WO2020042802A1 - 光学镜头、摄像模组及组装方法 - Google Patents

光学镜头、摄像模组及组装方法 Download PDF

Info

Publication number
WO2020042802A1
WO2020042802A1 PCT/CN2019/096344 CN2019096344W WO2020042802A1 WO 2020042802 A1 WO2020042802 A1 WO 2020042802A1 CN 2019096344 W CN2019096344 W CN 2019096344W WO 2020042802 A1 WO2020042802 A1 WO 2020042802A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
component
lens group
top surface
Prior art date
Application number
PCT/CN2019/096344
Other languages
English (en)
French (fr)
Inventor
田中武彦
陈烈烽
刘林
刘春梅
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811003070.7A external-priority patent/CN110873935A/zh
Priority claimed from CN201821412342.4U external-priority patent/CN208818903U/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to US17/270,213 priority Critical patent/US20210333503A1/en
Priority to EP19856291.0A priority patent/EP3835843B1/en
Publication of WO2020042802A1 publication Critical patent/WO2020042802A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the present application relates to the field of optical imaging technology, and in particular, the present application relates to an optical lens, a camera module, and an assembly method.
  • This application proposes a method for adjusting and determining the relative positions of the upper and lower sub-lenses based on an active calibration process, and then bonding the upper and lower sub-lenses according to the determined relative positions, thereby manufacturing a complete optical lens or camera module.
  • Assembly method can improve the process capability index (CPK) of mass-produced optical lenses or camera modules; it can enable the evaluation of individual components of materials such as sub-lenses or photosensitive components used to assemble optical lenses or camera modules.
  • CPK process capability index
  • the requirements for precision and its assembly precision have been loosened, thereby reducing the overall cost of the optical imaging lens and camera module; it is possible to adjust various aberrations of the camera module in real time during the assembly process, reduce the defect rate, reduce production costs, and improve Imaging quality.
  • the present application aims to provide a solution capable of overcoming at least one drawback of the prior art.
  • an optical lens including: a first lens component including a first lens group, the first lens group including at least one first lens; a second lens component including a second lens A lens barrel and a second lens group installed in the second lens barrel, the second lens group including at least one second lens, and the first lens group and the second lens group together forming an imageable optical lens
  • the second lens barrel has an outer top surface and an inner top surface, the second lens group bears on the inner top surface; and a first rubber material is arranged on the outer top surface and the Between the bottom surface of the first lens component, and the first glue material is adapted to support and fix the first lens component and the second lens component after curing, so that the first lens component and the first lens component
  • the relative positions of the two lens components are maintained at the relative positions determined by the active calibration, wherein the outer top surface includes a cloth-adhesive surface suitable for arranging the first glue material and faces the second lens barrel from the cloth-adhesive surface.
  • the first glue is not arranged on the extension surface.
  • the transition surface is an inclined surface, and an included angle between the transition surface and a central axis of the second lens barrel is 30 ° -85 °.
  • the cloth surface is flat.
  • the inner top surface includes a bearing surface abutting against the second lens group and a non-abutting surface not bearing abutting with the second lens group, and the bearing surface has a portion close to the central axis.
  • the radial direction is a direction perpendicular to the central axis.
  • the distance from the rubber cloth surface to the extension surface is at least 50 micrometers, and the axial direction is a direction parallel to the central axis.
  • the first lens component further includes a first lens barrel, and the first lens group is installed in the first lens barrel.
  • the first lens group includes an optical region and a structural region surrounding the optical region, and a bottom surface of the structural region has a retracted surface that avoids the cloth surface.
  • the indented surface includes an inclined surface corresponding to the transition surface.
  • the distance between the extension surface and the bottom surface of the first lens group is 30-150 microns.
  • the distance between the transition surface of the second lens barrel and the inclined surface of the first lens group is at least twice the distance between the extension surface and the bottom surface of the first lens group.
  • first design distance and a second design distance between the first lens component and the second lens component, and the first design distance is at least twice the second design distance;
  • first The design distance is a design distance between the transition surface of the second lens barrel and the inclined surface of the first lens group, and the second design distance is determined by the optical design of the optical system. It is: the design distance between the extension surface and the bottom surface of the first lens group is determined by the optical design of the optical system.
  • the optical axis of the first lens component and the optical axis of the second lens component have a non-zero included angle.
  • the inner side surface of the second lens barrel has a multi-stage step, and the at least one second lens is sequentially embedded in the multi-stage step to form the second lens group.
  • the present application also provides a camera module including any of the foregoing optical lenses.
  • the present application also provides an optical lens assembly method, including: pre-positioning a first lens component and a second lens component, so that the first lens group included in the first lens component and the second lens component included
  • the second lens group collectively constitutes an imageable optical system, wherein the first lens group includes at least one first lens, the second lens component further includes a second lens barrel, and the second lens group is mounted on the first lens group.
  • the second lens group includes at least one second lens.
  • the second lens barrel has an outer top surface and an inner top surface. The second lens group bears on the inner top surface.
  • the outer top surface includes a cloth-adhesive surface and an extension surface formed by extending from the cloth-adhesive surface to a central axis of the second lens barrel, the cloth-adhesive surface having a first thickness to the inner top surface, and the extension Surface to the inner top surface has a second thickness, and the first thickness is greater than the second thickness; relative positions of the first lens component and the second lens component based on an imaging result of the optical system Performing active calibration; and bonding said A lens member and said second lens member, so that relative position of the first lens component and said second lens holding member in a position relative to the determined active calibration.
  • the inner side surface of the second lens barrel has a multi-step
  • the method for assembling the optical lens further includes: turning the second lens barrel upside down, and then sequentially embedding the at least one second lens into the multi-step. To form the second lens group.
  • the predetermined positioning further includes: obtaining positions of the first lens component and the second lens component through laser ranging, and then performing the predetermined positioning, wherein laser ranging is performed on the outer top surface. To obtain the position of the second lens component.
  • the bonding includes: arranging a first adhesive material on the cloth adhesive surface; and curing the first adhesive material so that the relative positions of the first lens component and the second lens component are maintained actively. Relative position determined by calibration.
  • the curing of the first glue material includes: pre-curing the first glue material through exposure; and permanently curing the first glue material through baking.
  • the arrangement of the first glue material is performed before the active calibration, or is performed after the active calibration is completed.
  • This application can improve the mechanical strength and reliability of the black object of the second lens component (ie, the second lens barrel).
  • This application can improve the flatness of the dispensing area after the second lens component is assembled, thereby improving the yield of the optical lens or camera module.
  • This application can avoid increasing the total optical length (TTL) of the camera module, which contributes to the miniaturization of the camera module.
  • This application can avoid increasing the height of the optical lens (that is, the size in the direction of the optical axis), which contributes to the miniaturization of the camera module.
  • This application can avoid or suppress the curvature of the second lens barrel caused by the second lens group, thereby avoiding or suppressing the product failure or the degradation of the imaging quality caused by the inaccurate positioning of the second lens component.
  • This application can avoid or suppress the curvature of the second lens barrel caused by the second lens group, thereby avoiding or inhibiting the active calibration process from consuming too much time due to the inaccurate positioning of the second lens component. Application can improve production efficiency.
  • the application can thicken the top of the second lens barrel to better resist variations in the imaging quality of the optical lens caused by environmental factors during production, such as baking, exposure, and humidity, or during long-term use.
  • FIG. 1 is a schematic cross-sectional view of an optical lens 1000 according to an embodiment of the present application.
  • FIG. 2 shows an optical lens of a comparative example
