WO2020040468A1 - Apparatus and method for detecting color mix defect of organic light emitting diode - Google Patents

Apparatus and method for detecting color mix defect of organic light emitting diode Download PDF

Info

Publication number
WO2020040468A1
WO2020040468A1 PCT/KR2019/010229 KR2019010229W WO2020040468A1 WO 2020040468 A1 WO2020040468 A1 WO 2020040468A1 KR 2019010229 W KR2019010229 W KR 2019010229W WO 2020040468 A1 WO2020040468 A1 WO 2020040468A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mixed color
lens
light emitting
organic light
Prior art date
Application number
PCT/KR2019/010229
Other languages
French (fr)
Korean (ko)
Inventor
김동석
김도헌
황인욱
이준수
지현구
Original Assignee
케이맥(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이맥(주) filed Critical 케이맥(주)
Priority to CN201980029314.5A priority Critical patent/CN112041999A/en
Publication of WO2020040468A1 publication Critical patent/WO2020040468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0628Organic LED [OLED]

Definitions

  • the present invention relates to a mixed color failure detection device and a detection method of the organic light emitting device for effectively detecting the color abnormality such as the mixed color phenomenon caused by the mask failure in the process of depositing the organic light emitting device.
  • OLEDs are self-luminous organic materials that emit light by themselves using electroluminescent phenomena that emit light when a current flows through a fluorescent organic compound.
  • the organic light emitting diode can be driven at low voltage, can be made thin, and has a wide viewing angle and fast response speed.
  • Organic light emitting devices are classified into three colors (Red, Green, Blue) independent pixel method, color conversion method (CCM), color filter method, etc., depending on the color implementation method. Accordingly, the OLED may be classified into a low molecular OLED and a polymer OLED, and may be classified into a passive matrix (PM) and an active matrix (AM) according to a driving method.
  • PM passive matrix
  • AM active matrix
  • a mask In the process of manufacturing a three-color independent pixel type organic light emitting device, a mask is generally used to ensure that organic materials of R, G, and B are correctly deposited at predetermined predetermined positions. However, in this process, if the position of the mask is misaligned or there is a defect in the mask itself, a color mix phenomenon occurs while other colors are buried in the original color position.
  • Korean Patent Publication No. 2008-0002024 shadow mask and manufacturing method of the organic electroluminescent device using the same", 2008.01.04, hereinafter 'prior literature'
  • a mask structure is disclosed that improves the reduction.
  • the incidence of mixed color development can be reduced by using the mask of the improved structure according to the prior art, it is difficult to completely exclude the occurrence of the mixed color phenomenon. Therefore, even if the manufacturing process is improved, it is necessary to detect the color mixing defect of the manufactured organic light emitting display.
  • Conventional detectors for detecting mixed color defects are obtained by acquiring an image from the front of the organic light emitting device, and checking the presence or absence of color abnormality by determining and sampling several measurement points in one cell.
  • an object of the present invention is to detect a mixed color defect of the organic light emitting device and a detection method that can effectively detect the mixed color defect at various viewing angles In providing.
  • Another object of the present invention is to provide an apparatus and a method for detecting a mixed color defect of an organic light emitting device, which enables to perform an inspection quickly and effectively on the entire region of a cell to be inspected.
  • the apparatus 100 for detecting a color failure of an organic light emitting diode is a color mixing defect of an organic light emitting diode that inspects a cell having a planar shape in which a plurality of organic light emitting diodes are two-dimensionally arranged.
  • a detection apparatus (100) comprising: a lens unit (120) formed to be disposed parallel to or inclined to the surface of the cell; A plurality of image sensors are formed in a planar form arranged in two dimensions to sense the image of the cell obtained through the lens, and the sensor unit is formed to be arranged parallel or inclined to the surface of the lens unit 120 130; Control unit for adjusting the angle of the lens unit 120 or the sensor unit 130; It may include.
  • the control unit, the surface of the cell is called the object surface (1)
  • the center surface of the lens included in the lens unit 120 is called the lens surface (2)
  • the surface of the sensor unit 130 When the sensor surface 3 is referred to as the sensor unit 3, the lens unit 120 is satisfied so that the schimp plug condition that the extension line of the object surface 1, the extension line of the lens surface 2 and the extension line of the sensor surface 3 coincide with each other is satisfied. Or the angle of the sensor unit 130 may be adjusted.
  • the control unit the center point of the lens is called a lens center point (Q)
  • the center point of the sensor unit 130 is called a sensor center point (P)
  • the lens center point (Q) and the sensor center point (P) is connected
  • a point where a straight line meets the object plane 1 is referred to as a reference point T
  • a point that satisfies the Scheimpplug condition is called a Scheimpplug point S.
  • the object plane 1 and the lens surface 2 The angle formed is called an optical system inclination angle ⁇
  • the sensor unit 130 is satisfied so as to satisfy the Scheimpplug condition according to the optical system inclination angle ⁇ from the parallel state of the lens surface 2 and the sensor surface 3.
  • the Scheimpplug angle ⁇ can be calculated by the following equation.
  • Scheimpplug angle
  • Optical tilt angle
  • C Distance between reference point (T) and sensor center point
  • R Distance between reference point (T) and Scheimpplug point
  • the mixed color failure detection device 100 of the organic light emitting device, the zoom motor 125 for adjusting the distance between the lens unit 120 and the sensor unit 130; may include.
  • the lens surface 2 may be determined as a center plane of the lens disposed closest to the object surface 1.
  • the optical system tilt angle ⁇ is A reference image sensing step of sensing a reference image which is 0 and an image of the entire area of the cell in a state in which the lens plane 2 and the sensor plane 3 are in parallel;
  • a mixed color detection step of detecting a mixed color defect by analyzing the reference image and the inclined image It may include.
  • the mixed color detection step the image conversion step of converting the outer shape of the inclined image to be the same as the outer shape of the reference image to generate a converted image;
  • a partition classification step of dividing the reference image and the converted image into a plurality of predetermined sections;
  • a detection information acquisition step of obtaining detection information including an average color and light intensity for each of said sections; It may include.
  • the mixed color detection step of detecting the reference image defect determination step of determining whether the mixed color failure is generated according to a predetermined reference by comparing the detection information for each section of the reference image;
  • a converted image defect determining step of comparing detected information of each section of the converted image with each other to determine whether a mixed color defect has occurred according to a predetermined criterion;
  • An image comparison failure determination step of comparing the detection information between the selected section of the reference image and the section of the converted image corresponding thereto to determine whether a mixed color defect has occurred according to a predetermined criterion; It may include at least one selected from.
  • the image conversion step may be made to generate the transform image using affine transformation (affine transformation).
  • the present invention it is possible to detect only when viewed from the front (that is, when the viewing angle is vertical), thereby overcoming the limitation of not being able to detect fine mixed color defects, and applying the Scheimpplug principle to tilt the detection optical system.
  • the viewing angle By realizing the viewing angle, there is a great effect that detection of mixed color defects for various viewing angles can be performed.
  • the present invention unlike the conventional sampling and detection of only a few points of the whole cell area, by detecting the color failure by acquiring the image of the entire cell, the color mixture for the entire cell area quickly and effectively There is a great effect that can perform a defect detection.
  • 1 is a state in which an object plane, a focal plane, a lens plane, and a sensor plane are formed.
  • 5 illustrates an example of a focused image.
  • FIG. 6 is an explanatory diagram illustrating a principle for calculating a camera tilt angle.
  • FIG. 11 is a flowchart of a detection method of the present invention.
  • lens unit 125 zoom motor
  • FIG. 1 shows various examples of the formation state of an object plane, a focal plane, a lens plane and a sensor plane.
  • FIG. 1 it is assumed that an object surface 1 is photographed using a camera 10 having a lens.
  • the lens surface 2 formed by the lens of the camera 10 the focal plane 1 'formed by the lens, and the sensor surface 3 on which the image obtained from the focal plane 1' are formed are shown in FIG. As shown, they are always formed essentially parallel. If the object plane 1 and the focal plane 1 'coincide, the image obtained at the sensor plane 3 is well focused in all areas.
  • FIG. 2 illustrates a defocus state according to the inclination of the focal plane when the optical system is tilted.
  • AB corresponds to the focal plane 1 'when the object plane 1 and the camera viewing angle are vertical
  • A'-B' corresponds to the focal plane 1 'when the camera viewing angle is tilted. do.
  • the focal plane 1 is focused on the object plane 1.
  • the surface 1 ' is inclined, as shown in Fig. 3, an image is obtained which is out of focus (ie defocused) in some parts but not in another part.
  • FIG. 3 it is well illustrated that an image in focus is obtained in the middle part, whereas an image is not in focus in the outer part.
  • the detection was performed with information acquired at several points sampled in the front view.
  • the degree of mixing is not severe, it is difficult to determine that the mixing is bad from the front, but when viewed from a slightly inclined side it can be seen that the mixing failure occurs.
  • the optical system is designed based on the observation from the front, only the defocused image can be obtained as described in FIG. 2 when the optical system is inclined, and thus it is difficult to obtain a reliable detection result.
  • the Scheimpflug condition means that when the object plane 1 and the lens plane 2 are not parallel and form an inclination angle, the extension lines of the object plane 1, the lens plane 2, and the sensor plane 3 are always at one point.
  • the object surface 1 is a fixed surface, and accordingly, the chime plug condition can be satisfied by tilting the lens surface 2 or the sensor surface 3 appropriately.
  • the Scheimpflug condition is satisfied, even if the object surface 1 and the lens surface 2 are inclined, a well-focused image can be obtained.
  • FIG. 4 shows the optical system adjusted to satisfy the Scheimpplug condition.
  • the lens surface 2 is inclined at an angle with respect to the object surface 1.
  • the initial sensor surface 3 ' is formed in parallel with the lens surface 2 as shown in FIG. In this state, however, a defocused image is obtained as shown in the example of FIG. 3.
  • the focused image may be obtained as described above.
  • 5 shows an example of the focused image even though the viewing angle is formed to be inclined as such. In comparison with FIGS. 3 and 5, in FIG. 3, the image is blurred due to out of focus in the outer part, whereas in FIG. 5, the middle and both outer parts are well-focused. .
  • FIG. 6 is an explanatory diagram illustrating a principle for calculating a camera tilt angle. 6 illustrates the principle of the detection apparatus of the present invention in more detail.
  • the parts for explaining the principle are as follows.
  • the surface of the cell is called an object plane 1
  • the center plane of the lens included in the lens unit 120 is called a lens plane 2
  • the surface of the sensor unit 130 is called a sensor plane. It is called (3).
  • an initial sensor surface 3 ' is shown when the lens and sensor are initially parallel, and a sensor surface 3 is shown when the Scheimpplug condition is satisfied.
  • the center point of the lens is called a lens center point (Q)
  • the center point of the sensor unit 130 is called a sensor center point (P)
  • a straight line connecting the lens center point (Q) and the sensor center point (P) is
  • the point where the object surface 1 meets is called the reference point T
  • the point that satisfies the Scheimpplug condition is called the Scheimpplug point S.
  • the angle formed by the object surface 1 and the lens surface 2 is called an optical system inclination angle ⁇
  • the optical system inclination angle ⁇ is obtained from the parallel state of the lens surface 2 and the sensor surface 3.
  • the angle at which the sensor unit 130 is to be rotated to satisfy the Scheimpplug condition is referred to as a Scheimpplug angle ⁇ .
  • the distance between the sensor center point (P) and the Scheimpplug point (S) When the distance between the reference point (T) and the sensor center point (P) is C, The value may be represented by Equation 2 according to the second cosine law.
  • Equation 4 Substituting Equation 2 into Equation 3 and arranging for ⁇ , Equation 4 below can be obtained.
  • Equation 5 if the chime plug angle ⁇ is represented by ⁇ , it can be expressed as shown in Equation 5 below.
  • Equation 4 Substituting Equation 4 into Equation 5 and arranging ⁇ , the Scheimpplug angle ⁇ value can be obtained through Equation 6 below.
  • FIG. 7 to 10 show an embodiment of the detection device of the present invention, as shown in the mixed color failure detection device 100 of the organic light emitting device of the present invention, the lens unit 120, the sensor unit 130 And a controller (not shown), and inspects a planar cell in which a plurality of organic light emitting diodes are two-dimensionally arranged.
  • the mixed color failure detection device 100 of the organic light emitting device of the present invention also, so that the lens unit 120, the sensor unit 130 and the like can be accommodated and modularized, as shown in the case 110 It may further include.
  • the lens unit 120 is formed to be disposed parallel to or inclined to the surface of the cell. At this time, since the lens unit 120 and the like are stably supported by the case 110, the modular detection device 100 itself is attached to a separate moving device to move the lens surface of the lens unit 120 ( 2) can be arranged parallel to or inclined to the face of the cell.
  • the lens surface 2 is obviously determined as a single lens center plane. Meanwhile, when the lens unit 120 is formed by stacking a plurality of lenses, the lens unit 120 may be determined to be the center plane of the lens disposed closest to the object plane 1.
  • the sensor unit 130 is formed in a planar shape in which a plurality of image sensors are two-dimensionally arranged to serve to sense an image of the cell acquired through the lens.
  • the sensor unit 130 is formed to be disposed parallel or inclined to the surface of the lens unit 120, so that the sensor unit 130, even if the detection device 100 is disposed at any optical tilt angle ( ⁇ ) It can be moved separately to satisfy the Scheimpplug condition.
  • the detection device 100 may further include a tilt motor 135 to adjust the angle of the sensor unit 130.
  • the controller controls the angle of the lens unit 120 or the sensor unit 130.
  • the controller may control the tilt motor 135.
  • the control unit wants to adjust the angle of the lens unit 120, the detection device 100 is modular as shown, so that the detection device 100 itself is formed to form a certain optical system inclination angle ( ⁇ )
  • the control unit may control the mobile device.
  • the controller After the controller adjusts the angle of the lens unit 120 to a certain optical tilt angle ⁇ , the controller is an extension line of the object surface 1, an extension line of the lens surface 2 and the sensor surface (3).
  • the angle of the sensor unit 130 may be adjusted so that the Scheimpplug condition that the extension line of the I) is satisfied is satisfied.
  • the controller may be configured to adjust the angle of the lens unit 120 according to the angle of the sensor unit 130.
  • the controller can calculate the Scheimpflug angle ⁇ by the following equation (according to the principles described above).
  • Scheimpplug angle
  • Optical tilt angle
  • C Distance between reference point and sensor center point
  • R Distance between reference point and Scheimpplug point
  • the detection apparatus 100 may further include a zoom motor 125 that adjusts the distance between the lens unit 120 and the sensor unit 130.
  • the lens magnification may be adjusted by adjusting the distance between the lens unit 120 and the sensor unit 130, and by adjusting the lens magnification, images of the cells of various sizes may be easily and effectively obtained.
  • the mixed color detection method of the organic light emitting device of the present invention includes a reference image sensing step, a viewing angle tilt control step, a saim plug condition satisfaction step, a gradient image sensing step, and a mixed color defect detection step.
  • a reference image which is an image of the entire cell area in the state where the optical system tilt angle ⁇ is 0 and the lens surface 2 and the sensor surface 3 are in parallel is sensed.
  • the optical system tilt angle ⁇ is 0 and the lens surface 2 and the sensor surface 3 are in a parallel state
  • the object surface, the lens surface, and the sensor surface are both in parallel, and thus the relationship with the schimp plug condition is achieved.
  • image acquisition is performed with the lens facing the object in front, an image without shape distortion can be obtained. For example, if the cell as an object has a rectangular shape, the reference image obtained in the reference image sensing step also comes out in a rectangular shape.
  • the optical system tilt angle ⁇ is adjusted to a non-zero angle.
  • the mixed color defect inspection is performed by using the image photographed from the front, there is a case that the mixed color defect that is not severe enough may not be caught. In this case, it is possible to detect such a mixed color defect by tilting the viewing angle.
  • the angle of the sensor surface 3 is adjusted to the Scheimpplug angle ⁇ so that the Scheimpplug condition is satisfied.
  • the focal plane and the object plane are greatly displaced, thereby obtaining an unfocused image. If the detection image is not in focus, the mixed color defect detection of the organic light emitting device will not be performed correctly even if the image is analyzed. Therefore, the focused image should be obtained even when the viewing angle is tilted.
  • the detection apparatus 100 of the present invention is configured to be able to adjust the angle between the lens surface and the sensor surface in order to obtain a focused image even in this inclined viewing angle.
  • an inclined image that is an image of the entire area of the cell in a state after the same plug condition satisfaction step is sensed.
  • the extension lines of the object plane, the lens plane, and the sensor plane meet at one point, and the Scheimpplug condition is satisfied, a well-focused image can be obtained. Therefore, by analyzing the inclined image, it is possible to detect a mixed color defect in a state in which the viewing angle is oblique.
  • the inclined image obtained in the inclined image sensing step comes out in a trapezoidal shape which is a distorted shape.
  • the reference image and the inclined image are analyzed to detect a mixed color defect.
  • the mixed color defect detection step may include an image conversion step, a partition classification step, and a detection information acquisition step.
  • the outline shape of the inclined image is converted to be the same as the outline shape of the reference image to generate a converted image.
  • the reference image is in a rectangular shape (without distortion)
  • the inclined image is in trapezoidal shape (as it is distorted).
  • the tilted image may be easily generated as the transformed image by using a method of coordinate transformation corresponding to each point of the reference image and the tilted image, that is, an affine transformation. Since the affine transformation is only a spatial transformation, it does not affect the brightness of the image. Thus, there is no problem in checking mixed color defects using the converted image made using the affine transformation.
  • the reference image and the converted image are divided into a plurality of predetermined sections.
  • the cell when the cell has a rectangular shape, the cell may be divided into M ⁇ N partitions by M rows and N columns, and M and N values may be appropriately determined as desired by the user.
  • detection information acquisition step detection information including an average color and light intensity is obtained for each of the partitions.
  • the mixed color defect may be inspected using the acquired detection information.
  • At least one of the reference image defect determination step, the conversion image defect determination step, and the image comparison failure determination step may be performed according to the inspection method.
  • the detection information for each section of the reference image is compared with each other, and it is determined whether a mixed color defect has occurred according to a predetermined criterion. For example, when the reference image is acquired while the R color is turned on for the entire cell, the detection information obtained in all M ⁇ N partitions will all be identical if the ideal case in which the mixed color defect does not occur. On the other hand, when mixed color defects occur in one compartment, that is, as an example, when G or B organic light emitting material is mixed at a position where the R organic light emitting material should be printed, the R value is lower than that of the other compartments and the G Or B value will be high.
  • the mixed color defect is determined by determining that the detected information in each section is within a range of a predetermined appropriate level, and determining that the defect is out of the range.
  • the converted image defective determination step similar to the reference image defective determination step, mixed color defect occurrence is determined using the converted image. That is, the detection information of each section of the converted image is compared with each other, and it is determined whether a mixed color defect occurs according to a predetermined criterion.
  • a mixed color defect occurs according to a predetermined criterion.
  • the detection information between the selected section of the reference image and the section of the converted image corresponding thereto is compared with each other, and it is determined whether a mixed color defect has occurred according to a predetermined criterion.
  • mixed color failure is determined solely by the reference image or the converted image.
  • the mixed color defect is determined by comparing the converted image based on the reference image, it is not necessary to unnecessarily widen the defect determination reference range. In this way, a mixed color defect that is not detected when viewed from the front but can be detected when tilted can be detected more effectively.
  • the mixed color detection step it is not necessary to perform all of the reference image determination step, the conversion image failure determination step, and the image comparison failure determination step as described above. For example, if the mixed color defect is detected in the reference image by first performing the reference image defective determination step, the mixed color defect has already been detected, and the remaining two steps do not need to be performed. On the other hand, if the mixed color defect is not detected in the reference image, it is necessary to check whether the mixed color defect is detected in the converted image, and at this time, the converted image defect determination step and the image comparison failure determination step are performed by any one of the two steps. Detection may be performed or both steps may be performed.
  • multiple oblique images may be acquired by changing the inclination angle of the optical system to detect mixed color defects. For example, after one reference image is acquired, when the optical system tilt angle is 45 degrees to the right, when the angle is 45 degrees to the left, two tilted images are obtained as described above. Detection can be performed. In this case, the steps related to the tilt image described above may of course be repeatedly performed as many as the number of the tilt image when acquiring and detecting each tilt image.
  • the tilted viewing angle is realized in the detection optical system, whereby mixed color defect detection for various viewing angles can be performed.
  • mixed color defect detection by acquiring an image of the entire cell, the mixed color defect detection of the entire cell area can be performed quickly and effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to an apparatus and a method for detecting a color mix defect of an organic light emitting diode. The purpose of the present invention is to provide an apparatus and a method for detecting a color mix defect of an organic light emitting diode, which enable effective detection of a color mix defect at various viewing angles. Another purpose of the present invention is to provide an apparatus and a method for detecting a color mix defect of an organic light emitting diode, which enable a quick and effective inspection of the entire region of an inspection cell.

