
释放单元161,用于在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;
收发单元162,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
可选地,所述收发单元162,还用于在所述释放单元释放本中继节点与所有终端之间的连接之前,检测到自身与上一级节点之间的无线链路发生失败;或者,接收到上一级中继节点发送的上级链路失败指示消息。
可选地,所述收发单元162,还用于向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;或者,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入本中继节点的小区的主信息块MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连接态的终端发送无线资源控制RRC重配置消息,所述无线资源控制RRC重配置消息携带有禁止接入本中继节点的小区的主信息块MIB参数。
请参考图17,本公开实施例提供了目标中继节点1700的一结构示意图,所述目标中继节点为第一终端的无线回程路径上的中继节点,包括:处理器1701、收发机1702、存储器1703和总线接口,其中:
在本公开实施例中,中继节点1700还包括:存储在存储器上1703并可在处理器1701上运行的程序。
所述处理器1701,用于读取存储器中的程序,执行下列过程:
根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理;其中,
在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,所述第一端是所述失败链路靠近于第一终 端侧的一端,在检测到所述无线回程路径上的上一级无线链路发生失败后,释放目标中继节点与第二中继节点之间的连接;其中,所述第二中继节点是所述目标中继节点在所述无线回程路径上的下一级中继节点;;
在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,释放目标中继节点与第一中继节点之间的连接;其中,所述第一中继节点是所述目标中继节点在所述无线回程路径上的上一级中继节点;
在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,在所述无线回程路径的上级链路失败后,释放本目标中继节点与所有终端之间的连接;以及,在所述无线回程路径上存在所述目标中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1701代表的一个或多个处理器和存储器1703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1701负责管理总线架构和通常的处理,存储器1703可以存储处理器1701在执行操作时所使用的数据。
可选地,所述处理器1701,还用于在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,执行图11中的处理器1101所执行的步骤。
可选地,所述处理器1701,还用于在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,执行图13中的处理器1301所执行的步骤。
可选地,所述处理器1701,还用于在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,执行图15中的处理器1501所执行的步骤。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开实施例可提供为方法、系统、或程序产品。因此,本公开实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的程序产品的形式。
本公开实施例是参照根据本公开实施例的方法、设备(系统)、和程序产品的流程图和/或方框图来描述的。应理解可由程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (43)

