WO2022152053A1 - 上行功率控制方法、上行功率控制处理方法及相关设备 - Google Patents

上行功率控制方法、上行功率控制处理方法及相关设备 Download PDF

Info

Publication number
WO2022152053A1
WO2022152053A1 PCT/CN2022/070716 CN2022070716W WO2022152053A1 WO 2022152053 A1 WO2022152053 A1 WO 2022152053A1 CN 2022070716 W CN2022070716 W CN 2022070716W WO 2022152053 A1 WO2022152053 A1 WO 2022152053A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency band
power control
cell group
uplink power
Prior art date
Application number
PCT/CN2022/070716
Other languages
English (en)
French (fr)
Inventor
蒲文娟
杨晓东
孙晓东
冯三军
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022152053A1 publication Critical patent/WO2022152053A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the field of communication technologies, and in particular, relates to an uplink power control method, an uplink power control processing method and related equipment.
  • Dual Connectivity is applied. That is, the terminal is provided with resources of two network nodes, one of which is called a master node (Master Node, MN), and the other network node is called a secondary node (Secondary Node, SN).
  • the network node works in the frequency range (Frequency Range, FR) 1, it uses omnidirectional antennas to send and receive data.
  • FR2 frequency band When a network node operates in the FR2 frequency band, it uses non-omnidirectional antennas or directional beams to send and receive data.
  • the terminal communicates with network devices in different directions, the maximum uplink transmit power of the terminal may be different. Therefore, network equipment may not be able to accurately determine the maximum transmit power value of a cell group or terminal in the FR2 frequency band, resulting in unreasonable power parameter information configured and affecting the uplink transmission performance of the terminal.
  • the embodiments of the present application provide an uplink power control method, an uplink power control processing method, and related equipment, which can solve the problem that the network equipment cannot accurately determine the maximum transmit power value of a cell group or a terminal in the FR2 frequency band, resulting in unreasonable power parameter information configured.
  • the problem that affects the uplink transmission performance of the terminal is not limited.
  • an uplink power control method including:
  • the terminal In the case of receiving the first configuration information, the terminal performs the first operation
  • the uplink power control of each cell group in the FR2 frequency band is independently performed
  • the second power parameter information is determined by the agreement or the terminal;
  • the The terminal preferentially performs power allocation for the primary cell group, or the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2.
  • an uplink power control processing method including:
  • an execution module configured to execute the first operation when the first configuration information is received
  • the first configuration information includes first power parameter information, and the first power parameter information is used to determine that the terminal is in a dual-connection DC state, and the uplink power control in the FR2 frequency band;
  • the first operation includes the following At least one:
  • the uplink power control of each cell group in the FR2 frequency band is independently performed
  • the second power parameter information is determined by the agreement or the terminal;
  • an uplink power control processing apparatus including:
  • a determining module configured to determine whether to send first configuration information to the terminal when the terminal is in a dual-connection DC state, where the first configuration information includes first power parameter information, and the first power parameter information is used to determine the When the terminal is in the DC state, the uplink power control in the FR2 frequency band.
  • a network device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network device program or instruction to implement The method described in the second aspect.
  • a computer program product is provided, the computer program product is stored in a non-volatile storage medium, the computer program product is executed by at least one processor to implement the method according to the first aspect, or A method as described in the second aspect is implemented.
  • the terminal performs the first operation when the first configuration information is received; wherein the first configuration information includes first power parameter information, and the first power parameter information is used to determine the terminal In the dual-connection DC state, the uplink power control in the FR2 frequency band; the first operation includes at least one of the following: ignoring the first configuration information; stopping or not executing the terminal in the DC state, in the FR2 frequency band
  • the uplink power control of each cell group in the FR2 frequency band is independently performed according to the first preset mode; the uplink power control of the terminal in the DC state and in the FR2 frequency band is performed according to the second power parameter information.
  • the second power parameter information is determined by the protocol or the terminal; according to the first power parameter information and the second power parameter information, the terminal is in the DC state, and the uplink power control in the FR2 frequency band is performed;
  • the first power parameter information does not include the maximum transmit power of the terminal in the FR2 frequency band in the cell group and when the terminal is in the DC state and at least one of the uplink power control mode of the FR2 frequency band, the terminal preferentially performs Power allocation of the primary cell group, or the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2.
  • the uplink power control of the terminal in the DC state in the FR2 frequency band is not directly controlled according to the first power parameter information configured by the network, it can solve the problem that the network equipment cannot accurately determine the maximum transmit power value of the cell group or the terminal in the FR2 frequency band, resulting in The configured power parameter information is unreasonable, which affects the uplink transmission performance of the terminal.
  • FIG. 1 is a structural diagram of a network system to which an embodiment of the present application can be applied;
  • FIG. 2 is a flowchart of an uplink power control method provided by an embodiment of the present application
  • FIG. 3 is a flowchart of an uplink power control processing method provided by an embodiment of the present application.
  • FIG. 4 is a structural diagram of an apparatus for uplink power control provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of an uplink power control processing apparatus provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of a network device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • 6G most Generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • the network device 12 may be a base station or a core network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks (WLAN) ) access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that , in the embodiments of the present application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • CA DC/Carrier Aggregation
  • the DC provides the terminal with the resources of two network nodes, one of which is called the master node (Master node, MN), and the other network node is called the secondary node (Secondary Node, SN).
  • CA is used, that is, a series of serving cells controlled by the node is configured for the UE, which is also a cell group.
  • the master node MN controls the master cell group (Master Cell Group, MCG), and the secondary node SN controls the secondary cell group (Secondary Cell Group, SCG).
  • Each cell group includes a special cell (Special Cell, SpCell) and a series of secondary cells (Secondary Cell, Scell).
  • the special cell In the MCG, the special cell is called a primary cell (Primary Cell, PCell), and in the SCG, the special cell is called a primary secondary cell (Primary Secondary Cell, PSCell).
  • Primary Cell PCell
  • Primary Secondary Cell PSCell
  • the SpCell uses the primary carrier, while other secondary cells use the secondary carrier, and the resource scheduling in one cell group is performed by the SpCell.
  • the DC scenario includes Evolved UTMS Terrestrial Radio Access (E-UTRA)-NR dual connectivity (eNB) NR Dual Connection, EN-DC), that is, a multi-RAT Dual Connectivity (MR-DC) architecture with eNB as MN and en-gNB as SN;
  • E-UTRA Evolved UTMS Terrestrial Radio Access
  • eNB NR dual connectivity
  • EN-DC EN-DC
  • MR-DC multi-RAT Dual Connectivity
  • the DC scenarios include:
  • New air interface-dual connectivity that is, the MR-DC architecture with gNB as MN and gNB as SN;
  • NE-DC NR-E-UTRA dual connectivity
  • the uplink power control mechanism of NR-DC that is, the serving cells working in the same FR in the MCG and SCG can share the total maximum transmit power of the UE, that is, perform joint power allocation, where the FR includes FR1 and FR2.
  • P total the maximum total transmission power
  • NR-DC uplink power control includes three power control modes:
  • Semi-static power control mode 1 MCG and SCG respectively perform power control according to the maximum transmit power of their respective CGs;
  • Semi-static power control mode 2 When the MCG determines the uplink power, the configuration information of the uplink and downlink frame structure of the SCG is considered. The same is true for SCG, which is not repeated here.
  • Dynamic power control mode When the SCG determines the uplink power at time T0, if the MCG scheduling is received before T0_Toffset, the UE will limit the SCG based on the actual transmission power of the MCG, the maximum uplink total transmission power of the UE, and the maximum transmission power of the SCG. transmit power, and the UE does not wish to receive the scheduling of the MCG during T0_Toffset ⁇ T0.
  • the specific solution is as follows: it is assumed that the UE will start to perform SCG uplink transmission at time T0, and its SCG uplink transmission power is represented by pwr_SCG. The UE calculates the SCG uplink transmission power pwr_SCG at time T0 according to the following methods:
  • the UE Before time T0-T_offset, the UE monitors the PDCCH of the MCG:
  • the SCG uplink transmission power of the UE should satisfy pwr_SCG ⁇ min ⁇ P SCG ,P total -MCG tx power ⁇ , where P total is the maximum uplink transmission power of the UE, P SCG is the maximum uplink transmission power of the SCG, and MCG tx power is the uplink transmission power of the MCG;
  • the UE does not want the PDCCH of the MCG to schedule the UE to perform the MCG uplink transmission that overlaps with the SCG uplink transmission at time T0.
