WO2020042734A1 - 一种干扰协调的方法和设备 - Google Patents

一种干扰协调的方法和设备 Download PDF

Info

Publication number
WO2020042734A1
WO2020042734A1 PCT/CN2019/092783 CN2019092783W WO2020042734A1 WO 2020042734 A1 WO2020042734 A1 WO 2020042734A1 CN 2019092783 W CN2019092783 W CN 2019092783W WO 2020042734 A1 WO2020042734 A1 WO 2020042734A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
time slot
network
next time
side device
Prior art date
Application number
PCT/CN2019/092783
Other languages
English (en)
French (fr)
Inventor
吕叶青
刘宏举
王家恒
刘智强
肖大家
Original Assignee
海信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信集团有限公司 filed Critical 海信集团有限公司
Publication of WO2020042734A1 publication Critical patent/WO2020042734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method and device for interference coordination.
  • 5G networks are becoming more and more dense.
  • operators cooperate with management equipment and spectrum allocation equipment to achieve spectrum resource sharing.
  • the dense overlapping coverage caused by spectrum resource sharing Multi-layer heterogeneous networks cause a large number of inter-cell interference, which restricts system performance.
  • the centralized interference coordination scheme requires the local channel state information measured by the terminal served by each base station and the channel state information between all base stations that interfere with it and the terminal, and the base station reports all the above information to the central node The central node calculates based on the information and notifies each base station of the formulated transmission strategy.
  • the present disclosure provides a method and device for interference coordination to solve the problem that centralized interference coordination requires a large amount of information exchange and causes great signaling overhead.
  • an interference coordination method includes: a terminal sending interference information of a current time slot and / or a quality of service QoS requirement value of a next time slot to a network side device, so that the network The side device adjusts a transmission parameter of the next time slot for the terminal according to the received interference information and / or a QoS requirement value of the next time slot.
  • the terminal determines the QoS requirement value of the next time slot in the following manner: the terminal determines the QoS requirement value of the next time slot according to the interference information of the current time slot and the channel state information of the current time slot, where The channel corresponding to the channel state information is a channel between the terminal and an accessed network side device.
  • an interference coordination method includes: a network side device receives interference information of a current time slot corresponding to a terminal and / or a QoS requirement value of a next time slot; The obtained interference information and / or the QoS requirement value of the next time slot adjust a transmission parameter of the next time slot for the terminal.
  • the network-side device is based on the interference information of the terminal in the current time slot, the channel state information of the channel with the terminal obtained by using local measurements, and other information obtained by interacting with neighboring network-side devices Adjusting interference parameters of the next time slot for the terminal with the interference information of the network-side device;
  • the method includes: according to the QoS requirement value in the next time slot, the network-side device uses the local measurement to obtain the terminal and the terminal.
  • the channel state information of the inter-channel and the interference information of the terminal obtained by the local measurement are used to adjust the transmission parameters for the terminal in the next time slot.
  • the network-side device after the network-side device receives the interference information of the current time slot corresponding to the terminal, if the network-side device needs to adjust the transmission parameters of the next time slot for the terminal according to the received interference information, The network-side device sends the received interference information to other network-side devices.
  • an embodiment of the present disclosure further provides a terminal for interference coordination.
  • the terminal includes a processor and a memory, where the memory stores program code, and when the program code stored in the memory is used by the processor, When executed, the terminal is caused to perform the following processes:
  • the processor is specifically configured to determine a QoS requirement value of a next time slot in the following manner:
  • the QoS requirement value of the next time slot is determined according to the interference information of the current time slot and the channel state information of the current time slot, wherein the channel corresponding to the channel state information is the channel between the terminal and the accessed network-side device.
  • an embodiment of the present disclosure further provides a terminal for interference coordination, where the terminal includes:
  • Determination module used to determine the need for interference coordination
  • a first processing module configured to send interference information of a current slot and / or a QoS requirement value of a next slot determined by the interference information of the current slot to a network-side device, so that the network-side device The obtained interference information and / or the QoS requirement value of the next time slot adjust a transmission parameter of the next time slot for the terminal.
  • an embodiment of the present disclosure further provides a network device for interference coordination.
  • the network device includes a processor and a memory, where the memory stores program code, and when the program code stored in the memory is When executed by the processor, the network-side device is caused to perform the following processes:
  • the processor is specifically configured to:
  • the locally measured interference information of the terminal adjusts the transmission parameters for the terminal in the next time slot.
  • the processor is further configured to:
  • the received interference information is sent to other network-side devices.
  • an embodiment of the present disclosure further provides a network-side device for interference coordination.
  • the network-side device includes:
  • Receiving module used to receive the interference information of the current slot and / or the QoS requirement value of the next slot corresponding to the terminal;
  • the second processing module is configured to adjust a transmission parameter for the terminal in a next time slot according to the received interference information and / or a QoS requirement value of a next time slot.
  • the present application also provides a computer-readable non-volatile storage medium on which a computer program is stored, and when the program is executed by a processor, the method described in the first aspect is implemented.
  • FIG. 1 is a schematic structural diagram of a system for interference coordination according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a first sending method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a second sending method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a first scenario provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a second scenario provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a third scenario provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a scenario in which network-side devices interact with each other to interfere with information according to an embodiment of the present disclosure
  • FIG. 8 shows a software simulation result 1 for setting a scenario according to an embodiment of the present disclosure
  • FIG. 9 shows a software simulation result 2 for setting a scenario according to an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of a first interference coordination terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a second interference coordination terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a third interference coordination terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a network side device that provides a first type of interference coordination according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a network side device that provides a second type of interference coordination according to an embodiment of the present disclosure
  • 15 is a schematic flowchart of an interference coordination method according to an embodiment of the present disclosure.
  • 16 is a schematic flowchart of a method for interference coordination according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic flowchart of a method for interference coordination according to the third solution provided by the implementation of the present disclosure.
  • FIG. 18 is a schematic flowchart of another method for interference coordination according to solution three provided by the implementation of the present disclosure.
  • the "terminal” referred to in the embodiments of the present disclosure is a mobile phone, a platform, or the like.
  • the "network-side device” referred to in the embodiments of the present disclosure is a macro base station, a micro base station, and the like.
  • the central node For a centralized interference coordination scheme, the central node needs to perform a large amount of information interaction, and then perform a highly complex centralized optimization process. Correspondingly, a large amount of information interaction has high requirements on the bearing capacity of the base station interaction interface and the computing capacity of the central node, and such a highly demanding system complexity obviously cannot meet the needs of the 5G intensive scenario.
  • the current centralized interference coordination requires a large amount of information exchange, resulting in great signaling overhead.
  • a method and a device for interference coordination include: a terminal 10 and a network-side device 20.
  • Terminal 10 sending the interference information of the current time slot and / or the value of the quality of service QoS requirement of the next time slot to the network-side device, so that the network-side device is based on the received interference information and / or the next time
  • the QoS requirement value of the slot adjusts the transmission parameter for the terminal in the next time slot.
  • Network-side device 20 used to receive the interference information of the current slot and / or the QoS requirement value of the next slot corresponding to the terminal; and adjust the next slot according to the received interference information and / or the QoS requirement value of the next slot For the transmission parameters of the terminal.
  • the terminal determines the interference information of the current slot, and sends the interference information of the current slot and / or the QoS requirement value of the next slot determined by the interference information of the current slot to the network-side device.
  • the network side device adjusts the transmission parameters for the terminal in the next time slot according to the received interference information of the current time slot corresponding to the terminal and / or the QoS requirement value of the next time slot, and does not need to exchange a large amount of information with the network side device.
  • the network-side device can adjust for each time slot of the terminal. The network-side device does not need to send the information reported by the terminal and the channel state information between all network-side devices that interfere with the terminal and the terminal to the central node for centralized processing.
  • the network-side device performs independent calculations based on the messages corresponding to the received terminals to adjust the transmission strategy for each terminal, avoiding a large amount of information exchange, saving signaling overhead, and the system is more flexible. Further, since each Network-side equipment can calculate its own transmission strategy through calculation, so it also reduces the performance requirements of centralized processing on system facilities.
  • the terminal before determining the interference information of the current time slot and / or the QoS requirement value of the next time slot, the terminal needs to measure all interferences received to obtain interference information. If the terminal sends the QoS requirement value of the next time slot to the network-side device, the terminal also needs to measure the channel with the accessed network-side device to obtain local channel state information, and according to the current time slot The interference information and the channel state information of the current time slot determine the QoS demand value of the next time slot.
  • the QoS requirement value is used to reflect the QoS degree required by the terminal.
  • the interference information measured by the terminal includes: noise interference and / or interference from other network-side devices to the terminal.