  1. 一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径上的第一中继节点,包括:
    第一中继节点在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
    其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
  2. 根据权利要求1所述的方法,其中,所述释放第一中继节点与第二中继节点之间的连接的步骤,包括:
    所述第一中继节点向第二中继节点发送上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;
    所述第一中继节点在第二中继节点发起链路重选的过程中,释放自身与第二中继节点的连接。
  3. 根据权利要求2所述的方法,还包括:
    所述第一中继节点在检测到所述无线链路发生失败后,释放本中继节点与所有终端之间的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
  4. 根据权利要求1所述的方法,其中,所述释放第一中继节点与第二中继节点之间的连接的步骤,包括:
    所述第一中继节点向第二中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;
    所述第一中继节点在第二中继节点切换到第三中继节点的过程中,释放自身与第二中继节点之间的连接。
  5. 根据权利要求4所述的方法,其中,在发送所述参数配置消息之后,若超过预设时间所述第二中继节点仍未切换至所述第三中继节点,则向所述第二中继节点发送上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数,以降低第四中继节点因事件触发的测量报告的上报门限,所述第四中继节点是所述第二中继节点在所述无线回程路径上 的下一级中继节点。
  6. 根据权利要求5所述的方法,还包括:
    所述第一中继节点在检测到所述无线链路发生失败后,断开自身与本中继节点下的终端的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
  7. 根据权利要求5所述的方法,其中,所述预设时间是施主基站预先配置的,或者是第一中继节点根据所述无线回程路径承载的业务的服务质量要求确定的。
  8. 根据权利要求1所述的方法,其中,所述释放第一中继节点与第二中继节点之间的连接的步骤,包括:
    所述第一中继节点向第二中继节点发送第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;
    所述第一中继节点在第二中继节点断开与第一中继节点连接的过程中,释放第一中继节点与第二中继节点之间的连接。
  9. 根据权利要求8所述的方法,还包括:
    所述第一中继节点在检测到所述无线链路发生失败后,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入第一中继节点的小区的主信息块MIB参数,并向第一中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向第一中继节点下的连接态的终端发送第二无线资源控制RRC重配置消息,所述第二无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数。
  10. 一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径上的第二中继节点,包括:
    第二中继节点在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
    其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
  11. 根据权利要求10所述的方法,其中,所述释放第二中继节点与第一 中继节点之间的连接的步骤,包括:
    所述第二中继节点接收第一中继节点发送的上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;
    所述第二中继节点根据所述第一指示消息,发起链路重选,释放自身与第一中继节点的连接。
  12. 根据权利要求11所述的方法,其中,
    所述第二中继节点接收到所述第一指示消息后,若确定不存在可以接入的上级中继节点,则所述方法还包括:
    在所述第二中继节点是所述第一终端的接入节点时,所述第二中继节点触发所述第一终端通过小区重选或切换至其他中继节点;
    在所述第二中继节点不是所述第一终端的接入节点时,所述第二中继节点向第四中继节点发送上级链路失败的第三指示消息,所述第三指示消息用于指示第四中继节点发起链路重选。
  13. 根据权利要求12所述的方法,其中,所述确定不存在可以接入的上级中继节点的步骤,包括:
    第二中继节点按照预设搜索周期,周期性搜索并更新可以接入的可用上级中继节点,以及,在接收到所述第一指示消息后,若所述可用上级中继节点为空或仅包括所述第一中继节点,则确定不存在可以接入的上级中继节点;
    或者,
    第二中继节点在接收到所述第一指示消息后,搜索可以接入的上级中继节点,若未搜索到除第一中继节点外的其他中继节点,则确定不存在可以接入的上级中继节点。
  14. 根据权利要求10所述的方法,其中,所述释放第二中继节点与第一中继节点之间的连接的步骤,包括:
    所述第二中继节点接收第二中继节点发送的调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;
    所述第二中继节点根据所述参数配置消息,在切换至第三中继节点的过程中,释放自身与第一中继节点的连接。
  15. 根据权利要求14所述的方法,其中,
    在所述第二中继节点接收到所述参数配置消息后,若超过预设时间仍未切换至所述第三中继节点时,所述方法还包括:
    所述第二中继节点接收第一中继节点发送的用于指示上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数;
    所述第二中继节点向第四中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低第四中继节点因事件触发的测量报告的上报门限。
  16. 根据权利要求10所述的方法,其中,所述释放第二中继节点与第一中继节点之间的连接的步骤,包括:
    所述第二中继节点接收第一中继节点发送的第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;
    所述第二中继节点根据所述第一无线资源控制RRC重配置消息,在断开与第一中继节点连接的过程中,释放与第一中继节点之间的连接。