  • semi-static power control mode 1, semi-static power control mode 2, and dynamic power control mode can all be considered as power sharing mechanisms.
  • semi-static power control mode 2 and dynamic power control mode are regarded as power sharing mechanisms, while semi-static power control mode 1 is regarded as independent uplink power control in each cell group.
  • FIG. 2 is a flowchart of an uplink power control method provided by an embodiment of the present application. The method is executed by a terminal. As shown in FIG. 2, the method includes the following steps:
  • Operation 3 independently perform uplink power control of each cell group in the FR2 frequency band according to the first preset mode
  • Operation 4 performing uplink power control in the FR2 frequency band when the terminal is in the DC state according to the second power parameter information, the second power parameter information is determined by the agreement or the terminal;
  • Operation 6 performing uplink power control in the FR2 frequency band when the terminal is in the DC state based on the method implemented by the terminal;
  • Operation 7 In the case where the first power parameter information does not include at least one of the maximum transmit power of the terminal in the FR2 frequency band in the cell group and the terminal in the DC state and the uplink power control mode of the FR2 frequency band, the terminal The power allocation of the primary cell group is preferentially performed, or the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2.
  • the above-mentioned terminal being in the DC state may be understood as the terminal being in any DC state among NR-DC, NE-DC, EN-DC, and NGEN-DC.
  • the terminal may perform the behavior of receiving the first configuration information.
  • the network device may send the first configuration information to the terminal, or may not send the first configuration information to the terminal.
  • the terminal cannot receive the first configuration information at this time.
  • the network device determines to send the first configuration information to the terminal, the terminal may or may not receive the first configuration information at this time.
  • the terminal when the network device does not send the first configuration information, the terminal may not perform the action of receiving the first configuration information, or perform the action of attempting to receive the first configuration information.
  • the terminal may perform an action of receiving or attempting to receive the first configuration information.
  • the terminal may perform the above operations 1 to 7 one or more operations, so as to avoid unreasonable power parameter information configured by the network device and affect the uplink transmission performance of the terminal.
  • operation 2 means that the terminal will not perform dual-connection uplink power control in FR2, for example, the uplink power control mechanism of NR-DC will not be implemented, which can avoid unreasonable power parameter information configured by the network device, resulting in lowering the uplink transmission performance of the terminal.
  • Operation 4 means that the terminal still performs dual-connection uplink power control in FR2, and the power parameter information used for power control is determined by the protocol or by the terminal.
  • Operation 6 may indicate that whether the terminal performs dual-connectivity uplink power control in FR2 is determined by the terminal.
  • the terminal independently controls the uplink power of each cell group in FR2, wherein the independent control methods for different cell groups may be the same or different, which are not further limited here.
  • the maximum transmit power of the terminal in the FR2 frequency band in the cell group may include: the maximum transmit power of the terminal in the FR2 frequency band in the primary cell group and the maximum transmit power of the terminal in the FR2 frequency band in the secondary cell group, for example, the terminal receives In the case where the first power parameter information in the received first configuration information satisfies the preset condition, the power allocation of the primary cell group is preferentially performed at this time, and then the power allocation of the secondary cell group is performed, thereby ensuring the uplink transmit power of the primary cell group; Alternatively, the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2, and in this case, the terminal only supports the dynamic uplink power control mode for power control.
  • the preset condition may include the maximum transmit power of the terminal in the FR2 frequency band, but does not include at least one of the maximum transmit power of the terminal in the FR2 frequency band in the cell group and the uplink power control mode of the terminal in the FR2 frequency band when the terminal is in DC state ; or, only the maximum transmit power of the terminal in the FR2 frequency band is included.
  • the above-mentioned second power parameter information may be the power value or range agreed in the agreement, or the power value or range obtained by the terminal according to the calculation method agreed in the agreement, and may specifically include at least one of the following:
  • the target cell group includes a primary cell group and a secondary cell group
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band.
  • the maximum transmit power of the terminal in the FR2 frequency band in the primary cell group is different from the maximum transmit power of the terminal in the FR2 frequency band in the secondary cell group, it needs to be represented by two parameters.
  • the maximum transmit power is the same as the maximum transmit power of the terminal in the FR2 frequency band in the secondary cell group, it may be represented by one parameter or two parameters, which is not further limited here.
  • the terminal can also use semi-static power control mode 1, semi-static power control mode 2 or dynamic power according to the configuration of the network equipment.
  • the control mode performs uplink power control.
  • the terminal may perform independent uplink power control of the cell group in the FR2 frequency band according to the semi-static power control mode 1, the semi-static power control mode 2, or the dynamic power control mode, for example, in some embodiments , the above-mentioned first preset mode may include that when the UE is configured to use NR FR2 wireless access on both the MCG and the SCG, the terminal also adopts the semi-static power control mode 1 and semi-static power control mode according to the configuration of the network equipment. 2 or the dynamic power control mode performs uplink power control on the first serving cell, the first serving cell is a serving cell operating in the FR2 frequency band in the primary cell group and/or the secondary cell group.
  • the terminal can also perform uplink power control independently in each cell group.
  • the terminal can also perform uplink power control independently in each cell group.
  • the terminal can also perform uplink power control independently for each cell group.
  • the network should avoid sending MCG or SCG maximum transmit power (eg p-NR-FR2), UE maximum transmit power (p-UE-FR2), power control mode (eg nrdc-PCmode- FR2).
  • the terminal performs the first operation in the case of receiving the first configuration information, where the first configuration information includes first power parameter information, and the first power parameter information is used to determine the terminal In the dual-connection DC state, the uplink power control in the FR2 frequency band; the first operation includes at least one of the following: ignoring the first configuration information; stopping or not executing the terminal in the DC state, in the FR2 frequency band.
  • the uplink power control of each cell group in the FR2 frequency band is independently performed according to the first preset mode; the uplink power control of the terminal in the DC state and in the FR2 frequency band is performed according to the second power parameter information.
  • the second power parameter information is determined by the protocol or the terminal; according to the first power parameter information and the second power parameter information, the terminal is in the DC state, and the uplink power control in the FR2 frequency band is performed;
  • the first power parameter information does not include the maximum transmit power of the terminal in the FR2 frequency band in the cell group and when the terminal is in the DC state and at least one of the uplink power control mode of the FR2 frequency band, the terminal preferentially performs Power allocation of the primary cell group, or the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2.
  • the method further includes:
  • the terminal performs the second operation:
  • the second operation includes any of the following:
  • Operation 9 performing uplink power control in the FR2 frequency band when the terminal is in the DC state based on the second power parameter information
  • the terminal does not receive the first configuration information
  • the network device does not send the first configuration information
  • the terminal cannot receive the first configuration information, or the network sends the first configuration information, but the terminal does not send the first configuration information due to The first configuration information sent by the network device cannot be obtained due to resource conflict or decoding failure.
  • the terminal will not perform dual-connection uplink power control in FR2 if it does not receive the first configuration information, which can avoid unreasonable power parameter information configured by the network device, resulting in a reduction in the uplink transmission of the terminal. performance.
  • the terminal still performs dual-connection uplink power control in FR2 even if the terminal does not receive the first configuration information, and the power parameter information used for power control is determined by the protocol or by the terminal.
  • the terminal independently performs uplink power control of each cell group in FR2, wherein the independent control methods of different cell groups may be the same or different, which are not further limited here.
  • the step of the terminal performing the second operation includes:
  • the terminal performs the second operation
  • the preset condition includes at least one of the following:
  • the terminal is configured with DC
  • the terminal is configured with the primary cell group and the secondary cell group both working in the FR2 frequency band.
  • the terminal when the terminal is configured with DC, if the first configuration information is not received, the terminal may not perform uplink power control in the FR2 frequency band when the terminal is in the DC state, or, Perform uplink power control in the FR2 frequency band when the terminal is in a DC state based on the second power parameter information.
  • the uplink power control of the second serving cell is performed, and the second serving cell is a serving cell operating in the FR2 frequency band in the primary cell group and/or the secondary cell group.