Description

유기발광소자의 혼색 불량 검출장치 및 검출방법Device and method for detecting mixed color defect of organic light emitting device
본 발명은 유기발광소자를 증착하는 과정에서 마스크 불량 등으로 인해 발생하는 혼색 현상 등의 색의 이상 현상을 효과적으로 검출하기 위한, 유기발광소자의 혼색 불량 검출장치 및 검출방법에 관한 것이다.The present invention relates to a mixed color failure detection device and a detection method of the organic light emitting device for effectively detecting the color abnormality such as the mixed color phenomenon caused by the mask failure in the process of depositing the organic light emitting device.
유기발광소자(Organic Light Emitting Diodes, OLED)란, 형광성 유기화합물에 전류가 흐르면 빛을 내는 전계발광현상을 이용하여 스스로 빛을 내는 자체발광형 유기물질을 말하는 것이다. 유기발광소자는 낮은 전압에서 구동이 가능하고 얇은 박형으로 만들 수 있으며, 넓은 시야각과 빠른 응답속도를 갖고 있는 등의 장점을 갖는다. 유기발광소자는 컬러 구현 방식에 따라 3색(Red, Green, Blue) 독립화소방식, 색변환 방식(CCM), 컬러 필터 방식 등으로 분류되기도 하고, 사용하는 발광재료에 포함된 유기물질의 양에 따라 저분자 OLED와 고분자 OLED로 분류되기도 하고, 구동방식에 따라 수동형 구동방식(passive matrix; PM)과 능동형 구동방식(active matrix; AM)으로 분류되기도 한다.Organic Light Emitting Diodes (OLEDs) are self-luminous organic materials that emit light by themselves using electroluminescent phenomena that emit light when a current flows through a fluorescent organic compound. The organic light emitting diode can be driven at low voltage, can be made thin, and has a wide viewing angle and fast response speed. Organic light emitting devices are classified into three colors (Red, Green, Blue) independent pixel method, color conversion method (CCM), color filter method, etc., depending on the color implementation method. Accordingly, the OLED may be classified into a low molecular OLED and a polymer OLED, and may be classified into a passive matrix (PM) and an active matrix (AM) according to a driving method.
3색 독립화소방식의 유기발광소자를 제조하는 공정에서, R, G, B 각각의 유기물질이 미리 결정된 서로 다른 특정 위치에 올바르게 증착되도록 하기 위해, 일반적으로 마스크를 사용하게 된다. 그런데, 이 과정에서 마스크의 위치가 틀어지거나 마스크 자체에 불량이 있는 경우 원래 내어야 할 색 위치에 다른 색이 묻으면서 혼색(color mix) 현상이 발생하게 된다.In the process of manufacturing a three-color independent pixel type organic light emitting device, a mask is generally used to ensure that organic materials of R, G, and B are correctly deposited at predetermined predetermined positions. However, in this process, if the position of the mask is misaligned or there is a defect in the mask itself, a color mix phenomenon occurs while other colors are buried in the original color position.
이러한 혼색 불량 문제를 해소하기 위하여, 한국특허공개 제2008-0002024호("새도우 마스크 및 이를 이용한 유기 전계 발광 소자의 제조방법", 2008.01.04, 이하 '선행문헌')에서는 마스크 처짐을 방지하고 개구부 감소를 개선하는 마스크 구조가 개시된다. 선행문헌에 따른 개선된 구조의 마스크를 사용함으로써 혼색 현상 발생률을 저하시킬 수는 있겠으나, 혼색 현상의 발생을 완전히 배제시키기는 어렵다. 따라서 제조 공정을 개선한다 해도 제조된 유기발광소자 디스플레이의 혼색 불량을 검출하는 것은 반드시 필요하다.In order to solve such a mixed color defect problem, Korean Patent Publication No. 2008-0002024 ("shadow mask and manufacturing method of the organic electroluminescent device using the same", 2008.01.04, hereinafter 'prior literature') to prevent the mask sag and openings A mask structure is disclosed that improves the reduction. Although the incidence of mixed color development can be reduced by using the mask of the improved structure according to the prior art, it is difficult to completely exclude the occurrence of the mixed color phenomenon. Therefore, even if the manufacturing process is improved, it is necessary to detect the color mixing defect of the manufactured organic light emitting display.
종래의 혼색 불량을 검출하기 위한 검출기는, 유기발광소자의 정면에서 이미지를 획득하되, 하나의 셀 내에서 몇 개의 측정점을 정하고 샘플링하는 방식으로 색의 이상유무를 검사하는 방식으로 이루어져 있다.Conventional detectors for detecting mixed color defects are obtained by acquiring an image from the front of the organic light emitting device, and checking the presence or absence of color abnormality by determining and sampling several measurement points in one cell.
그런데, 혼색 불량이 심할 경우 정면에서 유기발광소자를 바라보았을 때 색의 차이가 확연하게 나타나지만, 심하지 않은 경우에는 정면에서 색의 차이를 판단하기 어렵다. 따라서 정면에서의 이미지만 획득하는 종래의 검출기의 경우 정도가 심하지는 않지만 분명히 존재하는 혼색 불량을 검출하지 못하는 문제가 있었다.By the way, when the mixed color defect is severe, the difference in color appears clearly when looking at the organic light emitting device from the front, but if it is not severe it is difficult to determine the difference in color from the front. Therefore, in the case of a conventional detector that acquires only the image from the front side, there is a problem in that it does not detect the mixed color defects which are clearly present but are not severe.
또한 종래에는 작업 시간의 한계로 인하여 셀 전체 영역을 검사하지 않고 샘플링된 측정점에 대해서만 검사를 수행하였는데, 점차로 디스플레이의 품질에 대한 요구가 높아져 가고 있는 현 시점에서 볼 때 셀 전체 영역에 대한 검사에 대한 필요성 역시 높아져 가고 있는 추세이다. 따라서 셀 전체 영역에 대해서 혼색 불량을 신속하게 검출할 수 있는 기술이 필요하다.In addition, the inspection was performed only on the sampled measuring points without inspecting the entire cell area due to the limitation of the working time, and at the present time, the demand for the quality of the display is gradually increasing. Necessity is also increasing. Therefore, there is a need for a technique capable of quickly detecting color mixing defects in the entire cell area.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
1. 한국특허공개 제2008-0002024호("새도우 마스크 및 이를 이용한 유기 전계 발광 소자의 제조방법", 2008.01.04)1. Korean Patent Publication No. 2008-0002024 ("Shadow Mask and Manufacturing Method of Organic Electroluminescent Device Using the Same", 2008.01.04)
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 다양한 시야각에서 효과적으로 혼색 불량을 검출해 낼 수 있도록 하는 유기발광소자의 혼색 불량 검출장치 및 검출방법을 제공함에 있다. 본 발명의 다른 목적은 검사대상인 셀의 전체 영역에 대한 검사를 신속하면서도 효과적으로 수행할 수 있게 하는 유기발광소자의 혼색 불량 검출장치 및 검출방법을 제공함에 있다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, an object of the present invention is to detect a mixed color defect of the organic light emitting device and a detection method that can effectively detect the mixed color defect at various viewing angles In providing. Another object of the present invention is to provide an apparatus and a method for detecting a mixed color defect of an organic light emitting device, which enables to perform an inspection quickly and effectively on the entire region of a cell to be inspected.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 유기발광소자의 혼색 불량 검출장치(100)는, 복수 개의 유기발광소자가 2차원적으로 배열된 평면 형태의 셀을 검사하는 유기발광소자의 혼색 불량 검출장치(100)에 있어서, 상기 셀의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성되는 렌즈부(120); 복수 개의 이미지센서가 2차원적으로 배열된 평면 형태로 형성되어 상기 렌즈를 통해 취득된 상기 셀의 이미지를 센싱하며, 상기 렌즈부(120)의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성되는 센서부(130); 상기 렌즈부(120) 또는 상기 센서부(130)의 각도를 조절하는 제어부; 를 포함할 수 있다.In order to achieve the above object, the apparatus 100 for detecting a color failure of an organic light emitting diode according to an embodiment of the present invention is a color mixing defect of an organic light emitting diode that inspects a cell having a planar shape in which a plurality of organic light emitting diodes are two-dimensionally arranged. A detection apparatus (100), comprising: a lens unit (120) formed to be disposed parallel to or inclined to the surface of the cell; A plurality of image sensors are formed in a planar form arranged in two dimensions to sense the image of the cell obtained through the lens, and the sensor unit is formed to be arranged parallel or inclined to the surface of the lens unit 120 130; Control unit for adjusting the angle of the lens unit 120 or the sensor unit 130; It may include.
이 때 상기 제어부는, 상기 셀의 면을 물체면(1)이라 하고, 상기 렌즈부(120)에 포함되는 렌즈의 중심면을 렌즈면(2)이라 하고, 상기 센서부(130)의 면을 센서면(3)이라 할 때, 상기 물체면(1)의 연장선, 상기 렌즈면(2)의 연장선 및 상기 센서면(3)의 연장선이 일치하는 샤임플러그 조건이 만족되도록, 상기 렌즈부(120) 또는 상기 센서부(130)의 각도를 조절할 수 있다.At this time, the control unit, the surface of the cell is called the object surface (1), the center surface of the lens included in the lens unit 120 is called the lens surface (2), the surface of the sensor unit 130 When the sensor surface 3 is referred to as the sensor unit 3, the lens unit 120 is satisfied so that the schimp plug condition that the extension line of the object surface 1, the extension line of the lens surface 2 and the extension line of the sensor surface 3 coincide with each other is satisfied. Or the angle of the sensor unit 130 may be adjusted.
또한 상기 제어부는, 상기 렌즈의 중심점을 렌즈중심점(Q)이라 하고, 상기 센서부(130)의 중심점을 센서중심점(P)이라 하고, 상기 렌즈중심점(Q) 및 상기 센서중심점(P)을 연결하는 직선이 상기 물체면(1)과 만나는 점을 기준점(T)이라 하고, 샤임플러그 조건을 만족하는 점을 샤임플러그점(S)이라 하며, 상기 물체면(1) 및 상기 렌즈면(2)이 이루는 각을 광학계경사각(α)이라 하고, 상기 렌즈면(2) 및 상기 센서면(3)이 평행인 상태로부터 상기 광학계경사각(α)에 따라 샤임플러그 조건을 만족시키도록 상기 센서부(130)를 회전시켜야 할 각을 샤임플러그각(θ)이라 할 때, 하기의 식에 의하여 상기 샤임플러그각(θ)을 산출할 수 있다.In addition, the control unit, the center point of the lens is called a lens center point (Q), the center point of the sensor unit 130 is called a sensor center point (P), the lens center point (Q) and the sensor center point (P) is connected A point where a straight line meets the object plane 1 is referred to as a reference point T, and a point that satisfies the Scheimpplug condition is called a Scheimpplug point S. The object plane 1 and the lens surface 2 The angle formed is called an optical system inclination angle α, and the sensor unit 130 is satisfied so as to satisfy the Scheimpplug condition according to the optical system inclination angle α from the parallel state of the lens surface 2 and the sensor surface 3. When the angle to be rotated is referred to as the Scheimpplug angle θ, the Scheimpplug angle θ can be calculated by the following equation.
Figure PCTKR2019010229-appb-img-000001
Figure PCTKR2019010229-appb-img-000001
(여기에서, θ : 샤임플러그각, α : 광학계경사각, C : 기준점(T) 및 센서중심점 간 거리, R : 기준점(T) 및 샤임플러그점 간 거리)(Here, θ: Scheimpplug angle, α: Optical tilt angle, C: Distance between reference point (T) and sensor center point, R: Distance between reference point (T) and Scheimpplug point)
또한 상기 유기발광소자의 혼색 불량 검출장치(100)는, 상기 센서부(130)의 각도를 조절하는 틸트모터(135); 를 포함할 수 있다.In addition, the mixed color failure detection device 100 of the organic light emitting device, the tilt motor 135 for adjusting the angle of the sensor unit 130; It may include.