  17. 一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径上的中继节点,包括:
    所述中继节点在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;以及,在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
  18. 根据权利要求17所述的方法,其中,在释放本中继节点与所有终端之间的连接的步骤之前,所述方法还包括:
    所述中继节点检测到自身与上一级节点之间的无线链路发生失败;
    或者,
    所述中继节点接收到上一级中继节点发送的上级链路失败指示消息。
  19. 根据权利要求17所述的方法,其中,所述释放本中继节点与所有终端之间的连接的步骤,包括:
    向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限,释放本中继节点与终端之间的连接;或者,
    广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入本中 继节点的小区的主信息块MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连接态的终端发送无线资源控制RRC重配置消息,所述无线资源控制RRC重配置消息携带有禁止接入本中继节点的小区的主信息块MIB参数,释放本中继节点与终端之间的连接。
  20. 一种中继网络中的链路中断的处理方法,应用于第一终端的无线回程路径中的目标中继节点,包括:
    所述目标中继节点根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理;其中,
    在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,所述第一端是所述失败链路靠近于第一终端侧的一端,所述目标中继节点执行如权利要求1至9中任一项所述的中继网络中的链路中断的处理方法的步骤;
    或者,
    在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,所述目标中继节点执行如权利要求10至16中任一项所述的中继网络中的链路中断的处理方法的步骤;
    或者,
    在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,所述目标中继节点执行如权利要求17至19中任一项所述的中继网络中的链路中断的处理方法的步骤。
  21. 一种第一中继节点,所述第一中继节点为第一终端的无线回程路径上的中继节点,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
    其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
  22. 根据权利要求21所述的第一中继节点,其中,
    所述处理器,还用于控制所述收发机向第二中继节点发送上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;以及,在第二中继节点发起链路重选的过程中,释放自身与第二中继节点的连接。
  23. 根据权利要求22所述的第一中继节点,其中,
    所述处理器,还用于在检测到所述无线链路发生失败后,释放本中继节点与所有终端之间的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
  24. 根据权利要求21所述的第一中继节点,其中,
    所述处理器,还用于控制所述收发机向第二中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;
    所述第一中继节点在第二中继节点切换到第三中继节点的过程中,释放自身与第二中继节点之间的连接。
  25. 根据权利要求24所述的第一中继节点,其中,
    所述收发机,还用于在发送所述参数配置消息之后,若超过预设时间所述第二中继节点仍未切换至所述第三中继节点,则向所述第二中继节点发送上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数,以降低第四中继节点因事件触发的测量报告的上报门限,所述第四中继节点是所述第二中继节点在所述无线回程路径上的下一级中继节点。
  26. 根据权利要求25所述的第一中继节点,其中,
    所述处理器,还用于在检测到所述无线链路发生失败后,断开自身与本中继节点下的终端的连接,或者,以所述第二中继节点为上一级中继节点,接入所述第二中继节点。
  27. 根据权利要求21所述的第一中继节点,其中,
    所述处理器,还用于控制所述收发机向第二中继节点发送第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;以及,在第二中继节点断开 与第一中继节点连接的过程中,释放第一中继节点与第二中继节点之间的连接。
  28. 根据权利要求27所述的第一中继节点,其中,
    所述收发机,还用于在所述处理器检测到所述无线链路发生失败后,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入第一中继节点的小区的主信息块MIB参数,并向第一中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向第一中继节点下的连接态的终端发送第二无线资源控制RRC重配置消息,所述第二无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数。
  29. 一种第一中继节点,所述第一中继节点为第一终端的无线回程路径上的中继节点,包括:
    释放单元,用于在检测到所述无线回程路径上的上一级无线链路发生失败后,释放第一中继节点与第二中继节点之间的连接;
    其中,所述第二中继节点是所述第一中继节点在所述无线回程路径上的下一级中继节点。
  30. 一种第二中继节点,所述第二中继节点是第一终端的无线回程路径上的中继节点,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
    其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
  31. 根据权利要求30所述的第二中继节点,其中,
    所述收发机,用于接收第一中继节点发送的上级链路失败的第一指示消息,所述第一指示消息用于指示第二中继节点发起链路重选;
    所述处理器,还用于根据所述第一指示消息,发起链路重选,释放自身与第一中继节点的连接。
  32. 根据权利要求31所述的第二中继节点,其中,
