WO2020039909A1 - Solid-state imaging element and electronic device - Google Patents
Solid-state imaging element and electronic device Download PDFInfo
- Publication number
- WO2020039909A1 WO2020039909A1 PCT/JP2019/030784 JP2019030784W WO2020039909A1 WO 2020039909 A1 WO2020039909 A1 WO 2020039909A1 JP 2019030784 W JP2019030784 W JP 2019030784W WO 2020039909 A1 WO2020039909 A1 WO 2020039909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- signal
- signal line
- output
- vertical
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims description 90
- 238000012545 processing Methods 0.000 claims description 17
- 239000003086 colorant Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 48
- 238000012546 transfer Methods 0.000 description 45
- 239000003990 capacitor Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 28
- 230000000875 corresponding effect Effects 0.000 description 19
- 230000003321 amplification Effects 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 18
- 238000003199 nucleic acid amplification method Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 12
- 230000001276 controlling effect Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/618—Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/62—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
- H04N25/628—Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for reducing horizontal stripes caused by saturated regions of CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/616—Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
Definitions
- the present invention relates to a solid-state imaging device and an electronic device.
- CMOS Complementary Metal Oxide Semiconductor
- a / D Analog to Digital
- streaking Band-like line noise extending in the left-right direction on the image, so-called streaking, occurs.
- a technique of correcting the streaking there is known a technique of obtaining a streaking correction signal of each line by using a signal level and a black level of each line detected using an output signal of a horizontal light shielding unit (for example, see Patent Document 1). 1).
- CMOS solid-state imaging device special pixels such as a pixel for receiving infrared light and a pixel for detecting an image plane phase difference may be arranged at predetermined intervals on a horizontal line.
- special pixels such as a pixel for receiving infrared light and a pixel for detecting an image plane phase difference
- a high-luminance subject is imaged using a solid-state imaging device in which special pixels are arranged in this way, streaking occurs on a horizontal line of a captured image in which special pixels are arranged, regardless of the position of the subject image.
- the technique of Patent Document 1 does not consider streaking caused by special pixels at all.
- the present disclosure has an object to provide a solid-state imaging device and an electronic device capable of reducing streaking caused by a special pixel.
- a solid-state imaging device includes a first pixel connected to a vertical signal line, a second pixel connected to the vertical signal line, and a vertical pixel connected to the vertical signal line.
- a holding unit for holding a pixel signal appearing on the signal line, and a holding unit connected to the first pixel and the second pixel for controlling reading of the pixel signal from the first pixel and the second pixel to the vertical signal line;
- a first signal line to which one control signal is input, and a second signal to which a second control signal which is connected to the holding unit and holds the pixel signal read out to the vertical signal line by the holding unit is input.
- the second control signal is output to the second signal line, and a third control unit for outputting a control signal to the third signal line, a.
- FIG. 2 is a block diagram illustrating a schematic configuration example of a solid-state imaging device applicable to the first embodiment of the present disclosure and an electronic device using the solid-state imaging device.
- FIG. 3 is a diagram illustrating a part of a circuit configuration of a pixel array unit applicable to the first embodiment. It is a figure which shows a Bayer arrangement more specifically. It is a figure showing the example which replaced pixel B of a Bayer arrangement with a special pixel.
- 6 is a timing chart schematically showing reading of a pixel signal by an imaging device. It is a figure which shows typically reading of the pixel signal of the special pixel row in which the special pixel was arrange
- FIG. 5 is a diagram schematically illustrating reading of pixel signals of a normal pixel row in which normal pixels are arranged. It is a figure which shows typically reading of the pixel signal of the special pixel row in which the special pixel was arrange
- FIG. 4 is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using an imaging device according to an existing technology.
- FIG. 4 is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using an imaging device according to an existing technology.
- FIG. 4 is a diagram schematically illustrating a configuration of an imaging device including a pixel array unit in which special pixels are arranged according to an existing technology.
- FIG. 4 is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using an imaging device including a pixel array unit in which special pixels are arranged according to an existing technology.
- 9 is an example timing chart illustrating an operation when a selected row is a normal pixel row according to the existing technology. It is a figure which extracts and shows the normal pixel row by which the some normal pixel in the pixel array part by the existing technique was arrange
- 6 is an example timing chart illustrating an operation when a selected row is a special pixel row according to the existing technology.
- FIG. 2 is a diagram illustrating a configuration of an example of a pixel array unit in the imaging device according to the first embodiment.
- FIG. 17 is an example timing chart illustrating the operation of the imaging device according to the first embodiment.
- FIG. 9 is a diagram illustrating a configuration of an example of a pixel array unit in an imaging device according to a first modification of the first embodiment.
- FIG. 9 is a diagram illustrating a configuration of an example of a pixel array unit in an imaging device according to a second modification of the first embodiment.
- FIG. 13 is a diagram illustrating a configuration of an example of a pixel array unit in an imaging device according to a third modification of the first embodiment.
- FIG. 9 is a block diagram illustrating a configuration of an example of an electronic device according to a second embodiment.
- FIG. 14 is a diagram illustrating a usage example of the imaging device according to the present disclosure.
- FIG. 1 is a block diagram illustrating a solid-state imaging device applicable to the first embodiment of the present disclosure and a schematic configuration example of an electronic device using the solid-state imaging device.
- the imaging apparatus 1 includes a pixel array unit 11, a vertical scanning unit 12, an A / D conversion unit 13, a reference signal generation unit 14, a horizontal scanning unit 15, a pixel signal line 16, a vertical signal It includes a line 17, an output unit 18, and a control unit 19.
- the pixel array unit 11 includes pixels having a photoelectric conversion unit that performs photoelectric conversion on received light, which are arranged in a two-dimensional matrix in the horizontal direction (row direction) and the vertical direction (column direction).
- the photoelectric conversion unit is configured using a photodiode or the like.
- a pixel signal line 16 (first signal line) is connected for each row, and a vertical signal line 17 is connected for each column.
- An end of the pixel signal line 16 that is not connected to the pixel array unit 11 is connected to the vertical scanning unit 12.
- the pixel signal line 16 transmits a control signal such as a drive pulse for reading a pixel signal from a pixel from the vertical scanning unit 12 to the pixel array unit 11.
- An end of the vertical signal line 17 that is not connected to the pixel array unit 11 is connected to an A / D (Analog to Digital) converter 13.
- the vertical signal line 17 transmits a pixel signal read from a pixel to the A / D converter 13.
- the vertical scanning section 12 supplies various signals including a drive pulse to the pixel signal line 16 of the selected pixel row of the pixel array section 11 under the control of the control section 19, thereby converting the pixel signals and the like to the vertical signal lines. 17 is output.
- the vertical scanning unit 12 is configured using, for example, a shift register, an address decoder, and the like.
- the A / D converter 13 includes a column A / D converter 131 provided for each vertical signal line 17 and a signal processor 132.
- the column A / D converter 131 executes a count process for correlated double sampling (CDS) for reducing noise on the pixel signal output from the pixel via the vertical signal line 17. I do.
- the column A / D conversion unit 131 has a comparator 131a and a counter unit 131b.
- the comparator 131a compares the pixel signal input from the pixel via the vertical signal line 17 with the ramp signal RAMP supplied from the reference signal generation unit 14 during the P phase (Preset Phase) period, and compares the comparison result. Output to the counter 131b.
- the P-phase period is a period during which the reset level of the pixel signal is detected in the CDS processing.
- the ramp signal RAMP is, for example, a signal whose level (voltage value) decreases with a constant slope, or a sawtooth signal whose level decreases stepwise. When the level of the ramp signal RAMP is higher than the level of the pixel signal, the comparator 131a outputs a High difference signal to the counter unit 131b.
- the comparator 131a When the level of the ramp signal RAMP is equal to or lower than the level of the pixel signal, the comparator 131a inverts the output and outputs a Low difference signal to the counter unit 131b. Note that the level of the ramp signal RAMP is reset to a predetermined value after the output of the comparator 131a is inverted.
- the counter unit 131b counts down the time from the start of the voltage drop of the ramp signal RAMP to the level equal to or lower than the pixel signal in accordance with the difference signal input from the comparator 131a during the P-phase period. Then, the count result is output to the signal processing unit 132. Further, in the D-phase (Data @ Phase) period, the counter unit 131b has the same or lower level as the pixel signal after the ramp signal RAMP starts the voltage drop according to the difference signal input from the comparator 131a. The time until is counted up, and the count result is output to the signal processing unit 132.
- the D-phase period is a detection period for detecting the signal level of the pixel signal in the CDS processing.
- the signal processing unit 132 performs CDS processing and A / D conversion processing based on the count result of the P-phase period and the count result of the D-phase period input from the counter unit 131b to generate digital image data, Output to the output unit 18.
- the reference signal generator 14 generates a ramp signal RAMP based on the control signal input from the controller 19, and outputs the generated ramp signal RAMP to the comparator 131a of the A / D converter 13.
- the reference signal generator 14 is configured using, for example, a D / A conversion circuit.
- the horizontal scanning unit 15 performs selective scanning for selecting each column A / D conversion unit 131 in a predetermined order, so that each column A / D conversion unit 131 temporarily holds the data.
- the counting result is sequentially output to the signal processing unit 132.
- the horizontal scanning unit 15 is configured using, for example, a shift register, an address decoder, and the like.
- the output unit 18 performs predetermined signal processing on the image data input from the signal processing unit 132 and outputs the processed image data to the outside of the imaging device 1.
- the control unit 19 controls driving of the vertical scanning unit 12, the A / D conversion unit 13, the reference signal generation unit 14, the horizontal scanning unit 15, and the like.
- the control unit 19 is configured using, for example, a timing generator or the like.
- the control unit 19 generates various drive signals serving as references for the operations of the vertical scanning unit 12, the A / D conversion unit 13, the reference signal generation unit 14, and the horizontal scanning unit 15.
- the imaging device 1 configured as described above is a column AD type CMOS (Complementary Metal Oxide Semiconductor) image sensor in which the column A / D converter 131 is arranged for each column.
- the number of the A / D converters 13 is one. However, for example, two A / D converters 13 are provided in the vertical direction of the pixel array unit 11, and the odd and even columns of the pixel array unit 11 are provided. May be divided in the vertical direction to output a pixel signal.
- FIG. 2 is a diagram illustrating a part of the circuit configuration of the pixel array unit 11 applicable to the first embodiment.
- the pixel array unit 11 includes a constant current source 2, a pixel 3 (hereinafter, referred to as “normal pixel 3”), and a pixel 4 (hereinafter, referred to as “special pixel 4”).
- a pixel 3 is connected to a first transfer signal line 161, a reset signal line 162, and a row selection signal line 163 as a pixel signal line 16.
- a reset signal line 162, a row selection signal line 163, and a second transfer signal line 164 are connected to each special pixel 4 as a pixel signal line 16.
- the constant current source 2 is provided for each vertical signal line 17.
- the constant current source 2 is configured using an N-channel MOS (metal-oxide-semiconductor field-effect) transistor (hereinafter abbreviated as “NMOS”).
- NMOS metal-oxide-semiconductor field-effect transistor
- the constant current source 2 has one end grounded and the other end connected to the vertical signal line 17.
- the normal pixels 3 are arranged in a two-dimensional matrix on the pixel array unit 11.
- the normal pixel 3 includes a photoelectric conversion unit 31, a transfer switch 32, a floating diffusion 33 (hereinafter abbreviated as "FD33"), a reset switch 34, an amplification transistor 35, and a row selection switch 36.
- the photoelectric conversion unit 31 performs photoelectric conversion on the received light to generate signal charges for an image.
- the photoelectric conversion unit 31 is configured using, for example, a PN junction photodiode.
- the photoelectric conversion unit 31 has an anode terminal grounded and a cathode terminal connected to the FD 33 via the transfer switch 32.
- the photoelectric conversion unit 31 functions as a first photoelectric conversion unit.
- the transfer switch 32 has one end connected to the photoelectric conversion unit 31 and the other end connected to the FD 33. Further, the transfer switch 32 is connected to the first transfer signal line 161. When the transfer pulse TR is supplied via the first transfer signal line 161, the transfer switch 32 is turned on (closed), and transfers the signal charge photoelectrically converted by the photoelectric conversion unit 31 to the FD 33.
- the FD 33 temporarily holds the signal charge transferred from the photoelectric conversion unit 31 and converts the signal charge into a voltage corresponding to the charge amount.
- the reset switch 34 has one end connected to the FD 33 and the other end connected to the power supply voltage. Further, the reset switch 34 is connected to the reset signal line 162. The reset switch 34 is turned on when a reset pulse RST is supplied via the reset signal line 162, and resets the potential of the FD 33 to a predetermined potential by discharging the charge of the FD 33 to the power supply voltage.
- the amplification transistor 35 has one end connected to the power supply voltage and the other end connected to the row selection switch 36. Further, an FD 33 is connected to a gate end of the amplification transistor 35.
- the amplification transistor 35 functions as a source follower together with the constant current source 2 connected via the vertical signal line 17.
- the amplification transistor 35 outputs a reset signal (reset level) indicating a level according to the potential of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17. Further, the amplification transistor 35 outputs an image pixel signal indicating a level corresponding to the charge amount of the signal charge held in the FD 33 after the transfer of the signal charge from the photoelectric conversion unit 31 by the transfer switch 32 to the vertical signal line 17.
- the row selection switch 36 has one end connected to the amplification transistor 35 and the other end connected to the vertical signal line 17. Further, the row selection switch 36 is connected to the row selection signal line 163. When the row selection signal SEL is supplied from the row selection signal line 163, the row selection switch 36 is turned on, and the reset signal or the pixel signal (first signal) output from the amplification transistor 35 is sent to the vertical signal line 17 Output.
- One end of the vertical signal line 17 is connected to the comparator 131a or 131a_S of the A / D converter 13.
- the comparator 131a connected to the vertical signal line 17 to which the special pixel 4 is connected is shown as a comparator 131a_S.
- the transfer switch 32, the reset switch 34, the amplification transistor 35, and the row selection switch 36 of the normal pixel 3 configured as described above are configured using, for example, an NMOS or P-channel MOS transistor (abbreviated as PMOS).
- the normal pixel 3 includes any one of an R (red) filter, a G (green) filter, and a B (blue) filter stacked on the light receiving surface of the photoelectric conversion unit 31.
- the normal pixels 3 form a Bayer array on the pixel array unit 11.
- FIG. 3A is a diagram showing the Bayer arrangement more specifically. As illustrated in FIG. 3A, the Bayer arrangement is configured by a set including one pixel R and one pixel B and two pixels G, respectively.
- the special pixels 4 are arranged at predetermined intervals in a predetermined pixel row.
- the special pixels 4 are alternately arranged with the pixels G in a predetermined pixel row.
- the special pixels 4 are sequentially located at positions corresponding to the pixels B in the Bayer array of the normal pixels 3 in a predetermined pixel row and adjacent to the pixels G in the same row. Be placed.
- FIG. 3B is a diagram illustrating an example in which the pixel B in the Bayer array illustrated in FIG. 3A is replaced with a special pixel 4 (pixel S).
- the array including the pixel S illustrated in FIG. 3B is configured by a set including one pixel R, one pixel G, one pixel B, and one pixel S.
- the special pixel 4 has the same configuration as the normal pixel 3, and includes a photoelectric conversion unit 41, a transfer switch 42, a floating diffusion 43 (hereinafter simply referred to as “FD43”), a reset switch 44, and an amplification transistor 45. , A row selection switch 46.
- the special pixel 4 includes a special filter stacked on the light receiving surface of the photoelectric conversion unit 41.
- the transfer switch 42 is connected to the second transfer signal line 164, and the transfer pulse TR_S is supplied from the second transfer signal line 164.
- the configuration of the special pixel 4 other than these is the same as that of the normal pixel 3.
- the photoelectric conversion unit 41 functions as a second photoelectric conversion unit.
- the special pixel 4 is a pixel other than the pixels (for example, the pixel R, the pixel G, and the pixel B) for acquiring color information and luminance information in a visible light region to form a full-color image.
- Examples of the special pixel 4 include an infrared light pixel, a white pixel, a monochrome pixel, a black pixel, a polarization pixel, and an image plane phase difference pixel.
- an infrared filter capable of receiving infrared light is laminated on a light receiving surface of the photoelectric conversion unit 41.
- a white filter capable of receiving all visible light of red, green and blue is laminated on the light receiving surface of the photoelectric conversion unit 41.
- a transparent filter is laminated on the light receiving surface of the photoelectric conversion unit 41.
- a light-blocking filter is laminated on the light receiving surface of the photoelectric conversion unit 41.
- a polarization pixel is a pixel using a polarization element for receiving polarized light.
- the image plane phase difference pixel an aperture filter having only a predetermined area opened on the light receiving surface of the photoelectric conversion unit 41 is laminated. More specifically, the image plane phase difference pixel is composed of a pixel on which an aperture filter having an opening in, for example, a left half area of the light receiving surface of the photoelectric conversion unit 41 is laminated, and a light receiving surface of another photoelectric conversion unit 41. A pair of pixels, in which an aperture filter having an opening in the right half region, is stacked, and a pair of pixels, and a distance measurement is performed based on a phase difference of light received by the two pixels.
- the pixel signal obtained by photoelectrically converting the light received by the special pixel 4 can realize a different function from the pixel signal obtained by photoelectrically converting the light received by the normal pixel 3.
- the special pixel 4 or the photoelectric conversion unit 41 of the special pixel 4 is expressed as “S”.
- FIG. 4 is a timing chart schematically showing reading of a pixel signal by the imaging device 1.
- the horizontal axis indicates time.
- the output timing of the vertical synchronization pulse is shown in the upper part, and the output timing of the horizontal synchronization pulse in the vertical scanning unit 12 is shown in the middle part.
- FIG. 4 shows a case where the imaging device 1 reads out pixel signals of one frame.
- the control unit 19 first performs a special operation from a special pixel row in which the special pixels 4 of the pixel array unit 11 are arranged according to, for example, a vertical synchronization pulse and a horizontal synchronization pulse input from outside the imaging apparatus 1.
- the pixel signals (second signals) of the pixels 4 are sequentially read.
- the control unit 19 causes the vertical scanning unit 12 to supply the transfer pulse TR_S in a High state to the special pixel 4 via the second transfer signal line 164 in the special pixel row.
- the normal pixel 3 With the normal pixel 3 turned off, a pixel signal is read from the special pixel 4. In this case, the normal pixel 3 is in an accumulation state (exposure state) in which light is received and signal charges are accumulated.
- the control unit 19 After reading out the pixel signals (second signals) from the special pixels 4 of all the special pixel rows, the control unit 19 outputs the pixel signals (first signals) from each normal pixel 3 for each row of the pixel array unit 11. Read sequentially. Specifically, the control unit 19 sequentially reads out the pixel signals of the normal pixels 3 from the normal pixel row and the special pixel row. When reading the pixel signal from the normal pixel row in which only the normal pixels 3 are arranged, for example, the control unit 19 causes the vertical scanning unit 12 to transfer the signal in the High state via the first transfer signal line 161 as illustrated in FIG. The pulse TR is supplied to the normal pixel 3.
- the control unit 19 When reading out the pixel signals from the normal pixels 3 in the special pixel row in which the special pixels 4 are arranged, the control unit 19 causes the vertical scanning unit 12 to transmit the pixel signals via the first transfer signal line 161 as shown in FIG. Only the transfer pulse TR in the High state is supplied to the normal pixel 3. That is, the control unit 19 sequentially reads out the pixel signals only from the normal pixels 3 in a state where the transfer switch 42 of the special pixel 4 in the special pixel row is turned off. At this time, the output of the special pixel 4 is equivalent to the black level (corresponding to the power supply voltage) because the transfer switch 42 is in the OFF state.
- the pixel signal of the special pixel 4 is interpolated by performing a demosaicing process using a pixel signal of a peripheral pixel using, for example, an image processing device provided outside the imaging device 1.
- the imaging apparatus 1 first performs the reading method of reading the pixel signals of the special pixels 4 from all the special pixel rows, and then sequentially reading the pixel signals from the normal pixels 3 for each row of the pixel array unit 11. .
- this reading method is referred to as divided reading.
- FIG. 8 is a diagram schematically illustrating a schematic configuration of an imaging device 1a according to the existing technology including the pixel array unit 11 in which only the normal pixels 3 are arranged as the pixels and the special pixels 4 are not arranged.
- FIG. 9 is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using the imaging device 1a in FIG. In FIG.
- each of the normal pixels 3 in the left two columns in the vertical direction is shielded from light to form a light-shielded pixel VOPB, and each lowermost normal pixel in the horizontal direction is shielded from light to form a light-shielded pixel VOPB.
- the imaging device 1a illustrated in FIG. 8 captures a high-luminance subject in a part of the angle of view
- the imaging device 1a is affected by power supply noise due to simultaneous inversion of the A / D conversion unit 13.
- streaking ST1 occurs near the subject area OB1 in the image P1.
- no streaking has occurred in the dark area BP2 (background area).
- FIG. 10 shows a configuration of an imaging device 1b including a pixel array unit 11 in which special pixels 4 are arranged in predetermined rows at predetermined intervals with respect to ordinary pixels 3 arranged in a two-dimensional matrix according to existing technology. It is a figure which shows schematically. In this case, the special pixel 4 is arranged so as to replace the normal pixel 3 at a predetermined position.
- FIG. 11 is a diagram corresponding to FIG. 9 described above, and is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using the imaging device 1b in FIG. is there.
- the image P1 when a high-luminance subject is imaged in a part of the angle of view, the image P1 is affected by power supply noise due to simultaneous inversion of the A / D conversion unit 13, and the image P1 has a subject area OB1. Streaking ST1 occurs in the vicinity, and streaking ST2 occurs in a special pixel row in the dark area BP2.
- streaking may occur in a special pixel row even in the subject area OB1.
- FIG. 12 is an example timing chart showing an operation according to the existing technology when a selected row is a normal pixel row.
- FIG. 13 is a diagram showing an excerpt of a normal pixel row in which a plurality of normal pixels 3 in the pixel array unit 11 are arranged according to the existing technology.
- the control unit 19 a High state row selection signal SEL of the selected row at time t 100, the row selection switch 36 of the selected row to the ON state. High state of the row selection signal SEL is maintained until time t 105 to read the pixel signals of the selected row is completed.