  • the first power parameter information includes at least one of the following:
  • the target cell group includes a primary cell group and a secondary cell group
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band.
  • the uplink power control method of carrier aggregation in the FR2 frequency band to perform uplink power control on the first serving cell, where the first serving cell is a serving cell operating in the FR2 frequency band in the primary cell group and/or the secondary cell group; or,
  • the uplink power control of each cell group in the FR2 frequency band is independently performed.
  • the method further includes:
  • the terminal sends third power parameter information to the network device, where the third power parameter information is used by the network device to determine the power parameter information for uplink power control in the FR2 frequency band when the terminal is in a DC state.
  • the content contained in the third power parameter information can be set according to actual needs.
  • the third power parameter information includes at least one of the following:
  • the network device since the network device cannot configure reasonable power parameter information, the network device may send the first configuration information to the terminal, or may not send the first configuration information to the terminal, when the network device determines When not sending the first configuration information to the terminal, the behavior of the network device further includes:
  • the network device stops or does not send the first information to the secondary node of the terminal; or,
  • the network device ignores the second information sent by the secondary node of the terminal
  • the first information includes at least one of the following:
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band;
  • the first request value is used by the secondary node to adjust the maximum transmit power of the terminal in the FR2 frequency band of the secondary cell group;
  • the power coordination parameter for the FR2 frequency band can be expressed as powerCoordination-FR2. It should be understood that when the SN receives the first information, the value in the first information can be ignored. At this time, the SN may not send the second information to the MN, or the MN may ignore the value in the second information in the case of sending.
  • the above-mentioned first request value may be represented as requestedP-MaxFR2.
  • the above second request value can be expressed as requestedToffset (Requests the new value for the time offset restriction used by the SN for scheduling SCG transmissions (ie ).
  • the above-mentioned second request value may exist or take effect only when the NR-DC FR2 power control mode is set to dynamic.
  • Embodiment 1 The UE performs the first operation after receiving the FR2 power configuration.
  • the first configuration information is used to indicate at least one of the following:
  • Perform FR2 uplink power control of each CG independently for example, MCG and SCG independently perform power control according to the power control parameters in the CA scenario; optionally, calculate the power parameter value according to the power parameter value agreed in the agreement or the calculation method agreed in the agreement perform power control;
  • the semi-static power control mode 1 or the semi-static power control mode 2 or the dynamic power control mode is used for power control according to the configuration of the network device.
  • the operation of independently performing the uplink power control of the MCG and the SCG is performed.
  • Embodiment 2 The UE performs NR-DC uplink power control after receiving the FR2 power configuration. If not, the UE performs independent power control.
  • Step 2 If the UE does not receive the first configuration information, the UE performs at least one of the following:
  • Step 301 When the terminal is in a dual-connection DC state, the network device determines whether to send first configuration information to the terminal, where the first configuration information includes first power parameter information, and the first power parameter information is used to determine the When the terminal is in the DC state, the uplink power control in the FR2 frequency band.
  • the method may further include the network device determining whether the terminal is in the DC state. After step 301, if it is determined to send the first configuration information to the terminal, the network device may further perform the step of sending the first configuration information.
  • the method further includes:
  • the network device stops or does not send the first information to the secondary node of the terminal; or,
  • the network device ignores the second information sent by the secondary node of the terminal
  • the first information includes at least one of the following:
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band;
  • the second information includes at least one of the following:
  • the first request value is used by the secondary node to adjust the maximum transmit power of the terminal in the FR2 frequency band of the secondary cell group;
  • the second request value where the second request value is used by the secondary node to adjust the scheduling or configuration of the terminal in the FR2 frequency band of the secondary cell group.
  • the first power parameter information includes at least one of the following:
  • the target cell group includes a primary cell group and a secondary cell group
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band.
  • the network device receives third power parameter information from the terminal, where the third power parameter information is used by the network device to determine that the terminal is in the DC state, and the uplink power is controlled in the FR2 frequency band. Power parameter information.
  • the third power parameter information includes at least one of the following:
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in FIG. 2 .
  • the execution body may be an uplink power control apparatus, or a control module in the uplink power control apparatus for performing uplink power control.
  • the uplink power control device performed by the uplink power control device is taken as an example to describe the uplink power control device provided by the embodiment of the present application.
  • FIG. 4 is a structural diagram of an apparatus for uplink power control provided by an embodiment of the present application.
  • the apparatus for uplink power control 400 includes:
  • the executing module 401 is configured to execute a first operation in the case of receiving the first configuration information, where the first operation includes at least one of the following:
  • the uplink power control of each cell group in the FR2 frequency band is independently performed
  • the second power parameter information is determined by the agreement or the terminal;
  • the The terminal preferentially performs power allocation for the primary cell group, or the terminal does not expect the network device to configure the semi-static uplink power control mode 1 and/or the semi-static uplink power control mode 2.
  • the uplink power control apparatus 400 further includes a first receiving module configured to receive the first configuration information.
  • the executing module 401 is further configured to: in the case that the terminal does not receive the first configuration information, execute the second operation:
  • the uplink power control of each cell group in the FR2 frequency band is independently performed according to the second preset manner.
  • the executing module 401 is specifically configured to execute the second operation when the terminal does not receive the first configuration information and a preset condition is met;
  • the terminal is configured with DC
  • the terminal is configured with the primary cell group and the secondary cell group both working in the FR2 frequency band.
  • the second preset manner includes:
  • the first power parameter information includes at least one of the following:
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band.
  • the first preset manner includes:
  • the uplink power control method of carrier aggregation in the FR2 frequency band to perform uplink power control on the first serving cell, where the first serving cell is a serving cell operating in the FR2 frequency band in the primary cell group and/or the secondary cell group; or,
  • the uplink power control of each cell group in the FR2 frequency band is independently performed.
  • the uplink power control apparatus 400 further includes:
  • the sending module is configured to send third power parameter information to the network device, where the third power parameter information is used by the network device to determine the power parameter information of the uplink power control in the FR2 frequency band when the terminal is in the DC state.
  • the third power parameter information includes at least one of the following:
  • the network device provided in this embodiment of the present application can implement each process implemented in the method embodiment of FIG. 2 , and to avoid repetition, details are not described here.
  • FIG. 5 is a structural diagram of an uplink power control processing apparatus provided by an embodiment of the present application. As shown in FIG. 5, the uplink power control processing apparatus 500 includes:
  • the uplink power control processing apparatus 500 may further include a detection module for determining whether the terminal is in a DC state.
  • the first information includes at least one of the following:
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band;
  • the second information includes at least one of the following:
  • the first request value is used by the secondary node to adjust the maximum transmit power of the terminal in the FR2 frequency band of the secondary cell group;
  • the target cell group includes a primary cell group and a secondary cell group
  • the terminal is in the DC state, in the uplink power control mode of the FR2 frequency band.
  • the uplink power control processing apparatus 500 further includes:
  • the second receiving module is configured to receive third power parameter information from the terminal, where the third power parameter information is used by the network device to determine the power of the uplink power control in the FR2 frequency band when the terminal is in the DC state Parameter information.
  • the network device provided in this embodiment of the present application can implement each process implemented in the method embodiment of FIG. 3 , and to avoid repetition, details are not described here.
  • the uplink power control apparatus and the uplink power control processing apparatus in the embodiments of the present application may be apparatuses, and may also be components, integrated circuits, or chips in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but is not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • Network Attached Storage NAS
  • PC Personal Computer
  • TV Television, TV
  • teller machine or self-service machine, etc.
  • the uplink power control apparatus and the uplink power control processing apparatus in the embodiments of the present application may be apparatuses having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the uplink power control apparatus and the uplink power control processing apparatus provided by the embodiments of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the foregoing uplink power control method embodiments can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network device
  • the program or instruction is executed by the processor 601
  • each process of the above-mentioned embodiments of the uplink power control processing method can be achieved, and the same technical effect can be achieved.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710.
