WO2020040142A1 - 切削装置、センサユニット、及び検出方法 - Google Patents

切削装置、センサユニット、及び検出方法 Download PDF

Info

Publication number
WO2020040142A1
WO2020040142A1 PCT/JP2019/032459 JP2019032459W WO2020040142A1 WO 2020040142 A1 WO2020040142 A1 WO 2020040142A1 JP 2019032459 W JP2019032459 W JP 2019032459W WO 2020040142 A1 WO2020040142 A1 WO 2020040142A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
unit
axis
detection
rotation
Prior art date
Application number
PCT/JP2019/032459
Other languages
English (en)
French (fr)
Inventor
克夫 直井
啓史 津田
竜男 定地
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201980049993.2A priority Critical patent/CN112469536B/zh
Publication of WO2020040142A1 publication Critical patent/WO2020040142A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Definitions

  • the present invention relates to a cutting device for cutting an object using a blade.
  • a dicer as a cutting device using a blade such as a rotary grindstone is known.
  • a blade such as a rotary grindstone
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a cutting device capable of easily and accurately detecting fluttering of a blade.
  • a cutting device includes: A table having an installation surface for installing the object, A cutting unit having a blade for cutting the object, and a rotation drive unit for rotating the blade around a predetermined rotation axis, A Z-axis moving mechanism that moves the table or the cutting unit in a Z-axis direction that changes a distance between the installation surface and the rotation axis, An X-axis moving mechanism that moves the table or the cutting unit in the X-axis direction in which the distance between the installation surface and the rotation axis is maintained, A first emission unit that emits light, and a first incidence unit that is disposed so as to sandwich an edge portion of the blade between the first emission unit and receives light emitted by the first emission unit. A first photoelectric detection unit that detects a position of the edge portion, A first detection axis connecting the first emission part and the first incidence part intersects obliquely with a rotation surface of the blade.
  • the first detection axis obliquely intersects the rotation surface of the blade, even if the relatively simple first photoelectric detection unit is used, the fluttering of the blade can be accurately performed. It is possible to detect.
  • the first photoelectric detection unit may include a first quantitative detection unit that quantitatively detects the amount of light emitted from the first emission unit and incident on the first incidence unit.
  • Such a first photoelectric detector can accurately and quantitatively detect a change in the position of the edge portion due to the fluttering of the blade.
  • a second photoelectric detector that detects the position of the edge portion.
  • a second detection axis connecting the second emission part and the second incidence part may intersect the rotation surface of the blade at an angle different from that of the first detection axis.
  • a second detection axis connecting the second emission part and the second incidence part is a second external circumscribed parallel to the rotation axis and in contact with the blade at an intersection between the second detection axis and the rotation surface. It may be along the surface.
  • a cutting device having a first photoelectric detector and a second photoelectric detector is capable of accurately and quantitatively detecting both the position of an edge portion in the Z-axis direction and the position of an edge portion in the Y-axis direction related to flutter. Is possible.
  • the second photoelectric detection unit may include a second quantitative detection unit that quantitatively detects the amount of light emitted from the second emission unit and incident on the second incidence unit.
  • the second photoelectric detector can accurately and quantitatively detect both the position of the edge portion in the Z-axis direction and the position of the edge portion in the Y-axis direction related to flutter.
  • the second detection axis may form an angle ( ⁇ 4) of 5 to 85 degrees with respect to a reference line along the second circumscribed surface and parallel to the rotation axis.
  • the second detection axis form an angle within a predetermined range with respect to the reference line, the degree to which the detection value of the second photoelectric detection unit is affected by the fluttering of the blade is suppressed, and the first photoelectric detection unit and The second photoelectric detector can be arranged compactly.
  • the second detection axis may be at a twist position with respect to the rotation axis.
  • the second emission unit and the second incidence unit can be arranged in a compact manner so that the position does not overlap with the first photoelectric detection unit, and the detection error is reduced. And contributes to downsizing of the device.
  • the second detection axis may be parallel to the rotation axis.
  • the second photoelectric detection unit having such a second detection axis prevents the detection value of the second photoelectric detection unit from being affected by the fluttering of the blade, and the Z-axis direction of the blade alone by the second photoelectric detection unit. Can be accurately detected.
  • a first intersection position where the first detection axis intersects the rotation surface of the blade is substantially the same as a second intersection position where the second detection axis intersects the rotation surface of the blade. It may be.
  • the first intersection position and the second intersection position substantially coincide with each other, it is possible to more accurately detect both the position of the edge portion in the Z-axis direction and the position of the edge portion in the Y-axis direction related to flutter. is there. Further, in such a cutting device, the amount of calculation required for detecting the position of the edge portion can be reduced as compared with the case where the first intersection position and the second intersection position are apart from each other.
  • the first detection axis may form an angle ( ⁇ 1) of 5 to 85 degrees with respect to the rotation surface.
  • the first detection axis is in contact with the blade at an intersection of the first detection axis and the rotation surface, and has an angle of 5 to 60 degrees with respect to a first circumscription surface parallel to the rotation axis. ( ⁇ 3) may be made.
  • the first emission section and the first incidence section can be appropriately arranged while avoiding interference with the mounting portion of the blade.
  • the first detection axis may be at a twist position with respect to the rotation axis.
  • the first photoelectric detection unit having such a first detection axis allows the first emission unit and the first incidence unit to be arranged compactly while avoiding interference with the mounting portion of the blade.
  • the first detection axis and the rotation axis may be along a common plane.
  • the first photoelectric detection unit having such a first detection axis can prevent a phenomenon in which the shielding area of the blade fluctuates in the direction orthogonal to the Z axis due to fluttering, and thus can suppress the amount of calculation for position detection. Further, the position detection accuracy of the edge portion can be improved.
  • FIG. 1 is a front view and a side view of a cutting device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing a sensor unit included in the cutting device shown in FIG.
  • FIG. 3 is a partially enlarged view showing a positional relationship between the sensor unit and the blade shown in FIG.
  • FIG. 4 is a conceptual diagram illustrating a positional relationship between the first and second photoelectric detection units and the blade.
  • FIG. 5 is a conceptual diagram for explaining the functions of the first and second photoelectric detection units.
  • FIG. 6 is a conceptual diagram illustrating a relationship between a change in the position of the blade and detection outputs of the first and second photoelectric detection units.
  • FIG. 7 is a conceptual diagram illustrating a method of detecting a position change of the blade in the Y-axis direction and a position change of the blade in the Z-axis direction by the first and second photoelectric detection units.
  • FIG. 8 is a conceptual diagram illustrating a positional relationship between a first photoelectric detection unit and a blade in a sensor unit included in a cutting device according to the second embodiment.
  • FIG. 9 is a conceptual diagram illustrating the positional relationship between the first and second photoelectric detection units and the blade in the sensor unit included in the cutting device according to the third embodiment.
  • FIG. 10 is a conceptual diagram illustrating the positional relationship between the first and second photoelectric detection units and the blade in the sensor unit included in the cutting device according to the fourth embodiment.
  • FIG. 11 is a conceptual diagram illustrating a positional relationship between first and second photoelectric detection units and a blade in a sensor unit included in a cutting device according to the fifth embodiment.
  • FIG. 12 is a front view and a side view of a cutting device according to a sixth embodiment of the present invention.
  • FIG. 13 is a front view and a side view of a cutting device according to a seventh embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a cutting device 10 according to a first embodiment of the present invention.
  • FIG. 1A is a view of the cutting device 10 as viewed from the Y-axis direction which is the direction of the rotation axis of the blade 32.
  • FIG. 3 is a diagram viewed from an X-axis direction orthogonal to the direction.
  • the cutting device 10 includes a table 20, a cutting unit 30, a fixed base 12, and the like. Further, the cutting device 10 includes an X-axis moving mechanism 26, a Y-axis moving mechanism 39, and a Z-axis moving mechanism 38 for moving the table 20 or the cutting unit 30, a sensor unit 18 for detecting the position of the blade 32 of the cutting unit 30, Having.
  • the extending direction of the rotating shaft 35 of the blade 32 is defined as the Y-axis direction
  • the vertical direction orthogonal to the Y-axis direction is defined as the Z-axis direction
  • the directions orthogonal to the Y-axis direction and the Z-axis direction The description will be made assuming the X-axis direction.
  • the table 20 is provided on the fixed base 12.
  • the table 20 of the cutting device 10 includes a ⁇ table 22 having an installation surface 23 on which a workpiece 90 to be cut is installed, and an X table 24 that supports the ⁇ table 22 from below.
  • the installation surface 23 of the ⁇ table 22 is constituted by the upper surface of the ⁇ table 22 which can face the blade 32, and is parallel to the XY plane.
  • table 22 can rotate around a table rotation axis (not shown) parallel to the Z-axis direction, and can adjust the posture of the work 90 and the like.
  • the X table 24 is moved in the X-axis direction by the X-axis moving mechanism 26.
  • the ⁇ table 22 and the installation surface 23 supported by the X table 24 also move in the X-axis direction.
  • the X-axis moving mechanism 26 moves the table 20 in the X-axis direction in which the distance between the installation surface 23 and the rotation axis 35 of the blade 32 is maintained.
  • Examples of the X-axis moving mechanism 26 include, but are not particularly limited to, a mechanism combining a linear motor, a rotary motor, and a gear.
  • the cutting portion 30 is supported by the fixed base 12 via a support wall 14 protruding above the fixed base 12.
  • the blade 32 of the cutting unit 30 can approach the work 90 installed on the installation surface 23 from above and from the side.
  • the cutting unit 30 has a blade 32 as a processing tool for cutting the work 90.
  • the blade 32 according to the present embodiment is formed of a disc-shaped grindstone, the blade 32 is not limited to this.
  • the cutting unit 30 has a spindle 34 and a spindle motor 36 as a rotation drive unit that rotates the blade 32 about a predetermined rotation axis 35 (see FIG. 1B).
  • the blade 32 is fixed to the end of the spindle 34 in the negative Y-axis direction.
  • the spindle 34 extends along the Y-axis direction, and connects the blade 32 and a spindle motor 36.
  • the spindle 34 is rotatable around the Y axis, and can rotate the fixed blade 32 about a rotation shaft 35.