- the control unit 19 at time t 101, the reset pulse RST of the selected row a High state.
- the amplification transistor 35 in the selected row outputs a reset signal based on the charge amount of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17.
- the reset pulse RST is at t 102 and Low state.
- each of the transfer pulse TR and the transfer pulse TR_S the selected row to a High state, the respective transfer pulse and a Low state at time t 104.
- the transfer switch 32 of the selected row Period from the time point t 103 to time t 104, as shown in FIG. 8, the transfer switch 32 of the selected row are turned on.
- the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge.
- FIG. 14 is a timing chart illustrating an example of an operation performed when a selected row is a special pixel row according to the existing technology.
- FIG. 15 is a diagram illustrating a special pixel row in which a plurality of normal pixels 3 and special pixels 4 are arranged in the pixel array unit 11 according to the existing technology.
- the control unit 19 As shown in FIG. 14, the control unit 19, a High state row selection signal SEL of the selected row at time t 110, a row selection switch 36 of the normal pixel of the selected row, each row select switch of each special pixel 4 And 46 are turned on. High state of the row selection signal SEL is maintained until time t 115 to read the pixel signals of the selected row is completed.
- the control unit 19, at time t 111, the reset pulse RST of the selected row a High state.
- the amplification transistor 35 in the selected row outputs a reset signal based on the charge amount of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17.
- the amplification transistor 45 in the selected row outputs a reset signal based on the charge amount of the FD 43 after being reset by the reset switch 44 to the vertical signal line 17.
- the reset pulse RST is a Low state when t 112.
- the control unit 19 At a later time t 113, the control unit 19, a transfer pulse TR of the selected row to a High state and a Low state transfer pulse TR at time t 114.
- the transfer switch 32 of the selected row are turned on.
- the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31.
- the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge.
- the pixel signal VSL from the normal pixel 3 at this time is shown as a pixel signal VSL_N in FIG.
- the transfer pulse TR_S since the transfer pulse TR_S remains in the Low state, the off state is maintained in each of the transfer switches 42 in the selected row as shown in FIG. As a result, the charge is not transferred from the photoelectric conversion unit 41 to the FD 43, and the charge stored in the FD 43 remains at the reset level. Therefore, a signal of the reset signal level is output from the amplification transistor 45 in the selected row to the vertical signal line 17 as the pixel signal VSL_S. As illustrated in FIG. 15, the level of the pixel signal VSL_N maintains a constant value (black level) without lowering due to the influence of power supply noise. Therefore, when the special pixels 4 are arranged at predetermined intervals in predetermined rows of the pixel array unit 11, streaking occurs due to the effect of the level of the pixel signal VSL_S of the special pixels 4.
- FIG. 16 is a diagram illustrating an example of a configuration of the pixel array unit 11a in the imaging device 1 according to the first embodiment.
- the pixel array unit 11a is applied as the pixel array unit 11 in the imaging device 1 shown in FIG.
- a dummy row is added to the pixel array unit 11 a in the pixel array unit 11 a described in FIG. 2.
- the pixel array unit 11a includes a row in which a plurality of normal pixels 3 and special pixels 4 are arranged (for example, N rows in FIG. 16) and a row in which a plurality of normal pixels 3 are arranged and no special pixels 4 are arranged ( For example, (N + 2 rows in FIG. 16), row selection signal lines 163a and 163b are arranged instead of the row selection signal line 163 in FIG.
- the row selection signal line 163a is connected to each normal pixel 3 in a column not including the special pixel 4.
- the row selection signal line 163b is connected to each normal pixel 3 and each special pixel 4 in a column including the special pixel 4.
- N rows where the special pixels 4 are arranged and N ⁇ 2 rows where the pixels B are arranged as the normal pixels 3 are described, and N rows where the pixels G and the pixels R are arranged as the normal pixels 3 are shown.
- the description of line -1 is omitted.
- the row selection signal line 163a is connected to each normal pixel 3 in the column that does not include the special pixel 4 and the row selection signal line 164b is connected to the normal pixel 3 in the column that includes the special pixel 4.
- the special pixel 4 is arranged at a position corresponding to the pixel B in the Bayer array.
- the dummy row includes a dummy section 500a corresponding to each vertical signal line 17.
- Each dummy unit 500a includes a transistor 50 whose buffer unit is configured by a source follower amplifier, a dummy selection switch 51a or 51b, and a holding unit 501.
- dummy row signal lines 180 dummy row selection signal lines 181 and 182, read control lines 183 and 184 (third signal lines), and holding control lines 185 and 186 (second ) Are connected.
- the transistor 50 is, for example, a MOS transistor, in which the power supply voltage is connected to the drain, the gate is connected to the holding unit 501, and the source is connected to one end of the dummy selection switch 51a or 51b. .
- the other ends of the dummy selection switches 51a and 51b are connected to the vertical signal line 17.
- the transistor 50 is used as a source follower amplifier using a MOS transistor.
- the dummy selection switch 51a is connected to the dummy row selection signal line 181.
- the dummy selection switch 51a is turned on when the dummy row selection signal SEL DMY supplied via the dummy row selection signal line 181 is High.
- the dummy selection switch 51b is connected to the dummy row selection signal line 182.
- Dummy selection switch 51b, the dummy row selection signal SEL_S DMY supplied via a dummy row selection signal line 182 is turned on at the High (high) state.
- Each holding unit 501 includes a P-phase holding unit including an analog switch 52a, a capacitor 53a, and a holding selection switch 54a, and a D-phase holding unit including an analog switch 52b, a capacitor 53b, and a holding selection switch 54b.
- the holding control line 185 of the analog switch 52a is connected to the terminal 55a1.
- Analog switch 52a is held control pulse SH_P supplied to the holding control line 185 is in the High state, connects the terminal 55a 2 and the terminal 55a 3 in both directions.
- Terminal 55a 2 of the analog switch 52a is connected to one end of the storage selection switch 54a, and one end of the capacitor 53a, the. The other end of the capacitor 53a is set to the ground potential.
- the other end of the hold selection switch 54a is connected to the gate of the transistor 50.
- the read control line 183 is connected to the holding selection switch 54a.
- the holding selection switch 54a is turned on when the read control signal RD_P supplied from the read control line 183 is High.
- the terminal 55a 3 of the analog switches 52a are connected to the vertical signal line 17.
- the D-phase holding unit has the same configuration as the above-described P-phase holding unit. That is, in the D-phase holding unit, the analog switch 52b is held control line 186 is connected to the terminal 55b 1, holding control pulse SH_D supplied to the holding control line 186 is in the High state, the terminal 55b 2 and the terminal 55b 3 Is connected in both directions. Terminals 55b 2 of the analog switch 52b is, one end of the holding selection switch 54b, the other end connected to the one end of the capacitor 53b to the ground potential. The other end of the holding selection switch 54b is connected to the gate of the transistor 50 in common with the holding selection switch 54a described above.
- the read control line 184 is connected to the holding selection switch 54b, and the read control signal RD_D supplied from the read control line 184 is turned on in a high state.
- the terminal 55b 3 of the analog switch 52b is connected to the vertical signal line 17 in common with the terminal 55a 3 of the analog switch 52a.
- the output of the special pixel 4 is connected to the same vertical signal line 17 as the special pixel 4 in the row where the special pixel 4 is not arranged by controlling the operation of the above-described pixel array unit 11a.
- the output can be replaced by the output of the normal pixel 3 at the position corresponding to the special pixel 4 in the Bayer arrangement.
- FIG. 17 is an example timing chart showing the operation of the imaging device according to the first embodiment.
- FIG. 17 shows the output of the D phase of the special pixel 4 in the same column as that of the special pixel 4 and the normal pixel 3 (pixel B) arranged at the position corresponding to the special pixel 4 in the Bayer arrangement. Is replaced with the D-phase output of FIG. Note that reading of each row is performed by selecting each row as a selected row in the order of N ⁇ 2 row, N ⁇ 1 row, and N row.
- FIG. 17 shows the reading operation of N ⁇ 2 row and N row. The description regarding the read operation of the (N-1) th row is omitted.
- the control unit 19 maintains the low state of the dummy row selection signal SEL DMY during the reading period of the (N ⁇ 2) th row. Therefore, the dummy selection switch 51 a in the dummy section 500 a in the column where the special pixel 4 is not arranged maintains the off state (open state), and the voltage held in the capacitors 53 a and 53 b is not supplied to the vertical signal line 17.
- Control unit 19 in response to the start of the N-2-line readout period, a row select signal SEL N-2 and SEL_S N-2 at time t 00, respectively a High state, respectively turning on the row select switches 36 and 46a And Next, the control unit 19, the period of time t 02 from the time t 01, the reset pulse RST to High state. As a result, the amplification transistors 35 in the (N ⁇ 2) th row, which is the selected row, output a reset signal based on the accumulated charges in the FD 33 after being reset by the reset switch 34 to the vertical signal line 17.
- Control unit 19 at time t 03 after from the Low state to the reset pulse RST at 02 predetermined time (e.g. timing pixel signal VSL is considered to have stabilized), as well as a read control signal RD_P a High state ,
- the holding control pulse SH_P is kept High until time t 04 .
- Control unit 19 after a predetermined time period from time t 06 from the time point t 05 of time t 04, each of the transfer pulse TR and the transfer pulse TR_S of N-2-line to a High state.
- each transfer switch 32 included in the normal pixels 3 in the (N ⁇ 2) th row is turned on.
- the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge.
- the hold control pulse SH_D a High state .
- the holding selection switch 54b together with is turned on, the terminal 55b 2 and the terminal 55b 3 in the analog switch 52b is connected. Since the dummy selection switch 51b maintains the off state, the voltage of the pixel signal VSL is held in the capacitor 53b.
- Control unit 19 the time t 09 in the row selection signal SEL N-2 and SEL_S N-2 as a Low state, respectively, to terminate the read period of the N-2 line.
- the # N-1 row includes only normal pixels 3 and no special pixels 4 as pixels. Further, the arrangement of the pixels in the (N-1) th row is different from the (N-2) th row in which the pixels G and B in the Bayer arrangement are arranged, and the pixels R and the pixels G are arranged. That is, the arrangement of the pixels in the (N-1) th row does not correspond to the arrangement of the Nth row in which the pixel B of the pixels G and B in the Bayer array is replaced with the pixel S which is the special pixel 4.
- the read operation of the # N-1 row is substantially the same as the above-described read operation of the N-2 row except for the holding control pulses SH_P and SH_D. That is, in the read operation of the (N-1) th row, the hold control pulses SH_P and SH_D are maintained in the Low state. Therefore, in the read operation of the (N-1) th row, the holding of the voltage of the reset signal in the capacitor 53a and the holding of the voltage of the pixel signal VSL in the capacitor 53b are not performed. That is, as the voltages held in the capacitors 53a and 53b, the voltage of the reset signal and the voltage of the pixel signal VSL, which are held in the read operation of the (N-2) th row, are maintained.
- N rows which are rows including the special pixels 4, will be described.
- the control unit 19 maintains the low state of the dummy row selection signal SEL DMY during the reading period of the (N ⁇ 2) th row. Therefore, the dummy selection switch 51a in the dummy section 500a in the column where the special pixel 4 is not arranged maintains the off state, and the voltage held in the capacitors 53a and 53b is not supplied to the vertical signal line 17.
- the dummy select switch 51b in the dummy portion 500a of the column special pixels 4 are arranged is turned off until the time point t 24, during the period from the start of the N rows of the readout period to time t 24, the capacitors 53a and The voltage held in 53b is not supplied to the vertical signal line 17.
- control unit 19 maintains the holding control pulses SH_P and SH_D in the low state during the reading period of N rows.
- Control unit 19 in response to the start of the reading period, respectively a High state the row selection signals SEL N and SEL_S N at time t 20, and respectively turning on the row select switches 36 and 46a.
- the control unit 19 the period of time t 22 from the time t 21, the reset pulse RST to High state.
- the amplification transistor 35 included in the normal pixel 3 in the selected row N outputs the reset signal based on the accumulated charge of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17.
- the amplification transistor 45 included in the special pixel on the Nth row outputs a reset signal based on the accumulated charges of the FD 43 after being reset by the reset switch 44 to the vertical signal line 17.
- Time t 21 to the reset pulse RST is set to High state, the start timing of the P phase.
- the read control signal RD_P is in the High state at the timing corresponding to the time point t 03 in the read period of the immediately preceding row, ie, the (N ⁇ 1) -th row, similarly to the above-mentioned N ⁇ 2 row.
- dummy row select signal SEL_S DMY until time t 24, there is a Low state. Therefore, the dummy selection switch 51b in the dummy section 500a in the column where the special pixels 4 are arranged also maintains the OFF state, and the voltage held in the capacitors 53a and 53b is not supplied to the vertical signal line 17 during this period.
- Time t 23 is, for example, the timing at which the pixel signal VSL is considered to have stabilized.
- Control unit 19 the period of time t 25 from the time t 24 after a predetermined time point t 23, the N rows, usually a High state transfer pulse TR supplied to the pixel 3.
- each transfer switch 32 included in each normal pixel 3 are turned on.
- the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31.
- the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge. That is, the time point t 24 is the transition timing from the P phase to the D phase.
- control unit 19 the period of time t 25 from the time t 24, the N rows, a transfer pulse TR_S supplied to a special pixel 4, is maintained in Low state. Accordingly, the off state of each transfer switch 42 included in each special pixel 4 in the N-th row is maintained, and the pixel signal VSL corresponding to the amount of signal charge received and photoelectrically converted by the photoelectric conversion unit 41 is a vertical signal. Not output on line 17.
- Control unit 19 further, the dummy row selection signal SEL_S DMY a High state at time t 24.
- the holding control pulse SH_D is low state maintained in the readout period of the N rows, the analog switch 52 b, and the terminal 55b 2 and the terminal 55b 3 not connected. As a result, the pixel signal VSL from the special pixel 4 is not output to the vertical signal line 17 and the voltage held in the capacitor 53b is output to the vertical signal line 17 via the transistor 50.
- the vertical signal line 17 corresponds to the position of the special pixel 4 in the readout operation of the (N ⁇ 2) th row in the Bayer array instead of the pixel signal VSL output from the special pixel 4.
- the voltage of the pixel signal VSL output from the normal pixel 3 which is the pixel B adjacent to the special pixel 4 in the Bayer arrangement unit is supplied.
- the voltage of the FD33 as exemplified as the voltage FD N _N 17, similar to the N-2 rows of FD33 voltage (FD N-2), varies according to the usual sequence.
- the pixel signal VSL_N also changes according to a normal sequence, similarly to the N-2th row.
- the row selection switch 46a for row selection signal SEL_S N is a Low state at time t 24 the reading of the N rows is turned off, the voltage of the FD43 is not output to the vertical signal line 17 . Therefore, the voltage of the reset signal is maintained as illustrated as the voltage FD N _S in FIG. Since the pixel signal VSL_S is not output from the FD 43, the voltage decreases faster than the pixel signal VSL_N.
- Control unit 19 the holding selector switch 54b of the read control signal RD_D as Low state is turned off at time t 26, to terminate the reading from the capacitor 53b. At time t 26 , the control unit 19 sets the row selection signal SEL N to the Low state, and ends the reading period of the (N ⁇ 2) th row.
- the position of the special pixel 4 corresponds to the position in the Bayer array, and is adjacent in the Bayer array unit.
- the holding unit 501 holds the pixel signal VSL read from the normal pixel 3 (pixel B) in the (N-2) th row. Then, the imaging apparatus 1 does not read out the pixel signal VSL from the special pixel 4 during the readout operation on the N rows including the special pixel 4 and reads out the normal pixel 3 held in the holding unit 501.
- the supplied pixel signal VSL is supplied to the vertical signal line 17.
- the imaging apparatus 1 according to the first embodiment can reduce streaking caused by the special pixels 4 by this operation. More specifically, the imaging device 1 according to the first embodiment converts the pixel signal VSL of the special pixel 4 in the Nth row from the output of the special pixel 4 in the N-2th row to the special pixel 4
- the positions of the Bayer arrangements correspond to each other, and can be replaced with pixel signals VSL by adjacent normal pixels 3 (pixels B) in Bayer arrangement units. Therefore, the output level of the pixel signal VSL can be made uniform between the row including only the normal pixel 3 as the pixel and the row including the normal pixel 3 and the special pixel 4 as the pixel, and the streaking caused by the special pixel 4 is reduced. It is possible.
- Patent Document 1 streaking is suppressed by securing a horizontal light-shielding portion in an image sensor and obtaining a streaking correction amount for each row based on a black-level output signal of the vertical light-shielding portion.
- it is necessary to secure a large area of the horizontal light shielding portion in order to reduce the influence of the horizontal stripe due to random noise. Therefore, the area per unit chip in which the pixel array portion is formed increases, the height per wafer decreases, and the cost increases.
- streaking is achieved by adding a dummy row not including a pixel configuration and controlling each switch without implementing a streaking correction function having a large-scale pixel area (horizontal light-shielding portion). Has been reduced. Therefore, the area per unit chip in which the pixel array portion is formed can be suppressed, and an increase in cost can be suppressed.
- the imaging device 1 can replace the P-phase output of the special pixel 4 with the P-phase output of the normal pixel 3.
- the control unit 19 the read operation of the N rows, the read control signal RD_P, a Low state at time t 20, or earlier, to a High state at time t 24. Further, the control unit 19 maintains the low state of the read control signal RD_D during the read period of N rows. Further, the control unit 19, a row selection signal SEL_S N, and a Low state at the time point t 20, the High state at time t 24.
- the voltage of the reset signal held in the capacitor 53a during the read operation of the (N ⁇ 2) th row is supplied to the vertical signal line 17 during the P phase of the read operation of the Nth row.
- the P-phase output of the special pixel 4 is replaced with the P-phase output of the normal pixel 3.
- each of the P-phase and the D-phase of the special pixel 4 can be replaced with the output of the P-phase and the D-phase of the normal pixel 3.
- the control unit 19 the read operation of the N rows, the read control signal RD_P, a time point t 20 Oite High state, while a Low state at the time point t 23, the read control signal RD_D, time t a High state at 24, the Low state when t 26.
- the control unit 19, a dummy row select signal SEL_S DMY, during the reading period of the N rows is maintained at the High state.
- the voltage of the reset signal held in the capacitor 53a during the read operation of the (N ⁇ 2) th row is supplied to the vertical signal line 17 during the P phase of the read operation of the Nth row.
- the P-phase output of the special pixel 4 is replaced with the P-phase output of the normal pixel 3.
- the voltage of the pixel signal VSL held in the capacitor 53b during the readout operation of the N-2th row is supplied to the vertical signal line 17, and the D phase of the special pixel 4 is Is replaced by the D-phase output of the normal pixel 3.
- the reset signal voltage is not held in the capacitor 53a and the pixel signal VSL voltage is not held in the capacitor 53b in the read operation of the (N-1) th row has been described. It is not limited to. That is, in the read operation of the (N-1) -th row including only the normal pixel 3, the reset signal and the voltage of the pixel signal VSL can be held in the capacitors 53a and 53b. In this case, the read operation of the (N-1) -th row is the same as the above-described read operation of the (N-2) -th row, and a description thereof will be omitted.
- each voltage is held in each of the capacitors 53a and 53b in the (N-1) th row, and each voltage held in each of the capacitors 53a and 53b in the Nth row. Is effective.
- FIG. 18 is a diagram illustrating a configuration of an example of the pixel array unit 11b in the imaging device 1 according to the first modification of the first embodiment.
- the pixel array unit 11b shown in FIG. 18 uses a voltage follower amplifier instead of the transistor 50 in the pixel array unit 11a of FIG. 16 in replacing the buffer unit for supplying the voltage held in the capacitor 53a or 53b to the vertical signal line 17. 70 (dummy section 500b). In FIG. 18, the path of the power supplied to the voltage follower amplifier 70 is omitted.
- the voltage held in the capacitor 53a or 53b is supplied to the vertical signal line 17 via the transistor 50. Therefore, the voltage supplied to the vertical signal line 17 is attenuated with respect to the voltage held in the capacitor 53a or 53b.
- the voltage held in the capacitor 53a or 53b is supplied to the vertical signal line 17 via the voltage follower amplifier 70. I have to. Therefore, the voltage held in the capacitor 53a or 53b can be supplied to the vertical signal line 17 while minimizing attenuation.
- the output level of the pixel signal VSL is more improved between the row including only the normal pixels 3 as the pixels and the row including the normal pixels 3 and the special pixels 4 as the pixels. High-precision alignment can be achieved, and streaking caused by the special pixels 4 can be effectively reduced.
- FIG. 19 is a diagram illustrating a configuration of an example of the pixel array unit 11c in the imaging device 1 according to the second modification of the first embodiment.
- one end of the switch 60 is connected to the dummy voltage line 187, and the other end is connected to the gate of the transistor 50.
- One end of the switch 61 is connected to a connection point between the other end of the switch 60 and the gate of the transistor 50, and the other end is connected to the other end of the holding selection switch 54a and the other end of the holding selection switch 54b in the holding unit 501. Is connected to the connection point.
- control unit 19 exclusively controls the on / off state of the switch 60 and the on / off state of the switch 61.
- the switch 60 is turned off and the switch 61 is turned off, the same operation as the read operation described with reference to FIG. 17 can be performed.
- the switch 60 when the switch 60 is on and the switch 61 is off, the dummy voltage V DMY supplied from the dummy voltage line 187 is supplied to the gate of the transistor 50.
- the dummy selection switch 51b is turned on in this state, and the row selection switch 46a of the special pixel 4 is turned off, so that the dummy voltage V DMY is supplied via the transistor 50 to the vertical signal line 17.
- the pixel signal VSL of the special pixel 4 can be replaced by the dummy voltage VDMY .
- the streaking is reduced as compared with the case where the voltage held in the capacitor 53a or 53b is replaced with the pixel signal VSL of the special pixel 4 in the read operation of the (N-2) th row. Accuracy is reduced.
- the control by the read control signals RD_P and RD_D and the holding control pulses SH_P and SH_D becomes unnecessary, the load on the control unit 19 can be reduced, for example.
- Which of the switches 60 and 61 is turned on can be appropriately selected according to, for example, the load of the control unit 19, the power consumption of the device, the purpose of use of the imaging device 1, and the like.