    所述处理器,还用于在接收到所述第一指示消息后,若确定不存在可以接入的上级中继节点,则在所述第二中继节点是所述第一终端的接入节点时,所述第二中继节点触发所述第一终端通过小区重选或切换至其他中继节点;在所述第二中继节点不是所述第一终端的接入节点时,所述第二中继节点向第四中继节点发送上级链路失败的第三指示消息,所述第三指示消息用于指示第四中继节点发起链路重选。
  33. 根据权利要求31所述的第二中继节点,其中,
    所述处理器,还用于按照预设搜索周期,周期性搜索并更新可以接入的可用上级中继节点,以及,在接收到所述第一指示消息后,若所述可用上级中继节点为空或仅包括所述第一中继节点,则确定不存在可以接入的上级中继节点;或者,第二中继节点在接收到所述第一指示消息后,搜索可以接入的上级中继节点,若未搜索到除第一中继节点外的其他中继节点,则确定不存在可以接入的上级中继节点。
  34. 根据权利要求30所述的第二中继节点,其中,
    所述收发机,还用于接收第二中继节点发送的调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;
    所述处理器,还用于根据所述参数配置消息,在切换至第三中继节点的过程中,释放自身与第一中继节点的连接。
  35. 根据权利要求34所述的第二中继节点,其中,
    所述收发机,还用于接收到所述参数配置消息后,若超过预设时间仍未切换至所述第三中继节点时,接收第一中继节点发送的用于指示上级链路失败的第二指示消息,所述第二指示消息用于指示第二中继节点调整切换参数;向第四中继节点发送调整切换参数的参数配置消息,所述参数配置消息用于降低第四中继节点因事件触发的测量报告的上报门限。
  36. 根据权利要求30所述的第二中继节点,其中,
    所述收发机,还用于接收第一中继节点发送的第一无线资源控制RRC重配置消息,所述第一无线资源控制RRC重配置消息携带有禁止接入第一中继节点的小区的主信息块MIB参数;
    所述处理器,还用于根据所述第一无线资源控制RRC重配置消息,在断 开与第一中继节点连接的过程中,释放与第一中继节点之间的连接。
  37. 一种第二中继节点,所述第二中继节点是第一终端的无线回程路径上的中继节点,包括:
    释放单元,用于在第一中继节点检测到所述无线回程路径上的上一级无线链路发生失败后,释放第二中继节点与第一中继节点之间的连接;
    其中,所述第一中继节点是所述第二中继节点在所述无线回程路径上的上一级中继节点。
  38. 一种中继节点,所述中继节点位于第一终端的无线回程路径上,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:在所述无线回程路径的上级链路失败后,释放本中继节点与所有终端之间的连接;
    所述收发机,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
  39. 根据权利要求38所述的中继节点,其中,
    所述处理器,用于在释放本中继节点与所有终端之间的连接之前,检测到自身与上一级节点之间的无线链路发生失败;或者,接收到上一级中继节点发送的上级链路失败指示消息。
  40. 根据权利要求38所述的中继节点,其中,
    所述处理器,还用于控制所述收发机向本中继节点下的终端发送调整切换参数的参数配置消息,所述参数配置消息用于降低事件触发的测量报告的上报门限;或者,广播主信息块MIB消息,所述主信息块MIB消息携带有禁止接入本中继节点的小区的主信息块MIB参数,并向本中继节点下的空闲态或非激活态的终端发送寻呼消息,以及,向本中继节点下的连接态的终端发送无线资源控制RRC重配置消息,所述无线资源控制RRC重配置消息携带有禁止接入本中继节点的小区的主信息块MIB参数。
  41. 一种中继节点,所述中继节点位于第一终端的无线回程路径上,包括:
    释放单元,用于在所述无线回程路径的上级链路失败后,释放本中继节 点与所有终端之间的连接;
    收发单元,用于在所述无线回程路径上存在所述中继节点的下一级中继节点时,向下一级中继节点发送上级链路失败指示消息。
  42. 一种目标中继节点,所述目标中继节点位于第一终端的无线回程路径中,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:根据预先配置的处理策略以及自身与发生链路失败的失败链路之间的位置关系,执行对应的处理;其中,
    在所述目标中继节点配置了第一处理策略,且所述目标中继节点为所述失败链路的第一端的中继节点时,所述第一端是所述失败链路靠近于第一终端侧的一端,执行如权利要求1至9中任一项所述的中继网络中的链路中断的处理方法的步骤;
    或者,
    在所述目标中继节点配置了所述第一处理策略时,且所述目标中继节点为所述失败链路的第一端的中继节点的下一级中继节点时,执行如权利要求10至16中任一项所述的中继网络中的链路中断的处理方法的步骤;
    或者,
    在所述目标中继节点配置了第二处理策略,且所述失败链路为所述目标中继节点的上级链路时,执行如权利要求17至19中任一项所述的中继网络中的链路中断的处理方法的步骤。
  43. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至19中任一项所述的链路中断的处理方法的步骤。
PCT/CN2019/101314 2018-08-31 2019-08-19 链路中断的处理方法和设备 WO2020042945A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19856025.2A EP3846546B1 (en) 2018-08-31 2019-08-19 Link interruption processing method and device
EP23210309.3A EP4301082A3 (en) 2018-08-31 2019-08-19 Link interruption processing method and device
KR1020217009539A KR102442932B1 (ko) 2018-08-31 2019-08-19 링크 인터럽트 처리 방법 및 기기
US17/272,214 US20210204348A1 (en) 2018-08-31 2019-08-19 Link interruption processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811015469.7 2018-08-31
CN201811015469.7A CN110876175B (zh) 2018-08-31 2018-08-31 链路中断的处理方法、中继节点及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020042945A1 true WO2020042945A1 (zh) 2020-03-05