  • Sending method 1 As shown in FIG. 2, the first sending method provided by the embodiment of the present disclosure.
  • the terminal n broadcasts the interference information of the current time slot of Q and / or the QoS requirement value of the next time slot to all base stations, including: micro base station 1, micro base station 2, micro base station 3, and macro base station.
  • Sending method 2 As shown in FIG. 3, the second sending method provided by the embodiment of the present disclosure.
  • the terminal n sends the interference information of the current time slot and / or the QoS demand value of the next time slot to the macro base station separately, and then the macro base station sends the interference information of the current time slot and / or the QoS demand value of the next time slot to other micro base stations.
  • the base station includes: a micro base station 1, a micro base station 2, and a micro base station 3.
  • Scenario 1 As shown in Figure 4, the network-side equipment and other network-side equipment accessed by the terminal are all macro base stations;
  • Scenario 2 As shown in Figure 5, the network-side equipment and other network-side equipment accessed by the terminal are all micro base stations;
  • the network-side equipment accessed by the terminal and other network-side equipment include both macro base stations and micro base stations.
  • the network-side device adjusts a transmission parameter for the terminal in a next time slot according to the received interference information and / or a QoS requirement value of a next time slot.
  • the transmission parameters include, but are not limited to, at least one of the following:
  • the embodiments of the present disclosure can be adjusted for the purpose of meeting the QoS requirements of the terminal and / or adjusted for the purpose of maximizing the network and rate, so as to meet different usage requirements of the terminal after the usage scenario changes.
  • the parameters used in the adjustment are different. For example, to adjust the QoS requirement value of the next time slot for the purpose of meeting the QoS requirement of the terminal; to adjust the interference information for the purpose of maximizing the network and rate.
  • the first solution is to meet the QoS requirements of the terminal.
  • the network-side device when there are few users served by the network-side device, for example, in a sparsely populated area, the network-side device is sparse, and the call quality of the terminal is easily interfered.
  • the network-side device can It is set to adjust transmission parameters for the purpose of meeting the QoS requirements of the terminal.
  • the terminal When adjusting for the purpose of meeting the terminal's QoS requirements, the terminal needs to determine the QoS requirement value for the next time slot and send the QoS requirement value for the next time slot to the network-side device.
  • the network-side device needs to interact with other network-side devices. Describe the QoS requirement value of the terminal.
  • the terminal determines the QoS requirement value of the next time slot according to the interference information of the current time slot and the channel state information of the current time slot, where the channel corresponding to the channel state information is between the terminal and the network-side device that is accessed. channel.
  • the terminal may determine the QoS requirement value for the next time slot according to the following formula 1.
  • the transmission parameter is the transmission power
  • the following adjustment method 1 can be used for adjustment. For specific operations, refer to the adjustment method 1 described below.
  • Option two The goal is to maximize the network and speed.
  • the network-side device may be set to adjust transmission parameters for the purpose of maximizing the network and rate.
  • the terminal sends interference information to the network-side device.
  • the network-side device needs to exchange interference information with other network-side devices but does not need to exchange QoS requirements. Therefore, the terminal must send the interference information including the current time slot to the network-side device. .
  • this embodiment is a schematic diagram of a scenario in which network-side devices interact with each other to interfere with information.
  • the network-side device according to the interference information of the terminal in the current time slot, the channel state information of the channel with the terminal obtained by using local measurements, and the interference information of other network-side devices obtained by interacting with neighboring network-side devices Adjusting transmission parameters for the next time slot for the terminal.
  • the adjustment is performed by using the following adjustment method 2. For specific operations, refer to the adjustment method 2 described below.
  • the third solution is to meet the QoS requirements of the terminal and to maximize the network and speed.
  • the network-side device adjusts the transmission parameters for the terminal in the next time slot for the purpose of simultaneously meeting QoS requirements and maximizing the network and rate, it is the combination of the first scheme and the second scheme.
  • the first scheme or the second scheme in a fixed setting.
  • a condition may be set and the adopted scheme may be determined according to the conditions.
  • a feasible way is that the network-side device first determines whether the QoS requirements of the terminal are currently met, and if it is satisfied, the network-side device further aims at maximizing the network and the rate, and targets the next time slot for the The transmission parameters of the terminal are adjusted; otherwise, the network-side device adjusts the transmission parameters for the terminal in the next time slot for the purpose of meeting the terminal QoS requirements.
  • the network-side device determines whether the QoS of the terminal meets the requirements in the following ways:
  • the network-side device compares the QoS requirement value of the current time slot with the QoS threshold value, and determines whether the QoS requirement value of the current time slot is less than the QoS threshold value, and if so, determines that the QoS does not meet the requirement; otherwise determines that the QoS meets the requirement.
  • the QoS requirement value of the current time slot is known to the network-side device.
  • the QoS threshold can be set according to needs, for example, it has different values according to different operators and / or terminal usage packages.
  • the terminal can also determine whether the QoS of the current time slot meets the demand by the above method, and update the QoS demand value of the next time slot according to the determination result.
  • update method refer to the following network side. The update method of the device is not repeated here.
  • the terminal aims to maximize the network and rate, and according to the terminal in the current time slot, And adjust the transmission parameters of the next time slot for the terminal using the channel state information of the channel with the terminal obtained from the local measurement and the interference information of other network-side devices obtained by interacting with neighboring network-side devices.
  • the transmission parameter is the transmission power
  • the following adjustment method 2 is used for adjustment. For specific operations, please refer to the adjustment method 1 below, which will not be described in detail.
  • the terminal aims to meet the QoS requirements of the terminal, and updates the next time slot to meet the QoS requirements according to the transmission parameters, local channel state information, and interference information.
  • the QoS requirement value of the next time slot and then adjust the next time slot for the terminal according to the QoS requirement value of the next time slot, the channel state information of the channel with the terminal obtained using the local measurement, and the interference information of the terminal obtained using the local measurement.
  • the transmission parameter if the transmission parameter is the transmission power, the adjustment is performed by using the following adjustment method 1. For specific operations, refer to the adjustment method 1 described below, which will not be described in detail.
  • the network-side device determines the QoS requirement value for the next time slot by using the following formula 1:
  • [] + means to perform non-negative operation on the internal data of the brackets. If the internal data is less than zero, zero is taken, otherwise it is equal to itself; k is the current time slot; Is the QoS requirement value of the current time slot; Is the QoS demand value for the next time slot; ⁇ k is the update step size; I i (n) is the interference information; p i (n) is the transmit power received from the network-side device currently received by the terminal; ⁇ i (n ) Is the result of normalizing the local channel state information, Where h ii is the channel gain in the network-side device i; The constraint value to ensure the lowest achievable rate.
  • the terminal n updates the QoS requirement value of the current time slot according to the measured signal information h ii and interference information I i (n).
  • the QoS threshold ⁇ n and the transmission power of the network-side device i received by the terminal n are p i (n).
  • the terminal sets the QoS requirement value of the current time slot Compare with QoS threshold ⁇ n :
  • the network side device uses the preset value as the QoS requirement value of the next time slot such as
  • the network side device needs to update the QoS demand value by Formula 1, to obtain the QoS demand value of the next time slot.
  • the network-side device After updating the QoS demand value of the next time slot, the network-side device sends the QoS demand value or interference information of the next time slot to other network-side devices. There are multiple ways to send it. Specifically, the terminal can be parameterized to the network. The sending method 1 and sending method 2 of the data sent by the side device are not repeated here.
  • the network-side device specifically introduces specific adjustments of the transmission power according to the purpose of different interference coordination mechanisms:
  • Adjustment method 1 adjust to meet the QoS of the terminal.
  • the network-side device meets the QoS requirements of the terminal, according to the QoS requirement value of the next time slot, the channel state information of the channel with the terminal obtained by using the local measurement, and the interference information of the terminal obtained by using the local measurement Adjusting transmission parameters for the next time slot for the terminal.
  • the network-side device adjusts the transmission power for the terminal in the next time slot by using the following formula 2:
  • the transmit power that can reach the maximum reachable rate o represents the network-side device o to which the terminal with current QoS requirements belongs; ⁇ o is the minimum non- uniformity that makes the transmit power in the network-side device o meet the power and constraints Negative numbers; ⁇ n is the QoS requirement value of the current terminal n; ⁇ o (n) is the result of normalizing the local channel state information of the user n served under the network-side device o; I o (n) represents the network-side device o The interference received by the serving user n; h oo (n) is the channel gain of the network-side device o serving the user on its own sub-channel n; p o (n) is the transmission power of the network-side device o on the sub-channel n ; ⁇ i is the minimum non-negative number that enables the transmission power of the network-side device i to meet the power and constraints; h ij (n)
  • the above-mentioned network-side equipment adjusts the transmission power of the next time slot based on QoS requirements based on the following principles: by managing the interference of other network-side equipment to the terminal, adjusting the transmission power to offset the impact of the interference on the terminal, and meeting the coordination mechanism At the same time, the maximum reachable rate needs to be achieved. If the reachable rate is larger, the channel capacity and system performance of the network-side device for data transmission to the terminal will be stronger, that is, it can obtain its own maximum utility.
