WO2020041912A1 - Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infrarroja y funciones matemáticas de tendencia - Google Patents

Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infrarroja y funciones matemáticas de tendencia Download PDF

Info

Publication number
WO2020041912A1
WO2020041912A1 PCT/CL2019/050069 CL2019050069W WO2020041912A1 WO 2020041912 A1 WO2020041912 A1 WO 2020041912A1 CL 2019050069 W CL2019050069 W CL 2019050069W WO 2020041912 A1 WO2020041912 A1 WO 2020041912A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
time
temperature
function
concrete
Prior art date
Application number
PCT/CL2019/050069
Other languages
English (en)
French (fr)
Other versions
WO2020041912A4 (es
Inventor
Emiliano Andrés PINTO GÓMEZ
Original Assignee
Soluciones De Innovación Digital Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soluciones De Innovación Digital Spa filed Critical Soluciones De Innovación Digital Spa
Priority to JP2021505684A priority Critical patent/JP2021534375A/ja
Priority to US17/271,085 priority patent/US20210318258A1/en
Priority to EP19768698.3A priority patent/EP3845894A1/en
Priority to CA3110578A priority patent/CA3110578A1/en
Priority to CN201980056633.5A priority patent/CN112639453A/zh
Publication of WO2020041912A1 publication Critical patent/WO2020041912A1/es
Publication of WO2020041912A4 publication Critical patent/WO2020041912A4/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30132Masonry; Concrete