  • the spindle motor 36 is constituted by a rotation motor, and rotates the spindle 34 and the blade 32 at a predetermined rotation speed.
  • the driving of the spindle motor 36 is controlled by a control unit 70 provided inside the fixed base 12.
  • the cutting section 30 is provided on the support wall 14 via a Z-axis moving mechanism 38 and a Y-axis moving mechanism 39.
  • the Z-axis moving mechanism 38 movably supports the cutting unit 30.
  • the Z-axis moving mechanism 38 can move the cutting unit 30 in the Z-axis direction that changes the distance between the installation surface 23 of the table 20 and the rotation shaft 35.
  • the Y-axis moving mechanism 39 supports the Z-axis moving mechanism 38 and the cutting unit 30 movably provided in the Z-axis moving mechanism 38 so as to be movable in the Y-axis direction.
  • the Z-axis moving mechanism 38 and the Y-axis moving mechanism 39 include, but are not particularly limited to, a mechanism combining a linear motor or a rotary motor and a gear, similarly to the X-axis moving mechanism 26.
  • the cutting device 10 has an imaging device 16 that photographs a work 90 installed on the installation surface 23.
  • the imaging device 16 is provided in the cutting unit 30, and the control unit 70 of the cutting device 10 can recognize the posture, the shape, and the like of the work 90 from the image data acquired by the imaging device 16.
  • the cutting device 10 detects the fixed state of the blade 32 with respect to the rotation axis 35, more specifically, the position of the edge 32 a of the blade 32 (see FIG. 3) with respect to the rotation axis 35.
  • It has a sensor unit 18 for The sensor unit 18 is provided on the X table 24 of the table 20 and adjacent to the ⁇ table 22.
  • the installation position of the sensor unit 18 is not limited to this, and the blade 32 can be arranged at the measurement position of the sensor unit 18 by the X-axis moving mechanism 26, the Y-axis moving mechanism 39, the Z-axis moving mechanism 38, and the like. If so, the sensor unit 18 may be installed at any place.
  • FIG. 2 is an enlarged view of the sensor unit 18.
  • the sensor unit 18 includes a first photoelectric detector 40, a second photoelectric detector 50, and a sensor base 19 on which the first and second photoelectric detectors 40 and 50 are installed.
  • the first photoelectric detection unit 40 has a first emission unit 42 that emits light, and a first incidence unit 44 that receives light emitted by the first emission unit 42.
  • the second photoelectric detection unit 50 includes a second emission unit 52 that emits light, and a second incidence unit 54 that receives light emitted by the second emission unit 52. Having.
  • FIG. 3 is an enlarged view showing a state where the blade 32 has moved to the measurement position of the sensor unit 18.
  • the first incident portion 44 is arranged so as to sandwich the edge 32 a of the blade 32 between the first incident portion 44 and the first emitting portion 42.
  • the first detection axis 46 connecting the first emission section 42 and the first incidence section 44 passes through the edge 32a of the blade 32, and the first photoelectric detection section 40 detects the position of the edge 32a. be able to.
  • the second emission section 52 and the second incidence section 54 of the second photoelectric detection section 50 are the same as the first emission section 42 and the first incidence section 44 of the first photoelectric detection section 40. is there. That is, in a state where the blade 32 is at the measurement position, the second incident portion 54 is disposed so as to sandwich the edge portion 32 a of the blade 32 between the second incident portion 54 and the second emitting portion 52. Thereby, the second detection axis 56 connecting the second emission part 52 and the second incidence part 54 passes through the edge part 32a of the blade 32, and the second photoelectric detection part 50 detects the position of the edge part 32a. be able to.
  • FIG. 5 is a conceptual diagram illustrating position detection by the second photoelectric detection unit 50.
  • the second photoelectric detection unit 50 includes a second light emitting unit 57 and a second photoelectric conversion element 58 as a second quantitative detection unit, in addition to the second emission unit 52 and the second incidence unit 54.
  • the second light emitting unit 57 is configured by a light source such as an LED.
  • the light generated by the second light emitting unit 57 is transmitted to the second light emitting unit 52 by an optical fiber or the like, and emitted from the second light emitting unit 52 along the second detection axis 56.
  • the second emission unit 52 and the second incidence unit 54 are configured by a prism or the like, but are not particularly limited.
  • the second photoelectric conversion element 58 is configured by a photoelectric conversion element such as a solid-state imaging device, and quantitatively detects the amount of light emitted from the second emission section 52 and incident on the second incidence section 54.
  • the second photoelectric conversion element 58 outputs an electric signal corresponding to the amount of light transmitted to the second photoelectric conversion element 58, and transmits the electric signal to the control unit 70.
  • FIG. 6 is a conceptual diagram illustrating a method of detecting the position of the edge 32a of the blade 32 by the second photoelectric detector 50 shown in FIG.
  • the left part of FIG. 6 shows a state where the edge 32a of the blade 32 is located relatively above, and the right part of FIG. 6 shows a state where the edge 32a of the blade 32 is located relatively below. Represents.
  • the luminous flux region 60 of the light emitted from the second emission part 52 is shielded by the blade 32. It is divided into a shielding area 61a and a detection area 61b that is not shielded by the blade 32. The light in the shielding area 61a does not enter the second incident section 54. On the other hand, the light in the detection area 61b that is not shielded by the blade 32 is incident on the second incident part 54 shown in FIG. 5 and is detected by the second photoelectric conversion element 58.
  • the second photoelectric detection unit 50 can quantitatively measure the position of the edge 32a of the blade 32.
  • the position detection by the second photoelectric detection unit 50 has been described. However, the position of the edge portion 32 a of the blade 32 is also determined for the first photoelectric detection unit 40 by the same mechanism as that of the second photoelectric detection unit 50. Is detected. That is, the first photoelectric detection unit 40 emits light from the first light emitting unit similar to the second light emitting unit 57 and from the first light emitting unit 42 and enters the first light incident unit 44 similarly to the second photoelectric conversion element 58. A first photoelectric conversion element as a first quantitative detection unit that quantitatively detects the amount of light. Further, the detection result by the first photoelectric conversion element is transmitted to the control unit 70 as in the case of the second photoelectric conversion element 58 shown in FIG. In addition, the distance from the first emission part 42 to the first incidence part 44 may be the same as or different from the distance from the second emission part 52 to the second incidence part 54. By making the two distances the same, the amount of calculation in the control unit 70 can be reduced.
  • the sensor unit 18 included in the cutting device 10 has two detection units, a first photoelectric detection unit 40 and a second photoelectric detection unit 50.
  • the first detection axis 46 of the first photoelectric detection unit 40 which is one of the detection units, intersects obliquely with the rotation surface 32b of the blade 32, as shown in FIG.
  • FIG. 4A is a conceptual diagram illustrating a positional relationship between the blade 32 of the cutting unit 30, the first photoelectric detection unit 40, and the second photoelectric detection unit 50.
  • the first detection axis 46 of the first photoelectric detection unit 40 intersects not perpendicularly to the rotation surface 32 b of the blade 32 but in an oblique direction.
  • the first photoelectric detection unit 40 can detect fluttering (Y-direction displacement) of the blade 32. Can be.
  • FIG. 7A is a conceptual diagram illustrating a method of detecting fluttering of the blade 32 by the first photoelectric detection unit 40.
  • the fluttering of the blade 32 appears as a displacement b of the edge portion 32a of the blade 32 in the Y-axis direction.
  • the first detection axis 46 of the first photoelectric detection unit 40 intersects the rotation surface 32b at an angle ⁇ 1, which is a predetermined angle
  • the displacement c detected by the first photoelectric detection unit 40 and the blade 32 Of the edge portion 32a in the Y-axis direction is represented by the following relational expression (1).
  • the control unit 70 of the cutting unit 30 detects the position of the edge portion 32a in the Y-axis direction by using the displacement c detected by the first photoelectric detection unit 40 and the above-described relational expression, and the rattling of the blade 32. Can be detected.
  • the rotation surface 32b of the blade 32 is a plane orthogonal to the rotation axis 35 of the blade, and can be defined as a surface including the position of the center of gravity of the blade.
  • the second detection axis 56 of the second photoelectric detection unit 50 according to the first embodiment is parallel to the rotation axis 35, and the second photoelectric detection unit 50 alone The eccentricity of the blade 32 is measured.
  • Such a cutting device 10 can quantitatively detect both the fluttering of the blade 32 and the eccentricity of the blade 32 using the detection values of both the first photoelectric detector 40 and the second photoelectric detector 50. Can be.
  • FIG. 7B is a conceptual diagram showing a method of detecting the fluttering of the blade 32 and the eccentricity of the blade 32 based on the outputs of both the first photoelectric detector 40 and the second photoelectric detector 50.
  • the eccentricity of the blade 32 appears as a displacement a in the Z-axis direction of the edge portion 32a of the blade 32.
  • the angle at which the first detection axis 46 intersects the rotation surface 32b is ⁇ 1
  • the displacement c1 detected by the first photoelectric detection unit 40, the displacement b in the Y-axis direction of the edge portion 32a of the blade 32, and the blade 32 Of the edge portion 32a in the Z-axis direction is represented by the following relational expression (2).
  • the displacement c2 detected by the second photoelectric detection unit 50 is the edge portion 32a of the blade 32. This coincides with the displacement a in the Z-axis direction (relational expression (3)).
  • the edge portion of the blade 32 is obtained.
  • the displacement b in the Y-axis direction of 32a can be calculated (relational expression (4)).
  • the cutting device 10 quantitatively detects both the fluttering of the blade 32 and the eccentricity of the blade 32 using the detection values of both the first photoelectric detector 40 and the second photoelectric detector 50. can do.
  • the angle ⁇ 2 at which the second detection axis 56 intersects the rotation surface 32b is not limited to only 90 degrees, and is different from the angle ⁇ 1 at which the first detection axis 56 intersects the rotation surface 32b. Angle.
  • the control unit 70 of the cutting device 10 uses the displacements detected by the first and second photoelectric detection units 40 and 50 and the following relational expressions (4) and (5) to determine the Y of the edge portion 32a. By detecting the position in the axial direction and the Z-axis direction, it is possible to detect fluttering and eccentricity of the blade 32.
  • c1 a ⁇ sin ⁇ 1 + b ⁇ cos ⁇ 1
  • c2 a ⁇ sin ⁇ 2 + b ⁇ cos ⁇ 2 (however, ⁇ 1 ⁇ ⁇ 2) (5)
  • the displacement detected by the second photoelectric detection unit 50 is: It is not affected by the fluttering of the blade 32 (displacement in the Y-axis direction). For this reason, such a cutting device 10 can reduce the amount of calculation by the control unit 70.
  • an angle formed between the detection axis and the plane or the straight line such as the angle ⁇ 1, the angle ⁇ 2, the angle ⁇ 3, and the angle ⁇ 4, is formed between the detection axis and the plane or the straight line.
