WO2020042390A1 - 隔震支座芯材、摩擦芯隔震支座及其制备方法 - Google Patents

隔震支座芯材、摩擦芯隔震支座及其制备方法 Download PDF

Info

Publication number
WO2020042390A1
WO2020042390A1 PCT/CN2018/116821 CN2018116821W WO2020042390A1 WO 2020042390 A1 WO2020042390 A1 WO 2020042390A1 CN 2018116821 W CN2018116821 W CN 2018116821W WO 2020042390 A1 WO2020042390 A1 WO 2020042390A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
core
core material
support
steel
Prior art date
Application number
PCT/CN2018/116821
Other languages
English (en)
French (fr)
Inventor
杨俊�
吴志峰
屈朋飞
赵文华
李建华
付金伦
朱贺
韩富平
杨鹏程
陈砚银
Original Assignee
苏州海德新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州海德新材料科技股份有限公司 filed Critical 苏州海德新材料科技股份有限公司
Priority to JP2021505905A priority Critical patent/JP7128343B2/ja
Priority to US17/267,218 priority patent/US12031601B2/en
Publication of WO2020042390A1 publication Critical patent/WO2020042390A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/022Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/01Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand
    • F16F7/015Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand the particles being spherical, cylindrical or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/30Sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer

Definitions

  • the present disclosure relates to the technical field of vibration isolation, and in particular, to a core material of a vibration isolation support, a vibration isolation support and a preparation method thereof.
  • Seismic isolation technology is a new type of seismic technology, which not only changes the traditional concept of seismic design of building structures, but also greatly improves the seismic capability, seismic reliability and disaster defense level of the structure.
  • earthquakes occur frequently, and building isolation technology has been widely recognized by all sectors of society. Isolation technology has been widely used in domestic new buildings (especially hospitals, schools) and the strengthening and reconstruction of existing buildings.
  • the isolated building is to extend the period of the structure and provide greater damping to the structure through the isolated support, so that the acceleration response on the structure is greatly reduced.
  • the large displacements generated by the structure are borne by the isolation layer, and the superstructure will move close to translation during the earthquake, which greatly improves the safety of the superstructure.
  • An integrated reset function isolation device is provided between the building and the foundation to extend the natural vibration period of the entire structural system, absorb the dissipated seismic energy, reduce the upward transmission of horizontal seismic energy, and meet the expected seismic fortification requirements.
  • the traditional lead-core laminated rubber isolation support uses the ductility and energy dissipation of lead.
  • the lead components When the support undergoes shear deformation, the lead components will plastically deform. As a result, the hysteresis curve of the rubber support is changed. , So that the bearing has a good damping effect and effectively absorbs seismic energy. And the lead core is in a hot working state. When plastic deformation occurs, the metal lead can restore the original mechanical properties.
  • lead belongs to heavy metals and is toxic. Lead affects workers' health during processing, production, and application, and it can pollute the environment after leakage.
  • the yield strength of a lead core increases significantly at low temperatures, resulting in an increase in the horizontal stiffness of the isolation support and a reduction in isolation performance. Therefore, there is an urgent need to develop an isolation support with high damping characteristics that can replace the lead-core laminated rubber isolation support.
  • a first object of the present disclosure is to provide a core material for an isolation support, which can replace a traditional lead core for an isolation support, and has the advantages of high damping, more environmental protection, and adaptability to low temperature environments.
  • a second object of the present disclosure is to provide an isolation base including any one of the above-mentioned isolation base core materials, which has high damping, excellent isolation performance, and can maintain its isolation well at low temperatures. effect.
  • a third object of the present disclosure is to provide a method for preparing a vibration-isolating support, which is simple and convenient to operate, has low requirements on equipment, and can quickly and efficiently prepare the vibration-isolating support.
  • a core material of an isolation support which includes 150 to 300 parts of steel sand, 50 to 150 parts of zirconia particles, and 50 to 100 parts of rubber particles, based on parts by weight. .
  • the steel grit includes a first steel grit, a second steel grit, a third steel grit, and a fourth steel grit.
  • the particle size of the first steel grit is> 0.1mm and ⁇ 0.25mm; the particle size of the second steel grit is> 0.25mm and ⁇ 0.5mm; the particle size of the third steel grit is> 0.5mm and ⁇ 1mm; the fourth steel
  • the particle size of the sand is> 1 mm, and ⁇ 2 mm.
  • the mass ratios of the first steel grit, the second steel grit, the third steel grit, and the fourth steel grit are 1: 0.2 to 1.2: 0.2 to 1.2: 0.2 to 1.2.
  • the zirconia particles include first zirconia particles and second zirconia particles; the particle diameter of the first zirconia particles is ⁇ 1 mm; the particle diameter of the second zirconia particles is> 1 mm, and ⁇ 2mm.
  • the mass ratio of the first zirconia particles to the second zirconia particles is 1: 0.2 to 0.8.
  • the particle diameter of the rubber particles is ⁇ 1 mm.
  • the surface of the steel grit is roughened.
  • a vibration-isolating support comprising: a support body, the support body including a plurality of steel layers and a plurality of rubber layers, and the plurality of steel layers and a plurality of rubber layers are alternately horizontally stacked It is provided that both ends along the stacking direction are rubber layers; through-holes are provided on the steel plate layer and the rubber layer, and the through-holes of multiple steel plate layers and multiple rubber layers overlap in the stacking direction.
  • a support core which includes a core hole rubber protective layer, and the vibration-isolating support core material according to any of the above, which is filled in the core hole rubber protective layer; the support core is embedded in a plurality of steel plate layers and a plurality of Inside the through hole of the rubber layer.
  • the connecting plate includes an upper connecting plate opposite to the top of the support body and a lower connecting plate provided at the bottom of the support body.
  • the through hole is provided at a center position of the steel plate layer and the rubber layer.
  • the support body includes an upper surface for connection with the upper connection plate, a lower surface for connection with the lower connection plate, and a side surface between the upper surface and the lower surface.
  • an outer protective rubber layer is further provided around the side.
  • the core-hole rubber protective layer includes a cylindrical sleeve provided with an opening at an end thereof, and further includes a cover plate detachably connected to the opening for blocking the opening in a closed state.
  • both ends of the cylindrical sleeve are provided with openings.
  • the cover plate is a tight-fitting cover plate, and the tight-fitting cover plate closes the opening by a tight-fitting bolt.
  • a rubber pad for increasing airtightness is further provided between the cover plate and the core hole rubber protective layer.
  • a protective layer is further provided on an inner wall of the core hole rubber protective layer.
  • the material of the protective layer includes any one of a high-strength fiber cloth, a polytetrafluoroethylene skateboard, and an ultra-high molecular skateboard.
  • a method for preparing a vibration-isolating support includes: using a vulcanization bonding process to connect an upper connecting plate, multiple rubber layers, multiple steel layer layers, a core hole rubber protective layer, and a lower portion.
  • the connecting plates are connected to each other; the core material of the vibration isolation support is filled into the core hole rubber protective layer.
  • the core hole rubber protective layer includes a cylindrical sleeve provided with an opening at an end thereof, and further includes a cover plate detachably connected to the opening, and the cover plate is a tightly fitted cover plate.
  • the method further includes: vibrating the core hole rubber protective layer so that the core material of the vibration isolation support is laminated on the core hole rubber protection; The tight-fitting cover plate is covered on the opening, and the cylindrical sleeve and the tight-fitting cover plate are sealed and fixed by tight-fitting bolts.
  • An embodiment of the present disclosure provides a core material of an isolation support, including steel sand, zirconia particles, and rubber particles.