  • the transmission power of the network-side device that can reach the maximum reachable rate under the condition of satisfying the coordination mechanism is the transmission power of the next time slot of the network-side device.
  • Adjustment method two Adjust for the purpose of maximizing the network and speed.
  • the network-side device When the network-side device aims to maximize the network and rate, the network-side device needs to interact with other network-side devices to interfere with the information.
  • the network-side device according to the interference information of the terminal in the current time slot, the channel state information of the channel with the terminal obtained by using local measurements, and the interference information of other network-side devices obtained by interacting with neighboring network-side devices Adjusting transmission parameters for the next time slot for the terminal.
  • the network-side device adjusts the transmission power for the terminal in the next time slot by using the following formula 3:
  • the transmit power that can reach the maximum reachable rate In order to meet the QoS requirements, the transmit power that can reach the maximum reachable rate; ⁇ is the constraint constant; k v represents the iteration step size; h ii (n) is the channel gain of the network-side device i serving the user on the sub-channel n; h jj is the channel gain in the network-side device j; h ij (n) is the channel gain from the network-side device i to the network-side device j to serve the user on the subchannel n; I i (n) represents the network-side device i serves Interference to users n; ⁇ j represents the noise power on the network-side device j; ⁇ n is the QoS requirement value of the current terminal n; ⁇ o is the minimum non-negative number that enables the transmission power in the network-side device o to meet the power and constraints ⁇ i is the minimum non-negative number that enables the transmission power in the network-side device i
  • the scenario is: a macro cell Macrocell / micro consisting of a macro base station and 10 micro base stations
  • the unit Small / Cell layered heterogeneous network has a downlink channel shared by the macro cell and the Small cell, and is divided into 10 sub-channels, each of which is used by a macro base station terminal or a micro base station terminal. It is assumed that the coverage radius of the macro base station is 500 meters and the coverage radius of the micro base station is 100 meters.
  • the micro base station and the macro base station are evenly and randomly distributed in the cellular system, and the macro terminals are uniformly and randomly distributed within the coverage area of the micro unit.
  • the distributed local interference coordination (only interactive QoS requirement values) achieves a higher network and rate than fully distributed interference coordination.
  • the fully distributed interference is the performance when the interference coordination method of the embodiment of the present disclosure is not adopted in a distributed scenario.
  • Distributed local interference coordination achieves the same network and rate performance as fully centralized interference coordination.
  • an embodiment of the present disclosure provides a terminal for interference coordination.
  • the terminal includes: a processor 1000 and a memory 1001, where the memory 1001 stores program code, and when the memory 1001 When the stored program code is executed by the processor 1000, the terminal executes the following processes:
  • the received interference information and / or the QoS requirement value of the next time slot adjust a transmission parameter for the terminal in the next time slot.
  • the processor 1000 is specifically configured to determine a QoS requirement value of a next time slot in the following manner:
  • the QoS requirement value of the next time slot is determined according to the interference information of the current time slot and the channel state information of the current time slot, wherein the channel corresponding to the channel state information is the channel between the terminal and the accessed network-side device.
  • an embodiment of the present disclosure provides a interference coordination terminal 1100 including: a radio frequency (RF) circuit 1110, a power supply 1120, a processor 1130, a memory 1140, an input unit 1150, a display unit 1160, and a camera. 1170, a communication interface 1180, and a wireless fidelity (WiFi) module 1190 and other components.
  • RF radio frequency
  • the RF circuit 1110 can be used for receiving and sending data during communication or conversation. Specifically, after receiving the downlink data of the base station, the RF circuit 1110 sends the processing to the processor 1130 for processing; in addition, the uplink data to be sent is sent to the base station.
  • the RF circuit 1110 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • the RF circuit 1110 can also communicate with a network and other terminals through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System (GSM), General Packet Radio Service (GPRS), and Code Division Multiple Access (Code) Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), etc.
  • GSM Global System
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the WiFi technology is a short-range wireless transmission technology.
  • the terminal 1100 can connect to an access point (Access Point, AP) through a WiFi module 1190, thereby achieving data network access.
  • the WiFi module 1190 may be used for receiving and sending data during a communication process.
  • the terminal 1100 may implement a physical connection with other terminals through the communication interface 1180.
  • the communication interface 1180 is connected to the communication interface of the other terminal through a cable to implement data transmission between the terminal 1100 and the other terminal.
  • the terminal 1100 can implement communication services and send information to other contacts, the terminal 1100 needs to have a data transmission function, that is, the terminal 1100 needs to include a communication module inside.
  • FIG. 11 shows communication modules such as the RF circuit 1110, the WiFi module 1190, and the communication interface 1180, it can be understood that at least one of the above components or other components are used in the terminal 1100.
  • a communication module (such as a Bluetooth module) that implements communication for data transmission.
  • the terminal 1100 when the terminal 1100 is a mobile phone, the terminal 1100 may include the RF circuit 1110 and may also include the WiFi module 1190; when the terminal 1100 is a computer, the terminal 1100 may include the communication
  • the interface 1180 may further include the WiFi module 1190.
  • the terminal 1100 When the terminal 1100 is a tablet computer, the terminal 1100 may include the WiFi module.
  • the memory 1140 may be used to store software programs and modules.
  • the processor 1130 executes various functional applications and data processing of the terminal 1100 by running software programs and modules stored in the memory 1140, and can be implemented after the processor 1130 executes the program code in the memory 1140 Some or all of the processes in the embodiment of the present disclosure are shown in FIG. 1.
  • the memory 1140 may mainly include a storage program area and a storage data area.
  • the storage program area can store an operating system, various application programs (such as communication applications), and a face recognition module.
  • the storage data area can store data (such as various pictures, video files, etc.) created according to the use of the terminal. Multimedia files, and face information templates).
  • the memory 1140 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 1150 may be configured to receive numeric or character information input by a user, and generate key signal inputs related to user settings and function control of the terminal 1100.
  • the input unit 1150 may include a touch panel 1151 and other input terminals 1152.
  • the touch panel 1151 can collect touch operations performed by the user on or near the touch panel (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 1151 or Operation near the touch panel 1151), and drive the corresponding connection device according to a preset program.
  • the touch panel 1151 may include a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 1130, and to receive and execute a command sent by the processor 1130.
  • the touch panel 1151 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the other input terminal 1152 may include, but is not limited to, one or more of a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, an operation lever, and the like.
  • the display unit 1160 may be configured to display information input by the user or information provided to the user and various menus of the terminal 1100.
  • the display unit 1160 is a display system of the terminal 1100, and is used to present an interface and implement human-computer interaction.
  • the touch panel 1151 may cover the display panel 1161.
  • the touch panel 1151 detects a touch operation on or near the touch panel 1151, the touch panel 1151 transmits the touch operation to the processor 1130 to determine the type of the touch event.
  • the processor 1130 then provides a corresponding visual output on the display panel 1161 according to the type of the touch event.
  • the touch panel 1151 and the display panel 1161 are implemented as two independent components to implement the input and input functions of the terminal 1100, in some embodiments, the touch panel The control panel 1151 is integrated with the display panel 1161 to implement input and output functions of the terminal 1100.
  • the processor 1130 is a control center of the terminal 1100, and uses various interfaces and lines to connect various components, runs or executes software programs and / or modules stored in the memory 1140, and calls stored in the memory
  • the data in 1140 executes various functions of the terminal 1100 and processes data, thereby implementing various services based on the terminal.
  • the processor 1130 may include one or more processing units. In some embodiments, the processor 1130 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, and the modem processor mainly processes wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 1130.
  • the camera 1170 is configured to implement a shooting function of the terminal 1100, and capture a picture or a video.
  • the camera 1170 can also be used to implement the scanning function of the terminal 1100, and scan the scanning object (two-dimensional code / bar code).
  • the terminal 1100 further includes a power source 1120 (such as a battery) for supplying power to various components.
  • a power source 1120 such as a battery
  • the power supply 1120 may be logically connected to the processor 1130 through a power management system, so as to implement functions such as management of charging, discharging, and power consumption through the power management system.
  • the terminal 1100 may further include at least one sensor, an audio circuit, and the like, and details are not described herein again.
  • an embodiment of the present disclosure provides another interference coordination terminal, including:
  • Determination module 1200 used to determine the need for interference coordination
  • the first processing module 1201 is configured to send interference information of a current time slot and / or a quality of service QoS requirement value of a next time slot to a network-side device, so that the network-side device according to the received interference information and / Or the QoS requirement value of the next time slot adjusts the transmission parameter of the next time slot for the terminal.