- FIG. 20 is a diagram illustrating a configuration of an example of the pixel array unit 11d in the imaging device 1 according to the third modification of the first embodiment.
- the pixel array unit 11d illustrated in FIG. 20 is an example in which the transistor 50 of the pixel array unit 11c illustrated in FIG. 19 is replaced with a voltage follower amplifier 70 (dummy unit 500d).
- one end of the switch 60 is connected to the dummy voltage line 187 for supplying the dummy voltage VDMY , and the other end is connected to the input terminal of the voltage follower amplifier 70.
- One end of the switch 61 is connected to a connection point between the other end of the switch 60 and the input end of the voltage follower amplifier 70, and the other end is connected to the other end of the holding selection switch 54a and the holding selection switch 54b in the holding unit 501. Connected to the connection point with the other end.
- the operation and effect of the pixel array unit 11d according to the third modification of the first embodiment are the same as the operation and effect of the pixel array unit 11c according to the second modification of the first embodiment described above. Therefore, the description here is omitted.
- the effect obtained by replacing the transistor 50 of the pixel array unit 11c with the voltage follower amplifier 70 is the same as the effect obtained by the first modification of the first embodiment. Description is omitted.
- FIG. 21 is a block diagram illustrating a configuration of an example of an electronic device according to the second embodiment.
- the electronic device 100 includes an optical system 1000, an imaging device 1001, a signal processing circuit 1002, a memory 1003, and a monitor 1004.
- FIG. 21 illustrates an embodiment in which the above-described imaging device 1 of the present disclosure is provided in the electronic device 100 as the imaging device 1001.
- a digital still camera, a digital video camera, a mobile phone or a smartphone with an imaging function, or the like can be applied as the electronic device 100.
- the optical system 1000 forms image light (incident light) from a subject on the imaging surface of the imaging device 1001.
- image light incident light
- signal charges are accumulated in the imaging device 1001 for a certain period.
- the signal processing circuit 1002 performs various kinds of signal processing on a signal output from the imaging device 1001.
- the video signal subjected to the signal processing can be stored in a storage medium such as the memory 1003. Further, the video signal can be output to the monitor 1004.
- FIG. 22 is a diagram illustrating a usage example of the imaging device 1 according to the present disclosure described above.
- the above-described imaging device can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as described below.
- a device for photographing an image provided for viewing such as a digital camera or a portable device having a photographing function.
- In-vehicle sensors that capture images of the front, back, surroundings, and the inside of the vehicle, monitoring cameras that monitor running vehicles and roads, inter-vehicle, etc. for safe driving such as automatic stop and recognition of the driver's condition
- a device used for traffic such as a distance measuring sensor that measures the distance of a vehicle.
- a device provided to home appliances such as a TV, a refrigerator, and an air conditioner for photographing a user's gesture and performing device operation according to the gesture.
- -Devices used for medical or health care such as endoscopes and devices that perform blood vessel imaging by receiving infrared light.
- Devices used for security such as surveillance cameras for crime prevention and cameras for person authentication.
- -Apparatus used for beauty such as a skin measuring instrument for photographing the skin and a microscope for photographing the scalp.
- -Equipment used for sports such as action cameras and wearable cameras for sports applications.
- Devices used for agriculture such as cameras for monitoring the condition of fields and crops.
- a control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
- a solid-state imaging device comprising: (2) The control unit includes: Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line; The solid according to (1), wherein when reading out a pixel signal from the second pixel, the third control signal for reading out the pixel signal held in the holding unit is output to the third signal line. Imaging device. (3) The control unit includes: When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line.
- the solid-state imaging device which outputs a third control signal to the third signal line.
- the control unit includes: When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line.
- the solid-state imaging device which outputs a third control signal to the third signal line.
- the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided.
- the solid-state imaging device which outputs the signal to the third signal line.
- the second pixel is The solid according to any one of (1) to (5), which is arranged at another position in the set corresponding to the position of the color in which the first pixel is arranged in the set based on the arrangement of the plurality of colors.
- the first pixel is Converting the received light into a first signal for an image and outputting it as a pixel signal;
- the second pixel is The solid-state imaging device according to any one of (1) to (6), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
- the solid-state imaging device according to any one of (1) to (7), further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
- a control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
- An output unit that performs image processing on a pixel signal read from the first pixel and the second pixel via the vertical signal line and outputs the processed pixel signal; Electronic equipment provided with.
- the control unit includes: Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
- the electronic device according to (10), wherein, when a pixel signal is read from the second pixel, the third control signal for reading the pixel signal held in the holding unit is output to the third signal line. machine.
- the control unit includes: When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line.
- the control unit includes: When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line.
- the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided.
- the second pixel is The electronic device according to any one of (10) to (14), which is arranged at another set position corresponding to the color position at which the first pixel is arranged in the set based on the arrangement of the plurality of colors. machine.
- the first pixel is Converting the received light into a first signal for an image and outputting it as a pixel signal
- the second pixel is The electronic device according to any one of (10) to (15), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
- the electronic device according to any one of (10) to (16) further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
- One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
The present invention comprises: first and second pixels (31, 41) which are connected to a vertical signal line (17); a holding unit (501) which is connected to the vertical signal line and holds a pixel signal appearing on the vertical signal line; a first signal line (16) which is connected to the first and second pixels and to which a first control signal for controlling the readout of a pixel signal to the vertical signal line is input from the first and second pixels; second signal lines (185, 186) which are connected to the holding unit and to which a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit is input; third signal lines (183, 184) that are connected to the holding unit and to which a third control signal for controlling the readout of the pixel signals held by the holding unit to the vertical signal line is input; and a control unit (19) which is connected to the first to third signal lines and outputs the first to third control signals to the first to third signal lines, respectively.
Description
本発明は、固体撮像素子および電子機器に関する。
The present invention relates to a solid-state imaging device and an electronic device.
CMOS(Complementary Metal Oxide Semiconductor)などを用いた固体撮像素子を備える撮像装置では、高輝度な被写体を撮像した場合、A/D(Analog to Digital)変換部の一斉反転による電源ノイズの影響によって、撮像画像上で左右方向に延びる帯状のラインノイズ、いわゆるストリーキングが発生する。このストリーキングを補正する方法として、水平遮光部の出力信号を用いて検出した各ラインの信号レベルと黒レベルとを用いて、各ラインのストリーキング補正信号を求める技術が知られている(例えば特許文献1参照)。
2. Description of the Related Art In an imaging apparatus including a solid-state imaging device using a CMOS (Complementary Metal Oxide Semiconductor) or the like, when a high-luminance subject is imaged, the imaging is affected by the influence of power supply noise due to simultaneous inversion of an A / D (Analog to Digital) converter. Band-like line noise extending in the left-right direction on the image, so-called streaking, occurs. As a method of correcting the streaking, there is known a technique of obtaining a streaking correction signal of each line by using a signal level and a black level of each line detected using an output signal of a horizontal light shielding unit (for example, see Patent Document 1). 1).
ところで、CMOS型の固体撮像素子では、赤外光を受光するための画素や像面位相差を検出するための画素などの特殊画素を、水平ライン上に所定の間隔で配置することがある。このように特殊画素が配置された固体撮像素子を用いて高輝度な被写体を撮像した場合、被写体像の位置に関わらず、特殊画素が配置された撮像画像の水平ライン上にストリーキングが発生する。しかしながら、特許文献1の技術では、特殊画素に起因するストリーキングについて何ら考慮されていなかった。
In a CMOS solid-state imaging device, special pixels such as a pixel for receiving infrared light and a pixel for detecting an image plane phase difference may be arranged at predetermined intervals on a horizontal line. When a high-luminance subject is imaged using a solid-state imaging device in which special pixels are arranged in this way, streaking occurs on a horizontal line of a captured image in which special pixels are arranged, regardless of the position of the subject image. However, the technique of Patent Document 1 does not consider streaking caused by special pixels at all.
本開示は、特殊画素に起因するストリーキングを軽減可能な固体撮像素子および電子機器を提供することを目的とする。
The present disclosure has an object to provide a solid-state imaging device and an electronic device capable of reducing streaking caused by a special pixel.
上記目的を達成するために、本開示の固体撮像素子は、垂直信号線に接続される第1の画素と、垂直信号線に接続される第2の画素と、垂直信号線に接続され、垂直信号線に現れた画素信号を保持する保持部と、第1の画素および第2の画素に接続され、第1の画素および第2の画素から垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、保持部に接続され、垂直信号線に読み出された画素信号を保持部に保持させる第2の制御信号が入力される第2の信号線と、保持部に接続され、保持部が保持する画素信号の垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、第1の信号線、第2の信号線および第3の信号線が接続され、第1の制御信号を第1の信号線に出力し、第2の制御信号を第2の信号線に出力し、第3の制御信号を第3の信号線に出力する制御部と、を備える。
In order to achieve the above object, a solid-state imaging device according to an embodiment of the present disclosure includes a first pixel connected to a vertical signal line, a second pixel connected to the vertical signal line, and a vertical pixel connected to the vertical signal line. A holding unit for holding a pixel signal appearing on the signal line, and a holding unit connected to the first pixel and the second pixel for controlling reading of the pixel signal from the first pixel and the second pixel to the vertical signal line; A first signal line to which one control signal is input, and a second signal to which a second control signal which is connected to the holding unit and holds the pixel signal read out to the vertical signal line by the holding unit is input. A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to a vertical signal line is input; a first signal line; a second signal line; And a third signal line are connected, and a first control signal is output to the first signal line. The second control signal is output to the second signal line, and a third control unit for outputting a control signal to the third signal line, a.
以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following embodiments, the same portions will be denoted by the same reference numerals, and redundant description will be omitted.
[第1の実施形態]
(第1の実施形態に適用可能な固体撮像素子および電子機器の構成例)
図1は、本開示の第1の実施形態に適用可能な固体撮像素子、および、当該固体撮像素子を用いた電子機器の概略的な構成例を示すブロック図である。図1において、撮像装置1は、画素アレイ部11と、垂直走査部12と、A/D変換部13と、参照信号生成部14と、水平走査部15と、画素信号線16と、垂直信号線17と、出力部18と、制御部19と、を含む。 [First Embodiment]
(Configuration Example of Solid-State Image Sensor and Electronic Apparatus Applicable to First Embodiment)
FIG. 1 is a block diagram illustrating a solid-state imaging device applicable to the first embodiment of the present disclosure and a schematic configuration example of an electronic device using the solid-state imaging device. 1, theimaging apparatus 1 includes a pixel array unit 11, a vertical scanning unit 12, an A / D conversion unit 13, a reference signal generation unit 14, a horizontal scanning unit 15, a pixel signal line 16, a vertical signal It includes a line 17, an output unit 18, and a control unit 19.
(第1の実施形態に適用可能な固体撮像素子および電子機器の構成例)
図1は、本開示の第1の実施形態に適用可能な固体撮像素子、および、当該固体撮像素子を用いた電子機器の概略的な構成例を示すブロック図である。図1において、撮像装置1は、画素アレイ部11と、垂直走査部12と、A/D変換部13と、参照信号生成部14と、水平走査部15と、画素信号線16と、垂直信号線17と、出力部18と、制御部19と、を含む。 [First Embodiment]
(Configuration Example of Solid-State Image Sensor and Electronic Apparatus Applicable to First Embodiment)
FIG. 1 is a block diagram illustrating a solid-state imaging device applicable to the first embodiment of the present disclosure and a schematic configuration example of an electronic device using the solid-state imaging device. 1, the
画素アレイ部11は、受光した光に対して光電変換を行う光電変換部を有する画素が水平方向(行方向)および垂直方向(列方向)に2次元マトリクス状に配置されてなる。光電変換部は、フォトダイオードなどを用いて構成される。
The pixel array unit 11 includes pixels having a photoelectric conversion unit that performs photoelectric conversion on received light, which are arranged in a two-dimensional matrix in the horizontal direction (row direction) and the vertical direction (column direction). The photoelectric conversion unit is configured using a photodiode or the like.
また、画素アレイ部11には、行毎に画素信号線16(第1の信号線)が接続され、列毎に垂直信号線17が接続される。画素信号線16の画素アレイ部11と接続されない端部は、垂直走査部12に接続される。画素信号線16は、画素から画素信号を読み出す際の駆動パルスなどの制御信号を垂直走査部12から画素アレイ部11へ伝送する。垂直信号線17の画素アレイ部11と接続されない端部は、A/D(Analog to Digital)変換部13に接続される。垂直信号線17は、画素から読み出された画素信号をA/D変換部13へ伝送する。
{Circle around (1)} In the pixel array section 11, a pixel signal line 16 (first signal line) is connected for each row, and a vertical signal line 17 is connected for each column. An end of the pixel signal line 16 that is not connected to the pixel array unit 11 is connected to the vertical scanning unit 12. The pixel signal line 16 transmits a control signal such as a drive pulse for reading a pixel signal from a pixel from the vertical scanning unit 12 to the pixel array unit 11. An end of the vertical signal line 17 that is not connected to the pixel array unit 11 is connected to an A / D (Analog to Digital) converter 13. The vertical signal line 17 transmits a pixel signal read from a pixel to the A / D converter 13.
垂直走査部12は、制御部19の制御のもと、画素アレイ部11の選択された画素行の画素信号線16に駆動パルスを含む各種信号を供給することによって、画素信号等を垂直信号線17へ出力させる。垂直走査部12は、例えばシフトレジスタやアドレスデコーダ等を用いて構成される。
The vertical scanning section 12 supplies various signals including a drive pulse to the pixel signal line 16 of the selected pixel row of the pixel array section 11 under the control of the control section 19, thereby converting the pixel signals and the like to the vertical signal lines. 17 is output. The vertical scanning unit 12 is configured using, for example, a shift register, an address decoder, and the like.
A/D変換部13は、垂直信号線17毎に設けられたカラムA/D変換部131と、信号処理部132と、を有する。
The A / D converter 13 includes a column A / D converter 131 provided for each vertical signal line 17 and a signal processor 132.
カラムA/D変換部131は、垂直信号線17を介して画素から出力された画素信号に対して、ノイズ低減を行う相関二重サンプリング(CDS:Correlated Double Sampling)処理のためのカウント処理を実行する。カラムA/D変換部131は、コンパレータ131aと、カウンタ部131bと、を有する。
The column A / D converter 131 executes a count process for correlated double sampling (CDS) for reducing noise on the pixel signal output from the pixel via the vertical signal line 17. I do. The column A / D conversion unit 131 has a comparator 131a and a counter unit 131b.
コンパレータ131aは、P相(Preset Phase)期間において、垂直信号線17を介して画素から入力された画素信号と、参照信号生成部14から供給されたランプ信号RAMPとを比較し、この比較結果をカウンタ部131bへ出力する。ここで、P相期間とは、CDS処理において画素信号のリセットレベルを検出する期間である。また、ランプ信号RAMPとは、例えば、レベル(電圧値)が一定の傾きで低下する信号、または、レベルが階段状に低下する鋸波状の信号である。コンパレータ131aは、ランプ信号RAMPのレベルが画素信号のレベルより大である場合、High(ハイ)の差信号をカウンタ部131bへ出力する。また、コンパレータ131aは、ランプ信号RAMPのレベルが画素信号のレベルと同一またはそれ以下となった場合、出力を反転させ、Low(ロー)の差信号をカウンタ部131bへ出力する。なお、ランプ信号RAMPのレベルは、コンパレータ131aの出力が反転した後、所定値にリセットされる。
The comparator 131a compares the pixel signal input from the pixel via the vertical signal line 17 with the ramp signal RAMP supplied from the reference signal generation unit 14 during the P phase (Preset Phase) period, and compares the comparison result. Output to the counter 131b. Here, the P-phase period is a period during which the reset level of the pixel signal is detected in the CDS processing. The ramp signal RAMP is, for example, a signal whose level (voltage value) decreases with a constant slope, or a sawtooth signal whose level decreases stepwise. When the level of the ramp signal RAMP is higher than the level of the pixel signal, the comparator 131a outputs a High difference signal to the counter unit 131b. When the level of the ramp signal RAMP is equal to or lower than the level of the pixel signal, the comparator 131a inverts the output and outputs a Low difference signal to the counter unit 131b. Note that the level of the ramp signal RAMP is reset to a predetermined value after the output of the comparator 131a is inverted.
カウンタ部131bは、P相期間において、コンパレータ131aから入力された差信号に応じて、ランプ信号RAMPが電圧降下を開始してから画素信号と同一またはそれ以下のレベルとなるまでの時間をダウンカウントし、このカウント結果を信号処理部132へ出力する。また、カウンタ部131bは、D相(Data Phase)期間において、コンパレータ131aから入力された差信号に応じて、ランプ信号RAMPが電圧降下を開始してから画素信号と同一またはそれ以下のレベルとなるまでの時間をアップカウントし、このカウント結果を信号処理部132へ出力する。ここで、D相期間とは、CDS処理において画素信号の信号レベルを検出する検出期間である。
The counter unit 131b counts down the time from the start of the voltage drop of the ramp signal RAMP to the level equal to or lower than the pixel signal in accordance with the difference signal input from the comparator 131a during the P-phase period. Then, the count result is output to the signal processing unit 132. Further, in the D-phase (Data @ Phase) period, the counter unit 131b has the same or lower level as the pixel signal after the ramp signal RAMP starts the voltage drop according to the difference signal input from the comparator 131a. The time until is counted up, and the count result is output to the signal processing unit 132. Here, the D-phase period is a detection period for detecting the signal level of the pixel signal in the CDS processing.
信号処理部132は、カウンタ部131bから入力されるP相期間のカウント結果と、D相期間のカウント結果とに基づいてCDS処理およびA/D変換処理を行ってデジタルの画像データを生成し、出力部18へ出力する。
The signal processing unit 132 performs CDS processing and A / D conversion processing based on the count result of the P-phase period and the count result of the D-phase period input from the counter unit 131b to generate digital image data, Output to the output unit 18.
参照信号生成部14は、制御部19から入力される制御信号に基づいて、ランプ信号RAMPを生成し、この生成したランプ信号RAMPをA/D変換部13のコンパレータ131aへ出力する。参照信号生成部14は、例えばD/A変換回路等を用いて構成される。
The reference signal generator 14 generates a ramp signal RAMP based on the control signal input from the controller 19, and outputs the generated ramp signal RAMP to the comparator 131a of the A / D converter 13. The reference signal generator 14 is configured using, for example, a D / A conversion circuit.
水平走査部15は、制御部19の制御のもと、各カラムA/D変換部131を所定の順番で選択する選択走査を行うことによって、各カラムA/D変換部131が一時的に保持しているカウント結果を信号処理部132へ順次出力させる。水平走査部15は、例えばシフトレジスタやアドレスデコーダ等を用いて構成される。
Under the control of the control unit 19, the horizontal scanning unit 15 performs selective scanning for selecting each column A / D conversion unit 131 in a predetermined order, so that each column A / D conversion unit 131 temporarily holds the data. The counting result is sequentially output to the signal processing unit 132. The horizontal scanning unit 15 is configured using, for example, a shift register, an address decoder, and the like.
出力部18は、信号処理部132から入力された画像データに対して所定の信号処理を行って撮像装置1の外部へ出力する。
The output unit 18 performs predetermined signal processing on the image data input from the signal processing unit 132 and outputs the processed image data to the outside of the imaging device 1.
制御部19は、垂直走査部12、A/D変換部13、参照信号生成部14および水平走査部15などの駆動制御を行う。制御部19は、例えばタイミングジェネレータ等を用いて構成される。制御部19は、垂直走査部12、A/D変換部13、参照信号生成部14および水平走査部15の動作の基準となる各種の駆動信号を生成する。
The control unit 19 controls driving of the vertical scanning unit 12, the A / D conversion unit 13, the reference signal generation unit 14, the horizontal scanning unit 15, and the like. The control unit 19 is configured using, for example, a timing generator or the like. The control unit 19 generates various drive signals serving as references for the operations of the vertical scanning unit 12, the A / D conversion unit 13, the reference signal generation unit 14, and the horizontal scanning unit 15.
このように構成された撮像装置1は、カラムA/D変換部131が列毎に配置されたカラムAD方式のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。なお、図1においては、A/D変換部13が1つであるが、例えば画素アレイ部11の上下方向に2つのA/D変換部13を設け、画素アレイ部11の奇数列と偶数列とを上下方向に分割して画素信号を出力させてもよい。
The imaging device 1 configured as described above is a column AD type CMOS (Complementary Metal Oxide Semiconductor) image sensor in which the column A / D converter 131 is arranged for each column. In FIG. 1, the number of the A / D converters 13 is one. However, for example, two A / D converters 13 are provided in the vertical direction of the pixel array unit 11, and the odd and even columns of the pixel array unit 11 are provided. May be divided in the vertical direction to output a pixel signal.
図2は、第1の実施形態に適用可能な画素アレイ部11の回路構成の一部を示す図である。
FIG. 2 is a diagram illustrating a part of the circuit configuration of the pixel array unit 11 applicable to the first embodiment.
図2に示すように、画素アレイ部11は、定電流源2と、画素3(以下、「通常画素3」という)と、画素4(以下、「特殊画素4」という)と、を有する。画素アレイ部11は、複数の通常画素3および複数の特殊画素4が所定の配置パターンをなして2次元マトリクス状に並んでおり、特殊画素4が所定の画素行に所定の間隔で配置されている。各通常画素3には、画素信号線16として、第1の転送信号線161、リセット信号線162および行選択信号線163が接続される。また、各特殊画素4には、画素信号線16として、リセット信号線162、行選択信号線163および第2の転送信号線164が接続される。
(2) As shown in FIG. 2, the pixel array unit 11 includes a constant current source 2, a pixel 3 (hereinafter, referred to as “normal pixel 3”), and a pixel 4 (hereinafter, referred to as “special pixel 4”). In the pixel array section 11, a plurality of normal pixels 3 and a plurality of special pixels 4 are arranged in a two-dimensional matrix in a predetermined arrangement pattern, and the special pixels 4 are arranged in predetermined pixel rows at predetermined intervals. I have. Each pixel 3 is connected to a first transfer signal line 161, a reset signal line 162, and a row selection signal line 163 as a pixel signal line 16. Further, a reset signal line 162, a row selection signal line 163, and a second transfer signal line 164 are connected to each special pixel 4 as a pixel signal line 16.