Definitions

  • the present invention relates to the field of measurements or tests, more particularly with the use of thermal means for the analysis of materials and specifically provides a system and method for the detection of concrete by infrared thermography.
  • JP 5017507 describes a method for detecting defective portions in civil structures, for example, concrete.
  • the temperature gradient is examined along a direction of interest in a thermographic image. Said temperature gradient is obtained by comparing the temperature of a pixel with the average temperature of some of its neighbors. Subsequently, a value is assigned to that pixel (for example, correct / defective). In this way, in addition, it allows to obtain a geometry of the defective portion.
  • WO 2015/001344 describes a method for determining the hardness of a shotcrete concrete structure inside tunnels, by means of thermographic images. For this, the method obtains a plurality of thermographic images and from them, a plurality of temperature profiles as a function of time for each pixel. In order to determine the degree of hardness of a portion, said temperature profiles are compared as a function of time with standard curves.
  • thermographic images for early stage concrete monitoring of curing In particular, they study the evolution of their surface temperature over time and compare these measurements with computational simulations, in order to predict the future behavior of these samples.
  • the entire image captured corresponds to concrete, so the detection thereof is meaningless.
  • This is particularly relevant in a civil work, in which, in addition to the equipment that performs the common work, there are materials other than concrete, such as steel, moldajes, alzaprimas, metal structures, among others, which must be distinguished from concrete as such.
  • the present invention provides a system for the detection of concrete by infrared thermography characterized in that it comprises: an information storage memory; and a processor operatively connected to said memory and configured to read information from said memory and to store information in said memory; wherein said processor is configured to: store a plurality of infrared thermography images in said memory, wherein each image of said plurality corresponds to a region containing fresh concrete and wherein said plurality of images corresponds to a time interval; obtain, for each pixel of said plurality of images, a temperature profile as a function of time; obtaining a plurality of temperature curves as a function of time, each of said temperature curves that adjusts to a corresponding temperature profile as a function of time; determine an indicator value from each of said temperature curves as a function of time; and defining that a pixel corresponds to concrete when said indicator value corresponding to said pixel is greater than a threshold value.
  • the system is characterized in that it additionally comprises an ambient temperature sensor operatively connected to said processor and because said processor is configured to: obtain ambient temperature measurements from said ambient temperature sensor; and store information corresponding to the ambient temperature in said memory.
  • the system is characterized in that it additionally comprises an infrared camera operatively connected to said processor and because said processor is configured to: control said infrared camera; obtaining infrared thermography images from said infrared camera; and storing said infrared thermography images in said memory.
  • a method for the detection of concrete by infrared thermography characterized in that it comprises the steps of: storing a plurality of infrared thermography images in an information storage memory, wherein each image of said plurality corresponds to a region containing fresh concrete and wherein said plurality of images corresponds to a time interval; obtaining, for each pixel of said plurality of images, a temperature profile as a function of time by a processor operatively connected to said information storage memory; obtaining a plurality of temperature curves as a function of time, each of said temperature curves that adjusts to a corresponding temperature profile as a function of time by said processor; determining an indicator value from each of said temperature curves as a function of time by said processor; and defining that a pixel corresponds to concrete when said indicator value corresponding to said pixel is greater than a threshold value by said processor.
  • the method is characterized in that said temperature curve as a function of time is chosen from the group consisting of: Fourier series of low coefficient or low coefficient polynomial.
  • the method is characterized in that it further comprises: storing information corresponding to an ambient temperature profile in said memory; obtain an ambient temperature curve as a function of time by said processor; and obtaining said threshold value from said ambient temperature curve as a function of time by said processor.
  • said indicator value is the difference between the maximum temperature and the initial temperature in said time interval and because said threshold value is the difference between the maximum ambient temperature and the minimum ambient temperature in said time interval.
  • the method is characterized in that said indicator value is the area under the curve in said time interval and because said threshold value is chosen from the group consisting of: the area under the ambient temperature curve in said time interval ; and the product of the average value of ambient temperature in said time interval and the length of said time interval.
  • said time interval is between 3 hours and 12 hours.
  • the method is characterized in that each image of said plurality of infrared thermography images is obtained with a periodicity of between 5 minutes and 30 minutes.
  • the method is characterized in that each image of said plurality of images is filtered prior to obtaining said temperature profiles as a function of time. In a more preferred embodiment, the method is characterized in that said plurality of images is filtered by a Gaussian filter.
  • the method is characterized in that it additionally comprises generating an image of said region containing fresh concrete where the pixels identified as concrete are colored a first color, said first color that is contrasting with said image, said image which is generated by said processor.
  • the method is characterized in that it further comprises generating a binary map of said region containing fresh concrete by said processor.
  • FIG. 1 shows a thermographic image of a region that has a portion that contains concrete and a portion that does not contain concrete.
  • FIG. 2 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 0.58 hours.
  • FIG. 3 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 2.13 hours.
  • FIG. 4 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 4.08 hours.
  • FIG. 5 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 5.03 hours.
  • FIG. 6 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 6.08 hours.
  • FIG. 7 shows a binary image of the region obtained by the method that is the object of the present invention in a time interval of 6.83 hours.
  • FIG. 8 shows a temperature graph as a function of the time of a portion that has concrete.
  • FIG. 9 shows a temperature graph as a function of the time of a portion that does not have concrete.
  • the invention provides a system for the detection of concrete by infrared thermography, which essentially comprises:
  • processor operatively connected to said memory and configured to read information from said memory and to store information in said memory
  • said processor is configured to:
  • each image of said plurality corresponds to a region containing fresh concrete and wherein said plurality of images corresponds to a time interval;
  • a pixel corresponds to concrete when said indicator value corresponding to said pixel is greater than a threshold value.
  • the present invention provides a method for the detection of concrete by infrared thermography characterized in that it comprises the steps of: storing a plurality of infrared thermography images in an information storage memory, wherein each image of said plurality corresponds to a region containing fresh concrete and where said plurality of images corresponds to a time interval; obtaining, for each pixel of said plurality of images, a temperature profile as a function of time by a processor operatively connected to said information storage memory;
  • an infrared thermography image corresponds to a digital image obtained in the infrared spectrum, such that the intensity measured in each pixel is correlated with the surface temperature of said point.
  • said infrared thermography image is modified in order to make it visible to the human eye, such that the color of a pixel in said image is a temperature indicator. measured at that point.
  • infrared thermography image or thermographic image interchangeably to refer to an infrared thermography image.
  • said memory may be nonvolatile memory and said plurality of infrared thermography images may be stored in said storage memory directly from the camera with which said plurality of infrared thermography images.
  • said infrared thermography image capture camera can be operatively connected to said processor, such that it is said processor who stores said images in said memory.
  • said memory can be both volatile and non-volatile without limiting the scope of the present invention.
  • the specific nature of said information storage memory does not limit the scope of the present invention.
  • the storage capacity of said memory does not limit the scope of the present invention as long as it is sufficient to store said plurality of infrared thermography images.
  • said processor is operatively connected to said memory and is configured to read information from said memory and write information in said memory. Additionally, said processor is configured to perform operations from the information stored in said memory. In a preferred embodiment, without this limiting the scope of the present invention, said processor can obtain said configuration to execute the steps that are part of the method that is the object of the present invention through a factory configuration. In the latter case we will talk about a dedicated processor.
  • said processor can obtain said configuration to execute the steps that are part of the method that is the object of the present invention by executing a computer program properly written for that purpose.
  • a computer program properly written for that purpose.
  • the nature of said computer program, the support in which it is written, as well as the programming language used for its writing do not limit the scope of the present invention, any known option being able to be used for a person with average knowledge in the technical field.
  • a plurality of infrared thermography images are stored in an information storage memory.
  • Each image of said plurality corresponds to a region that contains fresh concrete.
  • a region containing fresh concrete has portions that contain concrete and may contain portions that do not contain concrete.
  • a thermographic image is observed in Figure 1 where the portion having concrete has been enclosed in a black polygon, while the entire region around said polygon It is a region without concrete.
  • thermography images are captured without there being a movement or displacement of the camera that captures said images.
  • fixed structures do not show a relative displacement between consecutive images.
  • thermographic images of said plurality may interfere with one of the thermographic images of said plurality.
  • One of the advantages of the system and method that are the subject of the present invention, and which will be explained in detail below, is that they allow to detect the portion that has concrete even in these cases.
  • thermography image for a particular infrared thermography image, it is possible to obtain a temperature matrix corresponding to said image.
  • said temperature matrix will be expressed as T (m, n), where m is the row of a pixel of interest in the thermography image infrared and n is the column of said pixel in said image.
  • Said temperature matrix can be obtained, without limiting the scope of the present invention, directly from the camera by means of which the infrared thermography image was obtained or can be obtained after the acquisition of said plurality of images.
  • said temperature matrix is obtained by a mathematical treatment of the image obtained, which is performed by said processor.
  • Said temperature matrix can be obtained by any method known in the state of the art without this limiting the scope of the present invention. Given a type of thermographic image, a person with average knowledge in the technical field can determine the mathematical treatment necessary to obtain said temperature matrix.
  • thermographic image is an image modified to be perceptible by the human eye where a colored temperature scale is included
  • said processor can make a correspondence between the color of a pixel of interest and the temperature corresponding to that color.
  • said thermographic image may be an image in which the colored scale corresponds to the intensity of the infrared radiation that is captured in the corresponding pixel.
  • the processor together with making the correspondence between the color of a pixel and the corresponding intensity, performs a mathematical treatment that allows to correlate said intensity with the temperature corresponding to said pixel.
  • said plurality of thermographic images corresponds to a time interval.
  • Said time interval may be any interval that allows concrete to be detected in said plurality of thermographic images.
  • Figures 2 to 7 show binary images obtained by an embodiment of the system and method that are the subject of the present invention, wherein said time interval is between 0, 58 hours and 6.83 hours.
