WO2017187975A1 - Solid-state imaging element, driving method, and electronic device - Google Patents

Solid-state imaging element, driving method, and electronic device Download PDF

Info

Publication number
WO2017187975A1
WO2017187975A1 PCT/JP2017/014894 JP2017014894W WO2017187975A1 WO 2017187975 A1 WO2017187975 A1 WO 2017187975A1 JP 2017014894 W JP2017014894 W JP 2017014894W WO 2017187975 A1 WO2017187975 A1 WO 2017187975A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixels
signal
read operation
driving
Prior art date
Application number
PCT/JP2017/014894
Other languages
French (fr)
Japanese (ja)
Inventor
俊超 杉田
信 塚本
将也 五十嵐
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017187975A1 publication Critical patent/WO2017187975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a solid-state imaging device, a driving method, and an electronic device, and more particularly, to a solid-state imaging device, a driving method, and an electronic device that can avoid deterioration in image quality.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • the solid-state imaging device has a pixel in which a photodiode that performs photoelectric conversion and a plurality of transistors are combined, and outputs a pixel signal that is output from a plurality of pixels arranged on an image plane on which an object image is formed. Based on this, an image is constructed.
  • a high dynamic range (HDR) image with a wide dynamic range can be captured by performing multiple exposure driving for sequentially capturing multiple images within one frame time.
  • Patent Document 1 as a driving method for realizing more diverse data output, for example, each pixel of a column of a pixel array is divided into a plurality of systems, and AD (Analog-to-digital) conversion processing of pixel signals is performed in a system. A driving method that is switched every time is disclosed.
  • the present disclosure has been made in view of such a situation, and is intended to avoid a deterioration in image quality.
  • a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged.
  • a pixel provided with an ineffective pixel area, and an ineffective pixel area disposed in at least one of an upper side and a lower side in a vertical direction with respect to the effective pixel area and in which an ineffective pixel that is different from the effective pixel is arranged.
  • a first driving method for sequentially outputting a plurality of images within one frame time by outputting a driving signal for driving the region and the pixels arranged in the pixel region for each row; and one column
  • a second driving method is performed in which the pixels arranged in a plurality of systems are divided into a plurality of systems, and conversion processing for converting the pixel signals output from the pixels into digital signals is switched for each system and performed in parallel.
  • a drive control circuit that controls the drive of the pixel, and the drive control circuit includes the effective pixel for any one of the plurality of images picked up in the first drive method.
  • the drive is controlled so that the jump of the row address of the pixel targeted for the read operation is less than a predetermined number of rows for the other image .
  • a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged.
  • a pixel area provided with an effective pixel area and an ineffective pixel area that is disposed at least one above and below in the vertical direction with respect to the effective pixel area and in which an invalid pixel that is different from the effective pixel is disposed
  • a first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row, and sequentially capturing a plurality of images within one frame time, and one column
  • a combination of a second driving method in which the pixels to be arranged are divided into a plurality of systems, and conversion processing for converting pixel signals output from the pixels into digital signals is switched for each system in parallel.
  • a solid-state imaging device comprising: a drive control circuit that controls the drive of the pixel, wherein the drive control circuit includes any one of the plurality of images picked up by the first drive method.
  • the drive control circuit includes any one of the plurality of images picked up by the first drive method.
  • a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged.
  • a pixel area provided with an effective pixel area and an ineffective pixel area that is disposed at least one above and below in the vertical direction with respect to the effective pixel area and in which an invalid pixel that is different from the effective pixel is disposed
  • a first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row, and sequentially capturing a plurality of images within one frame time, and one column
  • a combination of a second driving method in which the pixels to be arranged are divided into a plurality of systems, and conversion processing for converting pixel signals output from the pixels into digital signals is switched for each system in parallel.
  • a driving control circuit that controls driving of the pixels, and the driving control circuit includes the effective pixel region for any one of the plurality of images picked up by the first driving method.
  • the solid state is controlled so that the jump of the row address of the pixel targeted for the read operation is not more than a predetermined number of rows for the other image.
  • An image sensor is provided.
  • the drive when performing a read operation of reading a pixel signal from a pixel in an effective pixel region for any one of a plurality of images captured in the first driving method, The drive is controlled so that the jump of the row address of the pixel that is the target of the read operation is less than or equal to the predetermined number of rows.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of an image sensor to which the present technology is applied.
  • the image sensor 11 includes a pixel region 12, a vertical drive circuit 13, a column signal processing circuit 14, a horizontal drive circuit 15, an output circuit 16, and a control circuit 17.
  • the pixel region 12 is a light receiving surface that receives light collected by an optical system (not shown).
  • a plurality of pixels pixels 31 in FIG. 4 described later
  • each pixel is connected to the vertical drive circuit 13 for each row through a horizontal signal line.
  • the column signal processing circuit 14 is connected to each column via the vertical signal line.
  • an effective pixel area 21, an optical black (OPB) area 22, and dummy areas 23-1 and 23-2 are arranged.
  • the effective pixel region 21 is disposed at the center of the pixel region 12, and the optical black region 22 is disposed below the effective pixel region 21 in the vertical direction.
  • the dummy area 23-1 is disposed below the optical black area 22 in the vertical direction, and the dummy area 23-2 is disposed above the effective pixel area 21 in the vertical direction.
  • the effective pixel region 21 includes a plurality of pixels that output pixel signals in accordance with a drive signal supplied from the vertical drive circuit 13, and each of the plurality of pixels disposed in the effective pixel region 21 receives the amount of light received. A pixel signal of a level corresponding to the output is output. Pixel signals output from a plurality of pixels arranged in the effective pixel area 21 are used to construct an image of a subject that forms an image in the effective pixel area 21. That is, the pixels arranged in the effective pixel area 21 are effective pixels that output pixel signals used for image construction.
  • pixels that are covered and shielded by the light shielding film are arranged, and the pixels arranged in the optical black area 22 output a pixel signal that is used as a reference for the optical black level.
  • the pixels arranged in the optical black area 22 output a pixel signal that is used as a reference for the optical black level.
  • dummy areas 23-1 and 23-2 dummy pixels that are driven in the same manner as the pixels arranged in the effective pixel area 21 and output pixel signals that are not used for image construction are arranged.
  • the pixels arranged in the optical black region 22 and the dummy regions 23-1 and 23-2 are invalid pixels that are not directly used for image construction, unlike the effective pixels.
  • the vertical drive circuit 13 sequentially outputs a drive signal for driving (transferring, selecting, resetting, etc.) each pixel through a horizontal signal line for each row of a plurality of pixels arranged in the pixel region 12. To supply.
  • the column signal processing circuit 14 performs AD conversion of a pixel signal by performing CDS (Correlated Double Sampling) processing on a pixel signal output from a plurality of pixels via a vertical signal line. Remove reset noise.
  • CDS Correlated Double Sampling
  • the horizontal drive circuit 15 sequentially supplies a drive signal for outputting a pixel signal from the column signal processing circuit 14 to the data output signal line to the column signal processing circuit 14 for each column of the plurality of pixels arranged in the pixel region 12. Supply.
  • the output circuit 16 amplifies the pixel signal supplied from the column signal processing circuit 14 via the data output signal line at a timing according to the driving signal of the horizontal driving circuit 15 and outputs the amplified pixel signal to the subsequent signal processing circuit.
  • the control circuit 17 controls driving of each block by, for example, generating and supplying a clock signal according to the driving cycle of each block of the image sensor 11. For example, the control circuit 17 performs control to select one of the pixels 31a and 31b as a target for AD conversion of the pixel signal by switching connection by switches 41a and 41b shown in FIG. 4 to be described later.
  • the imaging device 11 configured as described above, for example, color filters that transmit red, green, and blue light are arranged for each pixel according to a so-called Bayer array, and each pixel has a light amount of light of each color. A corresponding pixel signal is output.