또한 상기 유기발광소자의 혼색 불량 검출장치(100)는, 상기 렌즈부(120) 및 상기 센서부(130) 간 거리를 조절하는 줌모터(125);를 포함할 수 있다.In addition, the mixed color failure detection device 100 of the organic light emitting device, the zoom motor 125 for adjusting the distance between the lens unit 120 and the sensor unit 130; may include.
더불어 상기 렌즈면(2)은, 상기 렌즈부(120)가 복수 개의 렌즈들이 적층되어 형성될 경우, 상기 물체면(1)에 가장 가깝게 배치된 렌즈의 중심면으로 결정될 수 있다.In addition, when the lens unit 120 is formed by stacking a plurality of lenses, the lens surface 2 may be determined as a center plane of the lens disposed closest to the object surface 1.
또한 본 발명의 유기발광소자의 혼색 불량 검출방법은, 상술한 바와 같이 이루어지는 유기발광소자의 혼색 불량 검출장치(100)를 이용한 유기발광소자의 혼색 불량 검출방법에 있어서, 상기 광학계경사각(α)이 0이고, 상기 렌즈면(2) 및 상기 센서면(3)이 평행인 상태에서의 상기 셀 전체 영역의 이미지인 기준이미지가 센싱되는 기준이미지센싱단계; 상기 광학계경사각(α)이 0이 아닌 각도로 조절되는 시야각경사조절단계; 샤임플러그 조건이 만족되도록 상기 센서면(3)의 각도가 상기 샤임플러그각(θ)으로 조절되는 샤임플러그조건만족단계; 상기 샤임플러그조건만족단계 이후 상태에서의 상기 셀 전체 영역의 이미지인 경사이미지가 센싱되는 경사이미지센싱단계; 상기 기준이미지 및 상기 경사이미지가 분석되어 혼색 불량이 검출되는 혼색불량검출단계; 를 포함할 수 있다.In addition, in the mixed color detection method of the organic light emitting device of the present invention, in the mixed color detection method of the organic light emitting device using the mixed color detection device 100 of the organic light emitting device as described above, the optical system tilt angle α is A reference image sensing step of sensing a reference image which is 0 and an image of the entire area of the cell in a state in which the lens plane 2 and the sensor plane 3 are in parallel; A viewing angle tilt adjustment step of adjusting the optical tilt angle α to a non-zero angle; A sham plug condition satisfying step in which the angle of the sensor surface 3 is adjusted to the scheimp plug angle θ so that a sham plug condition is satisfied; An inclined image sensing step of sensing an inclined image which is an image of the entire area of the cell in a state after the sham plug condition satisfaction step; A mixed color detection step of detecting a mixed color defect by analyzing the reference image and the inclined image; It may include.
이 때 상기 혼색불량검출단계는, 상기 경사이미지의 외곽 형상이 상기 기준이미지의 외곽 형상과 동일해지도록 변환되어 변환이미지로 생성되는 이미지변환단계; 상기 기준이미지 및 상기 변환이미지가 미리 결정된 복수 개의 구획으로 구분되는 구획구분단계; 각각의 상기 구획에 대하여 평균 색상 및 빛세기를 포함하는 검출정보가 획득되는 검출정보획득단계; 를 포함할 수 있다.At this time, the mixed color detection step, the image conversion step of converting the outer shape of the inclined image to be the same as the outer shape of the reference image to generate a converted image; A partition classification step of dividing the reference image and the converted image into a plurality of predetermined sections; A detection information acquisition step of obtaining detection information including an average color and light intensity for each of said sections; It may include.
또한 상기 혼색불량검출단계는, 상기 기준이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 기준이미지불량판단단계; 상기 변환이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 변환이미지불량판단단계; 상기 기준이미지의 선택된 구획 및 이에 대응되는 상기 변환이미지의 구획 간의 상기 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 이미지비교불량판단단계; 중 선택되는 적어도 하나를 포함할 수 있다.In addition, the mixed color detection step of detecting, the reference image defect determination step of determining whether the mixed color failure is generated according to a predetermined reference by comparing the detection information for each section of the reference image; A converted image defect determining step of comparing detected information of each section of the converted image with each other to determine whether a mixed color defect has occurred according to a predetermined criterion; An image comparison failure determination step of comparing the detection information between the selected section of the reference image and the section of the converted image corresponding thereto to determine whether a mixed color defect has occurred according to a predetermined criterion; It may include at least one selected from.
또한 상기 이미지변환단계는, 아핀 변환(affine transformation)을 이용하여 상기 변환이미지가 생성되도록 이루어질 수 있다.In addition, the image conversion step may be made to generate the transform image using affine transformation (affine transformation).
본 발명에 의하면, 종래에 정면에서 바라보았을 때(즉 시야각이 수직일 때)만 검출이 가능하여 미세한 혼색 불량을 검출할 수 없었던 한계를 극복하고, 샤임플러그 원리를 적용하여 검출 광학계에 있어서 기울어진 시야각을 실현함으로써, 다양한 시야각에 대한 혼색 불량 검출을 수행할 수 있는 큰 효과가 있다.According to the present invention, it is possible to detect only when viewed from the front (that is, when the viewing angle is vertical), thereby overcoming the limitation of not being able to detect fine mixed color defects, and applying the Scheimpplug principle to tilt the detection optical system. By realizing the viewing angle, there is a great effect that detection of mixed color defects for various viewing angles can be performed.
뿐만 아니라 본 발명에 의하면, 종래에 셀 전체 영역 중 몇 개의 포인트에서만 샘플링하여 검출을 수행했던 것과는 달리, 셀 전체의 이미지를 획득하여 혼색 불량 검출을 수행함으로써, 신속하고도 효과적으로 셀 전체 영역에 대한 혼색 불량 검출을 수행할 수 있는 큰 효과가 있다.In addition, according to the present invention, unlike the conventional sampling and detection of only a few points of the whole cell area, by detecting the color failure by acquiring the image of the entire cell, the color mixture for the entire cell area quickly and effectively There is a great effect that can perform a defect detection.
도 1은 물체면, 초점면, 렌즈면 및 센서면의 형성 상태.1 is a state in which an object plane, a focal plane, a lens plane, and a sensor plane are formed.
도 2는 광학계를 기울였을 때 초점면의 기울어짐에 따른 디포커스 상태.2 is a defocused state according to the inclination of the focal plane when the optical system is tilted.
도 3은 디포커스된 이미지의 예시.3 illustrates an example defocused image.
도 4는 샤임플러그 조건이 만족되도록 조절된 광학계.4 is an optical system adjusted to satisfy the Scheimpflug condition.
도 5는 포커스된 이미지의 예시.5 illustrates an example of a focused image.
도 6은 카메라 틸트 각도 산출을 위한 원리 설명도.6 is an explanatory diagram illustrating a principle for calculating a camera tilt angle.
도 7 내지 도 10은 본 발명의 검출장치의 실시예.7 to 10 show an embodiment of the detection apparatus of the present invention.
도 11은 본 발명의 검출방법의 흐름도.11 is a flowchart of a detection method of the present invention.
** 부호의 설명 **** Explanation of Codes **
10 : 카메라10: camera
1 : 물체면 1' : 초점면1: Object plane 1 ': Focal plane
2 : 렌즈면 3 : 센서면2: lens surface 3: sensor surface
3' : 초기센서면3 ': Initial sensor surface
100 : 검출장치100: detection device
110 : 케이스110: case
120 : 렌즈부 125 : 줌모터120: lens unit 125: zoom motor
130 : 센서부 135 : 틸트모터130: sensor unit 135: tilt motor
Q : 렌즈중심점 P : 센서중심점Q: Lens center point P: Sensor center point
T : 기준점 S : 샤임플러그점T: Reference point S: Scheimpplug point
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 유기발광소자의 혼색 불량 검출장치 및 검출방법을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, an apparatus and a method for detecting a color failure of an organic light emitting diode according to the present invention having the above-described configuration will be described in detail with reference to the accompanying drawings.
[1] 본 발명의 검출장치 및 검출방법의 원리[1] principle of detection apparatus and detection method of the present invention
도 1은 물체면, 초점면, 렌즈면 및 센서면의 형성 상태의 여러 예시를 도시하고 있다. 도 1에 도시된 바와 같이, 렌즈를 구비하는 카메라(10)를 사용하여 어떤 물체면(1)을 촬영한다고 전제한다. 이 때 카메라(10)의 렌즈가 형성하는 렌즈면(2), 렌즈에 의해 형성되는 초점면(1'), 초점면(1')으로부터 얻어지는 이미지가 맺히는 센서면(3)은, 도 1에 도시된 바와 같이 항상 기본적으로 평행하게 형성된다. 물체면(1)과 초점면(1')이 일치하는 경우, 센서면(3)에서 얻어지는 이미지는 모든 영역에서 초점이 잘 맞게 된다.1 shows various examples of the formation state of an object plane, a focal plane, a lens plane and a sensor plane. As shown in FIG. 1, it is assumed that an object surface 1 is photographed using a camera 10 having a lens. At this time, the lens surface 2 formed by the lens of the camera 10, the focal plane 1 'formed by the lens, and the sensor surface 3 on which the image obtained from the focal plane 1' are formed are shown in FIG. As shown, they are always formed essentially parallel. If the object plane 1 and the focal plane 1 'coincide, the image obtained at the sensor plane 3 is well focused in all areas.
도 2는 광학계를 기울였을 때 초점면의 기울어짐에 따른 디포커스 상태를 나타낸 것이다. 도 2에서는 A-B가 물체면(1) 및 카메라 시야각이 수직일 때의 초점면(1')에 해당하고, A'-B'가 카메라 시야각이 기울어져 있을 때의 초점면(1')에 해당한다. 상술한 바와 같이 물체면(1)과 초점면(1')이 일치하면 초점이 잘 맞는(즉 포커스된) 이미지를 얻을 수 있겠으나, 도 2에 도시된 바와 같이 물체면(1)에 대하여 초점면(1')이 기울어져 있는 경우, 도 3에 도시된 바와 같이 어느 부분에서는 초점이 맞더라도 다른 부분에서는 초점이 맞지 않는(즉 디포커스된) 이미지가 얻어지게 된다. 도 3의 예시에서는 중간 부분에서는 초점이 맞는 이미지가 얻어지는 반면, 외곽 부분에서는 초점이 맞지 않는 이미지가 얻어지고 있음이 잘 나타나 있다.2 illustrates a defocus state according to the inclination of the focal plane when the optical system is tilted. In FIG. 2, AB corresponds to the focal plane 1 'when the object plane 1 and the camera viewing angle are vertical, and A'-B' corresponds to the focal plane 1 'when the camera viewing angle is tilted. do. As described above, if the object plane 1 and the focal plane 1 'coincide with each other, a well-focused (ie focused) image can be obtained. However, as shown in FIG. 2, the focal plane 1 is focused on the object plane 1. When the surface 1 'is inclined, as shown in Fig. 3, an image is obtained which is out of focus (ie defocused) in some parts but not in another part. In the example of FIG. 3, it is well illustrated that an image in focus is obtained in the middle part, whereas an image is not in focus in the outer part.
앞서 설명한 바와 같이, 종래에 유기발광소자의 혼색 불량을 검출하는 장치에서는, 정면에서 바라보는 상태에서 샘플링된 몇 개의 포인트에서 획득된 정보를 가지고 검출을 수행하였다. 혼색 정도가 심하지 않은 경우에는 정면에서는 혼색 불량임을 판단하기 어려우나, 조금 기울어진 측면에서 본다면 혼색 불량이 발생하였음을 파악할 수 있다. 그러나 종래의 검출장치의 경우 정면에서 관측하는 것을 기준으로 광학계가 설계되어 있는 바, 광학계를 기울여 관측할 경우 도 2에서 설명한 바와 같이 디포커스된 이미지밖에는 얻을 수 없어, 신뢰성있는 검출 결과를 얻기 어렵다.As described above, in the conventional apparatus for detecting a mixed color defect of the organic light emitting device, the detection was performed with information acquired at several points sampled in the front view. When the degree of mixing is not severe, it is difficult to determine that the mixing is bad from the front, but when viewed from a slightly inclined side it can be seen that the mixing failure occurs. However, in the conventional detection apparatus, since the optical system is designed based on the observation from the front, only the defocused image can be obtained as described in FIG. 2 when the optical system is inclined, and thus it is difficult to obtain a reliable detection result.