定電流源2は、各垂直信号線17に設けられる。また、定電流源2は、Nチャンネル型のMOS(metal-oxide-semiconductor field-effect)トランジスタ(以下、「NMOS」と略称する)などを用いて構成される。定電流源2は、一端側が接地され、他端側が垂直信号線17に接続される。
The constant current source 2 is provided for each vertical signal line 17. The constant current source 2 is configured using an N-channel MOS (metal-oxide-semiconductor field-effect) transistor (hereinafter abbreviated as “NMOS”). The constant current source 2 has one end grounded and the other end connected to the vertical signal line 17.
通常画素3は、画素アレイ部11上において2次元マトリクス状に配置される。通常画素3は、光電変換部31と、転送スイッチ32と、フローティングディフュージョン33(以下、「FD33」と略称する)と、リセットスイッチ34と、増幅トランジスタ35と、行選択スイッチ36と、を有する。
The normal pixels 3 are arranged in a two-dimensional matrix on the pixel array unit 11. The normal pixel 3 includes a photoelectric conversion unit 31, a transfer switch 32, a floating diffusion 33 (hereinafter abbreviated as "FD33"), a reset switch 34, an amplification transistor 35, and a row selection switch 36.
光電変換部31は、受光した光に対して光電変換を行って画像用の信号電荷を生成する。光電変換部31は、例えばPN接合のフォトダイオードを用いて構成される。光電変換部31は、アノード端子が接地されると共に、カソード端子が転送スイッチ32を介してFD33と接続される。なお、第1の実施形態では、光電変換部31が第1の光電変換部として機能する。
(4) The photoelectric conversion unit 31 performs photoelectric conversion on the received light to generate signal charges for an image. The photoelectric conversion unit 31 is configured using, for example, a PN junction photodiode. The photoelectric conversion unit 31 has an anode terminal grounded and a cathode terminal connected to the FD 33 via the transfer switch 32. In the first embodiment, the photoelectric conversion unit 31 functions as a first photoelectric conversion unit.
転送スイッチ32は、一端が光電変換部31に接続され、他端がFD33に接続される。さらに、転送スイッチ32は、第1の転送信号線161が接続される。転送スイッチ32は、第1の転送信号線161を介して転送パルスTRが供給された場合、オン状態(閉状態)となり、光電変換部31で光電変換された信号電荷をFD33へ転送する。
The transfer switch 32 has one end connected to the photoelectric conversion unit 31 and the other end connected to the FD 33. Further, the transfer switch 32 is connected to the first transfer signal line 161. When the transfer pulse TR is supplied via the first transfer signal line 161, the transfer switch 32 is turned on (closed), and transfers the signal charge photoelectrically converted by the photoelectric conversion unit 31 to the FD 33.
FD33は、光電変換部31から転送された信号電荷を一時的に保持すると共に、その電荷量に応じた電圧に変換する。
The FD 33 temporarily holds the signal charge transferred from the photoelectric conversion unit 31 and converts the signal charge into a voltage corresponding to the charge amount.
リセットスイッチ34は、一端がFD33に接続され、他端が電源電圧に接続される。さらに、リセットスイッチ34は、リセット信号線162に接続される。リセットスイッチ34は、リセット信号線162を介してリセットパルスRSTが供給された場合、オン状態となり、FD33の電荷を電源電圧へ排出することによって、FD33の電位を所定電位にリセットする。
The reset switch 34 has one end connected to the FD 33 and the other end connected to the power supply voltage. Further, the reset switch 34 is connected to the reset signal line 162. The reset switch 34 is turned on when a reset pulse RST is supplied via the reset signal line 162, and resets the potential of the FD 33 to a predetermined potential by discharging the charge of the FD 33 to the power supply voltage.
増幅トランジスタ35は、一端が電源電圧に接続され、他端が行選択スイッチ36に接続される。さらに、増幅トランジスタ35のゲート端には、FD33が接続される。増幅トランジスタ35は、垂直信号線17を介して接続されている定電流源2とともにソースフォロアとして機能する。増幅トランジスタ35は、リセットスイッチ34によってリセットされた後のFD33の電位に応じたレベルを示すリセット信号(リセットレベル)を垂直信号線17へ出力する。また、増幅トランジスタ35は、転送スイッチ32によって光電変換部31から信号電荷が転送された後のFD33に保持された信号電荷の電荷量に応じたレベルを示す画像用の画素信号を垂直信号線17へ出力する。
The amplification transistor 35 has one end connected to the power supply voltage and the other end connected to the row selection switch 36. Further, an FD 33 is connected to a gate end of the amplification transistor 35. The amplification transistor 35 functions as a source follower together with the constant current source 2 connected via the vertical signal line 17. The amplification transistor 35 outputs a reset signal (reset level) indicating a level according to the potential of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17. Further, the amplification transistor 35 outputs an image pixel signal indicating a level corresponding to the charge amount of the signal charge held in the FD 33 after the transfer of the signal charge from the photoelectric conversion unit 31 by the transfer switch 32 to the vertical signal line 17. Output to
行選択スイッチ36は、一端が増幅トランジスタ35に接続され、他端が垂直信号線17に接続される。さらに、行選択スイッチ36は、行選択信号線163に接続される。行選択スイッチ36は、行選択信号線163から行選択信号SELが供給された場合、オン状態となり、増幅トランジスタ35から出力されるリセット信号または画素信号(第1の信号)を垂直信号線17へ出力する。
The row selection switch 36 has one end connected to the amplification transistor 35 and the other end connected to the vertical signal line 17. Further, the row selection switch 36 is connected to the row selection signal line 163. When the row selection signal SEL is supplied from the row selection signal line 163, the row selection switch 36 is turned on, and the reset signal or the pixel signal (first signal) output from the amplification transistor 35 is sent to the vertical signal line 17 Output.
垂直信号線17の一端は、A/D変換部13のコンパレータ131aまたは131a_Sに接続される。図2の例では、特殊画素4が接続される垂直信号線17に接続されるコンパレータ131aを、コンパレータ131a_Sとして示している。
One end of the vertical signal line 17 is connected to the comparator 131a or 131a_S of the A / D converter 13. In the example of FIG. 2, the comparator 131a connected to the vertical signal line 17 to which the special pixel 4 is connected is shown as a comparator 131a_S.
このように構成された通常画素3の転送スイッチ32、リセットスイッチ34、増幅トランジスタ35および行選択スイッチ36は、例えばNMOSまたはPチャンネル型のMOSトランジスタ(PMOSと略称する)を用いて構成される。また、通常画素3は、光電変換部31の受光面に積層されるR(赤色)フィルタ、G(緑色)フィルタおよびB(青色)フィルタの何れか1つのカラーフィルタを備える。通常画素3は、画素アレイ部11上において、ベイヤ配列を構成する。
The transfer switch 32, the reset switch 34, the amplification transistor 35, and the row selection switch 36 of the normal pixel 3 configured as described above are configured using, for example, an NMOS or P-channel MOS transistor (abbreviated as PMOS). In addition, the normal pixel 3 includes any one of an R (red) filter, a G (green) filter, and a B (blue) filter stacked on the light receiving surface of the photoelectric conversion unit 31. The normal pixels 3 form a Bayer array on the pixel array unit 11.
以下においては、Gフィルタが受光面に積層された光電変換部31を画素G、Rフィルタが受光面に積層された光電変換部31を画素R、Bフィルタが受光面に積層された光電変換部31を画素Bとして説明する。図3Aは、ベイヤ配列をより具体的に示す図である。図3Aに例示されるように、ベイヤ配列は、それぞれ1つの画素Rおよび画素Bと、2つの画素Gとを含む組により構成される。
Hereinafter, a photoelectric conversion unit 31 in which a G filter is stacked on a light receiving surface is referred to as a pixel G, a photoelectric conversion unit 31 in which an R filter is stacked on a light receiving surface is referred to as a pixel R, and a photoelectric conversion unit in which a B filter is stacked on a light receiving surface. Description will be made on the assumption that 31 is a pixel B. FIG. 3A is a diagram showing the Bayer arrangement more specifically. As illustrated in FIG. 3A, the Bayer arrangement is configured by a set including one pixel R and one pixel B and two pixels G, respectively.
特殊画素4は、所定の画素行に所定の間隔で配置される。例えば特殊画素4は、所定の画素行において画素Gと交互に配置される。具体的には、図2に示すように、特殊画素4は、所定の画素行における通常画素3のベイヤ配列の画素Bに相当する位置であって、同じ行の画素Gと隣接する位置に順次配置される。図3Bは、図3Aに示したベイヤ配列の画素Bを特殊画素4(画素S)と置き換えた例を示す図である。図3Bに示す画素Sを含む配列は、それぞれ1つの画素R、画素G、画素Bおよび画素Sを含む組により構成される。
(4) The special pixels 4 are arranged at predetermined intervals in a predetermined pixel row. For example, the special pixels 4 are alternately arranged with the pixels G in a predetermined pixel row. Specifically, as shown in FIG. 2, the special pixels 4 are sequentially located at positions corresponding to the pixels B in the Bayer array of the normal pixels 3 in a predetermined pixel row and adjacent to the pixels G in the same row. Be placed. FIG. 3B is a diagram illustrating an example in which the pixel B in the Bayer array illustrated in FIG. 3A is replaced with a special pixel 4 (pixel S). The array including the pixel S illustrated in FIG. 3B is configured by a set including one pixel R, one pixel G, one pixel B, and one pixel S.
特殊画素4は、通常画素3と同様の構成を有し、光電変換部41と、転送スイッチ42と、フローティングディフュージョン43(以下、単に「FD43」という)と、リセットスイッチ44と、増幅トランジスタ45と、行選択スイッチ46と、を有する。特殊画素4は、光電変換部41の受光面に積層される特殊フィルタを備える。また、特殊画素4は、転送スイッチ42が第2の転送信号線164に接続され、第2の転送信号線164から転送パルスTR_Sが供給される。これら以外の特殊画素4の構成は、通常画素3と同様である。なお、第1の第1の実施形態では、光電変換部41が第2の光電変換部として機能する。
The special pixel 4 has the same configuration as the normal pixel 3, and includes a photoelectric conversion unit 41, a transfer switch 42, a floating diffusion 43 (hereinafter simply referred to as “FD43”), a reset switch 44, and an amplification transistor 45. , A row selection switch 46. The special pixel 4 includes a special filter stacked on the light receiving surface of the photoelectric conversion unit 41. In the special pixel 4, the transfer switch 42 is connected to the second transfer signal line 164, and the transfer pulse TR_S is supplied from the second transfer signal line 164. The configuration of the special pixel 4 other than these is the same as that of the normal pixel 3. In the first embodiment, the photoelectric conversion unit 41 functions as a second photoelectric conversion unit.
特殊画素4は、フルカラー画像を形成するために可視光領域において色情報と輝度情報とを取得するための画素(例えば画素R、画素G、画素B)以外の画素である。特殊画素4の例としては、赤外光画素、白画素、モノクロ画素、黒画素、偏光画素および像面位相差画素が挙げられる。赤外光画素は、光電変換部41の受光面に赤外光を受光可能な赤外フィルタが積層されている。白画素は、光電変換部41の受光面に赤色、緑色および青色の全ての可視光を受光可能なホワイトフィルタが積層されている。モノクロ画素は、光電変換部41の受光面に透明なフィルタが積層されている。黒画素は、光電変換部41の受光面に遮光フィルタが積層されている。偏光画素は、偏光光を受光するための偏光素子を用いた画素である。
The special pixel 4 is a pixel other than the pixels (for example, the pixel R, the pixel G, and the pixel B) for acquiring color information and luminance information in a visible light region to form a full-color image. Examples of the special pixel 4 include an infrared light pixel, a white pixel, a monochrome pixel, a black pixel, a polarization pixel, and an image plane phase difference pixel. In the infrared light pixel, an infrared filter capable of receiving infrared light is laminated on a light receiving surface of the photoelectric conversion unit 41. In the white pixel, a white filter capable of receiving all visible light of red, green and blue is laminated on the light receiving surface of the photoelectric conversion unit 41. In the monochrome pixel, a transparent filter is laminated on the light receiving surface of the photoelectric conversion unit 41. In the black pixel, a light-blocking filter is laminated on the light receiving surface of the photoelectric conversion unit 41. A polarization pixel is a pixel using a polarization element for receiving polarized light.
像面位相差画素は、光電変換部41の受光面に所定の領域のみ開口された開口フィルタが積層されている。より具体的には、像面位相差画素は、光電変換部41の受光面の例えば左側1/2の領域を開口した開口フィルタが積層された画素と、他の光電変換部41の受光面の右側1/2の領域を開口した開口フィルタが積層された画素と、の2画素を1組とし、この2画素に受光された光の位相差に基づき測距を行うようにしたものである。
In the image plane phase difference pixel, an aperture filter having only a predetermined area opened on the light receiving surface of the photoelectric conversion unit 41 is laminated. More specifically, the image plane phase difference pixel is composed of a pixel on which an aperture filter having an opening in, for example, a left half area of the light receiving surface of the photoelectric conversion unit 41 is laminated, and a light receiving surface of another photoelectric conversion unit 41. A pair of pixels, in which an aperture filter having an opening in the right half region, is stacked, and a pair of pixels, and a distance measurement is performed based on a phase difference of light received by the two pixels.
このように、特殊画素4が受光した光を光電変換した画素信号は、通常画素3が受光した光を光電変換した画素信号とは異なる機能を実現できる。以下、図面においては、特殊画素4または特殊画素4の光電変換部41を「S」として表現する。
As described above, the pixel signal obtained by photoelectrically converting the light received by the special pixel 4 can realize a different function from the pixel signal obtained by photoelectrically converting the light received by the normal pixel 3. Hereinafter, in the drawings, the special pixel 4 or the photoelectric conversion unit 41 of the special pixel 4 is expressed as “S”.
次に、上述した撮像装置1における画素信号の読み出し方法について説明する。図4は、撮像装置1による画素信号の読み出しを模式的に示すタイミングチャートである。図4において、横軸が時間を示す。また、図4において、上段に垂直同期パルスの出力タイミングを示し、中段に垂直走査部12における水平同期パルスの出力タイミングを示す。図4においては、撮像装置1が1フレームの画素信号を読み出す場合を示している。
Next, a method for reading out pixel signals in the above-described imaging device 1 will be described. FIG. 4 is a timing chart schematically showing reading of a pixel signal by the imaging device 1. In FIG. 4, the horizontal axis indicates time. Also, in FIG. 4, the output timing of the vertical synchronization pulse is shown in the upper part, and the output timing of the horizontal synchronization pulse in the vertical scanning unit 12 is shown in the middle part. FIG. 4 shows a case where the imaging device 1 reads out pixel signals of one frame.
図4に示すように、制御部19は、まず、例えば撮像装置1の外部から入力される垂直同期パルスおよび水平同期パルスに従って、画素アレイ部11の特殊画素4が配置された特殊画素行から特殊画素4の画素信号(第2の信号)を順次読み出す。例えば、図5に示すように、制御部19は、垂直走査部12に特殊画素行における第2の転送信号線164を介してHigh(ハイ)状態の転送パルスTR_Sを特殊画素4に供給させ、通常画素3をオフした状態で、特殊画素4から画素信号を読み出す。この場合、通常画素3は、光を受光して信号電荷を蓄積する蓄積状態(露光状態)となる。
As illustrated in FIG. 4, the control unit 19 first performs a special operation from a special pixel row in which the special pixels 4 of the pixel array unit 11 are arranged according to, for example, a vertical synchronization pulse and a horizontal synchronization pulse input from outside the imaging apparatus 1. The pixel signals (second signals) of the pixels 4 are sequentially read. For example, as shown in FIG. 5, the control unit 19 causes the vertical scanning unit 12 to supply the transfer pulse TR_S in a High state to the special pixel 4 via the second transfer signal line 164 in the special pixel row. With the normal pixel 3 turned off, a pixel signal is read from the special pixel 4. In this case, the normal pixel 3 is in an accumulation state (exposure state) in which light is received and signal charges are accumulated.
全ての特殊画素行の特殊画素4から画素信号(第2の信号)を読み出した後、制御部19は、画素アレイ部11の行毎に各通常画素3から画素信号(第1の信号)を順次読み出す。具体的には、制御部19は、通常画素行および特殊画素行から各通常画素3の画素信号を順次読み出す。制御部19は、通常画素3のみ配置された通常画素行から画素信号を読み出す場合、例えば、図6に示すように、垂直走査部12が第1の転送信号線161を介してHigh状態の転送パルスTRを通常画素3に供給する。
After reading out the pixel signals (second signals) from the special pixels 4 of all the special pixel rows, the control unit 19 outputs the pixel signals (first signals) from each normal pixel 3 for each row of the pixel array unit 11. Read sequentially. Specifically, the control unit 19 sequentially reads out the pixel signals of the normal pixels 3 from the normal pixel row and the special pixel row. When reading the pixel signal from the normal pixel row in which only the normal pixels 3 are arranged, for example, the control unit 19 causes the vertical scanning unit 12 to transfer the signal in the High state via the first transfer signal line 161 as illustrated in FIG. The pulse TR is supplied to the normal pixel 3.
また、制御部19は、特殊画素4が配置された特殊画素行の通常画素3から画素信号を読み出す場合、図7に示すように、垂直走査部12が第1の転送信号線161を介してHigh状態の転送パルスTRのみを通常画素3に供給する。即ち、制御部19は、特殊画素行における特殊画素4の転送スイッチ42をオフした状態で、通常画素3のみから画素信号を順次読み出す。このとき、特殊画素4は、転送スイッチ42がオフした状態のため、黒レベル相当(電源電圧相当)の出力となる。なお、特殊画素4の画素信号は、例えば撮像装置1の外部に設けられた画像処理装置などによって周辺画素の画素信号を用いたデモザイキング処理などを行うことによって補間される。
When reading out the pixel signals from the normal pixels 3 in the special pixel row in which the special pixels 4 are arranged, the control unit 19 causes the vertical scanning unit 12 to transmit the pixel signals via the first transfer signal line 161 as shown in FIG. Only the transfer pulse TR in the High state is supplied to the normal pixel 3. That is, the control unit 19 sequentially reads out the pixel signals only from the normal pixels 3 in a state where the transfer switch 42 of the special pixel 4 in the special pixel row is turned off. At this time, the output of the special pixel 4 is equivalent to the black level (corresponding to the power supply voltage) because the transfer switch 42 is in the OFF state. The pixel signal of the special pixel 4 is interpolated by performing a demosaicing process using a pixel signal of a peripheral pixel using, for example, an image processing device provided outside the imaging device 1.
このように、撮像装置1は、先ず、全ての特殊画素行から特殊画素4の画素信号を読み出した後に、画素アレイ部11の行毎に各通常画素3から画素信号を順次読み出す読み出し方法を行う。以下、この読み出し方法を分割読み出しという。
As described above, the imaging apparatus 1 first performs the reading method of reading the pixel signals of the special pixels 4 from all the special pixel rows, and then sequentially reading the pixel signals from the normal pixels 3 for each row of the pixel array unit 11. . Hereinafter, this reading method is referred to as divided reading.
(既存技術におけるストリーキングの発生について)
次に、既存技術による撮像装置におけるストリーキングの発生について説明する。図8は、画素としては通常画素3のみが配置され、特殊画素4が配置されていない画素アレイ部11を含む、既存技術による撮像装置1aの概略構成を模式的に示す図である。図9は、図8の撮像装置1aを用いて高輝度な被写体を撮像した際の画像データに対応する撮像画像の一例を模式的に示す図である。なお、図8において、垂直方向における左側の2列の各通常画素3を遮光して遮光画素VOPBとするとともに、最下位の水平方向の各通常画素を遮光して遮光画素VOPBとする。 (About streaking in existing technology)
Next, the occurrence of streaking in the imaging device according to the existing technology will be described. FIG. 8 is a diagram schematically illustrating a schematic configuration of animaging device 1a according to the existing technology including the pixel array unit 11 in which only the normal pixels 3 are arranged as the pixels and the special pixels 4 are not arranged. FIG. 9 is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using the imaging device 1a in FIG. In FIG. 8, each of the normal pixels 3 in the left two columns in the vertical direction is shielded from light to form a light-shielded pixel VOPB, and each lowermost normal pixel in the horizontal direction is shielded from light to form a light-shielded pixel VOPB.
次に、既存技術による撮像装置におけるストリーキングの発生について説明する。図8は、画素としては通常画素3のみが配置され、特殊画素4が配置されていない画素アレイ部11を含む、既存技術による撮像装置1aの概略構成を模式的に示す図である。図9は、図8の撮像装置1aを用いて高輝度な被写体を撮像した際の画像データに対応する撮像画像の一例を模式的に示す図である。なお、図8において、垂直方向における左側の2列の各通常画素3を遮光して遮光画素VOPBとするとともに、最下位の水平方向の各通常画素を遮光して遮光画素VOPBとする。 (About streaking in existing technology)
Next, the occurrence of streaking in the imaging device according to the existing technology will be described. FIG. 8 is a diagram schematically illustrating a schematic configuration of an
図8に示す撮像装置1aは、画角の一部の領域において高輝度な被写体を撮像した場合、A/D変換部13の一斉反転による電源ノイズの影響を受ける。このため、図9に示すように、画像P1には、被写体領域OB1近傍にストリーキングST1が発生する。一方、図9の例では、暗領域BP2(背景領域)には、ストリーキングは発生していない。
When the imaging device 1a illustrated in FIG. 8 captures a high-luminance subject in a part of the angle of view, the imaging device 1a is affected by power supply noise due to simultaneous inversion of the A / D conversion unit 13. For this reason, as shown in FIG. 9, streaking ST1 occurs near the subject area OB1 in the image P1. On the other hand, in the example of FIG. 9, no streaking has occurred in the dark area BP2 (background area).
図10は、既存技術による、2次元マトリクス状に配置される通常画素3に対して、所定の行に所定の間隔で特殊画素4が配置された画素アレイ部11を含む撮像装置1bの構成を概略的に示す図である。この場合において、特殊画素4は、所定の位置の通常画素3と置き換えて配置される。
FIG. 10 shows a configuration of an imaging device 1b including a pixel array unit 11 in which special pixels 4 are arranged in predetermined rows at predetermined intervals with respect to ordinary pixels 3 arranged in a two-dimensional matrix according to existing technology. It is a figure which shows schematically. In this case, the special pixel 4 is arranged so as to replace the normal pixel 3 at a predetermined position.