  • said time interval may be, for example and without this limiting the scope of the present invention, between 3 hours and 12 hours.
  • the processor is configured to obtain a plurality of temperatures T (m, n, t), where t corresponds to the instant of time in which the corresponding image has been captured.
  • Said time t can be obtained, for example and without limiting the scope of the present invention, from the metadata of the thermographic image obtained. In the latter case, without limiting the scope of the present invention, said processor is configured to obtain said time from said metadata.
  • said plurality of thermographic images can be obtained at regular time intervals, such that the image number correlates with the moment in which it was captured.
  • the processor is configured to determine the image number, as well as to assign a time t to said image.
  • the periodicity with which said plurality of thermographic images is captured does not limit the scope of the present invention.
  • Said plurality of thermographic images can be captured, for example and without limiting the scope of the present invention, with a periodicity of between 1 minute and 120 minutes, more preferably between 2 minutes and 6 minutes and even more preferably between 5 minutes and 30 minutes
  • Said processor is configured to obtain said temperature profile from the plurality of thermographic images stored in memory.
  • the processor may be configured to filter each thermographic image that is part of said plurality of thermographic images prior to obtaining said temperature profiles. Said filtering process aims to eliminate noise from said plurality of thermographic images.
  • the method by which said plurality of thermographic images are filtered does not limit the scope of the present invention and can be, without being limited to these, a Gaussian filter, a low-pass filter, an average filter or a medium filter.
  • said processor is configured to filter said plurality of thermographic images by means of a Gaussian filter. The parameters defining said Gaussian filter, in particular the variance, do not limit the scope of the present invention.
  • said processor is configured to filter said plurality of thermographic images by a low pass filter. In this case, the cutoff frequency of said low pass filter does not limit the scope of the present invention.
  • said temperature profile as a function of time makes it possible to determine whether the pixel in question corresponds to concrete or not.
  • said processor is configured to adjust said profile. of temperature as a function of time by means of a temperature curve as a function of time.
  • said processor obtains a temperature curve as a function of time, which defines a plurality of temperature curves as a function of time.
  • a temperature curve as a function of time is a mathematical function capable of being evaluated at any time between the initial moment of capture of the thermographic images and the final moment of capture of the thermographic images
  • a temperature profile as a function of time corresponds to a discrete set of temperature points.
  • said adjustment by means of a temperature curve as a function of time must take into consideration that, occasionally, there will be points in the temperature profile as a function of time that do not correspond to the surface to be analyzed.
  • points in the temperature profile as a function of time that do not correspond to the surface to be analyzed.
  • figure 1 the silhouette of a human figure appears towards the upper right corner. However, said person will not be in that position at other times than the one captured in said thermographic image. Additionally, said person will generate an extreme temperature in the temperature profile that could give rise to false positives.
  • said processor is configured to adjust the temperature profile as a function of time by means of a temperature curve as a function of time that will be called a low coefficient.
  • the degree of the polynomial will be less than a certain threshold degree , for example, and without this limiting the scope of the present invention, of degree less than 5.
  • a polynomial of degree less than 4 or less than 3 may be used without this limiting the scope of The present invention.
  • said processor may be configured to adjust said temperature profile as a function of time by a temperature curve that is a Gaussian curve.
  • said processor is configured to find the central value and width of said Gaussian curve.
  • the processor may be configured to adjust said temperature profile as a function of time by means of a temperature curve as a function of time which is a low coefficient Fourier series.
  • a person with average knowledge in the art knows that any function f (t) in a finite interval [0, S] can be adjusted using a Fourier series using the following equation:
  • said processor can be configured to obtain said ai and bi values. It will be understood as a low coefficient Fourier series, that Fourier series truncated by a specific / value, for example, and without this limiting the scope of the present invention, by a value of / less than 5, more preferably less to 4 and even more preferably equal to 2.
  • Adjustments by means of a low coefficient temperature curve have the advantage that the high frequency components of the temperature curve are eliminated as a function of time, so that any extreme temperature will be softened in said curve, thus eliminating the occurrence of false positives.
  • Any temperature curve that allows the temperature profile to be adjusted as a function of time can be used to implement the method that is the subject of the present invention without limiting the scope of the requested protection.
  • the processor is configured to determine an indicator value.
  • Said indicator value is what makes it possible to distinguish a pixel that corresponds to concrete from a pixel that does not correspond to concrete.
  • said indicator value may be the area under said temperature curve as a function of time.
  • said indicator value may be the temperature difference between the maximum value of said temperature curve and the initial value of said temperature curve.
  • Said processor is additionally configured to determine whether or not a pixel corresponds to concrete by comparing said indicator value and a threshold value. If said indicator value is greater than said threshold value, said processor will determine that said pixel corresponds to concrete. In Consequently, if said indicator value is less than or equal to said threshold value, said processor will determine that said pixel does not correspond to concrete.
  • Said threshold value can be any value that makes it possible to distinguish a pixel that corresponds to concrete from one that does not correspond to concrete.
  • said threshold value when said indicator value corresponds to the difference between the maximum value of the temperature curve as a function of time and the initial value of said curve, said threshold value may be the difference between the maximum value and the minimum value of the ambient temperature in said time interval.
  • the processor is configured to obtain said difference between the maximum value and the minimum value of the ambient temperature in said time interval.
  • said threshold value is the difference between the maximum value and the minimum ambient temperature value in said time interval, plus a tolerance temperature value.
  • Said tolerance temperature value makes it possible to avoid false positives when the variation of the ambient temperature in said time interval is very low, for example and without this limiting the scope of the present invention, in controlled environment situations or when the difference in Ambient temperature is less than 2 ° C.
  • the magnitude of said tolerance temperature value does not limit the scope of the present invention and may be, without this limiting the scope of the present invention, between 0.1 ° C and 5 ° C.
  • said threshold value when said when said indicator value corresponds to the area under the curve in said time interval, said threshold value may be an average value of ambient temperature, multiplied by the length of said time interval.
  • said processor is configured to obtain said average ambient temperature value and to obtain said threshold value from said average ambient temperature value.
  • the memory additionally stores information corresponding to an ambient temperature profile as a function of time and the processor is additionally configured to obtain a curve of ambient temperature as a function of time and to obtain said threshold value from said ambient temperature curve as a function of time.
  • said processor may be operatively connected to an ambient temperature sensor and be configured to store said information in said memory.
  • said plurality of thermographic images may include, as part of the metadata, information concerning the ambient temperature, for example, obtained by means of a sensor present in the capturing chamber. said thermographic images.
  • said information corresponding to an ambient temperature profile can be obtained from an external source, for example and without this limiting the scope of the present invention, from the internet.
  • said processor additionally, is operatively connected to said external source, for example internet, and is configured to obtain said information from said external source and store said information in said memory.
  • said threshold value may be the difference between the maximum temperature and the minimum temperature in said ambient temperature curve.
  • said threshold value will be the area under the curve in said time interval in said temperature curve. environment.
  • said processor is configured to generate images where the portions corresponding to concrete are explicitly identified.
  • said processor is configured to modify one of the thermographic images, for example and without this limiting the scope of the present invention, the last thermographic image stored in the memory, coloring those pixels that correspond to concrete with a first color that is contrasting with said thermographic image.
  • said processor is configured to generate a binary map of said region containing fresh concrete.
  • a binary map should be understood as a matrix of the same size as thermographic images, where the position of a pixel corresponding to concrete stores a value, for example 1, while the position of a pixel that does not correspond to concrete stores a second value, for example 0.
  • Figures 2 to 7 are graphical representations of binary maps obtained by means of an embodiment of the system and method that are object of the present invention at different time intervals.
  • said processor is configured to store the values (m, n), corresponding to row and column respectively, of a concrete-containing pixel.
  • This preferred embodiment has the advantage of allowing a post-processing of said information, for example and without limiting the scope of the present invention, of plotting said information in an external application or program.
  • the method that is the object of the present invention can be implemented in real time or after the capture of the thermographic images.
  • the processor is operatively connected to the camera that captures said thermographic images and is configured to control said camera.
  • said processor may be configured to obtain said plurality of thermographic images from said camera, store said plurality of images in memory and perform the operations that are part of the method that is the subject of the present invention. It will be apparent to a person With average knowledge in the technical field that, in this case, the method that is the object of the present invention can be implemented in real time.
  • Example 1 Acquisition of a plurality of infrared thermography images
  • Figure 1 shows an infrared thermography image captured in a test of the method that is the subject of the present invention.
  • a sample of fresh concrete was available.
  • the portion containing fresh concrete has been delimited by a black polygon, which is not part of the original image and was incorporated for a better understanding of the present invention.
  • a metal structure around the concrete sample can be seen on the fresh concrete portion, as well as a general test bottom.
  • a plurality of infrared thermography images of said concrete sample were obtained at regular intervals of 15 minutes.
  • Example 2 Obtaining temperature profile and temperature curve as a function of time.
  • Figures 8 and 9 show temperature graphs as a function of time corresponding, respectively, to a pixel that contains concrete and a pixel that does not contain concrete.
  • the label A corresponds to the temperature points measured from the thermographic images
  • B corresponds to the temperature curve as a function of the time that said temperature profile adjusts
  • C corresponds to the variation of the ambient temperature
  • D corresponds to the variation of the ambient temperature in the time interval of interest.
  • DTA and ATCD values that correspond, respectively, to the maximum difference in ambient temperature in the time interval of interest and to the difference between the maximum temperature and the initial temperature in the temperature curve as a function of time in both are indicated figures.
  • the DTA value matches in Figures 8 and 9, while the ATCD value is different in those figures.
  • Example 3 Determination of whether a pixel corresponds to concrete
  • Example 4 Obtaining binary maps in real time
  • Figures 2 to 7 show graphical representations of different binary maps obtained by an embodiment of the method that is the object of the present invention, wherein the time interval is 0.58 hours, 2.13 hours, 4.08 hours, 5, 03 hours, 6.08 hours and 6.83 hours respectively. All images share a common initial time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