이러한 문제를 해소하기 위하여, 본 발명에서는 샤임플러그(Scheimpflug) 조건 원리를 검출 광학계에 적용한다. 샤임플러그 조건이란 물체면(1)과 렌즈면(2)이 평행하지 않고 어떤 경사각을 이루고 있는 경우 '물체면(1), 렌즈면(2), 센서면(3)의 연장선들은 항상 한 점에서 교차한다'는 것이다. 물체면(1)은 고정되어 있는 면이며, 따라서 렌즈면(2) 또는 센서면(3)을 적절히 기울여 줌으로써 샤임플러그 조건을 만족시킬 수 있다. 이러한 샤임플러그 조건이 만족될 때, 물체면(1)과 렌즈면(2)이 경사지게 배치되어 있는 경우라 하더라도 초점이 잘 맞는 이미지를 얻어낼 수 있게 된다.In order to solve this problem, the present invention applies the Schimpflug condition principle to the detection optical system. The Scheimpflug condition means that when the object plane 1 and the lens plane 2 are not parallel and form an inclination angle, the extension lines of the object plane 1, the lens plane 2, and the sensor plane 3 are always at one point. To cross. The object surface 1 is a fixed surface, and accordingly, the chime plug condition can be satisfied by tilting the lens surface 2 or the sensor surface 3 appropriately. When the Scheimpflug condition is satisfied, even if the object surface 1 and the lens surface 2 are inclined, a well-focused image can be obtained.
도 4는 이와 같이 샤임플러그 조건이 만족되도록 조절된 광학계를 도시하고 있다. 도 4에 도시된 바와 같이, 물체면(1)에 대하여 렌즈면(2)이 소정의 각도를 이루고 경사지게 배치된다고 가정한다. 일반적으로는 렌즈 및 센서는 평행하게 배치되므로, 초기 상태에 초기센서면(3')은 도 4에 도시된 바와 같이 렌즈면(2)과 평행하게 형성된다. 그러나 이 상태에서는 도 3의 예시와 같이 디포커스된 이미지가 얻어지게 된다. 이 때, 도 4에 도시된 바와 같이 센서를 기울여서 센서면(3)의 연장선이 샤임플러그 조건을 만족시키도록 하면, 앞서 설명한 바와 같이 포커스된 이미지를 얻어낼 수 있다. 도 5는 바로 이와 같이 시야각이 경사지게 형성됨에도 불구하고 포커스된 이미지의 예시를 도시하고 있다. 도 3 및 도 5를 비교하였을 때, 도 3에서는 외곽 부분에서 초점이 맞지 않아 이미지가 흐려진 형태로 나타나는 반면, 도 5에서는 중간 부분 및 양쪽 외곽 부분 모두에서 초점이 잘 맞는 형태로 나타나는 것을 확인할 수 있다.4 shows the optical system adjusted to satisfy the Scheimpplug condition. As shown in FIG. 4, it is assumed that the lens surface 2 is inclined at an angle with respect to the object surface 1. In general, since the lens and the sensor are arranged in parallel, in the initial state, the initial sensor surface 3 'is formed in parallel with the lens surface 2 as shown in FIG. In this state, however, a defocused image is obtained as shown in the example of FIG. 3. In this case, as shown in FIG. 4, when the sensor is inclined so that the extension line of the sensor surface 3 satisfies the Scheimpplug condition, the focused image may be obtained as described above. 5 shows an example of the focused image even though the viewing angle is formed to be inclined as such. In comparison with FIGS. 3 and 5, in FIG. 3, the image is blurred due to out of focus in the outer part, whereas in FIG. 5, the middle and both outer parts are well-focused. .
도 6은 카메라 틸트 각도 산출을 위한 원리 설명도이다. 도 6을 통해 본 발명의 검출장치 원리를 보다 상세히 설명한다. 먼저 원리 설명을 위한 각부를 정의하면 다음과 같다. 도 6에서, 상기 셀의 면을 물체면(1)이라 하고, 상기 렌즈부(120)에 포함되는 렌즈의 중심면을 렌즈면(2)이라 하고, 상기 센서부(130)의 면을 센서면(3)이라 한다. 도 6에서는, 초기에 렌즈 및 센서가 평행인 상태일 때가 초기센서면(3')으로 도시되고, 샤임플러그 조건을 만족시켰을 때가 센서면(3)으로 도시되었다.6 is an explanatory diagram illustrating a principle for calculating a camera tilt angle. 6 illustrates the principle of the detection apparatus of the present invention in more detail. First, the parts for explaining the principle are as follows. In FIG. 6, the surface of the cell is called an object plane 1, the center plane of the lens included in the lens unit 120 is called a lens plane 2, and the surface of the sensor unit 130 is called a sensor plane. It is called (3). In Fig. 6, an initial sensor surface 3 'is shown when the lens and sensor are initially parallel, and a sensor surface 3 is shown when the Scheimpplug condition is satisfied.
또한 상기 렌즈의 중심점을 렌즈중심점(Q)이라 하고, 상기 센서부(130)의 중심점을 센서중심점(P)이라 하고, 상기 렌즈중심점(Q) 및 상기 센서중심점(P)을 연결하는 직선이 상기 물체면(1)과 만나는 점을 기준점(T)이라 하고, 샤임플러그 조건을 만족하는 점을 샤임플러그점(S)이라 한다. 더불어 상기 물체면(1) 및 상기 렌즈면(2)이 이루는 각을 광학계경사각(α)이라 하고, 상기 렌즈면(2) 및 상기 센서면(3)이 평행인 상태로부터 상기 광학계경사각(α)에 따라 샤임플러그 조건을 만족시키도록 상기 센서부(130)를 회전시켜야 할 각을 샤임플러그각(θ)이라 한다.In addition, the center point of the lens is called a lens center point (Q), the center point of the sensor unit 130 is called a sensor center point (P), and a straight line connecting the lens center point (Q) and the sensor center point (P) is The point where the object surface 1 meets is called the reference point T, and the point that satisfies the Scheimpplug condition is called the Scheimpplug point S. In addition, the angle formed by the object surface 1 and the lens surface 2 is called an optical system inclination angle α, and the optical system inclination angle α is obtained from the parallel state of the lens surface 2 and the sensor surface 3. The angle at which the sensor unit 130 is to be rotated to satisfy the Scheimpplug condition is referred to as a Scheimpplug angle θ.
도 6에 도시된 바와 같이, 기준점(T) 및 렌즈중심점(Q) 간 거리를 X라 하고, 기준점(T) 및 샤임플러그점(S) 간 거리를 R이라 할 때, R 값은 수학식 1과 같이 나타낼 수 있다.As shown in FIG. 6, when the distance between the reference point T and the lens center point Q is X, and the distance between the reference point T and the Scheimpplug point S is R, the R value is represented by Equation 1 It can be expressed as
[수학식 1][Equation 1]
Figure PCTKR2019010229-appb-img-000002
Figure PCTKR2019010229-appb-img-000002
센서중심점(P) 및 샤임플러그점(S) 간 거리를
Figure PCTKR2019010229-appb-img-000003
라 하고, 기준점(T) 및 센서중심점(P) 간 거리를 C라 할 때,
Figure PCTKR2019010229-appb-img-000004
값은 제2코사인법칙에 따라 수학식 2와 같이 나타낼 수 있다.
The distance between the sensor center point (P) and the Scheimpplug point (S)
Figure PCTKR2019010229-appb-img-000003
When the distance between the reference point (T) and the sensor center point (P) is C,
Figure PCTKR2019010229-appb-img-000004
The value may be represented by Equation 2 according to the second cosine law.
[수학식 2][Equation 2]
Figure PCTKR2019010229-appb-img-000005
Figure PCTKR2019010229-appb-img-000005
한편
Figure PCTKR2019010229-appb-img-000006
의 연장선 및 C의 연장선이 이루는 각도를 β라 할 때, β 값은 수학식 3과 같이 나타낼 수 있다.
Meanwhile
Figure PCTKR2019010229-appb-img-000006
When the angle formed by the extension line of and the extension line of C is β, the β value can be expressed by Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2019010229-appb-img-000007
Figure PCTKR2019010229-appb-img-000007
수학식 2를 수학식 3에 대입하고 β에 대하여 정리하면, 하기의 수학식 4를 얻을 수 있다.Substituting Equation 2 into Equation 3 and arranging for β, Equation 4 below can be obtained.
[수학식 4][Equation 4]
Figure PCTKR2019010229-appb-img-000008
Figure PCTKR2019010229-appb-img-000008
이 때, 샤임플러그각(θ)을 β로 나타내면 하기의 수학식 5와 같이 나타낼 수 있다.At this time, if the chime plug angle θ is represented by β, it can be expressed as shown in Equation 5 below.
[수학식 5][Equation 5]
Figure PCTKR2019010229-appb-img-000009
Figure PCTKR2019010229-appb-img-000009
수학식 4를 수학식 5에 대입하고 θ에 대하여 정리하면, 샤임플러그각(θ) 값은 하기의 수학식 6을 통해 얻을 수 있다.Substituting Equation 4 into Equation 5 and arranging θ, the Scheimpplug angle θ value can be obtained through Equation 6 below.
[수학식 6][Equation 6]
Figure PCTKR2019010229-appb-img-000010
Figure PCTKR2019010229-appb-img-000010
[2] 본 발명의 유기발광소자의 혼색 불량 검출장치[2] color mixing defect detection device of organic light emitting device of the present invention
도 7 내지 도 10은 본 발명의 검출장치의 실시예를 도시한 것으로, 도시된 바와 같이 본 발명의 유기발광소자의 혼색 불량 검출장치(100)는, 렌즈부(120), 센서부(130) 및 제어부(미도시)를 포함하여 이루어져, 복수 개의 유기발광소자가 2차원적으로 배열된 평면 형태의 셀을 검사한다. 본 발명의 유기발광소자의 혼색 불량 검출장치(100)는 또한, 상기 렌즈부(120), 상기 센서부(130) 등을 안정적으로 수용하여 모듈화시킬 수 있도록, 도시된 바와 같이 케이스(110)를 더 포함할 수 있다.7 to 10 show an embodiment of the detection device of the present invention, as shown in the mixed color failure detection device 100 of the organic light emitting device of the present invention, the lens unit 120, the sensor unit 130 And a controller (not shown), and inspects a planar cell in which a plurality of organic light emitting diodes are two-dimensionally arranged. The mixed color failure detection device 100 of the organic light emitting device of the present invention also, so that the lens unit 120, the sensor unit 130 and the like can be accommodated and modularized, as shown in the case 110 It may further include.
상기 렌즈부(120)는 상기 셀의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성된다. 이 때 상기 렌즈부(120) 등이 상기 케이스(110)에 안정적으로 지지되므로, 모듈화된 상기 검출장치(100) 자체를 별도의 이동장치에 달아서 움직임으로써, 상기 렌즈부(120)의 렌즈면(2)이 상기 셀의 면과 평행하거나 또는 경사지게 배치될 수 있게 된다. 상기 렌즈부(120)가 단일 개의 렌즈로 형성될 경우, 렌즈면(2)은 단일 개의 렌즈 중심면으로 자명하게 결정된다. 한편 상기 렌즈부(120)가 복수 개의 렌즈들이 적층되어 형성될 경우, 상기 물체면(1)에 가장 가깝게 배치된 렌즈의 중심면으로 결정되면 된다.The lens unit 120 is formed to be disposed parallel to or inclined to the surface of the cell. At this time, since the lens unit 120 and the like are stably supported by the case 110, the modular detection device 100 itself is attached to a separate moving device to move the lens surface of the lens unit 120 ( 2) can be arranged parallel to or inclined to the face of the cell. When the lens unit 120 is formed of a single lens, the lens surface 2 is obviously determined as a single lens center plane. Meanwhile, when the lens unit 120 is formed by stacking a plurality of lenses, the lens unit 120 may be determined to be the center plane of the lens disposed closest to the object plane 1.