図11は、上述した図9と対応する図であって、図10の撮像装置1bを用いて高輝度な被写体を撮像した際の画像データに対応する撮像画像の一例を模式的に示す図である。図11に示されるように、画角の一部の領域において高輝度な被写体を撮像した場合、A/D変換部13の一斉反転による電源ノイズの影響を受け、画像P1には、被写体領域OB1近傍にストリーキングST1が発生し、さらに、暗領域BP2の特殊画素行にストリーキングST2が発生する。
FIG. 11 is a diagram corresponding to FIG. 9 described above, and is a diagram schematically illustrating an example of a captured image corresponding to image data when a high-luminance subject is captured using the imaging device 1b in FIG. is there. As shown in FIG. 11, when a high-luminance subject is imaged in a part of the angle of view, the image P1 is affected by power supply noise due to simultaneous inversion of the A / D conversion unit 13, and the image P1 has a subject area OB1. Streaking ST1 occurs in the vicinity, and streaking ST2 occurs in a special pixel row in the dark area BP2.
このストリーキングST2が発生する理由を説明する。特殊画素行では、画素信号の振幅の大きい通常画素3の数(出力画素の数)が通常画素行より少ない。このため、特殊画素行では、電源ノイズ量が異なることでストリーキングST2が発生する。なお、図10および図11では、説明を簡略化するため、特殊画素行が画素アレイ部11上に1行のみ設けられた例について説明したが、特殊画素行が画素アレイ部11上に複数行設けられている場合、複数のストリーキングST2が発生する。
(4) The reason why the streaking ST2 occurs will be described. In the special pixel row, the number of normal pixels 3 (the number of output pixels) having a large amplitude of the pixel signal is smaller than that of the normal pixel row. Therefore, in the special pixel row, the streaking ST2 occurs due to the difference in the amount of power supply noise. In FIGS. 10 and 11, an example in which only one special pixel row is provided on the pixel array unit 11 has been described for the sake of simplicity, but a plurality of special pixel rows are provided on the pixel array unit 11. If provided, multiple streaking ST2s will occur.
また、図示は省略するが、被写体領域OB1においても、特殊画素行にストリーキングが発生する場合がある。
Although not shown, streaking may occur in a special pixel row even in the subject area OB1.
(既存技術による撮像装置の動作)
次に、上述した、既存技術による撮像装置1bの動作について説明する。なお、以下においては、上述した分割読み出しによって画素アレイ部11における全ての特殊画素行の特殊画素4から画素信号が読み出された後に、通常画素3から画素信号を読み出す画像生成の動作について説明する。 (Operation of imaging device using existing technology)
Next, the operation of the above-described imaging device 1b according to the existing technology will be described. In the following, an operation of generating an image in which the pixel signals are read from thenormal pixels 3 after the pixel signals are read from the special pixels 4 of all the special pixel rows in the pixel array unit 11 by the above-described divided reading will be described. .
次に、上述した、既存技術による撮像装置1bの動作について説明する。なお、以下においては、上述した分割読み出しによって画素アレイ部11における全ての特殊画素行の特殊画素4から画素信号が読み出された後に、通常画素3から画素信号を読み出す画像生成の動作について説明する。 (Operation of imaging device using existing technology)
Next, the operation of the above-described imaging device 1b according to the existing technology will be described. In the following, an operation of generating an image in which the pixel signals are read from the
図12および図13を用いて、選択行が通常画素行である場合の動作について説明する。図12は、既存技術による、選択行が通常画素行である場合の動作を示す一例のタイミングチャートである。また、図13は、既存技術による、画素アレイ部11における複数の通常画素3が配置された通常画素行を抜粋して示す図である。
The operation when the selected row is a normal pixel row will be described with reference to FIGS. FIG. 12 is an example timing chart showing an operation according to the existing technology when a selected row is a normal pixel row. FIG. 13 is a diagram showing an excerpt of a normal pixel row in which a plurality of normal pixels 3 in the pixel array unit 11 are arranged according to the existing technology.
図12に示すように、制御部19は、時点t100で選択行の行選択信号SELをHigh状態として、当該選択行の各行選択スイッチ36をオン状態とする。この行選択信号SELのHigh状態は、選択行の画素信号の読み出しが終了する時点t105まで維持される。
As shown in FIG. 12, the control unit 19, a High state row selection signal SEL of the selected row at time t 100, the row selection switch 36 of the selected row to the ON state. High state of the row selection signal SEL is maintained until time t 105 to read the pixel signals of the selected row is completed.
次に、制御部19は、時点t101で、選択行のリセットパルスRSTをHigh状態とする。この結果、選択行の増幅トランジスタ35は、リセットスイッチ34によってリセットされた後のFD33の電荷量に基づくリセット信号を垂直信号線17へ出力する。リセットパルスRSTは、時点t102でLow状態とされる。
Next, the control unit 19, at time t 101, the reset pulse RST of the selected row a High state. As a result, the amplification transistor 35 in the selected row outputs a reset signal based on the charge amount of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17. The reset pulse RST is at t 102 and Low state.
その後の時点t103で、制御部19は、選択行の転送パルスTRおよび転送パルスTR_Sの各々をHigh状態とし、時点t104で各転送パルスをLow状態とする。この時点t103から時点t104までの期間、図8に示すように、選択行の各転送スイッチ32は、オン状態となる。この結果、増幅トランジスタ35は、光電変換部31が受光して光電変換した信号電荷の電荷量に応じた画素信号VSLを垂直信号線17へ出力する。この場合、画素信号VSLのレベルは、所定の電位(黒レベル)から信号電荷の電荷量に応じて低下する。
At a later time t 103, the control unit 19, each of the transfer pulse TR and the transfer pulse TR_S the selected row to a High state, the respective transfer pulse and a Low state at time t 104. Period from the time point t 103 to time t 104, as shown in FIG. 8, the transfer switch 32 of the selected row are turned on. As a result, the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge.
次に、図14および図15を用いて、選択行が特殊画素行である場合の動作について説明する。図14は、既存技術による、選択行が特殊画素行である場合の動作を示す一例のタイミングチャートである。また、図15は、既存技術による、画素アレイ部11における、それぞれ複数の通常画素3と特殊画素4とが配置された特殊画素行を抜粋して示す図である。
Next, the operation when the selected row is a special pixel row will be described with reference to FIGS. FIG. 14 is a timing chart illustrating an example of an operation performed when a selected row is a special pixel row according to the existing technology. FIG. 15 is a diagram illustrating a special pixel row in which a plurality of normal pixels 3 and special pixels 4 are arranged in the pixel array unit 11 according to the existing technology.
図14に示すように、制御部19は、時点t110で選択行の行選択信号SELをHigh状態として、当該選択行の各通常画素の各行選択スイッチ36と、各特殊画素4の各行選択スイッチ46と、をオン状態とする。この行選択信号SELのHigh状態は、選択行の画素信号の読み出しが終了する時点t115まで維持される。
As shown in FIG. 14, the control unit 19, a High state row selection signal SEL of the selected row at time t 110, a row selection switch 36 of the normal pixel of the selected row, each row select switch of each special pixel 4 And 46 are turned on. High state of the row selection signal SEL is maintained until time t 115 to read the pixel signals of the selected row is completed.
次に、制御部19は、時点t111で、選択行のリセットパルスRSTをHigh状態とする。この結果、選択行の増幅トランジスタ35は、リセットスイッチ34によってリセットされた後のFD33の電荷量に基づくリセット信号を垂直信号線17へ出力する。また、選択行の増幅トランジスタ45は、リセットスイッチ44によってリセットされた後のFD43の電荷量に基づくリセット信号を垂直信号線17へ出力する。リセットパルスRSTは、時点t112でLow状態とされる。
Next, the control unit 19, at time t 111, the reset pulse RST of the selected row a High state. As a result, the amplification transistor 35 in the selected row outputs a reset signal based on the charge amount of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17. The amplification transistor 45 in the selected row outputs a reset signal based on the charge amount of the FD 43 after being reset by the reset switch 44 to the vertical signal line 17. The reset pulse RST is a Low state when t 112.
その後の時点t113で、制御部19は、選択行の転送パルスTRをHigh状態とし、時点t114で転送パルスTRをLow状態とする。また、制御部19は、選択行の転送パルスTR_Sについては、時点t115までLow状態を維持する。
At a later time t 113, the control unit 19, a transfer pulse TR of the selected row to a High state and a Low state transfer pulse TR at time t 114. The control unit 19, for transmission pulse TR_S the selected row, maintains a Low state until time t 115.
通常画素3において、時点t113から時点t114までの期間、図15に示すように、選択行の各転送スイッチ32は、オン状態となる。この結果、増幅トランジスタ35は、光電変換部31が受光して光電変換した信号電荷の電荷量に応じた画素信号VSLを垂直信号線17へ出力する。この場合、画素信号VSLのレベルは、所定の電位(黒レベル)から信号電荷の電荷量に応じて低下する。このときの通常画素3による画素信号VSLを、図15において画素信号VSL_Nとして示している。
In normal pixel 3, the period from time t 113 to time t 114, as shown in FIG. 15, the transfer switch 32 of the selected row are turned on. As a result, the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge. The pixel signal VSL from the normal pixel 3 at this time is shown as a pixel signal VSL_N in FIG.
一方、特殊画素4では、転送パルスTR_SがLow状態のままなので、図15に示すように、選択行の各転送スイッチ42においてオフ状態が維持される。その結果、光電変換部41からFD43への電荷の転送が行われず、FD43の蓄電電荷がリセットレベルのままとなる。したがって、選択行の増幅トランジスタ45から垂直信号線17に対し、リセット信号のレベルの信号が画素信号VSL_Sとして出力される。この画素信号VSL_Nのレベルは、図15に例示されるように、電源ノイズの影響によって低下すること無く、一定値(黒レベル)を維持する。このため、画素アレイ部11の所定の行において所定の間隔で特殊画素4が配置された場合、特殊画素4の画素信号VSL_Sのレベルの影響により、ストリーキングが発生する。
On the other hand, in the special pixel 4, since the transfer pulse TR_S remains in the Low state, the off state is maintained in each of the transfer switches 42 in the selected row as shown in FIG. As a result, the charge is not transferred from the photoelectric conversion unit 41 to the FD 43, and the charge stored in the FD 43 remains at the reset level. Therefore, a signal of the reset signal level is output from the amplification transistor 45 in the selected row to the vertical signal line 17 as the pixel signal VSL_S. As illustrated in FIG. 15, the level of the pixel signal VSL_N maintains a constant value (black level) without lowering due to the influence of power supply noise. Therefore, when the special pixels 4 are arranged at predetermined intervals in predetermined rows of the pixel array unit 11, streaking occurs due to the effect of the level of the pixel signal VSL_S of the special pixels 4.
(第1の実施形態に係る撮像装置)
次に、第1の実施形態に係る撮像装置について説明する。図16は、第1の実施形態に係る撮像装置1における画素アレイ部11aの一例の構成を示す図である。画素アレイ部11aは、上述の図1に示す撮像装置1における画素アレイ部11として適用されるものである。 (Imaging device according to the first embodiment)
Next, the imaging device according to the first embodiment will be described. FIG. 16 is a diagram illustrating an example of a configuration of thepixel array unit 11a in the imaging device 1 according to the first embodiment. The pixel array unit 11a is applied as the pixel array unit 11 in the imaging device 1 shown in FIG.
次に、第1の実施形態に係る撮像装置について説明する。図16は、第1の実施形態に係る撮像装置1における画素アレイ部11aの一例の構成を示す図である。画素アレイ部11aは、上述の図1に示す撮像装置1における画素アレイ部11として適用されるものである。 (Imaging device according to the first embodiment)
Next, the imaging device according to the first embodiment will be described. FIG. 16 is a diagram illustrating an example of a configuration of the
図16において、画素アレイ部11aは、図2で説明した画素アレイ部11aに対してダミー行(DMY行)が追加される。また、画素アレイ部11aは、それぞれ複数の通常画素3と特殊画素4とが配列される行(例えば図16のN行)と、複数の通常画素3が配列され特殊画素4が配列されない行(例えば図16のN+2行)とに、図2の行選択信号線163に代えて、行選択信号線163aおよび163bが配置される。行選択信号線163aは、特殊画素4を含まない列において、各通常画素3に接続される。一方、行選択信号線163bは、特殊画素4を含む列において、各通常画素3および各特殊画素4に接続される。
In FIG. 16, a dummy row (DMY row) is added to the pixel array unit 11 a in the pixel array unit 11 a described in FIG. 2. The pixel array unit 11a includes a row in which a plurality of normal pixels 3 and special pixels 4 are arranged (for example, N rows in FIG. 16) and a row in which a plurality of normal pixels 3 are arranged and no special pixels 4 are arranged ( For example, (N + 2 rows in FIG. 16), row selection signal lines 163a and 163b are arranged instead of the row selection signal line 163 in FIG. The row selection signal line 163a is connected to each normal pixel 3 in a column not including the special pixel 4. On the other hand, the row selection signal line 163b is connected to each normal pixel 3 and each special pixel 4 in a column including the special pixel 4.
なお、図16において、特殊画素4が配置されるN行と、通常画素3として画素Bが配置されるN-2行とを記載し、通常画素3として画素Gおよび画素Rが配置されるN-1行の記載は省略している。N-1行においても、N-2行と同様に、特殊画素4を含まない列において行選択信号線163aが各通常画素3に接続され、特殊画素4を含む列において行選択信号線164bが各通常画素3に接続される。また、図16の例では、特殊画素4は、ベイヤ配列における画素Bに対応する位置に配置される。
In FIG. 16, N rows where the special pixels 4 are arranged and N−2 rows where the pixels B are arranged as the normal pixels 3 are described, and N rows where the pixels G and the pixels R are arranged as the normal pixels 3 are shown. The description of line -1 is omitted. Similarly to the row N-2, the row selection signal line 163a is connected to each normal pixel 3 in the column that does not include the special pixel 4 and the row selection signal line 164b is connected to the normal pixel 3 in the column that includes the special pixel 4. Connected to each normal pixel 3. In the example of FIG. 16, the special pixel 4 is arranged at a position corresponding to the pixel B in the Bayer array.
ダミー行は、各垂直信号線17に対応して、ダミー部500aを含む。各ダミー部500aは、バッファ部をソースフォロワアンプにより構成するトランジスタ50と、ダミー選択スイッチ51aまたは51bと、保持部501と、を含む。また、ダミー部500aには、ダミー行信号線180として、ダミー行選択信号線181および182と、読み出し制御線183および184(第3の信号線)と、保持制御線185および186(第2の信号線)と、が接続される。
The dummy row includes a dummy section 500a corresponding to each vertical signal line 17. Each dummy unit 500a includes a transistor 50 whose buffer unit is configured by a source follower amplifier, a dummy selection switch 51a or 51b, and a holding unit 501. In the dummy section 500a, as dummy row signal lines 180, dummy row selection signal lines 181 and 182, read control lines 183 and 184 (third signal lines), and holding control lines 185 and 186 (second ) Are connected.
第1の実施形態では、トランジスタ50は、例えばMOS型トランジスタであって、電源電圧がドレインに接続され、保持部501にゲートが接続され、ダミー選択スイッチ51aまたは51bの一端にソースが接続される。ダミー選択スイッチ51aおよび51bの他端は、垂直信号線17に接続される。このように、トランジスタ50は、MOS型トランジスタによるソースフォロワアンプとして用いられている。
In the first embodiment, the transistor 50 is, for example, a MOS transistor, in which the power supply voltage is connected to the drain, the gate is connected to the holding unit 501, and the source is connected to one end of the dummy selection switch 51a or 51b. . The other ends of the dummy selection switches 51a and 51b are connected to the vertical signal line 17. As described above, the transistor 50 is used as a source follower amplifier using a MOS transistor.
特殊画素4を含まない列に対応するダミー部500aにおいて、ダミー選択スイッチ51aは、ダミー行選択信号線181に接続される。ダミー選択スイッチ51aは、ダミー行選択信号線181を介して供給されるダミー行選択信号SELDMYがHigh(ハイ)状態でオン状態となる。同様に、特殊画素4を含む列に対応するダミー部500aにおいて、ダミー選択スイッチ51bは、ダミー行選択信号線182に接続される。ダミー選択スイッチ51bは、ダミー行選択信号線182を介して供給されるダミー行選択信号SEL_SDMYがHigh(ハイ)状態でオン状態となる。
In the dummy section 500a corresponding to the column not including the special pixel 4, the dummy selection switch 51a is connected to the dummy row selection signal line 181. The dummy selection switch 51a is turned on when the dummy row selection signal SEL DMY supplied via the dummy row selection signal line 181 is High. Similarly, in the dummy section 500a corresponding to the column including the special pixel 4, the dummy selection switch 51b is connected to the dummy row selection signal line 182. Dummy selection switch 51b, the dummy row selection signal SEL_S DMY supplied via a dummy row selection signal line 182 is turned on at the High (high) state.
各保持部501は、アナログスイッチ52aと、キャパシタ53aと、保持選択スイッチ54aと、を含むP相保持部と、アナログスイッチ52bと、キャパシタ53bと、保持選択スイッチ54bと、を含むD相保持部と、を有する。
Each holding unit 501 includes a P-phase holding unit including an analog switch 52a, a capacitor 53a, and a holding selection switch 54a, and a D-phase holding unit including an analog switch 52b, a capacitor 53b, and a holding selection switch 54b. And
P相保持部において、アナログスイッチ52aは、保持制御線185が端子55a1に接続される。アナログスイッチ52aは、保持制御線185に供給される保持制御パルスSH_PがHigh状態で、端子55a2と端子55a3との間を双方向に接続する。アナログスイッチ52aの端子55a2が、保持選択スイッチ54aの一端と、キャパシタ53aの一端と、に接続される。キャパシタ53aの他端は、接地電位とされる。保持選択スイッチ54aの他端は、トランジスタ50のゲートに接続される。読み出し制御線183が保持選択スイッチ54aに接続される。保持選択スイッチ54aは、読み出し制御線183から供給される読み出し制御信号RD_PがHigh状態でオン状態とされる。また、アナログスイッチ52aの端子55a3が垂直信号線17に接続される。
In the P-phase holding unit, the holding control line 185 of the analog switch 52a is connected to the terminal 55a1. Analog switch 52a is held control pulse SH_P supplied to the holding control line 185 is in the High state, connects the terminal 55a 2 and the terminal 55a 3 in both directions. Terminal 55a 2 of the analog switch 52a is connected to one end of the storage selection switch 54a, and one end of the capacitor 53a, the. The other end of the capacitor 53a is set to the ground potential. The other end of the hold selection switch 54a is connected to the gate of the transistor 50. The read control line 183 is connected to the holding selection switch 54a. The holding selection switch 54a is turned on when the read control signal RD_P supplied from the read control line 183 is High. The terminal 55a 3 of the analog switches 52a are connected to the vertical signal line 17.
D相保持部も、上述のP相保持部と同様の構成を有する。すなわち、D相保持部において、アナログスイッチ52bは、保持制御線186が端子55b1に接続され、保持制御線186に供給される保持制御パルスSH_DがHigh状態で、端子55b2と端子55b3との間を双方向に接続する。アナログスイッチ52bの端子55b2が、保持選択スイッチ54bの一端と、他端が接地電位とされるキャパシタ53bの一端と、に接続される。保持選択スイッチ54bの他端は、上述した保持選択スイッチ54aと共通して、トランジスタ50のゲートに接続される。読み出し制御線184が保持選択スイッチ54bに接続され、読み出し制御線184から供給される読み出し制御信号RD_DがHigh状態でオン状態とされる。また、アナログスイッチ52bの端子55b3が、上述したアナログスイッチ52aの端子55a3と共通して、垂直信号線17に接続される。
The D-phase holding unit has the same configuration as the above-described P-phase holding unit. That is, in the D-phase holding unit, the analog switch 52b is held control line 186 is connected to the terminal 55b 1, holding control pulse SH_D supplied to the holding control line 186 is in the High state, the terminal 55b 2 and the terminal 55b 3 Is connected in both directions. Terminals 55b 2 of the analog switch 52b is, one end of the holding selection switch 54b, the other end connected to the one end of the capacitor 53b to the ground potential. The other end of the holding selection switch 54b is connected to the gate of the transistor 50 in common with the holding selection switch 54a described above. The read control line 184 is connected to the holding selection switch 54b, and the read control signal RD_D supplied from the read control line 184 is turned on in a high state. The terminal 55b 3 of the analog switch 52b is connected to the vertical signal line 17 in common with the terminal 55a 3 of the analog switch 52a.
第1の実施形態では、上述した画素アレイ部11aの動作を制御することで、特殊画素4の出力を、特殊画素4が配置されない行における、特殊画素4と同一の垂直信号線17に接続され、且つ、ベイヤ配列において当該特殊画素4に対応する位置の通常画素3の出力により置き換えることができる。
In the first embodiment, the output of the special pixel 4 is connected to the same vertical signal line 17 as the special pixel 4 in the row where the special pixel 4 is not arranged by controlling the operation of the above-described pixel array unit 11a. In addition, the output can be replaced by the output of the normal pixel 3 at the position corresponding to the special pixel 4 in the Bayer arrangement.
(第1の実施形態に係る撮像装置の動作)
次に、第1の実施形態に係る撮像装置1の動作について説明する。なお、上述と同様に、以下においては、図4を用いて説明した分割読み出しによって画素アレイ部11aにおける全ての特殊画素行の特殊画素4から画素信号が読み出された後に、通常画素3から画素信号を読み出す画像生成の動作について説明する。 (Operation of Imaging Device According to First Embodiment)
Next, the operation of theimaging device 1 according to the first embodiment will be described. As described above, after the pixel signals are read out from the special pixels 4 of all the special pixel rows in the pixel array unit 11a by the divided read described with reference to FIG. The operation of generating an image for reading a signal will be described.