Family

ID=69643143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101314 WO2020042945A1 (zh) 2018-08-31 2019-08-19 链路中断的处理方法和设备

Country Status (5)

Country Link
US (1) US20210204348A1 (zh)
EP (2) EP4301082A3 (zh)
KR (1) KR102442932B1 (zh)
CN (1) CN110876175B (zh)
WO (1) WO2020042945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022159284A1 (en) * 2021-01-25 2022-07-28 Qualcomm Incorporated Radio link failure handling in an integrated access backhaul network

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220007212A1 (en) * 2018-09-27 2022-01-06 Samsung Electronics Co., Ltd. Method for processing node failure in integrated access and backhaul system and method for transmitting redirection information therein
US11438820B2 (en) * 2019-09-16 2022-09-06 Qualcomm Incorporated Handover determination between relays
CN116134865A (zh) * 2020-07-13 2023-05-16 华为技术有限公司 一种通信方法和通信装置
US20230284116A1 (en) * 2020-10-16 2023-09-07 Qualcomm Incorporated Relay reselection and link release messaging in relay reselection procedures
CN112261627B (zh) * 2020-10-20 2024-04-23 河南省四通锅炉有限公司 基于物联网的锅炉温度无线监测数据的高速传输方法及系统
CN117222054A (zh) * 2021-02-05 2023-12-12 Oppo广东移动通信有限公司 状态转换方法、装置、设备及存储介质
KR20230171605A (ko) * 2022-06-14 2023-12-21 삼성전자주식회사 무선 통신 시스템에서 유휴모드 및 비활성모드 단말의 nes 모드 동작을 위한 방법 및 장치
CN117651296A (zh) * 2022-09-21 2024-03-05 中国电信股份有限公司 用于终端间中继通信的处理方法及ue
CN116033413B (zh) * 2023-01-30 2023-08-29 广州爱浦路网络技术有限公司 中继通信的隐私安全增强方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892131A (zh) * 2011-07-21 2013-01-23 中兴通讯股份有限公司 一种回传链路中断时中继节点管理用户设备的方法和系统
CN103686911A (zh) * 2012-09-14 2014-03-26 电信科学技术研究院 一种进行切换的方法和设备
US20140307542A1 (en) * 2011-11-25 2014-10-16 Kyocera Corporation Communication control method and relay station
CN107613507A (zh) * 2016-07-12 2018-01-19 中兴通讯股份有限公司 一种链路失效的处理方法、设备和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
US10440688B2 (en) * 2016-01-14 2019-10-08 Samsung Electronics Co., Ltd. Frame structures and signaling techniques for a unified wireless backhaul and access network
US10433220B2 (en) * 2016-08-19 2019-10-01 Sprint Spectrum L.P. Dynamic handover threshold adjustment for load balancing
WO2018084669A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and user equipment for provisioning minimum system information in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102892131A (zh) * 2011-07-21 2013-01-23 中兴通讯股份有限公司 一种回传链路中断时中继节点管理用户设备的方法和系统
US20140307542A1 (en) * 2011-11-25 2014-10-16 Kyocera Corporation Communication control method and relay station
CN103686911A (zh) * 2012-09-14 2014-03-26 电信科学技术研究院 一种进行切换的方法和设备
CN107613507A (zh) * 2016-07-12 2018-01-19 中兴通讯股份有限公司 一种链路失效的处理方法、设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "R2-103682, Radio link failure handling by RN", 3GPP TSG-RAN WG2 MEETING #70BIS, 2 July 2010 (2010-07-02), XP050451176 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022159284A1 (en) * 2021-01-25 2022-07-28 Qualcomm Incorporated Radio link failure handling in an integrated access backhaul network
US11722912B2 (en) 2021-01-25 2023-08-08 Qualcomm Incorporated Radio link failure handling in an integrated access backhaul network