  • the terminal 700 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than those shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7071, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 701 receives the downlink data from the network device, and then processes it to the processor 710; in addition, sends the uplink data to the network device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the processor 710 is configured to perform the first operation in the case of receiving the first configuration information
  • the first configuration information includes first power parameter information, and the first power parameter information is used to determine that the terminal is in a dual-connection DC state, and the uplink power control in the FR2 frequency band;
  • the first operation includes the following At least one:
  • the uplink power control of each cell group in the FR2 frequency band is independently performed
  • the second power parameter information is determined by the agreement or the terminal;
  • the above-mentioned processor 710 and the radio frequency unit 701 can implement each process implemented by the terminal in the method embodiment of FIG. 2 , which is not repeated here to avoid repetition.
  • the embodiment of the present application further provides a network device.
  • the network device 800 includes: an antenna 801 , a radio frequency device 802 , and a baseband device 803 .
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801 .
  • the baseband device 803 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 8 , one of the chips is, for example, the processor 804 , which is connected to the memory 805 to call the program in the memory 805 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 803 may further include a network interface 806 for exchanging information with the radio frequency device 802, and the interface is, for example, a Common Public Radio Interface (CPRI for short).
  • CPRI Common Public Radio Interface
  • the network device in this embodiment of the present application further includes: an instruction or program stored in the memory 805 and executable on the processor 804, and the processor 804 invokes the instruction or program in the memory 805 to execute each module shown in FIG. 5 to execute method, and achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned uplink power control method or uplink power control processing method embodiment is implemented.
  • a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the above-mentioned uplink power control method or uplink power control processing method embodiment is implemented.
  • Each process can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network device program or instruction to implement the above uplink power control processing
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a network device program or instruction to implement the above uplink power control processing
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the above uplink power control method or uplink power control
  • the various processes of the processing method embodiments can achieve the same technical effect, and are not repeated here to avoid repetition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行功率控制方法、上行功率控制处理方法及相关设备。该方法包括:在接收到第一配置信息的情况下,执行第一操作,第一配置信息包括第一功率参数信息;第一操作包括以下至少一项:忽略第一配置信息;不执行目标功率控制;独立进行每个小区组在FR2频段的上行功率控制;根据第二功率参数信息进行目标功率控制;根据第一功率参数信息和第二功率参数信息进行目标功率控制;在第一功率参数信息不包括终端在小区组内在FR2频段的最大发射功率和/或终端在DC状态下,在FR2频段的上行功率控制模式的情况下,优先进行主小区组的功率分配。目标功率控制为终端处于DC状态下,在FR2频段的上行功率控制。

Description

上行功率控制方法、上行功率控制处理方法及相关设备
相关申请的交叉引用
本申请主张在2021年1月14日在中国提交的中国专利申请No.202110049374.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,尤其涉及一种上行功率控制方法、上行功率控制处理方法及相关设备。
背景技术
为了保证通信的可靠性,在通信系统中,应用了双连接(Dual Connectivity,DC)。即可以为终端提供两个网络节点的资源,其中一个网络节点称为主节点(Master Node,MN),另一个网络节点称为辅节点(Secondary Node,SN)。网络节点工作在频率范围(Frequency Range,FR)1时,使用全向天线收发数据。网络节点工作在FR2频段时,使用非全向天线或者具有方向性的波束收发数据,导致终端在不同方向上与网络设备进行通信时,终端的上行最大发送功率可能不同。因此,网络设备可能无法准确确定一个小区组内或终端在FR2频段的最大发射功率值,导致配置的功率参数信息不合理,影响终端的上行发送性能。
发明内容
本申请实施例提供一种上行功率控制方法、上行功率控制处理方法及相关设备,能够解决网络设备无法准确确定小区组或终端在FR2频段的最大发射功率值,导致配置的功率参数信息不合理,影响终端的上行发送性能的问题。
第一方面,提供了一种上行功率控制方法,包括:
在接收到第一配置信息的情况下,终端执行第一操作;
其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信 息用于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:
忽略所述第一配置信息;
停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
第二方面,提供了一种上行功率控制处理方法,包括:
在终端处于双连接DC状态下,网络设备确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
第三方面,提供了一种上行功率控制装置,包括:
执行模块,用于在接收到第一配置信息的情况下,执行第一操作;
其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:
忽略所述第一配置信息;
停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上 行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
第四方面,提供了一种上行功率控制处理装置,包括:
确定模块,用于在终端处于双连接DC状态下,确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现如第二方面所述的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
本申请实施例通过在接收到第一配置信息的情况下,终端执行第一操作;其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用 于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:忽略所述第一配置信息;停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。这样,由于没有直接按照网络配置的第一功率参数信息对终端处于DC状态下在FR2频段的上行功率控制,从而可以解决网络设备无法准确确定小区组或终端在FR2频段的最大发射功率值,导致配置的功率参数信息不合理,影响终端的上行发送性能的问题。
附图说明
图1是本申请实施例可应用的一种网络系统的结构图;
图2是本申请实施例提供的一种上行功率控制方法的流程图;
图3是本申请实施例提供的一种上行功率控制处理方法的流程图;
图4是本申请实施例提供的一种上行功率控制装置的结构图;
图5是本申请实施例提供的一种上行功率控制处理装置的结构图;
图6是本申请实施例提供的一种通信设备的结构图;
图7是本申请实施例提供的一种终端的结构图;