  • the imaging device 11 has a back surface structure in which a semiconductor substrate on which a photodiode constituting a pixel is formed is thinned, a wiring layer is stacked on the surface of the semiconductor substrate, and light is incident from the back surface side of the semiconductor substrate. Can be adopted.
  • the image sensor 11 can perform a plurality of exposure driving operations such that a plurality of images are sequentially captured within one frame time. For example, the image sensor 11 performs exposure driving so as to sequentially capture two images with different exposure times, and combines the two images to capture an HDR image with a wide dynamic range. .
  • the horizontal direction represents the timing for driving the pixels
  • the vertical direction represents the row addresses of the pixels arranged in the effective pixel region 21.
  • the pixels are driven by the rolling shutter method for each frame in accordance with the vertical synchronization signal (V) sync).
  • V vertical synchronization signal
  • the first (first) exposure is referred to as primary
  • the second exposure is referred to as secondary.
  • long exposure is performed at the primary
  • short exposure is performed at the secondary.
  • a primary pre-shutter operation (Pre-SH) is performed, and after the charge remaining in the photodiode of the pixel after imaging one frame before is discharged, the shutter operation (SH) Is started, and accumulation of charge for a long time exposure is started. Then, at the timing when the exposure time of the long exposure has elapsed, a read operation (RD) for reading out a pixel signal at a level corresponding to the charge accumulated in the photodiode is performed.
  • RD read operation
  • a certain time difference (read offset) elapses, secondary pre-shutter operation (Pre SH) is performed, and the charge accumulated in the photodiode of the pixel during the lead offset is discharged, then the shutter operation (SH) is performed, and accumulation of electric charges for short-time exposure is started. Then, at the timing when the exposure time of short exposure has elapsed, a read operation (RD) for reading out a pixel signal at a level corresponding to the charge accumulated in the photodiode is performed.
  • RD read operation
  • the image sensor 11 outputs primary image data that is image data of the primary image and secondary image data that is image data of the secondary image by performing such exposure driving.
  • FIG. 3 shows an output image of the image data output from the image sensor 11.
  • a primary vertical blank is arranged below the primary image data, and a secondary vertical blank is arranged above the secondary image data.
  • the primary image data and the primary vertical blank, the secondary image data and the secondary vertical blank are arranged next to each other, and the common vertical blank is arranged below them.
  • the primary image data is data based on a pixel signal output from the pixel during the primary exposure
  • the secondary image data is a pixel signal output from the pixel during the secondary exposure. It is data based on.
  • the primary vertical blank data based on pixel signals output during a period in which the primary exposure is completed and the secondary exposure is performed is arranged.
  • the secondary vertical blank data based on a pixel signal output during a period in which the primary exposure is performed before the secondary exposure starts is arranged.
  • the common vertical blank data based on pixel signals output during a period in which primary and secondary exposure are not performed is arranged. For example, in the primary vertical blank, the secondary vertical blank, and the common vertical blank, data based on the pixel signal output from the pixel in the optical black area 22 or the dummy area 23 in FIG. It is discarded without being used to construct.
  • the column signal processing circuit 14 performs AD conversion of the pixel signal at the reset level and AD conversion of the pixel signal at the signal level, and the reset noise is removed based on the difference between them. it can.
  • a driving method is used in which AD conversion of a pixel signal at a reset level and AD conversion of a pixel signal at a signal level are continuously performed for each pixel arranged in one column.
  • the pixels arranged in one column are divided into two systems, and the AD conversion of the reset level pixel signal output from the pixel and the AD conversion of the signal level pixel signal are performed in the system.
  • a driving method in which each is switched and alternately performed in parallel. For example, while the settling of one pixel of the two systems is being performed, the pixel signal of the other pixel is read as a whole by performing a drive that performs AD conversion on the pixel signal of the other pixel. The period can be shortened.
  • Such a driving method is hereinafter referred to as pipeline driving as appropriate.
  • FIG. 4 shows an example in which the pixels 31 are alternately selected for each pixel sharing unit 32 sharing the pixel circuit by the eight pixels 31, and two vertical lines corresponding to the two systems are shown. Signal lines 33a and 33b are provided.
  • the pixels 31a included in the pixel sharing unit 32a are connected to the constant current source 34a and the column signal processing circuit 14 through the vertical signal line 33a.
  • the pixel 31b included in the pixel sharing unit 32b is connected to the constant current source 34b and the column signal processing circuit 14 through the vertical signal line 33b.
  • the vertical signal line 33a is connected to one input terminal of the comparator 44 via the switch 41a and the capacitor 42a, and the vertical signal line 33b is connected via the switch 41b and the capacitor 42b. Is done.
  • the switch 41a and the switch 41b serve as a selection unit that switches the connection between the vertical signal line 33a and the vertical signal line 33b and one input terminal of the comparator 44 and selects a target for AD conversion of the pixel signal. Used.
  • the other input terminal of the comparator 44 receives a reference signal (a ramp signal having a waveform in which the potential drops at a constant gradient) that is referred to when the pixel signal is AD-converted via the capacitor 43. .
  • the output terminal of the comparator 44 is connected to the counter 45, and the counter 45 counts the comparison result between the pixel signal and the reference signal by the comparator 44, whereby the pixel signal is AD converted.
  • the pixel 31 a is selected, that is, the switch 41 a is turned on and the switch 41 b is turned off, and is output from the pixel 31 a connected to the comparator 44.
  • a state in which the pixel signal is AD converted is shown.
  • the pixel 31 b is selected, that is, the switch 41 a is turned off and the switch 41 b is turned on, and is output from the pixel 31 b connected to the comparator 44.
  • a state in which the pixel signal is AD converted is shown.
  • the pixel signal input to the comparator 44 is switched, and the pixel signal can be alternately AD-converted between the pixel 31a and the pixel 31b.
  • FIG. 5 shows a first readout period for reading out a pixel signal from the pixel 31a
  • the lower side of FIG. 5 shows a second readout period for reading out a pixel signal from the pixel 31b. .
  • the pixel 31a is reset and settled. Thereafter, as shown on the left side of FIG. 4, the pixel 31a is selected, and the reset and settling of the pixel 31b is performed in parallel with the pixel signal of the reset level being read from the pixel 31a and AD-converted.
  • the pixel 31b is selected as shown on the right side of FIG. Thereafter, data obtained by AD conversion of the pixel signal at the reset level of the pixel 31a is held, and the pixel signal at the reset level of the pixel 31b is transferred in parallel with the transfer of the charge accumulated in the photodiode of the pixel 31a. Are read out and AD converted.
  • the pixel 31a is selected, and the settling is performed on the pixel 31b in parallel with the AD conversion of the pixel signal of the signal level of the pixel 31a.
  • the pixel 31b is selected as shown on the right side of FIG.
  • the pixel signal at the signal level of the pixel 31b is read and AD converted.
  • the pixel 31a and the pixel 31b are alternately driven so that AD conversion of the pixel signal is performed, and the pixel signal reading period of the entire image sensor 11 can be shortened.
  • the row address of the pixel that performs the read operation is greatly jumped from the dummy region 23-1 to the optical black region 22.
  • Driving is performed.
  • the address jump of the row address of the pixel that performs the read operation from a predetermined line of the optical black area 22 to the first line of the effective pixel area 21 is greatly jumped. Is done.
  • the address jump of the row address of the pixel that performs the read operation from the last line of the effective pixel area 21 to a predetermined line of the dummy area 23-2 is greatly jumped. Driving is performed.
  • the pixel signal read from the optical black region 22 is used as a black level reference, and if this reference fluctuates due to noise (horizontal stripes), the image quality may be adversely affected. It is not preferable because there is.