La presente invención se relaciona con el uso de medios térmicos para el análisis de materiales y en específico proporciona un sistema para la detección de hormigón mediante termografía infrarroja que comprende: una memoria de almacenamiento de información; y un procesador conectado operativamente a dicha memoria; en donde dicho procesador se encuentra configurado para: almacenar una pluralidad de imágenes de termografía infrarroja en dicha memoria; obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo y una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo; determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo; y definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral; así como un método para la detección de hormigón mediante termografía infrarroja.

Description

SYSTEM AND METHOD FOR THE DETECTION AND DIGITALIZATION OF THE STATE OF FRESH CONCRETE USING INFRARED THERMOGRAPHY AND MATHEMATICAL TREND FUNCTIONS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona al campo de las mediciones o ensayos, más particularmente con el uso de medios térmicos para el análisis de materiales y en específico proporciona un sistema y método para la detección de hormigón mediante termografía infrarroja.
ANTECEDENTES DE LA INVENCIÓN
En el sector de la construcción, un problema recurrente es el de monitorizar el avance de la obra, así como los tiempos de curado del hormigón. Sin embargo, para efectos de monitorizar el avance de la obra, se requiere, en primer lugar, detectar el hormigón en la misma, a fin de proveer su posterior digitalización.
Es conocido en el estado de la técnica que el curado de hormigón es una reacción exotérmica. Una vez que el hormigón se ha vertido dentro de un moldaje, la pasta de cemento comienza un proceso de curado interno con el que se libera calor dentro de la mezcla, lo que produce un aumento de la temperatura. Lo anterior ha hecho que el uso de termografía infrarroja para estudiar estructuras que contienen hormigón sea ampliamente divulgado en el estado de la técnica.
Por ejemplo, algunos documentos del estado de la técnica proporcionan soluciones relacionadas a la detección de porciones defectuosas en lozas o muros. En este sentido, el documento de patente JP 5017507 describe un método para detectar porciones defectuosas en estructuras civiles, por ejemplo, de hormigón. Para esto, se examina el gradiente de temperaturas a lo largo de una dirección de interés en una imagen termográfica. Dicho gradiente de temperatura es obtenido por medio de la comparación de la temperatura de un pixel con la temperatura promedio de algunas de sus vecinas. Posteriormente, se asigna un valor a dicho pixel (por ejemplo, correcto/defectuoso). De esta manera, además, permite obtener una geometría de la porción defectuosa.
El documento WO 2015/001344, por su parte, describe un método para determinar la dureza de una estructura de hormigón proyectado ( shotcrete ) en el interior de túneles, por medio de imágenes termográficas. Para esto, el método obtiene una pluralidad de imágenes termográficas y a partir de ellas, una pluralidad de perfiles de temperatura como función del tiempo para cada pixel. A fin de determinar el grado de dureza de una porción, se compara dichos perfiles de temperatura como función del tiempo con curvas patrones.
Por otra parte, Azenha y cois. (Miguel Azenha, Rui Faria y Helena Figueiras, Thermography as a technique for monitoring early age temperatures of hardening concrete, Construction and Building Materials 25 (201 1 ) 4232-4240) describen el uso de imágenes termográficas para la monitorización de hormigón en etapas tempranas de curado. En particular, estudian la evolución de su temperatura superficial a lo largo del tiempo y compara estas mediciones con simulaciones computacionales, a fin de predecir el comportamiento futuro de dichas muestras.
Sin embargo, las soluciones del estado de la técnica son defectuosas en términos de detectar el hormigón en una región que contiene zonas en donde existe hormigón y zonas donde no existe hormigón. Por ejemplo, según el método del documento JP 5017507, toda la frontera entre la zona que comprende hormigón y aquella que no comprende hormigón sería detectada como un defecto.
Por otra parte, en el método del documento WO 2015/001344 la totalidad de la imagen capturada corresponde a hormigón, por lo que la detección del mismo carece de sentido. Esto resulta particularmente relevante en una obra civil, en la cual, además de los equipos que realizan las labores comunes, se encuentran materiales distintos al hormigón, tales como acero, moldajes, alzaprimas, estructuras metálicas, entre otros, que deben ser distinguidos del hormigón como tal.
En consecuencia, se requiere un sistema y método de detección de hormigón mediante termografía infrarroja que permita superar las deficiencias del estado de la técnica. SUMARIO DE LA INVENCIÓN
La presente invención proporciona un sistema para la detección de hormigón mediante termografía infrarroja que se caracteriza porque comprende: una memoria de almacenamiento de información; y un procesador conectado operativamente a dicha memoria y configurado para leer información desde dicha memoria y para almacenar información en dicha memoria; en donde dicho procesador se encuentra configurado para: almacenar una pluralidad de imágenes de termografía infrarroja en dicha memoria, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo; obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo; obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo; determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo; y definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral.
En una realización preferida, el sistema se caracteriza porque comprende, adicionalmente, un sensor de temperatura ambiente conectado operativamente a dicho procesador y porque dicho procesador se encuentra configurado para: obtener mediciones de temperatura ambiente desde dicho sensor de temperatura ambiente; y almacenar información correspondiente a la temperatura ambiente en dicha memoria.
En otra realización preferida, el sistema se caracteriza porque comprende, adicionalmente, una cámara infrarroja conectada operativamente a dicho procesador y porque dicho procesador se encuentra configurado para: controlar dicha cámara infrarroja; obtener imágenes de termografía infrarroja desde dicha cámara infrarroja; y almacenar dichas imágenes de termografía infrarroja en dicha memoria.
En otro objeto de invención, se proporciona un método para la detección de hormigón mediante termografía infrarroja que se caracteriza porque comprende los pasos de: almacenar una pluralidad de imágenes de termografía infrarroja en una memoria de almacenamiento de información, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo; obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo mediante un procesador conectado operativamente a dicha memoria de almacenamiento de información; obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo mediante dicho procesador; determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo mediante dicho procesador; y definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral mediante dicho procesador.
En una realización preferida, el método se caracteriza porque dicha curva de temperatura como función del tiempo se escoge del grupo formado por: serie de Fourier de bajo coeficiente o polinomio de bajo coeficiente.
En otra realización preferida, el método se caracteriza porque comprende, adicionalmente: almacenar información correspondiente a un perfil de temperatura ambiente en dicha memoria; obtener una curva de temperatura ambiente como función del tiempo mediante dicho procesador; y obtener dicho valor umbral a partir de dicha curva de temperatura ambiente como función del tiempo mediante dicho procesador. En una realización más preferida, el método se caracteriza porque dicho valor indicador es la diferencia entre la temperatura máxima y la temperatura inicial en dicho intervalo de tiempo y porque dicho valor umbral es la diferencia entre la máxima temperatura ambiente y la mínima temperatura ambiente en dicho intervalo de tiempo. En otra realización más preferida, el método se caracteriza porque dicho valor indicador es el área bajo la curva en dicho intervalo de tiempo y porque dicho valor umbral se escoge del grupo formado por: el área bajo la curva de temperatura ambiente en dicho intervalo de tiempo; y el producto del valor promedio de temperatura ambiente en dicho intervalo de tiempo y la longitud de dicho intervalo de tiempo. En una realización preferida adicional, el método se caracteriza porque dicho intervalo de tiempo está entre 3 horas y 12 horas.
En otra realización preferida, el método se caracteriza porque cada imagen de dicha pluralidad de imágenes de termografía infrarroja se obtiene con una periodicidad de entre 5 minutos y 30 minutos.
En una realización preferida, el método se caracteriza porque cada imagen de dicha pluralidad de imágenes es filtrada previo a la obtención de dichos perfiles de temperatura como función del tiempo. En una realización más preferida, el método se caracteriza porque dicha pluralidad de imágenes es filtrada mediante un filtro gaussiano.
En otra realización preferida, el método se caracteriza porque comprende, adicionalmente, generar una imagen de dicha región que contiene hormigón fresco en donde los pixeles identificados como hormigón son coloreados de un primer color, dicho primer color que es contrastante con dicha imagen, dicha imagen que se genera mediante dicho procesador.
En una realización preferida adicional, el método se caracteriza porque comprende, adicionalmente, generar un mapa binario de dicha región que contiene hormigón fresco mediante dicho procesador.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La FIG. 1 muestra una imagen termográfica de una región que posee una porción que contiene hormigón y una porción que no contiene hormigón.
La FIG. 2 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 0,58 horas. La FIG. 3 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 2,13 horas.
La FIG. 4 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 4,08 horas.
La FIG. 5 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 5,03 horas. La FIG. 6 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 6,08 horas.
La FIG. 7 muestra una imagen binaria de la región obtenida mediante el método que es objeto de la presente invención en un intervalo de tiempo de 6,83 horas. La FIG. 8 muestra un gráfico de temperatura como función del tiempo de una porción que posee hormigón.
La FIG. 9 muestra un gráfico de temperatura como función del tiempo de una porción que no posee hormigón.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
A continuación, se describirá en detalle la presente invención, haciendo referencia para esto a las figuras que acompañan la presente solicitud.
De manera esencial, la invención proporciona un sistema para la detección de hormigón mediante termografía infrarroja que comprende, de manera esencial:
- una memoria de almacenamiento de información; y
- un procesador conectado operativamente a dicha memoria y configurado para leer información desde dicha memoria y para almacenar información en dicha memoria;
en donde dicho procesador se encuentra configurado para:
- almacenar una pluralidad de imágenes de termografía infrarroja en dicha memoria, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo;
- obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo;
- obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo; - determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo; y
- definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral.
Adicionalmente, la presente invención proporciona un método para la detección de hormigón mediante termografía infrarroja que se caracteriza porque comprende los pasos de: almacenar una pluralidad de imágenes de termografía infrarroja en una memoria de almacenamiento de información, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo; obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo mediante un procesador conectado operativamente a dicha memoria de almacenamiento de información;
obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo mediante dicho procesador; determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo mediante dicho procesador; y definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral mediante dicho procesador.
En el contexto de la presente invención, debe entenderse que una imagen de termografía infrarroja corresponde a una imagen digital obtenida en el espectro infrarrojo, de manera tal que la intensidad que se mide en cada pixel está correlacionada con la temperatura superficial de dicho punto. En algunas realizaciones preferidas, sin que esto limite el alcance de la presente invención, dicha imagen de termografía infrarroja es modificada a fin de hacerla visible al ojo humano, de manera tal que el color de un pixel en dicha imagen es un indicador de la temperatura medida en dicho punto. A lo largo de esta memoria descriptiva se utilizarán los términos imagen de termografía infrarroja o imagen termográfica de manera indistinta para referirse a una imagen de termografía infrarroja.
La forma en la cual se almacene dicha pluralidad de imágenes de termografía infrarroja en dicha memoria de almacenamiento de información no limita el alcance de la presente invención. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha memoria puede ser una memoria no volátil y dicha pluralidad de imágenes de termografía infrarroja puede almacenarse en dicha memoria de almacenamiento directamente desde la cámara con la cual se captura dicha pluralidad de imágenes de termografía infrarroja. Sin embargo, en otra realización preferida, dicha cámara de captura de imágenes de termografía infrarroja puede conectarse operativamente a dicho procesador, de manera tal que es dicho procesador quien almacena dichas imágenes en dicha memoria. En este último caso dicha memoria puede ser tanto volátil como no volátil sin que esto limite el alcance de la presente invención.