图8是本申请实施例提供的一种网络设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是 全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧 设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Networks,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、DC/载波聚合(Carrier Aggregation,CA)的基本概念。
DC即为终端提供两个网络节点的资源,其中一个网络节点称为主节点(Master node,MN),另一个网络节点称为辅节点(Secondary Node,SN)。在每个网络节点,使用了CA,即为UE配置由该节点控制的一系列服务小区,也成小区组(cell group)。主节点MN控制的为主小区组(Master Cell Group,MCG),辅节点SN控制的为辅小区组(Secondary Cell Group,SCG)。每个小区组都包含一个特殊小区(Special Cell,SpCell)和一系列辅小区(Secondary Cell,Scell)。在MCG中特殊小区称为主小区(Primary Cell,PCell),在SCG中特殊小区称为主辅小区(Primary Secondary Cell,PSCell)。在一个小区组中SpCell使用主载波,而其他辅小区使用辅载波,一个小区组内的资源调度由SpCell进行。
二、DC/CA的主要场景。
按照无线接入技术、核心网类型的不同,DC场景不同。
1、当核心网是演进型分组核心网(Evolved Packet Core,EPC)时,DC场景包括演进的通用移动通信陆地无线接入(Evolved UTMS Terrestrial Radio Access,E-UTRA)-NR的双连接(eNB NR Dual Connection,EN-DC),即以eNB为MN,以en-gNB为SN的多无线接入技术双连接(Multi-RAT Dual Connectivity,MR-DC)架构;
2、当核心网(Core Network,CN)是5GC时,DC场景包括:
新空口-双连接(NR-DC),即以gNB为MN,以gNB为SN的MR-DC架构;
NR-E-UTRA双连接(NE-DC),即以gNB为MN,以ng-eNB为SN的MR-DC架构;
在5G核心网下的4G无线接入网与5G NR的双连接(NGEN-DC),即以ng-eNB为MN,以gNB为SN的MR-DC架构。
三、NR-DC上行功率控制机制。
NR-DC的上行功率控制机制,即MCG和SCG内工作于同一个FR的服务小区可以共享UE的总最大发射功率,即进行联合的功率分配,其中FR包括FR1和FR2。假设UE最大总传输功率(P total)一定,当MCG上行传输和SCG上行传输同时发生时(具体地,MCG中任意一个服务小区的上行传输与SCG中任意一个服务小区的上行传输同时发生),UE需要调整MCG或SCG的上行传输功率,以保证二者之和不超过UE最大上行总传输功率。
NR-DC上行功率控制包括三种功率控制模式:
半静态功率控制模式1:MCG和SCG分别依据各自CG的最大发射功率进行功率控制;
半静态功率控制模式2:MCG确定上行功率时,考虑SCG的上下行帧结构配置信息。SCG同理,在此不再赘述。
动态功率控制模式:SCG确定T0时刻的上行功率时,若在T0_Toffset之前接收了到MCG的调度则UE根据MCG的实际发送功率、UE的最大上行总传输功率、SCG的最大发射功率来限制SCG的发送功率,而在T0_Toffset~T0期间UE不希望接收MCG的调度。具体方案为:假设UE在时刻T0时将开始进行SCG上行传输,其SCG上行传输功率用pwr_SCG表示。UE根据以下方式来计算时刻T0时的SCG上行传输功率pwr_SCG:
在时刻T0-T_offset以前,UE监听MCG的PDCCH:
如果该PDCCH触发/指示了该UE的一个与T0时刻的SCG上行传输存在重叠部分(overlap)的MCG上行传输,则UE的SCG上行传输功率应该满足pwr_SCG≤min{P SCG,P total–MCG tx power},其中P total为UE的最大上 行总传输功率,P SCG为SCG的最大上行传输功率,MCG tx power是MCG的上行传输功率;
否则,pwr_SCG≤P total
在T0-T_offset之后,UE不希望MCG的PDCCH调度UE去执行与T0时刻的SCG上行传输存在overlap的MCG上行传输。
在某些场景下,半静态功率控制模式1、半静态功率控制模式2、动态功率控制模式均可以认为是功率共享机制。在另一些场景下,半静态功率控制模式2、动态功率控制模式视为功率共享机制,而半静态功率控制模式1视为独立进行每个小区组内的上行功率控制。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的上行功率控制方法进行详细地说明。
请参见图2,图2是本申请实施例提供的一种上行功率控制方法的流程图,该方法由终端执行,如图2所示,包括以下步骤:
步骤201,在接收到第一配置信息的情况下,终端执行第一操作,所述第一操作包括以下至少一项:
操作1,忽略所述第一配置信息;
操作2,停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
操作3,按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
操作4,根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
操作5,根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
操作6,基于终端实现的方式进行所述终端处于DC状态下,在FR2频段的上行功率控制;
操作7,在所述第一功率参数信息不包括终端在小区组内在FR2频段的最大发射功率和终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不 期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
本申请实施例中,上述终端处于DC状态可以理解为终端处于NR-DC、NE-DC、EN-DC和NGEN-DC中的任一种DC状态。终端在DC状态下,可以执行接收第一配置信息的行为,具体地,网络设备可以发送第一配置信息给终端,也可以不发送第一配置信息给终端,当网络设备确定不发送第一配置信息给终端,此时终端则无法接收到第一配置信息,当网络设备确定发送第一配置信息给终端,此时终端可能接收到第一配置信息,也可能无法接收到第一配置信息。
应理解,在本申请实施例中,在网络设备不发送第一配置信息的情况下,终端可以不执行接收第一配置信息的动作,或者执行尝试接收第一配置信息的动作。在网络设备确定发送第一配置信息的情况下,可以由终端执行接收或者尝试接收第一配置信息的动作。
需要说明的是,在本申请实施例中,由于第一配置信息中第一功率参数信息可能是不合理的配置,因此终端在接收到第一配置信息时,可以执行以上操作1至操作7中的一项或者多项操作,从而避免网络设备配置的功率参数信息不合理,影响终端的上行发送性能。
针对上述操作2、操作4和操作6可以理解为终端忽略第一配置信息的进一步行为。其中,操作2表示终端不会在FR2进行双连接上行功率控制,例如不执行NR-DC的上行功率控制机制,这样可以避免网络设备配置的功率参数信息不合理,导致降低终端的上行发送性能。操作4表示终端仍然会在FR2进行双连接上行功率控制,且功率控制采用的功率参数信息由协议约定或终端确定。操作6可以表示,终端是否在FR2进行双连接上行功率控制由终端决定。
针对操作3,可以理解为终端独立进行每个小区组在FR2的上行功率控制,其中不同的小区组进行独立控制的方式可以相同,也可以不同,在此不做进一步的限定。
针对操作5,可以理解为终端仍然在FR2进行双连接上行功率控制,且功率控制采用的功率参数信息是由第一功率控制参数信息和第二功率控制参 数信息进行联合确定。例如,可以利用第二功率控制参数信息调整第一功率控制参数信息,该调整可以理解为增加第一功率控制参数信息中缺少的功率控制参数,以及对第一功率控制参数信息中的功率控制参数的参数值进行修正,具体的形式可以根据实际需要进行设置,在此不做进一步的限定。
针对操作7,所述终端在小区组内在FR2频段的最大发射功率可以包括:终端在主小区组内在FR2频段的最大发射功率和端在辅小区组内在FR2频段的最大发射功率,例如,终端接收到的第一配置信息中第一功率参数信息满足预设条件的情况下,此时优先进行主小区组的功率分配,然后进行辅小区组的功率分配,从而保证主小区组的上行发送功率;或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2,此时终端仅支持动态上行功率控制方式进行功率控制。该预设条件可以包括所述终端在FR2频段的最大发射功率,但不包括终端在小区组内在FR2频段的最大发射功率和终端在DC状态下,在FR2频段的上行功率控制模式中至少一项;或者,仅包括所述终端在FR2频段的最大发射功率。
应理解,上述第二功率参数信息可以为协议约定的功率值或者范围,或者终端根据协议约定的计算方式得到的功率值或者范围,具体可以包括以下至少一项:
所述终端在FR2频段的最大发射功率;
所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
所述终端在DC状态下,在FR2频段的上行功率控制模式。
应理解,当终端在主小区组内在FR2频段的最大发射功率和终端在辅小区组内在FR2频段的最大发射功率不同时,需要通过两个参数进行表示,当终端在主小区组内在FR2频段的最大发射功率和终端在辅小区组内在FR2频段的最大发射功率相同时,可以通过一个参数或者两个参数进行表示,在此不做进一步的限定。
需要说明的是,当UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下,终端还可以根据网络设备配置采用半静态功率控制模式1、半静态功率控制模式2或动态功率控制模式进行上行功率控制。换句话说, 在本申请实施例中,终端可以按照半静态功率控制模式1、半静态功率控制模式2或动态功率控制模式进行小区组在FR2频段的独立上行功率控制,例如,在一些实施例中,上述第一预设方式可以包括当UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下,终端还根据网络设备配置采用半静态功率控制模式1、半静态功率控制模式2或动态功率控制模式对第一服务小区进行上行功率控制,所述第一服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区。
当UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下,终端还可以独立地在每个小区组执行上行功率控制。另一种实施方式为,当UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下,若高层没有提供MCG或SCG的最大发射功率(如p-NR-FR2),则终端独立地在每个小区组执行上行功率控制。在这种情况下,网络应该避免向终端发送MCG或SCG的最大发射功率(如p-NR-FR2),UE的最大发射功率(p-UE-FR2),功率控制模式(如nrdc-PCmode-FR2)。
本申请实施例通过在接收到第一配置信息的情况下,所述终端执行第一操作,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:忽略所述第一配置信息;停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。这样,由于没有直接按照网络配置的第一功率参数信息对终端处于DC状态下,在FR2频段的上行功率控制,从而可以解决网络设备无法准确确定小区组或 终端在FR2频段的最大发射功率值,导致配置的功率参数信息不合理,影响终端的上行发送性能的问题。
可选的,在一些实施例中,所述终端接收第一配置信息的步骤之后,所述方法还包括:
在所述终端未接收到所述第一配置信息的情况下,所述终端执行第二操作:
其中,所述第二操作包括以下任一项:
操作8,不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
操作9,基于所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
操作10,按照第二预设方式独立进行每个小区组在FR2频段的上行功率控制。
应理解,本申请实施例中,终端未接收到第一配置信息可以理解为网络设备未发送第一配置信息,终端无法接收到第一配置信息,或者网络发送了第一配置信息,但终端由于资源冲突或解码失败等原因无法获取网络设备发送的第一配置信息。