  • FIG. 3 shows a partially enlarged view of a region around the top of the second lens barrel in an embodiment of the present application
  • FIG. 4A illustrates a relative position adjustment method in active calibration according to an embodiment of the present application
  • FIG. 4C illustrates a relative position adjustment method in which v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • first, second, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens.
  • FIG. 1 is a schematic cross-sectional view of an optical lens 1000 according to an embodiment of the present application.
  • the optical lens 1000 of this embodiment includes a first lens component 100, a second lens component 200, and a first glue 300.
  • the first lens component 100 includes a first lens group, and the first lens group includes at least one first lens 102.
  • the second lens component 200 includes a second lens barrel 201 and a second lens group installed in the second lens barrel 201.
  • the second lens group includes at least one second lens 202, the first lens group, and the second lens group.
  • the second lens group collectively forms an imageable optical system.
  • the first glue material 300 is arranged between the second lens component 200 and the first lens component 100, and the first glue material 300 is adapted to support and fix the first lens component 100 and the second lens after curing.
  • the component 200 is configured to keep the relative positions of the two at the relative positions determined by the active calibration.
  • the second lens barrel 201 has an outer top surface 2011 and an inner top surface 2012, and the second lens group bears on the inner top surface 2012.
  • the outer top surface 2011 includes a cloth-adhesive surface 2011a suitable for arranging the first glue material 300 and an extension surface 2011b formed by extending from the cloth-adhesive surface 2011a to a central axis of the second lens barrel 201.
  • the first glue material 300 is not arranged on the extension surface 2011b.
  • the rubber cloth surface 2011a to the inner top surface 2012 has a first thickness
  • the extension surface 2011b to the inner top surface 2012 has a second thickness
  • the first thickness is greater than the second thickness.
  • Active calibration is to adjust the relative positions of the first lens component 100 and the second lens component 200 based on the imaging results of the optical system to determine the relative position (referring to the first lens) capable of achieving imaging quality standards. Relative position of the component 100 and the second lens component 200). To facilitate understanding, active calibration will be further described below.
  • the top portion 209 of the second lens barrel 201 can be thickened, and in particular, the top portion 209 of the second lens barrel 201 corresponds to the rubber cloth surface.
  • the part of 2011a is thickened, thereby increasing the structural strength of the top 209 of the second lens barrel, and thereby suppressing the variation of the performance of the optical system due to the deformation of the sky (ie, the outer top surface 2011 of the second lens barrel 201).
  • the above embodiment can also enhance the portion of the top 209 of the second lens barrel 201 corresponding to the extension surface 2011b when it is squeezed by the second lens (for example, when the second lens is embedded in the second lens barrel to form a second lens group). Time) the ability to resist deformation.
  • FIG. 2 shows an optical lens of a comparative example.
  • the optical lens of the comparative example includes a first lens member 100, a second lens member 200, and a first glue 300.
  • the outer top surface 2011 of the second lens barrel 201 is a plane, and the top portion 209 of the second lens barrel 201 is not thickened as shown in FIG. 1.
  • the second lens 202 is installed in the second lens barrel 201 to form the second lens group.
  • the thin sky surface may not be able to carry and bulge outward, which causes the sky surface to deform. In this way, the upper surface of the second lens component 200 forms a curved surface.
  • a multi-point height measurement of the upper surface of the second lens component 200 is required to pre-position the first lens component 100 and the second lens component 200.
  • the upper surface of the second lens component 200 is an arcuate surface, there will be deviations in the measured positions, resulting in failure to obtain an accurate pre-positioned position (by design, the lower surface (that is, the second lens group) sky surface
  • plane processing laser ranging and three points are fitted to a plane, and the fitted plane is used as the position of the sky surface), which further affects the product yield.
  • glue is applied between the barrels of the upper and lower lens components to make it a complete optical system.
  • the lens may be exposed or baked for a short period of time, and during use, it may be exposed to various temperature and humidity conditions for a long time. These situations may cause a certain change in the shape of the plastic material. At the same time, the thermal stress generated by the lens and the lens barrel itself will cause a certain deformation, resulting in variations in the performance of the optical system. Variations in the production process affect product yield and increase costs, while variations in the use process affect product reliability and life. In the comparative example, the thin top 209 of the second lens barrel 201 is difficult to resist the above-mentioned variation factors during production or use, which may cause the sky to continue to deform, causing variations in the performance of the optical system, affecting the reliability and goodness of the optical lens. rate.
  • the sky surface that is, the first The structural strength of the outer top surface (2011) of the two lens barrels 201 increases the accuracy of pre-positioning, and makes the optical lens better resist the variation of the performance of the optical system caused by various inducements during production or use.
  • FIG. 3 shows a partial enlarged view of a region around the top of the second lens barrel in an embodiment of the present application.
  • the cloth surface A transition surface 2011c is provided between 2011a and the extension surface 2011b.
  • the transition surface 2011c is an inclined surface. Designing the transition surface 2011c as an inclined surface helps the second lens barrel to be demolded during the molding process, thereby improving the yield.
  • an included angle between the transition surface and a central axis of the second lens barrel is 30 ° -85 °.
  • the cloth-rubber surface 2011a is a flat surface.
  • the inner top surface 2012 includes a bearing surface that abuts against the second lens group and a non-abutting surface that does not abut the second lens group, and the bearing surface has a first bearing portion close to the central axis.
  • the area of the top 209 of the second lens barrel 201 for bearing the second lens group is thickened, thereby suppressing the deformation of the sky.
  • the position of the transition surface 2011c is set at a position that does not interfere with the light emitted from the first lens group.
  • one end D of the transition surface 2011c connected to the extension surface 2011b overlaps the midpoint C in a plan view angle, or is located closer to the second lens barrel 201 than the midpoint C. Position of the bottom bracket.
  • one end D of the transition surface 2011c connecting the extension surface 2011b to the third end E of the outer top surface 2011 that overlaps with the second end B of the inner top surface 2012 (referring to overlap in the top view direction).
  • the first end A to the second end B have a second radial distance.
  • the first radial distance is at least greater than half the second radial distance.
  • the bearing strength of the top lens 209 of the second lens barrel 201 against the first group of lenses in the lower group can be further strengthened to prevent the sky of the second lens barrel 201 from protruding when the second lens 202 is assembled.
  • the distance between the cloth-laying surface 2011a and the extension surface 2011b is at least 50 microns, and the axial direction is parallel The direction of the central axis of the second lens barrel 202.
  • the cloth surface 2011a is at least 50 micrometers higher than the extension surface 2011b.
  • the first lens component 100 further includes a first lens barrel 101, and the first lens group is installed in the first lens barrel 101.
  • the first lens barrel may be cancelled.
  • the first lens group may be assembled by fitting or adhering a plurality of first lenses 102 to each other.
  • a single first lens 102 may be used to form a first lens group.
  • the inner side surface of the second lens barrel 201 has a multi-step, and the at least one second lens 202 is sequentially embedded in the multi-step to form the second lens group. .
  • the first lens group includes an optical area and a structural area surrounding the optical area, and a bottom surface 1021 of the structural area is provided with the cloth to avoid The indented surface 1021a of the rubber surface 2011a.
  • the indented surface 1021a includes an inclined surface 1021b corresponding to the transition surface 2011c.
  • TTL total optical length caused by the thickening of the top 209 of the second lens barrel 201 can be avoided, which helps For miniaturization of optical lenses or camera modules.
  • the thickness of the first lens barrel 101 (here, the thickness refers to the dimension along the optical axis or the middle axis direction of the first lens barrel) can be reduced to avoid the thickened top portion 209 of the second lens barrel 201 , So that the first lens barrel and the second lens barrel have sufficient design clearance in the thickness direction for active calibration.
  • the thickness reduced by the first lens barrel 101 may be equal to the thickness increased by the top portion 209 of the second lens barrel 201.
  • the top portion 209 has the first thickness and the second thickness, and the difference between the first thickness and the second thickness can be Consider the increased thickness of the top 209 of the second lens barrel 201.