Tanto si se trata de una memoria volátil, como una memoria no volátil, la naturaleza específica de dicha memoria de almacenamiento de información no limita el alcance de la presente invención. Por otra parte, la capacidad de almacenamiento de dicha memoria no limita el alcance de la presente invención en tanto sea suficiente para almacenar dicha pluralidad de imágenes de termografía infrarroja.
Por otra parte, dicho procesador se encuentra conectado operativamente a dicha memoria y se encuentra configurado para leer información desde dicha memoria y escribir información en dicha memoria. Adicionalmente, dicho procesador se encuentra configurado para realizar operaciones a partir de la información almacenada en dicha memoria. En una realización preferida, sin que esto limite el alcance de la presente invención, dicho procesador puede obtener dicha configuración para ejecutar los pasos que forman parte del método que es objeto de la presente invención mediante una configuración de fábrica. En este último caso se hablará de un procesador dedicado.
Sin embargo, en otras realizaciones preferidas, sin que esto limite el alcance de la presente invención, dicho procesador puede obtener dicha configuración para ejecutar los pasos que forman parte del método que es objeto de la presente invención mediante la ejecución de un programa computacional debidamente escrito para tal efecto. En este último caso, la naturaleza de dicho programa computacional, el soporte en el cual se escriba, así como el lenguaje de programación que se utilice para su escritura no limitan el alcance de la presente invención, pudiendo utilizarse cualquier opción conocida para una persona con conocimientos medios en el campo técnico.
De acuerdo al primer paso del método que es objeto de la presente invención, una pluralidad de imágenes de termografía infrarroja se almacenan en una memoria de almacenamiento de información. Cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco. Debe entenderse que una región que contiene hormigón fresco posee porciones que contienen hormigón y puede contener porciones que no contienen hormigón. Por ejemplo, y sin que esto limite el alcance de la presente invención, en la figura 1 se observa una imagen termográfica en donde la porción que posee hormigón ha sido encerrada en un polígono de color negro, mientras que toda la región alrededor de dicho polígono es una región sin hormigón.
Por otra parte, dichas imágenes de termografía infrarroja son capturadas sin que exista un movimiento o desplazamiento de la cámara que captura dichas imágenes. De esta manera, las estructuras fijas no muestran un desplazamiento relativo entre imágenes consecutivas. Lo anterior permite que una misma posición (m,n) en distintas imágenes corresponda, sustancialmente, al mismo punto, en donde m corresponde a la fila de un pixel y n a la columna de dicho pixel en una imagen.
Sin embargo, ocasionalmente, una estructura u objeto móvil puede interferir en una de las imágenes termográficas de dicha pluralidad. Una de las ventajas del sistema y método que son objeto de la presente invención, y que será explicada en detalle más adelante, es que permiten detectar la porción que posee hormigón incluso en estos casos.
En cualquiera de las realizaciones preferidas, para una imagen de termografía infrarroja particular, es posible obtener una matriz de temperaturas correspondiente a dicha imagen. Para efectos de la presente descripción detallada, y sin que esto limite el alcance de la presente invención, dicha matriz de temperaturas se expresará como T (m,n), en donde m es la fila de un pixel de interés en la imagen de termografía infrarroja y n es la columna de dicho pixel en dicha imagen. Dicha matriz de temperaturas puede obtenerse, sin que esto limite el alcance de la presente invención, directamente desde la cámara mediante la cual se obtuvo la imagen de termografía infrarroja o puede ser obtenida con posterioridad a la adquisición de dicha pluralidad de imágenes. En dicho segundo caso, dicha matriz de temperaturas se obtiene mediante un tratamiento matemático de la imagen obtenida, el cual es realizado por dicho procesador. Dicha matriz de temperaturas puede obtenerse mediante cualquier método conocido en el estado de la técnica sin que esto limite el alcance de la presente invención. Dado un tipo de imagen termográfica, una persona con conocimientos medios en el campo técnico puede determinar el tratamiento matemático necesario para obtener dicha matriz de temperaturas.
Por ejemplo, y sin que esto limite el alcance de la presente invención, si dicha imagen termográfica es una imagen modificada para ser perceptible por el ojo humano en donde se incluye una escala coloreada de temperaturas, dicho procesador puede hacer una correspondencia entre el color de un pixel de interés y la temperatura correspondiente a dicho color. En otras realizaciones preferidas, sin que esto limite el alcance de la presente invención, dicha imagen termográfica puede ser una imagen en la que la escala coloreada corresponde a la intensidad de la radiación infrarroja que se captura en el pixel correspondiente. En este último caso el procesador, junto con hacer la correspondencia entre el color de un pixel y la intensidad correspondiente, realiza un tratamiento matemático que permita correlacionar dicha intensidad con la temperatura correspondiente a dicho pixel.
Por otra parte, dicha pluralidad de imágenes termográficas corresponde a un intervalo de tiempo. Dicho intervalo de tiempo puede ser cualquier intervalo que permita detectar hormigón en dicha pluralidad de imágenes termográficas. Por ejemplo, y sin que esto limite el alcance de la presente invención, las figuras 2 a 7 muestran imágenes binarias obtenidas mediante una realización del sistema y método que son objeto de la presente invención, en donde dicho intervalo de tiempo se encuentra entre 0,58 horas y 6,83 horas. Sin embargo, dicho intervalo de tiempo puede estar, por ejemplo y sin que esto limite el alcance de la presente invención, entre 3 horas y 12 horas. De esta manera, el procesador se encuentra configurado para obtener una pluralidad de temperaturas T(m,n,t), en donde t corresponde al instante de tiempo en el que se ha capturado la correspondiente imagen. Dicho tiempo t puede obtenerse, por ejemplo y sin que esto limite el alcance de la presente invención, a partir de los metadatos de la imagen termográfica obtenida. En este último caso, sin que esto limite el alcance de la presente invención, dicho procesador se encuentra configurado para obtener dicho tiempo t a partir de dichos metadatos.
En otra realización preferida, sin que esto limite el alcance de la presente invención, dicha pluralidad de imágenes termográficas puede obtenerse a intervalos de tiempo regulares, de manera tal que el número de imagen se correlaciona con el momento en el cual la misma fue capturada. En este último caso, el procesador se encuentra configurado para determinar el número de imagen, así como para asignarle un tiempo t a dicha imagen. La periodicidad con que se capture dicha pluralidad de imágenes termográficas no limita el alcance de la presente invención. Dicha pluralidad de imágenes termográficas puede capturarse, por ejemplo y sin que esto limite el alcance de la presente invención, con una periodicidad de entre 1 minuto y 120 minutos, más preferentemente entre 2 minutos y 6 minutos y aún más preferentemente entre 5 minutos y 30 minutos.
De acuerdo con lo anterior, para cada posición de un pixel (m,n) es posible obtener un conjunto de valores de temperatura como función del tiempo, T(m,n,t), lo cual debe entenderse como un perfil de temperatura como función del tiempo para ese pixel. Dicho procesador se encuentra configurado para obtener dicho perfil de temperaturas a partir de la pluralidad de imágenes termográficas almacenadas en la memoria.
Adicionalmente, en una realización preferida y sin que esto limite el alcance de la presente invención, el procesador puede estar configurado para filtrar cada imagen termográfica que forma parte de dicha pluralidad de imágenes termográficas previo a la obtención de dichos perfiles de temperatura. Dicho proceso de filtrado tiene como objetivo eliminar el ruido desde dicha pluralidad de imágenes termográficas. El método por el cual se filtren dicha pluralidad de imágenes termográficas no limita el alcance de la presente invención y puede ser, sin limitarse a estos, un filtro gaussiano, un filtro pasa-bajos, un filtro de promedio o un filtro de mediana. En una realización más preferida, dicho procesador está configurado para filtrar dicha pluralidad de imágenes termográficas mediante un filtro gaussiano. Los parámetros que definan dicho filtro gaussiano, en particular la varianza, no limitan el alcance de la presente invención. En otra realización más preferida, dicho procesador está configurado para filtrar dicha pluralidad de imágenes termográficas mediante un filtro pasa bajos. En este caso, la frecuencia de corte de dicho filtro pasa bajos no limita el alcance de la presente invención.
Tanto en el caso en que dicho procesador filtre dicha pluralidad de imágenes termográficas como en el caso en que dichas imágenes no sean filtradas, dicho perfil de temperatura como función del tiempo permite determinar si el pixel en cuestión corresponde a hormigón o no. Sin embargo, a diferencia del estado de la técnica, en donde dicho perfil de temperatura como función del tiempo se compara con una curva patrón, en el caso del método que es objeto de la presente invención, dicho procesador se encuentra configurado para ajustar dicho perfil de temperatura como función del tiempo mediante una curva de temperatura como función del tiempo. De esta manera, para cada posición de un pixel, (m,n), dicho procesador obtiene una curva de temperatura como función del tiempo, que definen una pluralidad de curvas de temperatura como función del tiempo.
En el contexto de la presente invención, debe entenderse que una curva de temperatura como función del tiempo es una función matemática susceptible de ser evaluada en cualquier instante de tiempo entre el instante inicial de captura de las imágenes termográficas y el instante final de captura de las imágenes termográficas. En contraste, un perfil de temperatura como función del tiempo corresponde a un conjunto discreto de puntos de temperatura.
Adicionalmente, dicho ajuste mediante una curva de temperatura como función del tiempo debe tomar en consideración que, ocasionalmente, existirán puntos en el perfil de temperatura como función del tiempo que no corresponden a la superficie que se quiere analizar. Por ejemplo, y sin que esto limite el alcance de la presente invención, en la figura 1 aparece, hacia la esquina superior derecha, la silueta de una figura humana. Sin embargo, dicha persona no estará en esa posición en otros instantes de tiempo diferentes del capturado en dicha imagen termográfica. Adicionalmente, dicha persona generará una temperatura extrema en el perfil de temperaturas que podría dar origen a falsos positivos.
A fin de disminuir o eliminar dichos falsos positivos, dicho procesador se encuentra configurado para ajustar el perfil de temperatura como función del tiempo mediante una curva de temperatura como función del tiempo que se denominará de bajo coeficiente. En este sentido, por ejemplo y sin que esto limite el alcance de la presente invención, si el procesador se encuentra configurado para ajustar dicho perfil de temperaturas como función del tiempo mediante una función polinomial, el grado del polinomio será menor a un cierto grado umbral, por ejemplo, y sin que esto limite el alcance de la presente invención, de grado menor a 5. Sin embargo, en otras realizaciones preferidas, puede utilizarse un polinomio de grado menor a 4 o menor a 3 sin que esto limite el alcance de la presente invención. En otra realización preferida, sin que esto limite el alcance de la presente invención, dicho procesador puede encontrarse configurado para ajustar dicho perfil de temperaturas como función del tiempo mediante una curva de temperatura que es una curva gaussiana. En esta última realización preferida, dicho procesador se encuentra configurado para encontrar el valor central y el ancho de dicha curva gaussiana.
En otras realizaciones preferidas, sin que esto limite el alcance de la presente invención, el procesador puede estar configurado para ajustar dicho perfil de temperaturas como función del tiempo mediante una curva de temperatura como función del tiempo que es una serie de Fourier de bajo coeficiente. En este sentido, una persona con conocimientos medios en la técnica sabe que cualquier función f(t) en un intervalo finito [0,S] puede ajustarse mediante una serie de Fourier mediante la siguiente ecuación:
Figure imgf000015_0001
en donde la forma de calcular dichos valores ai y bi son conocidos para una persona con conocimientos medios en el campo técnico. De esta manera, dicho procesador puede estar configurado para obtener dichos valores ai y bi. Se entenderá como una serie de Fourier de bajo coeficiente, aquella serie de Fourier truncada en un valor de / específico, por ejemplo, y sin que esto limite el alcance de la presente invención, en un valor de / menor a 5, más preferentemente menor a 4 y aun más preferentemente igual a 2.
Los ajustes mediante una curva de temperatura de bajo coeficiente poseen la ventaja de que se eliminan los componentes de alta frecuencia de la curva de temperatura como función del tiempo, por lo que cualquier temperatura extrema será suavizada en dicha curva, eliminando de este modo la ocurrencia de falsos positivos.
Cualquier curva de temperatura que permita ajustar el perfil de temperatura como función del tiempo puede utilizarse para implementar el método que es objeto de la presente invención sin que esto limite el alcance de la protección solicitada.
A partir de dichas curvas de temperatura como función del tiempo, el procesador se encuentra configurado para determinar un valor indicador. Dicho valor indicador es el que permite distinguir un pixel que corresponde a hormigón de un pixel que no corresponde a hormigón. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicho valor indicador puede ser el área bajo dicha curva de temperatura como función del tiempo. En otra realización preferida, sin que esto limite el alcance de la presente invención, dicho valor indicador puede ser la diferencia de temperatura entre el máximo valor de dicha curva de temperatura y el valor inicial de dicha curva de temperatura.