针对上述操作8,可以表示终端在未接收到第一配置信息的情况下,不会在FR2进行双连接上行功率控制,这样可以避免网络设备配置的功率参数信息不合理,导致降低终端的上行发送性能。
针对上述操作9,可以表示终端在未接收到第一配置信息的情况下,仍然会在FR2进行双连接上行功率控制,且功率控制采用的功率参数信息由协议约定或终端确定。
针对上述操作10,可以表示终端独立进行每个小区组在FR2的上行功率控制,其中不同的小区组进行独立控制的方式可以相同,也可以不同,在此不做进一步的限定。
可选地,在一些实施例中,在所述终端未接收到所述第一配置信息的情况下,所述终端执行第二操作的步骤,包括:
在所述终端未接收到所述第一配置信息,且满足预设条件的情况下,所述终端执行所述第二操作;
其中,所述预设条件包括以下至少一项:
所述终端被配置了DC;
所述终端被配置了主小区组和辅小区组均工作于FR2频段。
本申请实施例中,当终端被配置了DC的情况下,若未接收到所述第一配置信息,则终端可以不执行所述终端处于DC状态下,在FR2频段的上行功率控制,或者,基于所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制。
当所述终端被配置了主小区组和辅小区组均工作于FR2频段,若未接收到所述第一配置信息,则终端可以按照第二预设方式独立进行每个小区组在FR2频段的上行功率控制。
可选的,在一些实施例中,所述第二预设方式包括:
使用载波聚合在FR2频段的上行功率控制方法,对第二服务小区进行上行功率控制,所述第二服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区。
可选的,在一些实施例中,所述第一功率参数信息包括以下至少一项:
所述终端在FR2频段的最大发射功率;
所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
所述终端在DC状态下,在FR2频段的上行功率控制模式。
可选地,在一些实施例中,第一预设方式包括:
使用载波聚合在FR2频段的上行功率控制方法,对第一服务小区进行上行功率控制,所述第一服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区;或者,
根据所述第一功率参数信息,独立进行每个小区组在FR2频段的上行功率控制。
可选地,在一些实施例中,所述方法还包括:
所述终端向网络设备发送第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
本申请实施例中,终端向网络设备发送第三功率参数信息可以在终端接收到上述第一配置信息之前,也可以在接收到上述第一配置信息之后,当终端向网络设备发送第三功率参数信息在终端接收到上述第一配置信息之前时,网络设备可以根据该第三功率参数信息确定第一配置信息中的第一功率参数信息。这样,可以保证网络设备配置的第一功率参数信息的合理性和准确性,从而在终端接收到第一配置信息后,可以基于该第一功率参数信息执行所述终端处于DC状态下,在FR2频段的上行功率控制;若终端没有接收到第一配置信息时,终端可以独立进行MCG和SCG的上行功率控制。当终端向网络设备发送第三功率参数信息在终端接收到上述第一配置信息之后,网络设备可以重新为终端配置第二配置信息,以使得终端可以基于第二配置信息执行所述终端处于DC状态下,在FR2频段的上行功率控制,从而可以提高终端上行发送的性能,若终端没有接收到第二配置信息时,终端可以独立进行MCG和SCG的上行功率控制。
需要说明的是,上述第三功率参数信息包含的内容可以根据实际需要进行设置,例如,在一些实施例中,所述第三功率参数信息包括以下至少一项:
主小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
辅小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
所述终端在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一。
需要说明的是,在本申请实施例中,由于网络设备无法配置合理的功率参数信息,因此网络设备可以向终端发送第一配置信息,也可以不向终端发送第一配置信息,当网络设备确定不向终端发送第一配置信息时,网络设备的行为还包括:
所述网络设备停止或不向所述终端的辅节点发送第一信息;或者,
所述网络设备忽略所述终端的辅节点发送的第二信息;
其中,所述第一信息包括以下至少一项:
所述终端处于DC状态下,在FR2频段的上行功率控制模式;
主小区组在FR2频段的最大发射功率;
辅小区组在FR2频段的最大发射功率;
所述终端在FR2频段的最大发射功率;
FR2频段的功率协作参数;
所述第二信息包括以下至少一项:
第一请求值,所述第一请求值用于所述辅节点调整所述终端在辅小区组FR2频段的最大发射功率;
第二请求值,所述第二请求值用于所述辅节点调整所述终端在辅小区组FR2频段的调度或配置。
针对FR2频段的功率协作参数可以表示为powerCoordination-FR2。应理解,当SN接收到第一信息时,可以忽略第一信息中的值。此时SN可以不发送第二信息给MN,或者在发送的情况下MN可以忽略第二信息中的值。上述第一请求值可以表示为requestedP-MaxFR2。上述第二请求值可以表示为requestedToffset(Requests the new value for the time offset restriction used by the SN for scheduling SCG transmissions(i.e.
Figure PCTCN2022070716-appb-000001
)。上述第二请求值可以仅在NR-DC FR2功率控制模式设置为动态时,才存在或生效。
需要说明的是,若其他frequency range频带也存在类似问题,例如定义了新的frequency range,本申请中的方法也可以用于双连接在这些frequency range上的上行功率控制。
为了更好的理解本申请,以下通过一些具体实例对本申请的实现进行详细说明。
实施例一:UE收到FR2功率配置后执行第一操作。
其中第一配置信息用于指示以下至少一项:
UE在一个CG上的FR2的最大发射功率,例如p-NR-FR2,其中CG包括MCG、SCG。
UE的FR2的总最大发射功率,例如p-UE-FR2;
第一操作包括以下操作至少一项:
UE忽略第一配置信息(认为是错误配置);
不执行NR-DC FR2上行功率控制/共享机制;
使用CA FR2的功率控制方法对MCG和SCG中所有FR2服务小区进行功率控制;可选地,根据协议约定的功率参数值或者协议约定的计算方式计算功率参数值进行功控;
独立进行每个CG的FR2上行功率控制,例如MCG和SCG依据CA场景下的功率控制参数独立地进行功率控制;可选地,根据协议约定的功率参数值或者协议约定的计算方式计算功率参数值进行功控;
应用协议给出的功率参数值;
根据第一配置参数和协议给出的功率参数值来进行NR-DC FR2的功率控制;
基于UE实现进行功率控制;
根据网络设备配置采用半静态功率控制模式1或半静态功率控制模式2或动态功率控制模式进行功率控制。可选的,在UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下,执行独立进行MCG和SCG的上行功率控制的操作。
实施例二:UE收到FR2功率配置后执行NR-DC上行功控,若没有收到,UE执行独立功控。
步骤1:UE工作于NR-DC;
步骤2:若UE未收到第一配置信息,UE执行以下至少之一:
应用协议给出的功率参数值;
独立进行MCG和SCG的上行功率控制。可选的,在UE被配置了在MCG和SCG上均使用NR FR2无线接入的条件下执行,独立进行MCG和SCG的上行功率控制的操作。
实施例三:UE仅收到了per UE的FR2最大发射功率未收到per CG的FR2最大发射功率。
UE被配置了在MCG和SCG均使用NR FR2无线接入,当网络设备未为UE配置MCG上的发射功率或SCG上的发射功率,但UE侧配置了MCG和SCG上的在NR-DC场景下的最大发射功率时,
基于UE实现进行功率控制;或
优先MCG功率分配,然后SCG功率分配;或
UE不期望网络侧配置半静态功率共享方式一或半静态功率共享方式二,即仅支持动态功率共享方式进行功率控制;
忽略该配置。
请参见图3,图3是本申请实施例提供的一种上行功率控制方法的流程图,该方法由网络设备执行,如图3所示,包括以下步骤:
步骤301,在终端处于双连接DC状态下,网络设备确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
可选地,在步骤301之前,所述方法还可以包括网络设备确定终端是否处于DC状态。在步骤301之后,若确定向所述终端发送第一配置信息,则网络设备还可以执行发送第一配置信息的步骤。
可选地,所述确定不向所述终端发送第一配置信息时,所述方法还包括:
所述网络设备停止或不向所述终端的辅节点发送第一信息;或者,
所述网络设备忽略所述终端的辅节点发送的第二信息;
其中,所述第一信息包括以下至少一项:
所述终端处于DC状态下,在FR2频段的上行功率控制模式;
主小区组在FR2频段的最大发射功率;
辅小区组在FR2频段的最大发射功率;
所述终端在FR2频段的最大发射功率;
FR2频段的功率协作参数;
所述第二信息包括以下至少一项:
第一请求值,所述第一请求值用于所述辅节点调整所述终端在辅小区组FR2频段的最大发射功率;
第二请求值,所述第二请求值用于所述辅节点调整所述终端在辅小区组FR2频段的调度或配置。
可选地,所述第一功率参数信息包括以下至少一项:
所述终端在FR2频段的最大发射功率;
所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
所述终端在DC状态下,在FR2频段的上行功率控制模式。
可选地,所述网络设备接收来自所述终端的第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
可选地,所述第三功率参数信息包括以下至少一项:
主小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
辅小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
所述终端在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一。
需要说明的是,本实施例作为图2所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
需要说明的是,本申请实施例提供的上行功率控制方法,执行主体可以为上行功率控制装置,或者,该上行功率控制装置中的用于执行上行功率控制的控制模块。本申请实施例中以上行功率控制装置执行上行功率控制为例,说明本申请实施例提供的上行功率控制装置。
请参见图4,图4是本申请实施例提供的一种上行功率控制装置的结构图,如图4所示,上行功率控制装置400包括:
执行模块401,用于在接收到第一配置信息的情况下,执行第一操作,所述第一操作包括以下至少一项:
忽略所述第一配置信息;
停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于 DC状态下,在FR2频段的上行功率控制;
在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
可选地,上行功率控制装置400还包括第一接收模块,用于接收第一配置信息。
可选地,所述执行模块401还用于:在所述终端未接收到所述第一配置信息的情况下,执行第二操作:
其中,所述第二操作包括以下任一项:
不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
基于所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
按照第二预设方式独立进行每个小区组在FR2频段的上行功率控制。
可选地,所述执行模块401具体用于,在所述终端未接收到所述第一配置信息,且满足预设条件的情况下,执行所述第二操作;
其中,所述预设条件包括以下至少一项:
所述终端被配置了DC;
所述终端被配置了主小区组和辅小区组均工作于FR2频段。
可选地,所述第二预设方式包括:
使用载波聚合在FR2频段的上行功率控制方法,对第二服务小区进行上行功率控制,所述第二服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区。