  • the core material of the vibration-isolating support is made of a mixture of abrasion-resistant and granular materials with different degrees of hardness. It uses the dry friction energy dissipation mechanism to convert the energy generated by the earthquake into heat for consumption through friction between the core material particles.
  • the core material of the vibration isolation support provides high damping through dry friction, can achieve the energy consumption effect equivalent to that of a traditional lead core, and is more environmentally friendly and safe, and can maintain stable mechanical properties at low temperatures.
  • the embodiment of the present disclosure also provides an isolation support, which can consume seismic energy through the dry friction energy dissipation mechanism, has the characteristics of high damping, excellent isolation performance, and can better maintain its isolation at low temperatures. effect.
  • the embodiment of the present disclosure also provides a method for preparing a vibration-isolating support.
  • the vulcanization bonding process is used to connect the upper connecting plate, multiple rubber layers, multiple steel layer layers, core hole rubber protective layer, and lower connecting plate to each other. ; Then fill the core material of the vibration isolation support into the core hole rubber protective layer.
  • the preparation method is simple and convenient to operate, has low requirements on equipment, and can quickly and efficiently prepare the above-mentioned vibration-isolating support to realize large-scale production.
  • FIG. 1 is one of the structural schematic diagrams of an isolated support provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a core material of an isolated support provided by an embodiment of the present disclosure
  • FIG. 3 is a hysteresis curve diagram of an isolating support made of an isolating support core material provided in an embodiment of the present disclosure in 11 cycles of horizontal compression-shear tests;
  • FIG. 4 is a hysteresis curve diagram of three cycles of horizontal compression-shear tests of an isolation support made of an isolation support core material provided by an embodiment of the present disclosure after standing for 24 hours;
  • FIG. 5 is a second schematic structural diagram of an isolated support provided by an embodiment of the present disclosure.
  • FIG. 6 is one of the flowcharts of a method for preparing an isolated support provided by an embodiment of the present disclosure
  • FIG. 7 is a second flowchart of a method for preparing a seismic isolation support provided by an embodiment of the present disclosure.
  • Icon 100-isolated support; 110-support body; 111-steel layer; 112-rubber layer; 113-outer protective rubber layer; 120-support core; 121-core hole rubber protective layer; 122-isolation Support core material; 123-fitting cover plate; 124-fitting rubber pad; 125-fitting bolt; 130-connecting plate; 131-upper connecting plate; 132-lower connecting plate.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, the meaning of "a plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation,” “connected,” “connected,” and “fixed” should be understood broadly unless otherwise specified and defined, for example, they may be fixed or detachable. , Or integrated; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal connection of the two elements or the interaction between the two elements.
  • installation should be understood broadly unless otherwise specified and defined, for example, they may be fixed or detachable. , Or integrated; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal connection of the two elements or the interaction between the two elements.
  • the "first" or “down” of the second feature may include the first and second features in direct contact, and may also include the first and second features. Not directly, but through another characteristic contact between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature, including the fact that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is less horizontal than the second feature.
  • the embodiment of the present disclosure provides a core material of an isolation support, which comprises 150 to 300 parts of steel grit, 50 to 150 parts of zirconia particles, and 50 to 100 parts of rubber particles in terms of parts by weight.
  • the core material of the vibration isolation support includes, in terms of parts by weight, 250-300 parts of steel sand, 120-150 parts of zirconia particles, and 50-70 parts of rubber particles. .
  • the core material of the vibration isolation support is realized according to the energy consumption mechanism of dry friction.
  • dry friction When two rough surfaces come into contact, the contact points mesh with each other, and the friction is the sum of the tangential resistances of all these meshing points.
  • the classic theory explaining the mechanism of dry friction is applicable to metal-to-metal friction.
  • the contact stress at the real contact point of the friction surface is so large that plastic deformation occurs and a facet contact is formed until the contact area increases to be able to withstand the full load. In this case, strong adhesion points will appear on the metal surface.
  • the bonding point Under the action of tangential force, the bonding point is sheared, and the surface slips.
  • the process of friction is an alternating process of bonding and slipping.
  • the friction force is mainly expressed as the shear force required to cut the metal bonding point.
  • the present disclosure uses three types of granular materials with excellent abrasion resistance and different hardness and hardness, such as steel grit, zirconia particles, and rubber particles, to make a core material for an isolated bearing.
  • three kinds of granular materials are compacted, the rough convex peaks on the surface of the hard particles are embedded on the surface of the softer particles, which increases the sliding resistance during friction. Therefore, the friction force can be approximately equal to the shear force required to shear the bonding point.
  • most of the energy consumed due to deformation or breakage of the surface material will be converted into thermal energy.
  • the real contact area is smaller than the apparent contact area.
  • An embodiment of the present disclosure provides a core material of an isolation support, including steel sand, zirconia particles, and rubber particles.
  • the core material of the vibration-isolating support is made of a mixture of abrasion-resistant and granular materials with different degrees of hardness. It uses the dry friction energy dissipation mechanism to convert the energy generated by the earthquake into heat for consumption through friction between the core material particles.
  • the core material of the vibration isolation support provides high damping through dry friction, can achieve the energy consumption effect equivalent to that of a traditional lead core, and is more environmentally friendly and safe, and can maintain stable mechanical properties at low temperatures.
  • the steel grit includes a first steel grit, a second steel grit, a third steel grit, and a fourth steel grit.
  • the particle size of the first steel grit is> 0.1mm and ⁇ 0.25mm; the particle size of the second steel grit is> 0.25mm and ⁇ 0.5mm; the particle size of the third steel grit is> 0.5mm and ⁇ 1mm; the fourth steel
  • the particle size of the sand is> 1 mm, and ⁇ 2 mm.
  • the mass ratio of the first steel grit, the second steel grit, the third steel grit, and the fourth steel grit is 1: 0.2 to 1.2: 0.2 to 1.2: 0.2 to 1.2.
  • granular materials with different particle diameters are used in combination. Small particles of material can fill the gaps between large particles of material, increase the compactness of the core material of the vibration isolation support, and further increase the friction between the granular materials. The energy consumption effect of the entire seismic isolation support 100 is improved.
  • the steel grit with uneven thickness can be passed through the sieve holes with the diameters of 0.1mm, 0.25mm, 0.5mm, 1mm and 2mm in order to perform continuous screening to obtain the first steel grit, the second steel grit, and the first Three steel grit and fourth steel grit.
  • the particle size of the first steel grit is 0.2 to 0.25 mm; the particle size of the second steel grit is 0.4 to 0.5 mm; the particle size of the third steel grit is 0.8 to 1 mm; and the particle size of the fourth steel grit is 1.8. ⁇ 2mm.
  • the particle size of the first steel grit is 0.1 mm; the particle size of the second steel grit is 0.25 mm; the particle size of the third steel grit is 0.5 mm; and the particle size of the fourth steel grit is 1 mm.
  • the mass ratio of the first steel grit, the second steel grit, the third steel grit, and the fourth steel grit is 1: 0.8 to 1: 0.6 to 0.8: 0.4 to 0.6, the seismic isolation support 100 Energy consumption is better.
  • the mass ratio of the first steel grit, the second steel grit, the third steel grit, and the fourth steel grit is 1: 0.8: 0.6: 0.4.
  • the zirconia particles include the first zirconia particles and the second zirconia particles; the particle diameter of the first zirconia particles is ⁇ 1mm; the particle diameter of the second zirconia particles is> 1mm, and ⁇ 2mm .