Sin embargo, en otras realizaciones preferidas, es posible utilizar otros valores indicadores obtenidos a partir de las curvas de temperatura como función del tiempo sin que esto limite el alcance de la presente invención. Por ejemplo, y sin que esto limite el alcance de la presente invención, es posible obtener otros valores indicadores a partir de la temperatura máxima y la temperatura inicial de la curva de temperatura, tales como la razón entre ambos, el promedio entre ambos o cualquier otra ponderación entre dichos valores.
Dicho procesador se encuentra configurado, adicionalmente, para determinar si un pixel corresponde o no a hormigón mediante la comparación de dicho valor indicador y un valor umbral. Si dicho valor indicador es mayor que dicho valor umbral, dicho procesador determinará que dicho pixel corresponde a hormigón. En consecuencia, si dicho valor indicador es menor o igual a dicho valor umbral, dicho procesador determinará que dicho pixel no corresponde a hormigón.
Dicho valor umbral puede ser cualquier valor que permita distinguir un pixel que corresponde a hormigón de uno que no corresponda a hormigón. Por ejemplo, y sin que esto limite el alcance de la presente invención, cuando dicho valor indicador corresponde a la diferencia entre el valor máximo de la curva de temperatura como función del tiempo y el valor inicial de dicha curva, dicho valor umbral puede ser la diferencia entre el valor máximo y el valor mínimo de la temperatura ambiente en dicho intervalo de tiempo. En una realización preferida, sin que esto limite el alcance de la presente invención, el procesador se encuentra configurado para obtener dicha diferencia entre el valor máximo y el valor mínimo de la temperatura ambiente en dicho intervalo de tiempo. En una realización más preferida, sin que esto limite el alcance de la presente invención, dicho valor umbral es la diferencia entre el valor máximo y el valor mínimo de temperatura ambiente en dicho intervalo de tiempo, más un valor de temperatura de tolerancia. Dicho valor de temperatura de tolerancia permite evitar falsos positivos cuando la variación de la temperatura ambiente en dicho intervalo de tiempo es muy baja, por ejemplo y sin que esto limite el alcance de la presente invención, en situaciones de ambiente controlado o cuando la diferencia de temperatura ambiente es menor a 2 °C. La magnitud de dicho valor de temperatura de tolerancia no limita el alcance de la presente invención y puede estar, sin que esto limite el alcance de la presente invención, entre 0,1 °C y 5 °C.
En otra realización preferida, cuando dicho cuando dicho valor indicador corresponde al área bajo la curva en dicho intervalo de tiempo, dicho valor umbral puede ser un valor promedio de temperatura ambiente, multiplicado por la longitud de dicho intervalo de tiempo. En este caso, dicho procesador se encuentra configurado para obtener dicho valor promedio de temperatura ambiente y para obtener dicho valor umbral a partir de dicho valor promedio de temperatura ambiente.
En otra realización preferida, la memoria almacena, adicionalmente, información correspondiente a un perfil de temperatura ambiente como función del tiempo y el procesador se encuentra adicionalmente configurado para obtener una curva de temperatura ambiente como función del tiempo y para obtener dicho valor umbral a partir de dicha curva de temperatura ambiente como función del tiempo.
La forma en la cual se almacene dicha información correspondiente a un perfil de temperatura ambiente en dicha memoria no limita el alcance de la presente invención. Por ejemplo y sin que esto limite el alcance de la presente invención, dicho procesador puede encontrarse conectado operativamente a un sensor de temperatura ambiente y estar configurado para almacenar dicha información en dicha memoria. En otra realización preferida, sin que esto limite el alcance de la presente invención, dicha pluralidad de imágenes termográfica puede incluir, como parte de los metadatos, información referente a la temperatura ambiente, por ejemplo, obtenida mediante un sensor presente en la cámara que captura dichas imágenes termográficas. En una realización preferida adicional, sin que esto limite el alcance de la presente invención, dicha información correspondiente a un perfil de temperatura ambiente puede obtenerse desde una fuente externa, por ejemplo y sin que esto limite el alcance de la presente invención, desde internet. Para esto, dicho procesador, adicionalmente, se encuentra conectado operativamente a dicha fuente externa, por ejemplo internet, y se encuentra configurado para obtener dicha información desde dicha fuente externa y almacenar dicha información en dicha memoria.
En una realización preferida, sin que esto limite el alcance de la presente invención, si dicho valor indicador corresponde a la diferencia entre el valor máximo y el valor inicial en dicho intervalo de tiempo, dicho valor umbral puede ser la diferencia entre la máxima temperatura y la mínima temperatura en dicha curva de temperatura ambiente. En otro ejemplo, sin que esto limite el alcance de la presente invención, si dicho valor indicador corresponde al área bajo la curva en dicho intervalo de tiempo, dicho valor umbral será el área bajo la curva en dicho intervalo de tiempo en dicha curva de temperatura ambiente.
Sin embargo, en otras realizaciones preferidas y sin que esto limite el alcance de la presente invención, es posible utilizar otros valores umbrales, tales como la razón entre la máxima y la mínima temperatura ambiente, el promedio de temperatura ambiente, entre otros. De acuerdo con el sistema y métodos previamente descritos, es posible detectar hormigón por medio de termografía infrarroja, más específicamente a partir de una pluralidad de imágenes de termografía infrarroja, en donde dicha pluralidad de imágenes termográficas corresponde a una región que contiene porciones que corresponden a hormigón y puede poseer porciones que no corresponden a hormigón.
Sin embargo, en una realización preferida y sin que esto limite el alcance de la presente invención, dicho procesador se encuentra configurado para generar imágenes en donde se identifique explícitamente las porciones que corresponden a hormigón. En una realización preferida, sin que esto limite el alcance de la presente invención, dicho procesador se encuentra configurado para modificar una de las imágenes termográficas, por ejemplo y sin que esto limite el alcance de la presente invención, la última imagen termográfica almacenada en la memoria, coloreando aquellos pixeles que corresponden a hormigón con un primer color que es contrastante con dicha imagen termográfica.
En otra realización preferida, dicho procesador se encuentra configurado para generar un mapa binario de dicha región que contiene hormigón fresco. En el contexto de la presente invención debe entenderse un mapa binario como una matriz del mismo tamaño que las imágenes termográficas, en donde la posición de un pixel que corresponde a hormigón almacena un valor, por ejemplo 1 , mientras que la posición de un pixel que no corresponde a hormigón almacena un segundo valor, por ejemplo 0. Por ejemplo, y sin que esto limite el alcance de la presente invención, las figuras 2 a 7 son representaciones gráficas de mapas binarios obtenidos mediante una realización del sistema y método que son objeto de la presente invención a diferentes intervalos de tiempo.
En una realización preferida adicional, sin que esto limite el alcance de la presente invención, dicho procesador se encuentra configurado para almacenar los valores (m,n), correspondientes a fila y columna respectivamente, de un pixel que contiene hormigón. Esta realización preferida posee la ventaja de que permite realizar un post procesamiento de dicha información, por ejemplo y sin que esto limite el alcance de la presente invención, graficar dicha información en una aplicación o programa externo. Adicionalmente, el método que es objeto de la presente invención puede ser implementado en tiempo real o con posterioridad a la captura de las imágenes termográficas. En una realización preferida, sin que esto limite el alcance de la presente invención, el procesador se encuentra conectado operativamente a la cámara que captura dichas imágenes termográficas y se encuentra configurado para controlar dicha cámara. En esta realización preferida, dicho procesador puede estar configurado para obtener dicha pluralidad de imágenes termográficas desde dicha cámara, almacenar dicha pluralidad de imágenes en la memoria y realizar las operaciones que forman parte del método que es objeto de la presente invención Será evidente para una persona con conocimientos medios en el campo técnico que, en este caso, el método que es objeto de la presente invención puede implementarse en tiempo real.
Por otra parte, en los casos en los cuales el método y sistema que son objeto de la presente invención se utilizan en una obra civil, es posible digitalizar el sitio de la obra, a fin de permitir su incorporación en un modelo de información de construcción (BIM por sus siglas en inglés, Building Information Model). De esta manera, adicionalmente y sin que esto limite el alcance de la presente invención, es posible monitorizar el avance de la obra en tiempo real. Esto puede realizarse, por ejemplo y sin que esto limite el alcance de la presente invención, mediante la determinación de parámetros indicadores del avance de la obra, por ejemplo, cantidad de hormigonados diarios, semanales y mensuales. Adicionalmente, dichos parámetros indicadores del avance de la obra pueden permitir, sin que esto limite el alcance de la presente invención, predecir la necesidad de materiales en el futuro, optimizando de esta manera la solicitud de cotizaciones y emisión de órdenes de compra para la adquisición de material.
De acuerdo con la descripción previamente detallada, es posible obtener un sistema y método para detectar hormigón mediante termografía infrarroja. Debe entenderse que distintas realizaciones preferidas detalladas previamente pueden combinarse entre sí de cualquier manera, sin que esto limite el alcance de la presente invención. A continuación, se expondrán ejemplos de realización de la presente invención. Debe entenderse que dichos ejemplos buscan proporcionar un mejor entendimiento de la invención, pero en ningún caso limitan el alcance de la presente invención.
Adicionalmente, aspectos descritos en ejemplos diferentes pueden combinarse entre sí, o con otras realizaciones preferidas previamente detalladas, de cualquier manera, sin que esto limite el alcance de la presente invención.
Ejemplo 1 : Adquisición de una pluralidad de imágenes de termografía infrarroja
En la Figura 1 se observa una imagen de termografía infrarroja capturada en una prueba del método que es objeto de la presente invención. En este caso, se dispuso de una muestra de hormigón fresco. La porción que contiene hormigón fresco se ha delimitado mediante un polígono de color negro, el cual no forma parte de la imagen original y fue incorporado para un mejor entendimiento de la presente invención. Adicionalmente, sobre la porción de hormigón fresco se aprecia una estructura metálica alrededor de la muestra de hormigón, así como un fondo general de la prueba.
Se obtuvo una pluralidad de imágenes de termografía infrarroja de dicha muestra de hormigón a intervalos regulares de 15 minutos.
Ejemplo 2: Obtención de perfil de temperatura y curva de temperatura como función del tiempo.
Las figuras 8 y 9 muestran gráficos de temperatura como función del tiempo que corresponden, respectivamente, a un pixel que contiene hormigón y a un pixel que no contiene hormigón.
En dichos gráficos, la etiqueta A corresponde a los puntos de temperatura medidos a partir de las imágenes termográficas, B corresponde a la curva de temperatura como función del tiempo que ajusta dicho perfil de temperatura, C corresponde a la variación de la temperatura ambiente y D corresponde a la variación de la temperatura ambiente en el intervalo de tiempo de interés. Adicionalmente, se indican los valores DTA y ATCD que corresponden, respectivamente, a la máxima diferencia de temperatura ambiente en el intervalo de tiempo de interés y a la diferencia entre la máxima temperatura y la temperatura inicial en la curva de temperatura como función del tiempo en ambas figuras.
El valor DTA coincide en las figuras 8 y 9, mientras que el valor ATCD es distinto en dichas figuras.
Ejemplo 3: Determinación de si un pixel corresponde a hormigón
En el caso de la figura 8, se observa que el valor ATCD, que corresponde al valor indicador, es mayor que el valor DTA, el cual ha sido utilizado como valor umbral en este ejemplo. En consecuencia, el pixel que dio origen al perfil de temperatura de la figura 8 será identificado como un pixel que contiene hormigón fresco.
En contraste, en el caso de la figura 9, se observa que el valor ATCD es menor que el valor DTA. En consecuencia, el pixel que dio origen al perfil de temperatura de la figura 9 será identificado como un pixel que no contiene hormigón fresco.
Ejemplo 4: Obtención de mapas binarios en tiempo real
Las figuras 2 a 7 muestran representaciones gráficas de diferentes mapas binarios obtenidos mediante una realización del método que es objeto de la presente invención, en donde el intervalo de tiempo es 0,58 horas, 2,13 horas, 4,08 horas, 5,03 horas, 6,08 horas y 6,83 horas respectivamente. Todas las imágenes comparten un tiempo inicial común.
Se observa que en el caso de la figura 2, ningún pixel es identificado como hormigón fresco. En el caso de la figura 3, existen algunos pixeles que son identificados como hormigón fresco, pero la mayoría de la muestra de hormigón no ha sido detectada. En el caso de la figura 4, gran parte de la muestra ha sido correctamente detectada, pero existen porciones, principalmente en los bordes, que no han sido detectadas. Por último, en las figuras 5, 6 y 7 se ha detectado de manera satisfactoria gran parte de la muestra de hormigón.