  • the first processing module 1201 is specifically configured to determine a QoS requirement value of a next time slot in the following manner:
  • the QoS requirement value of the next time slot is determined according to the interference information of the current time slot and the channel state information of the current time slot, wherein the channel corresponding to the channel state information is the channel between the terminal and the accessed network-side device.
  • an embodiment of the present disclosure provides a network device for interference coordination.
  • the network device includes: a processor 1300 and a memory 1301, where the memory 1301 stores program code, and when the memory 1301 stores When the program code is executed by the processor 1300, the network-side device executes the following processes:
  • the processor 1300 is specifically configured to:
  • the processor 1300 is further configured to:
  • the received interference information is sent to other network-side devices.
  • an embodiment of the present disclosure provides another network-side device for interference coordination, including:
  • the receiving module 1400 is configured to receive interference information of a current slot and / or a QoS requirement value of a next slot corresponding to a terminal;
  • the second processing module 1401 is configured to adjust a transmission parameter of the next time slot for the terminal according to the received interference information and / or a QoS requirement value of the next time slot.
  • the second processing module 1401 is specifically configured to:
  • the second processing module 1401 is further configured to:
  • the received interference information is sent to other network-side devices.
  • An embodiment of the present disclosure further provides a computer-readable non-volatile storage medium including program code, and when the program code is run on a computing terminal, the program code is used to cause the computing terminal to execute the foregoing implementation of the present disclosure.
  • the steps of an example interference coordination method are described in detail below.
  • an embodiment of the present disclosure also provides a method for interference coordination, since the device corresponding to the method is a method corresponding to the device in the interference coordination system according to the embodiment of the present disclosure, and the method solves the problem.
  • the principle is similar to that of the device, so the implementation of this method can refer to the implementation of a system of interference coordination, and the duplicates will not be repeated here.
  • an embodiment of the present disclosure provides a method for interference coordination, which specifically includes the following steps:
  • Step 1501 The terminal sends the interference information of the current time slot and / or the quality of service QoS requirement value of the next time slot to the network-side device, so that the network-side device according to the received interference information and / or the next time slot And adjusting the transmission parameters of the next time slot for the terminal.
  • the terminal determines the QoS requirement value of the next time slot in the following manner:
  • the terminal determines the QoS requirement value of the next time slot according to the interference information of the current time slot and the channel state information of the current time slot, wherein the channel corresponding to the channel state information is between the terminal and the network-side device that is accessed. channel.
  • an embodiment of the present disclosure also provides a method for interference coordination, since the device corresponding to the method is a method corresponding to the device in the interference coordination system according to the embodiment of the present disclosure, and the method solves the problem.
  • the principle is similar to that of the device, so the implementation of this method can refer to the implementation of a system of interference coordination, and the duplicates will not be repeated here.
  • an embodiment of the present disclosure provides a method for interference coordination, which specifically includes the following steps:
  • Step 1601 The network-side device receives the interference information of the current slot and / or the QoS requirement value of the next slot corresponding to the terminal;
  • Step 1602 The network-side device adjusts a transmission parameter of the next time slot for the terminal according to the received interference information and / or a QoS requirement value of the next time slot.
  • the adjusting, by the network-side device, a transmission parameter of the next time slot for the terminal according to the received interference information includes:
  • the network-side device according to the interference information of the terminal in the current time slot, the channel state information of the channel with the terminal obtained by using local measurements, and the interference information of other network-side devices obtained by interacting with neighboring network-side devices Adjusting transmission parameters for the terminal in the next time slot;
  • the adjusting, by the network-side device, a transmission parameter of the next time slot for the terminal according to a QoS requirement value of the next time slot includes:
  • the method further includes:
  • the network-side device If the network-side device needs to adjust transmission parameters for the terminal in the next time slot according to the received interference information, the network-side device sends the received interference information to other network-side devices.
  • the complete process operation of a method for interference coordination provided in the second solution provided by the implementation of the present disclosure includes the following steps:
  • Step 1700 Terminal i determines interference information of a current time slot and / or a QoS requirement value of a next time slot;
  • Step 1701 Terminal i sends the interference information of the current time slot to the network-side device
  • Step 1702 the terminal i updates the QoS requirement value
  • Step 1703 Terminal i sends a QoS requirement value to the network-side device in a broadcast manner
  • Step 1704 the network-side device i exchanges interference information with the network-side device j;
  • Step 1705 The network-side device j exchanges interference information with the network-side device i;
  • Step 1706 The network-side device i updates the transmission parameters.
  • Step 1707 The network-side device j updates transmission parameters.
  • step 1701 and step 1703 can be performed at the same time, that is, the QoS requirement value and measurement information can be sent to the network-side device together; step 1704 and step 1705 can be performed at the same time, and steps 1704 and 1705 are only examples.
  • Steps 1706 and 1707 can be performed simultaneously, that is, network-side device i and network-side device. After receiving the interactive interference information, j starts to update the respective transmission parameters.
  • a method operation of a terminal-side related method for interference coordination in the second solution includes the following steps:
  • Step 1800 the terminal determines interference information of the current time slot
  • Step 1801 The terminal sends the interference information of the current slot and / or the QoS requirement value of the next slot determined by the interference information of the current slot to the network-side device.
  • Step 1802 the network-side device receives the interference information of the current slot and / or the QoS requirement value of the next slot corresponding to the terminal;
  • Step 1803 The network-side device determines whether the QoS demand value is a preset value, and if so, executes step 1804; otherwise, executes step 1805;
  • Step 1804 the network-side device adjusts the transmit power by using the maximum network and rate as the interference coordination mechanism
  • Step 1805 the network-side device adjusts the transmission power for the interference coordination mechanism to meet the QoS requirements
  • Step 1806 the network-side device exchanges interference information with an adjacent network-side device
  • Step 1807 The network-side device adjusts the next time slot for the terminal according to the QoS requirement value of the next time slot, the channel state information of the channel with the terminal obtained by the local measurement, and the interference information of the terminal obtained by the local measurement. Emission parameters
  • Step 1808 The network-side device adjusts according to the interference information of the terminal in the current time slot, the channel state information of the channel with the terminal obtained by using local measurements, and the interference information of other network-side devices obtained by interacting with neighboring network-side devices.
  • the next time slot is for the transmission parameters of the terminal.