  • the mass ratio of the first zirconia particles to the second zirconia particles is 1: 0.2-0.8.
  • the particle diameter of the first zirconia particles is 0.5 to 1 mm; the particle diameter of the second zirconia particles is 1.5 to 2 mm.
  • the particle diameter of the first zirconia particles is 1 mm; the particle diameter of the second zirconia particles is 2 mm.
  • the mass ratio of the first zirconia particles to the second zirconia particles is 1: 0.5.
  • the purity of the zirconia particles used in the embodiments of the present disclosure is ⁇ 80%.
  • the particle diameter of the rubber particles is ⁇ 1 mm.
  • the particle size of the rubber particles is 0.5 to 1 mm.
  • the surface of the steel grit is roughened. Roughening the surface of the metal particulate material can increase the true contact area of the particulate material pieces, and improve the energy dissipation capacity of the seismic isolation support 100.
  • the carbon content of the core material of the isolation support is in the range of 0.6 to 0.8%, and the carbon content is more than three times that of ordinary steel. Excellent abrasion resistance to provide lasting energy consumption.
  • the embodiment of the present disclosure further provides a vibration-isolating support 100, as shown in FIG. 1, including: a support body 110, the support body 110 including a plurality of steel plate layers 111 and a plurality of rubber layers 112, and a plurality of steel plate layers 111 It is stacked alternately with a plurality of rubber layers 112 horizontally, and both ends along the stacking direction are rubber layers 112; steel plate layers 111 and rubber layers 112 are provided with through holes, and multiple steel plate layers 111 and multiple rubber layers 112 have through holes. Overlapping along the stacking direction.
  • the support core 120 includes a core hole rubber protective layer 121 and a vibration-isolating support core material 122 as described above, which is filled in the core hole rubber protective layer 121; the support core 120 is embedded in a plurality of The steel plate layers 111 and the plurality of rubber layers 112 are in the through holes.
  • the connection plate 130 includes an upper connection plate 131 opposite to the top of the support body 110 and a lower connection plate 132 provided at the bottom of the support body 110.
  • connection plate 130 includes an upper connection plate 131 and a lower connection plate 132 opposite to each other.
  • the upper connection plate 131 is connected to the top of the support body 110
  • the lower connection plate 132 is connected to the bottom of the support body 110.
  • the connecting plate 130 is used to connect the entire seismic isolation support 100 with the main body of the building to give the building excellent seismic performance.
  • the seismic isolation support 100 provided by the embodiment of the present disclosure can consume seismic energy through a dry friction energy dissipation mechanism, which has high damping, excellent seismic isolation performance, and can maintain its seismic isolation effect better at low temperatures.
  • a through hole is provided at a center position of the steel plate layer 111 and the rubber layer 112.
  • the support body 110 includes an upper surface for connection with the upper connection plate 131, a lower surface for connection with the lower connection plate 132, and a side surface located between the upper surface and the lower surface.
  • an outer protective rubber layer 113 is further provided around the sides.
  • the core hole rubber protective layer 121 includes a cylindrical sleeve provided with an opening at an end portion, and further includes a cover plate detachably connected to the opening for sealing in a closed state. Plugging the opening.
  • both ends of the cylindrical sleeve are provided with openings.
  • the vibration-isolating support 100 of the embodiment of the present disclosure does not have to limit the use direction.
  • the cover plate is a tight-fitting cover plate 123, and the tight-fitting cover plate 123 blocks the opening by a tight-fitting bolt 125.
  • a tight-fitting rubber pad 124 is further provided between the cover plate and the core hole rubber protective layer 121 to increase the tightness.
  • a protective layer is further provided on the inner wall of the core hole rubber protective layer 121.
  • the material of the optional protective layer includes any one of a high-strength fiber cloth, a PTFE skateboard and an ultra-high molecular skateboard.
  • the thickness of the protective layer is 1 to 3 mm.
  • the through hole is a circular hole
  • the support body 110 is a cylinder as a whole
  • the through hole is disposed coaxially with the support body 110.
  • connection plate 131, the support body 110, the support core 120, and the lower connection plate 132 may be integrally formed.
  • An embodiment of the present disclosure also provides a method for manufacturing the above-mentioned vibration isolation support 100, as shown in FIG. 6, including:
  • a vulcanization bonding process is used to connect the upper connection plate 131, the plurality of rubber layers 112, the plurality of steel plate layers 111, the core hole rubber protection layer 121, and the lower connection plate 132 to each other.
  • the core hole rubber protective layer 121 includes a cylindrical sleeve provided with an opening at an end thereof, and further includes a cover plate detachably connected to the opening, and the cover plate is a tightly fitted cover plate 123.
  • the tight fitting cover plate 123 is covered on the opening, and the cylindrical sleeve and the tight fitting cover plate 123 are sealed and fixed by the tight fitting bolt 125.
  • Vibrating the core material of the vibration isolation support can further compact the core material of the vibration isolation support in the core hole rubber protective layer 121 and improve the use effect thereof.
  • the tight fitting cover plate 123 is installed, and the tight fitting bolt 125 is used to apply pressure to the core material of the vibration isolation support to increase the friction between the granular materials.
  • the following describes the core material of the seismic isolation support, the seismic isolation support 100 and the preparation method thereof in combination with specific embodiments.
  • This embodiment provides a seismic isolation support 100, as shown in FIG. 1, and includes a support body 110, a support core 120, and a connection plate 130.
  • the support body 110 is a cylinder as a whole, and is formed by alternately stacking a plurality of annular steel plate layers 111 and a plurality of annular rubber layers 112 in the horizontal direction.
  • each of the steel plate layer 111 and the rubber layer 112 has the same inner and outer diameters.
  • the central through hole communicates concentrically, that is, a through hole is formed in the middle of the support body 110. (Not shown in FIG. 1), the through hole can be used to receive the support core 120.
  • connection plate 130 includes an upper connection plate 131 and a lower connection plate 132 opposite to each other.
  • the upper connection plate 131 is connected to the top of the support body 110, and the lower connection plate 132 is connected to the bottom of the support body 110.
  • the connecting plate 130 is used to connect the entire seismic isolation support 100 with the main body of the building to give the building excellent seismic performance.
  • the support main body 110 includes an upper surface (not labeled) for connecting with the upper connecting plate 131, a lower surface (not labeled) for connecting with the lower connecting plate 132, and a portion between the upper surface and the lower surface.
  • the side surface (not labeled) is provided with an outer protective rubber layer 113.
  • the outer protective rubber layer 113 has a different formula from the rubber layer 112. It uses a rubber material with excellent anti-aging properties. Its role is to protect the internal rubber layer 112, prevent the rubber layer 112 from aging, and improve the durability of the support body 110. Sex.
  • the support core 120 includes a core hole rubber protection layer 121 and a vibration isolation support core material 122 filled in the core hole rubber protection layer 121.
  • the support core 120 is cylindrical as a whole, and is arranged along the length direction of the through hole and embedded in the through hole, and its size matches the size of the through hole.
  • the core hole rubber protective layer 121 can play a role of isolation. On the one hand, it can prevent the granular material of the core material 122 of the vibration isolation support from entering the rubber layer 112 and the steel plate layer 111, and damage the rubber layer 112 and the steel plate layer 111. On the other hand, it can ensure that the total amount of particulate material of the isolation support core material 122 is not reduced, and the compactness between the particulate materials is ensured, thereby extending the service life of the isolation support core material 122.