  • the distance between the extension surface 2011b and the bottom surface of the first lens group is 30-150 microns.
  • a distance between the transition surface 2011c of the second lens barrel 201 and the inclined surface of the first lens group is at least the extension surface 2011b and The distance between the bottom surfaces of the first lens group is twice, so as to satisfy the movable gap of the relative position adjustment of the first lens component 100 and the second lens component 200 during the active calibration process.
  • the first lens component 100 and the second lens component 200 have a first design distance and a second design distance to satisfy the active During the calibration process, the movable gap of the relative position adjustment of the first lens component 100 and the second lens component 200 is adjusted.
  • the first design distance is at least twice the second design distance; the first design distance is: the transition of the second lens barrel 201 determined by the optical design of the optical system
  • the design distance between the surface 2011c and the inclined surface 1021b of the first lens group, the second design distance is: determined by the optical design of the optical system, the extension surface 2011b and the first Design distance between the bottom surfaces of the lens group.
  • the relative position between the first lens component 100 and the second lens component 200 is determined by the result of active calibration, so the above-mentioned design distance may be different from the actual distance of the actual product.
  • the actual distance will show a statistical law associated with the design distance, so as to determine whether the actual product of the optical lens has a first design distance of at least a second Features that are twice the design distance.
  • the optical axis of the first lens component 100 and the optical axis of the second lens component 200 may be non-zero angles between them.
  • a camera module which includes a photosensitive component and an optical lens.
  • the optical lens may be the optical lens described in any one of the foregoing embodiments.
  • the optical lens may be mounted in an optical actuator such as a motor.
  • the optical lens may be mounted on the inner side of the motor carrier to form an optical lens assembly with a motor, and the optical lens assembly may be mounted on top of the photosensitive component.
  • an optical lens assembly method is further provided, which includes the following steps.
  • the first lens component 100 and the second lens component 200 are pre-positioned.
  • the first lens component 100 includes a first lens group
  • the first lens group includes at least one first lens 102
  • the second lens component 200 includes a second lens barrel 201 and the second lens barrel 201.
  • An inner second lens group the second lens group includes at least one second lens 202, the second lens barrel 201 has an outer top surface 2011 and an inner top surface 2012, and the second lens group bears on the second lens group Inner top surface 2012, the outer top surface 2011 includes a cloth-adhesive surface 2011a and an extension surface 2011b formed by extending from the cloth-adhesive surface 2011a to the central axis of the second lens barrel 201, and the cloth-adhesive surface 2011a to The inner top surface 2012 has a first thickness, the extension surface 2011b to the inner top surface 2012 have a second thickness, and the first thickness is greater than the second thickness.
  • the predetermined position enables the first lens group and the second lens group to form an imageable optical system together.
  • Step S200 Actively calibrate the relative positions of the first lens component 100 and the second lens component 200 based on the imaging results of the optical system.
  • step S300 the first lens component 100 and the second lens component 200 are bonded so that the relative positions of the two are maintained at the relative positions determined by active calibration.
  • an inner side surface of the second lens barrel 201 has multiple steps
  • the method for assembling an optical lens further includes: turning the second lens barrel 201 upside down, and then placing the at least one second lens 202 The multi-steps are sequentially embedded to form the second lens group.
  • the pre-positioning step (ie, S100) further includes: obtaining positions of the first lens component 100 and the second lens component 200 by laser ranging, and then performing the pre-positioning, The position of the second lens component 200 is obtained by performing laser ranging on the outer top surface 2011.
  • the bonding step includes: arranging a first adhesive material 300 on the cloth adhesive surface 2011a; and curing the first adhesive material 300 so that the first lens component 100 The relative position with the second lens member 200 is maintained at the relative position determined by the active calibration.
  • the step of curing the first glue material 300 includes: pre-curing the first glue material 300 through exposure; and permanently curing the first glue material 300 through baking.
  • the step of arranging the first glue material 300 is performed before the active calibration step or after the active calibration step is completed (for example, after the active calibration is completed, the three-dimensional coordinate position of the first lens component 100 is recorded, and then moved Open the first lens component 100, apply glue on the outer top surface 2011 of the second lens barrel 201, and then move back to the first lens component 100 according to the recorded three-dimensional coordinate position).
  • FIG. 4A illustrates a relative position adjustment method in active calibration according to an embodiment of the present application.
  • the first lens component 100 also the first lens 101
  • the second lens component 200 that is, the relative position in this embodiment.
  • Adjustment has three degrees of freedom).
  • the z direction is a direction along the optical axis
  • the x and y directions are directions perpendicular to the optical axis. Both the x and y directions are in an adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • FIG. 4B illustrates rotation adjustment in active calibration according to another embodiment of the present application.
  • the relative position adjustment in addition to the three degrees of freedom of FIG. 4A, the relative position adjustment also increases the degree of freedom of rotation, that is, the adjustment in the r direction.
  • the adjustment in the r direction is a rotation in the adjustment plane P, that is, a rotation about an axis perpendicular to the adjustment plane P.
  • FIG. 4C illustrates a relative position adjustment method in which the v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • the v direction represents the rotation angle of the xoz plane
  • the w direction represents the rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction can be combined into a vector angle
  • this vector angle represents the total tilt state. That is, by adjusting the v direction and the w direction, the tilt attitude of the first lens component relative to the second lens component (that is, the optical axis of the first lens component relative to the optical axis of the second lens component can be adjusted. The tilt).
  • the relative position adjustment method may be to adjust only any one of the above six degrees of freedom, or a combination of any two or more of them.
  • the adjustment of the relative positions of the first lens component and the second lens component includes translation on the adjustment plane, that is, movement in the x and y directions.
  • adjusting the relative position of the first lens component 100 and the second lens component further includes: adjusting and determining the position of the first lens component according to the measured resolution of the optical system.
  • the angle between the axis and the axis of the second lens component that is, adjustment in the w and v directions.
  • an angle between the axis of the first lens component and the axis of the second lens component may be non-zero.
  • adjusting the relative position of the first lens component and the second lens component further includes: moving the first lens component (i.e., z) in a direction perpendicular to the adjustment plane. Adjustment in the direction), according to the measured resolution of the optical system, determine the relative position between the first lens component and the second lens component in a direction perpendicular to the adjustment plane.
  • the first lens component may not have a first lens barrel.
  • the first lens component may be composed of a single first lens. Before the active calibration, first correspond to the predetermined position, so that there is a gap between the bottom surface of the first lens and the top surface of the second lens component; then perform active calibration, and then arrange the glue in the gap and Allow the glue to cure.
  • the first lens may be formed by a plurality of sub-lenses that are fitted or bonded to each other to form a whole.
  • a side surface and a top surface of the non-optical surface of the first lens that are not used for imaging may form a light shielding layer.
  • the light-shielding layer may be formed by screen-printing a light-shielding material on a side surface and a top surface of the first lens.
  • the second lens component in the active calibration step, may be fixed, the first lens component may be clamped by a clamp, and the first lens component may be moved by a six-axis movement mechanism connected to the clamp to implement the first Relative movement between the lens component and the second lens component in the above six degrees of freedom.
  • the jig can be abutted or partially abutted on the side of the first lens component, thereby clamping the first lens component and performing multi-degree of freedom position adjustment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学镜头(1000),包括第一镜头部件(100)、第二镜头部件(200)和第一胶材(300)。第一镜头部件(100)的第一镜片群和第二镜头部件(200)的第二镜片群共同构成成像的光学系统,第二镜头部件(200)的第二镜筒(201)具有外顶面(2011)和内顶面(2012),外顶面(2011)包括布胶面(2011a)和延伸面(2011b),布胶面(2011a)至内顶面(2012)具有第一厚度,延伸面(2011b)至内顶面(2012)具有第二厚度,第一厚度大于第二厚度。同时,还提供一种光学镜头组装方法。