Claims

REIVINDICACIONES
1. Un sistema para la detección de hormigón mediante termografía infrarroja,
CARACTERIZADO porque comprende:
- una memoria de almacenamiento de información;
- un procesador conectado operativamente a dicha memoria y configurado para leer información desde dicha memoria y para almacenar información en dicha memoria; y
- una cámara infrarroja conectada operativamente a dicho procesador, dicho procesador que se encuentra configurado para controlar dicha cámara infrarroja y obtener imágenes de termografía infrarroja desde dicha cámara infrarroja;
en donde dicho procesador se encuentra configurado para:
- almacenar una pluralidad de imágenes de termografía infrarroja, obtenidas desde dicha cámara infrarroja, en dicha memoria, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo;
- obtener, para cada pixel de dicha pluralidad de imágenes de termografía infrarroja, un perfil de temperatura como función del tiempo;
- obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo;
- determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo; y
- definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral.
2. El sistema de la reivindicación 1 , CARACTERIZADO porque comprende, adicionalmente, un sensor de temperatura ambiente conectado operativamente a dicho sensor de temperatura ambiente y porque dicho procesador se encuentra configurado para:
- obtener mediciones de temperatura ambiente desde dicho sensor de temperatura ambiente; y
- almacenar información correspondiente a la temperatura ambiente en dicha memoria.
3. El sistema de la reivindicación 1 , CARACTERIZADO porque dicho procesador se encuentra conectado operativamente a una fuente externa de temperatura ambiente y porque dicho procesador se encuentra configurado para obtener información correspondiente a la temperatura ambiente desde dicha fuente externa y almacenar dicha información correspondiente a la temperatura ambiente en dicha memoria.
4. Un método para la detección de hormigón mediante termografía infrarroja, CARACTERIZADO porque comprende los pasos de:
- almacenar una pluralidad de imágenes de termografía infrarroja en una memoria de almacenamiento de información, en donde cada imagen de dicha pluralidad corresponde a una región que contiene hormigón fresco y en donde dicha pluralidad de imágenes corresponde a un intervalo de tiempo;
- obtener, para cada pixel de dicha pluralidad de imágenes, un perfil de temperatura como función del tiempo mediante un procesador conectado operativamente a dicha memoria de almacenamiento de información;
- obtener una pluralidad de curvas de temperatura como función del tiempo, cada una de dichas curvas de temperatura que ajusta a un correspondiente perfil de temperatura como función del tiempo mediante dicho procesador;
- determinar un valor indicador a partir de cada una de dichas curvas de temperatura como función del tiempo mediante dicho procesador; y - definir que un pixel corresponde a hormigón cuando dicho valor indicador correspondiente a dicho pixel es mayor que un valor umbral mediante dicho procesador.
5. El método de la reivindicación 4, CARACTERIZADO porque dicha curva de temperatura como función del tiempo se escoge del grupo formado por: serie de Fourier de bajo coeficiente y polinomio de bajo coeficiente.
6. El método de la reivindicación 4, CARACTERIZADO porque comprende, adicionalmente:
- almacenar información correspondiente a un perfil de temperatura ambiente en dicha memoria;
- obtener una curva de temperatura ambiente como función del tiempo mediante dicho procesador; y
- obtener dicho valor umbral a partir de dicha curva de temperatura ambiente como función del tiempo mediante dicho procesador.
7. El método de la reivindicación 4 o 6, CARACTERIZADO porque dicho valor indicador es la diferencia entre la temperatura máxima y la temperatura inicial en dicho intervalo de tiempo y porque dicho valor umbral es la diferencia entre la máxima temperatura ambiente y la mínima temperatura ambiente en dicho intervalo de tiempo.
8. El método de la reivindicación 4 o 6, CARACTERIZADO porque dicho valor indicador es el área bajo la curva en dicho intervalo de tiempo y porque dicho valor umbral se escoge del grupo formado por: el área bajo la curva de temperatura ambiente en dicho intervalo de tiempo; y el producto del valor promedio de temperatura ambiente en dicho intervalo de tiempo y la longitud de dicho intervalo de tiempo.
9. El método de la reivindicación 4, CARACTERIZADO porque dicho intervalo de tiempo está entre 3 horas y 12 horas.
10. El método de la reivindicación 4, CARACTERIZADO porque cada imagen de dicha pluralidad de imágenes de termografía infrarroja se obtiene con una periodicidad de entre 5 minutos y 30 minutos.
1 1 . El método de la reivindicación 4, CARACTERIZADO porque cada imagen de dicha pluralidad de imágenes es filtrada previo a la obtención de dichos perfiles de temperatura como función del tiempo.
12. El método de la reivindicación 1 1 , CARACTERIZADO porque dicha pluralidad de imágenes es filtrada mediante un filtro gaussiano.
13. El método de la reivindicación 4, CARACTERIZADO porque comprende, adicionalmente, generar una imagen de dicha región que contiene hormigón fresco en donde los pixeles identificados como hormigón son coloreados de un primer color, dicho primer color que es contrastante con dicha imagen, dicha imagen que se genera mediante dicho procesador.
14. El método de la reivindicación 4, CARACTERIZADO porque comprende, adicionalmente, generar un mapa binario de dicha región que contiene hormigón fresco mediante dicho procesador.
PCT/CL2019/050069 2018-08-30 2019-08-08 Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infrarroja y funciones matemáticas de tendencia WO2020041912A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021505684A JP2021534375A (ja) 2018-08-30 2019-08-08 赤外線サーモグラフィ及び数学的トレンド関数を用いたフレッシュコンクリートの状態の検出及びデジタル化のためのシステム及び方法
US17/271,085 US20210318258A1 (en) 2018-08-30 2019-08-08 System and method for the detection and digitalization of the state of fresh concrete using infrared thermography and mathematical trend functions
EP19768698.3A EP3845894A1 (en) 2018-08-30 2019-08-08 System and method for the detection and digitalization of the state of fresh concrete using infrared thermography and mathematical trend functions
CA3110578A CA3110578A1 (en) 2018-08-30 2019-08-08 System and method for the detection and digitalization of the state of fresh concrete using infrared thermography and mathematical trend functions
CN201980056633.5A CN112639453A (zh) 2018-08-30 2019-08-08 用于使用红外热成像和数学趋势函数来检测和数字化新浇混凝土的状态的系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2477-2018 2018-08-30
CL2018002477A CL2018002477A1 (es) 2018-08-30 2018-08-30 Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infraroja y funciones matemáticas de tendencia.