상기 센서부(130)는, 복수 개의 이미지센서가 2차원적으로 배열된 평면 형태로 형성되어 상기 렌즈를 통해 취득된 상기 셀의 이미지를 센싱하는 역할을 한다. 더불어 상기 센서부(130)는 상기 렌즈부(120)의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성됨으로써, 상기 검출장치(100)가 어떠한 광학계경사각(α)으로 배치되더라도 상기 센서부(130)를 별도로 움직여서 샤임플러그 조건을 만족시킬 수 있게 된다. 상기 센서부(130)의 회전을 위해, 상기 검출장치(100)는 상기 센서부(130)의 각도를 조절하는 틸트모터(135)를 더 포함할 수 있다.The sensor unit 130 is formed in a planar shape in which a plurality of image sensors are two-dimensionally arranged to serve to sense an image of the cell acquired through the lens. In addition, the sensor unit 130 is formed to be disposed parallel or inclined to the surface of the lens unit 120, so that the sensor unit 130, even if the detection device 100 is disposed at any optical tilt angle (α) It can be moved separately to satisfy the Scheimpplug condition. In order to rotate the sensor unit 130, the detection device 100 may further include a tilt motor 135 to adjust the angle of the sensor unit 130.
상기 제어부는 상기 렌즈부(120) 또는 상기 센서부(130)의 각도를 조절하는 역할을 한다. 상기 제어부가 상기 센서부(130)의 각도를 조절하고자 하는 경우, 상기 제어부는 상기 틸트모터(135)를 제어할 수 있다. 한편 상기 제어부가 상기 렌즈부(120)의 각도를 조절하고자 하는 경우, 도시된 바와 같이 상기 검출장치(100)가 모듈화되어 있어 어떤 광학계경사각(α)을 형성하기 위해서 상기 검출장치(100) 자체가 달려 있는 이동장치를 움직여야 할 때, 상기 제어부는 상기 이동장치를 제어할 수 있다.The controller controls the angle of the lens unit 120 or the sensor unit 130. When the controller wants to adjust the angle of the sensor unit 130, the controller may control the tilt motor 135. On the other hand, when the control unit wants to adjust the angle of the lens unit 120, the detection device 100 is modular as shown, so that the detection device 100 itself is formed to form a certain optical system inclination angle (α) When it is necessary to move the mobile device, the control unit may control the mobile device.
상기 제어부가 어떤 광학계경사각(α)으로 상기 렌즈부(120)의 각도를 조절한 후에는, 상기 제어부는 상기 물체면(1)의 연장선, 상기 렌즈면(2)의 연장선 및 상기 센서면(3)의 연장선이 일치하는 샤임플러그 조건이 만족되도록 상기 센서부(130) 각도를 조절할 수 있다. 물론 상기 센서부(130) 각도가 미리 결정된다면, 상기 제어부는 상기 센서부(130) 각도에 따라 상기 렌즈부(120)의 각도를 조절하도록 이루어질 수도 있다. 어떤 경우에든, 상기 제어부는 (앞서 설명한 원리에 따라) 하기의 식에 의하여 상기 샤임플러그각(θ)을 산출할 수 있다.After the controller adjusts the angle of the lens unit 120 to a certain optical tilt angle α, the controller is an extension line of the object surface 1, an extension line of the lens surface 2 and the sensor surface (3). The angle of the sensor unit 130 may be adjusted so that the Scheimpplug condition that the extension line of the I) is satisfied is satisfied. Of course, if the angle of the sensor unit 130 is predetermined, the controller may be configured to adjust the angle of the lens unit 120 according to the angle of the sensor unit 130. In any case, the controller can calculate the Scheimpflug angle θ by the following equation (according to the principles described above).
Figure PCTKR2019010229-appb-img-000011
Figure PCTKR2019010229-appb-img-000011
(여기에서, θ : 샤임플러그각, α : 광학계경사각, C : 기준점 및 센서중심점 간 거리, R : 기준점 및 샤임플러그점 간 거리)(Here, θ: Scheimpplug angle, α: Optical tilt angle, C: Distance between reference point and sensor center point, R: Distance between reference point and Scheimpplug point)
부가적으로, 상기 검출장치(100)는, 상기 렌즈부(120) 및 상기 센서부(130) 간 거리를 조절하는 줌모터(125)를 더 포함할 수 있다. 상기 렌즈부(120) 및 상기 센서부(130) 간 거리를 조절함으로써 렌즈 배율을 조절할 수 있으며, 렌즈 배율을 조절함으로써 다양한 크기의 상기 셀의 이미지를 용이하고 효과적으로 얻을 수 있게 된다.In addition, the detection apparatus 100 may further include a zoom motor 125 that adjusts the distance between the lens unit 120 and the sensor unit 130. The lens magnification may be adjusted by adjusting the distance between the lens unit 120 and the sensor unit 130, and by adjusting the lens magnification, images of the cells of various sizes may be easily and effectively obtained.
[3] 본 발명의 유기발광소자의 혼색 불량 검출방법[3] Mixed color detection method of organic light emitting device of the present invention
상술한 바와 같은 본 발명의 유기발광소자의 혼색 불량 검출장치(100)를 이용하여 혼색 불량을 검출하는 검출방법에 대하여 보다 상세히 설명한다. 본 발명의 유기발광소자의 혼색 불량 검출방법은, 도 11에 도시된 바와 같이, 기준이미지센싱단계, 시야각경사조절단계, 샤임플러그조건만족단계, 경사이미지센싱단계, 혼색불량검출단계를 포함한다.The detection method for detecting the color mixture defect by using the color mixture defect detecting apparatus 100 of the organic light emitting device of the present invention as described above will be described in more detail. As illustrated in FIG. 11, the mixed color detection method of the organic light emitting device of the present invention includes a reference image sensing step, a viewing angle tilt control step, a saim plug condition satisfaction step, a gradient image sensing step, and a mixed color defect detection step.
상기 기준이미지센싱단계에서는, 상기 광학계경사각(α)이 0이고, 상기 렌즈면(2) 및 상기 센서면(3)이 평행인 상태에서의 상기 셀 전체 영역의 이미지인 기준이미지가 센싱된다. 상기 광학계경사각(α)이 0이고, 상기 렌즈면(2) 및 상기 센서면(3)이 평행인 상태가 되면, 물체면-렌즈면-센서면이 모두 평행한 상태가 되므로 샤임플러그 조건과 관계없이 초점이 잘 맞는 이미지를 얻을 수 있다. 또한, 렌즈가 정면으로 물체를 향하고 있는 상태에서 이미지 취득이 이루어지기 때문에, 형상 왜곡이 없는 이미지를 얻을 수 있다. 예를 들어 대상물인 상기 셀이 직사각형 모양이라면, 상기 기준이미지센싱단계에서 얻어지는 기준이미지 역시 직사각형 모양으로 나오게 된다.In the reference image sensing step, a reference image which is an image of the entire cell area in the state where the optical system tilt angle α is 0 and the lens surface 2 and the sensor surface 3 are in parallel is sensed. When the optical system tilt angle α is 0 and the lens surface 2 and the sensor surface 3 are in a parallel state, the object surface, the lens surface, and the sensor surface are both in parallel, and thus the relationship with the schimp plug condition is achieved. You can get a well-focused image without In addition, since image acquisition is performed with the lens facing the object in front, an image without shape distortion can be obtained. For example, if the cell as an object has a rectangular shape, the reference image obtained in the reference image sensing step also comes out in a rectangular shape.
상기 시야각경사조절단계에서는, 상기 광학계경사각(α)이 0이 아닌 각도로 조절된다. 앞서 설명한 바와 같이, 정면에서 촬영한 이미지를 사용하여 혼색 불량 검사를 하는 경우 정도가 심하지 않은 혼색 불량을 미처 잡아내지 못할 경우가 있다. 이럴 때 시야각을 기울여서 비스듬하게 봄으로써 이러한 혼색 불량을 알아낼 수가 있다.In the viewing angle tilt adjusting step, the optical system tilt angle α is adjusted to a non-zero angle. As described above, when the mixed color defect inspection is performed by using the image photographed from the front, there is a case that the mixed color defect that is not severe enough may not be caught. In this case, it is possible to detect such a mixed color defect by tilting the viewing angle.
상기 샤임플러그조건만족단계에서는, 샤임플러그 조건이 만족되도록 상기 센서면(3)의 각도가 상기 샤임플러그각(θ)으로 조절된다. 상술한 바와 같이 시야각을 기울여서 비스듬하게 보는 경우, 일반적으로 렌즈면-센서면이 평행한 상태로 고정되어 있는 광학계의 경우에는 초점면과 물체면이 크게 어긋나게 됨으로써 초점이 맞지 않는 이미지가 얻어지게 된다. 검출용 이미지의 초점이 맞지 않는다면 이 이미지를 분석한다 해도 유기발광소자의 혼색 불량 검출이 올바르게 이루어지지 않을 것이기 때문에, 시야각을 기울여도 초점이 맞는 이미지를 얻어낼 수 있어야 한다. 이 때 앞서 원리 설명에서 기술한 바와 같이, 광학계와 물체면이 기울어져 있는 경우라 하더라도 샤임플러그 조건을 만족시키는 경우 초점이 잘 맞는 이미지를 얻을 수 있다. 즉 본 발명의 검출장치(100)는, 이처럼 경사진 시야각에서도 포커스된 이미지를 얻어낼 수 있게 하기 위하여, 렌즈면-센서면 간 각도를 조절할 수 있게 이루어지는 것이다.In the step of satisfying the Scheimpplug condition, the angle of the sensor surface 3 is adjusted to the Scheimpplug angle θ so that the Scheimpplug condition is satisfied. As described above, when the viewing angle is inclined and viewed obliquely, in the case of the optical system in which the lens plane and the sensor plane are fixed in parallel with each other, the focal plane and the object plane are greatly displaced, thereby obtaining an unfocused image. If the detection image is not in focus, the mixed color defect detection of the organic light emitting device will not be performed correctly even if the image is analyzed. Therefore, the focused image should be obtained even when the viewing angle is tilted. In this case, as described in the principle description above, even if the optical system and the object surface are inclined, if the Scheimpplug condition is satisfied, a well-focused image can be obtained. That is, the detection apparatus 100 of the present invention is configured to be able to adjust the angle between the lens surface and the sensor surface in order to obtain a focused image even in this inclined viewing angle.
상기 경사이미지센싱단계에서는, 상기 샤임플러그조건만족단계 이후 상태에서의 상기 셀 전체 영역의 이미지인 경사이미지가 센싱된다. 상술한 바와 같이 물체면, 렌즈면, 센서면의 연장선이 한 점에서 만나 샤임플러그 조건이 만족되면 초점이 잘 맞는 이미지를 얻을 수 있다. 따라서 상기 경사이미지를 분석함으로써 시야각이 비스듬한 상태에서의 혼색 불량을 검출해 낼 수 있게 된다. 한편 이 때, 예를 들어 대상물인 상기 셀이 직사각형 모양이라면, 상기 경사이미지센싱단계에서 얻어지는 경사이미지는 왜곡된 형상인 사다리꼴 모양으로 나오게 된다.In the inclined image sensing step, an inclined image that is an image of the entire area of the cell in a state after the same plug condition satisfaction step is sensed. As described above, when the extension lines of the object plane, the lens plane, and the sensor plane meet at one point, and the Scheimpplug condition is satisfied, a well-focused image can be obtained. Therefore, by analyzing the inclined image, it is possible to detect a mixed color defect in a state in which the viewing angle is oblique. On the other hand, at this time, for example, if the cell as an object has a rectangular shape, the inclined image obtained in the inclined image sensing step comes out in a trapezoidal shape which is a distorted shape.
상기 혼색불량검출단계에서는, 상기 기준이미지 및 상기 경사이미지가 분석되어 혼색 불량이 검출된다. 이 때 상기 기준이미지 및 상기 경사이미지를 분석하는 방식은 여러 가지가 있을 수 있으며, 도 11의 실시예를 기준으로 설명하면 다음과 같다.In the mixed color defect detecting step, the reference image and the inclined image are analyzed to detect a mixed color defect. In this case, there may be various ways of analyzing the reference image and the inclined image, which will be described below with reference to the embodiment of FIG. 11.
도 11에 보이는 바와 같이, 상기 혼색불량검출단계는 이미지변환단계, 구획구분단계, 검출정보획득단계를 포함할 수 있다.As shown in FIG. 11, the mixed color defect detection step may include an image conversion step, a partition classification step, and a detection information acquisition step.