  • IR drop a voltage drop generated in the pixel power source used for driving the pixel 31 between the AD conversion of the pixel signal at the reset level and the AD conversion of the pixel signal at the signal level due to the address jump of the row address.
  • a voltage drop occurs in a row that is a target of the read operation in the pixel power supply.
  • the interval between the row where the read operation is performed in the primary and the row where the read operation is performed in the secondary is constant, the distribution of the voltage drop generated in the pixel power supply is constant. Will not have a major impact.
  • the interval between the row in which the read operation is performed in the primary and the row in which the read operation is performed in the secondary changes greatly, the distribution of the voltage drop generated in the pixel power supply changes greatly. Therefore, as described above, when driving is performed so that the address jump of the row address of the pixel 31 that performs the read operation is greatly performed, the distribution of the voltage drop generated in the pixel power supply changes greatly.
  • the amount of noise with respect to the pixel signal has a magnitude that depends on the number of rows that jump to the address of the row address (the amount of change in the row address). It will be big. Even if the relationship between the primary and secondary is reversed, similarly, horizontal stripes occur in the image.
  • the occurrence of lateral stripes can be suppressed by setting the value to a predetermined line or less. That is, by reducing the degree of change in the distribution of the voltage drop generated in the pixel power supply, the amount of noise with respect to the pixel signal can be reduced, and the horizontal stripes appearing in the image can be suppressed.
  • the image sensor 11 employs a driving method in which when one of the primary and secondary is reading a pixel signal from the effective pixel region 21, the other address jump is performed with a predetermined number of rows or less. Thereby, generation
  • the pixels 31 in a predetermined row in the dummy area 23-1 are driven.
  • the row access is performed for a predetermined period before the read operation for the optical black area 22 and the effective pixel area 21 is started and for a predetermined period after the read operation for the effective pixel area 21 is ended. This is called a transition period.
  • the vertical drive circuit 13 When the imaging device 11 starts imaging one frame, the vertical drive circuit 13 first starts in the row access transition period P1 before the timing T1 at which the read operation for the pixel 31 in the optical black region 22 is started for the primary. Then, a read operation is performed on the pixels 31 in the dummy area 23-1 by repeating an address jump with a small width equal to or less than a predetermined number of rows to the extent that the above-described horizontal stripe does not occur (hereinafter referred to as thinning access as appropriate). .
  • a read operation is performed by thinning access to the pixels 31 in the dummy area 23-1.
  • the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the optical black region 22 in the row access transition period P3 before the timing T3 when the read operation for the pixels 31 in the effective pixel region 21 is started for the primary. I do.
  • the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the optical black region 22 in the row access transition period P4 before the timing T4 when the read operation for the pixels 31 in the effective pixel region 21 is started for the secondary. I do. Accordingly, it is possible to avoid a large address jump at the timings T3 and T4 and to suppress the horizontal stripes generated at the respective timings.
  • the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the dummy region 23-2 in the row access transition period P5 after the timing T5 when the read operation of the effective pixel region 21 is finished in the primary. In this way, by avoiding a large address jump at the secondary at the timing T5 shown in FIG. 6, it is possible to suppress the horizontal stripes that occur at the secondary at the timing T5.
  • the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the dummy region 23-2 in the row access transition period P6 after the timing T6 when the read operation of the effective pixel region 21 is finished in the secondary. I do. Thereafter, for both the primary and secondary, an address jump from the dummy area 23-2 to the dummy area 23-1 is performed at a timing T7 in a blanking period when the read operation for the pixel 31 in the effective pixel area 21 is not performed. .
  • the image pickup device 11 controls the occurrence of the horizontal stripe as described above by controlling the address jump of the row address of the pixel that performs the read operation at an appropriate timing, thereby reducing the image quality. It can be avoided.
  • the pixel signal read from the pixel 31 by the thinning access is discarded without being used for image construction.
  • FIG. 8 is a flowchart for explaining a driving method when one image is captured by the image sensor 11.
  • the image sensor 11 captures an image for each frame in accordance with the vertical synchronization signal (V sync), and as shown in FIG. 7, during the blanking period, driving of the pixels 31 in a predetermined row in the dummy region 23-1 is performed. Has been done.
  • the vertical drive circuit 13 performs thinning access to the pixels 31 in the dummy area 23-1 for the row access transition period P1 before the timing T1 when the read operation of the primary optical black area 22 is started. Read operation is performed.
  • the vertical drive circuit 13 performs a read operation on the pixels 31 in the optical black region 22 for the primary in step S12.
  • step S13 the vertical drive circuit 13 reads the pixel 31 in the dummy area 23-1 by thinning access for the row access transition period P2 before the timing T2 when the read operation of the secondary optical black area 22 is started. Perform the action.
  • the vertical drive circuit 13 performs a read operation on the pixel 31 in the optical black region 22 for the secondary in step S14.
  • step S15 the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the optical black region 22 for the row access transition period P3 before the timing T3 when the read operation of the primary effective pixel region 21 is started. I do.
  • the vertical drive circuit 13 performs a read operation on the pixels 31 in the effective pixel region 21 for the primary in step S16 at the timing T3 when the read operation on the primary effective pixel region 21 is started.
  • step S ⁇ b> 17 the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the optical black region 22 for the row access transition period P ⁇ b> 4 before the timing T ⁇ b> 4 when the read operation of the secondary effective pixel region 21 is started. I do.
  • the vertical drive circuit 13 performs a read operation on the pixels 31 in the effective pixel region 21 for the secondary in step S18 at the timing T4 when the read operation of the secondary effective pixel region 21 is started.
  • step S19 the vertical drive circuit 13 performs a read operation by thinning access on the pixels 31 in the dummy region 23-2 in the row access transition period P5 after the timing T5.
  • step S20 the vertical drive circuit 13 detects the pixels in the dummy region 23-2 in the row access transition period P6 after the timing T6. 31 is read by thinning access.
  • step S21 the vertical drive circuit 13 jumps the read operation from the dummy area 23-2 to the dummy area 23-1 at the timing T7 after the timing T6 for both the primary and secondary.
  • step S21 After the process in step S21, the process is terminated, and the same process is repeated when the next frame starts to be imaged.
  • the image sensor 11 performs the read operation by the thinning access in the row access transition period, and performs the jump of the read operation from the dummy region 23-2 to the dummy region 23-1 to read the effective pixel region 21.
  • the image sensor 11 By performing it during a blanking period in which no operation is performed, as described above, it is possible to suppress the horizontal streak generated in the image and avoid the deterioration of the image quality.
  • the address jump of the other read operation may be equal to or less than a predetermined number of rows.
  • the read operation may be repeated.
  • the predetermined number of address jumps performed to such an extent that no horizontal stripes occur is, for example, preferably 100 lines or less, and more preferably 50 lines or less.
  • the effective pixel area 21 provided in the pixel area 12 may be divided and used.
  • the imaging device 11 as described above is applied to various electronic devices such as an imaging system such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. can do.
  • FIG. 9 is a block diagram illustrating a configuration example of an imaging device mounted on an electronic device.
  • the imaging apparatus 101 includes an optical system 102, an imaging element 103, a signal processing circuit 104, a monitor 105, and a memory 106, and can capture still images and moving images.
  • the optical system 102 includes one or more lenses, guides image light (incident light) from a subject to the image sensor 103, and forms an image on a light receiving surface (sensor unit) of the image sensor 103.
  • the above-described image sensor 11 is applied.
  • the image sensor 103 electrons are accumulated for a certain period according to an image formed on the light receiving surface via the optical system 102. Then, a signal corresponding to the electrons accumulated in the image sensor 103 is supplied to the signal processing circuit 104.
  • the signal processing circuit 104 performs various signal processing on the pixel signal output from the image sensor 103.
  • An image (image data) obtained by performing signal processing by the signal processing circuit 104 is supplied to the monitor 105 and displayed, or supplied to the memory 106 and stored (recorded).