  • the top of the core hole rubber protective layer 121 is provided with an opening (not shown in FIG. 1) for accessing the isolation support core material 122, and a tight-fitting cover plate 123 for controlling opening and closing of the opening is provided at the opening.
  • the detachable connection is formed between the tight fitting cover plate 123 and the upper connecting plate 131.
  • a tight-fitting rubber pad 124 is provided between the tight-fitting cover plate 123 and the core hole rubber protective layer 121 to increase the tightness.
  • the tight fitting cover plate 123, the tight fitting rubber pad 124, and the upper connecting plate 131 form a threaded connection by a tight fitting bolt 125.
  • the tightly-fitted cover plate 123 and the tightly-fitted rubber pad 124 can further compact the vibration-isolating support core material 122 in the core-hole rubber protective layer 121 to increase the friction between the granular materials of the vibration-isolation support core material 122, thereby The isolation performance of the isolation support 100 is improved.
  • the inner wall of the core hole rubber protective layer 121 is provided with a protective layer (not shown in FIG. 1) made of a high-strength fiber cloth or a PTFE skateboard or an ultra-high molecular skateboard.
  • the thickness of the protective layer is 1 ⁇ 3mm, the protective layer can reduce the abrasion of the rubber inside the support by the core material 122 of the isolation support and prolong the service life.
  • the upper connection plate 131, the support body 110, the support core 120, and the lower connection plate 132 are integrally formed.
  • the upper connection plate 131, the plurality of rubber layers 112, the plurality of steel plate layers 111, the core hole rubber protection layer 121, and the lower connection plate 132 may be integrally formed by using a vulcanization bonding process. Then, the isolation support core material 122 is filled into the core hole of the core hole rubber protective layer 121 and vibrated and compacted.
  • vibration isolation support core material 122 After the vibration isolation support core material 122 is compacted and compacted, a rubber mat 124 and a cover plate 123 are installed tightly, and a pressure is applied to the vibration isolation support core material 122 through a tight fit bolt 125 to increase the Friction.
  • Examples 2 to 9 respectively provide a core material of an isolation support, which is composed of three kinds of granular materials of steel sand, zirconia particles, and rubber particles. The amount of each of the granular materials is shown in Table 1. It is worth noting that the steel grit and zirconia particles used in Examples 2 to 9 were all subjected to surface roughening treatment.
  • Example 2 Zh Rubber particles / mm
  • Example 3 1
  • Example 4 1
  • Example 5 1
  • Example 6 0.5
  • Example 7 0.5
  • Example 8 0.5
  • Example 9 0.2
  • This comparative example provides a core material for a vibration isolation support, which is basically the same as the core material of the vibration isolation support in Example 1. The difference is that the core material of the vibration isolation support of Comparative Example 1 does not contain zirconia particles. .
  • This comparative example provides a core material of an isolation support, which is basically the same as the core material of the isolation support of Example 1. The difference is that the core material of the isolation support of Comparative Example 2 does not contain steel grit.
  • This comparative example provides a core material of an isolation support, which is basically the same as the core material of the isolation support of Example 1. The difference is that the core material of the isolation support of Comparative Example 3 does not contain rubber particles.
  • This comparative example provides a core material for an isolation support, which is basically the same as the core material of the isolation support in Example 1. The difference is that the steel grit and The zirconia powders all have a single particle diameter, of which the particle size of the steel grit is 1 mm and the particle diameter of the zirconia particles is 0.8 mm.
  • This comparative example provides a core material of an isolation support, which is basically the same as the formulation of the core material of the isolation support in Example 1. The difference is that the steel sand used in the core material of the isolation support of Comparative Example 5 For surface roughening.
  • the seismic isolation support core materials provided in Examples 2 to 9 and Comparative Examples 1 to 5 were used to fill the seismic isolation support 100 provided in Example 1, and the prepared seismic isolation support 100 was subjected to 11
  • the horizontal compression-shear test for each cycle tests the equivalent damping ratios of the first cycle and the eleventh cycle, respectively, as A and B. After the end of the cycle test, let it stand for 24 hours, and then repeat the horizontal compression-shear for 3 cycles Test, test the equivalent damping ratio of the third cycle, and record it as C. The test results are shown in Table 5.
  • the equivalent damping ratio of the seismic isolation support 100 made of the seismic isolation support core materials provided in Examples 2 to 9 of the present disclosure can all reach more than 25.4%.
  • the equivalent damping ratio of the lead rubber bearing of the size is equivalent, and the lead core can be replaced.
  • it can still maintain an equivalent damping ratio of greater than 18%, indicating that the core material of the seismic isolation bearing has high stability.
  • the equivalent damping ratio of the isolated support 100 can be restored to the original value, indicating that the isolated support 100 has no residual deformation and can be used repeatedly.
  • FIG. 3 shows a hysteretic curve of an isolating support 100 made of the provided isolating support core material in Example 2 in a horizontal compression-shear test at 11 cycles.
  • the hysteresis curve is full and smooth. As the number of times increases, the area of the hysteresis loop envelope decreases, and the reason is that the internal friction of the energy-consuming material generates heat due to dry friction and the performance decline.
  • FIG. 4 shows the hysteresis curve of the horizontal compression shear test in the 3 cycles of the isolated support core material provided in Example 2 after being left for 24 hours, which is basically equivalent to that in FIG. 3, and illustrates the isolation
  • the support 100 has no residual stress and has a reusable effect.
  • Comparative Examples 1 to 3 lack zirconia particles, steel grit, and rubber particles, respectively, based on the examples of the present disclosure. It can be clearly seen that the values of A, B, and C are relatively large. Decrease in amplitude. Comparative Example 4 uses a single-size steel grit, zirconia particles, and rubber particles. Due to insufficient compaction, the equivalent damping ratio is only 20.3%, and after standing for 24 hours, it cannot be restored to the original value. The particulate material of Comparative Example 5 has not been subjected to surface roughening treatment, and its equivalent damping ratio is also reduced to a certain extent compared with the embodiment of the present disclosure.
  • the isolation support core material provided in Example 2 was used to fill the isolation support 100 provided in Example 1, and a horizontal compression-shear test was performed on the prepared isolation support 100 at different temperatures to test the results. Equivalent damping ratio, test results are shown in Table 6.
  • the embodiments of the present disclosure provide a core material for an isolation support, which includes steel sand, zirconia particles, and rubber particles.
  • the core material of the vibration-isolating support is made of a mixture of abrasion-resistant and granular materials with different degrees of hardness. It uses the dry friction energy dissipation mechanism to convert the energy generated by the earthquake into heat for consumption through friction between the core material particles.
  • the core material of the seismic isolation support has high damping, can achieve the energy consumption effect equivalent to the traditional lead core, and is more environmentally friendly and safe. It can also maintain better practical performance at low temperatures.
  • An embodiment of the present disclosure further provides a vibration-isolating support 100 including the core material of the vibration-isolating support described above. It can consume seismic energy through the dry friction energy dissipation mechanism, has the characteristics of high damping, excellent isolation performance, and can maintain its isolation effect better at low temperatures.
  • the disclosure provides a core material for a vibration isolation support, a vibration isolation support and a preparation method thereof.
  • the high damping provided by dry friction can achieve the energy consumption effect equivalent to that of a traditional lead core, and is more environmentally friendly and safe. Can also maintain stable mechanical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种隔震支座芯材,按照重量份数计,包括:钢砂150-300份,氧化锆颗粒50-150份,橡胶颗粒50-100份。还提供包含该芯材的隔震支座以及隔震支座的制备方法。该隔震支座芯材及隔震支座通过干摩擦耗能机理对地震能量进行消耗,其阻尼高,隔震性能优异。