次に、第1の実施形態に係る撮像装置1の動作について説明する。なお、上述と同様に、以下においては、図4を用いて説明した分割読み出しによって画素アレイ部11aにおける全ての特殊画素行の特殊画素4から画素信号が読み出された後に、通常画素3から画素信号を読み出す画像生成の動作について説明する。 (Operation of Imaging Device According to First Embodiment)
Next, the operation of the
図17は、第1の実施形態に係る撮像装置の動作を示す一例のタイミングチャートである。ここで、図17は、特殊画素4のD相の出力を、当該特殊画素4と同一の列、且つ、ベイヤ配列において当該特殊画素4と対応する位置に配置される通常画素3(画素B)のD相の出力と置き換える例について示している。なお、各行の読み出しは、各行をN-2行、N-1行、N行の順に選択行として選択して行われるが、図17では、N-2行およびN行の読み出し動作について示し、N-1行の読み出し動作に関する記載を省略している。
FIG. 17 is an example timing chart showing the operation of the imaging device according to the first embodiment. Here, FIG. 17 shows the output of the D phase of the special pixel 4 in the same column as that of the special pixel 4 and the normal pixel 3 (pixel B) arranged at the position corresponding to the special pixel 4 in the Bayer arrangement. Is replaced with the D-phase output of FIG. Note that reading of each row is performed by selecting each row as a selected row in the order of N−2 row, N−1 row, and N row. FIG. 17 shows the reading operation of N−2 row and N row. The description regarding the read operation of the (N-1) th row is omitted.
先ず、特殊画素4が含まれない行である、N-2行の読み出し動作について説明する。
First, the read operation of the (N-2) th row, which is a row that does not include the special pixel 4, will be described.
制御部19は、N-2行の読み出し期間内において、ダミー行選択信号SELDMYのLow状態を維持する。そのため、特殊画素4が配置されない列のダミー部500aにおけるダミー選択スイッチ51aがオフ状態(開状態)を維持し、キャパシタ53aおよび53bに保持される電圧は、垂直信号線17に供給されない。また、制御部19は、ダミー行選択信号SEL_SMDYも、N-2行の読み出し期間内は、Low状態とする。したがって、特殊画素4が配置される列のダミー部500aにおけるダミー選択スイッチ51bもオフ状態を維持し、当該期間中は、キャパシタ53aおよび53bに保持される電圧が垂直信号線17に供給されない。
The control unit 19 maintains the low state of the dummy row selection signal SEL DMY during the reading period of the (N−2) th row. Therefore, the dummy selection switch 51 a in the dummy section 500 a in the column where the special pixel 4 is not arranged maintains the off state (open state), and the voltage held in the capacitors 53 a and 53 b is not supplied to the vertical signal line 17. The control unit 19, a dummy row select signal SEL_S MDY also in N-2-line readout period, the Low state. Therefore, the dummy selection switch 51b in the dummy section 500a in the column where the special pixels 4 are arranged also maintains the OFF state, and the voltage held in the capacitors 53a and 53b is not supplied to the vertical signal line 17 during this period.
制御部19は、N-2行の読み出し期間の開始に応じて、時点t00で行選択信号SELN-2およびSEL_SN-2をそれぞれHigh状態とし、行選択スイッチ36および46aをそれぞれオン状態とする。次に、制御部19は、時点t01から時点t02の期間、リセットパルスRSTをHigh状態とする。この結果、選択行であるN-2行の増幅トランジスタ35は、リセットスイッチ34によってリセットされた後のFD33の蓄積電荷に基づくリセット信号を垂直信号線17へ出力する。
Control unit 19, in response to the start of the N-2-line readout period, a row select signal SEL N-2 and SEL_S N-2 at time t 00, respectively a High state, respectively turning on the row select switches 36 and 46a And Next, the control unit 19, the period of time t 02 from the time t 01, the reset pulse RST to High state. As a result, the amplification transistors 35 in the (N−2) th row, which is the selected row, output a reset signal based on the accumulated charges in the FD 33 after being reset by the reset switch 34 to the vertical signal line 17.
制御部19は、時点02でリセットパルスRSTをLow状態としてから所定時間後(例えば画素信号VSLが安定したと見做されるタイミング)の時点t03で、読み出し制御信号RD_PをHigh状態とすると共に、保持制御パルスSH_Pを時点t04までの間High状態とする。これにより、保持選択スイッチ54aがオン状態とされると共に、アナログスイッチ52aにおいて端子55a2と端子55a3とが接続される。ダミー選択スイッチ51bは、オフ状態を維持しているので、リセット信号の電圧がキャパシタ53aに保持される。
Control unit 19, at time t 03 after from the Low state to the reset pulse RST at 02 predetermined time (e.g. timing pixel signal VSL is considered to have stabilized), as well as a read control signal RD_P a High state , The holding control pulse SH_P is kept High until time t 04 . Thus, holding the selection switch 54a together with is turned on, and the terminal 55a 2 and the terminal 55a 3 in the analog switch 52a is connected. Since the dummy selection switch 51b maintains the OFF state, the voltage of the reset signal is held in the capacitor 53a.
制御部19は、時点t04の所定時間後の時点t05から時点t06の期間、N-2行の転送パルスTRおよび転送パルスTR_Sの各々をHigh状態とする。この時点t05から時点t06までの期間、N-2行の通常画素3に含まれる各転送スイッチ32がオン状態となる。この結果、増幅トランジスタ35は、光電変換部31が受光して光電変換した信号電荷の電荷量に応じた画素信号VSLを垂直信号線17へ出力する。この場合、画素信号VSLのレベルは、所定の電位(黒レベル)から信号電荷の電荷量に応じて低下する。
Control unit 19, after a predetermined time period from time t 06 from the time point t 05 of time t 04, each of the transfer pulse TR and the transfer pulse TR_S of N-2-line to a High state. During the period from the time point t 05 to the time point t 06, each transfer switch 32 included in the normal pixels 3 in the (N−2) th row is turned on. As a result, the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge.
制御部19は、時点t06の所定時間後(例えば画素信号VSLが低下状態で安定したと見做されるタイミング)の時点t07から時点t08の期間、保持制御パルスSH_DをHigh状態とする。これにより、保持選択スイッチ54bがオン状態とされると共に、アナログスイッチ52bにおいて端子55b2と端子55b3とが接続される。ダミー選択スイッチ51bは、オフ状態を維持しているので、画素信号VSLの電圧がキャパシタ53bに保持される。
Control unit 19, after a predetermined time period from the time point t 07 of time t 08 (for example the timing in which the pixel signal VSL is considered to have stabilized at a reduced state) at the time t 06, the hold control pulse SH_D a High state . Thus, the holding selection switch 54b together with is turned on, the terminal 55b 2 and the terminal 55b 3 in the analog switch 52b is connected. Since the dummy selection switch 51b maintains the off state, the voltage of the pixel signal VSL is held in the capacitor 53b.
制御部19は、時点t09で行選択信号SELN-2およびSEL_SN-2をそれぞれLow状態として、N-2行の読み出し期間を終了させる。
Control unit 19, the time t 09 in the row selection signal SEL N-2 and SEL_S N-2 as a Low state, respectively, to terminate the read period of the N-2 line.
次に、図17において記載が省略されている、N-1行の読み出し動作について、概略的に説明する。
Next, a read operation of the (N-1) th row, whose description is omitted in FIG. 17, will be schematically described.
N-1行は、画素としては通常画素3のみが含まれ、特殊画素4は含まれない。また、N-1行の画素の配列は、ベイヤ配列における画素Gおよび画素Bが配置されるN-2行とは異なり、画素Rおよび画素Gが配置される。すなわち、N-1行の画素の配置は、ベイヤ配列における画素Gおよび画素Bのうち画素Bが特殊画素4である画素Sに置き換えられたN行の配置と対応しない配置となる。
The # N-1 row includes only normal pixels 3 and no special pixels 4 as pixels. Further, the arrangement of the pixels in the (N-1) th row is different from the (N-2) th row in which the pixels G and B in the Bayer arrangement are arranged, and the pixels R and the pixels G are arranged. That is, the arrangement of the pixels in the (N-1) th row does not correspond to the arrangement of the Nth row in which the pixel B of the pixels G and B in the Bayer array is replaced with the pixel S which is the special pixel 4.
N-1行の読み出し動作は、上述したN-2行の読み出し動作と、保持制御パルスSH_PおよびSH_D以外は、略同一である。すなわち、N-1行の読み出し動作において、保持制御パルスSH_PおよびSH_Dは、Low状態が維持される。したがって、N-1行の読み出し動作において、リセット信号の電圧のキャパシタ53aへの保持と、画素信号VSLの電圧のキャパシタ53bへの保持と、が行われない。すなわち、キャパシタ53aおよび53bに保持される各電圧は、N-2行の読み出し動作においてそれぞれ保持された、リセット信号の電圧および画素信号VSLの電圧が維持される。
The read operation of the # N-1 row is substantially the same as the above-described read operation of the N-2 row except for the holding control pulses SH_P and SH_D. That is, in the read operation of the (N-1) th row, the hold control pulses SH_P and SH_D are maintained in the Low state. Therefore, in the read operation of the (N-1) th row, the holding of the voltage of the reset signal in the capacitor 53a and the holding of the voltage of the pixel signal VSL in the capacitor 53b are not performed. That is, as the voltages held in the capacitors 53a and 53b, the voltage of the reset signal and the voltage of the pixel signal VSL, which are held in the read operation of the (N-2) th row, are maintained.
次に、特殊画素4が含まれる行である、N行の読み出し動作について説明する。
Next, a read operation of N rows, which are rows including the special pixels 4, will be described.
制御部19は、N-2行の読み出し期間内において、ダミー行選択信号SELDMYのLow状態を維持する。そのため、特殊画素4が配置されない列のダミー部500aにおけるダミー選択スイッチ51aがオフ状態を維持し、キャパシタ53aおよび53bに保持される電圧は、垂直信号線17に供給されない。また、制御部19は、ダミー行選択信号SEL_SDMYについて、N行の読み出し期間の開始から後述する時点t24まで、Low状態とする。したがって、特殊画素4が配置される列のダミー部500aにおけるダミー選択スイッチ51bは、時点t24までオフ状態とされ、N行の読み出し期間の開始から時点t24までの期間中は、キャパシタ53aおよび53bに保持される電圧が垂直信号線17に供給されない。
The control unit 19 maintains the low state of the dummy row selection signal SEL DMY during the reading period of the (N−2) th row. Therefore, the dummy selection switch 51a in the dummy section 500a in the column where the special pixel 4 is not arranged maintains the off state, and the voltage held in the capacitors 53a and 53b is not supplied to the vertical signal line 17. The control unit 19, the dummy row selection signal SEL_S DMY, until the time t 24 to be described later from the start of the N rows of the readout period, the Low state. Therefore, the dummy select switch 51b in the dummy portion 500a of the column special pixels 4 are arranged is turned off until the time point t 24, during the period from the start of the N rows of the readout period to time t 24, the capacitors 53a and The voltage held in 53b is not supplied to the vertical signal line 17.
さらに、制御部19は、N行の読み出し期間内において、保持制御パルスSH_PおよびSH_Dをlow状態に維持する。
{Furthermore, the control unit 19 maintains the holding control pulses SH_P and SH_D in the low state during the reading period of N rows.
制御部19は、読み出し期間の開始に応じて、時点t20で行選択信号SELNおよびSEL_SNをそれぞれHigh状態とし、行選択スイッチ36および46aをそれぞれオン状態とする。
Control unit 19, in response to the start of the reading period, respectively a High state the row selection signals SEL N and SEL_S N at time t 20, and respectively turning on the row select switches 36 and 46a.
次に、制御部19は、時点t21から時点t22の期間、リセットパルスRSTをHigh状態とする。この結果、選択行であるN行の、通常画素3に含まれる増幅トランジスタ35は、リセットスイッチ34によってリセットされた後のFD33の蓄積電荷に基づくリセット信号を垂直信号線17へ出力する。同様に、N行の、特殊画素に含まれる増幅トランジスタ45は、リセットスイッチ44によってリセットされた後のFD43の蓄積電荷に基づくリセット信号を垂直信号線17へ出力する。このリセットパルスRSTがHigh状態とされる時点t21が、P相の開始タイミングとなる。
Next, the control unit 19, the period of time t 22 from the time t 21, the reset pulse RST to High state. As a result, the amplification transistor 35 included in the normal pixel 3 in the selected row N outputs the reset signal based on the accumulated charge of the FD 33 after being reset by the reset switch 34 to the vertical signal line 17. Similarly, the amplification transistor 45 included in the special pixel on the Nth row outputs a reset signal based on the accumulated charges of the FD 43 after being reset by the reset switch 44 to the vertical signal line 17. Time t 21 to the reset pulse RST is set to High state, the start timing of the P phase.
ここで、読み出し制御信号RD_Pは、直前の行であるN-1行の読み出し期間において、上述のN-2行と同様に、時点t03に対応するタイミングでHigh状態とされている。一方、上述したように、ダミー行選択信号SEL_SDMYは、時点t24まで、Low状態とされている。したがって、特殊画素4が配置される列のダミー部500aにおけるダミー選択スイッチ51bもオフ状態を維持し、当該期間中は、キャパシタ53aおよび53bに保持される電圧が垂直信号線17に供給されない。
Here, the read control signal RD_P is in the High state at the timing corresponding to the time point t 03 in the read period of the immediately preceding row, ie, the (N−1) -th row, similarly to the above-mentioned N−2 row. On the other hand, as described above, dummy row select signal SEL_S DMY until time t 24, there is a Low state. Therefore, the dummy selection switch 51b in the dummy section 500a in the column where the special pixels 4 are arranged also maintains the OFF state, and the voltage held in the capacitors 53a and 53b is not supplied to the vertical signal line 17 during this period.
制御部19は、時点t23で、読み出し制御信号RD_PをLow状態とする。時点t23は、例えば、画素信号VSLが安定したと見做されるタイミングである。
Control unit 19, at time t 23, the read control signal RD_P the Low state. Time t 23 is, for example, the timing at which the pixel signal VSL is considered to have stabilized.
制御部19は、時点t23の所定時間後の時点t24から時点t25の期間、N行の、通常画素3に供給される転送パルスTRをHigh状態とする。この時点t24から時点t25までの期間、N行の、各通常画素3に含まれる各転送スイッチ32は、オン状態となる。この結果、増幅トランジスタ35は、光電変換部31が受光して光電変換した信号電荷の電荷量に応じた画素信号VSLを垂直信号線17へ出力する。この場合、画素信号VSLのレベルは、所定の電位(黒レベル)から信号電荷の電荷量に応じて低下する。すなわち、時点t24が、P相からD相への遷移タイミングとなる。
Control unit 19, the period of time t 25 from the time t 24 after a predetermined time point t 23, the N rows, usually a High state transfer pulse TR supplied to the pixel 3. Period from the time t 24 to time t 25, the N rows, each transfer switch 32 included in each normal pixel 3 are turned on. As a result, the amplifying transistor 35 outputs the pixel signal VSL to the vertical signal line 17 according to the amount of the signal charge received and photoelectrically converted by the photoelectric conversion unit 31. In this case, the level of the pixel signal VSL decreases from a predetermined potential (black level) according to the amount of signal charge. That is, the time point t 24 is the transition timing from the P phase to the D phase.
一方、制御部19は、時点t24から時点t25の期間、N行の、特殊画素4に供給される転送パルスTR_Sを、Low状態に維持する。したがって、N行の、各特殊画素4に含まれる各転送スイッチ42のオフ状態が維持され、光電変換部41が受光して光電変換した信号電荷の電荷量に応じた画素信号VSLは、垂直信号線17に出力されない。
On the other hand, the control unit 19, the period of time t 25 from the time t 24, the N rows, a transfer pulse TR_S supplied to a special pixel 4, is maintained in Low state. Accordingly, the off state of each transfer switch 42 included in each special pixel 4 in the N-th row is maintained, and the pixel signal VSL corresponding to the amount of signal charge received and photoelectrically converted by the photoelectric conversion unit 41 is a vertical signal. Not output on line 17.
制御部19は、さらに、時点t24でダミー行選択信号SEL_SDMYをHigh状態とする。それと共に、制御部19は、時点t24において、読み出し制御信号RD_DをHigh状態とし、さらに、行選択信号SEL_SNをLow状態とする。
Control unit 19, further, the dummy row selection signal SEL_S DMY a High state at time t 24. At the same time, the control unit 19, at time t 24, the read control signal RD_D a High state, further, the row selection signal SEL_S N and Low state.
この時点t24における転送パルスTR_S、ダミー行選択信号SEL_SDMY、読み出し制御信号RD_D、および、行選択信号SEL_SNによる一連の動作により、行選択スイッチ46aがオフ状態、ダミー選択スイッチ51bがオン状態、保持選択スイッチ54bがオン状態とされる。また、保持制御パルスSH_Dは、N行の読み出し期間内においてlow状態が維持され、アナログスイッチ52bにおいて、端子55b2と端子55b3とが接続されない。これにより、特殊画素4による画素信号VSLが垂直信号線17に出力されず、且つ、キャパシタ53bに保持される電圧が、トランジスタ50を介して垂直信号線17に出力される。
Transfer pulse TR_S at this time t 24, dummy row select signal SEL_S DMY, the read control signal RD_D, and, by a series of operations by the row selection signal SEL_S N, the row selection switch 46a is turned off, the dummy selection switch 51b is turned on, The holding selection switch 54b is turned on. The holding control pulse SH_D is low state maintained in the readout period of the N rows, the analog switch 52 b, and the terminal 55b 2 and the terminal 55b 3 not connected. As a result, the pixel signal VSL from the special pixel 4 is not output to the vertical signal line 17 and the voltage held in the capacitor 53b is output to the vertical signal line 17 via the transistor 50.
上述したように、N行の読み出し動作時において、キャパシタ53bには、N-2行の読み出し動作において、画素Bである通常画素3から出力された画素信号VSLの電圧が保持されている。したがって、N行の読み出し動作において、垂直信号線17には、特殊画素4から出力される画素信号VSLの代わりに、N-2行の読み出し動作における、当該特殊画素4とベイヤ配列における位置が対応し、且つ、当該特殊画素4にベイヤ配列単位で隣接する、画素Bである通常画素3から出力された画素信号VSLの電圧が供給されることになる。
As described above, during the read operation of the Nth row, the voltage of the pixel signal VSL output from the normal pixel 3 which is the pixel B in the readout operation of the (N−2) th row is held in the capacitor 53b. Therefore, in the read operation of the Nth row, the vertical signal line 17 corresponds to the position of the special pixel 4 in the readout operation of the (N−2) th row in the Bayer array instead of the pixel signal VSL output from the special pixel 4. In addition, the voltage of the pixel signal VSL output from the normal pixel 3 which is the pixel B adjacent to the special pixel 4 in the Bayer arrangement unit is supplied.
なお、N行において、FD33の電圧は、図17に電圧FDN_Nとして例示されるように、N-2行のFD33の電圧(FDN-2)と同様、通常のシーケンスに従い変化する。画素信号VSL_Nも、N-2行と同様に、通常のシーケンスに従い変化する。
Note that in the N rows, the voltage of the FD33, as exemplified as the voltage FD N _N 17, similar to the N-2 rows of FD33 voltage (FD N-2), varies according to the usual sequence. The pixel signal VSL_N also changes according to a normal sequence, similarly to the N-2th row.
一方、特殊画素4では、N行の読み出しの時点t24において行選択信号SEL_SNがLow状態とされているため行選択スイッチ46aがオフ状態とされ、FD43の電圧が垂直信号線17に出力されない。そのため、図17に電圧FDN_Sとして例示されるように、リセット信号の電圧が維持される。画素信号VSL_Sは、FD43からの出力が行われないので、画素信号VSL_Nと比べて、速く電圧が低下する。
On the other hand, the special pixel 4, the row selection switch 46a for row selection signal SEL_S N is a Low state at time t 24 the reading of the N rows is turned off, the voltage of the FD43 is not output to the vertical signal line 17 . Therefore, the voltage of the reset signal is maintained as illustrated as the voltage FD N _S in FIG. Since the pixel signal VSL_S is not output from the FD 43, the voltage decreases faster than the pixel signal VSL_N.
制御部19は、時点t26において読み出し制御信号RD_DをLow状態として保持選択スイッチ54bをオフ状態とし、キャパシタ53bからの読み出しを終了させる。また、制御部19は、時点t26において行選択信号SELNをLow状態として、N-2行の読み出し期間を終了させる。
Control unit 19, the holding selector switch 54b of the read control signal RD_D as Low state is turned off at time t 26, to terminate the reading from the capacitor 53b. At time t 26 , the control unit 19 sets the row selection signal SEL N to the Low state, and ends the reading period of the (N−2) th row.
このように、第1の実施形態に係る撮像装置1は、画素アレイ部11aの特殊画素4が含まれる列において、当該特殊画素4とベイヤ配列における位置が対応し、ベイヤ配列単位で隣接する、N-2行の通常画素3(画素B)から読み出された画素信号VSLを保持部501に保持する。そして、撮像装置1は、特殊画素4が含まれるN行における読み出し動作時に、特殊画素4からの画素信号VSLの読み出しを行わずに、保持部501に保持された、通常画素3から読み出された画素信号VSLを、垂直信号線17に供給する。
As described above, in the imaging device 1 according to the first embodiment, in the column including the special pixel 4 of the pixel array unit 11a, the position of the special pixel 4 corresponds to the position in the Bayer array, and is adjacent in the Bayer array unit. The holding unit 501 holds the pixel signal VSL read from the normal pixel 3 (pixel B) in the (N-2) th row. Then, the imaging apparatus 1 does not read out the pixel signal VSL from the special pixel 4 during the readout operation on the N rows including the special pixel 4 and reads out the normal pixel 3 held in the holding unit 501. The supplied pixel signal VSL is supplied to the vertical signal line 17.
第1の実施形態に係る撮像装置1は、この動作により、特殊画素4に起因するストリーキングの軽減が可能となる。より具体的には、第1の実施形態に係る撮像装置1は、N行における特殊画素4の画素信号VSLを、電源ノイズの影響が少ない出力から、N-2行における、当該特殊画素4とベイヤ配列の位置が対応し、ベイヤ配列単位で隣接する通常画素3(画素B)による画素信号VSLに置き換えることができる。したがって、画素として通常画素3のみを含む行と、画素として通常画素3および特殊画素4を含む行とで、画素信号VSLの出力レベルを揃えることができ、特殊画素4に起因するストリーキングを軽減することが可能である。
撮 像 The imaging apparatus 1 according to the first embodiment can reduce streaking caused by the special pixels 4 by this operation. More specifically, the imaging device 1 according to the first embodiment converts the pixel signal VSL of the special pixel 4 in the Nth row from the output of the special pixel 4 in the N-2th row to the special pixel 4 The positions of the Bayer arrangements correspond to each other, and can be replaced with pixel signals VSL by adjacent normal pixels 3 (pixels B) in Bayer arrangement units. Therefore, the output level of the pixel signal VSL can be made uniform between the row including only the normal pixel 3 as the pixel and the row including the normal pixel 3 and the special pixel 4 as the pixel, and the streaking caused by the special pixel 4 is reduced. It is possible.