  • the angle between the detection axis and the plane or straight line is defined in the range of 0 to 90 degrees.
  • FIG. 4B is a conceptual diagram illustrating a first intersection position 32c where the first detection axis 46 of the first photoelectric detection unit 40 intersects with the rotation surface 32b of the blade 32.
  • FIG. 4B for the second photoelectric detection unit 50, only the second intersection position 32d where the second detection axis 56 intersects with the rotation surface 32b is displayed. Further, in FIG. 4B, the blade 32 is shown in a see-through manner.
  • the first intersection position 32c where the first detection axis 46 intersects the rotation surface 32b of the blade 32 is at the second intersection position where the second detection axis 56 intersects the rotation surface 32b of the blade 32.
  • the position is substantially the same as the position 32d.
  • the first photoelectric detection unit 40 and the second photoelectric detection unit 50 can measure the specific edge portion 32a substantially simultaneously, so that the accuracy of the detection result can be improved.
  • the calculation amount of the control unit 70 can also be reduced.
  • the first intersection position 32c and the second intersection position 32d may be completely coincident with each other, but may be slightly shifted.
  • the first detection axis 46 of the first photoelectric detector 40 not only obliquely intersects the rotation surface 32 b but also rotates the rotation axis 35 of the blade 32 (Y axis). Direction).
  • the blade 32 is fixed to the spindle 34 by the blade fixing unit 33.
  • the first detection shaft 46 to a twisted position with respect to the rotation shaft 35, the first emission unit 42 and the The first photoelectric detection unit 40 can be compactly arranged so that the first incidence unit 44 and the blade fixing unit 33 do not interfere with each other.
  • the position of the twist refers to a positional relationship when two straight lines in the space are not parallel and do not intersect.
  • the first detection shaft 46 obliquely intersects the rotation surface 32b of the blade 32.
  • the fluttering of the blade 32 can be detected with high accuracy.
  • the angle ⁇ 1 formed by the first detection shaft 46 shown in FIG. 4 with respect to the rotation surface 32b is not particularly limited as long as it can detect the fluttering of the blade 32 by the equation (1). Is preferable from the viewpoint of detecting the fluttering of the blade with high precision, and more preferably 45 to 75 degrees.
  • FIG. 8 is a conceptual diagram illustrating a positional relationship between the first photoelectric detection unit 140 and the blade 32 in the sensor unit included in the cutting device according to the second embodiment of the present invention.
  • the first photoelectric detector 140 has a first emission part 142 and a first incident part 144, like the first photoelectric detector 40 shown in FIG.
  • the first photoelectric detection unit 140 differs from the first photoelectric detection unit 40 shown in FIG. 4 in the arrangement of the first emission unit 142 and the first incidence unit 144, and differs from the first emission unit 142 and the first incidence unit.
  • the first detection shaft 146 connecting to the rotation shaft 144 is not at a twisted position with respect to the rotation axis (Y-axis direction).
  • the first detection axis 146 of the first photoelectric detection unit 140 and the rotation axis (Y-axis direction) are along a common plane (YZ plane).
  • the first photoelectric detection unit 140 having such a first detection axis 146 can prevent displacement of the shielded area (see FIG. 6) by the blade 32 from occurring in the Z-axis orthogonal direction due to fluttering. Calculation amount can be suppressed.
  • the first detection shaft 146 is in contact with the blade 32 at the intersection of the first detection shaft 146 and the rotation surface 32b, and is parallel to the rotation axis (Y-axis direction). Forms a predetermined angle ⁇ 3, which is preferably 5 to 60 degrees, more preferably 15 to 45 degrees. By setting the angle ⁇ 3 in such a range, the position of the blade 32 can be detected with high accuracy, and the first emission part 142 and the first incidence part 144 can be appropriately arranged at a position that does not contact the blade fixing part 33.
  • the sensor unit may have only the first photoelectric detection unit 140 or may not have the second photoelectric detection unit. However, in such a case, it is preferable that the cutting device has another detection unit that can detect the eccentricity of the blade 32.
  • FIG. 9 is a conceptual diagram showing the positional relationship between the first photoelectric detection unit 240 and the second photoelectric detection unit 50 and the blade 32 in the sensor unit included in the cutting device according to the third embodiment of the present invention. is there.
  • FIG. 9A illustrates a state in which the blade 32 is viewed from the X-axis positive direction side
  • FIG. 9B illustrates a state in which the blade 32 is viewed from the Z-axis positive direction side.
  • a first intersection position 232c where the first detection axis 246 intersects the rotation surface 32b (FIG. 9B)
  • the second intersection position 32d where the second detection shaft 56 intersects the rotation surface 32b is largely apart.
  • the sensor unit according to the third embodiment also has a blade 32 similar to the sensor unit 18 according to the first embodiment. Of the edge portion 32a can be detected.
  • first photoelectric detection unit 240 shown in FIG. 9 is the same as the first photoelectric detection unit 140 shown in FIG. 8 except that the arrangement of the first emission unit 242 and the first incidence unit 244 with respect to the blade 32 is different. is there.
  • the second photoelectric detection unit 50 shown in FIG. 9 is the same as the second photoelectric detection unit 50 shown in FIG.
  • the cutting device according to the third embodiment also has the same effects as the cutting device 10 according to the first embodiment.
  • FIG. 10 is a conceptual diagram showing the positional relationship between the first photoelectric detector 140 and the second photoelectric detector 50 and the blade 32 in the sensor unit included in the cutting device according to the fourth embodiment of the present invention. is there.
  • the first photoelectric detection unit 140 has a first detection axis 146 connecting the first emitting unit 142 and the first incident unit 144 arranged in parallel with the YZ plane.
  • a second detection axis 56 that connects the second emission section 52 and the second incidence section 54 is also arranged parallel to the YZ plane.
  • the first photoelectric detector 140 shown in FIG. 10 is similar to the first photoelectric detector 140 shown in FIG. 8, and the second photoelectric detector 50 shown in FIG. 10 is different from the second photoelectric detector 50 shown in FIG. The same is true.
  • the cutting device according to the fourth embodiment also has the same effects as the cutting device 10 according to the first embodiment.
  • FIG. 11 is a conceptual diagram illustrating a positional relationship between a first photoelectric detection unit 140 and a second photoelectric detection unit 350 and a blade 32 in a sensor unit included in a cutting device according to a fifth embodiment of the present invention. It is.
  • FIG. 11A illustrates a state in which the blade 32 is viewed from the X-axis positive direction side
  • FIG. 11B illustrates a state in which the second photoelectric detection unit 350 is viewed from the Z-axis positive direction side. I have.
  • the display of the blade fixing portion 33 is omitted, and only the blade 32 is indicated by a broken line.
  • a second detection axis 356 connecting the second emission unit 352 and the second incidence unit 354 in the second photoelectric detection unit 350 is different from the second detection axis 56 shown in FIG. , At a position twisted with respect to the rotation axis (Y-axis direction). That is, although the second detection axis 356 is parallel to the rotation axis (Y-axis direction) and is along the second circumscribed surface 66 that contacts the blade 32 at the intersection of the second detection axis 356 and the rotation surface 32b, the rotation is It is not parallel to the axis (Y-axis direction).
  • the second detection axis 356 extends along the second circumscribed surface 66 (see FIG. 11A) with respect to a reference line 68 parallel to the rotation axis (Y-axis direction).
  • a predetermined angle ⁇ 4 which is not 0 degree.
  • the angle ⁇ 4 is not particularly limited, but is preferably, for example, 5 to 85 degrees, and more preferably 30 to 60 degrees.
  • first photoelectric detector 140 shown in FIG. 11 is the same as the first photoelectric detector 140 shown in FIG. 8, and the second photoelectric detector 350 shown in FIG. Except for the difference, it is the same as the second photoelectric detection unit 50 shown in FIG.
  • the cutting device according to the fifth embodiment also has the same effects as the cutting device 10 according to the first embodiment.
  • the first photoelectric detection units 40 and 140 and the second photoelectric detection units 50 and 350 can be arranged at various angles with respect to the blade 32.
  • the positions of the first emitting portions 42 and 142 and the first incident portions 44 and 144 can be interchanged, and the positions of the second emitting portions 52 and 352 and the second incident portions 54 and 354 can also be exchanged. it can.
  • FIGS. 12A and 12B are external views of a cutting device 410 according to a sixth embodiment.
  • the cutting device 410 is the same as the cutting device 10 except that the arrangement of the sensor unit 418 is different from that of the cutting device 10 according to the first embodiment.
  • the sensor unit 418 of the cutting device 410 is disposed adjacent to the ⁇ table 22 having the installation surface 23 in the X-axis direction.
  • the blade 32 is moved to the detection position of the sensor unit 418 and immediately after the eccentricity and fluttering of the blade 32 are detected, the X table 24 is moved as it is, so that the blade 32 Can be cut.
  • the X table 24 is moved as it is, thereby moving the blade 32 to the detection position of the sensor unit 418 and detecting the eccentricity and fluttering of the blade 32.
  • the cutting device 410 has the same effects as the cutting device 10.
  • FIGS. 13A and 13B are external views of a cutting device 510 according to a seventh embodiment.
  • the cutting device 510 is the same as the cutting device 10 except that the arrangement of the sensor unit 518 is different from the cutting device 10 according to the first embodiment.
  • the sensor unit 518 of the cutting device 510 is arranged on the ⁇ table 22 having the installation surface 23.
  • the cutting device 510 having such a sensor unit 518 can also detect the position of the blade 32 similarly to the cutting device 10, and has the same effect as the cutting device 10.
  • the sensor units 18, 418, and 518 having the first photoelectric detection units 40 and 140 and the second photoelectric detection units 50 and 350 are arranged at various positions in the cutting device 10. It is possible to The Z-axis moving mechanism 38 shown in FIGS. 1, 12, and 13 moves the cutting unit 30 in the Z-axis direction. However, the Z-axis moving mechanism moves the table 20 in the Z-axis direction. It may be the one that causes it.
  • the X-axis moving mechanism 26 shown in FIGS. 1, 12, and 13 moves the table 20 in the X-axis direction. However, the X-axis moving mechanism moves the cutting unit 30 in the X-axis direction. It may be the one that causes it.
  • the cutting device 10 performs an operation of correcting the eccentricity of the blade 32 and an operation of suppressing the eccentricity of the blade 32 based on the information on the eccentricity and the eccentricity of the blade 32 detected by the sensor units 18, 418, and 518. You may. Further, the cutting device 10 may store information on fluttering and eccentricity of the blade 32 detected by the sensor units 18, 418, 518, and when the flapping and eccentricity of the blade 32 exceeds a predetermined threshold. May perform a predetermined warning operation or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Dicing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