Description

光学镜头、摄像模组及组装方法
相关申请的交叉引用
本申请要求于2018年8月30日递交于中国国家知识产权局(CNIPA)的、申请号为201811003070.7、发明名称为“光学镜头、摄像模组及组装方法”的中国发明专利申请以及2018年8月30日递交于CNIPA的、申请号为201821412342.4、发明名称为“光学镜头及摄像模组”的中国实用新型专利申请的优先权和权益,上述申请通过引用整体并入本文。
技术领域
本申请涉及光学成像技术领域,具体地说,本申请涉及光学镜头、摄像模组及组装方法。
背景技术
随着手机、电脑等终端的发展,用户对于各项需求都有着不小的提升,尤其随着手机的发展,用户对于拍摄质量的追求,使得厂商发展出了个性化,定制化的摄像模组,例如大光圈,大广角,解决像差而出现的数量较多的镜片的镜头等。一方面这是光学设计上越来越复杂,另一方面的现实是复杂的光学系统又很敏感,这对制造的良率和产品质量造成了不小的挑战。因为大光圈、大广角的摄像模组的光学系统会比较敏感,其制造过程和验证过程的可靠性都会比常规的设计更加脆弱,因此现在需要一种结构更优的镜头。
另一方面,为了满足越来越广泛的市场需求,高像素、小尺寸、大光圈是现有摄像模组不可逆转的发展趋势。然而,要在同一摄像模塑实现高像素、小尺寸、大光圈三个方面的需求是有很大难度的。例如,手机的紧凑型发展和手机屏占比的增加,让手机内部能够用于前置摄像模组的空间越来越小,而市场对摄像模组的成像质量又提出了 越来越高的需求。
在紧凑型摄像模组(例如用于手机的摄像模组)领域,往往需要考虑到光学成像镜头的品质和模组封装过程中的制造误差。具体来说,在光学成像镜头的制造过程中,影响镜头解像力因素来自于各元件及其装配的误差、镜片间隔元件厚度的误差、各镜片的装配配合的误差以及镜片材料折射率的变化等。因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。
本申请提出了一种基于主动校准工艺调整和确定上、下子镜头的相对位置,然后将上、下子镜头按照所确定的相对位置粘结在一起,进而制造出完整的光学镜头或摄像模组的组装方法。这种解决方案能够提升大批量生产的光学镜头或摄像模组的过程能力指数(CPK);能够使得对物料(例如用于组装光学镜头或摄像模组的子镜头或感光组件)的各个元件的精度及其装配精度的要求变宽松,进而降低光学成像镜头以及摄像模组的整体成本;能够在组装过程中对摄像模组的各种像差进行实时调整,降低不良率,降低生产成本,提升成像品质。
然而,对镜头的光学系统本身进行主动校准是一种新的生产工艺,实际量产需要考虑光学镜头和摄像模组的可靠性、抗摔性、耐候性以及制作成本等诸多因素,有时还需要面对各种不可测因素而导致的良率下降。改善基于主动校准工艺制造的光学镜头的结构可靠性,是提升此类光学镜头的成像品质和良率的一个重要考量方向。因此,迫切需要能够改善基于主动校准工艺制造的光学镜头的结构可靠性的解决方案。
发明内容
本申请旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本申请的一个方面,提供了一种光学镜头,包括:第一镜头部件,其包括第一镜片群,所述第一镜片群包括至少一个第一镜片; 第二镜头部件,其包括第二镜筒和安装于所述第二镜筒内的第二镜片群,所述第二镜片群包括至少一个第二镜片,所述第一镜片群和所述第二镜片群共同构成可成像的光学系统,其中所述第二镜筒具有外顶面和内顶面,所述第二镜片群承靠于所述内顶面;以及第一胶材,其布置于所述外顶面和所述第一镜头部件的底面之间,并且所述第一胶材适于在固化后支撑和固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置,其中,所述外顶面包括适于布置所述第一胶材的布胶面和自所述布胶面向所述第二镜筒的中轴延伸而形成的延伸面,所述布胶面至所述内顶面具有第一厚度,所述延伸面至所述内顶面具有第二厚度,并且所述第一厚度大于所述第二厚度。
其中,所述延伸面不布置所述第一胶材。
其中,所述布胶面至所述延伸面之间具有过渡面。
其中,所述过渡面为斜面,所述过渡面与所述第二镜筒的中轴的夹角为30°-85°。
其中,所述布胶面为平整面。
其中,所述内顶面包括与所述第二镜片群承靠的承靠面和未与所述第二镜片群承靠的非承靠面,所述承靠面具有靠近所述中轴的第一端和背离所述中轴的第二端,并且,在径向方向上,所述过渡面的连接所述延伸面的一端位于所述第一端和所述第二端之间的位置,其中所述径向方向是垂直于所述中轴的方向。
其中,所述第一端和所述第二端之间具有中点;并且,在径向方向上,所述过渡面的连接所述延伸面的一端位于所述中点,或者位于比所述中点靠近所述中轴的位置。
其中,在轴向方向上,所述布胶面到所述延伸面的距离至少为50微米,所述轴向方向是平行于所述中轴的方向。
其中,所述第一镜头部件还包括第一镜筒,所述第一镜片群安装于所述第一镜筒内。
其中,所述第一镜片群包括光学区和围绕所述光学区的结构区,所述结构区的底面具有避让所述布胶面的缩进面。
其中,所述缩进面包括与所述过渡面对应的斜面。
其中,所述延伸面与所述第一镜片群的底面之间的距离为30-150微米。
其中,所述第二镜筒的所述过渡面与所述第一镜片群的所述斜面的距离至少为所述延伸面与所述第一镜片群的底面之间距离的两倍。
其中,所述第一镜头部件和所述第二镜头部件之间具有第一设计距离和第二设计距离,所述第一设计距离至少为所述第二设计距离的两倍;所述第一设计距离是:由所述光学系统的光学设计所决定的、所述第二镜筒的所述过渡面与所述第一镜片群的所述斜面之间的设计距离,所述第二设计距离是:由所述光学系统的光学设计所决定的、所述延伸面与所述第一镜片群的底面之间的设计距离。
其中,所述第一镜头部件的光轴与所述第二镜头部件的光轴之间具有不为零的夹角。
其中,所述第二镜筒的内侧面具有呈多级台阶,所述至少一个第二镜片依次嵌入所述多级台阶,以组立成所述第二镜片群。
本申请还提供了一种摄像模组,其包括前述的任一光学镜头。
本申请还提供了一种光学镜头组装方法,包括:对第一镜头部件和第二镜头部件进行预定位,使得所述第一镜头部件包括的第一镜片群和所述第二镜头部件包括的第二镜片群共同构成可成像的光学系统,其中,所述第一镜片群包括至少一个第一镜片,所述第二镜头部件还包括第二镜筒,所述第二镜片群安装于所述第二镜筒内,所述第二镜片群包括至少一个第二镜片,所述第二镜筒具有外顶面和内顶面,所述第二镜片群承靠于所述内顶面,所述外顶面包括布胶面和自所述布胶面向所述第二镜筒的中轴延伸而形成的延伸面,所述布胶面至所述内顶面具有第一厚度,所述延伸面至所述内顶面具有第二厚度,并且所述第一厚度大于所述第二厚度;基于所述光学系统的成像结果对所述第一镜头部件和所述第二镜头部件的相对位置进行主动校准;以及粘结所述第一镜头部件和所述第二镜头部件,使得所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置。
其中,所述第二镜筒的内侧面具有多级台阶,所述光学镜头组装方法还包括:将所述第二镜筒倒置,然后将所述至少一个第二镜片依次嵌入所述多级台阶以组立所述第二镜片群。
其中,所述预定位还包括:通过激光测距来获取所述第一镜头部件和所述第二镜头部件的位置,进而进行所述预定位,其中通过对所述外顶面进行激光测距来获取所述第二镜头部件的位置。
其中,所述粘结包括:在所述布胶面布置第一胶材;以及使所述第一胶材固化以使得所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置。
其中,所述使所述第一胶材固化包括:通过曝光使所述第一胶材预固化;以及通过烘烤使所述第一胶材永久固化。
其中,所述布置第一胶材在所述主动校准之前执行,或者在所述主动校准完成后执行。
与现有技术相比,本申请具有下列至少一个技术效果:
1、本申请可以提升第二镜头部件黑物(即第二镜筒)的机械强度与可靠性。
2、本申请可以提升第二镜头部件组立后点胶区域的平整度从而提升光学镜头或摄像模组的良率。
3、本申请可以避免增加摄像模组的光学总长(TTL),有助于摄像模组的小型化。
4、本申请可以避免增加光学镜头的高度(即光轴方向上的尺寸),有助于摄像模组的小型化。