Description

隔震支座芯材、摩擦芯隔震支座及其制备方法
相关申请的交叉引用
本公开要求于2018年08月27日提交中国专利局的申请号为2018109843010、名称为“隔震支座芯材、摩擦芯隔震支座及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及隔震技术领域,具体而言,涉及隔震支座芯材、隔震支座及其制备方法。
背景技术
隔震技术是一种新型的抗震技术,不仅改变了建筑结构抗震设计的传统概念,而且使结构的抗震能力、抗震可靠性和灾害防御水平大幅提高。近年来,地震频发,建筑隔震技术受到了社会各界的普遍认同,隔震技术在国内新建建筑(特别是医院、学校)以及既有建筑物的加固改造中得到广泛应用。
隔震建筑就是通过隔震支座来延长结构的周期并给予结构较大的阻尼,使结构上的加速度反应大幅降低。同时,结构产生的较大位移由隔震层来承受,上部结构在地震中会发生接近平移的运动,大大提高了上部结构的安全度。在建筑物与基础之间设置有整体复位功能隔震装置,来延长整个结构体系的自振周期,吸收耗散地震能量,减少水平地震能量向上传递,达到预期的抗震设防要求。
影响建筑物地震响应的重要因素主要有两个:(a)结构的周期;(b)阻尼比。普通非隔震中、低层建筑物的刚度大、周期短,其基本周期正好在地震输入能量的最大频段上,因此结构相应的加速度反应被地面运动放大很多,而位移反应却较小。如果延长建筑物的周期,而保持阻尼不变,则加速度反应被大大降低,但位移反应却有所增加;如果再增加结构的阻尼,加速度反应则继续减弱,且位移反应也得到明显降低。
传统的铅芯叠层橡胶隔震支座利用的是铅的延展性能和耗能能力,当支座发生剪切变形时铅芯部件会产生塑性变形,其结果改变了橡胶支座的滞回曲线,使支座具有良好的阻尼效果,有效吸收地震能量。且其中的铅芯处于热工作状态,当发生塑性变形后,金属铅能恢复原有的力学性能。然而,传统的铅芯叠层橡胶隔震支座仍具有不少的缺点。例如,铅属于重金属,有毒,铅在加工、生产、应用过程中影响工人的健康,泄漏后会污染环境。又例如,铅芯在低温下屈服力明显增加,导致隔震支座的水平刚度增大,隔震性能降低等。 因此,亟待开发一种可以替代铅芯叠层橡胶隔震支座的具有高阻尼特性的隔震支座。
发明内容
本公开的第一目的在于提供一种隔震支座芯材,其能够替代传统的铅芯用于隔震支座,其具有阻尼高、更环保、可适应低温环境等优点。
本公开的第二目的在于提供一种隔震支座,其包括上述任意一种的隔震支座芯材,其阻尼高,隔震性能优异,并且在低温下能够较好地保持其隔震效果。
本公开的第三目的在于提供一种隔震支座的制备方法,其操作简单方便,对设备要求低,能够快速高效地制备上述隔震支座。
本公开的实施例是这样实现的:
本公开实施例的一方面,提供了一种隔震支座芯材,按照重量份数计,其包括:钢砂150~300份,氧化锆颗粒50~150份,以及橡胶颗粒50~100份。
在本公开可选的实施例中,钢砂包括第一钢砂、第二钢砂、第三钢砂以及第四钢砂。第一钢砂的粒径>0.1mm,且≤0.25mm;第二钢砂的粒径>0.25mm,且≤0.5mm;第三钢砂的粒径>0.5mm,且≤1mm;第四钢砂的粒径>1mm,且≤2mm。
在本公开可选的实施例中,第一钢砂、第二钢砂、第三钢砂以及第四钢砂的质量比为1:0.2~1.2:0.2~1.2:0.2~1.2。
在本公开可选的实施例中,氧化锆颗粒包括第一氧化锆颗粒,以及第二氧化锆颗粒;第一氧化锆颗粒的粒径≤1mm;第二氧化锆颗粒的粒径>1mm,且≤2mm。
在本公开可选的实施例中,第一氧化锆颗粒与第二氧化锆颗粒的质量比为1:0.2~0.8。
在本公开可选的实施例中,橡胶颗粒的粒径≤1mm。
在本公开可选的实施例中,钢砂的表面均进行粗糙处理。
本公开实施例的另一方面,提供了一种隔震支座,包括:支座主体,支座主体包括多个钢板层和多个橡胶层,多个钢板层和多个橡胶层水平交替层叠设置,沿层叠方向的两端均为橡胶层;钢板层和橡胶层上设置有通孔,多个钢板层和多个橡胶层的通孔沿层叠方向重合。支座芯,支座芯包括芯孔橡胶保护层,以及填充于芯孔橡胶保护层内部的如上述任一项的隔震支座芯材;支座芯嵌设于多个钢板层和多个橡胶层的通孔内。连接板,连接板包括相对设置于支座主体顶部的上连接板,以及设置于支座主体底部的下连接板。
在本公开可选的实施例中,通孔设置在钢板层和橡胶层的中心位置。
在本公开可选的实施例中,支座主体包括用于与上连接板连接的上表面、用于与下连接板连接的下表面以及位于上表面和下表面之间的侧面。
在本公开可选的实施例中,环绕侧面还设置有外包保护胶层。
在本公开可选的实施例中,芯孔橡胶保护层包括端部设置有开口的圆柱套筒,还包括在开口可拆卸连接的盖板,用于在关闭状态封堵开口。
在本公开可选的实施例中,圆柱套筒的两端均设置有开口。
在本公开可选的实施例中,盖板为紧配盖板,紧配盖板通过紧配螺栓封堵开口。
在本公开可选的实施例中,盖板和芯孔橡胶保护层之间还设置有用于增加密闭性的橡胶垫。
在本公开可选的实施例中,在芯孔橡胶保护层的内壁还设置有防护层。
在本公开可选的实施例中,防护层的材质包括高强纤维布、聚四氟乙烯滑板和超高分子滑板中的任一种。
本公开实施例的再一方面,提供了一种隔震支座的制备方法,包括:采用硫化粘接工艺将上连接板、多个橡胶层、多个钢板层、芯孔橡胶保护层、下连接板之间相互连接;将隔震支座芯材填充至芯孔橡胶保护层内。
在本公开可选的实施例中,芯孔橡胶保护层包括端部设置有开口的圆柱套筒,还包括在开口可拆卸连接的盖板,盖板为紧配盖板。将隔震支座芯材填充至芯孔橡胶保护层内之后,方法还包括:对芯孔橡胶保护层进行振捣操作,以使隔震支座芯材在芯孔橡胶保护层压实;将紧配盖板盖合在开口上,通过紧配螺栓对圆柱套筒和紧配盖板之间进行密封固定。
本公开实施例的有益效果包括:
本公开实施例提供了一种隔震支座芯材,包括钢砂、氧化锆颗粒、以及橡胶颗粒。该隔震支座芯材选择耐磨且软硬程度不同的颗粒材料进行混合制成。其通过干摩擦耗能机理,将地震产生的能量通过芯材颗粒间的摩擦转化为热量进行消耗。该隔震支座芯材通过干摩擦提供的阻尼高,能够达到等同于传统铅芯的耗能效果,并且其更加环保安全,在低温下也能够保持稳定的力学性能。
本公开实施例还提供了一种隔震支座,可以通过干摩擦耗能机理对地震能量进行消耗,具有阻尼高,隔震性能优异的特点,并且在低温下能够较好地保持其隔震效果。
本公开实施例还提供了一种隔震支座的制备方法,采用硫化粘接工艺将上连接板、多个橡胶层、多个钢板层、芯孔橡胶保护层、下连接板之间相互连接;再将隔震支座芯材填充至芯孔橡胶保护层内。该制备方法的操作简单方便,对设备要求低,能够快速高效地制备上述隔震支座,实现规模化生产。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范 围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的隔震支座的结构示意图之一;
图2为本公开实施例提供的隔震支座芯材的示意图;
图3为由本公开实施例提供的隔震支座芯材所制成的隔震支座在11次循环水平压剪试验的滞回曲线图;
图4为由本公开实施例提供的隔震支座芯材所制成的隔震支座在静置24h后的3次循环水平压剪试验的滞回曲线图;
图5为本公开实施例提供的隔震支座的结构示意图之二;
图6为本公开实施例提供的隔震支座的制备方法的流程图之一;
图7为本公开实施例提供的隔震支座的制备方法的流程图之二。
图标:100-隔震支座;110-支座主体;111-钢板层;112-橡胶层;113-外包保护胶层;120-支座芯;121-芯孔橡胶保护层;122-隔震支座芯材;123-紧配盖板;124-紧配橡胶垫;125-紧配螺栓;130-连接板;131-上连接板;132-下连接板。
具体实施方式
为使本公开实施方式的目的、技术方案和优点更加清楚,下面将结合本公开实施方式中的附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。因此,以下对在附图中提供的本公开的实施方式的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施方式。基于本公开中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示 或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本公开实施例提供了一种隔震支座芯材,按照重量份数计,其包括:钢砂150~300份,氧化锆颗粒50~150份,以及橡胶颗粒50~100份。
可选地,本公开实施例提供了的一种隔震支座芯材,按照重量份数计,包括:钢砂250~300份,氧化锆颗粒120~150份,以及橡胶颗粒50~70份。