  • the imaging apparatus 101 configured as described above, by applying the imaging element 11 described above, for example, it is possible to capture a higher quality image while avoiding deterioration in image quality.
  • FIG. 10 is a diagram illustrating a usage example in which the above-described image sensor is used.
  • the image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • this technique can also take the following structures.
  • An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
  • a first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column
  • the pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel.
  • a drive control circuit to control When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method.
  • the solid-state imaging device that controls the drive so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
  • the drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period before the timing when the read operation for the pixels arranged in the effective pixel region is started.
  • the solid-state imaging device according to any one of (1) to (3), wherein driving is controlled so that a jump of a row address is performed with a width equal to or less than a predetermined number of rows.
  • the drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period after the timing when the read operation for the pixels arranged in the effective pixel region is completed.
  • the solid-state imaging device according to any one of (1) to (4), wherein the driving is controlled so that the jump of the row address is performed with a width equal to or less than a predetermined number of rows.
  • the drive control circuit does not perform a read operation of reading a pixel signal from the pixels in the effective pixel region in any of the plurality of images captured in the first driving method. Sometimes, the drive is performed so that the row address of the pixel to be read is jumped from one of the invalid pixel regions arranged above and below in the vertical direction to the effective pixel region to the other.
  • the solid-state imaging device according to any one of (1) to (5).
  • a pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
  • the pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel.
  • a driving control circuit for controlling the solid-state imaging device When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method.
  • the driving method includes a step of controlling the driving so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
  • a pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
  • the pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel.
  • a drive control circuit to control, When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method.
  • an electronic device including a solid-state imaging device that controls driving so that a jump of a row address of the pixel that is a target of the read operation for another image is equal to or less than a predetermined number of rows.

Abstract

This disclosure relates to a solid-state imaging element, a driving method, and an electronic device which allow avoidance of reduction in image quality. When a read operation for reading a pixel signal from a pixel in an effective pixel area is being performed regarding one image captured in a driving method for sequentially capturing two images within a one-frame time, driving is controlled such that regarding the other image, the row address of the pixel to be subjected to the read operation is jumped by a predetermined number of rows or less. This technology is applicable, for example, to a CMOS image sensor.

Description

固体撮像素子、駆動方法、および電子機器Solid-state imaging device, driving method, and electronic apparatus
 本開示は、固体撮像素子、駆動方法、および電子機器に関し、特に、画質の低下を回避することができるようにした固体撮像素子、駆動方法、および電子機器に関する。 The present disclosure relates to a solid-state imaging device, a driving method, and an electronic device, and more particularly, to a solid-state imaging device, a driving method, and an electronic device that can avoid deterioration in image quality.
 従来、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を備えた電子機器においては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子が使用されている。固体撮像素子は、光電変換を行うフォトダイオードと複数のトランジスタとが組み合わされた画素を有しており、被写体の像が結像する像面に配置された複数の画素から出力される画素信号に基づいて画像が構築される。 Conventionally, in an electronic device having an imaging function such as a digital still camera or a digital video camera, for example, a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used. The solid-state imaging device has a pixel in which a photodiode that performs photoelectric conversion and a plurality of transistors are combined, and outputs a pixel signal that is output from a plurality of pixels arranged on an image plane on which an object image is formed. Based on this, an image is constructed.
 このような固体撮像素子において、1フレーム時間内に、複数枚の画像を順次撮像する複数枚露光駆動を行うことで、例えば、ダイナミックレンジの広いHDR(High Dynamic Range)画像を撮像することができる。 In such a solid-state imaging device, for example, a high dynamic range (HDR) image with a wide dynamic range can be captured by performing multiple exposure driving for sequentially capturing multiple images within one frame time. .
 また、特許文献1には、より多様なデータ出力を実現する駆動方法として、例えば、画素アレイのカラムの各画素を複数系統に分け、画素信号のAD(Analog-to-digital)変換処理を系統ごとに切り替えて行う駆動方法が開示されている。 Further, in Patent Document 1, as a driving method for realizing more diverse data output, for example, each pixel of a column of a pixel array is divided into a plurality of systems, and AD (Analog-to-digital) conversion processing of pixel signals is performed in a system. A driving method that is switched every time is disclosed.
特開2013-55589号公報JP 2013-55589 A
 ところで、上述したような複数枚露光駆動と、画素信号のAD変換処理を系統ごとに切り替えて行う駆動方法とを組み合わせた場合、画素から画素信号を読み出すリード動作を行う行アドレスが大きく変化すると、画像に横筋が発生して画質が低下することがあった。 By the way, when the multiple exposure driving as described above and the driving method of switching the AD conversion processing of the pixel signal for each system are combined, when the row address for performing the read operation for reading the pixel signal from the pixel greatly changes, In some cases, horizontal stripes appear in the image and the image quality deteriorates.
 本開示は、このような状況に鑑みてなされたものであり、画質の低下を回避することができるようにするものである。 The present disclosure has been made in view of such a situation, and is intended to avoid a deterioration in image quality.
 本開示の一側面の固体撮像素子は、複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路とを備え、前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する。 In the solid-state imaging device according to one aspect of the present disclosure, a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged. A pixel provided with an ineffective pixel area, and an ineffective pixel area disposed in at least one of an upper side and a lower side in a vertical direction with respect to the effective pixel area and in which an ineffective pixel that is different from the effective pixel is arranged A first driving method for sequentially outputting a plurality of images within one frame time by outputting a driving signal for driving the region and the pixels arranged in the pixel region for each row; and one column A second driving method is performed in which the pixels arranged in a plurality of systems are divided into a plurality of systems, and conversion processing for converting the pixel signals output from the pixels into digital signals is switched for each system and performed in parallel. A drive control circuit that controls the drive of the pixel, and the drive control circuit includes the effective pixel for any one of the plurality of images picked up in the first drive method. When performing a read operation for reading a pixel signal from the pixels in the region, the drive is controlled so that the jump of the row address of the pixel targeted for the read operation is less than a predetermined number of rows for the other image .
 本開示の一側面の駆動方法は、複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路とを備える固体撮像素子の駆動方法であって、前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御するステップを含む。 In the driving method according to one aspect of the present disclosure, a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged. A pixel area provided with an effective pixel area and an ineffective pixel area that is disposed at least one above and below in the vertical direction with respect to the effective pixel area and in which an invalid pixel that is different from the effective pixel is disposed A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row, and sequentially capturing a plurality of images within one frame time, and one column A combination of a second driving method in which the pixels to be arranged are divided into a plurality of systems, and conversion processing for converting pixel signals output from the pixels into digital signals is switched for each system in parallel. A solid-state imaging device comprising: a drive control circuit that controls the drive of the pixel, wherein the drive control circuit includes any one of the plurality of images picked up by the first drive method. When a read operation for reading out a pixel signal from the pixel in the effective pixel region is performed for the image, a jump of a row address of the pixel targeted for the read operation for another image is equal to or less than a predetermined number of rows. The step of controlling the drive is included.
 本開示の一側面の電子機器は、複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路とを備え、前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する固体撮像素子を備える。 In an electronic device according to an aspect of the present disclosure, a plurality of pixels are arranged in a matrix, and among the plurality of pixels, effective pixels that are pixels that output pixel signals used for image construction are arranged. A pixel area provided with an effective pixel area and an ineffective pixel area that is disposed at least one above and below in the vertical direction with respect to the effective pixel area and in which an invalid pixel that is different from the effective pixel is disposed A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row, and sequentially capturing a plurality of images within one frame time, and one column A combination of a second driving method in which the pixels to be arranged are divided into a plurality of systems, and conversion processing for converting pixel signals output from the pixels into digital signals is switched for each system in parallel. A driving control circuit that controls driving of the pixels, and the driving control circuit includes the effective pixel region for any one of the plurality of images picked up by the first driving method. When performing a read operation for reading a pixel signal from the pixel, the solid state is controlled so that the jump of the row address of the pixel targeted for the read operation is not more than a predetermined number of rows for the other image. An image sensor is provided.