5、本申请可以避免或抑制第二镜片群组立而造成的第二镜筒天面弯曲,进而避免或抑制因第二镜头部件预定位不准确而造成的产品不良或成像品质下降。
6、本申请可以避免或抑制第二镜片群组立而造成的第二镜筒天面弯曲,进而避免或抑制因第二镜头部件预定位不准确而造成主动校准工序消耗过多时间,因此本申请可以提高生产效率。
7、本申请可以通过将第二镜筒的顶部加厚,来更好地抵抗因烘烤、曝光、潮湿等生产过程中或长期使用过程中的环境因素而造成的光学镜头成像品质变异。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本申请一个实施例的光学镜头1000的剖面示意图;
图2示出了一个比较例的光学镜头;
图3示出了本申请一个实施例中的第二镜筒的顶部周围区域的局部放大图;
图4A示出了本申请一个实施例中的主动校准中相对位置调节方式;
图4B示出了本申请另一个实施例的主动校准中的旋转调节;
图4C示出了本申请又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一镜片也可被称作第二镜片。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含 有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本申请一个实施例的光学镜头1000的剖面示意图。如图1所示,本实施例的光学镜头1000包括第一镜头部件100、第二镜头部件200和第一胶材300。其中第一镜头部件100包括第一镜片群,所述第一镜片群包括至少一个第一镜片102。第二镜头部件200包括第二镜筒201和安装于所述第二镜筒201内的第二镜片群,所述第二镜片群包括至少一个第二镜片202,所述第一镜片群和所述第二镜片群共同构成可成像的光学系统。第一胶材300布置于第二镜头部件200和第一镜头部件100之间,并且所述第一胶材300适于在固化后支撑和固定所述第一镜头部件100和所述第二镜头部件200,以使上述二者的相对位置保持在主动校准所确定的相对位置。所述第二镜筒201具有外顶面2011和内顶面2012,所述第二镜片群承靠于所述内顶面2012。所述外顶面2011包括适于布置所述第一胶材300的布胶面2011a 和自所述布胶面2011a向所述第二镜筒201的中轴延伸而形成的延伸面2011b。本实施例中,所述延伸面2011b不布置所述第一胶材300。所述布胶面2011a至所述内顶面2012具有第一厚度,所述延伸面2011b至所述内顶面2012具有第二厚度,并且所述第一厚度大于所述第二厚度。主动校准是基于所述光学系统的成像结果对所述第一镜头部件100和所述第二镜头部件200的相对位置进行调整,以确定能够使成像品质达标的相对位置(指所述第一镜头部件100和所述第二镜头部件200的相对位置)。为便于理解,在下文中还会对主动校准进行进一步地描述。
上述实施例中,通过使所述第一厚度大于所述第二厚度的设计,可以使第二镜筒201的顶部209加厚,尤其是使第二镜筒201的顶部209对应于布胶面2011a的部分加厚,从而提高第二镜筒顶部209的结构强度,进而抑制光学系统性能因天面(即第二镜筒201的外顶面2011)的形变而发生变异。另外,上述实施例也可以增强第二镜筒201的顶部209对应于延伸面2011b的部分在受到第二镜片挤压时(例如在第二镜片嵌入第二镜筒以组立成第二镜片群的时候)抵抗变形的能力。
为便于理解,下面引入一个比较例进行说明。图2示出了一个比较例的光学镜头。参考图2,该比较例的光学镜头包括第一镜头部件100、第二镜头部件200和第一胶材300。与图1的实施例不同,比较例中,第二镜筒201的外顶面2011是一个平面,第二镜筒201的顶部209未做如图1所示的加厚处理。在进行组装时,在第二镜筒201内装入第二镜片202以组立第二镜片群,较薄的天面可能无法承载而向外凸起,使得天面形变。这样,第二镜头部件200的上表面形成一个弧形面。在典型的光学镜头的组装过程中,需要对第二镜头部件200的上表面进行多点测高,以对第一镜头部件100和第二镜头部件200进行预定位。然而,如果第二镜头部件200的上表面为弧形面,则所测出的位置会存在偏差,导致无法获得准确的预定位位置(按设计是将下群(即第二镜片群)天面以平面处理,激光测距测三点以上拟合一平面,以该拟合平面作为天面的位置),进而影响产品良率。另一方 面,在多群组镜头中,在上下镜头部件的镜筒之间施加胶材粘接,使其成为一个完整的光学系统。但在生产过程中,镜头可能会短期地曝光或烘烤,在使用过程中,可能会长期处于各种温度湿度条件下。这些情形都可能使胶材的形态发生一定变化,同时镜片和镜筒自身受热产生的热应力也会造成一定的形变,导致光学系统性能的变异。生产过程中的变异影响产品良率增加成本,使用过程中的变异则影响产品可靠性与寿命。比较例中,第二镜筒201较薄的顶部209难以抵抗上述生产过程中或使用过程中的变异因素,可能导致天面继续发生形变,造成光学系统性能的变异,影响光学镜头的可靠性和良率。
而图1的实施例中,通过使第二镜筒201的顶部209加厚,尤其是使第二镜筒201的顶部209对应于布胶面2011a的部分加厚,可以提高天面(即第二镜筒201的外顶面2011)的结构强度,从而增加预定位的准确性,并且使光学镜头更好地抵抗生产过程中或使用过程中各种诱因所导致的光学系统性能变异。另一方面,图1的实施例中,可以避免对第二镜筒201的顶部209做整体加厚而导致光学镜头的光学总长(即TTL)增加,因此有助于光学镜头和摄像模组的小型化。
进一步地,图3示出了本申请一个实施例中的第二镜筒的顶部周围区域的局部放大图,结合参考图1和图3,在本申请的一个实施例中,所述布胶面2011a至所述延伸面2011b之间具有过渡面2011c。所述过渡面2011c为斜面。将过渡面2011c设计为斜面有助于第二镜筒在模塑成型工艺中进行脱模,从而提升良率。本实施例中,所述过渡面与所述第二镜筒的中轴的夹角为30°-85°。所述布胶面2011a为平整面。所述内顶面2012包括与所述第二镜片群承靠的承靠面和未与所述第二镜片群承靠的非承靠面,所述承靠面具有靠近所述中轴的第一端A和背离所述中轴的第二端B,并且,在径向方向上,所述过渡面2011c的连接所述延伸面2011b的一端D位于所述第一端A和所述第二端B之间的位置,其中所述径向方向是垂直于所述中轴的方向(即图3中的水平方向)。换句话说,本实施例中,对第二镜筒201顶部209用于承靠第二镜片群的区域进行加厚,从而抑制天面的形变。本实施例中,过渡面2011c的位置设置在不干扰第一镜片群的光线出射的位置。
进一步地,仍然结合参考图1和图3,在本申请的一个实施例中,所述第一端A和所述第二端B之间具有中点C。并且,在径向方向上,所述过渡面2011c的连接所述延伸面2011b的一端D在俯视角度下与所述中点C重叠,或者位于比所述中点C靠近第二镜筒201的中轴的位置。换句话说,所述过渡面2011c的连接所述延伸面2011b的一端D到外顶面2011上与所述内顶面2012的第二端B重叠(指俯视方向上重叠)的第三端E具有第一径向距离(径向距离即图1中的水平方向上的距离),所述第一端A到所述第二端B具有第二径向距离。第一径向距离至少大于第二径向距离的一半。本实施例中,可以进一步地加强第二镜筒201顶部209对下群第一片镜片的承靠强度,防止第二镜片202组立时第二镜筒201的天面上凸。
进一步地,仍然结合参考图1和图3,在一个实施例中,在轴向方向上,所述布胶面2011a到所述延伸面2011b的距离至少为50微米,所述轴向方向是平行于所述第二镜筒202的中轴的方向。换句话说,布胶面2011a比延伸面2011b高至少50微米。
进一步地,参考图1,在本申请的一个实施例中,所述第一镜头部件100还包括第一镜筒101,所述第一镜片群安装于所述第一镜筒101内。需注意,在本申请的其它实施例中,第一镜筒可以取消。例如在一个实施例中,第一镜片群可以通过多个第一镜片102互相嵌合或粘合而组立。在另一个实施例中,可以使用单个第一镜片102形成第一镜片群。
进一步地,在一个实施例中,所述第二镜筒201的内侧面具有呈多级台阶,所述至少一个第二镜片202依次嵌入所述多级台阶,以组立成所述第二镜片群。