ブレードのばたつきを精度よく容易に検出可能な切削装置を提供する。対象物を設置するテーブルと、前記対象物を切削するブレードと、前記ブレードを回転させる回転駆動部と、を有する切削部と、設置面と回転軸との距離を変えるZ軸方向に、前記テーブル又は前記切削部を移動させるZ軸移動機構と、X軸方向に前記テーブル又は前記切削部を移動させるX軸移動機構と、光を出射する第1出射部と、前記第1出射部との間に前記ブレードのエッジ部分を挟むように配置され前記第1出射部で出射された光が入射する第1入射部と、を有しており、前記エッジ部分の位置を検出する第1光電検出部と、を有しており、前記第1出射部と前記第1入射部とを結ぶ第1検出軸は、前記ブレードの回転面に対して斜め方向に交差する。

Description

[規則37.2に基づきISAが決定した発明の名称] 切削装置、センサユニット、及び検出方法
 本発明は、ブレードを用いて対象物を切削する切削装置に関する。
 たとえば電子回路が複数形成されたウエハや、複数形成された電子部品などを個片に切り出す技術において、回転砥石などのブレードを用いる切削装置としてのダイサーが知られている。このようなダイサーを用いて高精度な切り出しを行うためには、ブレードの取付状態やブレードの形状が精度よく管理されていることが重要である。
 テーブルからブレードのエッジまでの距離を検出可能な切削装置として、ブレードの下方にブレード変位検出装置を配置するものが提案されている(特許文献1参照)。しかしながら、このようなブレード変位検出装置では、ブレードのばたつきについては検出できないという問題を有している。
 また、ブレードのばたつきを検出する検出方法としては、ブレードと検出手段までの距離を測定する方法が提案されている(特許文献2参照)。しかしながら、このような方法で高精度な検出を行うためには、非常に高価でデリケートな検出手段を用いる必要があるため、実用上の問題を有している。
特開平8ー164515号公報 特開2009-206363号公報
 本発明は、このような実状に鑑みてなされ、その目的は、ブレードのばたつきを精度よく容易に検出可能な切削装置を提供することである。
 上記目的を達成するために、本発明に係る切削装置は、
対象物を設置する設置面を有するテーブルと、
前記対象物を切削するブレードと、前記ブレードを所定の回転軸を中心として回転させる回転駆動部と、を有する切削部と、
前記設置面と前記回転軸との距離を変えるZ軸方向に、前記テーブル又は前記切削部を移動させるZ軸移動機構と、
前記設置面と前記回転軸との距離が維持されるX軸方向に、前記テーブル又は前記切削部を移動させるX軸移動機構と、
光を出射する第1出射部と、前記第1出射部との間に前記ブレードのエッジ部分を挟むように配置され前記第1出射部で出射された光が入射する第1入射部と、を有しており、前記エッジ部分の位置を検出する第1光電検出部と、を有しており、
前記第1出射部と前記第1入射部とを結ぶ第1検出軸は、前記ブレードの回転面に対して斜め方向に交差することを特徴とする。
 本発明に係る切削装置は、第1検出軸がブレードの回転面に対して斜めに交差するため、比較的簡易な第1光電検出部を用いた場合であっても、ブレードのばたつきを精度良く検出することが可能である。
 また、たとえば、前記第1光電検出部は、前記第1出射部から出射されて前記第1入射部に入射する光量を定量的に検出する第1定量検出部を有してもよい。
 このような第1光電検出部は、ブレードのばたつきによるエッジ部分の位置の変化を、精度よく定量的に検出することが可能である。
 また、たとえば、光を出射する第2出射部と、前記第2出射部との間に前記ブレードの前記エッジ部分を挟むように配置され前記第2出射部で出射された光が入射する第2入射部と、を有しており前記エッジ部分の位置を検出する第2光電検出部をさらに有していてもよい。
 また、たとえば、前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記ブレードの前記回転面に対して、前記第1検出軸とは異なる角度で交差してもよい。
 また、たとえば、前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記回転軸に平行且つ前記第2検出軸と前記回転面との交点で前記ブレードに接する第2外接面に沿っていてもよい。
 第1光電検出部と第2光電検出部とを有する切削装置は、Z軸方向のエッジ部分の位置と、ばたつきに関するY軸方向のエッジ部分の位置の両方を、精度よく定量的に検出することが可能である。
 また、たとえば、前記第2光電検出部は、前記第2出射部から出射されて前記第2入射部に入射する光量を定量的に検出する第2定量検出部を有してもよい。
 このような第2光電検出部は、Z軸方向のエッジ部分の位置と、ばたつきに関するY軸方向のエッジ部分の位置の両方を、精度よく定量的に検出することが可能である。
 また、たとえば、前記第2検出軸は、前記第2外接面に沿っており前記回転軸と平行な基準線に対して、5~85度の角(θ4)をなしてもよい。
 第2検出軸が基準線に対して所定の範囲の角度をなすようにすることにより、第2光電検出部の検出値がブレードのばたつきの影響を受ける程度を抑制し、第1光電検出部及び第2光電検出部をコンパクトに配置することができる。
 また、例えば、前記第2検出軸は、前記回転軸に対してねじれの位置にあってもよい。
 このような第2光電検出部は、第1光電検出部と位置が重複しないように、かつ、コンパクトに第2出射部と第2入射部とを配置することができるので、検出誤差を低減することができ、また、装置の小型化に資する。
 また、前記第2検出軸は、前記回転軸と平行であってもよい。
 このような第2検出軸を有する第2光電検出部は、第2光電検出部の検出値がブレードのばたつきの影響を受けることを防止して、第2光電検出部単独でブレードのZ軸方向の位置を精度よく検出することができる。
 また、例えば、前記第1検出軸が前記ブレードの前記回転面に交差する第1交差位置は、前記第2検出軸が前記ブレードの前記回転面に交差する第2交差位置と、略同一の位置であってもよい。
 第1交差位置と第2交差位置とを略一致させることにより、Z軸方向のエッジ部分の位置と、ばたつきに関するY軸方向のエッジ部分の位置の両方を、より精度良く検出することが可能である。また、このような切削装置では、第1交差位置と第2交差位置とが離間している場合に比べて、エッジ部分の位置検出に必要な演算量を低減することができる。
 また、例えば、前記第1検出軸は、前記回転面に対して、5~85度の角(θ1)をなしてもよい。
 このような角度とすることにより、ブレードのばたつきに起因するエッジ部分のY軸方向への位置変化を、より好適に検出することができる。
 また、たとえば、前記第1検出軸は、前記第1検出軸と前記回転面との交点で前記ブレードに接しており前記回転軸に平行な第1外接面に対して、5~60度の角(θ3)をなしてもよい。
 このような角度とすることにより、ブレードのばたつきに起因するエッジ部分のY軸方向への位置変化を、より精度良く検出することができる。また、ブレードの取付部分との干渉を避けつつ、第1出射部と第1入射部を適切に配置することができる。
 また、たとえば、前記第1検出軸は、前記回転軸に対してねじれの位置にあってもよい。
 このような第1検出軸を有する第1光電検出部は、ブレードの取付部分との干渉を避けつつ、第1出射部と第1入射部をコンパクトに配置することができる。
 また、たとえば、前記第1検出軸と前記回転軸とは、共通の面に沿っていてもよい。
 このような第1検出軸を有する第1光電検出部は、ブレードによる遮蔽領域がばたつきによりZ軸直交方向への変動を生じる現象を防止できるため、位置検出のための演算量を抑制できる。また、エッジ部分の位置検出精度を高めることができる。
図1は、本発明の第1実施形態に係る切削装置の正面図と側面図である。 図2は、図1に示す切削装置が有するセンサユニットを示す概略図である。 図3は、図2に示すセンサユニットとブレードとの位置関係を表す部分拡大図である。 図4は、第1及び第2光電検出部とブレードとの位置関係を示す概念図である。 図5は、第1及び第2光電検出部の機能を説明するための概念図である。 図6は、ブレードの位置変化と第1及び第2光電検出部の検出出力との関係を表す概念図である。 図7は、ブレードのY軸方向の位置変化と、Z軸方向の位置変化を、第1及び第2光電検出部によって検出する方法を表す概念図である。 図8は、第2実施形態に係る切削装置に含まれるセンサユニットにおける第1光電検出部とブレードとの位置関係を示す概念図である。 図9は、第3実施形態に係る切削装置に含まれるセンサユニットにおける第1及び第2光電検出部とブレードとの位置関係を示す概念図である。 図10は、第4実施形態に係る切削装置に含まれるセンサユニットにおける第1及び第2光電検出部とブレードとの位置関係を示す概念図である。 図11は、第5実施形態に係る切削装置に含まれるセンサユニットにおける第1及び第2光電検出部とブレードとの位置関係を示す概念図である。 図12は、本発明の第6実施形態に係る切削装置の正面図と側面図である。 図13は、本発明の第7実施形態に係る切削装置の正面図と側面図である。
 第1実施形態
 以下、本発明を、図面に示す実施形態に基づき説明する。図1は、本発明の第1実施形態に係る切削装置10の概略図である。図1(a)は、切削装置10をブレード32の回転軸方向であるY軸方向から見た図であり、ず1(b)は、切削装置10をブレード32の回転軸方向であるY軸方向に直交するX軸方向から見た図である。
 切削装置10は、テーブル20と、切削部30と、固定ベース12などを有する。また、切削装置10は、テーブル20又は切削部30を移動させるX軸移動機構26、Y軸移動機構39及びZ軸移動機構38と、切削部30のブレード32の位置を検出するセンサユニット18とを有する。なお、切削装置10の説明では、ブレード32の回転軸35の延在方向をY軸方向とし、Y軸方向に直交する上下方向をZ軸方向、Y軸方向及びZ軸方向に直交する方向をX軸方向として説明を行う。
 図1に示すように、テーブル20は、固定ベース12の上に設けられている。切削装置10のテーブル20は、切削の対象物であるワーク90を設置する設置面23を有するθテーブル22と、θテーブル22を下方から支持するXテーブル24とを有する。
 θテーブル22の設置面23は、ブレード32に対向可能なθテーブル22の上面で構成され、XY平面に平行である。θテーブル22は、Z軸方向に平行なテーブル回転軸(不図示)を中心として回転することができ、ワーク90の姿勢などを調整することができる。
 Xテーブル24は、X軸移動機構26によってX軸方向に移動される。Xテーブル24がX軸方向に移動するのに伴い、Xテーブル24に支持されるθテーブル22及び設置面23も、X軸方向に移動する。このように、X軸移動機構26は、設置面23とブレード32の回転軸35との距離が維持されるX軸方向にテーブル20を移動させる。X軸移動機構26としては、リニアモータや回転モータとギアとを組み合わせた機構などが挙げられるが、特に限定されない。
 図1に示すように、切削部30は、固定ベース12の上方に突出する支持壁14を介して、固定ベース12に支持されている。これにより、切削部30のブレード32が、設置面23に設置されたワーク90に対して、上方及び側方から近づくことができるようになっている。
 切削部30は、ワーク90を切削する加工具としてのブレード32を有する。本実施形態に係るブレード32は、円盤状砥石で構成されるが、ブレード32としてはこれに限定されない。また、切削部30は、ブレード32を所定の回転軸35(図1(b)参照)を中心として回転させる回転駆動部としてのスピンドル34及びスピンドルモータ36とを有する。