可选地,所述第一功率参数信息包括以下至少一项:
所述终端在FR2频段的最大发射功率;
所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
所述终端在DC状态下,在FR2频段的上行功率控制模式。
可选地,所述第一预设方式包括:
使用载波聚合在FR2频段的上行功率控制方法,对第一服务小区进行上行功率控制,所述第一服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区;或者,
根据所述第一功率参数信息,独立进行每个小区组在FR2频段的上行功率控制。
可选地,所述上行功率控制装置400还包括:
发送模块,用于向网络设备发送第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
可选地,所述第三功率参数信息包括以下至少一项:
主小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
辅小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
所述终端在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一。
本申请实施例提供的网络设备能够实现图2的方法实施例中实现的各个过程,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的上行功率控制处理方法,执行主体可以为上行功率控制处理装置,或者,该上行功率控制处理装置中的用于执行上行功率控制处理的控制模块。本申请实施例中以上行功率控制处理装置执行上行功率控制处理为例,说明本申请实施例提供的上行功率控制处理装置。
请参见图5,图5是本申请实施例提供的一种上行功率控制处理装置的结构图,如图5所示,上行功率控制处理装置500包括:
确定模块501,用于在终端处于双连接DC状态下,确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
可选地,上行功率控制处理装置500还可以包括检测模块,用于确定终端是否处于DC状态。
可选地,所述行功率控制处理装置500还包括处理模块,用于在所述确定模块确定不向所述终端发送第一配置信息时,执行以下操作:
停止或不向所述终端的辅节点发送第一信息;或者,
忽略所述终端的辅节点发送的第二信息;
其中,所述第一信息包括以下至少一项:
所述终端处于DC状态下,在FR2频段的上行功率控制模式;
主小区组在FR2频段的最大发射功率;
辅小区组在FR2频段的最大发射功率;
所述终端在FR2频段的最大发射功率;
FR2频段的功率协作参数;
所述第二信息包括以下至少一项:
第一请求值,所述第一请求值用于所述辅节点调整所述终端在辅小区组FR2频段的最大发射功率;
第二请求值,所述第二请求值用于所述辅节点调整所述终端在辅小区组FR2频段的调度或配置。
可选地,所述第一功率参数信息包括以下至少一项:
所述终端在FR2频段的最大发射功率;
所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
所述终端在DC状态下,在FR2频段的上行功率控制模式。
可选地,所述上行功率控制处理装置500还包括:
第二接收模块,用于接收来自所述终端的第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
本申请实施例提供的网络设备能够实现图3的方法实施例中实现的各个过程,为避免重复,这里不再赘述。
本申请实施例中的上行功率控制装置和上行功率控制处理装置可以是装 置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的上行功率控制装置和上行功率控制处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的上行功率控制装置和上行功率控制处理装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述上行功率控制方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络设备时,该程序或指令被处理器601执行时实现上述上行功率控制处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对 在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7071,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7071。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于在接收到第一配置信息的情况下,执行第一操作;
其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:
忽略所述第一配置信息;
停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
应理解,本实施例中,上述处理器710和射频单元701能够实现图2的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络设备。如图8所示,该网络设备800包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
上述频带处理装置可以位于基带装置803中,以上实施例中网络设备执行的方法可以在基带装置803中实现,该基带装置803包括处理器804和存储器805。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器804,与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置803还可以包括网络接口806,用于与射频装置802交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,简称 CPRI)。
具体地,本申请实施例的网络设备还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行功率控制方法或上行功率控制处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络设备程序或指令,实现上述上行功率控制处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述上行功率控制方法或上行功率控制处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申 请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种上行功率控制方法,包括:
    在接收到第一配置信息的情况下,终端执行第一操作;
    其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:
    忽略所述第一配置信息;
    停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
    按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
    根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
    根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
    在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述终端未接收到所述第一配置信息的情况下,所述终端执行第二操作:
    其中,所述第二操作包括以下任一项:
    不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
    基于所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
    按照第二预设方式独立进行每个小区组在FR2频段的上行功率控制。
  3. 根据权利要求2所述的方法,其中,在所述终端未接收到所述第一配 置信息的情况下,所述终端执行第二操作的步骤,包括:
    在所述终端未接收到所述第一配置信息,且满足预设条件的情况下,所述终端执行所述第二操作;
    其中,所述预设条件包括以下至少一项:
    所述终端被配置了DC;
    所述终端被配置了主小区组和辅小区组均工作于FR2频段。
  4. 根据权利要求2所述的方法,其中,所述第二预设方式包括:
    使用载波聚合在FR2频段的上行功率控制方法,对第二服务小区进行上行功率控制,所述第二服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区。
  5. 根据权利要求1所述的方法,其中,所述第一功率参数信息包括以下至少一项:
    所述终端在FR2频段的最大发射功率;
    所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
    所述终端在DC状态下,在FR2频段的上行功率控制模式。
  6. 根据权利要求1所述的方法,其中,所述第一预设方式包括:
    使用载波聚合在FR2频段的上行功率控制方法,对第一服务小区进行上行功率控制,所述第一服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区;或者,
    根据所述第一功率参数信息,独立进行每个小区组在FR2频段的上行功率控制。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端向网络设备发送第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
  8. 根据权利要求7所述的方法,其中,所述第三功率参数信息包括以下至少一项:
    主小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功 率值和功率范围其中至少之一;
    辅小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
    所述终端在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一。
  9. 一种上行功率控制处理方法,包括:
    在终端处于双连接DC状态下,网络设备确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
  10. 根据权利要求9所述的方法,其中,所述确定不向所述终端发送第一配置信息时,所述方法还包括:
    所述网络设备停止或不向所述终端的辅节点发送第一信息;或者,
    所述网络设备忽略所述终端的辅节点发送的第二信息;
    其中,所述第一信息包括以下至少一项:
    所述终端处于DC状态下,在FR2频段的上行功率控制模式;
    主小区组在FR2频段的最大发射功率;
    辅小区组在FR2频段的最大发射功率;
    所述终端在FR2频段的最大发射功率;
    FR2频段的功率协作参数;
    所述第二信息包括以下至少一项:
    第一请求值,所述第一请求值用于所述辅节点调整所述终端在辅小区组FR2频段的最大发射功率;
    第二请求值,所述第二请求值用于所述辅节点调整所述终端在辅小区组FR2频段的调度或配置。
  11. 根据权利要求9所述的方法,其中,所述第一功率参数信息包括以下至少一项:
    所述终端在FR2频段的最大发射功率;
    所述终端在目标小区组内在FR2频段的最大发射功率,所述目标小区组包括主小区组和辅小区组;
    所述终端在DC状态下,在FR2频段的上行功率控制模式。
  12. 根据权利要求9所述的方法,其中,
    所述网络设备接收来自所述终端的第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
  13. 根据权利要求12所述的方法,其中,所述第三功率参数信息包括以下至少一项:
    主小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