상기 이미지변환단계에서는, 상기 경사이미지의 외곽 형상이 상기 기준이미지의 외곽 형상과 동일해지도록 변환되어 변환이미지로 생성된다. 앞서 설명한 바와 같이 예를 들어 상기 셀이 직사각형 모양이라면, 상기 기준이미지는 (왜곡이 없이) 직사각형 모양으로 나오며, 상기 경사이미지는 (왜곡됨에 따라) 사다리꼴 모양으로 나오게 된다. 이 때 상기 기준이미지 및 상기 경사이미지의 각 지점들을 대응시켜 좌표변환을 하는 방식, 즉 아핀 변환(affine transformation)을 이용함으로써 상기 경사이미지를 용이하게 상기 변환이미지로 생성할 수 있다. 아핀 변환은 단지 공간상의 변환이기 때문에 이미지의 밝기에는 영향을 주지 않으므로, 아핀 변환을 이용하여 만들어진 상기 변환이미지를 사용하여 혼색 불량을 검사하여도 아무런 문제가 없다.In the image conversion step, the outline shape of the inclined image is converted to be the same as the outline shape of the reference image to generate a converted image. As described above, for example, if the cell is rectangular in shape, the reference image is in a rectangular shape (without distortion), and the inclined image is in trapezoidal shape (as it is distorted). In this case, the tilted image may be easily generated as the transformed image by using a method of coordinate transformation corresponding to each point of the reference image and the tilted image, that is, an affine transformation. Since the affine transformation is only a spatial transformation, it does not affect the brightness of the image. Thus, there is no problem in checking mixed color defects using the converted image made using the affine transformation.
상기 구획구분단계에서는, 상기 기준이미지 및 상기 변환이미지가 미리 결정된 복수 개의 구획으로 구분된다. 상술한 예시에서처럼 상기 셀이 직사각형 모양일 경우, M개의 행 및 N개의 열로 나누어 MㅧN개의 구획으로 나눌 수 있으며, 이 때 M, N 값은 사용자가 원하는 대로 적절하게 결정할 수 있다.In the partition classification step, the reference image and the converted image are divided into a plurality of predetermined sections. As described above, when the cell has a rectangular shape, the cell may be divided into M ㅧ N partitions by M rows and N columns, and M and N values may be appropriately determined as desired by the user.
상기 검출정보획득단계에서는, 각각의 상기 구획에 대하여 평균 색상 및 빛세기를 포함하는 검출정보가 획득된다. 이와 같이 획득된 검출정보를 사용하여 혼색 불량을 검사하면 되는데, 검사 방식에 따라 기준이미지불량판단단계, 변환이미지불량판단단계, 이미지비교불량판단단계 중 적어도 하나의 단계가 수행될 수 있다.In the detection information acquisition step, detection information including an average color and light intensity is obtained for each of the partitions. The mixed color defect may be inspected using the acquired detection information. At least one of the reference image defect determination step, the conversion image defect determination step, and the image comparison failure determination step may be performed according to the inspection method.
상기 기준이미지불량판단단계에서는, 상기 기준이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단된다. 예를 들어 상기 셀 전체에 R 색상을 켠 상태에서 상기 기준이미지를 획득하였을 때, 혼색 불량이 발생하지 않은 이상적인 경우라면 MㅧN개의 모든 구획에서 얻어진 검출정보가 모두 동일하게 나오게 될 것이다. 한편 어느 하나의 구획에서 혼색 불량이 발생하였을 경우, 즉 한 예시로서 R 유기발광물질이 인쇄되어야 하는 위치에 G 또는 B 유기발광물질이 섞여있는 경우, 해당 구획에서는 다른 구획에 비해 R 값이 낮고 G 또는 B 값이 높게 나오게 될 것이다. 이러한 구획이 발견되었다면 해당 구획에서 혼색 불량이 발생되었다고 판정하면 되는 것이다. 다만 상술한 바와 같이 이상적인 경우라면 모든 구획에서의 검출정보가 동일하게 나오겠으나, 실제로는 약간의 노이즈 등으로 인하여 모든 구획에서의 검출정보가 완전히 동일할 수는 없다. 따라서 혼색 불량 판단 시, 각 구획에서의 검출정보들이 미리 결정된 적절한 수준의 범위 내에 있으면 정상으로, 그 범위를 벗어나면 불량으로 판정하는 식으로 혼색 불량 판단이 이루어지게 하는 것이 바람직하다.In the reference image defective determination step, the detection information for each section of the reference image is compared with each other, and it is determined whether a mixed color defect has occurred according to a predetermined criterion. For example, when the reference image is acquired while the R color is turned on for the entire cell, the detection information obtained in all M ㅧ N partitions will all be identical if the ideal case in which the mixed color defect does not occur. On the other hand, when mixed color defects occur in one compartment, that is, as an example, when G or B organic light emitting material is mixed at a position where the R organic light emitting material should be printed, the R value is lower than that of the other compartments and the G Or B value will be high. If such a compartment is found, it can be determined that a mixed color defect has occurred in the compartment. However, in the ideal case as described above, the detection information in all the sections will be the same, but in reality, the detection information in all the sections cannot be completely the same due to some noise. Therefore, when the mixed color defect is determined, it is preferable that the mixed color defect is determined by determining that the detected information in each section is within a range of a predetermined appropriate level, and determining that the defect is out of the range.
상기 변환이미지불량판단단계에서는, 상기 기준이미지불량판단단계와 유사하게, 상기 변환이미지를 사용하여 혼색 불량 발생이 판단된다. 즉 상기 변환이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 것이다. 앞서 설명한 바와 같이, 혼색 불량 정도가 심한 경우에는 정면에서 본 이미지(즉 상기 기준이미지)에서도 혼색 불량이 쉽게 검출되지만, 혼색 불량 정도가 심하지 않은 경우에는 정면에서는 혼색 불량이 잘 검출되지 않을 수 있다. 이러한 경우 비스듬하게 본 이미지(즉 상기 변환이미지)를 사용하여 혼색 불량 검출을 수행함으로써, 정도가 심하지 않아 정면에서 검출되지 않았던 혼색 불량까지 놓치지 않고 검출해 낼 수 있게 된다.In the converted image defective determination step, similar to the reference image defective determination step, mixed color defect occurrence is determined using the converted image. That is, the detection information of each section of the converted image is compared with each other, and it is determined whether a mixed color defect occurs according to a predetermined criterion. As described above, when the mixed color defect is severe, the mixed color defect is easily detected even in the image viewed from the front (that is, the reference image), but when the mixed color defect is not severe, the mixed color defect may not be detected well in the front. In this case, by performing the mixed color defect detection using the image viewed at an angle (that is, the converted image), it is possible to detect the mixed color defect that is not so severe and not detected from the front.
상기 이미지비교불량판단단계에서는, 상기 기준이미지의 선택된 구획 및 이에 대응되는 상기 변환이미지의 구획 간의 상기 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단된다. 상기 기준이미지불량판단단계 또는 상기 변환이미지불량판단단계 각각에서는, 상기 기준이미지 또는 상기 변환이미지 단독으로 혼색 불량을 판단한다. 앞서도 설명한 바와 같이 이상적인 경우라면 불량이 없을 때 모든 구획에서의 검출정보가 동일하게 나타나야 하겠지만, 실제로는 조명 등과 같은 노이즈에 의하여 위치에 따라 약간의 밝기 차이 등이 나타날 수 있다. 그런데 이와 같은 변수를 고려하여 불량 판단 기준을 잡을 경우 기준범위가 지나치게 넓어지게 될 위험이 있다. 반면 상기 이미지비교불량판단단계에서는, 상기 기준이미지를 기준으로 하여 상기 변환이미지를 비교함으로써 혼색 불량을 판단하기 때문에, 불량 판단 기준 범위를 불필요하게 넓게 잡지 않아도 된다. 또한 이와 같이 함으로써 정면에서 보았을 때 검출되지 않지만 기울여서 보았을 때 검출이 가능한 혼색 불량을 더욱 효과적으로 검출할 수 있다.In the image comparison failure determination step, the detection information between the selected section of the reference image and the section of the converted image corresponding thereto is compared with each other, and it is determined whether a mixed color defect has occurred according to a predetermined criterion. In each of the reference image defective determination step or the converted image defective determination step, mixed color failure is determined solely by the reference image or the converted image. As described above, in the ideal case, when there is no defect, the detection information in all the sections should appear the same, but in reality, a slight brightness difference may appear depending on the position due to noise such as lighting. However, if the failure criteria are taken in consideration of such variables, there is a risk that the standard range becomes too wide. On the other hand, in the image comparison failure determination step, since the mixed color defect is determined by comparing the converted image based on the reference image, it is not necessary to unnecessarily widen the defect determination reference range. In this way, a mixed color defect that is not detected when viewed from the front but can be detected when tilted can be detected more effectively.
상기 혼색불량검출단계에서, 상술한 바와 같은 기준이미지불량판단단계, 변환이미지불량판단단계, 이미지비교불량판단단계를 반드시 모두 수행할 필요는 없다. 예를 들어 기준이미지불량판단단계를 맨 처음 수행하여 기준이미지에서 혼색 불량이 검출되었다면, 이미 혼색 불량이 검출되었으므로 나머지 두 단계들은 굳이 수행하지 않아도 된다. 한편 기준이미지에서 혼색 불량이 검출되지 않았다면, 변환이미지에서 혼색 불량이 검출되는지의 여부를 확인할 필요가 있으며, 이 때 변환이미지불량판단단계 및 이미지비교불량판단단계 이 두 단계 중 어느 하나만 수행하여 혼색 불량 검출을 수행하여도 되고, 두 단계를 모두 수행하여도 된다.In the mixed color detection step, it is not necessary to perform all of the reference image determination step, the conversion image failure determination step, and the image comparison failure determination step as described above. For example, if the mixed color defect is detected in the reference image by first performing the reference image defective determination step, the mixed color defect has already been detected, and the remaining two steps do not need to be performed. On the other hand, if the mixed color defect is not detected in the reference image, it is necessary to check whether the mixed color defect is detected in the converted image, and at this time, the converted image defect determination step and the image comparison failure determination step are performed by any one of the two steps. Detection may be performed or both steps may be performed.
부가적으로, 기준이미지를 1장 획득한 후에, 광학계경사각을 바꾸어 가면서 경사이미지를 여러 장 획득하여 혼색 불량 검출을 수행하여도 무방하다. 예를 들어 기준이미지를 1장 획득한 후에, 광학계경사각이 오른쪽으로 45도 경사인 경우, 왼쪽으로 45도 경사인 경우, 이렇게 2장의 경사이미지를 획득하고, 이 3장의 이미지들을 모두 이용하여 혼색 불량 검출을 수행할 수 있다. 이 때, 앞서 설명한 경사이미지와 관련된 단계들은 각 경사이미지 획득 및 검출 시 경사이미지 개수만큼 반복적으로 이루어질 수 있음은 물론 당연하다.In addition, after acquiring one reference image, multiple oblique images may be acquired by changing the inclination angle of the optical system to detect mixed color defects. For example, after one reference image is acquired, when the optical system tilt angle is 45 degrees to the right, when the angle is 45 degrees to the left, two tilted images are obtained as described above. Detection can be performed. In this case, the steps related to the tilt image described above may of course be repeatedly performed as many as the number of the tilt image when acquiring and detecting each tilt image.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made.
본 발명에 의하면, 샤임플러그 원리를 적용하여 검출 광학계에 있어서 기울어진 시야각을 실현함으로써, 다양한 시야각에 대한 혼색 불량 검출을 수행할 수 있다. 또한 셀 전체의 이미지를 획득하여 혼색 불량 검출을 수행함으로써, 신속하고도 효과적으로 셀 전체 영역에 대한 혼색 불량 검출을 수행할 수 있다.According to the present invention, by applying the Scheimpflug principle, the tilted viewing angle is realized in the detection optical system, whereby mixed color defect detection for various viewing angles can be performed. In addition, by performing mixed color defect detection by acquiring an image of the entire cell, the mixed color defect detection of the entire cell area can be performed quickly and effectively.