例えば、特許文献1では、イメージセンサにおいて水平遮光部を確保し、垂直遮光部の黒レベルの出力信号に基づきストリーキング補正量を行毎に求めることで、ストリーキングを抑制している。しかしながら、特許文献1の方法では、ランダムノイズによる横筋の影響を軽減するために、水平遮光部の領域を大きく確保する必要があった。また、そのため、画素アレイ部が形成される単位チップ当たりの面積が増加し、ウェハ単位の取れ高が少なくなり、コストが嵩んでしまうことになる。
For example, in Patent Document 1, streaking is suppressed by securing a horizontal light-shielding portion in an image sensor and obtaining a streaking correction amount for each row based on a black-level output signal of the vertical light-shielding portion. However, in the method of Patent Literature 1, it is necessary to secure a large area of the horizontal light shielding portion in order to reduce the influence of the horizontal stripe due to random noise. Therefore, the area per unit chip in which the pixel array portion is formed increases, the height per wafer decreases, and the cost increases.
これに対して、本開示によれば、大規模画素面積(水平遮光部)を有するストリーキング補正機能を実装すること無しに、画素構成を含まないダミー行の追加と、各スイッチ制御と、によりストリーキングの軽減を実現している。そのため、画素アレイ部が形成される単位チップ当たりの面積を抑制することができ、コストの増加が抑えられる。
On the other hand, according to the present disclosure, streaking is achieved by adding a dummy row not including a pixel configuration and controlling each switch without implementing a streaking correction function having a large-scale pixel area (horizontal light-shielding portion). Has been reduced. Therefore, the area per unit chip in which the pixel array portion is formed can be suppressed, and an increase in cost can be suppressed.
なお、上述では、特殊画素4のD相の出力を通常画素3のD相の出力と置き換える例について説明したが、これはこの例に限定されない。すなわち、第1の実施形態に係る撮像装置1は、特殊画素4のP相の出力を、通常画素3のP相の出力と置き換えることも可能である。この場合、例えば、制御部19は、N行の読み出し動作において、読み出し制御信号RD_Pを、時点t20またはそれ以前においてLow状態とし、時点t24でHigh状態とする。また、制御部19は、N行の読み出し期間内で読み出し制御信号RD_DのLow状態を維持する。さらに、制御部19は、行選択信号SEL_SNを、時点t20ではLow状態とし、時点t24でHigh状態とする。
In the above description, an example in which the D-phase output of the special pixel 4 is replaced with the D-phase output of the normal pixel 3 has been described. However, the present invention is not limited to this example. That is, the imaging device 1 according to the first embodiment can replace the P-phase output of the special pixel 4 with the P-phase output of the normal pixel 3. In this case, for example, the control unit 19, the read operation of the N rows, the read control signal RD_P, a Low state at time t 20, or earlier, to a High state at time t 24. Further, the control unit 19 maintains the low state of the read control signal RD_D during the read period of N rows. Further, the control unit 19, a row selection signal SEL_S N, and a Low state at the time point t 20, the High state at time t 24.
このように読み出し動作を制御することで、N行の読み出し動作におけるP相の期間に、N-2行の読み出し動作時にキャパシタ53aに保持されたリセット信号の電圧が、垂直信号線17に供給され、特殊画素4のP相の出力が、通常画素3のP相の出力に置き換えられる。
By controlling the read operation in this manner, the voltage of the reset signal held in the capacitor 53a during the read operation of the (N−2) th row is supplied to the vertical signal line 17 during the P phase of the read operation of the Nth row. , The P-phase output of the special pixel 4 is replaced with the P-phase output of the normal pixel 3.
さらにまた、特殊画素4のP相およびD相それぞれの出力を、通常画素3のP相およびD相の出力と置き換えるようにもできる。この場合には、制御部19は、N行の読み出し動作において、読み出し制御信号RD_Pを、時点t20おいてHigh状態とし、時点t23でLow状態とすると共に、読み出し制御信号RD_Dを、時点t24においてHigh状態とし、時点t26でLow状態とする。また、制御部19は、ダミー行選択信号SEL_SDMYを、N行の読み出し期間中、High状態に維持する。
Furthermore, the output of each of the P-phase and the D-phase of the special pixel 4 can be replaced with the output of the P-phase and the D-phase of the normal pixel 3. In this case, the control unit 19, the read operation of the N rows, the read control signal RD_P, a time point t 20 Oite High state, while a Low state at the time point t 23, the read control signal RD_D, time t a High state at 24, the Low state when t 26. The control unit 19, a dummy row select signal SEL_S DMY, during the reading period of the N rows is maintained at the High state.
このように読み出し動作を制御することで、N行の読み出し動作におけるP相の期間に、N-2行の読み出し動作時にキャパシタ53aに保持されたリセット信号の電圧が、垂直信号線17に供給され、特殊画素4のP相の出力が、通常画素3のP相の出力に置き換えられる。さらに、当該N行の読み出し動作におけるD相の期間に、N-2行の読み出し動作時にキャパシタ53bに保持された画素信号VSLの電圧が、垂直信号線17に供給され、特殊画素4のD相の出力が、通常画素3のD相の出力に置き換えられる。
By controlling the read operation in this manner, the voltage of the reset signal held in the capacitor 53a during the read operation of the (N−2) th row is supplied to the vertical signal line 17 during the P phase of the read operation of the Nth row. , The P-phase output of the special pixel 4 is replaced with the P-phase output of the normal pixel 3. Further, during the period of the D phase in the read operation of the Nth row, the voltage of the pixel signal VSL held in the capacitor 53b during the readout operation of the N-2th row is supplied to the vertical signal line 17, and the D phase of the special pixel 4 is Is replaced by the D-phase output of the normal pixel 3.
また、上述では、N-1行の読み出し動作においてリセット信号の電圧のキャパシタ53aへの保持と、画素信号VSLの電圧のキャパシタ53bへの保持とを行わない例について説明したが、これはこの例に限定されない。すなわち、通常画素3のみが含まれるN-1行の読み出し動作において、リセット信号および画素信号VSLの各電圧の各キャパシタ53aおよび53bへの保持を行うこともできる。この場合のN-1行の読み出し動作は、上述したN-2行の読み出し動作と同様であるので、ここでの説明を省略する。
In the above description, an example in which the reset signal voltage is not held in the capacitor 53a and the pixel signal VSL voltage is not held in the capacitor 53b in the read operation of the (N-1) th row has been described. It is not limited to. That is, in the read operation of the (N-1) -th row including only the normal pixel 3, the reset signal and the voltage of the pixel signal VSL can be held in the capacitors 53a and 53b. In this case, the read operation of the (N-1) -th row is the same as the above-described read operation of the (N-2) -th row, and a description thereof will be omitted.
例えば、通常画素3および特殊画素4の配置によっては、N-1行において各電圧を各キャパシタ53aおよび53bに保持し、N行において、各キャパシタ53aおよび53bに保持した各電圧を垂直信号線17に供給するような動作が有効となる。
For example, depending on the arrangement of the normal pixels 3 and the special pixels 4, each voltage is held in each of the capacitors 53a and 53b in the (N-1) th row, and each voltage held in each of the capacitors 53a and 53b in the Nth row. Is effective.
(第1の実施形態の第1の変形例)
次に、第1の実施形態の第1の変形例について説明する。図18は、第1の実施形態の第1の変形例に係る撮像装置1における画素アレイ部11bの一例の構成を示す図である。図18に示す画素アレイ部11bは、キャパシタ53aまたは53bに保持される電圧を垂直信号線17に供給する際のバッファ部を、図16の画素アレイ部11aにおけるトランジスタ50に代えて、ボルテージフォロワアンプ70により構成した例である(ダミー部500b)。なお、図18では、ボルテージフォロワアンプ70に対して供給される電源の経路が省略されている。 (First Modification of First Embodiment)
Next, a first modification of the first embodiment will be described. FIG. 18 is a diagram illustrating a configuration of an example of thepixel array unit 11b in the imaging device 1 according to the first modification of the first embodiment. The pixel array unit 11b shown in FIG. 18 uses a voltage follower amplifier instead of the transistor 50 in the pixel array unit 11a of FIG. 16 in replacing the buffer unit for supplying the voltage held in the capacitor 53a or 53b to the vertical signal line 17. 70 (dummy section 500b). In FIG. 18, the path of the power supplied to the voltage follower amplifier 70 is omitted.
次に、第1の実施形態の第1の変形例について説明する。図18は、第1の実施形態の第1の変形例に係る撮像装置1における画素アレイ部11bの一例の構成を示す図である。図18に示す画素アレイ部11bは、キャパシタ53aまたは53bに保持される電圧を垂直信号線17に供給する際のバッファ部を、図16の画素アレイ部11aにおけるトランジスタ50に代えて、ボルテージフォロワアンプ70により構成した例である(ダミー部500b)。なお、図18では、ボルテージフォロワアンプ70に対して供給される電源の経路が省略されている。 (First Modification of First Embodiment)
Next, a first modification of the first embodiment will be described. FIG. 18 is a diagram illustrating a configuration of an example of the
上述の図16の例では、キャパシタ53aまたは53bに保持された電圧が、トランジスタ50を介して垂直信号線17に供給されていた。そのため、垂直信号線17に供給される電圧は、キャパシタ53aまたは53bに保持された電圧に対して減衰したものとなっていた。
In the example of FIG. 16 described above, the voltage held in the capacitor 53a or 53b is supplied to the vertical signal line 17 via the transistor 50. Therefore, the voltage supplied to the vertical signal line 17 is attenuated with respect to the voltage held in the capacitor 53a or 53b.
これに対して、第1の実施形態の第1の変形例では、図18に示すように、キャパシタ53aまたは53bに保持された電圧をボルテージフォロワアンプ70を介して垂直信号線17に供給するようにしている。そのため、キャパシタ53aまたは53bに保持された電圧を、減衰を極力抑えて垂直信号線17に供給することができる。第1の実施形態の第1の変形例では、これにより、画素として通常画素3のみを含む行と、画素として通常画素3および特殊画素4を含む行とで、画素信号VSLの出力レベルをより高精度に揃えることができ、特殊画素4に起因するストリーキングを効果的に軽減することが可能である。
On the other hand, in the first modified example of the first embodiment, as shown in FIG. 18, the voltage held in the capacitor 53a or 53b is supplied to the vertical signal line 17 via the voltage follower amplifier 70. I have to. Therefore, the voltage held in the capacitor 53a or 53b can be supplied to the vertical signal line 17 while minimizing attenuation. According to the first modification of the first embodiment, the output level of the pixel signal VSL is more improved between the row including only the normal pixels 3 as the pixels and the row including the normal pixels 3 and the special pixels 4 as the pixels. High-precision alignment can be achieved, and streaking caused by the special pixels 4 can be effectively reduced.
なお、図18の構成における各通常画素3および各特殊画素4からの読み出し動作は、上述した第1の実施形態で図17を用いて説明した動作と同一であるので、ここでの説明を省略する。
Note that the operation of reading from each of the normal pixels 3 and each of the special pixels 4 in the configuration of FIG. 18 is the same as the operation described with reference to FIG. 17 in the above-described first embodiment, and a description thereof will be omitted. I do.
(第1の実施形態の第2の変形例)
次に、第1の実施形態の第2の変形例について説明する。図19は、第1の実施形態の第2の変形例に係る撮像装置1における画素アレイ部11cの一例の構成を示す図である。図19に示す画素アレイ部11cは、図16の画素アレイ部11aに対して、画素アレイ部11aの外部から所定電圧のダミー電圧VDMYを供給するダミー電圧線187を追加し、ダミー電圧VDMYをソースフォロワアンプを構成するトランジスタ50のゲートに供給可能としたものである。 (Second Modification of First Embodiment)
Next, a second modification of the first embodiment will be described. FIG. 19 is a diagram illustrating a configuration of an example of thepixel array unit 11c in the imaging device 1 according to the second modification of the first embodiment. Pixel array unit 11c shown in FIG. 19, with respect to the pixel array unit 11a of FIG. 16, by adding a dummy voltage line 187 for supplying a dummy voltage V DMY predetermined voltage from the outside of the pixel array unit 11a, the dummy voltage V DMY Can be supplied to the gate of the transistor 50 constituting the source follower amplifier.
次に、第1の実施形態の第2の変形例について説明する。図19は、第1の実施形態の第2の変形例に係る撮像装置1における画素アレイ部11cの一例の構成を示す図である。図19に示す画素アレイ部11cは、図16の画素アレイ部11aに対して、画素アレイ部11aの外部から所定電圧のダミー電圧VDMYを供給するダミー電圧線187を追加し、ダミー電圧VDMYをソースフォロワアンプを構成するトランジスタ50のゲートに供給可能としたものである。 (Second Modification of First Embodiment)
Next, a second modification of the first embodiment will be described. FIG. 19 is a diagram illustrating a configuration of an example of the
図19に示すダミー部500cにおいて、スイッチ60の一端がダミー電圧線187に接続され、他端がトランジスタ50のゲートに接続される。また、スイッチ61の一端が、スイッチ60の他端とトランジスタ50のゲートとの接続点に接続され、他端が、保持部501における保持選択スイッチ54aの他端と保持選択スイッチ54bの他端との接続点に接続される。
In the dummy section 500c shown in FIG. 19, one end of the switch 60 is connected to the dummy voltage line 187, and the other end is connected to the gate of the transistor 50. One end of the switch 61 is connected to a connection point between the other end of the switch 60 and the gate of the transistor 50, and the other end is connected to the other end of the holding selection switch 54a and the other end of the holding selection switch 54b in the holding unit 501. Is connected to the connection point.
例えば制御部19は、スイッチ60のオン/オフ状態と、スイッチ61のオン/オフ状態とを排他に制御する。スイッチ60をオフ状態、スイッチ61をオフ状態とした場合は、図17を用いて説明した読み出し動作と同様の動作が可能である。
For example, the control unit 19 exclusively controls the on / off state of the switch 60 and the on / off state of the switch 61. When the switch 60 is turned off and the switch 61 is turned off, the same operation as the read operation described with reference to FIG. 17 can be performed.
一方、スイッチ60がオン状態、スイッチ61がオフ状態で、トランジスタ50のゲートに、ダミー電圧線187から供給されるダミー電圧VDMYが供給される。例えばN行の読み出し動作時に、この状態でダミー選択スイッチ51bをオン状態とし、特殊画素4の行選択スイッチ46aをオフ状態とすることで、ダミー電圧VDMYがトランジスタ50を介して垂直信号線17に供給され、特殊画素4の画素信号VSLをダミー電圧VDMYにより置き換えることができる。
On the other hand, when the switch 60 is on and the switch 61 is off, the dummy voltage V DMY supplied from the dummy voltage line 187 is supplied to the gate of the transistor 50. For example, at the time of a read operation of N rows, the dummy selection switch 51b is turned on in this state, and the row selection switch 46a of the special pixel 4 is turned off, so that the dummy voltage V DMY is supplied via the transistor 50 to the vertical signal line 17. , And the pixel signal VSL of the special pixel 4 can be replaced by the dummy voltage VDMY .
ダミー電圧VDMYは、予め定められた電圧であるため、N-2行の読み出し動作においてキャパシタ53aまたは53bに保持された電圧を、特殊画素4の画素信号VSLと置き換える場合に比べて、ストリーキング軽減の精度が低くなる。一方で、読み出し制御信号RD_PおよびRD_D、保持制御パルスSH_PおよびSH_Dによる制御が不要となるため、例えば制御部19の負荷を軽減させることが可能である。
Since the dummy voltage V DMY is a predetermined voltage, the streaking is reduced as compared with the case where the voltage held in the capacitor 53a or 53b is replaced with the pixel signal VSL of the special pixel 4 in the read operation of the (N-2) th row. Accuracy is reduced. On the other hand, since the control by the read control signals RD_P and RD_D and the holding control pulses SH_P and SH_D becomes unnecessary, the load on the control unit 19 can be reduced, for example.
スイッチ60および61の何れをオン状態とするかは、例えば、制御部19の負荷、装置の消費電力、撮像装置1の利用目的などに応じて適宜、選択することが可能である。
Which of the switches 60 and 61 is turned on can be appropriately selected according to, for example, the load of the control unit 19, the power consumption of the device, the purpose of use of the imaging device 1, and the like.
(第1の実施形態の第3の変形例)
次に、第1の実施形態の第3の変形例について説明する。図20は、第1の実施形態の第3の変形例に係る撮像装置1における画素アレイ部11dの一例の構成を示す図である。図20に示す画素アレイ部11dは、図19の画素アレイ部11cのトランジスタ50を、ボルテージフォロワアンプ70に置き換えた例である(ダミー部500d)。 (Third Modification of First Embodiment)
Next, a third modification of the first embodiment will be described. FIG. 20 is a diagram illustrating a configuration of an example of thepixel array unit 11d in the imaging device 1 according to the third modification of the first embodiment. The pixel array unit 11d illustrated in FIG. 20 is an example in which the transistor 50 of the pixel array unit 11c illustrated in FIG. 19 is replaced with a voltage follower amplifier 70 (dummy unit 500d).
次に、第1の実施形態の第3の変形例について説明する。図20は、第1の実施形態の第3の変形例に係る撮像装置1における画素アレイ部11dの一例の構成を示す図である。図20に示す画素アレイ部11dは、図19の画素アレイ部11cのトランジスタ50を、ボルテージフォロワアンプ70に置き換えた例である(ダミー部500d)。 (Third Modification of First Embodiment)
Next, a third modification of the first embodiment will be described. FIG. 20 is a diagram illustrating a configuration of an example of the
すなわち、図20に示す画素アレイ部11dは、スイッチ60の一端がダミー電圧VDMYを供給するためのダミー電圧線187に接続され、他端がボルテージフォロワアンプ70の入力端に接続される。また、スイッチ61の一端が、スイッチ60の他端とボルテージフォロワアンプ70の入力端との接続点に接続され、他端が、保持部501における保持選択スイッチ54aの他端と保持選択スイッチ54bの他端との接続点に接続される。
That is, in the pixel array unit 11d shown in FIG. 20, one end of the switch 60 is connected to the dummy voltage line 187 for supplying the dummy voltage VDMY , and the other end is connected to the input terminal of the voltage follower amplifier 70. One end of the switch 61 is connected to a connection point between the other end of the switch 60 and the input end of the voltage follower amplifier 70, and the other end is connected to the other end of the holding selection switch 54a and the holding selection switch 54b in the holding unit 501. Connected to the connection point with the other end.
第1の実施形態の第3の変形例に係る画素アレイ部11dの動作および効果は、上述した第1の実施形態の第2の変形例に係る画素アレイ部11cの動作および効果と同様であるので、ここでの説明を省略する。また、画素アレイ部11dにおいて、画素アレイ部11cのトランジスタ50をボルテージフォロワアンプ70に置き換えたことによる効果は、第1の実施形態の第1の変形例による効果と同様であるので、ここでの説明を省略する。
The operation and effect of the pixel array unit 11d according to the third modification of the first embodiment are the same as the operation and effect of the pixel array unit 11c according to the second modification of the first embodiment described above. Therefore, the description here is omitted. In the pixel array unit 11d, the effect obtained by replacing the transistor 50 of the pixel array unit 11c with the voltage follower amplifier 70 is the same as the effect obtained by the first modification of the first embodiment. Description is omitted.
[第2の実施形態]
次に、本開示の第2の実施形態について説明する。第2の実施形態は、上述した第1の実施形態およびその各変形例に係る技術を適用した電子機器の構成例について説明する。図21は、第2の実施形態に係る電子機器の一例の構成を示すブロック図である。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described. In the second embodiment, an example of a configuration of an electronic device to which the technology according to the first embodiment and each modification thereof described above is applied will be described. FIG. 21 is a block diagram illustrating a configuration of an example of an electronic device according to the second embodiment.
次に、本開示の第2の実施形態について説明する。第2の実施形態は、上述した第1の実施形態およびその各変形例に係る技術を適用した電子機器の構成例について説明する。図21は、第2の実施形態に係る電子機器の一例の構成を示すブロック図である。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described. In the second embodiment, an example of a configuration of an electronic device to which the technology according to the first embodiment and each modification thereof described above is applied will be described. FIG. 21 is a block diagram illustrating a configuration of an example of an electronic device according to the second embodiment.
図21において、電子機器100は、光学系1000と、撮像装置1001と、信号処理回路1002と、メモリ1003と、モニタ1004と、を備えている。図21においては、撮像装置1001として、上述した本開示の撮像装置1を、電子機器100に設けた場合の実施形態を示す。ここで、電子機器100としては、デジタルスチルカメラ、デジタルビデオカメラ、撮像機能付きの携帯電話やスマートフォンなどを適用することができる。
In FIG. 21, the electronic device 100 includes an optical system 1000, an imaging device 1001, a signal processing circuit 1002, a memory 1003, and a monitor 1004. FIG. 21 illustrates an embodiment in which the above-described imaging device 1 of the present disclosure is provided in the electronic device 100 as the imaging device 1001. Here, as the electronic device 100, a digital still camera, a digital video camera, a mobile phone or a smartphone with an imaging function, or the like can be applied.
光学系1000は、被写体からの像光(入射光)を撮像装置1001の撮像面上に結像させる。これにより、信号電荷が一定期間、撮像装置1001内に蓄積される。信号処理回路1002は、撮像装置1001から出力された信号に対して各種の信号処理を行う。信号処理が行われた映像信号は、メモリ1003などの記憶媒体に記憶させることができる。また、当該映像信号を、モニタ1004に出力することもできる。
The optical system 1000 forms image light (incident light) from a subject on the imaging surface of the imaging device 1001. Thus, signal charges are accumulated in the imaging device 1001 for a certain period. The signal processing circuit 1002 performs various kinds of signal processing on a signal output from the imaging device 1001. The video signal subjected to the signal processing can be stored in a storage medium such as the memory 1003. Further, the video signal can be output to the monitor 1004.