该隔震支座芯材根据干摩擦耗能机理来实现。两个粗糙表面接触时,接触点相互啮合,摩擦力就是所有这些啮合点的切向阻力的总和。对于干摩擦机理进行解释的经典理论适用于金属对金属的摩擦。在负荷的作用下,摩擦表面真实接触点上接触应力很大,以致产生塑性变性,形成小平面接触,直到接触面积增大到能够承受全部负荷时为止。在这种情况下,金属表面将出现牢固的粘结点。在切向力的作用下,粘结点被剪断,表面随即发生滑移。摩擦的过程就是粘结与滑移交替进行的过程。摩擦力主要表现为剪断金属粘结点所需的剪切力。
基于上述原理,本公开采用了钢砂、氧化锆颗粒、橡胶颗粒三种耐磨性能优异且软硬程度各不相同的颗粒材料配合制成隔震支座芯材。上述三种颗粒材料在压实后,硬颗粒表面的粗糙凸峰会嵌入较软颗粒的表面,在摩擦时增加滑动阻力。因此,摩擦力可以近似地等于剪断粘结点时所需的剪切力。在摩擦过程中,由于表层材料的变形或破断而消耗的能力大部分会转变成热能。两个物体在压力下相互接触时,真正接触区比表观接触区要小,当颗粒间相互运动时,在真正接触区会产生摩擦的热效应和机械效应,因此摩擦过程中将产生能量的消耗。同时,由于此种特制高阻尼材料的耗能机理与铅芯提供的耗能机理不一样,硬金属占比很大,在低温-40度工况下,其屈服性能改变不是太大,低温稳定性好。
本公开实施例提供了一种隔震支座芯材,包括钢砂、氧化锆颗粒、以及橡胶颗粒。该隔震支座芯材选择耐磨且软硬程度不同的颗粒材料进行混合制成。其通过干摩擦耗能机理,将地震产生的能量通过芯材颗粒间的摩擦转化为热量进行消耗。该隔震支座芯材通过干摩擦提供的阻尼高,能够达到等同于传统铅芯的耗能效果,并且其更加环保安全,在低温下也能够保持稳定的力学性能。
可选地,钢砂包括第一钢砂、第二钢砂、第三钢砂以及第四钢砂。第一钢砂的粒径>0.1mm,且≤0.25mm;第二钢砂的粒径>0.25mm,且≤0.5mm;第三钢砂的粒径>0.5mm,且≤1mm;第四钢砂的粒径>1mm,且≤2mm。
可选地,,第一钢砂、第二钢砂、第三钢砂、第四钢砂的质量比为1:0.2~1.2:0.2~1.2:0.2~1.2。
本公开实施例采用不同粒径的颗粒材料配合使用,小颗粒的材料可以填充大颗粒材料之间的间隙,增加该隔震支座芯材的密实度,进而增加颗粒材料之间的摩擦力,提高整个隔震支座100的耗能效果。
在实际操作中,可以让粗细不均的钢砂依次通过孔径为0.1mm,0.25mm,0.5mm,1mm和2mm的筛孔,进行连续筛分,得到第一钢砂、第二钢砂、第三钢砂以及第四钢砂。
示例的,第一钢砂的粒径为0.2~0.25mm;第二钢砂的粒径为0.4~0.5mm;第三钢砂的粒径为0.8~1mm;第四钢砂的粒径为1.8~2mm。
示例的,第一钢砂的粒径为0.1mm;第二钢砂的粒径为0.25mm;第三钢砂的粒径为0.5mm;第四钢砂的粒径为1mm。
需要说明的是,适当增加小粒径颗粒的量,可以使整个隔震支座芯材的密实度更高,但过多的使用小粒径颗粒也会造成隔震支座100整体强度的降低。经过发明人创造性劳动发现,第一钢砂、第二钢砂、第三钢砂以及第四钢砂的质量比为1:0.8~1:0.6~0.8:0.4~0.6时,隔震支座100的耗能效果较佳。优选地,第一钢砂、第二钢砂、第三钢砂以及第四钢砂的质量比为1:0.8:0.6:0.4。
可选的,与钢砂类似,氧化锆颗粒包括第一氧化锆颗粒以及第二氧化锆颗粒;第一氧化锆颗粒的粒径≤1mm;第二氧化锆颗粒的粒径>1mm,且≤2mm。
可选的,第一氧化锆颗粒与第二氧化锆颗粒的质量比为1:0.2~0.8。示例的,第一氧化锆颗粒的粒径为0.5~1mm;第二氧化锆颗粒的粒径为1.5~2mm。优选地,第一氧化锆颗粒的粒径为1mm;第二氧化锆颗粒的粒径为2mm。
可选的,第一氧化锆颗粒与第二氧化锆颗粒的质量比为1:0.5。
可选的,本公开实施例采用的氧化锆颗粒的纯度≥80%。
进一步地,橡胶颗粒的粒径≤1mm。
示例的,橡胶颗粒的粒径为0.5~1mm。
可选的,钢砂的表面进行粗糙处理。对金属颗粒材料的表面进行粗糙化处理可以增大颗粒材料件的真实接触面积,提升隔震支座100的耗能能力。
将钢砂、氧化锆颗粒、橡胶颗粒三种颗粒材料混合后,隔震支座芯材的含碳量在0.6~0.8%范围内,含碳量为普通钢材的3倍以上,材料的硬度和耐磨性能优异,从而可以提供持久的耗能效果。
本公开实施例还提供了一种隔震支座100,如图1所示,包括:支座主体110,支座主体110包括多个钢板层111和多个橡胶层112,多个钢板层111和多个橡胶层112水平交替层叠设置,沿层叠方向的两端均为橡胶层112;钢板层111和橡胶层112上设置有通孔,多个钢板层111和多个橡胶层112的通孔沿层叠方向重合。支座芯120,支座芯120包括芯孔橡胶保护层121,以及填充于芯孔橡胶保护层121内部的如上述任一项的隔震支座芯材122;支座芯120嵌设于多个钢板层111和多个橡胶层112的通孔内。连接板130,连接板130包括相对设置于支座主体110顶部的上连接板131,以及设置于支座主体110底部的下连接板132。
如图1所示,多个钢板层111和多个橡胶层112之间的堆叠方式为交替层叠,且最外层(即靠近上连接板131的最上层和靠近下连接板132的最下层)均为橡胶层112,以便于与连接板130进行连接。连接板130包括相对设置的上连接板131和下连接板132,上连接板131与支座主体110的顶部连接,下连接板132与支座主体110的底部连接。连接板130用于将整个隔震支座100与建筑物的主体进行连接,以赋予建筑物优异的抗震性能。
本公开实施例提供的一种隔震支座100,可以通过干摩擦耗能机理对地震能量进行消耗,其阻尼高,隔震性能优异,并且在低温下能够较好地保持其隔震效果。
如图1所示,在本公开可选的实施例中,通孔设置在钢板层111和橡胶层112的中心位置。
这样一来,能够提高本公开实施例的隔震支座100的平衡性和稳定性。
支座主体110包括用于与上连接板131连接的上表面,用于与下连接板132连接的下表面,以及位于上表面和下表面之间的侧面。
如图1所示,在本公开可选的实施例中,环绕侧面还设置有外包保护胶层113。
如图1所示,在本公开可选的实施例中,芯孔橡胶保护层121包括端部设置有开口的圆柱套筒,还包括在开口可拆卸连接的盖板,用于在关闭状态封堵开口。
在本公开可选的实施例中,如图5所示,圆柱套筒的两端均设置有开口。这样一来,本公开实施例的隔震支座100不必限定使用方向。在本公开可选的实施例中,如图1所示, 盖板为紧配盖板123,紧配盖板123通过紧配螺栓125封堵开口。
在本公开可选的实施例中,如图1所示,盖板和芯孔橡胶保护层121之间还设置有用于增加密闭性的紧配橡胶垫124。
在本公开可选的实施例中,如图1所示,在芯孔橡胶保护层121的内壁还设置有防护层。可选的防护层的材质包括高强纤维布、聚四氟乙烯滑板和超高分子滑板中的任一种。
进一步地,在本公开可选的实施例中,防护层的厚度为1~3mm。
进一步地,在本公开可选的实施例中,通孔为圆形孔,支座主体110整体为圆柱体,通孔与支座主体110同轴设置。
进一步地,在本公开可选的实施例中,上连接板131、支座主体110、支座芯120和下连接板132可以为一体成型。
本公开实施例还提供了一种上述隔震支座100的制备方法,如图6所示,包括:
S101、采用硫化粘接工艺将上连接板131、多个橡胶层112、多个钢板层111、芯孔橡胶保护层121、下连接板132之间相互连接。
S102、将隔震支座芯材填充至芯孔橡胶保护层121内。
在本公开可选的实施例中,芯孔橡胶保护层121包括端部设置有开口的圆柱套筒,还包括在开口可拆卸连接的盖板,盖板为紧配盖板123。在将隔震支座芯材填充至芯孔橡胶保护层121内之后,如图7所示,方法还包括:
S103、对芯孔橡胶保护层121进行振捣操作,以使隔震支座芯材在芯孔橡胶保护层121压实;
S104、将紧配盖板123盖合在开口上,通过紧配螺栓125对圆柱套筒和紧配盖板123之间进行密封固定。
对隔震支座芯材进行振捣操作,能够使得隔震支座芯材在芯孔橡胶保护层121中进一步压实,提高其使用效果。安装紧配盖板123,通过紧配螺栓125对隔震支座芯材施加压力,增大颗粒材料之间的摩擦力。
为了帮助理解,以下结合具体实施例对本公开的隔震支座芯材、隔震支座100及其制备方法作进一步说明。
实施例1
本实施例提供了一种隔震支座100,参照图1所示,包括支座主体110、支座芯120以及连接板130。
在本实施例中,支座主体110整体为圆柱体,其由多个圆环状的钢板层111和多个圆环状的橡胶层112在水平方向上交替堆叠而成。其中,每个钢板层111和橡胶层112均具有相同的内外径,当它们交替堆叠在一起时,中心的通孔同心连通,即在支座主体110的 中部形成贯穿支座主体110的通孔(图1中未标示),该通孔可用于容纳支座芯120。