Claims (10)

  1. 복수 개의 유기발광소자가 2차원적으로 배열된 평면 형태의 셀을 검사하는 유기발광소자의 혼색 불량 검출장치에 있어서,In the mixed color detection device of the organic light emitting device for inspecting a planar cell in which a plurality of organic light emitting devices are arranged two-dimensionally,
    상기 셀의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성되는 렌즈부;A lens unit formed to be disposed parallel to or inclined to the surface of the cell;
    복수 개의 이미지센서가 2차원적으로 배열된 평면 형태로 형성되어 상기 렌즈를 통해 취득된 상기 셀의 이미지를 센싱하며, 상기 렌즈부의 면과 평행하거나 또는 경사지게 배치 가능하도록 형성되는 센서부;A sensor unit which is formed in a planar shape in which a plurality of image sensors are two-dimensionally arranged, senses an image of the cell acquired through the lens, and is arranged to be parallel or inclined to the surface of the lens unit;
    상기 렌즈부 또는 상기 센서부의 각도를 조절하는 제어부;A control unit for adjusting an angle of the lens unit or the sensor unit;
    를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.Mixed color failure detection device of an organic light emitting device comprising a.
  2. 제 1항에 있어서, 상기 제어부는,The method of claim 1, wherein the control unit,
    상기 셀의 면을 물체면이라 하고, 상기 렌즈부에 포함되는 렌즈의 중심면을 렌즈면이라 하고, 상기 센서부의 면을 센서면이라 할 때,When the surface of the cell is called an object plane, the center plane of the lens included in the lens unit is called a lens plane, and the surface of the sensor unit is called a sensor plane.
    상기 물체면의 연장선, 상기 렌즈면의 연장선 및 상기 센서면의 연장선이 일치하는 샤임플러그 조건이 만족되도록, 상기 렌즈부 또는 상기 센서부의 각도를 조절하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.Adjusting the angle of the lens unit or the sensor unit to satisfy the Scheimpplug condition that the extension line of the object surface, the extension line of the lens surface and the extension line of the sensor surface is satisfied, apparatus for detecting a mixed color of the organic light emitting device .
  3. 제 2항에 있어서, 상기 제어부는,The method of claim 2, wherein the control unit,
    상기 렌즈의 중심점을 렌즈중심점이라 하고, 상기 센서부의 중심점을 센서중심점이라 하고, 상기 렌즈중심점 및 상기 센서중심점을 연결하는 직선이 상기 물체면과 만나는 점을 기준점이라 하고, 샤임플러그 조건을 만족하는 점을 샤임플러그점이라 하며,The center point of the lens is referred to as a lens center point, the center point of the sensor unit is referred to as a sensor center point, and the point where a straight line connecting the lens center point and the sensor center point meets the object plane is referred to as a reference point and satisfies a Scheimpplug condition. Is called Scheimpflug point,
    상기 물체면 및 상기 렌즈면이 이루는 각을 광학계경사각이라 하고, 상기 렌즈면 및 상기 센서면이 평행인 상태로부터 상기 광학계경사각에 따라 샤임플러그 조건을 만족시키도록 상기 센서부를 회전시켜야 할 각을 샤임플러그각이라 할 때,The angle formed between the object surface and the lens surface is called an optical tilt angle, and the angle to rotate the sensor unit so as to satisfy the Scheimpplug condition according to the optical tilt angle from the state where the lens surface and the sensor surface are parallel to each other. When we say angle
    하기의 식에 의하여 상기 샤임플러그각을 산출하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.The mixed color failure detection device of the organic light emitting device, characterized in that for calculating the Scheimpplug angle by the following equation.
    Figure PCTKR2019010229-appb-img-000012
    Figure PCTKR2019010229-appb-img-000012
    (여기에서, θ : 샤임플러그각, α : 광학계경사각, C : 기준점 및 센서중심점 간 거리, R : 기준점 및 샤임플러그점 간 거리)(Here, θ: Scheimpplug angle, α: Optical tilt angle, C: Distance between reference point and sensor center point, R: Distance between reference point and Scheimpplug point)
  4. 제 1항에 있어서, 상기 유기발광소자의 혼색 불량 검출장치는,According to claim 1, The mixed color detection device of the organic light emitting device,
    상기 센서부의 각도를 조절하는 틸트모터;A tilt motor for adjusting an angle of the sensor unit;
    를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.Mixed color failure detection device of an organic light emitting device comprising a.
  5. 제 1항에 있어서, 상기 유기발광소자의 혼색 불량 검출장치는,According to claim 1, The mixed color detection device of the organic light emitting device,
    상기 렌즈부 및 상기 센서부 간 거리를 조절하는 줌모터;A zoom motor for adjusting a distance between the lens unit and the sensor unit;
    를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.Mixed color failure detection device of an organic light emitting device comprising a.
  6. 제 2항에 있어서, 상기 렌즈면은,The method of claim 2, wherein the lens surface,
    상기 렌즈부가 복수 개의 렌즈들이 적층되어 형성될 경우, 상기 물체면에 가장 가깝게 배치된 렌즈의 중심면으로 결정되는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출장치.And the lens unit is formed by stacking a plurality of lenses to determine the center plane of the lens disposed closest to the object plane.
  7. 제 3항에 의한 유기발광소자의 혼색 불량 검출장치를 이용한 유기발광소자의 혼색 불량 검출방법에 있어서,In the mixed color detection method of the organic light emitting device using the mixed color detection device of the organic light emitting device according to claim 3,
    상기 광학계경사각이 0이고, 상기 렌즈면 및 상기 센서면이 평행인 상태에서의 상기 셀 전체 영역의 이미지인 기준이미지가 센싱되는 기준이미지센싱단계;A reference image sensing step of sensing a reference image which is an image of the entire cell area in a state where the optical system tilt angle is 0 and the lens plane and the sensor plane are parallel to each other;
    상기 광학계경사각이 0이 아닌 각도로 조절되는 시야각경사조절단계;A viewing angle tilt adjustment step of adjusting the optical tilt angle to a non-zero angle;
    샤임플러그 조건이 만족되도록 상기 센서면의 각도가 상기 샤임플러그각으로 조절되는 샤임플러그조건만족단계;A schimeplug condition satisfaction step of adjusting an angle of the sensor surface to the schimeplug angle so that a schimeplug condition is satisfied;
    상기 샤임플러그조건만족단계 이후 상태에서의 상기 셀 전체 영역의 이미지인 경사이미지가 센싱되는 경사이미지센싱단계;An inclined image sensing step of sensing an inclined image which is an image of the entire area of the cell in a state after the sham plug condition satisfaction step;
    상기 기준이미지 및 상기 경사이미지가 분석되어 혼색 불량이 검출되는 혼색불량검출단계;A mixed color detection step of detecting a mixed color defect by analyzing the reference image and the inclined image;
    를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출방법.Mixed color failure detection method of an organic light emitting device comprising a.
  8. 제 7항에 있어서, 상기 혼색불량검출단계는,The method of claim 7, wherein the mixed color detection step,
    상기 경사이미지의 외곽 형상이 상기 기준이미지의 외곽 형상과 동일해지도록 변환되어 변환이미지로 생성되는 이미지변환단계;An image conversion step of converting the outline shape of the tilted image to be the same as the outline shape of the reference image and generating a converted image;
    상기 기준이미지 및 상기 변환이미지가 미리 결정된 복수 개의 구획으로 구분되는 구획구분단계;A partition classification step of dividing the reference image and the converted image into a plurality of predetermined sections;
    각각의 상기 구획에 대하여 평균 색상 및 빛세기를 포함하는 검출정보가 획득되는 검출정보획득단계;A detection information acquisition step of obtaining detection information including an average color and light intensity for each of said sections;
    를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출방법.Mixed color failure detection method of an organic light emitting device comprising a.
  9. 제 8항에 있어서, 상기 혼색불량검출단계는,The method of claim 8, wherein the mixed color detection step,
    상기 기준이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 기준이미지불량판단단계;A reference image defect determination step of comparing detection information of each section of the reference image with each other to determine whether a mixed color defect has occurred according to a predetermined criterion;
    상기 변환이미지의 각 구획에 대한 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 변환이미지불량판단단계;A converted image defect determining step of comparing detected information of each section of the converted image with each other to determine whether a mixed color defect has occurred according to a predetermined criterion;
    상기 기준이미지의 선택된 구획 및 이에 대응되는 상기 변환이미지의 구획 간의 상기 검출정보가 서로 비교되어, 미리 결정된 기준에 따라 혼색 불량이 발생하였는지 판단되는 이미지비교불량판단단계;An image comparison failure determination step of comparing the detection information between the selected section of the reference image and the section of the converted image corresponding thereto to determine whether a mixed color defect has occurred according to a predetermined criterion;
    중 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출방법.Mixed color failure detection method of an organic light emitting device, characterized in that it comprises at least one selected.
  10. 제 8항에 있어서, 상기 이미지변환단계는,The method of claim 8, wherein the image conversion step,
    아핀 변환(affine transformation)을 이용하여 상기 변환이미지가 생성되는 것을 특징으로 하는 유기발광소자의 혼색 불량 검출방법.The mixed image detection method of the organic light emitting device, characterized in that the conversion image is generated using affine transformation (affine transformation).
PCT/KR2019/010229 2018-08-20 2019-08-12 Apparatus and method for detecting color mix defect of organic light emitting diode WO2020040468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980029314.5A CN112041999A (en) 2018-08-20 2019-08-12 Device and method for detecting poor color mixing of organic light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180096468A KR102014171B1 (en) 2018-08-20 2018-08-20 Apparatus and method for inspecting color mix defect of OLED
KR10-2018-0096468 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020040468A1 true WO2020040468A1 (en) 2020-02-27