 ブレード32は、スピンドル34のY軸負方向端部に固定されている。スピンドル34はY軸方向に沿って伸びており、ブレード32とスピンドルモータ36とを接続する。スピンドル34はY軸回りに回転可能になっており、固定されたブレード32を、回転軸35を中心として回転させることができる。
 スピンドルモータ36は、回転モータで構成され、スピンドル34及びブレード32を、所定の回転数で回転させる。スピンドルモータ36の駆動は、固定ベース12内部に備えられる制御部70によって制御される。
 図1に示すように、切削部30は、Z軸移動機構38及びY軸移動機構39を介して、支持壁14に設けられている。Z軸移動機構38は、切削部30を移動可能に支持している。Z軸移動機構38は、テーブル20の設置面23と回転軸35との距離を変えるZ軸方向に、切削部30を移動させることができる。
 また、Y軸移動機構39は、Z軸移動機構38及びこれに移動可能に設けられる切削部30を、Y軸方向に移動可能に支持している。Z軸移動機構38及びY軸移動機構39としては、X軸移動機構26と同様にリニアモータや回転モータとギアとを組み合わせた機構などが挙げられるが、特に限定されない。
 図1(a)に示すように、切削装置10は、設置面23に設置されたワーク90を撮影する撮像装置16を有する。撮像装置16は、切削部30に設けられており、切削装置10の制御部70は、撮像装置16が取得する画像データから、ワーク90の姿勢や形状などを認識することができる。
 図1(b)に示すように、切削装置10は、ブレード32の回転軸35に対する固定状態、より具体的には、ブレード32のエッジ部分32a(図3参照)の回転軸35に対する位置を検出するセンサユニット18を有する。センサユニット18は、テーブル20におけるXテーブル24の上に、θテーブル22に隣接して設けられている。ただし、センサユニット18の設置位置としてはこれに限定されず、X軸移動機構26、Y軸移動機構39及びZ軸移動機構38などにより、ブレード32をセンサユニット18の測定位置に配置可能であれば、センサユニット18はどのような場所に設置してもよい。
 図2は、センサユニット18の拡大図である。センサユニット18は、第1光電検出部40と、第2光電検出部50と、第1及び第2光電検出部40、50を設置するためのセンサ台19とを有する。図2に示すように、第1光電検出部40は、光を出射する第1出射部42と、第1出射部42で出射された光が入射する第1入射部44とを有する。また、第2光電検出部50は、第1光電検出部40と同様に、光を出射する第2出射部52と、第2出射部52で出射された光が入射する第2入射部54とを有する。
 図3は、ブレード32がセンサユニット18の測定位置に移動した状態を表す拡大図である。図3に示すように、ブレード32が測定位置にある状態では、第1入射部44は、第1出射部42との間にブレード32のエッジ部分32aを挟むように配置される。これにより、第1出射部42と第1入射部44とを結ぶ第1検出軸46は、ブレード32のエッジ部分32aを通過し、第1光電検出部40は、エッジ部分32aの位置を検出することができる。
 また、図3に示すように、第2光電検出部50の第2出射部52及び第2入射部54も、第1光電検出部40の第1出射部42及び第1入射部44と同様である。すなわち、ブレード32が測定位置にある状態では、第2入射部54は、第2出射部52との間にブレード32のエッジ部分32aを挟むように配置される。これにより、第2出射部52と第2入射部54とを結ぶ第2検出軸56は、ブレード32のエッジ部分32aを通過し、第2光電検出部50は、エッジ部分32aの位置を検出することができる。
 図5は、第2光電検出部50による位置検出を説明した概念図である。第2光電検出部50は、第2出射部52及び第2入射部54の他に、第2発光部57と、第2定量検出部としての第2光電変換素子58とを有する。第2発光部57は、LEDなどの光源により構成される。第2発光部57で生じた光は、光ファイバなどで第2出射部52へ伝えられ、第2出射部52から第2検出軸56に沿って出射される。
 第2出射部52から出射した光の一部は、第2入射部54へ入射し、光ファイバなどを介して第2光電変換素子58へ伝えられる。第2出射部52及び第2入射部54は、プリズム等で構成されるが、特に限定されない。また、第2光電変換素子58は、たとえば固体撮像素子などの光電変換素子で構成され、第2出射部52から出射されて前記第2入射部54に入射する光量を、定量的に検出する。第2光電変換素子58は、第2光電変換素子58へ伝えられる光の量に応じた電気信号を出力し、制御部70へ伝える。
 図6は、図5に示す第2光電検出部50によって、ブレード32のエッジ部分32aの位置を検出する方法を説明した概念図である。図6の左側部分は、ブレード32のエッジ部分32aが相対的に上方に位置する状態を表しており、図6の右側部分は、ブレード32のエッジ部分32aが相対的に下方に位置する状態を表している。
 図6に示すように、第2検出軸56はブレード32のエッジ部分32aを通るため、第2出射部52(図5参照)から出射された光の光束領域60は、ブレード32によって遮蔽される遮蔽領域61aと、ブレード32によって遮蔽されない検出領域61bに分けられる。遮蔽領域61aの光は、第2入射部54には入射しない。これに対して、ブレード32によって遮蔽されない検出領域61bの光は、図5に示す第2入射部54に入射して第2光電変換素子58で検出される。
 図6の左側部分と右側部分との比較から理解できるように、ブレード32が移動すると、検出領域61bの面積が変化し、これに伴い、第2光電変換素子58で検出される光量も変化する。このようにして、第2光電検出部50は、ブレード32のエッジ部分32aの位置を、定量的に計測することができる。
 図5及び図6では、第2光電検出部50による位置検出を説明したが、第1光電検出部40についても、第2光電検出部50と同様の機構により、ブレード32のエッジ部分32aの位置を検出する。すなわち、第1光電検出部40は、第2発光部57と同様の第1発光部と、第2光電変換素子58と同様に第1出射部42から出射されて第1入射部44に入射する光量を定量的に検出する第1定量検出部としての第1光電変換素子とを有する。また、第1光電変換素子による検出結果は、図5に示す第2光電変換素子58と同様に、制御部70へ伝えられる。なお、第1出射部42から第1入射部44までの距離は、第2出射部52から第2入射部54までの距離と同一であってもよく、異なっていてもよい。両方の距離を同一とすることにより、制御部70での演算量を減らすことができる。
 図2に示すように、切削装置10が有するセンサユニット18は、第1光電検出部40と第2光電検出部50の2つの検出部を有している。このうち一方の検出部である第1光電検出部40の第1検出軸46は、図4(a)に示すように、ブレード32の回転面32bに対して斜め方向に交差する。
 図4(a)は、切削部30のブレード32と、第1光電検出部40及び第2光電検出部50との位置関係を表す概念図である。図4(a)に示すように、第1光電検出部40の第1検出軸46は、ブレード32の回転面32bに対して垂直ではなく、斜め方向に交差している。このように、第1検出軸46がブレード32の回転面32bに対して斜め方向に交差していることにより、第1光電検出部40は、ブレード32のばたつき(Y方向変位)を検出することができる。
 図7(a)は、第1光電検出部40によってブレード32のばたつきを検出する方法を示す概念図である。図7(a)に示すように、ブレード32のばたつきは、ブレード32のエッジ部分32aのY軸方向の変位bとして現れる。第1光電検出部40の第1検出軸46は、回転面32bに対して所定の角度である角θ1で交差しているため、第1光電検出部40で検出される変位cと、ブレード32のエッジ部分32aのY軸方向の変位bとは、以下の関係式(1)で表される。
 c=b・cоsθ1・・・(1)
 したがって、切削部30の制御部70は、第1光電検出部40で検出される変位cと上述の関係式を用いることにより、エッジ部分32aのY軸方向の位置を検出し、ブレード32のばたつきを検出することができる。なお、ブレード32の回転面32bは、ブレードの回転軸35に直交する平面であって、ブレードの重心位置を含む面として、定義することができる。
 また、図4(a)に示すように、第1実施形態に係る第2光電検出部50の第2検出軸56は、回転軸35に平行であり、第2光電検出部50は単独で、ブレード32の偏心を測定する。このような切削装置10は、第1光電検出部40と第2光電検出部50の両方の検出値を用いて、ブレード32のばたつき及びブレード32の偏芯の両方を、定量的に検出することができる。
 図7(b)は、第1光電検出部40と第2光電検出部50の両方の出力によって、ブレード32のばたつき及びブレード32の偏芯を検出する方法を示す概念図である。ブレード32の偏芯は、ブレード32のエッジ部分32aのZ軸方向の変位aとして現れる。第1検出軸46が回転面32bに対して交差する角度をθ1とすると、第1光電検出部40で検出される変位c1と、ブレード32のエッジ部分32aのY軸方向の変位b及びブレード32のエッジ部分32aのZ軸方向の変位aとは、以下の関係式(2)で表される。
 c1=a・sinθ1+b・cоsθ1・・・(2)
 第2光電検出部50で検出される変位c2は、図4に示すように第2検出軸56と回転面32bとの交差角度(θ2)が90度である場合、ブレード32のエッジ部分32aのZ軸方向の変位aと一致する(関係式(3))。
 c2=a・・・(3)
 第2光電検出部50から検出されるZ軸方向の変位c2を、第1光電検出部40で検出される変位c1の関係式(2)における変位aに代入することにより、ブレード32のエッジ部分32aのY軸方向の変位bを算出することができる(関係式(4))。
 b=(c1ーc2・sinθ1)/cоsθ1・・・(4)
 このようにして、切削装置10は、第1光電検出部40と第2光電検出部50の両方の検出値を用いて、ブレード32のばたつき及びブレード32の偏芯の両方を、定量的に検出することができる。
 なお、第1実施形態では、第2検出軸56が回転面32bに交差する角θ2は、90度のみに限定されず、第1検出軸56が回転面32bに交差する角θ1とは異なる任意の角
度とすることができる。この場合、切削装置10の制御部70は、第1及び第2光電検出部40、50で検出される変位と下記の関係式(4)、(5)を用いることにより、エッジ部分32aのY軸方向及びZ軸方向の位置を検出し、ブレード32のばたつきと偏芯を検出することができる。
c1=a・sinθ1+b・cоsθ1・・・(4)
c2=a・sinθ2+b・cоsθ2 (ただし、θ1≠θ2)・・・(5)
 なお、図4(a)に示す実施形態では、第2検出軸56が回転面32bに交差する角θ2が90度となっていることにより、第2光電検出部50で検出される変位は、ブレード32のばたつき(Y軸方向の変位)の影響を受けなくなる。このため、このような切削装置10は、制御部70による演算量を削減することができる。なお、本明細書において、角θ1、角θ2、角θ3、角θ4のように、検出軸と平面又は直線との間に形成される角は、検出軸と平面又は直線との間に形成される角のうち狭いほうで規定され、検出軸と平面又は直線とがなす角は、0~90度の範囲で規定される。
 図4(b)は、第1光電検出部40の第1検出軸46とブレード32の回転面32bとが交差する第1交差位置32cを示す概念図である。なお、図4(b)では、第2光電検出部50については、第2検出軸56と回転面32bとが交差する第2交差位置32dのみを表示している。また、図4(b)では、ブレード32を透視して表示してある。