进一步地,多个钢板层111和多个橡胶层112之间的堆叠方式为交替层叠,且最外层(即靠近上连接板131的最上层和靠近下连接板132的最下层)均为橡胶层112,以便于与连接板130进行连接。连接板130包括相对设置的上连接板131和下连接板132,上连接板131与支座主体110的顶部连接,下连接板132与支座主体110的底部连接。连接板130用于将整个隔震支座100与建筑物的主体进行连接,以赋予建筑物优异的抗震性能。
进一步地,支座主体110包括用于与上连接板131连接的上表面(未标示),用于与下连接板132连接的下表面(未标示),以及位于上表面和下表面之间的侧面(未标示),侧面设置有外包保护胶层113。外包保护胶层113与橡胶层112的配方不一样,其采用抗老化性能优异的橡胶材料,其作用是对内部的橡胶层112进行保护,防止橡胶层112的老化,提升支座主体110的耐久性。
支座芯120包括芯孔橡胶保护层121,以及填充于芯孔橡胶保护层121内部的隔震支座芯材122。支座芯120整体为圆柱状,其沿通孔的长度方向设置,并嵌设于通孔内,其尺寸与通孔的尺寸相匹配。芯孔橡胶保护层121可以起到隔离的作用,一方面其可以防止隔震支座芯材122的颗粒材料进入到橡胶层112和钢板层111中,对橡胶层112和钢板层111造成破坏。另一方面其可以确保隔震支座芯材122的颗粒材料总量不会减小,保证颗粒材料之间的密实性,从而延长隔震支座芯材122的使用寿命。
芯孔橡胶保护层121的顶部设置有用于取放隔震支座芯材122的开口(图1中未标示),开口处设置有用于控制开口开闭的紧配盖板123。紧配盖板123和上连接板131之间可拆卸连接。可选地,紧配盖板123和芯孔橡胶保护层121之间还设置有用于增加密闭性的紧配橡胶垫124。其中,紧配盖板123、紧配橡胶垫124和上连接板131之间通过紧配螺栓125形成螺纹连接。紧配盖板123和紧配橡胶垫124可以将芯孔橡胶保护层121内的隔震支座芯材122进一步压实,增加隔震支座芯材122的颗粒材料之间的摩擦力,从而提高隔震支座100的隔震性能。可选地,芯孔橡胶保护层121的内壁设置有由高强纤维布或聚四氟乙烯滑板或者超高分子滑板制成的防护层(图1中未示),优选地,防护层的厚度为1~3mm,防护层可以减少隔震支座芯材122对支座内部橡胶的磨损,延长使用寿命。
进一步地,在本公开其它较佳实施例中,上连接板131、支座主体110、支座芯120和下连接板132一体成型。在隔震支座100的制备过程中,可以先采用硫化粘接工艺将上连接板131、多个橡胶层112、多个钢板层111、芯孔橡胶保护层121、下连接板132一体成型。再将隔震支座芯材122填充至芯孔橡胶保护层121的芯孔内并振捣压实。将隔震支座芯材122振捣压实后,安装紧配橡胶垫124和紧配盖板123,通过紧配螺栓125对隔震支座芯材122施加压力,增大颗粒材料之间的摩擦力。
实施例2~9
实施例2~9分别提供了一种隔震支座芯材,其由钢砂、氧化锆颗粒和橡胶颗粒三种颗粒材料组成,各颗粒材料的用量如表1所示。值得注意的是,实施例2~9采用的钢砂和氧化锆颗粒均经过表面粗糙化处理。
表1.颗粒材料配比表(单位:重量份)
Figure PCTCN2018116821-appb-000001
实施例2~9所提供的一种隔震支座芯材中钢砂、氧化锆颗粒和橡胶颗粒的粒径分布分别如表2~表4所示。
表2.钢砂的粒径分布
Figure PCTCN2018116821-appb-000002
Figure PCTCN2018116821-appb-000003
表3.氧化锆颗粒的粒径分布
Figure PCTCN2018116821-appb-000004
表4.橡胶颗粒的粒径分布
  橡胶颗粒/mm
实施例2 1
实施例3 1
实施例4 1
实施例5 1
实施例6 0.5
实施例7 0.5
实施例8 0.5
实施例9 0.2
对比例1
本对比例提供了一种隔震支座芯材,其与实施例1的隔震支座芯材的配方基本相同,其区别在于,对比例1的隔震支座芯材不含氧化锆颗粒。
对比例2
本对比例提供了一种隔震支座芯材,其与实施例1的隔震支座芯材的配方基本相同,其区别在于,对比例2的隔震支座芯材不含钢砂。
对比例3
本对比例提供了一种隔震支座芯材,其与实施例1的隔震支座芯材的配方基本相同,其区别在于,对比例3的隔震支座芯材不含橡胶颗粒。
对比例4
本对比例提供了一种隔震支座芯材,其与实施例1的隔震支座芯材的配方基本相同,其区别在于,对比例4的隔震支座芯材采用的钢砂和氧化锆粉末均为单一粒径,其中,钢砂的粒径为1mm,氧化锆颗粒的粒径为0.8mm。
对比例5
本对比例提供了一种隔震支座芯材,其与实施例1的隔震支座芯材的配方基本相同,其区别在于,对比例5的隔震支座芯材采用的钢砂均为经过表面粗糙化处理。
试验例1
分别采用实施例2~9,以及对比例1~5所提供的隔震支座芯材填充到实施例1所提供的隔震支座100中,并对制成的隔震支座100进行11个循环的水平压剪试验,分别测试第1个循环以及第11个循环的等效阻尼比,分别记为A和B;循环试验结束后,静置24h,再重新进行3循环的水平压剪试验,测试第3个循环的等效阻尼比,记为C。测试结果如表5所示。
表5.等效阻尼比测试结果
  A B C
实施例2 26.9% 19.2% 26.7%
实施例3 26.3% 19.0% 26.4%
实施例4 25.4% 18.0% 25.3%
实施例5 25.8% 18.1% 25.2%
实施例6 26.2% 18.7% 26.0%
实施例7 26.1% 18.8% 26.1%
实施例8 25.9% 18.3% 25.7%
实施例9 25.5% 18.8% 25.6%
对比例1 18.9% 12.4% 18.8%
对比例2 16.3% 10.9% 16.0%
对比例3 15.7% 10.3% 15.5%
对比例4 20.3% 15.1% 18.6%
对比例5 23.6% 17.3% 23.1%
由表5可以看出,本公开实施例2~9所提供的隔震支座芯材所制成的隔震支座100的 等效阻尼比均能达到25.4%以上,其耗能性能与同尺寸的铅芯橡胶支座的等效阻尼比相当,能够实现对铅芯的替代。同时,其在经过了11个循环的水平压剪试验后,仍能够保持大于18%的等效阻尼比,说明隔震支座芯材具备较高的稳定性。此外,将其静置24h后,隔震支座100的等效阻尼比均能够恢复到最初的数值,说明隔震支座100并无残余变形,能够进行反复使用。
图3示出了实施例2的所提供的隔震支座芯材所制成的隔震支座100在11次循环水平压剪试验的滞回曲线图,滞回曲线饱满光滑,随着循环次数的增加,滞回环包络的面积有所减小,分析其原因是内部耗能材料干摩擦生热,性能衰减的原因。图4示出了实施例2的所提供的隔震支座芯材在静置了24h后,在3次循环水平压剪试验的滞回曲线图,与图3比较基本相当,说明该隔震支座100并无残余应力,具有可重复使用的效果。相比之下,对比例1~3在本公开实施例的基础上分别缺少了氧化锆颗粒、钢砂和橡胶颗粒,可以明显的看到,无论是A、B还是C的值均有较大幅度的降低。对比例4采用了单一粒径的钢砂、氧化锆颗粒和橡胶颗粒,由于压制的密实度不够,等效阻尼比仅为20.3%,并且在静置24h后,不能恢复到原先的数值。对比例5的颗粒材料没有经过表面粗糙化处理,其等效阻尼比值相对于本公开实施例来说,也有一定程度的降低。
试验例2
采用实施例2所提供的隔震支座芯材填充到实施例1所提供的隔震支座100中,并对制成的隔震支座100在不同温度下进行水平压剪试验,测试其等效阻尼比,测试结果如表6所示。
表6.温度对等效阻尼比的影响
温度/℃ 等效阻尼比/%
-40 26.3%
-20 26.5%
0 26.6%
20 26.9%
40 26.9%
由表6可以看出,采用实施例2所提供的隔震支座芯材填充到实施例1所提供的隔震支座100在温度降至-40℃时,其仍然能保持26.3%的等效阻尼比,其隔震效果与常温(20~40℃)相差仅为0.6%,其隔震效果几乎不受到温度的影响。
综上所述,本公开实施例提供了一种隔震支座芯材,其包括钢砂、氧化锆颗粒、以及橡胶颗粒。该隔震支座芯材选择耐磨且软硬程度不同的颗粒材料进行混合制成。其通过干摩擦耗能机理,将地震产生的能量通过芯材颗粒间的摩擦转化为热量进行消耗。该隔震支 座芯材的阻尼高,能够达到等同于传统铅芯的耗能效果,并且其更加环保安全,在低温下也能够保持较佳的实用性能。
本公开实施例还提供了一种隔震支座100,其包括上述隔震支座芯材。其可以通过干摩擦耗能机理对地震能量进行消耗,具有阻尼高,隔震性能优异的特点,并且在低温下能够较好地保持其隔震效果。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供了一种隔震支座芯材、隔震支座及其制备方法,通过干摩擦提供的阻尼高,能够达到等同于传统铅芯的耗能效果,并且其更加环保安全,在低温下也能够保持稳定的力学性能。