Family

ID=67806444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010229 WO2020040468A1 (en) 2018-08-20 2019-08-12 Apparatus and method for detecting color mix defect of organic light emitting diode

Country Status (3)

Country Link
KR (1) KR102014171B1 (en)
CN (1) CN112041999A (en)
WO (1) WO2020040468A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102220731B1 (en) * 2020-05-13 2021-02-26 케이맥(주) Method for measuring fine change of thin film surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
KR20130136806A (en) * 2012-06-05 2013-12-13 엘지디스플레이 주식회사 Apparatus for testing display device module and method for testing the same
JP2015055631A (en) * 2013-09-12 2015-03-23 ヒ ハン、ドン Inspection device of display panel
KR20150086625A (en) * 2014-01-20 2015-07-29 엘지이노텍 주식회사 Camera module
KR20160074222A (en) * 2014-12-18 2016-06-28 엘지이노텍 주식회사 Image sensor, image pick-up apparatus including the same and portable terminal including the apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614937B2 (en) * 1989-09-18 1997-05-28 富士写真フイルム株式会社 Photo printer
KR20080002024A (en) 2006-06-30 2008-01-04 엘지.필립스 엘시디 주식회사 Shadow mask and organic electro-luminescence device method for fabricating using shadow mask
CN102393473A (en) * 2011-08-02 2012-03-28 南京理工大学 System for testing particle moving speed based on single image
TWM443168U (en) * 2012-07-30 2012-12-11 Utechzone Co Ltd Image capturing system
CN106375650B (en) * 2015-11-17 2019-04-23 北京智谷睿拓技术服务有限公司 Focusing method and device, image capture device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
KR20130136806A (en) * 2012-06-05 2013-12-13 엘지디스플레이 주식회사 Apparatus for testing display device module and method for testing the same
JP2015055631A (en) * 2013-09-12 2015-03-23 ヒ ハン、ドン Inspection device of display panel
KR20150086625A (en) * 2014-01-20 2015-07-29 엘지이노텍 주식회사 Camera module
KR20160074222A (en) * 2014-12-18 2016-06-28 엘지이노텍 주식회사 Image sensor, image pick-up apparatus including the same and portable terminal including the apparatus

Also Published As

Publication number Publication date
CN112041999A (en) 2020-12-04
KR102014171B1 (en) 2019-08-26

Similar Documents

Publication Publication Date Title
WO2013062345A1 (en) Colour lighting control method for improving image quality in a vision system
WO2015080480A1 (en) Wafer image inspection apparatus
WO2011087337A2 (en) Substrate-inspecting device
WO2017026751A1 (en) Three-dimensional studio system
WO2014163375A1 (en) Method for inspecting for foreign substance on substrate
WO2016200096A1 (en) Three-dimensional shape measurement apparatus
WO2016021790A1 (en) Imaging sensor capable of detecting phase difference of focus
WO2017138754A1 (en) Under vehicle photographing apparatus and under vehicle photographing method for operating same
WO2013137637A1 (en) Imaging apparatus and image sensor thereof
CN1894952A (en) Method and imaging device for producing infrared images and normal images
WO2012023816A2 (en) Fluorescence microscope for multi-fluorescence image observation, fluorescence image observation method using the same, and multi-fluorescence image observation system
WO2017183915A2 (en) Image acquisition apparatus and method therefor
KR20050051535A (en) Defect inspection system
WO2020040468A1 (en) Apparatus and method for detecting color mix defect of organic light emitting diode
WO2020204458A1 (en) Wide-angle, high-resolution distance measurement device
WO2019022551A1 (en) Optical film defect detection device and optical film defect detection method
WO2013022190A1 (en) Method and apparatus for attaching auto stereoscopic display panels
WO2019066593A1 (en) Display device and control method for same
JP2006245891A (en) Chart for inspecting image of camera module, and image inspecting method and image inspecting device for the camera module using the chart for inspecting image
WO2014192999A1 (en) Defect inspection system for inspecting object having irregular patterns
WO2013100223A1 (en) Method for creating the height information of a substrate inspection device
WO2013009151A2 (en) Test method
WO2014209043A1 (en) Image acquiring method and image acquiring apparatus using same
WO2022169143A1 (en) Temperature control device of diffusion furnace for wafer deposition
WO2014148781A1 (en) Three-dimensional shape measuring device capable of measuring color information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851839

Country of ref document: EP

Kind code of ref document: A1