    辅小区组在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一;
    所述终端在FR2频段的最大发射功率值、最小发射功率值、平均发射功率值和功率范围其中至少之一。
  14. 一种上行功率控制装置,包括:
    执行模块,用于在接收到第一配置信息的情况下,执行第一操作;
    其中,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定终端处于双连接DC状态下,在FR2频段的上行功率控制;所述第一操作包括以下至少一项:
    忽略所述第一配置信息;
    停止执行或不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
    按照第一预设方式独立进行每个小区组在FR2频段的上行功率控制;
    根据第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制,所述第二功率参数信息由协议约定或所述终端确定;
    根据所述第一功率参数信息和所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
    在所述第一功率参数信息不包括所述终端在小区组内在FR2频段的最大发射功率和所述终端在DC状态下,在FR2频段的上行功率控制模式中至少一项的情况下,所述终端优先进行主小区组的功率分配,或者,所述终端不 期望网络设备配置半静态上行功率控制模式1和/或半静态上行功率控制模式2。
  15. 根据权利要求14所述的装置,其中,所述执行模块还用于:在所述终端未接收到所述第一配置信息的情况下,执行第二操作:
    其中,所述第二操作包括以下任一项:
    不执行所述终端处于DC状态下,在FR2频段的上行功率控制;
    基于所述第二功率参数信息进行所述终端处于DC状态下,在FR2频段的上行功率控制;
    按照第二预设方式独立进行每个小区组在FR2频段的上行功率控制。
  16. 根据权利要求15所述的装置,其中,所述第二预设方式包括:
    使用载波聚合在FR2频段的上行功率控制方法,对第二服务小区进行上行功率控制,所述第二服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区。
  17. 根据权利要求14所述的装置,其中,所述第一预设方式包括:
    使用载波聚合在FR2频段的上行功率控制方法,对第一服务小区进行上行功率控制,所述第一服务小区为主小区组和/或辅小区组中工作于FR2频段的服务小区;或者,
    根据所述第一功率参数信息,独立进行每个小区组在FR2频段的上行功率控制。
  18. 根据权利要求14所述的装置,其中,所述上行功率控制装置还包括:
    发送模块,用于向网络设备发送第三功率参数信息,所述第三功率参数信息用于所述网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
  19. 一种上行功率控制处理装置,包括:
    确定模块,用于在终端处于双连接DC状态下,确定是否向所述终端发送第一配置信息,所述第一配置信息包括第一功率参数信息,所述第一功率参数信息用于确定所述终端处于DC状态下,在FR2频段的上行功率控制。
  20. 根据权利要求19所述的装置,其中,所述行功率控制处理装置还包括处理模块,用于在所述确定模块确定不向所述终端发送第一配置信息时, 执行以下操作:
    停止或不向所述终端的辅节点发送第一信息;或者,
    忽略所述终端的辅节点发送的第二信息;
    其中,所述第一信息包括以下至少一项:
    所述终端处于DC状态下,在FR2频段的上行功率控制模式;
    主小区组在FR2频段的最大发射功率;
    辅小区组在FR2频段的最大发射功率;
    所述终端在FR2频段的最大发射功率;
    FR2频段的功率协作参数;
    所述第二信息包括以下至少一项:
    第一请求值,所述第一请求值用于所述辅节点调整所述终端在辅小区组FR2频段的最大发射功率;
    第二请求值,所述第二请求值用于所述辅节点调整所述终端在辅小区组FR2频段的调度或配置。
  21. 根据权利要求19所述的装置,其中,所述上行功率控制处理装置还包括:
    第二接收模块,用于接收来自所述终端的第三功率参数信息,所述第三功率参数信息用于网络设备确定所述终端处于DC状态下,在FR2频段的上行功率控制的功率参数信息。
  22. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的上行功率控制方法中的步骤。
  23. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求9至13中任一项所述的上行功率控制处理方法中的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指被处理器执行时实现如权利要求1至8中任一项所述的上行功率控制方法的步骤,或者所述程序或指令被处理器执行时实现如权利要求9至13中任一项所述的上行功率控制处理方法的步骤。
  25. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至8中任一项所述的上行功率控制方法的步骤,或者,实现如权利要求9至13中任一项所述的上行功率控制处理方法的步骤。
  26. 一种计算机程序产品,其中,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至8中任一项所述的上行功率控制方法的步骤,或者,所述计算机程序产品被至少一个处理器执行以实现如权利要求9至13中任一项所述的上行功率控制处理方法的步骤。
  27. 一种电子设备,其中,被配置为执行如权利要求1-8中任一项所述上行功率控制方法的步骤,或者,被配置为执行如权利要求9-13中任一项所述上行功率控制处理方法的步骤。
PCT/CN2022/070716 2021-01-14 2022-01-07 上行功率控制方法、上行功率控制处理方法及相关设备 WO2022152053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110049374.2 2021-01-14
CN202110049374.2A CN114765844A (zh) 2021-01-14 2021-01-14 上行功率控制方法、上行功率控制处理方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022152053A1 true WO2022152053A1 (zh) 2022-07-21

Family

ID=82362818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070716 WO2022152053A1 (zh) 2021-01-14 2022-01-07 上行功率控制方法、上行功率控制处理方法及相关设备

Country Status (2)

Country Link
CN (1) CN114765844A (zh)
WO (1) WO2022152053A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349441A (zh) * 2013-08-07 2015-02-11 夏普株式会社 上行功率控制方法以及基站和用户设备
CN108377552A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 一种功率控制方法和通信设备
CN108632970A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
CN109309954A (zh) * 2017-07-28 2019-02-05 电信科学技术研究院 一种上行功率控制方法、基站和终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023533698A (ja) * 2020-08-21 2023-08-04 北京小米移動軟件有限公司 送信電力の指示及び決定方法、装置、端末、機器および媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349441A (zh) * 2013-08-07 2015-02-11 夏普株式会社 上行功率控制方法以及基站和用户设备
CN108377552A (zh) * 2016-11-04 2018-08-07 华为技术有限公司 一种功率控制方法和通信设备
CN108632970A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
CN109309954A (zh) * 2017-07-28 2019-02-05 电信科学技术研究院 一种上行功率控制方法、基站和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Power control for NR-DC", 3GPP DRAFT; R2-1912269_POWER CONTROL FOR NR-DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051790316 *

Also Published As

Publication number Publication date
CN114765844A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
US11973561B2 (en) Antenna panel application method, apparatus and storage medium
WO2021239021A1 (zh) 配置信息获取方法、装置、用户设备及系统
WO2022135267A1 (zh) 定位测量方法、装置、设备及可读存储介质
WO2022017359A1 (zh) 直接通信启动控制方法及相关设备
US20230171645A1 (en) Method for splitting end-to-end qos requirement information, terminal, and network side device
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
CN112333795A (zh) 网络接入方法及装置
WO2022028597A1 (zh) 控制辅小区的方法、终端及网络侧设备
WO2022152053A1 (zh) 上行功率控制方法、上行功率控制处理方法及相关设备
WO2022257926A1 (zh) 基于旁链路的中继服务方法及装置、终端及网络侧设备
WO2022213899A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2022184101A1 (zh) 间隙gap处理方法、装置、设备及存储介质
EP3624504B1 (en) Power control method for link and related product
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022017466A1 (zh) 消息发送、消息接收方法、装置及通信设备
CN114270980A (zh) 当从空闲状态或非活跃状态转变时,在到无线网络的连接建立过程中由ue较早地设置不同的bwp
WO2022228446A1 (zh) 无线链路失败的处理方法、装置、设备及可读存储介质
WO2023280100A1 (zh) 初始带宽部分确定方法、装置及相关设备
WO2022022402A1 (zh) 确定目标资源类型的方法、装置和通信设备
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022007951A1 (zh) 资源传输方法、装置及通信设备
WO2022237677A1 (zh) 随机接入的处理方法、装置及终端
WO2022237616A1 (zh) 资源池配置方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738934

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/01/2024)