 本開示の一側面においては、第1の駆動方法において撮像される複数枚の画像のうちの、いずれかの画像について有効画素領域の画素から画素信号を読み出すリード動作を行っているときに、他の画像についてリード動作の対象とする画素の行アドレスのジャンプが所定行数以下となるように駆動が制御される。 In one aspect of the present disclosure, when performing a read operation of reading a pixel signal from a pixel in an effective pixel region for any one of a plurality of images captured in the first driving method, The drive is controlled so that the jump of the row address of the pixel that is the target of the read operation is less than or equal to the predetermined number of rows.
 本開示の一側面によれば、画質の低下を回避することができる。 According to one aspect of the present disclosure, it is possible to avoid a reduction in image quality.
本技術を適用した撮像素子の一実施の形態の構成例を示すブロック図である。It is a block diagram showing an example of composition of an embodiment of an image sensor to which this art is applied. 1フレーム時間内に、2枚の画像を順次撮像する露光駆動について説明する図である。It is a figure explaining the exposure drive which images two images sequentially within one frame time. 画像データの出力イメージを示す図である。It is a figure which shows the output image of image data. パイプライン駆動における画素の選択について説明する図である。It is a figure explaining selection of a pixel in pipeline drive. パイプライン駆動における読み出し期間について説明する図である。It is a figure explaining the read-out period in pipeline drive. 従来の駆動方法について説明する図である。It is a figure explaining the conventional drive method. 撮像素子における駆動方法について説明する図である。It is a figure explaining the drive method in an image sensor. 撮像素子の駆動方法を説明するフローチャートである。3 is a flowchart illustrating a method for driving an image sensor. 本技術を適用した撮像装置の一実施の形態の構成例を示すブロック図である。It is a block diagram showing an example of composition of an embodiment of an imaging device to which this art is applied. イメージセンサを使用する使用例を示す図である。It is a figure which shows the usage example which uses an image sensor.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present technology is applied will be described in detail with reference to the drawings.
 <撮像素子の構成例> <Image sensor configuration example>
 図1は、本技術を適用した撮像素子の一実施の形態の構成例を示すブロック図である。 FIG. 1 is a block diagram illustrating a configuration example of an embodiment of an image sensor to which the present technology is applied.
 図1に示すように、撮像素子11は、画素領域12、垂直駆動回路13、カラム信号処理回路14、水平駆動回路15、出力回路16、および制御回路17を備えて構成される。 As shown in FIG. 1, the image sensor 11 includes a pixel region 12, a vertical drive circuit 13, a column signal processing circuit 14, a horizontal drive circuit 15, an output circuit 16, and a control circuit 17.
 画素領域12は、図示しない光学系により集光される光を受光する受光面である。画素領域12には、複数の画素(後述する図4の画素31)が行列状に配置されており、それぞれの画素は、水平信号線を介して行ごとに垂直駆動回路13に接続されるとともに、垂直信号線を介して列ごとにカラム信号処理回路14に接続される。 The pixel region 12 is a light receiving surface that receives light collected by an optical system (not shown). In the pixel region 12, a plurality of pixels (pixels 31 in FIG. 4 described later) are arranged in a matrix, and each pixel is connected to the vertical drive circuit 13 for each row through a horizontal signal line. The column signal processing circuit 14 is connected to each column via the vertical signal line.
 また、画素領域12には、有効画素領域21、オプティカルブラック(OPB:optical black)領域22、並びに、ダミー領域23-1および23-2が配置されている。有効画素領域21は、画素領域12の中央に配置されており、オプティカルブラック領域22は、有効画素領域21に対して垂直方向の下方に配置される。また、ダミー領域23-1は、オプティカルブラック領域22に対して垂直方向の下方に配置され、ダミー領域23-2は、有効画素領域21に対して垂直方向の上方に配置される。 In the pixel area 12, an effective pixel area 21, an optical black (OPB) area 22, and dummy areas 23-1 and 23-2 are arranged. The effective pixel region 21 is disposed at the center of the pixel region 12, and the optical black region 22 is disposed below the effective pixel region 21 in the vertical direction. The dummy area 23-1 is disposed below the optical black area 22 in the vertical direction, and the dummy area 23-2 is disposed above the effective pixel area 21 in the vertical direction.
 有効画素領域21は、垂直駆動回路13から供給される駆動信号に従って画素信号を出力する複数の画素が配置されており、有効画素領域21に配置される複数の画素は、それぞれ受光する光の光量に応じたレベルの画素信号を出力する。そして、有効画素領域21に配置される複数の画素から出力される画素信号は、有効画素領域21に結像する被写体の画像を構築するのに用いられる。即ち、有効画素領域21に配置される画素は、画像の構築に用いられる画素信号を出力する有効画素である。 The effective pixel region 21 includes a plurality of pixels that output pixel signals in accordance with a drive signal supplied from the vertical drive circuit 13, and each of the plurality of pixels disposed in the effective pixel region 21 receives the amount of light received. A pixel signal of a level corresponding to the output is output. Pixel signals output from a plurality of pixels arranged in the effective pixel area 21 are used to construct an image of a subject that forms an image in the effective pixel area 21. That is, the pixels arranged in the effective pixel area 21 are effective pixels that output pixel signals used for image construction.
 オプティカルブラック領域22には、遮光膜により覆われて遮光された画素が配置されており、オプティカルブラック領域22に配置される画素は、光学的な黒色のレベルの基準として用いられる画素信号を出力する。ダミー領域23-1および23-2には、有効画素領域21に配置されている画素と同様に駆動され、画像の構築に用いられない画素信号を出力するダミー画素が配置される。即ち、オプティカルブラック領域22、並びに、ダミー領域23-1および23-2に配置される画素は、有効画素とは異なり、画像の構築には直接的には利用されない無効画素である。 In the optical black area 22, pixels that are covered and shielded by the light shielding film are arranged, and the pixels arranged in the optical black area 22 output a pixel signal that is used as a reference for the optical black level. . In the dummy areas 23-1 and 23-2, dummy pixels that are driven in the same manner as the pixels arranged in the effective pixel area 21 and output pixel signals that are not used for image construction are arranged. In other words, the pixels arranged in the optical black region 22 and the dummy regions 23-1 and 23-2 are invalid pixels that are not directly used for image construction, unlike the effective pixels.
 垂直駆動回路13は、画素領域12に配置される複数の画素の行ごとに順次、それぞれの画素を駆動(転送や、選択、リセットなど)するための駆動信号を、水平信号線を介して画素に供給する。 The vertical drive circuit 13 sequentially outputs a drive signal for driving (transferring, selecting, resetting, etc.) each pixel through a horizontal signal line for each row of a plurality of pixels arranged in the pixel region 12. To supply.
 カラム信号処理回路14は、複数の画素から垂直信号線を介して出力される画素信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことにより、画素信号のAD変換を行うとともにリセットノイズを除去する。 The column signal processing circuit 14 performs AD conversion of a pixel signal by performing CDS (Correlated Double Sampling) processing on a pixel signal output from a plurality of pixels via a vertical signal line. Remove reset noise.
 水平駆動回路15は、画素領域12に配置される複数の画素の列ごとに順次、カラム信号処理回路14から画素信号をデータ出力信号線に出力させるための駆動信号を、カラム信号処理回路14に供給する。 The horizontal drive circuit 15 sequentially supplies a drive signal for outputting a pixel signal from the column signal processing circuit 14 to the data output signal line to the column signal processing circuit 14 for each column of the plurality of pixels arranged in the pixel region 12. Supply.