Also Published As

Publication number Publication date
EP4301082A2 (en) 2024-01-03
EP4301082A3 (en) 2024-04-03
EP3846546A4 (en) 2021-11-03
EP3846546B1 (en) 2023-12-20
KR102442932B1 (ko) 2022-09-13
KR20210048549A (ko) 2021-05-03
CN110876175A (zh) 2020-03-10
CN110876175B (zh) 2021-07-16
US20210204348A1 (en) 2021-07-01
EP3846546A1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2020042945A1 (zh) 链路中断的处理方法和设备
US9854496B2 (en) Method of high-efficiency connected mode cell re-selection
JP6200892B2 (ja) ブラックリスト又はホワイトリストを使用するセル選択
TWI468036B (zh) 初始交遞先預備的方法及其相關通訊裝置
US8917702B2 (en) Method and device for data processing in a wireless network
US8380206B1 (en) Indication of user equipment mobility state to enhance mobility and call performance
RU2536859C1 (ru) Базовая радиостанция, ретрансляционная базовая станция, мобильный терминал, система мобильной связи и способ управления работой
RU2763519C2 (ru) Способ передачи обслуживания, терминальное устройство и сетевое устройство
US9497674B2 (en) UE reporting of mobility information useful for optimizing UE parameter settings
US11191114B2 (en) Method, apparatus and system for obtaining device-to-device communication resource
JP2015514337A (ja) 電気通信システムにおける接続回復の方法及び配置構成
JP7179167B2 (ja) レポートハンドオーバー方法、端末装置及びネットワークデバイス
US20220086749A1 (en) Cell selection on a radio link failure in wireless relay networks
CN113475162A (zh) 一种移动性管理方法及装置、终端
WO2011155511A1 (ja) 無線基地局及びその制御方法
WO2020117114A1 (en) Method and wireless device for accessing a target cell
US20160219471A1 (en) Method and device for terminal cell to make interoperation decision with wireless local area network during switching
JP2023547842A (ja) Mro臨界シーンの判定方法、装置及び機器
WO2020019329A1 (zh) 一种寻呼消息处理方法及装置
EP4262265A1 (en) Communication apparatus, method for controlling communication apparatus, and program
WO2023138243A1 (zh) 一种通信方法、装置以及存储介质
WO2022205250A1 (zh) 无线链路失败的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217009539

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019856025

Country of ref document: EP

Effective date: 20210331