 図4(b)に示すように、第1検出軸46がブレード32の回転面32bに交差する第1交差位置32cは、第2検出軸56がブレード32の回転面32bに交差する第2交差位置32dと、略同一の位置となっている。これにより、第1光電検出部40と第2光電検出部50とで、特定のエッジ部分32aを略同時に計測することができるため、検出結果の精度を高めることができる。また、第1光電検出部40と第2光電検出部50との検出タイミングのずれを補正するための演算を減少させることができるため、制御部70の演算量も削減できる。
 なお、図4(b)に示すように、第1交差位置32cと第2交差位置32dとは、完全に一致していてもよいが、わずかにずらして配置されていてもよい。たとえば、第1交差位置32cと第2交差位置32dとの位置ずれは、1mm以下の範囲となるようにして、両者の位置を略一致させることが、検出精度を高める観点で好ましい。
 また、図3及び図4に示すように、第1光電検出部40の第1検出軸46は、単に回転面32bに対して斜めに交差するだけでなく、ブレード32の回転軸35(Y軸方向)に対してねじれの位置にある。図4に示すように、ブレード32はブレード固定部33によってスピンドル34に固定されているが、第1検出軸46を回転軸35に対してねじれの位置とすることにより、第1出射部42及び第1入射部44とブレード固定部33とが干渉しないように、かつコンパクトに第1光電検出部40を配置することができる。なお、ねじれの位置とは、空間中にある2つの直線が平行でなく、かつ、交差していない時の位置関係をいう。
 このように、図1~図7を用いて説明した切削装置10は、第1検出軸46がブレード32の回転面32bに対して斜めに交差するため、比較的簡易な第1光電検出部40を用いて、ブレード32のばたつきを精度良く検出することができる。図4に示す第1検出軸46が、回転面32bに対してなす角θ1は、数式(1)によりブレード32のばたつきを検出できる角度であれば特に限定されないが、たとえば、5~85度とすることが、ブレードのばたつきを特に高精度に検出する観点から好ましく、45~75度とすることがさらに好ましい。
 第2実施形態
 また、図3及び図4に示す第1及び第2光電検出部40、50とブレード32との位置関係は一例であり、様々な異なる構成のセンサユニットを有する切削装置が、本発明の技術的範囲に含まれる。図8は、本発明の第2実施形態に係る切削装置に含まれるセンサユニットにおける第1光電検出部140とブレード32との位置関係を示す概念図である。
 図8に示すように、第1光電検出部140は、図4に示す第1光電検出部40と同様に、第1出射部142と第1入射部144とを有している。ただし、第1光電検出部140は、第1出射部142及び第1入射部144の配置が図4に示す第1光電検出部40とは異なっており、第1出射部142と第1入射部144とを結ぶ第1検出軸146が、回転軸(Y軸方向)に対してねじれの位置にない。
 すなわち、第1光電検出部140の第1検出軸146と回転軸(Y軸方向)とは、共通の面(YZ平面)に沿っている。このような第1検出軸146を有する第1光電検出部140は、ブレード32による遮蔽領域(図6参照)が、ばたつきによりZ軸直交方向への変位を生じる現象を防止できるため、位置検出のための演算量を抑制できる。
 また、図8に示すように、第1検出軸146は、第1検出軸146と回転面32bとの交点でブレード32に接しており回転軸(Y軸方向)に平行な第1外接面64に対して所定の角θ3をなし、角θ3は、好ましくは5~60度、さらに好ましくは15~45度である。角θ3をこのような範囲とすることにより、ブレード32の位置を精度よく検出できるとともに、第1出射部142及び第1入射部144を、ブレード固定部33に接触しない位置に適切に配置できる。
 図8に示すように、センサユニットは第1光電検出部140のみを有してもよく、第2光電検出部を有していなくてもよい。ただし、このような場合、切削装置は、ブレード32の偏芯を検出できる他の検出手段を有することが好ましい。
 第3実施形態
 図9は、本発明の第3実施形態に係る切削装置に含まれるセンサユニットにおける第1光電検出部240及び第2光電検出部50とブレード32との位置関係を示す概念図である。図9(a)は、X軸正方向側からブレード32を見た状態を表しており、図9(b)は、Z軸正方向側からブレード32を見た状態を表している。
 図9(a)及び図9(b)から理解できるように、第3実施形態では、第1検出軸246が回転面32bに交差する第1交差位置232c(図9(b))と、第2検出軸56が回転面32bに交差する第2交差位置32dとが大きく離れている。図9に示すように、第1交差位置232cと第2交差位置32dとが大きく離れていても(図9では、90度異なる位置に配置されている)、ブレード32の回転速度などに基づき、第1光電検出部240と第2光電検出部50との検出タイミングのずれを補正することにより、第3実施形態に係るセンサユニットも、第1実施形態に係るセンサユニット18と同様に、ブレード32のエッジ部分32aの位置を検出することができる。
 なお、図9に示す第1光電検出部240は、ブレード32に対する第1出射部242及び第1入射部244の配置が異なることを除いて、図8に示す第1光電検出部140と同様である。また、図9に示す第2光電検出部50は、図4に示す第2光電検出部50と同様である。第3実施形態に係る切削装置も、第1実施形態に係る切削装置10と同様の効果を奏する。
 第4実施形態
 図10は、本発明の第4実施形態に係る切削装置に含まれるセンサユニットにおける第1光電検出部140及び第2光電検出部50とブレード32との位置関係を示す概念図である。図10に示すセンサユニットでは、第1光電検出部140において第1出射部142と第1入射部144とを結ぶ第1検出軸146がYZ平面に平行に配置されており、第2光電検出部50において第2出射部52と第2入射部54とを結ぶ第2検出軸56も、YZ平面に平行に配置されている。
 図10に示す第1光電検出部140は、図8に示す第1光電検出部140と同様であり、図10に示す第2光電検出部50は、図4に示す第2光電検出部50と同様である。第4実施形態に係る切削装置も、第1実施形態に係る切削装置10と同様の効果を奏する。
 第5実施形態
 図11は、本発明の第5実施形態に係る切削装置に含まれるセンサユニットにおける第1光電検出部140及び第2光電検出部350と、ブレード32との位置関係を示す概念図である。図11(a)は、X軸正方向側からブレード32を見た状態を表しており、図11(b)は、Z軸正方向側から第2光電検出部350を見た状態を表している。なお、図11(b)では、ブレード固定部33の表示を省略し、ブレード32のみを破線で表示している。
 図11(a)に示すように、第2光電検出部350において第2出射部352と第2入射部354とを結ぶ第2検出軸356は、図4に示す第2検出軸56とは異なり、回転軸(Y軸方向)に対してねじれの位置にある。すなわち、第2検出軸356は、回転軸(Y軸方向)に平行であって第2検出軸356と回転面32bとの交点でブレード32に接する第2外接面66に沿っているものの、回転軸(Y軸方向)と平行ではない。
 図11(b)に示すように、第2検出軸356は、第2外接面66(図11(a)参照)に沿っており回転軸(Y軸方向)と平行な基準線68に対して、0度ではない所定の角θ4をなしている。角θ4としては、特に限定されないが、たとえば5~85度とすることが好ましく、30~60度とすることが好ましい。角θ4を好ましい範囲とすることにより、第1光電検出部140と第2光電検出部350との干渉を容易に回避できるため、このようなセンサユニットは小型化の観点で有利である。
 なお、図11に示す第1光電検出部140は、図8に示す第1光電検出部140と同様であり、図11に示す第2光電検出部350は、第2検出軸356などの配置が異なることを除き、図4に示す第2光電検出部50と同様である。第5実施形態に係る切削装置も、第1実施形態に係る切削装置10と同様の効果を奏する。
 図4及び図8~図11に示すように、第1光電検出部40、140及び第2光電検出部50、350は、ブレード32に対して様々な角度で配置することが可能である。また、各実施形態における第1出射部42、142と第1入射部44、144の位置は入れ換えることができ、第2出射部52、352と第2入射部54、354の位置も入れ換えることができる。
 第6実施形態
 図12(a)及び図12(b)は、第6実施形態に係る切削装置410の外観図である。切削装置410は、センサユニット418の配置が第1実施形態に係る切削装置10とは異なることを除き、切削装置10と同様である。
 切削装置410のセンサユニット418は、設置面23を有するθテーブル22に対してX軸方向に隣接して配置されている。このような切削装置410では、たとえばブレード32をセンサユニット418の検出位置まで移動させてブレード32の偏芯及びばたつきを検出した直後に、そのままXテーブル24を移動させることによりブレード32がワーク90を切削可能である。また、これとは反対に、ブレード32がワーク90を切削したあと、そのままXテーブル24を移動させることにより、ブレード32をセンサユニット418の検出位置まで移動させてブレード32の偏芯及びばたつきを検出することが可能である。その他、切削装置410は、切削装置10と同様の効果を奏する。
 第7実施形態
 図13(a)及び図13(b)は、第7実施形態に係る切削装置510の外観図である。切削装置510は、センサユニット518の配置が第1実施形態に係る切削装置10とは異なることを除き、切削装置10と同様である。
 切削装置510のセンサユニット518は、設置面23を有するθテーブル22の上に配置されている。このようなセンサユニット518を有する切削装置510も、切削装置10と同様にブレード32の位置を検出することができ、切削装置10と同様の効果を奏する。
 図1、図12及び図13に示すように、第1光電検出部40、140及び第2光電検出部50、350を有するセンサユニット18、418、518は、切削装置10における様々な位置に配置することが可能である。また、図1、図12及び図13に示すZ軸移動機構38は、切削部30をZ軸方向に移動させるが、これとは異なり、Z軸移動機構は、テーブル20をZ軸方向に移動させるものであってもよい。また、図1、図12及び図13に示すX軸移動機構26は、テーブル20をX軸方向に移動させるが、これとは異なり、X軸移動機構は、切削部30をX軸方向に移動させるものであってもよい。
 なお、切削装置10は、センサユニット18、418、518で検出したブレード32のばたつき及び偏芯に関する情報に基づき、ブレード32の偏芯を補正する動作や、ブレード32のばたつきを抑制する動作を行ってもよい。また、切削装置10は、センサユニット18、418、518で検出したブレード32のばたつき及び偏芯に関する情報を記憶してもよく、また、ブレード32のばたつき及び偏芯が所定の閾値を超えた場合は、所定の警告動作等を行ってもよい。
10、410、510…切削装置
12…固定ベース
14…支持壁
16…撮像装置
18、418、518…センサユニット
19…センサ台
20…テーブル
22…θテーブル
23…設置面
24…Xテーブル
26…X軸移動機構
30…切削部
32…ブレード
32a…エッジ部分
32b…回転面
32c、232c…第1交差位置
32d…第2交差位置
33…ブレード固定部
34…スピンドル
35…回転軸
36…スピンドルモータ
38…Z軸移動機構
39…Y軸移動機構
40、140、240…第1光電検出部
42、142、242…第1出射部
44、144、244…第1入射部
46、146、246…第1検出軸
50…第2光電検出部
52…第2出射部
54…第2入射部
56…第2検出軸
57…発光部
58…第2光電変換素子
60…光束領域
61a…遮蔽領域
61b…検出領域
64…第1外接面
66…第2外接面
68…基準線
70…制御部
90…ワーク
θ1、θ2、θ3、θ4…角