 出力回路16は、水平駆動回路15の駆動信号に従ったタイミングでカラム信号処理回路14からデータ出力信号線を介して供給される画素信号を増幅し、後段の信号処理回路に出力する。 The output circuit 16 amplifies the pixel signal supplied from the column signal processing circuit 14 via the data output signal line at a timing according to the driving signal of the horizontal driving circuit 15 and outputs the amplified pixel signal to the subsequent signal processing circuit.
 制御回路17は、例えば、撮像素子11の各ブロックの駆動周期に従ったクロック信号を生成して供給することで、それらの各ブロックの駆動を制御する。例えば、制御回路17は、後述する図4に示すスイッチ41aおよび41bによる接続を切り替えて、画素信号をAD変換する対象として画素31aおよび31bの一方を選択する制御を行う。 The control circuit 17 controls driving of each block by, for example, generating and supplying a clock signal according to the driving cycle of each block of the image sensor 11. For example, the control circuit 17 performs control to select one of the pixels 31a and 31b as a target for AD conversion of the pixel signal by switching connection by switches 41a and 41b shown in FIG. 4 to be described later.
 このように構成される撮像素子11では、例えば、赤色、緑色、および青色の光を透過するカラーフィルタが、いわゆるベイヤ配列に従って画素ごとに配置されており、それぞれの画素が各色の光の光量に応じた画素信号を出力する。また、撮像素子11は、画素を構成するフォトダイオードが形成される半導体基板を薄膜化して、半導体基板の表面に配線層を積層し、半導体基板の裏面側から光を入射する裏面型の構造を採用することができる。 In the imaging device 11 configured as described above, for example, color filters that transmit red, green, and blue light are arranged for each pixel according to a so-called Bayer array, and each pixel has a light amount of light of each color. A corresponding pixel signal is output. In addition, the imaging device 11 has a back surface structure in which a semiconductor substrate on which a photodiode constituting a pixel is formed is thinned, a wiring layer is stacked on the surface of the semiconductor substrate, and light is incident from the back surface side of the semiconductor substrate. Can be adopted.
 <複数枚露光駆動の説明> <Explanation of multiple exposure drive>
 また、撮像素子11は、1フレーム時間内に、複数枚の画像を順次撮像するような複数枚露光駆動を行うことができる。例えば、撮像素子11は、露光時間の異なる2枚の画像を順次撮像するような露光駆動を行い、それらの2枚の画像を合成することで、ダイナミックレンジの広いHDR画像を撮像することができる。 Further, the image sensor 11 can perform a plurality of exposure driving operations such that a plurality of images are sequentially captured within one frame time. For example, the image sensor 11 performs exposure driving so as to sequentially capture two images with different exposure times, and combines the two images to capture an HDR image with a wide dynamic range. .
 図2を参照して、1フレーム時間内に、2枚の画像を順次撮像する露光駆動について説明する。 Referring to FIG. 2, exposure driving for sequentially capturing two images within one frame time will be described.
 図2では、横方向が、画素を駆動するタイミングを表し、縦方向が、有効画素領域21に配置される画素の行アドレスを表している。そして、撮像素子11では、垂直同期信号(V sync)に従って1フレームごとに、ローリングシャッタ方式によって画素が駆動される。また、1フレーム中において、最初(1番目)に行われる露光をプライマリと称し、2番目に行われる露光をセカンダリと称する。例えば、撮像素子11によりHDR画像を撮像する時には、プライマリにおいて長時間露光が行われ、セカンダリにおいて短時間露光が行われる。 In FIG. 2, the horizontal direction represents the timing for driving the pixels, and the vertical direction represents the row addresses of the pixels arranged in the effective pixel region 21. In the image sensor 11, the pixels are driven by the rolling shutter method for each frame in accordance with the vertical synchronization signal (V) sync). In one frame, the first (first) exposure is referred to as primary, and the second exposure is referred to as secondary. For example, when an HDR image is captured by the image sensor 11, long exposure is performed at the primary and short exposure is performed at the secondary.
 図2に示すように、まず、プライマリのプレシャッタ動作(Pre SH)が行われて、1フレーム前の撮像後に画素のフォトダイオードに残留している電荷が排出された後、シャッタ動作(SH)が行われて、長時間露光の電荷の蓄積が開始される。そして、長時間露光の露光時間が経過したタイミングで、フォトダイオードに蓄積されている電荷に応じたレベルの画素信号を読み出すリード動作(RD)が行われる。 As shown in FIG. 2, first, a primary pre-shutter operation (Pre-SH) is performed, and after the charge remaining in the photodiode of the pixel after imaging one frame before is discharged, the shutter operation (SH) Is started, and accumulation of charge for a long time exposure is started. Then, at the timing when the exposure time of the long exposure has elapsed, a read operation (RD) for reading out a pixel signal at a level corresponding to the charge accumulated in the photodiode is performed.
 その後、一定の時間差(リードオフセット)が経過すると、セカンダリのプレシャッタ動作(Pre SH)が行われて、リードオフセットの間に画素のフォトダイオードに蓄積されている電荷が排出された後、シャッタ動作(SH)が行われて、短時間露光の電荷の蓄積が開始される。そして、短時間露光の露光時間が経過したタイミングで、フォトダイオードに蓄積されている電荷に応じたレベルの画素信号を読み出すリード動作(RD)が行われる。 After that, when a certain time difference (read offset) elapses, secondary pre-shutter operation (Pre SH) is performed, and the charge accumulated in the photodiode of the pixel during the lead offset is discharged, then the shutter operation (SH) is performed, and accumulation of electric charges for short-time exposure is started. Then, at the timing when the exposure time of short exposure has elapsed, a read operation (RD) for reading out a pixel signal at a level corresponding to the charge accumulated in the photodiode is performed.
 撮像素子11は、このような露光駆動を行うことで、プライマリで撮像した画像のデータであるプライマリ画像データと、セカンダリで撮像した画像のデータであるセカンダリ画像データとを出力する。 The image sensor 11 outputs primary image data that is image data of the primary image and secondary image data that is image data of the secondary image by performing such exposure driving.
 図3には、撮像素子11から出力される画像データの出力イメージが示されている。 FIG. 3 shows an output image of the image data output from the image sensor 11.
 図3に示すように、画像データの出力イメージでは、プライマリ画像データの下方にプライマリ垂直ブランクが配置され、セカンダリ画像データの上方にセカンダリ垂直ブランクが配置される。そして、プライマリ画像データおよびプライマリ垂直ブランクと、セカンダリ画像データおよびセカンダリ垂直ブランクとが隣り合って配置され、それらの下方に共通垂直ブランクが配置される。 As shown in FIG. 3, in the output image of image data, a primary vertical blank is arranged below the primary image data, and a secondary vertical blank is arranged above the secondary image data. The primary image data and the primary vertical blank, the secondary image data and the secondary vertical blank are arranged next to each other, and the common vertical blank is arranged below them.
 プライマリ画像データは、プライマリの露光が行われている間に画素から出力される画素信号に基づくデータであり、セカンダリ画像データは、セカンダリの露光が行われている間に画素から出力される画素信号に基づくデータである。 The primary image data is data based on a pixel signal output from the pixel during the primary exposure, and the secondary image data is a pixel signal output from the pixel during the secondary exposure. It is data based on.