进一步地,参考图1和图3,在本申请的一个实施例中,所述第一镜片群包括光学区和围绕所述光学区的结构区,所述结构区的底面1021具有避让所述布胶面2011a的缩进面1021a。所述缩进面1021a包括与所述过渡面2011c对应的斜面1021b。本实施例中,由于第一镜片群结构区的底面避让所述布胶面2011a的缩进面1021a,可以避免因第二镜筒201顶部209加厚而造成光学总长(TTL)增加,有助 于光学镜头或摄像模组的小型化。并且,进一步地,还可以消减第一镜筒101的厚度(此处厚度指沿着光轴或第一镜筒的中轴方向的尺寸),以避让加厚的第二镜筒201的顶部209,使得第一镜筒和第二镜筒在厚度方向上具有足够的设计间隙以进行主动校准。第一镜筒101所消减的厚度可以等于第二镜筒201的顶部209所增加的厚度。其中,参考前文第一个实施例中的描述,可以看出顶部209具有所述第一厚度和所述第二厚度,而所述第一厚度与所述第二厚度之间的差值可以被视为第二镜筒201的顶部209所增加的厚度。
进一步地,参考图1,在本申请的一个实施例中,所述延伸面2011b与所述第一镜片群的底面之间的距离为30-150微米。
进一步地,参考图1,在本申请的一个实施例中,所述第二镜筒201的所述过渡面2011c与所述第一镜片群的所述斜面的距离至少为所述延伸面2011b与所述第一镜片群的底面之间距离的两倍,以满足主动校准过程中,第一镜头部件100和第二镜头部件200相对位置调整的活动间隙。
进一步地,参考图1和图3,在本申请的一个实施例中,所述第一镜头部件100和所述第二镜头部件200之间具有第一设计距离和第二设计距离,以满足主动校准过程中,第一镜头部件100和第二镜头部件200相对位置调整的活动间隙。其中所述第一设计距离至少为所述第二设计距离的两倍;所述第一设计距离是:由所述光学系统的光学设计所决定的、所述第二镜筒201的所述过渡面2011c与所述第一镜片群的所述斜面1021b之间的设计距离,所述第二设计距离是:由所述光学系统的光学设计所决定的、所述延伸面2011b与所述第一镜片群的底面之间的设计距离。光学镜头成品中,所述第一镜头部件100和所述第二镜头部件200之间的相对位置是由主动校准结果所决定的,因此上述设计距离可能不同于实际产品的实际距离。但本领域技术人员易于理解,对于同一光学设计下的同一批次产品,实际距离会呈现出与设计距离相关联的统计规律,从而判断出光学镜头实际产品是否具备第一设计距离至少为第二设计距离的两倍的特征。
进一步地,在一个实施例中,由于第一镜头部件100和第二镜头 部件200的相对位置由主动校准确定,所述第一镜头部件100的光轴与所述第二镜头部件200的光轴之间可以具有不为零的夹角。
进一步地,根据本申请的一个实施例,还提供了一种摄像模组,其包括感光组件和光学镜头。其中光学镜头可以是前述任意一个实施例中所述的光学镜头。光学镜头可以安装于光学致动器(例如马达)内。例如,光学镜头可以安装于马达载体的内侧面,形成带马达的光学镜头组件,所述光学镜头组件可以安装于感光组件的顶部。
根据本申请的一个实施例,还提供了一种光学镜头组装方法,其包括如下步骤。
步骤S100,对第一镜头部件100和第二镜头部件200进行预定位。所述第一镜头部件100包括第一镜片群,所述第一镜片群包括至少一个第一镜片102,所述第二镜头部件200包括第二镜筒201和安装于所述第二镜筒201内的第二镜片群,所述第二镜片群包括至少一个第二镜片202,所述第二镜筒201具有外顶面2011和内顶面2012,所述第二镜片群承靠于所述内顶面2012,所述外顶面2011包括布胶面2011a和自所述布胶面2011a向所述第二镜筒201的中轴延伸而形成的延伸面2011b,所述布胶面2011a至所述内顶面2012具有第一厚度,所述延伸面2011b至所述内顶面2012具有第二厚度,并且所述第一厚度大于所述第二厚度。所述预定位使得所述第一镜片群和所述第二镜片群共同构成可成像的光学系统。
步骤S200,基于所述光学系统的成像结果对所述第一镜头部件100和所述第二镜头部件200的相对位置进行主动校准。
步骤S300,粘结所述第一镜头部件100和所述第二镜头部件200,使得上述二者的相对位置保持在主动校准所确定的相对位置。
在一个实施例中,所述第二镜筒201的内侧面具有多级台阶,所述光学镜头组装方法还包括:将所述第二镜筒201倒置,然后将所述至少一个第二镜片202依次嵌入所述多级台阶以组立所述第二镜片群。
在一个实施例中,所述预定位步骤(即S100)还包括:通过激光测距来获取所述第一镜头部件100和所述第二镜头部件200的位置, 进而进行所述的预定位,其中通过对所述外顶面2011进行激光测距来获取所述第二镜头部件200的位置。
在一个实施例中,所述粘结步骤(即S300)包括:在所述布胶面2011a布置第一胶材300;以及使所述第一胶材300固化以使得所述第一镜头部件100和所述第二镜头部件200的相对位置保持在主动校准所确定的相对位置。其中所述使所述第一胶材300固化的步骤包括:通过曝光使所述第一胶材300预固化;以及通过烘烤使所述第一胶材300永久固化。所述的布置第一胶材300的步骤在所述主动校准步骤之前执行,或者在所述主动校准步骤完成后执行(例如主动校准完成后,记录第一镜头部件100的三维坐标位置,然后移开第一镜头部件100,在第二镜筒201的外顶面2011进行布胶,然后再根据所记录的三维坐标位置移回第一镜头部件100)。
以下将进一步地介绍光学镜头或摄像模组组装方法中所使用的主动校准工艺。
本申请中所述的主动校准可以在多个自由度上对第一镜头部件100和第二镜头部件200的相对位置进行调整。图4A示出了本申请一个实施例中的主动校准中相对位置调节方式。在该调节方式中,所述第一镜头部件100(也可以是第一镜片101)可以相对于所述第二镜头部件200沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图4B示出了本申请另一个实施例的主动校准中的旋转调节。在该实施例中,相对位置调整除了具有图4A的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图4C示出了本申请又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过 v方向和w方向调节,可以调节第一镜头部件相对于第二镜头部件的倾斜姿态(也就是所述第一镜头部件的光轴相对于所述第二镜头部件的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本申请的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,在一个实施例中,主动校准步骤中,第一镜头部件和第二镜头部件相对位置的调整包括在所述调整平面上的平移,即x、y方向上的运动。
进一步地,在一个实施例中,主动校准步骤中,第一镜头部件100和第二镜头部件相对位置的调整还包括:根据所述光学系统的实测解像力,调节并确定所述第一镜头部件的轴线相对于所述第二镜头部件的轴线的夹角,即w、v方向上的调节。所组装的光学镜头或摄像模组中,所述第一镜头部件的轴线与所述第二镜头部件的轴线之间可以具有不为零的夹角。
进一步地,在一个实施例中,主动校准步骤中,第一镜头部件和第二镜头部件相对位置的调整还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件(即z方向上的调节),根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在垂直于所述调整平面的方向上的相对位置。
进一步地,在一个实施例中,所述第一镜头部件可以不具有第一镜筒。例如第一镜头部件可以由单个第一镜片构成。在主动校准前,先对应预定位,使所述第一镜片的底面和所述第二镜头部件的顶面之间具有间隙;然后进行主动校准,再将所述胶材布置于所述间隙并使胶材固化。本实施例中,第一镜片可以由互相嵌合或粘合而形成一体的多个子镜片形成。本实施例中,第一镜片的不用于成像的非光学面的侧面和顶面可以形成遮光层。该遮光层可以通过在第一镜片的侧面和顶面丝网印刷遮光材料而形成。