  • the application can also be implemented in hardware and / or software (including firmware, resident software, microcode, etc.). Still further, the present application may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code implemented in the medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, transmit, or transfer a program for use by or in connection with an instruction execution system, apparatus, or device, Device or equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种干扰协调的方法和设备,用以解决集中式的干扰协调需要大量的信息交换,造成极大的信令开销的问题。本公开实施例中终端将当前时隙的干扰信息和/或下一时隙的QoS需求数值发送给网络侧设备,网络侧设备根据接收到的终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。本公开实施例网络侧设备不需要再将终端上报的所述信息以及对终端产生干扰的所有网络侧设备与所述终端之间的信道状态信息发送给中心节点进行集中处理,避免了大量的信息交换,节省了信令开销。

Description

一种干扰协调的方法和设备
相关申请的交叉引用
本申请要求在2018年08月31日提交中国专利局、申请号为201811015657.X、申请名称为“一种干扰协调的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,特别涉及一种干扰协调的方法和设备。
背景技术
随着通信技术的飞速发展,5G网络愈趋密集化,为实现频谱资源的有效分配,各运营商通过管理设备以及频谱分配设备共同协作来实现频谱资源共享,频谱资源共享造成的密集重叠覆盖的多层异构网络造成大量小区间的干扰,制约了系统性能。
从产生小区间干扰的来源看,来自于相邻基站的干扰是小区间干扰的主要构成部分。目前,主要采用集中式的干扰协调方案来有效避免小区间的干扰。集中式的干扰协调方案需要每一个基站所服务的终端测量的本地信道状态信息以及对其产生干扰的所有基站与所述终端之间的信道状态信息,所述基站将上述所有信息汇报给中心节点,中心节点根据所述信息集中计算,并将制定的传输策略通知到各个基站。
发明内容
本公开提供一种干扰协调的方法和设备,用以解决集中式的干扰协调需要大量的信息交换,造成极大的信令开销的问题。
第一方面,本公开实施例提供的一种干扰协调的方法,包括:终端将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备, 以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述终端通过下列方式确定下一时隙的QoS需求数值:所述终端根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
第二方面,本公开实施例提供的一种干扰协调的方法,包括:网络侧设备接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述网络侧设备根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;
所述网络侧设备根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,包括:所述网络侧设备根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述网络侧设备接收终端对应的当前时隙的干扰信息之后,若所述网络侧设备需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则所述网络侧设备向其他网络侧设备发送收到的所述干扰信息。
第三方面,本公开实施例还提供了一种干扰协调的终端,该终端包括:处理器以及存储器,其中,所述存储器存储有程序代码,当所述存储器存储的程序代码被所述处理器执行时,使得所述终端执行下列过程:
将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的 QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述处理器具体用于通过下列方式确定下一时隙的QoS需求数值:
根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
第四方面,本公开实施例还提供一种干扰协调的终端,该终端包括:
确定模块:用于确定需要进行干扰协调;
第一处理模块:用于将当前时隙的干扰信息和/或由所述当前时隙的干扰信息确定的下一时隙的QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
第五方面,本公开实施例还提供了一种干扰协调的网络侧设备,该网络侧设备包括:处理器以及存储器,其中,所述存储器存储有程序代码,当所述存储器存储的程序代码被所述处理器执行时,使得所述网络侧设备执行下列过程:
接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述处理器具体用于:
在根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数时,利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;或
在根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,时:根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针 对所述终端的发射参数。
在一些实施方式中,所述处理器还用于:
若需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则向其他网络侧设备发送收到的所述干扰信息。
第六方面,本公开实施例还提供了一种干扰协调的网络侧设备,该网络侧设备包括:
接收模块:用于接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;
第二处理模块:用于根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
第七方面,本申请还提供一种计算机可读的非易失性存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面所述方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种干扰协调的系统结构示意图;
图2为本公开实施例提供的第一种发送方式的方法示意图;
图3为本公开实施例提供的第二种发送方式的方法示意图;
图4为本公开实施例提供的第一种场景示意图;
图5为本公开实施例提供的第二种场景示意图;
图6为本公开实施例提供的第三种场景示意图;
图7为本公开实施例给出的一种网络侧设备交互彼此干扰信息的场景示意图;
图8为本公开实施例给出一种设定场景的软件仿真结果1;
图9为本公开实施例给出一种设定场景的软件仿真结果2;
图10为本公开实施例第一种干扰协调的终端的结构示意图;
图11为本公开实施例第二种干扰协调的终端的结构示意图;
图12为本公开实施例第三种干扰协调的终端的结构示意图;
图13为本公开实施例提供第一种干扰协调的网络侧设备的结构示意图;
图14为本公开实施例提供第二种干扰协调的网络侧设备的结构示意图;
图15为本公开实施例提供的是一种干扰协调的方法流程示意图;
图16为本公开实施例提供的是一种干扰协调的方法流程示意图;
图17为本公开实施提供的方案三的一种干扰协调的完整方法流程示意图;
图18为本公开实施提供的方案三的另一种干扰协调的方法的完整流程示意图。
具体实施方式
下面对文中出现的一些词语进行解释:
1、本公开实施例所指的“终端”是手机、平台等。
2、本公开实施例所指的“网络侧设备”是宏基站、微基站等。
3、“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
对于集中式的干扰协调方案,中心节点需要进行大量的信息交互,然后进行高复杂度的集中优化处理。相应的,大量的信息交互对基站交互接口的承受能力、中心节点的计算能力有很高的要求,而如此高要求的系统复杂性显然是无法满足5G密集化场景的需求。
综上,目前集中式的干扰协调需要大量的信息交换,造成极大的信令开销。
下面结合说明书附图对本公开实施例做进一步详细描述。
如图1所示,一种干扰协调的方法和设备,包括:终端10和网络侧设备 20。
终端10:用于将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
网络侧设备20:用于接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
通过上述方案,所述终端确定当前时隙的干扰信息,将当前时隙的干扰信息和/或由所述当前时隙的干扰信息确定的下一时隙的QoS需求数值发送给网络侧设备,所述网络侧设备根据接收到的终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,不需要与网络侧设备交互大量的信息且所述网络侧设备能够针对所述终端每个时隙的调整。所述网络侧设备不需要再将终端上报的所述信息以及对终端产生干扰的所有网络侧设备与所述终端之间的信道状态信息发送给中心节点进行集中处理。所述网络侧设备根据接收到的终端对应的消息进行独立计算,以调整针对每个终端的传输策略,避免了大量的信息交换,节省了信令开销且系统更加灵活,进一步的,由于每个网络侧设备都可以通过计算调整自身的传输策略,所以同时也减轻了集中式处理对系统设施的性能要求。
本公开实施例,终端在确定当前时隙的干扰信息和/或下一时隙的QoS需求数值之前,需要对受到的所有干扰进行测量,得到干扰信息。若所述终端将下一时隙的QoS需求数值发送给网络侧设备,则所述终端还需要对与接入的网络侧设备之间的信道进行测量,得到本地信道状态信息,并根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值。
其中,QoS需求数值用于反应终端需要的QoS程度。
所述终端测量得到的所述干扰信息包括:噪声干扰和/或其他网络侧设备对终端的干扰。
本公开实施例,所述终端将当前时隙的干扰信息和/或下一时隙的QoS需 求数值发送给网络侧设备的方式有多种,下面列举几种:
发送方式一:如图2示,本公开实施例提供的第一种发送方式。
终端n将Q当前时隙的干扰信息和/或下一时隙的QoS需求数值广播给所有基站,包括:微基站1、微基站2、微基站3和宏基站。
发送方式二:如图3所示,本公开实施例提供的第二种发送方式。
终端n先单独将当前时隙的干扰信息和/或下一时隙的QoS需求数值发送给宏基站,然后由宏基站将当前时隙的干扰信息和/或下一时隙的QoS需求数值发送其他微基站,包括:微基站1、微基站2、微基站3。
上述场景仅为举例,本公开实施例适用的场景有多种,下面举例说明:
场景一:如图4所示,终端接入的网络侧设备以及其他网络侧设备全部为宏基站;
场景二:如图5所示,终端接入的网络侧设备以及其他网络侧设备全部为微基站;
场景三:如图6所示,终端接入的网络侧设备以及其他网络侧设备中既有宏基站也有微基站。
所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
其中,所述发射参数包括但不限于下列中的至少一个:
发射功率、波束、PMI(Precoding Matrix Indicator,预编码矩阵指示)。
在实施中,本公开实施例可以以满足终端的QoS需求为目的进行调整和/或以最大化网络和速率为目的进行调整,以实现满足所述终端在使用场景变化后的不同使用需求。
不同的调整目的,在调整时用到的参数不同,比如以满足终端的QoS需求为目的进行调整用到下一时隙的QoS需求数值;以最大化网络和速率为目的进行调整用到干扰信息。
下面详细介绍下不同目的的调整方式:
方案一、以满足终端的QoS需求为目的。
比如,在所述网络侧设备服务的用户较少的情况下,例如人烟稀少的地区,网络侧设备稀疏,所述终端的通话质量容易受到干扰,在这种使用场景下,所述网络侧设备可以设置为以满足所述终端的QoS需求为目的对发射参数进行调整。
在以满足终端的QoS需求为目的进行调整时,终端需要确定下一时隙的QoS需求数值,并将下一时隙的QoS需求数值发送给网络侧设备,网络侧设备需要与其他网络侧设备交互所述终端的QoS需求数值。
其中,终端根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
比如终端可以根据下面的公式1确定下一时隙的QoS需求数值。
所述网络侧设备根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
若所述发射参数为发射功率时,可以采用下述调整方式一的方法进行调整,具体操作可参见下述调整方式一。
方案二:以最大化网络和速率为目的。
在所述网络侧设备服务的用户较多的情况下,例如演唱会现场,所述网络侧设备的网络和速率越高,则满足网速需求的终端的数量就越多。在这种使用场景下,所述网络侧设备可以设置为以最大化网络和速率为目的,对发射参数进行调整。
终端将干扰信息发送给网络侧设备,所述网络侧设备需要与其他网络侧设备交互干扰信息但不必交互QoS需求数值,因此所述终端必须要将包含当前时隙的干扰信息发送给网络侧设备。
如图7所述,本实施例给出的一种网络侧设备交互彼此干扰信息的场景示意图。
I 0宏基站0所服务的终端0受到的所有干扰;I 1微基站1所服务的终端1 受到的所有干扰;I 2微基站2所服务的终端2受到的所有干扰;I 3微基站3所服务的终端3受到的所有干扰。
所述网络侧设备根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数。
若所述发射参数为发射功率时,采用下述调整方式二的方法进行调整,具体操作可参见下述调整方式二。
方案三、同时满足终端的QoS需求和以最大化网络和速率为目的。
所述网络侧设备将以同时满足QoS需求和以最大化网络和速率为目的对下一时隙针对所述终端的发射参数进行调整时就是将上面的方案一和方案二相结合。
在实施中,也可以不固定设置采用方案一还是方案二,比如可以设置一个条件,根据条件确定采用的方案。
一种可行的方式是:所述网络侧设备先判断当前是否满足所述终端的QoS需求,若满足,则所述网络侧设备进一步以最大化网络和速率为目的,对下一时隙针对所述终端的发射参数进行调整;否则,所述网络侧设备以满足所述终端QoS需求为目的,对下一时隙针对所述终端的发射参数进行调整。
其中,所述网络侧设备通过下列方式判断所述终端的QoS是否满足需求:
所述网络侧设备将当前时隙的QoS需求数值与QoS阈值进行比较,判断当前时隙的QoS需求数值是否小于QoS阈值,如果是,则确定QoS不满足需求;否则确定QoS满足需求。其中,当前时隙的QoS需求数值为所述网络侧设备已知。
QoS阈值可以根据需要设定,比如依据运营商和/或终端使用套餐的不同,具有不同的数值。
需要说明的是,所述终端在更新QoS需求数值之前也可以通过上述方式判断当前时隙的QoS是否满足需求,并根据判断结果更新下一时隙QoS需求数值,具体更新方式可以参见下述网络侧设备的更新方式,此处不再赘述。
若满足当前时隙所述终端的QoS需求,将预设数值作为所述下一时隙QoS需求数值,进一步的,所述终端以最大化网络和速率为目的,并根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数,若所述发射参数为发射功率时,采用下述调整方式二的方法进行调整,具体操作可参见下述调整方式一,不再详细说明。
若所述终端当前时隙的QoS不满足需求,进一步的,所述终端以满足所述终端QoS需求为目的,并根据发射参数、本地信道状态信息和干扰信息,更新出下一时隙满足QoS需求的QoS需求数值,再根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数,若所述发射参数为发射功率时,采用下述调整方式一的方法进行调整,具体操作可参见下述调整方式一,不再详细说明。
具体的,所述网络侧设备通过下列公式1确定下一时隙的QoS需求数值:
Figure PCTCN2019092783-appb-000001
其中,[ ] +表示对括号内部数据进行非负操作,内部数据小于零时取零,否则等于本身;k为当前时隙;
Figure PCTCN2019092783-appb-000002
为当前时隙的QoS需求数值;
Figure PCTCN2019092783-appb-000003
为下一时隙的QoS需求数值;η k为更新步长;I i(n)为干扰信息;p i(n)为当前所述终端接收到的来自网络侧设备的发射功率;ω i(n)为本地信道状态信息归一化的结果,
Figure PCTCN2019092783-appb-000004
为h ii为网络侧设备i内的信道增益;
Figure PCTCN2019092783-appb-000005
为保证最低可达速率的约束值。
比如,以所述发射参数为发射功率进行举例说明,终端n根据测量得到的信号信息h ii与干扰信息I i(n),更新出当前时隙的QoS需求数值
Figure PCTCN2019092783-appb-000006
且已知 QoS阈值γ n、终端n接收到的网络侧设备i的发射功率为p i(n)。
所述终端将当前时隙的QoS需求数值
Figure PCTCN2019092783-appb-000007
与QoS阈值γ n进行比较:
Figure PCTCN2019092783-appb-000008
则前时隙的QoS需求数值满足需求,则所述网络侧设备将预设数值作为所述下一时隙QoS需求数值
Figure PCTCN2019092783-appb-000009
比如
Figure PCTCN2019092783-appb-000010
Figure PCTCN2019092783-appb-000011
则当前时隙的QoS需求数值不满足需求,则所述网络侧设备需要通过公式1对QoS需求数值进行更新,得到下一时隙的QoS需求数值
Figure PCTCN2019092783-appb-000012
更新完下一时隙的QoS需求数值后,所述网络侧设备将所述下一时隙的QoS需求数值或干扰信息发送给其他网络侧设备,其发送方式有多种,具体可以参数上述终端向网络侧设备发送数据的发送方式一、发送方式二,此处不再赘述。
本公开实施例中,以发射功率作为发射参数为例,网络侧设备根据不同的干扰协调机制的目的对发射功率的具体调整分别进行具体介绍:
调整方式一:以满足终端的QoS为目的进行调整。
所述网络侧设备以满足终端的QoS需求为目的时,根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
具体的,所述网络侧设备通过下列公式2调整下一时隙针对所述终端的发射功率:
Figure PCTCN2019092783-appb-000013
其中,
Figure PCTCN2019092783-appb-000014
为满足QoS需求的情况下能够达到最大可达速率的发射功率;o表示当前有QoS需求的终端所属的网络侧设备o;λ o为使得网络侧设备o内 发射功率满足功率和约束的最小非负数;μ n为当前终端n的QoS需求数值;ω o(n)为网络侧设备o下服务的用户n的本地信道状态信息归一化的结果;I o(n)表示网络侧设备o所服务的用户n所受到的干扰;h oo(n)为网络侧设备o在自身的子信道n上服务用户的信道增益;p o(n)为网络侧设备o在子信道n上的发射功率;λ i为使得网络侧设备i发射功率满足功率和约束的最小非负数;h ij(n)为网络侧设备i到网络侧设备j在子信道n上服务用户的信道增益;h ii(n)为网络侧设备i在子信道i上服务用户的信道增益;I i(n)表示网络侧设备i所服务的用户n所受到的干扰;p i(n)为网络侧设备i在子信道n上的发射功率。
上述网络侧设备针对QoS需求对下一时隙的发射功率的调整的原则为:通过管理其他网络侧设备对终端的干扰,调整发射功率以抵消掉所述终端受到的干扰的影响,在满足协调机制的目的同时需要达到最大的可达速率,若可达速率越大,所述网络侧设备向所述终端进行数据传输的信道容量以及系统性能就越强,即能够得到自身的最大效用。
本公开实施例中的,所述网络侧设备在满足协调机制的情况下能够达到最大可达速率的发射功率,即为所述网络侧设备下一时隙的发射功率
Figure PCTCN2019092783-appb-000015
调整方式二:以最大化网络和速率为目的进行调整。
所述网络侧设备以最大化网络和速率为目的时,所述网络侧设备需要与其他网络侧设备交互干扰信息。所述网络侧设备根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数。
具体的,所述网络侧设备通过下列公式3调整下一时隙针对所述终端的发射功率:
Figure PCTCN2019092783-appb-000016
其中:
Figure PCTCN2019092783-appb-000017
Figure PCTCN2019092783-appb-000018
Figure PCTCN2019092783-appb-000019
为满足QoS需求的情况下能够达到最大可达速率的发射功率;τ为约束常数;k v表示迭代步长;h ii(n)为网络侧设备i在子信道n上服务用户的信道增益;h jj为网络侧设备j内的信道增益;h ij(n)为网络侧设备i到网络侧设备j在子信道n上服务用户的信道增益;I i(n)表示网络侧设备i所服务的用户n所受到的干扰;σ j表示网络侧设备j上的噪声功率;μ n为当前终端n的QoS需求数值;λ o为使得网络侧设备o内发射功率满足功率和约束的最小非负数;λ i为使得网络侧设备i内发射功率满足功率和约束的最小非负数;ω o(n)为网络侧设备o下服务的用户n的本地信道状态信息归一化的结果。
本公开实施例中,通过设定一种场景,并在所述场景下应用本公开实施方式进行软件仿真,所述场景为:由一个宏基站和10个微基站构成的宏单元Macro Cell/微单元Small Cell分层异构网络,其下行信道由宏蜂窝和Small Cell共享,并且被划分为10子信道,每个子信道给一个宏基站终端或者一个微基站终端使用。假定宏基站的覆盖半径为500米,微基站的覆盖半径为100 米,其中微基站和宏基站均匀随机分布在蜂窝系统中,宏终端均匀随机分布在微单元覆盖范围内。
通过应用本公开的方法对上述场景的软件仿真结果1,如图8所示:
分布式局部干扰协调(仅交互QoS需求数值)获得的网络和速率高于完全分布式干扰协调。其中,完全分布式干扰为在分布式场景下,不采用本公开实施例的干扰协调方法时的性能。
分布式局部干扰协调(交互QoS需求数值和干扰信息)获得和完全集中式干扰协调同样的网络和速率性能。
通过应用本公开的方法对上述场景的软件仿真结果2,如图9所示:
完全分布式干扰协调无法保证宏终端的QoS需求,而分布式局部干扰协调可严格满足宏终端QoS需求。
基于相同的构思,如图10所示,本公开实施例提供一种干扰协调的终端,该终端包括:处理器1000以及存储器1001,其中,所述存储器1001存储有程序代码,当所述存储器1001存储的程序代码被所述处理器1000执行时,使得所述终端执行下列过程:
确定当前时隙的干扰信息;将当前时隙的干扰信息和/或由所述当前时隙的干扰信息确定的下一时隙的QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述处理器1000具体用于通过下列方式确定下一时隙的QoS需求数值:
根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
如图11所示,本公开实施例给出一种干扰协调的终端1100包括:射频(Radio Frequency,RF)电路1110、电源1120、处理器1130、存储器1140、输入单元1150、显示单元1160、摄像头1170、通信接口1180、以及无线保真 (Wireless Fidelity,WiFi)模块1190等部件。本领域技术人员可以理解,图11中示出的终端的结构并不构成对终端的限定,本申请实施例提供的终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图11对所述终端1100的各个构成部件进行具体的介绍:
所述RF电路1110可用于通信或通话过程中,数据的接收和发送。特别地,所述RF电路1110在接收到基站的下行数据后,发送给所述处理器1130处理;另外,将待发送的上行数据发送给基站。通常,所述RF电路1110包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。
此外,RF电路1110还可以通过无线通信与网络和其他终端通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
WiFi技术属于短距离无线传输技术,所述终端1100通过WiFi模块1190可以连接接入点(Access Point,AP),从而实现数据网络的访问。所述WiFi模块1190可用于通信过程中,数据的接收和发送。
所述终端1100可以通过所述通信接口1180与其他终端实现物理连接。在一些实施方式中,所述通信接口1180与所述其他终端的通信接口通过电缆连接,实现所述终端1100和其他终端之间的数据传输。
由于在本申请实施例中,所述终端1100能够实现通信业务,向其他联系人发送信息,因此所述终端1100需要具有数据传输功能,即所述终端1100内部需要包含通信模块。虽然图11示出了所述RF电路1110、所述WiFi模块1190、和所述通信接口1180等通信模块,但是可以理解的是,所述终端1100中存在上述部件中的至少一个或者其他用于实现通信的通信模块(如蓝牙模 块),以进行数据传输。
例如,当所述终端1100为手机时,所述终端1100可以包含所述RF电路1110,还可以包含所述WiFi模块1190;当所述终端1100为计算机时,所述终端1100可以包含所述通信接口1180,还可以包含所述WiFi模块1190;当所述终端1100为平板电脑时,所述终端1100可以包含所述WiFi模块。
所述存储器1140可用于存储软件程序以及模块。所述处理器1130通过运行存储在所述存储器1140的软件程序以及模块,从而执行所述终端1100的各种功能应用以及数据处理,并且当处理器1130执行存储器1140中的程序代码后,可以实现本公开实施例图1中的部分或全部过程。
在一些实施方式中,所述存储器1140可以主要包括存储程序区和存储数据区。其中,存储程序区可存储操作系统、各种应用程序(比如通信应用)以及人脸识别模块等;存储数据区可存储根据所述终端的使用所创建的数据(比如各种图片、视频文件等多媒体文件,以及人脸信息模板)等。
此外,所述存储器1140可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
所述输入单元1150可用于接收用户输入的数字或字符信息,以及产生与所述终端1100的用户设置以及功能控制有关的键信号输入。
在一些实施方式中,输入单元1150可包括触控面板1151以及其他输入终端1152。
其中,所述触控面板1151,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在所述触控面板1151上或在所述触控面板1151附近的操作),并根据预先设定的程式驱动相应的连接装置。在一些实施方式中,所述触控面板1151可以包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给所述处理器1130, 并能接收所述处理器1130发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现所述触控面板1151。
在一些实施方式中,所述其他输入终端1152可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
所述显示单元1160可用于显示由用户输入的信息或提供给用户的信息以及所述终端1100的各种菜单。所述显示单元1160即为所述终端1100的显示系统,用于呈现界面,实现人机交互。
进一步的,所述触控面板1151可覆盖所述显示面板1161,当所述触控面板1151检测到在其上或附近的触摸操作后,传送给所述处理器1130以确定触摸事件的类型,随后所述处理器1130根据触摸事件的类型在所述显示面板1161上提供相应的视觉输出。
虽然在图11中,所述触控面板1151与所述显示面板1161是作为两个独立的部件来实现所述终端1100的输入和输入功能,但是在某些实施例中,可以将所述触控面板1151与所述显示面板1161集成而实现所述终端1100的输入和输出功能。
所述处理器1130是所述终端1100的控制中心,利用各种接口和线路连接各个部件,通过运行或执行存储在所述存储器1140内的软件程序和/或模块,以及调用存储在所述存储器1140内的数据,执行所述终端1100的各种功能和处理数据,从而实现基于所述终端的多种业务。
在一些实施方式中,所述处理器1130可包括一个或多个处理单元。在一些实施方式中,所述处理器1130可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到所述处理器1130中。
所述摄像头1170,用于实现所述终端1100的拍摄功能,拍摄图片或视频。所述摄像头1170还可以用于实现终端1100的扫描功能,对扫描对象(二维 码/条形码)进行扫描。
所述终端1100还包括用于给各个部件供电的电源1120(比如电池)。在一些实施方式中,所述电源1120可以通过电源管理系统与所述处理器1130逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,所述终端1100还可以包括至少一种传感器、音频电路等,在此不再赘述。
如图12所示,本公开实施例提供另一种干扰协调的终端,包括:
确定模块1200:用于确定需要进行干扰协调;
第一处理模块1201:用于将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述第一处理模块1201具体用于通过下列方式确定下一时隙的QoS需求数值:
根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
如图13所示,本公开实施例提供一种干扰协调的网络侧设备,该网络侧设备包括:处理器1300以及存储器1301,其中,所述存储器1301存储有程序代码,当所述存储器1301存储的程序代码被所述处理器1300执行时,使得所述网络侧设备执行下列过程:
接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述处理器1300具体用于:
在根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数时,利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发 射参数;或
在根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,时:根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述处理器1300还用于:
若需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则向其他网络侧设备发送收到的所述干扰信息。
如图14所示,本公开实施例提供另一种干扰协调的网络侧设备,包括:
接收模块1400:用于接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;
第二处理模块1401:用于根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述第二处理模块1401具体用于:
在根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数时,利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;或
在根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,时:根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述第二处理模块1401还用于:
若需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则向其他网络侧设备发送收到的所述干扰信息。
本公开实施例还提供一种计算机可读非易失性存储介质,包括程序代码,当所述程序代码在计算终端上运行时,所述程序代码用于使所述计算终端执 行上述本公开实施例中一种干扰协调的方法的步骤。
基于同一发明构思,本公开实施例中还提供了一种干扰协调的方法,由于该方法对应的设备是本公开实施例一种干扰协调的系统中的设备对应的方法,并且该方法解决问题的原理与该设备相似,因此该方法的实施可以参见一种干扰协调的系统的实施,重复之处不再赘述。
如图15所示,本公开实施例提供的是一种干扰协调的方法,具体包括以下步骤:
步骤1501:终端将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述终端通过下列方式确定下一时隙的QoS需求数值:
所述终端根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
基于同一发明构思,本公开实施例中还提供了一种干扰协调的方法,由于该方法对应的设备是本公开实施例一种干扰协调的系统中的设备对应的方法,并且该方法解决问题的原理与该设备相似,因此该方法的实施可以参见一种干扰协调的系统的实施,重复之处不再赘述。
如图16所示,本公开实施例提供的是一种干扰协调的方法,具体包括以下步骤:
步骤1601:网络侧设备接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;
步骤1602:所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述网络侧设备根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,包括:
所述网络侧设备根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;
所述网络侧设备根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,包括:
所述网络侧设备根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
在一些实施方式中,所述网络侧设备接收终端对应的当前时隙的干扰信息之后,还包括:
若所述网络侧设备需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则所述网络侧设备向其他网络侧设备发送收到的所述干扰信息。
如图17所示,本公开实施提供的方案二中一种干扰协调的方法的完整流程操作,包括以下步骤:
步骤1700:终端i确定当前时隙的干扰信息和/或下一时隙的QoS需求数值;
步骤1701:终端i将当前时隙的干扰信息发送给网络侧设备;
步骤1702:终端i更新QoS需求数值;
步骤1703:终端i以广播的方式向网络侧设备发送QoS需求数值;
步骤1704:网络侧设备i向网络侧设备j交互干扰信息;
步骤1705:网络侧设备j向网络侧设备i交互干扰信息;
步骤1706:网络侧设备i更新发射参数;
步骤1707:网络侧设备j更新发射参数。
需要说明的是,步骤1701和步骤1703可以同时执行,即可以将QoS需求数值与测量信息一同发送给网络侧设备;步骤1704和步骤1705可以同时执行,且步骤1704和步骤1705仅为举例说明,网络侧设备可以有多个,若 网络侧设备有多个,则网络侧设备i还需要与其他网络侧设备交互干扰信息;步骤1706和步骤1707可以同时执行,即网络侧设备i和网络侧设备j在接收到交互干扰信息后开始更新各自的发射参数。
如图18所示,本公开实施提供的方案二中一种干扰协调的终端侧相关方法流程操作,包括以下步骤:
步骤1800:终端确定当前时隙的干扰信息;
步骤1801:终端将当前时隙的干扰信息和/或由所述当前时隙的干扰信息确定的下一时隙的QoS需求数值发送给网络侧设备;
步骤1802:网络侧设备接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;
步骤1803:网络侧设备判断QoS需求数值是否是预设数值,如果是,则执行步骤1804;否则,执行步骤1805;
步骤1804:网络侧设备以最大化网络和速率为干扰协调机制对发射功率进行调整;
步骤1805:网络侧设备以满足QoS需求为干扰协调机制对发射功率进行调整;
步骤1806:网络侧设备与相邻网络侧设备交互干扰信息;