Claims (31)

  1.  対象物を設置する設置面を有するテーブルと、
     前記対象物を切削するブレードと、前記ブレードを所定の回転軸を中心として回転させる回転駆動部と、を有する切削部と、
     前記設置面と前記回転軸との距離を変えるZ軸方向に、前記テーブル又は前記切削部を移動させるZ軸移動機構と、
     前記設置面と前記回転軸との距離が維持されるX軸方向に、前記テーブル又は前記切削部を移動させるX軸移動機構と、
     光を出射する第1出射部と、前記第1出射部との間に前記ブレードのエッジ部分を挟むように配置され前記第1出射部で出射された光が入射する第1入射部と、を含み、前記エッジ部分の位置の変化を検出する第1光電検出部と、を有しており、
     前記第1出射部と前記第1入射部とを結ぶ第1検出軸は、前記ブレードの回転面に対して斜め方向に交差することを特徴とする切削装置。
  2.  前記第1光電検出部は、前記第1出射部から出射されて前記第1入射部に入射する光量を定量的に検出する第1定量検出部を有することを特徴とする請求項1に記載の切削装置。
  3.  光を出射する第2出射部と、前記第2出射部との間に前記ブレードの前記エッジ部分を挟むように配置され前記第2出射部で出射された光が入射する第2入射部と、を含み、前記エッジ部分の位置の変化を検出する第2光電検出部をさらに有しており、
     前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記ブレードの前記回転面に対して、前記第1検出軸とは異なる角度で交差することを特徴とする請求項1又は請求項2に記載の切削装置。
  4.  光を出射する第2出射部と、前記第2出射部との間に前記ブレードの前記エッジ部分を挟むように配置され前記第2出射部で出射された光が入射する第2入射部と、を含む、前記エッジ部分の位置の変化を検出する第2光電検出部をさらに有しており、
     前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記回転軸に平行且つ前記第2検出軸と前記回転面との交点で前記ブレードに接する第2外接面に沿っていることを特徴とする請求項1から請求項3までのいずれかに記載の切削装置。
  5.  前記第2光電検出部は、前記第2出射部から出射されて前記第2入射部に入射する光量を定量的に検出する第2定量検出部を有することを特徴とする請求項3又は4に記載の切削装置。
  6.  前記第2検出軸は、前記第2外接面に沿っており前記回転軸と平行な基準線に対して、5~85度の角をなすことを特徴とする請求項3から請求項5までのいずれかに記載の切削装置。
  7.  前記第2検出軸は、前記回転軸に対してねじれの位置にあることを特徴とする請求項3から請求項5までのいずれかに記載の切削装置。
  8.  前記第2検出軸は、前記回転軸と平行であることを特徴とする請求項3から請求項5までのいずれかに記載の切削装置。
  9.  前記第1検出軸が前記ブレードの前記回転面に交差する第1交差位置は、前記第2検出軸が前記ブレードの前記回転面に交差する第2交差位置と、略同一の位置であることを特徴とする請求項3から請求項8までのいずれかに記載の切削装置。
  10.  前記第1検出軸は、前記回転面に対して、5~85度の角をなすことを特徴とする請求項1から請求項9までのいずれかに記載の切削装置。
  11.  前記第1検出軸は、前記第1検出軸と前記回転面との交点で前記ブレードに接しており前記回転軸に平行な第1外接面に対して、5~60度の角をなすことを特徴とする請求項1から請求項9までのいずれかに記載の切削装置。
  12.  前記第1検出軸は、前記回転軸に対してねじれの位置にある請求項1から請求項11までのいずれかに記載の切削装置。
  13.  前記第1検出軸と前記回転軸とは、共通の面に沿っている請求項1から請求項11までのいずれかに記載の切削装置。
  14.  回転する円盤状のブレードを検出するセンサユニットであって、
     光を出射する第1出射部と、
    前記第1出射部との間に前記ブレードのエッジ部分を挟むように配置され、前記第1出射部で出射された光が入射する第1入射部と、を含み、前記エッジ部分の位置の変化を検出する第1光電検出部と、を有しており、
     前記第1出射部と前記第1入射部とを結ぶ第1検出軸は、前記ブレードの回転面に対して斜め方向に交差することを特徴とするセンサユニット。
  15.  前記第1光電検出部は、前記第1出射部から出射されて前記第1入射部に入射する光量を定量的に検出する第1定量検出部を有することを特徴とする請求項14に記載のセンサユニット。
  16.  光を出射する第2出射部と、前記第2出射部との間に前記ブレードの前記エッジ部分を挟むように配置され前記第2出射部で出射された光が入射する第2入射部と、を含み、前記エッジ部分の位置の変化を検出する第2光電検出部をさらに有しており、
     前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記ブレードの前記回転面に対して、前記第1検出軸とは異なる角度で交差することを特徴とする請求項14又は請求項15に記載のセンサユニット。
  17.  光を出射する第2出射部と、前記第2出射部との間に前記ブレードの前記エッジ部分を挟むように配置され前記第2出射部で出射された光が入射する第2入射部と、を含み、前記エッジ部分の位置の変化を検出する第2光電検出部をさらに有しており、
     前記第2出射部と前記第2入射部とを結ぶ第2検出軸は、前記ブレードの回転軸に平行且つ前記第2検出軸と前記回転面との交点で前記ブレードに接する第2外接面に沿っていることを特徴とする請求項14から請求項16までのいずれかに記載のセンサユニット。
  18.  前記第2光電検出部は、前記第2出射部から出射されて前記第2入射部に入射する光量を定量的に検出する第2定量検出部を有することを特徴とする請求項16又は17に記載のセンサユニット。
  19.  前記第2検出軸は、前記第2外接面に沿っており前記ブレードの回転軸と平行な基準線に対して、5~85度の角をなすことを特徴とする請求項16から請求項18までのいずれかに記載のセンサユニット。
  20.  前記第2検出軸は、前記ブレードの回転軸に対してねじれの位置にあることを特徴とする請求項16から請求項18までのいずれかに記載のセンサユニット。
  21.  前記第2検出軸は、前記ブレードの回転軸と平行であることを特徴とする請求項16から請求項18までのいずれかに記載のセンサユニット。
  22.  前記第1検出軸が前記ブレードの前記回転面に交差する第1交差位置は、前記第2検出軸が前記ブレードの前記回転面に交差する第2交差位置と、略同一の位置であることを特徴とする請求項16から請求項21までのいずれかに記載のセンサユニット。
  23.  前記第1検出軸は、前記回転面に対して、5~85度の角をなすことを特徴とする請求項14から請求項22までのいずれかに記載のセンサユニット。
  24.  前記第1検出軸は、前記第1検出軸と前記回転面との交点で前記ブレードに接しており前記回転軸に平行な第1外接面に対して、5~60度の角をなすことを特徴とする請求項14から請求項22までのいずれかに記載のセンサユニット。
  25.  前記第1検出軸は、前記ブレードの回転軸に対してねじれの位置にある請求項14から請求項24までのいずれかに記載のセンサユニット。
  26.  前記第1検出軸と前記ブレードの回転軸とは、共通の面に沿っている請求項14から請求項24までのいずれかに記載のセンサユニット。
  27.  回転する円盤状のブレードの位置変化を検出する検出方法であって、
     前記ブレードのエッジ部分を挟むように配置された第1出射部と第1入射部とを含む第1光電検出部と、前記ブレードのエッジ部分を挟むように配置された第2出射部と第2入射部とを含む第2光電検出部とを、前記第1光電検出部の第1検出軸と前記第2光電検出部の第2検出軸とが異なる角度で前記ブレードの回転面に交差するように配置し、
     前記第1光電検出部が、前記第1入射部へ入射する光量の前記ブレードの回転に伴う変化を定量的に検出して第1の変位を検出し、
     前記第2光電検出部が、前記第2入射部へ入射する光量の前記ブレードの回転に伴う変化を定量的に検出して第2の変位を検出し、
     前記第1の変位と、前記第2の変位と、前記第1検出軸および前記第2検出軸と前記回転面との角度と、を用いて、前記ブレードの前記回転軸方向変位を求めることを特徴とする検出方法。
  28.  前記第1検出軸を前記回転面に対して斜め方向に配置することを特徴とする、請求項27に記載の検出方法。
  29.  前記第2検出軸を前記回転面と略垂直に配置することを特徴とする請求項27または請求項28に記載の検出方法。
  30.  前記第1の変位は、前記ブレードのばたつきと偏心の両方の成分を含むことを特徴とする請求項27から29のいずれかに記載の検出方法。
  31.  前記第2の変位は、前記ブレードの偏心成分のみを含むことを特徴とする請求項29に記載の検出方法。
PCT/JP2019/032459 2018-08-22 2019-08-20 切削装置、センサユニット、及び検出方法 WO2020040142A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980049993.2A CN112469536B (zh) 2018-08-22 2019-08-20 切削装置、传感器单元和检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-155717 2018-08-22
JP2018155717A JP6969523B2 (ja) 2018-08-22 2018-08-22 切削装置