 また、プライマリ垂直ブランクには、プライマリの露光が終わってセカンダリの露光が行われている期間に出力される画素信号に基づくデータが配置される。セカンダリ垂直ブランクには、セカンダリの露光が始まる前にプライマリの露光が行われている期間に出力される画素信号に基づくデータが配置される。共通垂直ブランクには、プライマリおよびセカンダリの露光が行われていない期間に出力される画素信号に基づくデータが配置される。例えば、プライマリ垂直ブランク、セカンダリ垂直ブランク、および、共通垂直ブランクには、図1のオプティカルブラック領域22またはダミー領域23の画素から出力される画素信号に基づくデータが配置され、それらのデータは、画像の構築には用いられずに破棄される。 In the primary vertical blank, data based on pixel signals output during a period in which the primary exposure is completed and the secondary exposure is performed is arranged. In the secondary vertical blank, data based on a pixel signal output during a period in which the primary exposure is performed before the secondary exposure starts is arranged. In the common vertical blank, data based on pixel signals output during a period in which primary and secondary exposure are not performed is arranged. For example, in the primary vertical blank, the secondary vertical blank, and the common vertical blank, data based on the pixel signal output from the pixel in the optical black area 22 or the dummy area 23 in FIG. It is discarded without being used to construct.
 <パイプライン駆動の説明> <Description of pipeline drive>
 また、撮像素子11では、カラム信号処理回路14において、リセットレベルの画素信号のAD変換と信号レベルの画素信号のAD変換とが行われ、それらの差分に基づいて、リセットノイズを除去することができる。一般的に、1列に配置されている1画素ごとに、リセットレベルの画素信号のAD変換と信号レベルの画素信号のAD変換とを連続的に行うような駆動方法が用いられている。 Further, in the image sensor 11, the column signal processing circuit 14 performs AD conversion of the pixel signal at the reset level and AD conversion of the pixel signal at the signal level, and the reset noise is removed based on the difference between them. it can. In general, a driving method is used in which AD conversion of a pixel signal at a reset level and AD conversion of a pixel signal at a signal level are continuously performed for each pixel arranged in one column.
 これに対し、撮像素子11では、1列に配置されている画素を2つの系統に分け、画素から出力されるリセットレベルの画素信号のAD変換と信号レベルの画素信号のAD変換とを、系統ごとに切り替えて交互に並列的に行う駆動方法を採用することができる。例えば、2つの系統のうちの、一方の画素のセトリングを行っている間に、他方の画素の画素信号をAD変換するような駆動を行うことにより、撮像素子11の全体としての画素信号の読み出し期間の短縮を図ることができる。このような駆動方法を、以下適宜、パイプライン駆動と称する。 On the other hand, in the image sensor 11, the pixels arranged in one column are divided into two systems, and the AD conversion of the reset level pixel signal output from the pixel and the AD conversion of the signal level pixel signal are performed in the system. It is possible to adopt a driving method in which each is switched and alternately performed in parallel. For example, while the settling of one pixel of the two systems is being performed, the pixel signal of the other pixel is read as a whole by performing a drive that performs AD conversion on the pixel signal of the other pixel. The period can be shortened. Such a driving method is hereinafter referred to as pipeline driving as appropriate.
 図4および図5を参照して、パイプライン駆動について説明する。 Pipeline driving will be described with reference to FIGS.
 図4に示すように、パイプライン駆動では、画素31aと画素31bとが交互に選択されて、画素信号がAD変換される。なお、図4では、8個の画素31により画素回路を共有する画素共有単位32ごとに、画素31が交互に選択される例が示されており、2つの系統に対応して2本の垂直信号線33aおよび33bが設けられている。 As shown in FIG. 4, in the pipeline driving, the pixel 31a and the pixel 31b are alternately selected, and the pixel signal is AD-converted. FIG. 4 shows an example in which the pixels 31 are alternately selected for each pixel sharing unit 32 sharing the pixel circuit by the eight pixels 31, and two vertical lines corresponding to the two systems are shown. Signal lines 33a and 33b are provided.
 また、画素共有単位32aに含まれる画素31aは、垂直信号線33aを介して、定電流源34aに接続されるとともに、カラム信号処理回路14に接続される。同様に、画素共有単位32bに含まれる画素31bは、垂直信号線33bを介して、定電流源34bに接続されるとともに、カラム信号処理回路14に接続される。 Further, the pixels 31a included in the pixel sharing unit 32a are connected to the constant current source 34a and the column signal processing circuit 14 through the vertical signal line 33a. Similarly, the pixel 31b included in the pixel sharing unit 32b is connected to the constant current source 34b and the column signal processing circuit 14 through the vertical signal line 33b.
 カラム信号処理回路14では、比較器44の一方の入力端子には、スイッチ41aおよびキャパシタ42aを介して垂直信号線33aが接続されるとともに、スイッチ41bおよびキャパシタ42bを介して垂直信号線33bが接続される。このように、スイッチ41aおよびスイッチ41bは、垂直信号線33aおよび垂直信号線33bと比較器44の一方の入力端子との接続を切り替えて、画素信号のAD変換を行う対象を選択する選択部として用いられる。 In the column signal processing circuit 14, the vertical signal line 33a is connected to one input terminal of the comparator 44 via the switch 41a and the capacitor 42a, and the vertical signal line 33b is connected via the switch 41b and the capacitor 42b. Is done. As described above, the switch 41a and the switch 41b serve as a selection unit that switches the connection between the vertical signal line 33a and the vertical signal line 33b and one input terminal of the comparator 44 and selects a target for AD conversion of the pixel signal. Used.
 また、比較器44の他方の入力端子には、キャパシタ43を介して、画素信号をAD変換する際に参照される参照信号(一定の勾配で電位が降下する波形のランプ信号)が入力される。比較器44の出力端子はカウンタ45に接続されており、カウンタ45が、比較器44による画素信号と参照信号との比較結果をカウントすることにより、画素信号がAD変換される。 The other input terminal of the comparator 44 receives a reference signal (a ramp signal having a waveform in which the potential drops at a constant gradient) that is referred to when the pixel signal is AD-converted via the capacitor 43. . The output terminal of the comparator 44 is connected to the counter 45, and the counter 45 counts the comparison result between the pixel signal and the reference signal by the comparator 44, whereby the pixel signal is AD converted.
 そして、図4の左側には、画素31aが選択されている状態、即ち、スイッチ41aがオンとなるとともに、スイッチ41bがオフとなっており、比較器44に接続される画素31aから出力される画素信号がAD変換される状態が示されている。一方、図4の右側には、画素31bが選択されている状態、即ち、スイッチ41aがオフとなるとともに、スイッチ41bがオンとなっており、比較器44に接続される画素31bから出力される画素信号がAD変換される状態が示されている。 On the left side of FIG. 4, the pixel 31 a is selected, that is, the switch 41 a is turned on and the switch 41 b is turned off, and is output from the pixel 31 a connected to the comparator 44. A state in which the pixel signal is AD converted is shown. On the other hand, on the right side of FIG. 4, the pixel 31 b is selected, that is, the switch 41 a is turned off and the switch 41 b is turned on, and is output from the pixel 31 b connected to the comparator 44. A state in which the pixel signal is AD converted is shown.
 このように、画素31aと画素31bとの選択を交互に行うことによって、比較器44に入力される画素信号が切り替えられ、画素31aと画素31bとで画素信号を交互にAD変換することができる。 Thus, by alternately selecting the pixel 31a and the pixel 31b, the pixel signal input to the comparator 44 is switched, and the pixel signal can be alternately AD-converted between the pixel 31a and the pixel 31b. .
 図5を参照して、画素31aおよび画素31bの読み出し期間について説明する。 With reference to FIG. 5, the readout period of the pixel 31a and the pixel 31b will be described.
 図5の上側には、画素31aから画素信号を読み出す第1の読み出し期間が示されており、図5の下側には、画素31bから画素信号を読み出す第2の読み出し期間が示されている。 The upper side of FIG. 5 shows a first readout period for reading out a pixel signal from the pixel 31a, and the lower side of FIG. 5 shows a second readout period for reading out a pixel signal from the pixel 31b. .