步骤1807:网络侧设备根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数;
步骤1808:网络侧设备根据终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可 编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (10)

  1. 一种干扰协调的方法,该方法包括:
    终端将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
  2. 如权利要求1所述的方法,所述终端通过下列方式确定下一时隙的QoS需求数值:
    所述终端根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
  3. 一种干扰协调的方法,该方法包括:
    网络侧设备接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;
    所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
  4. 如权利要求3所述的方法,所述网络侧设备根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,包括:
    所述网络侧设备根据所述终端在当前时隙的干扰信息、利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;
    所述网络侧设备根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数,包括:
    所述网络侧设备根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
  5. 如权利要求4所述的方法,所述网络侧设备接收终端对应的当前时隙 的干扰信息之后,还包括:
    若所述网络侧设备需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则所述网络侧设备向其他网络侧设备发送收到的所述干扰信息。
  6. 一种终端,该终端包括:处理器以及存储器,其中,所述存储器存储有程序代码,当所述存储器存储的程序代码被所述处理器执行时,使得所述终端执行:
    将当前时隙的干扰信息和/或下一时隙的服务质量QoS需求数值发送给网络侧设备,以使所述网络侧设备根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
  7. 如权利要求6所述的终端,所述处理器具体用于通过下列方式确定下一时隙的QoS需求数值:
    根据当前时隙的干扰信息和当前时隙的信道状态信息确定下一时隙的QoS需求数值,其中所述信道状态信息对应的信道为所述终端和接入的网络侧设备之间的信道。
  8. 一种网络侧设备,该网络侧设备包括:处理器以及存储器,其中,所述存储器存储有程序代码,当所述存储器存储的程序代码被所述处理器执行时,使得所述网络侧设备执行:
    接收终端对应的当前时隙的干扰信息和/或下一时隙的QoS需求数值;根据收到的所述干扰信息和/或下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数。
  9. 如权利要求8所述的网络侧设备,所述处理器具体用于:
    在根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数时,利用本地测量得到的与所述终端之间信道的信道状态信息以及与相邻网络侧设备交互获得的其他网络侧设备的干扰信息调整下一时隙针对所述终端的发射参数;或
    在根据下一时隙的QoS需求数值调整下一时隙针对所述终端的发射参数, 时:根据下一时隙的QoS需求数值、利用本地测量得到的与所述终端之间信道的信道状态信息以及利用本地测量得到的终端的干扰信息调整下一时隙针对所述终端的发射参数。
  10. 如权利要求9所述的网络侧设备,所述处理器还用于:
    若需要根据收到的所述干扰信息调整下一时隙针对所述终端的发射参数,则向其他网络侧设备发送收到的所述干扰信息。
PCT/CN2019/092783 2018-08-31 2019-06-25 一种干扰协调的方法和设备 WO2020042734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811015657.XA CN110875793B (zh) 2018-08-31 2018-08-31 一种干扰协调的方法和设备
CN201811015657.X 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020042734A1 true WO2020042734A1 (zh) 2020-03-05

Family

ID=69643406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092783 WO2020042734A1 (zh) 2018-08-31 2019-06-25 一种干扰协调的方法和设备

Country Status (2)

Country Link
CN (1) CN110875793B (zh)
WO (1) WO2020042734A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110635A (zh) * 2006-07-21 2008-01-23 中兴通讯股份有限公司 正交频分复用系统中区域功率控制的方法
WO2009003413A1 (en) * 2007-07-04 2009-01-08 Shanghai Huawei Technologies Co., Ltd. Control method and system for uplink and downlink power
CN101820683A (zh) * 2009-02-26 2010-09-01 中兴通讯股份有限公司 干扰控制信息的传输方法
CN102469521A (zh) * 2010-11-18 2012-05-23 鼎桥通信技术有限公司 一种动态调整QoS指标的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG148029A1 (en) * 1999-11-04 2008-12-31 Ntt Docomo Inc Method, base station and mobile station for timeslot selection and timeslot assignment
WO2011096748A2 (en) * 2010-02-02 2011-08-11 Lg Electronics Inc. Power control method for interference alignment in wireless network
CN102348244B (zh) * 2010-08-03 2014-11-05 华为技术有限公司 蜂窝通信系统、终端在小区间切换的方法及宏基站
CN103796283B (zh) * 2012-10-31 2017-08-04 华为技术有限公司 选择服务小区的方法、设备及系统
US20150365206A1 (en) * 2014-06-12 2015-12-17 Qatar University Qstp-B System and methods for interference mitigation in femtocell network
CN107534900B (zh) * 2015-12-23 2020-11-17 华为技术有限公司 通信方法及设备
CN106358204A (zh) * 2016-10-08 2017-01-25 浙江大学 一种蜂窝异构网络下的全双工小区间干扰协调方法
CN106851745B (zh) * 2016-12-29 2019-07-09 北京邮电大学 一种laa授权信道和未授权信道动态分配方法及系统
CN107437963B (zh) * 2017-07-05 2020-10-20 深圳大学 基于反馈控制的分布式安全波束成型方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110635A (zh) * 2006-07-21 2008-01-23 中兴通讯股份有限公司 正交频分复用系统中区域功率控制的方法
WO2009003413A1 (en) * 2007-07-04 2009-01-08 Shanghai Huawei Technologies Co., Ltd. Control method and system for uplink and downlink power
CN101820683A (zh) * 2009-02-26 2010-09-01 中兴通讯股份有限公司 干扰控制信息的传输方法
CN102469521A (zh) * 2010-11-18 2012-05-23 鼎桥通信技术有限公司 一种动态调整QoS指标的方法

Also Published As

Publication number Publication date
CN110875793A (zh) 2020-03-10
CN110875793B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US20220295329A1 (en) Measurement Reporting Method and Related Device
US10666336B2 (en) Inter-device coordination method, beam training method, and apparatus
WO2018082435A1 (zh) 终端设备移动性的处理方法、终端设备和基站
CN111148151B (zh) 发射功率的调整方法、装置、存储介质及终端设备
WO2018098943A1 (zh) 无线局域网接入点切换的方法和终端
WO2019242539A1 (zh) 波束测量方法、网络侧设备、终端设备及存储介质
EP4117363A1 (en) Method for determining uplink transmission parameter, and terminal device
WO2018103584A1 (zh) 一种小区确定的方法、相关设备以及系统
CN111246558B (zh) 功率控制方法、装置、终端和可读存储介质
WO2023173702A1 (zh) 无线远距离配网方法、控制中心及设备
CN111787542A (zh) 业务数据的传输方法、装置、存储介质及终端设备
CN109743736A (zh) 一种以用户为中心的超密集网络用户接入与资源分配方法
CN114096007A (zh) 一种业务传输方法、装置、服务器及存储介质
CN110536398B (zh) 基于多维有效容量的平均时延保障功率控制方法及系统
CN111278112B (zh) 一种功率余量的上报方法及装置
CN112367705A (zh) 频域资源分配方法、装置及存储介质
WO2019036851A1 (zh) 一种信道状态信息测量及反馈方法及相关产品
WO2023236518A1 (zh) 一种通信方法及终端、存储介质
WO2020042734A1 (zh) 一种干扰协调的方法和设备
WO2022257926A1 (zh) 基于旁链路的中继服务方法及装置、终端及网络侧设备
Jaafar et al. Content caching and channel allocation in D2D-assisted wireless HetNets
WO2019149111A1 (zh) 一种测量方法及测量装置
WO2023011342A1 (zh) 信道发送参数确定方法、装置及相关设备
WO2023072239A1 (zh) 信道预测方法、装置、网络侧设备及终端
WO2022152053A1 (zh) 上行功率控制方法、上行功率控制处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855216

Country of ref document: EP

Kind code of ref document: A1