Claims (19)

  1. 一种隔震支座芯材,其特征在于,按照重量份数计,包括:
    钢砂150~300份,氧化锆颗粒50~150份,以及橡胶颗粒50~100份。
  2. 根据权利要求1所述的隔震支座芯材,其特征在于,所述钢砂包括第一钢砂、第二钢砂、第三钢砂以及第四钢砂;
    所述第一钢砂的粒径>0.1mm,且≤0.25mm;所述第二钢砂的粒径>0.25mm,且≤0.5mm;所述第三钢砂的粒径>0.5mm,且≤1mm;所述第四钢砂的粒径>1mm,且≤2mm。
  3. 根据权利要求2所述的隔震支座芯材,其特征在于,所述第一钢砂、所述第二钢砂、所述第三钢砂以及所述第四钢砂的质量比为1:0.2~1.2:0.2~1.2:0.2~1.2。
  4. 根据权利要求1-3任一项所述的隔震支座芯材,其特征在于,所述氧化锆颗粒包括第一氧化锆颗粒,以及第二氧化锆颗粒;
    所述第一氧化锆颗粒的粒径≤1mm;所述第二氧化锆颗粒的粒径>1mm,且≤2mm。
  5. 根据权利要求4所述的隔震支座芯材,其特征在于,所述第一氧化锆颗粒与所述第二氧化锆颗粒的质量比为1:0.2~0.8。
  6. 根据权利要求1-5任一项所述的隔震支座芯材,其特征在于,所述橡胶颗粒的粒径≤1mm。
  7. 根据权利要求1-6任一项所述的隔震支座芯材,其特征在于,所述钢砂的表面均进行粗糙处理。
  8. 一种隔震支座,其特征在于,包括:
    支座主体,所述支座主体包括多个钢板层和多个橡胶层,多个所述钢板层和多个所述橡胶层水平交替层叠设置,沿层叠方向的两端均为所述橡胶层;所述钢板层和所述橡胶层上设置有通孔,多个所述钢板层和多个所述橡胶层的通孔沿所述层叠方向重合;
    支座芯,所述支座芯包括芯孔橡胶保护层,以及填充于所述芯孔橡胶保护层内部的如权利要求1-7任一项所述隔震支座芯材;所述支座芯嵌设于所述多个钢板层和多个橡胶层的通孔内;
    连接板,所述连接板包括相对设置于所述支座主体顶部的上连接板,以及设置于所述支座主体底部的下连接板。
  9. 根据权利要求8所述的隔震支座,其特征在于,所述通孔设置在所述钢板层和所述橡胶层的中心位置。
  10. 根据权利要求8或9所述的隔震支座,其特征在于,所述支座主体包括用于与 所述上连接板连接的上表面、用于与所述下连接板连接的下表面以及位于所述上表面和所述下表面之间的侧面。
  11. 根据权利要求10所述的隔震支座,其特征在于,环绕所述侧面还设置有外包保护胶层。
  12. 根据权利要求8-11任一项所述的隔震支座,其特征在于,所述芯孔橡胶保护层包括端部设置有开口的圆柱套筒,还包括在所述开口可拆卸连接的盖板,用于在关闭状态封堵所述开口。
  13. 根据权利要求12所述的隔震支座,其特征在于,所述圆柱套筒的两端均设置有开口。
  14. 根据如权利要求12或13所述的隔震支座,其特征在于,所述盖板为紧配盖板,所述紧配盖板通过紧配螺栓封堵所述开口。
  15. 根据权利要求12-14任一项所述的隔震支座,其特征在于,所述盖板和所述芯孔橡胶保护层之间还设置有用于增加密闭性的橡胶垫。
  16. 根据权利要求8-15任一项所述的隔震支座,其特征在于,在所述芯孔橡胶保护层的内壁还设置有防护层。
  17. 根据权利要求16所述的隔震支座,其特征在于,所述防护层的材质包括高强纤维布、聚四氟乙烯滑板和超高分子滑板中的任一种。
  18. 一种如权利要求8-17任一项所述的隔震支座的制备方法,其特征在于,包括:
    采用硫化粘接工艺将上连接板、多个橡胶层、多个钢板层、芯孔橡胶保护层、下连接板之间相互连接;
    将隔震支座芯材填充至所述芯孔橡胶保护层内。
  19. 根据权利要求18所述的隔震支座的制备方法,其特征在于,所述芯孔橡胶保护层包括端部设置有开口的圆柱套筒,还包括在所述开口可拆卸连接的盖板,所述盖板为紧配盖板;
    所述将隔震支座芯材填充至所述芯孔橡胶保护层内之后,所述方法还包括:
    对所述芯孔橡胶保护层进行振捣操作,以使所述隔震支座芯材在所述芯孔橡胶保护层压实;
    将所述紧配盖板盖合在所述开口上,通过紧配螺栓对所述圆柱套筒和所述紧配盖板之间进行密封固定。
PCT/CN2018/116821 2018-08-27 2018-11-22 隔震支座芯材、摩擦芯隔震支座及其制备方法 WO2020042390A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505905A JP7128343B2 (ja) 2018-08-27 2018-11-22 免震支持台用プラグ材、摩擦プラグを用いた免震支持台及びその製造方法
US17/267,218 US12031601B2 (en) 2018-08-27 2018-11-22 Core material for shock insulation support, shock insulation support having friction core and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810984301.0A CN109098289B (zh) 2018-08-27 2018-08-27 隔震支座芯材、摩擦芯隔震支座及其制备方法和应用
CN201810984301.0 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020042390A1 true WO2020042390A1 (zh) 2020-03-05

Family

ID=64851519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116821 WO2020042390A1 (zh) 2018-08-27 2018-11-22 隔震支座芯材、摩擦芯隔震支座及其制备方法

Country Status (3)

Country Link
JP (1) JP7128343B2 (zh)
CN (1) CN109098289B (zh)
WO (1) WO2020042390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856243B (zh) * 2022-06-15 2024-01-30 江苏鸿基节能新技术股份有限公司 建筑增加隔震层的施工装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951173B (zh) * 2019-12-17 2023-12-29 苏州海德新材料科技股份有限公司 一种用于制备阻尼芯柱的组合物及阻尼芯柱、阻尼隔震支座
CN112049659B (zh) * 2020-09-07 2022-08-30 天地科技股份有限公司 冲击地压巷道底板缓冲减震结构及其布置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272922A (ja) * 1985-09-24 1987-04-03 Mitsubishi Heavy Ind Ltd 耐摩耗材
JPH09177367A (ja) * 1995-12-27 1997-07-08 Bridgestone Corp 免震構造体
CN202248280U (zh) * 2011-07-08 2012-05-30 华中科技大学 一种橡胶钢珠隔震支座
CN106988212A (zh) * 2017-05-18 2017-07-28 同济大学 复合阻尼橡胶减震支座
CN207761093U (zh) * 2018-01-12 2018-08-24 福建省数字福建云计算运营有限公司 一种适用于数据中心基础减震的隔震垫

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296342A (ja) * 1995-04-26 1996-11-12 Toyo Tire & Rubber Co Ltd 免震用構造体
JP5289029B2 (ja) * 2008-12-19 2013-09-11 株式会社ブリヂストン 免震構造体用プラグおよびそのプラグを用いた免震構造体
JP2010255776A (ja) * 2009-04-27 2010-11-11 Bridgestone Corp 免震構造体
JP6439244B2 (ja) * 2013-05-30 2018-12-19 オイレス工業株式会社 免震装置
CN206987090U (zh) * 2017-05-18 2018-02-09 同济大学 高性能混合摩擦芯橡胶支座

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272922A (ja) * 1985-09-24 1987-04-03 Mitsubishi Heavy Ind Ltd 耐摩耗材
JPH09177367A (ja) * 1995-12-27 1997-07-08 Bridgestone Corp 免震構造体
CN202248280U (zh) * 2011-07-08 2012-05-30 华中科技大学 一种橡胶钢珠隔震支座
CN106988212A (zh) * 2017-05-18 2017-07-28 同济大学 复合阻尼橡胶减震支座
CN207761093U (zh) * 2018-01-12 2018-08-24 福建省数字福建云计算运营有限公司 一种适用于数据中心基础减震的隔震垫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856243B (zh) * 2022-06-15 2024-01-30 江苏鸿基节能新技术股份有限公司 建筑增加隔震层的施工装置及方法

Also Published As

Publication number Publication date
CN109098289B (zh) 2019-07-26
JP7128343B2 (ja) 2022-08-30
JP2021535326A (ja) 2021-12-16
US20210310538A1 (en) 2021-10-07
CN109098289A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020042390A1 (zh) 隔震支座芯材、摩擦芯隔震支座及其制备方法
WO2019024552A1 (zh) 一种自复位摩擦摆三维减隔震支座
CN112922182A (zh) 一种自复位变阻尼变刚度粘弹性及摩擦复合阻尼器
CN111350291B (zh) 一种变阻尼变刚度粘弹性-摩擦复合阻尼器
CN102900153B (zh) 三维铅挤压隔震耗能支座
CN103174229A (zh) 新型混合消能减震支撑
CN211646737U (zh) 一种阻尼隔震支座
WO2005017261A1 (fr) Structure d'isolement antisismique
CN204590297U (zh) 一种多维粘弹性减隔震装置
CN114622661B (zh) 一种自恢复斜面摩擦限位耗能装置
CN102251472A (zh) 一种多维减隔震铅芯橡胶支座
CN208870215U (zh) 一种具有限位复位功能的圆筒拉压阻尼器
CN207761093U (zh) 一种适用于数据中心基础减震的隔震垫
CN101775843B (zh) 摩擦型高阻尼橡胶减震支座
CN211009689U (zh) 一种弹簧颗粒阻尼复合隔振器
US12031601B2 (en) Core material for shock insulation support, shock insulation support having friction core and preparation method therefor
CN210369406U (zh) 一种粘弹摩擦复合阻尼器
CN208748878U (zh) 多缓冲耗能式复位阻尼器
CN207762385U (zh) 一种钢带增强聚乙烯螺旋波纹管
CN108951926A (zh) 内置圆形软钢耗能内筒的拉压阻尼器
CN108951920A (zh) 多缓冲耗能式复位阻尼器
CN208441589U (zh) 一种鼓形挤压耗能阻尼器
CN106401255B (zh) 组合式铅颗粒橡胶阻尼器
CN110951173A (zh) 一种用于制备阻尼芯柱的组合物及阻尼芯柱、阻尼隔震支座
TW201604010A (zh) 耐磨抗壓塗層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931576

Country of ref document: EP

Kind code of ref document: A1