[第3の実施形態]
次に、本開示に係る技術を適用した撮像装置の使用例について説明する。図22は、上述した本開示に係る撮像装置1の使用例を示す図である。 [Third Embodiment]
Next, a usage example of an imaging device to which the technology according to the present disclosure is applied will be described. FIG. 22 is a diagram illustrating a usage example of theimaging device 1 according to the present disclosure described above.
次に、本開示に係る技術を適用した撮像装置の使用例について説明する。図22は、上述した本開示に係る撮像装置1の使用例を示す図である。 [Third Embodiment]
Next, a usage example of an imaging device to which the technology according to the present disclosure is applied will be described. FIG. 22 is a diagram illustrating a usage example of the
上述した撮像装置は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
The above-described imaging device can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as described below.
・デジタルカメラや、撮影機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置。
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置。
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置。
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置。
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置。
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置。
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置。
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置。 A device for photographing an image provided for viewing, such as a digital camera or a portable device having a photographing function.
・ In-vehicle sensors that capture images of the front, back, surroundings, and the inside of the vehicle, monitoring cameras that monitor running vehicles and roads, inter-vehicle, etc. for safe driving such as automatic stop and recognition of the driver's condition A device used for traffic, such as a distance measuring sensor that measures the distance of a vehicle.
A device provided to home appliances such as a TV, a refrigerator, and an air conditioner for photographing a user's gesture and performing device operation according to the gesture.
-Devices used for medical or health care, such as endoscopes and devices that perform blood vessel imaging by receiving infrared light.
Devices used for security, such as surveillance cameras for crime prevention and cameras for person authentication.
-Apparatus used for beauty, such as a skin measuring instrument for photographing the skin and a microscope for photographing the scalp.
-Equipment used for sports, such as action cameras and wearable cameras for sports applications.
Devices used for agriculture, such as cameras for monitoring the condition of fields and crops.
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置。
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置。
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置。
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置。
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置。
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置。
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置。 A device for photographing an image provided for viewing, such as a digital camera or a portable device having a photographing function.
・ In-vehicle sensors that capture images of the front, back, surroundings, and the inside of the vehicle, monitoring cameras that monitor running vehicles and roads, inter-vehicle, etc. for safe driving such as automatic stop and recognition of the driver's condition A device used for traffic, such as a distance measuring sensor that measures the distance of a vehicle.
A device provided to home appliances such as a TV, a refrigerator, and an air conditioner for photographing a user's gesture and performing device operation according to the gesture.
-Devices used for medical or health care, such as endoscopes and devices that perform blood vessel imaging by receiving infrared light.
Devices used for security, such as surveillance cameras for crime prevention and cameras for person authentication.
-Apparatus used for beauty, such as a skin measuring instrument for photographing the skin and a microscope for photographing the scalp.
-Equipment used for sports, such as action cameras and wearable cameras for sports applications.
Devices used for agriculture, such as cameras for monitoring the condition of fields and crops.
なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
効果 Note that the effects described in this specification are merely examples and are not limited, and other effects may be present.
なお、本技術は以下のような構成も取ることができる。
(1)
垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
を備える固体撮像素子。
(2)
前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
前記(1)に記載の固体撮像素子。
(3)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(4)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(5)
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(6)
前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
前記(1)乃至(5)の何れかに記載の固体撮像素子。
(7)
前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
前記(1)乃至(6)の何れかに記載の固体撮像素子。
(8)
前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
前記(1)乃至(7)の何れかに記載の固体撮像素子。
(9)
前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
前記(1)乃至(8)の何れかに記載の固体撮像素子。
(10)
垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
前記第1の画素および前記第2の画素から前記垂直信号線を介して読み出された画素信号に対して画像処理を施して出力する出力部と、
を備える電子機器。
(11)
前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
前記(10)に記載の電子機器。
(12)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(13)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(14)
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(15)
前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
前記(10)乃至(14)の何れかに記載の電子機器。
(16)
前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
前記(10)乃至(15)の何れかに記載の電子機器。
(17)
前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
前記(10)乃至(16)の何れかに記載の電子機器。
(18)
前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
前記(10)乃至(17)の何れかに記載の電子機器。 Note that the present technology can also have the following configurations.
(1)
A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
A solid-state imaging device comprising:
(2)
The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
The solid according to (1), wherein when reading out a pixel signal from the second pixel, the third control signal for reading out the pixel signal held in the holding unit is output to the third signal line. Imaging device.
(3)
The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The solid-state imaging device according to (1) or (2), which outputs a third control signal to the third signal line.
(4)
The control unit includes:
When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line. The solid-state imaging device according to (1) or (2), which outputs a third control signal to the third signal line.
(5)
When reading a pixel signal from the second pixel, the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided. The solid-state imaging device according to (1) or (2), which outputs the signal to the third signal line.
(6)
The second pixel is
The solid according to any one of (1) to (5), which is arranged at another position in the set corresponding to the position of the color in which the first pixel is arranged in the set based on the arrangement of the plurality of colors. Imaging device.
(7)
The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal;
The second pixel is
The solid-state imaging device according to any one of (1) to (6), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
(8)
The solid-state imaging device according to any one of (1) to (7), further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
(9)
One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The solid-state imaging device according to any one of (1) to (8), further including a switching unit.
(10)
A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
An output unit that performs image processing on a pixel signal read from the first pixel and the second pixel via the vertical signal line and outputs the processed pixel signal;
Electronic equipment provided with.
(11)
The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
The electronic device according to (10), wherein, when a pixel signal is read from the second pixel, the third control signal for reading the pixel signal held in the holding unit is output to the third signal line. machine.
(12)
The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The electronic device according to (10) or (11), which outputs a third control signal to the third signal line.
(13)
The control unit includes:
When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line. The electronic device according to (10) or (11), which outputs a third control signal to the third signal line.
(14)
When reading a pixel signal from the second pixel, the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided. The electronic device according to (10) or (11), wherein the electronic device outputs to the third signal line.
(15)
The second pixel is
The electronic device according to any one of (10) to (14), which is arranged at another set position corresponding to the color position at which the first pixel is arranged in the set based on the arrangement of the plurality of colors. machine.
(16)
The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal,
The second pixel is
The electronic device according to any one of (10) to (15), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
(17)
The electronic device according to any one of (10) to (16), further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
(18)
One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The electronic device according to any one of (10) to (17), further including a switching unit.
(1)
垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
を備える固体撮像素子。
(2)
前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
前記(1)に記載の固体撮像素子。
(3)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(4)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(5)
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(1)または(2)に記載の固体撮像素子。
(6)
前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
前記(1)乃至(5)の何れかに記載の固体撮像素子。
(7)
前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
前記(1)乃至(6)の何れかに記載の固体撮像素子。
(8)
前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
前記(1)乃至(7)の何れかに記載の固体撮像素子。
(9)
前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
前記(1)乃至(8)の何れかに記載の固体撮像素子。
(10)
垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
前記第1の画素および前記第2の画素から前記垂直信号線を介して読み出された画素信号に対して画像処理を施して出力する出力部と、
を備える電子機器。
(11)
前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
前記(10)に記載の電子機器。
(12)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(13)
前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(14)
前記第2の画素から画素信号を読み出す際に、前記保持部にされた前記画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
前記(10)または(11)に記載の電子機器。
(15)
前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
前記(10)乃至(14)の何れかに記載の電子機器。
(16)
前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
前記(10)乃至(15)の何れかに記載の電子機器。
(17)
前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
前記(10)乃至(16)の何れかに記載の電子機器。
(18)
前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
前記(10)乃至(17)の何れかに記載の電子機器。 Note that the present technology can also have the following configurations.
(1)
A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
A solid-state imaging device comprising:
(2)
The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
The solid according to (1), wherein when reading out a pixel signal from the second pixel, the third control signal for reading out the pixel signal held in the holding unit is output to the third signal line. Imaging device.
(3)
The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The solid-state imaging device according to (1) or (2), which outputs a third control signal to the third signal line.
(4)
The control unit includes:
When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line. The solid-state imaging device according to (1) or (2), which outputs a third control signal to the third signal line.
(5)
When reading a pixel signal from the second pixel, the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided. The solid-state imaging device according to (1) or (2), which outputs the signal to the third signal line.
(6)
The second pixel is
The solid according to any one of (1) to (5), which is arranged at another position in the set corresponding to the position of the color in which the first pixel is arranged in the set based on the arrangement of the plurality of colors. Imaging device.
(7)
The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal;
The second pixel is
The solid-state imaging device according to any one of (1) to (6), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
(8)
The solid-state imaging device according to any one of (1) to (7), further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
(9)
One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The solid-state imaging device according to any one of (1) to (8), further including a switching unit.
(10)
A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
An output unit that performs image processing on a pixel signal read from the first pixel and the second pixel via the vertical signal line and outputs the processed pixel signal;
Electronic equipment provided with.
(11)
The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
The electronic device according to (10), wherein, when a pixel signal is read from the second pixel, the third control signal for reading the pixel signal held in the holding unit is output to the third signal line. machine.
(12)
The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The electronic device according to (10) or (11), which outputs a third control signal to the third signal line.
(13)
The control unit includes:
When reading out a pixel signal from the second pixel, among the P-phase output and the D-phase output included in the pixel signal stored in the holding unit, the P-phase output is output to the vertical signal line. The electronic device according to (10) or (11), which outputs a third control signal to the third signal line.
(14)
When reading a pixel signal from the second pixel, the third control signal for outputting a P-phase output and a D-phase output included in the pixel signal stored in the holding unit to the vertical signal line is provided. The electronic device according to (10) or (11), wherein the electronic device outputs to the third signal line.
(15)
The second pixel is
The electronic device according to any one of (10) to (14), which is arranged at another set position corresponding to the color position at which the first pixel is arranged in the set based on the arrangement of the plurality of colors. machine.
(16)
The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal,
The second pixel is
The electronic device according to any one of (10) to (15), wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal.
(17)
The electronic device according to any one of (10) to (16), further including a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line.
(18)
One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The electronic device according to any one of (10) to (17), further including a switching unit.
1 撮像装置
3 通常画素
4 特殊画素
13 A/D変換部
19 制御部
31,41 光電変換部
32,42 転送スイッチ
33,43 フローティングディフュージョン
35,45 増幅トランジスタ
36,46 行選択スイッチ
51a,51b ダミー選択スイッチ
52a,52b アナログスイッチ
53a,53b キャパシタ
54a,54b 保持選択スイッチ
500a,500b,500c,500d ダミー部
501 保持部Reference Signs List 1 imaging device 3 normal pixel 4 special pixel 13 A / D conversion unit 19 control unit 31, 41 photoelectric conversion unit 32, 42 transfer switch 33, 43 floating diffusion 35, 45 amplification transistor 36, 46 row selection switch 51a, 51b dummy selection Switches 52a, 52b Analog switches 53a, 53b Capacitors 54a, 54b Holding selection switches 500a, 500b, 500c, 500d Dummy unit 501 Holding unit
3 通常画素
4 特殊画素
13 A/D変換部
19 制御部
31,41 光電変換部
32,42 転送スイッチ
33,43 フローティングディフュージョン
35,45 増幅トランジスタ
36,46 行選択スイッチ
51a,51b ダミー選択スイッチ
52a,52b アナログスイッチ
53a,53b キャパシタ
54a,54b 保持選択スイッチ
500a,500b,500c,500d ダミー部
501 保持部
Claims (18)
- 垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
を備える固体撮像素子。 A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
A solid-state imaging device comprising: - 前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
請求項1に記載の固体撮像素子。 The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
2. The solid-state imaging device according to claim 1, wherein when reading a pixel signal from the second pixel, the third control signal for reading a pixel signal held in the holding unit is output to the third signal line. 3. element. - 前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項1に記載の固体撮像素子。 The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The solid-state imaging device according to claim 1, wherein a third control signal is output to the third signal line. - 前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項1に記載の固体撮像素子。 The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are output to the vertical signal line. The solid-state imaging device according to claim 1, wherein a third control signal is output to the third signal line. - 前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項1に記載の固体撮像素子。 When reading a pixel signal from the second pixel, the third control signal for outputting the P-phase output and the D-phase output included in the pixel signal held in the holding unit to the vertical signal line is output. The solid-state imaging device according to claim 1, wherein the signal is output to the third signal line. - 前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
請求項1に記載の固体撮像素子。 The second pixel is
2. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is arranged in another set of positions corresponding to the position of the color in which the first pixel is arranged in the set based on the arrangement of the plurality of colors. - 前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
請求項1に記載の固体撮像素子。 The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal;
The second pixel is
The solid-state imaging device according to claim 1, wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal. - 前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, further comprising a buffer unit that is connected between the holding unit and the vertical signal line and that uses a voltage follower amplifier. - 前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
請求項1に記載の固体撮像素子。 One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The solid-state imaging device according to claim 1, further comprising a switching unit. - 垂直信号線に接続される第1の画素と、
前記垂直信号線に接続される第2の画素と、
前記垂直信号線に接続され、前記垂直信号線に現れた画素信号を保持する保持部と、
前記第1の画素および前記第2の画素に接続され、該第1の画素および該第2の画素から前記垂直信号線への画素信号の読み出しを制御する第1の制御信号が入力される第1の信号線と、
前記保持部に接続され、前記垂直信号線に読み出された画素信号を該保持部に保持させる第2の制御信号が入力される第2の信号線と、
前記保持部に接続され、該保持部が保持する画素信号の前記垂直信号線への読み出しを制御する第3の制御信号が入力される第3の信号線と、
前記第1の信号線、前記第2の信号線および前記第3の信号線が接続され、前記第1の制御信号を該第1の信号線に出力し、前記第2の制御信号を該第2の信号線に出力し、前記第3の制御信号を該第3の信号線に出力する制御部と、
前記第1の画素および前記第2の画素から前記垂直信号線を介して読み出された画素信号に対して画像処理を施して出力する出力部と、
を備える電子機器。 A first pixel connected to the vertical signal line;
A second pixel connected to the vertical signal line;
A holding unit that is connected to the vertical signal line and holds a pixel signal that appears on the vertical signal line;
A first control signal which is connected to the first pixel and the second pixel and receives a first control signal for controlling reading of a pixel signal from the first pixel and the second pixel to the vertical signal line; One signal line,
A second signal line connected to the holding unit and receiving a second control signal for holding the pixel signal read out to the vertical signal line in the holding unit;
A third signal line connected to the holding unit, to which a third control signal for controlling reading of a pixel signal held by the holding unit to the vertical signal line is input;
The first signal line, the second signal line, and the third signal line are connected, output the first control signal to the first signal line, and output the second control signal to the first signal line. A control unit that outputs the third control signal to the third signal line, and outputs the third control signal to the third signal line.
An output unit that performs image processing on a pixel signal read from the first pixel and the second pixel via the vertical signal line and outputs the processed pixel signal;
Electronic equipment provided with. - 前記制御部は、
前記第1の画素から前記垂直信号線に読み出された画素信号を前記保持部に保持させるための前記第2の制御信号を前記第2の信号線に出力し、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持される画素信号を読み出すための前記第3の制御信号を前記第3の信号線に出力する
請求項10に記載の電子機器。 The control unit includes:
Outputting, to the second signal line, a second control signal for causing the holding unit to hold a pixel signal read from the first pixel to the vertical signal line;
The electronic device according to claim 10, wherein when reading a pixel signal from the second pixel, the third control signal for reading a pixel signal held in the holding unit is output to the third signal line. . - 前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該D相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項10に記載の電子機器。 The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are used to output the D-phase output to the vertical signal line. The electronic device according to claim 10, wherein a third control signal is output to the third signal line. - 前記制御部は、
前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力およびD相出力のうち、該P相出力を前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項10に記載の電子機器。 The control unit includes:
When reading a pixel signal from the second pixel, the P-phase output and the D-phase output included in the pixel signal held in the holding unit are output to the vertical signal line. The electronic device according to claim 10, wherein a third control signal is output to the third signal line. - 前記第2の画素から画素信号を読み出す際に、前記保持部に保持された画素信号に含まれるP相出力とD相出力とを前記垂直信号線に出力させるための前記第3の制御信号を前記第3の信号線に出力する
請求項10に記載の電子機器。 When reading a pixel signal from the second pixel, the third control signal for outputting the P-phase output and the D-phase output included in the pixel signal held in the holding unit to the vertical signal line is output. The electronic device according to claim 10, wherein the electronic device outputs the signal to the third signal line. - 前記第2の画素は、
複数の色の配置に基づく組において前記第1の画素が配置される色の位置に対応する、他の該組の位置に配置される
請求項10に記載の電子機器。 The second pixel is
The electronic device according to claim 10, wherein the electronic device is arranged in another set of positions corresponding to the position of the color in which the first pixel is arranged in the set based on the arrangement of the plurality of colors. - 前記第1の画素は、
受光した光を画像用の第1の信号に変換して画素信号として出力し、
前記第2の画素は、
受光した光を前記第1の信号と機能が異なる第2の信号に変換して画素信号として出力する
請求項10に記載の電子機器。 The first pixel is
Converting the received light into a first signal for an image and outputting it as a pixel signal;
The second pixel is
The electronic device according to claim 10, wherein the received light is converted into a second signal having a function different from that of the first signal and output as a pixel signal. - 前記保持部と前記垂直信号線との間に接続される、ボルテージフォロワアンプを用いたバッファ部さらに備える
請求項10に記載の電子機器。 The electronic device according to claim 10, further comprising a buffer unit using a voltage follower amplifier connected between the holding unit and the vertical signal line. - 前記保持部に保持される画素信号と、外部から供給される所定電圧の信号と、のうち一方を、前記保持部と前記垂直信号線との間に接続されるバッファ部に供給するように切り替える切替部をさらに備える
請求項10に記載の電子機器。 One of the pixel signal held in the holding unit and a signal of a predetermined voltage supplied from the outside is switched so as to be supplied to a buffer unit connected between the holding unit and the vertical signal line. The electronic device according to claim 10, further comprising a switching unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-156686 | 2018-08-23 | ||
JP2018156686A JP2020031371A (en) | 2018-08-23 | 2018-08-23 | Solid-state imaging element and electronic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020039909A1 true WO2020039909A1 (en) | 2020-02-27 |
Family
ID=69591963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/030784 WO2020039909A1 (en) | 2018-08-23 | 2019-08-05 | Solid-state imaging element and electronic device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020031371A (en) |
WO (1) | WO2020039909A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252605A (en) * | 2007-03-30 | 2008-10-16 | Sony Corp | Solid-state imaging apparatus, signal processing method of the solid-state imaging apparatus, and imaging apparatus |
JP2010130398A (en) * | 2008-11-28 | 2010-06-10 | Sony Corp | Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging apparatus |
JP2014239289A (en) * | 2013-06-06 | 2014-12-18 | ソニー株式会社 | Ad converter, signal processing method, solid state imaging device, and electronic apparatus |
JP2016082453A (en) * | 2014-10-17 | 2016-05-16 | キヤノン株式会社 | Solid-state imaging device and driving method thereof, and imaging system |
JP2016213740A (en) * | 2015-05-12 | 2016-12-15 | キヤノン株式会社 | Imaging apparatus and imaging system |
-
2018
- 2018-08-23 JP JP2018156686A patent/JP2020031371A/en active Pending
-
2019
- 2019-08-05 WO PCT/JP2019/030784 patent/WO2020039909A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252605A (en) * | 2007-03-30 | 2008-10-16 | Sony Corp | Solid-state imaging apparatus, signal processing method of the solid-state imaging apparatus, and imaging apparatus |
JP2010130398A (en) * | 2008-11-28 | 2010-06-10 | Sony Corp | Solid-state imaging apparatus, method of driving solid-state imaging apparatus, and imaging apparatus |
JP2014239289A (en) * | 2013-06-06 | 2014-12-18 | ソニー株式会社 | Ad converter, signal processing method, solid state imaging device, and electronic apparatus |
JP2016082453A (en) * | 2014-10-17 | 2016-05-16 | キヤノン株式会社 | Solid-state imaging device and driving method thereof, and imaging system |
JP2016213740A (en) * | 2015-05-12 | 2016-12-15 | キヤノン株式会社 | Imaging apparatus and imaging system |
Also Published As
Publication number | Publication date |
---|---|
JP2020031371A (en) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11050955B2 (en) | Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus | |
US9866771B2 (en) | Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus | |
US6914227B2 (en) | Image sensing apparatus capable of outputting image by converting resolution by adding and reading out a plurality of pixels, its control method, and image sensing system | |
US9807330B2 (en) | Solid-state imaging device and imaging apparatus | |
US10567687B2 (en) | Solid state imaging device and electronic apparatus for removing a noise component | |
JP2011035689A (en) | Solid-state image sensing device, analog-digital conversion method of solid-state image sensing device, and electronic apparatus | |
JP2005347932A (en) | Solid-state imaging unit and imaging system | |
CN107408566B (en) | Solid-state imaging device and electronic apparatus | |
US20180302561A1 (en) | Image capturing system and control method of image capturing system | |
US9325919B2 (en) | Image sensing apparatus | |
JP2004297546A (en) | Imaging unit | |
WO2018012088A1 (en) | Solid-state imaging element and control method for solid-state imaging element | |
WO2020022120A1 (en) | Streaking correction circuit, image capture device, and electronic apparatus | |
JP2016058877A (en) | Imaging apparatus and control method thereof | |
WO2012023271A1 (en) | Image capturing device | |
WO2020039909A1 (en) | Solid-state imaging element and electronic device | |
US7999871B2 (en) | Solid-state imaging apparatus, and video camera and digital still camera using the same | |
JP7271131B2 (en) | IMAGING DEVICE AND METHOD OF CONTROLLING IMAGING DEVICE | |
WO2019216029A1 (en) | Imaging device, electronic apparatus, and drive method | |
WO2024084930A1 (en) | Solid-state imaging device, method for driving same, and electronic equipment | |
JP2017220949A (en) | Imaging apparatus | |
WO2017187975A1 (en) | Solid-state imaging element, driving method, and electronic device | |
JP2016187072A (en) | Image sensor, processing method and electronic apparatus | |
TWI429281B (en) | Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus | |
JP2018125594A (en) | Imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19852835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19852835 Country of ref document: EP Kind code of ref document: A1 |