在一个实施例中,主动校准步骤中,可以固定第二镜头部件,通 过夹具夹持第一镜头部件,在与夹具连接的六轴运动机构的带动下,移动第一镜头部件,从而实现第一镜头部件和第二镜头部件之间的上述六个自由度下的相对移动。其中,夹具可以承靠于或部分承靠于第一镜头部件的侧面,从而将第一镜头部件夹起并进行多自由度的位置调整。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 光学镜头,其特征在于,包括:
    第一镜头部件,其包括第一镜片群,所述第一镜片群包括至少一个第一镜片;
    第二镜头部件,其包括第二镜筒和安装于所述第二镜筒内的第二镜片群,所述第二镜片群包括至少一个第二镜片,所述第一镜片群和所述第二镜片群共同构成可成像的光学系统,其中所述第二镜筒具有外顶面和内顶面,所述第二镜片群承靠于所述内顶面;以及
    第一胶材,其布置于所述外顶面和所述第一镜头部件的底面之间,并且所述第一胶材适于在固化后支撑和固定所述第一镜头部件和所述第二镜头部件,以使所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置,
    其中,所述外顶面包括适于布置所述第一胶材的布胶面和自所述布胶面向所述第二镜筒的中轴延伸而形成的延伸面,所述布胶面至所述内顶面具有第一厚度,所述延伸面至所述内顶面具有第二厚度,并且所述第一厚度大于所述第二厚度。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述延伸面不布置所述第一胶材。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述布胶面至所述延伸面之间具有过渡面。
  4. 根据权利要求3所述的光学镜头,其特征在于,所述过渡面为斜面,所述过渡面与所述第二镜筒的中轴的夹角为30°-85°。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述布胶面为平整面。
  6. 根据权利要求3所述的光学镜头,其特征在于,所述内顶面包括与所述第二镜片群承靠的承靠面和未与所述第二镜片群承靠的非承靠面,所述承靠面具有靠近所述中轴的第一端和背离所述中轴的第二端,并且,在径向方向上,所述过渡面的连接所述延伸面的一端位于所述第一端和所述第二端之间的位置,其中所述径向方向是垂直于所述中轴的方向。
  7. 根据权利要求6所述的光学镜头,其特征在于,所述第一端和所述第二端之间具有中点;并且,在所述径向方向上,所述过渡面的连接所述延伸面的一端位于所述中点,或者位于比所述中点靠近所述中轴的位置。
  8. 根据权利要求1所述的光学镜头,其特征在于,在轴向方向上,所述布胶面到所述延伸面的距离至少为50微米,所述轴向方向是平行于所述中轴的方向。
  9. 根据权利要求3所述的光学镜头,其特征在于,所述第一镜头部件还包括第一镜筒,所述第一镜片群安装于所述第一镜筒内。
  10. 根据权利要求9所述的光学镜头,其特征在于,所述第一镜片群包括光学区和围绕所述光学区的结构区,所述结构区的底面具有避让所述布胶面的缩进面。
  11. 根据权利要求10所述的光学镜头,其特征在于,所述缩进面包括与所述过渡面对应的斜面。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述延伸面与所述第一镜片群的底面之间的距离为30-150微米。
  13. 根据权利要求11所述的光学镜头,其特征在于,所述第二 镜筒的所述过渡面与所述第一镜片群的所述斜面的距离至少为所述延伸面与所述第一镜片群的底面之间距离的两倍。
  14. 根据权利要求11所述的光学镜头,其特征在于,所述第一镜头部件和所述第二镜头部件之间具有第一设计距离和第二设计距离,所述第一设计距离至少为所述第二设计距离的两倍;所述第一设计距离是:由所述光学系统的光学设计所决定的、所述第二镜筒的所述过渡面与所述第一镜片群的所述斜面之间的设计距离,所述第二设计距离是:由所述光学系统的光学设计所决定的、所述延伸面与所述第一镜片群的底面之间的设计距离。
  15. 根据权利要求1所述的光学镜头,其特征在于,所述第一镜头部件的光轴与所述第二镜头部件的光轴之间具有不为零的夹角。
  16. 根据权利要求1所述的光学镜头,其特征在于,所述第二镜筒的内侧面具有呈多级台阶,所述至少一个第二镜片依次嵌入所述多级台阶,以组立成所述第二镜片群。
  17. 一种摄像模组,其特征在于,包括权利要求1-16中任意一项所述的光学镜头。
  18. 一种光学镜头组装方法,其特征在于,包括:
    对第一镜头部件和第二镜头部件进行预定位,使得所述第一镜头部件包括的第一镜片群和所述第二镜头部件包括的第二镜片群共同构成可成像的光学系统,其中,所述第一镜片群包括至少一个第一镜片,所述第二镜头部件还包括第二镜筒,所述第二镜片群安装于所述第二镜筒内,所述第二镜片群包括至少一个第二镜片,所述第二镜筒具有外顶面和内顶面,所述第二镜片群承靠于所述内顶面,所述外顶面包括布胶面和自所述布胶面向所述第二镜筒的中轴延伸而形成的延伸面,所述布胶面至所述内顶面具有第一厚度,所述延伸面至所述内顶 面具有第二厚度,并且所述第一厚度大于所述第二厚度;
    基于所述光学系统的成像结果对所述第一镜头部件和所述第二镜头部件的相对位置进行主动校准;以及
    粘结所述第一镜头部件和所述第二镜头部件,使得所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置。
  19. 根据权利要求18所述的光学镜头组装方法,其特征在于,所述第二镜筒的内侧面具有多级台阶,
    所述光学镜头组装方法还包括:将所述第二镜筒倒置,然后将所述至少一个第二镜片依次嵌入所述多级台阶以组立所述第二镜片群。
  20. 根据权利要求19所述的光学镜头组装方法,其特征在于,所述预定位还包括:通过激光测距来获取所述第一镜头部件和所述第二镜头部件的位置,进而进行所述预定位,其中通过对所述外顶面进行激光测距来获取所述第二镜头部件的位置。
  21. 根据权利要求20所述的光学镜头组装方法,其特征在于,所述粘结包括:
    在所述布胶面布置第一胶材;以及
    使所述第一胶材固化以使得所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置。
  22. 根据权利要求21所述的光学镜头组装方法,其特征在于,所述使所述第一胶材固化包括:
    通过曝光使所述第一胶材预固化;以及
    通过烘烤使所述第一胶材永久固化。
  23. 根据权利要求21所述的光学镜头组装方法,其特征在于,所述布置第一胶材在所述主动校准之前执行,或者在所述主动校准完 成后执行。
  24. 一种摄像模组组装方法,其特征在于,包括:
    根据权利要求18-23中任意一项所述的光学镜头组装方法组装光学镜头;以及
    基于所述光学镜头组装摄像模组。
PCT/CN2019/096344 2018-08-30 2019-07-17 光学镜头、摄像模组及组装方法 WO2020042802A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/270,213 US20210333503A1 (en) 2018-08-30 2019-07-17 Optical lens, camera module and assembling method
EP19856291.0A EP3835843B1 (en) 2018-08-30 2019-07-17 Optical lens, camera module and assembling method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811003070.7A CN110873935A (zh) 2018-08-30 2018-08-30 光学镜头、摄像模组及组装方法
CN201811003070.7 2018-08-30
CN201821412342.4 2018-08-30
CN201821412342.4U CN208818903U (zh) 2018-08-30 2018-08-30 光学镜头及摄像模组