Publications (1)

Publication Number Publication Date
WO2020040142A1 true WO2020040142A1 (ja) 2020-02-27

Family

ID=69593166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032459 WO2020040142A1 (ja) 2018-08-22 2019-08-20 切削装置、センサユニット、及び検出方法

Country Status (3)

Country Link
JP (1) JP6969523B2 (ja)
CN (1) CN112469536B (ja)
WO (1) WO2020040142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116785069A (zh) * 2022-10-19 2023-09-22 深圳大学总医院 一种滴眼辅助装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388345U (ja) * 1989-12-22 1991-09-10
JP2005028479A (ja) * 2003-07-09 2005-02-03 Disco Abrasive Syst Ltd マルチブレードのセットアップ方法,ブレード間隔測定方法,およびブレード状態検知方法
JP2006116690A (ja) * 2004-09-22 2006-05-11 Disco Abrasive Syst Ltd 切削装置
JP2006294641A (ja) * 2005-04-05 2006-10-26 Apic Yamada Corp ダイシング装置
JP2009206363A (ja) * 2008-02-28 2009-09-10 Disco Abrasive Syst Ltd 切削ブレードばたつき検出方法
JP2012040651A (ja) * 2010-08-20 2012-03-01 Disco Corp 切削ブレード検出機構
JP2012169557A (ja) * 2011-02-16 2012-09-06 Tokyo Seimitsu Co Ltd ダイシング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388345U (ja) * 1989-12-22 1991-09-10
JP2005028479A (ja) * 2003-07-09 2005-02-03 Disco Abrasive Syst Ltd マルチブレードのセットアップ方法,ブレード間隔測定方法,およびブレード状態検知方法
JP2006116690A (ja) * 2004-09-22 2006-05-11 Disco Abrasive Syst Ltd 切削装置
JP2006294641A (ja) * 2005-04-05 2006-10-26 Apic Yamada Corp ダイシング装置
JP2009206363A (ja) * 2008-02-28 2009-09-10 Disco Abrasive Syst Ltd 切削ブレードばたつき検出方法
JP2012040651A (ja) * 2010-08-20 2012-03-01 Disco Corp 切削ブレード検出機構
JP2012169557A (ja) * 2011-02-16 2012-09-06 Tokyo Seimitsu Co Ltd ダイシング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116785069A (zh) * 2022-10-19 2023-09-22 深圳大学总医院 一种滴眼辅助装置
CN116785069B (zh) * 2022-10-19 2024-04-12 深圳大学总医院 一种滴眼辅助装置

Also Published As

Publication number Publication date
JP6969523B2 (ja) 2021-11-24
CN112469536B (zh) 2023-02-14
CN112469536A (zh) 2021-03-09
JP2020028947A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6385531B1 (ja) 光学式スピンドル多自由度誤差測定装置及び方法
KR101136315B1 (ko) 광속 주사장치, 레이저 가공장치, 시험방법 및 레이저 가공방법
JP6288280B2 (ja) 表面形状測定装置
WO2020040142A1 (ja) 切削装置、センサユニット、及び検出方法
JP4512557B2 (ja) 位置検出装置
JP2000304529A (ja) プローブ装置及び形状測定装置
JP2010137321A (ja) ダブルボールバー
JP5038481B2 (ja) 多軸加工機の計測装置
JP2008122349A (ja) 測定装置
JP2013022676A (ja) レーザ光振れ量検出装置、変位測定装置、光学素子成形用金型の製造方法及び光学素子
JP4822342B2 (ja) 位置検出方法
JP2002107142A (ja) 歯車測定機
WO2023005122A1 (zh) 正交轴系统的正交性的测量方法
JP2006125893A (ja) 測定用治具
JP6152323B2 (ja) 加工装置
TWI496651B (zh) 檢測裝置與使用其之檢測方法
CN110945332B (zh) 扭矩传感器、致动器和机器人
JPS6288555A (ja) 工具寸法の測定方法
JP2008268000A (ja) 変位測定方法および装置
JP2007046937A (ja) 表面形状測定装置及び表面形状測定方法
JP4897658B2 (ja) 形状測定装置
TWI324956B (en) A measuring device for a machine
TWI633274B (zh) 光學式轉軸多自由度誤差檢測裝置與方法(一)
JP2008002844A (ja) 変位測定装置
JP2015054672A (ja) センサー基板検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853126

Country of ref document: EP

Kind code of ref document: A1