Publications (2)

Publication Number Publication Date
WO2020041912A1 true WO2020041912A1 (es) 2020-03-05
WO2020041912A4 WO2020041912A4 (es) 2020-05-14

Family

ID=65529097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050069 WO2020041912A1 (es) 2018-08-30 2019-08-08 Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infrarroja y funciones matemáticas de tendencia

Country Status (7)

Country Link
US (1) US20210318258A1 (es)
EP (1) EP3845894A1 (es)
JP (1) JP2021534375A (es)
CN (1) CN112639453A (es)
CA (1) CA3110578A1 (es)
CL (1) CL2018002477A1 (es)
WO (1) WO2020041912A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884194A (zh) * 2021-09-29 2022-01-04 广汉科峰电子有限责任公司 一种接触网温度动态检测系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216569B (zh) * 2022-02-22 2022-06-10 深圳金三立视频科技股份有限公司 一种基于可信度评估的红外测温方法及终端
CN114414067B (zh) * 2022-04-01 2022-07-15 深圳市海清视讯科技有限公司 热成像数据处理方法、装置、热成像摄影设备及存储介质
CN114454298B (zh) * 2022-04-12 2022-07-08 三一筑工科技股份有限公司 混凝土预制构件振平施工方法及设备
CN116129277B (zh) * 2023-04-04 2023-11-21 重庆市建设工程质量检验测试中心有限公司 一种建筑节能检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017507B2 (es) 1972-06-06 1975-06-21
JP2012221235A (ja) * 2011-04-08 2012-11-12 Furuta Sekkei Co Ltd 画像処理方法、画像処理装置、建物画像診断方法、及び建物画像診断装置
WO2015001344A1 (en) 2013-07-05 2015-01-08 The University Of Warwick Apparatus & method for monitoring strength development of concrete

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751342B2 (en) * 1999-12-02 2004-06-15 Thermal Wave Imaging, Inc. System for generating thermographic images using thermographic signal reconstruction
TW555965B (en) * 2002-10-07 2003-10-01 Opto Tech Corp Temperature measurement device
US7805251B2 (en) * 2008-10-07 2010-09-28 General Electric Company Two slope reference for synthetic thermal time of flight imaging
WO2011013197A1 (ja) * 2009-07-28 2011-02-03 株式会社 東芝 赤外線撮像装置
JP5318728B2 (ja) * 2009-11-04 2013-10-16 大和小田急建設株式会社 赤外線法によるコンクリート表層部の変状部検出方法
ES2953887T3 (es) * 2010-04-08 2023-11-16 Foerster Inst Dr Gmbh & Co Kg Método de prueba termográfica y dispositivo de prueba para llevar a cabo el método de prueba
CN104797913A (zh) * 2012-09-21 2015-07-22 杭州美盛红外光电技术有限公司 热像诊断装置和热像诊断方法
WO2017130251A1 (ja) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
CN106440245B (zh) * 2016-10-25 2021-01-08 广东美的制冷设备有限公司 一种人体位置获取方法和装置
CN108370233B (zh) * 2017-08-30 2021-03-16 深圳市大疆创新科技有限公司 检测光伏板的方法、设备及无人机
CN107631803A (zh) * 2017-09-13 2018-01-26 长江勘测规划设计研究有限责任公司 基于热感成像的混凝土表面温度精确测量方法
CN108444936B (zh) * 2018-03-27 2020-05-22 重庆交通大学 一种钢管混凝土脱空的无损检测系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017507B2 (es) 1972-06-06 1975-06-21
JP2012221235A (ja) * 2011-04-08 2012-11-12 Furuta Sekkei Co Ltd 画像処理方法、画像処理装置、建物画像診断方法、及び建物画像診断装置
WO2015001344A1 (en) 2013-07-05 2015-01-08 The University Of Warwick Apparatus & method for monitoring strength development of concrete

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIGUEL AZENHA ET AL: "Thermography as a technique for monitoring early age temperatures of hardening concrete", CONSTRUCTION AND BUILDING MATERIALS, ELSEVIER, NETHERLANDS, vol. 25, no. 11, 21 April 2011 (2011-04-21), pages 4232 - 4240, XP028234603, ISSN: 0950-0618, [retrieved on 20110428], DOI: 10.1016/J.CONBUILDMAT.2011.04.065 *
MIGUEL AZENHARUI FARIAHELENA FIGUEIRAS: "Thermography as a technique for monítoríng early age temperatures of hardening concrete", CONSTRUCTION AND BUILDING MATERIALS, vol. 25, 2011, pages 4232 - 4240, XP028234603, doi:10.1016/j.conbuildmat.2011.04.065

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884194A (zh) * 2021-09-29 2022-01-04 广汉科峰电子有限责任公司 一种接触网温度动态检测系统

Also Published As

Publication number Publication date
CA3110578A1 (en) 2020-03-05
JP2021534375A (ja) 2021-12-09
EP3845894A1 (en) 2021-07-07
CN112639453A (zh) 2021-04-09
WO2020041912A4 (es) 2020-05-14
CL2018002477A1 (es) 2018-10-19
US20210318258A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020041912A1 (es) Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infrarroja y funciones matemáticas de tendencia
US10546207B2 (en) Normalized defect characterization of pulse thermographic nondestructive evaluation
US8442263B2 (en) Quantification of energy loss from buildings
JP6234044B2 (ja) 外装材の劣化判定方法および判定装置
JP2021060656A (ja) 道路損傷判定装置、道路損傷判定方法及び道路損傷判定プログラム
Chianucci et al. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry
EP3428572A1 (en) Film thickness measuring method and film thickness measuring device
US20060069532A1 (en) Noise reduction circuit and temperature measuring apparatus equipped with the same
ES2349911B1 (es) Metodos y sistemas para realizar analisis de estanqueidad en depositos de fluidos.
CN111968163B (zh) 一种热电堆阵列测温方法及装置
CN113483896B (zh) 一种电力设备测温方法、装置、计算机设备及存储介质
McAllister et al. Evaporative moisture loss from heterogeneous stone: Material-environment interactions during drying
Lennard et al. Quantifying and visualizing change: strain monitoring of tapestries with digital image correlation
ES2537109T3 (es) Corrección en base a imágenes para señales luminosas indeseadas en una región de interés específica
Takeda et al. Potential of thermographic analysis to evaluate pathological manifestations in façade cladding systems
JP2003207472A (ja) セラミックハニカム構造体表面のクラック検出方法
CN110333239B (zh) 确定外墙饰面砖黏结缺陷红外热像检测时机的方法及系统
Banks et al. Thermal based methods for damage detection and characterization in porous materials
ITMI20100102A1 (it) Metodo ed apparecchiatura per la determinazione della temperatura corporea di almeno un soggetto
Sharma et al. Effect of ambient temperature on calibration of cooled thermal camera
CN116127239B (zh) 岩体损伤状态测评方法、装置及存储介质
Ran et al. A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: A numerical study
CN114487012B (zh) 一种土体表面裂隙发育预判方法
Celniker Flame Analyzer 2: A fully two dimensional flame spread video analysis tool
Bison et al. Indoor monitoring of Scrovegni Chapel Crypt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505684

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3110578

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019768698

Country of ref document: EP

Effective date: 20210330