Publications (1)

Publication Number Publication Date
WO2020042802A1 true WO2020042802A1 (zh) 2020-03-05

Family

ID=69644671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096344 WO2020042802A1 (zh) 2018-08-30 2019-07-17 光学镜头、摄像模组及组装方法

Country Status (4)

Country Link
US (1) US20210333503A1 (zh)
EP (1) EP3835843B1 (zh)
TW (1) TWI708087B (zh)
WO (1) WO2020042802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721140A (zh) * 2022-03-14 2022-07-08 中国人民解放军63921部队 一种轻量小型化望远镜、制备方法以及成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076761A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 렌즈 모듈
CN207067513U (zh) * 2017-06-23 2018-03-02 宁波舜宇光电信息有限公司 多群组镜头、摄像模组、电子设备
CN207249220U (zh) * 2017-03-24 2018-04-17 宁波舜宇光电信息有限公司 分体式镜头和摄像模组以及电子设备
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN108121043A (zh) * 2016-11-28 2018-06-05 宁波舜宇光电信息有限公司 多群组镜头和摄像模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303773A (ja) * 2001-04-05 2002-10-18 Seiko Precision Inc 光学装置および当該光学装置を使用した撮像装置
JP2007101737A (ja) * 2005-09-30 2007-04-19 Seiko Precision Inc 撮像装置
CN101285921A (zh) * 2007-04-13 2008-10-15 鸿富锦精密工业(深圳)有限公司 成像模组
JP2010191345A (ja) * 2009-02-20 2010-09-02 Hitachi Maxell Ltd レンズユニット、カメラモジュール、及びレンズユニットの製造方法
DE102009055083B4 (de) * 2009-12-21 2013-12-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optischer Schichtstapel und Verfahren zu dessen Herstellung
CN102662222B (zh) * 2012-05-10 2014-04-16 无锡凯尔科技有限公司 镜头与微调模组的结构及其组装工艺
EP3355113B1 (en) * 2015-09-24 2020-08-12 LG Innotek Co., Ltd. Camera module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076761A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 렌즈 모듈
CN108121043A (zh) * 2016-11-28 2018-06-05 宁波舜宇光电信息有限公司 多群组镜头和摄像模组
CN207249220U (zh) * 2017-03-24 2018-04-17 宁波舜宇光电信息有限公司 分体式镜头和摄像模组以及电子设备
CN207067513U (zh) * 2017-06-23 2018-03-02 宁波舜宇光电信息有限公司 多群组镜头、摄像模组、电子设备
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721140A (zh) * 2022-03-14 2022-07-08 中国人民解放军63921部队 一种轻量小型化望远镜、制备方法以及成像方法
CN114721140B (zh) * 2022-03-14 2023-08-15 中国人民解放军63921部队 一种轻量小型化望远镜、制备方法以及成像方法

Also Published As

Publication number Publication date
EP3835843B1 (en) 2023-11-08
US20210333503A1 (en) 2021-10-28
TW202012994A (zh) 2020-04-01
TWI708087B (zh) 2020-10-21
EP3835843A1 (en) 2021-06-16
EP3835843A4 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
TWI720579B (zh) 光學鏡頭、攝像模組及其組裝方法
WO2020073735A1 (zh) 一体式镜筒、光学镜头、摄像模组及组装方法
WO2020034804A1 (zh) 光学镜头组装方法及用该方法组装的光学镜头、摄像模组
US20210364735A1 (en) Lens assembly, camera module and method for assembling same
WO2020042802A1 (zh) 光学镜头、摄像模组及组装方法
WO2019184695A1 (zh) 光学镜头、摄像模组及其组装方法
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
WO2020073736A1 (zh) 光学变焦摄像模组及其组装方法
WO2020034790A1 (zh) 镜片群组件、光学镜头、摄像模组及镜片群组立方法
CN110873935A (zh) 光学镜头、摄像模组及组装方法
CN112649934B (zh) 光学镜头、摄像模组及其组装方法
CN110275264B (zh) 光学镜头、摄像模组及其组装方法
WO2020038161A1 (zh) 光学镜头、摄像模组及其组装方法
CN110542969B (zh) 光学镜头、摄像模组及其组装方法
WO2020088039A1 (zh) 光学镜头、摄像模组及其组装方法
KR20200033328A (ko) 광학 렌즈, 카메라 모듈 및 이의 조립 방법
WO2020063190A1 (zh) 光学镜头、摄像模组及组装方法
US20210173170A1 (en) Optical lens, imaging module and assembly method thereof
CN112166358B (zh) 光学镜头、摄像模组及其组装方法
WO2019228347A1 (zh) 光学镜头及其组装方法以及摄像模组
WO2019228110A1 (zh) 光学镜头、摄像模组及其组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019856291

Country of ref document: EP

Effective date: 20210312