 まず、画素31aに対するリセットおよびセトリングが行われる。その後、図4の左側に示したように画素31aが選択され、画素31aからリセットレベルの画素信号が読み出されてAD変換されるのと並行して、画素31bに対するリセットおよびセトリングが行われる。 First, the pixel 31a is reset and settled. Thereafter, as shown on the left side of FIG. 4, the pixel 31a is selected, and the reset and settling of the pixel 31b is performed in parallel with the pixel signal of the reset level being read from the pixel 31a and AD-converted.
 そして、画素31aのリセットレベルの画素信号のAD変換が終了すると、図4の右側に示したように画素31bが選択される。その後、画素31aのリセットレベルの画素信号がAD変換されたデータが保持され、画素31aのフォトダイオードに蓄積されている電荷の転送が行われるのと並行して、画素31bのリセットレベルの画素信号が読み出されてAD変換される。 Then, when the AD conversion of the pixel signal at the reset level of the pixel 31a is completed, the pixel 31b is selected as shown on the right side of FIG. Thereafter, data obtained by AD conversion of the pixel signal at the reset level of the pixel 31a is held, and the pixel signal at the reset level of the pixel 31b is transferred in parallel with the transfer of the charge accumulated in the photodiode of the pixel 31a. Are read out and AD converted.
 また、画素31aに対するセトリングが行われるのと並行して、画素31bのリセットレベルの画素信号がAD変換されたデータが保持され、画素31bのフォトダイオードに蓄積されている電荷の転送が行われる。 In parallel with the settling for the pixel 31a, data obtained by AD-converting the pixel signal at the reset level of the pixel 31b is held, and the charge accumulated in the photodiode of the pixel 31b is transferred.
 その後、図4の左側に示したように画素31aが選択され、画素31aの信号レベルの画素信号のAD変換が行われるのと並行して、画素31bに対するセトリングが行われる。そして、画素31aの信号レベルの画素信号が読み出されてAD変換が終了すると、図4の右側に示したように画素31bが選択される。その後、画素31aの信号レベルの画素信号がAD変換されたデータが保持されるのと並行して、画素31bの信号レベルの画素信号が読み出されてAD変換される。 Thereafter, as shown on the left side of FIG. 4, the pixel 31a is selected, and the settling is performed on the pixel 31b in parallel with the AD conversion of the pixel signal of the signal level of the pixel 31a. When the pixel signal at the signal level of the pixel 31a is read and AD conversion is completed, the pixel 31b is selected as shown on the right side of FIG. Thereafter, in parallel with holding the data obtained by AD converting the pixel signal at the signal level of the pixel 31a, the pixel signal at the signal level of the pixel 31b is read and AD converted.
 このように、パイプライン駆動では、画素31aと画素31bとで交互に、画素信号のAD変換が行われるように駆動され、撮像素子11の全体としての画素信号の読み出し期間の短縮が図られる。 As described above, in the pipeline driving, the pixel 31a and the pixel 31b are alternately driven so that AD conversion of the pixel signal is performed, and the pixel signal reading period of the entire image sensor 11 can be shortened.
 <撮像素子11における駆動方法の説明> <Description of driving method in image sensor 11>
 ところで、図2を参照して説明したような複数枚露光駆動と、図4および図5を参照して説明したようなパイプライン駆動とを組み合わせたときに、画像に横筋が発生してしまい、画質が低下することがあった。 By the way, when the multiple exposure driving as described with reference to FIG. 2 and the pipeline driving as described with reference to FIGS. 4 and 5 are combined, horizontal stripes are generated in the image. The image quality sometimes deteriorated.
 例えば、図6に示すように、従来、オプティカルブラック領域22から画素信号の読み出しを開始する際に、ダミー領域23-1からオプティカルブラック領域22に、リード動作を行う画素の行アドレスを大きくアドレスジャンプするような駆動が行われる。また、有効画素領域21から画素信号の読み出しを開始する際に、オプティカルブラック領域22の所定行から有効画素領域21の一行目まで、リード動作を行う画素の行アドレスを大きくアドレスジャンプするような駆動が行われる。また、有効画素領域21から画素信号の読み出しを終了する際に、有効画素領域21の最終行からダミー領域23-2の所定行まで、リード動作を行う画素の行アドレスを大きくアドレスジャンプするような駆動が行われる。 For example, as shown in FIG. 6, conventionally, when reading out a pixel signal from the optical black region 22, the row address of the pixel that performs the read operation is greatly jumped from the dummy region 23-1 to the optical black region 22. Driving is performed. Further, when reading of the pixel signal from the effective pixel area 21 is started, the address jump of the row address of the pixel that performs the read operation from a predetermined line of the optical black area 22 to the first line of the effective pixel area 21 is greatly jumped. Is done. Further, when the reading of the pixel signal from the effective pixel area 21 is finished, the address jump of the row address of the pixel that performs the read operation from the last line of the effective pixel area 21 to a predetermined line of the dummy area 23-2 is greatly jumped. Driving is performed.
 例えば、プライマリにおいてオプティカルブラック領域22のリード動作が開始されるタイミングT1では横筋が発生することはない。これに対し、セカンダリにおいてオプティカルブラック領域22のリード動作が開始されるタイミングT2で、セカンダリにおいて大きなアドレスジャンプが行われると、プライマリにおいてオプティカルブラック領域22のリード動作の対象となっている行に横筋が発生してしまう。さらに、プライマリにおいて有効画素領域21のリード動作が開始されるタイミングT3で、プライマリにおいて大きなアドレスジャンプが行われると、セカンダリにおいてオプティカルブラック領域22のリード動作の対象となっている行に横筋が発生してしまう。上述したように、オプティカルブラック領域22から読み出された画素信号は、黒色のレベルの基準として用いられることより、この基準がノイズ(横筋)によって変動してしまうと、画質に悪影響を及ぼすことがあるため好ましいことではない。 For example, at the timing T1 when the read operation of the optical black area 22 is started in the primary, no horizontal stripes are generated. On the other hand, when a large address jump is performed in the secondary at the timing T2 when the read operation of the optical black area 22 is started in the secondary, the horizontal stripes appear in the row that is the target of the read operation of the optical black area 22 in the primary. Will occur. Further, when a large address jump is performed in the primary at the timing T3 at which the read operation of the effective pixel region 21 is started in the primary, a horizontal stripe occurs in the row that is the target of the read operation in the optical black region 22 in the secondary. End up. As described above, the pixel signal read from the optical black region 22 is used as a black level reference, and if this reference fluctuates due to noise (horizontal stripes), the image quality may be adversely affected. It is not preferable because there is.
 また、セカンダリにおいて有効画素領域21のリード動作が開始されるタイミングT4で、セカンダリにおいて大きなアドレスジャンプが行われると、プライマリにおいて有効画素領域21のリード動作の対象となっている行に横筋が発生してしまう。さらに、プライマリにおいて有効画素領域21のリード動作が終了されるタイミングT5で、プライマリにおいて大きなアドレスジャンプが行われると、セカンダリにおいて有効画素領域21のリード動作の対象となっている行に横筋が発生してしまう。 In addition, when a large address jump is performed in the secondary at the timing T4 when the read operation of the effective pixel region 21 is started in the secondary, a horizontal stripe occurs in the row that is the target of the read operation of the effective pixel region 21 in the primary. End up. Furthermore, when a large address jump is performed in the primary at the timing T5 when the read operation of the effective pixel region 21 is finished in the primary, a horizontal stripe occurs in the row that is the target of the read operation of the effective pixel region 21 in the secondary. End up.
 なお、ダミー領域23-2からダミー領域23-1へのアドレスジャンプが行われるタイミングT7は、セカンダリの有効画素領域21のリード動作が終了した後のブランキング期間に行われるため、画質に影響を及ぼすことはない。 Note that the timing T7 at which the address jump from the dummy area 23-2 to the dummy area 23-1 is performed during the blanking period after the read operation of the secondary effective pixel area 21 is completed, and therefore the image quality is affected. There is no effect.
 例えば、行アドレスがアドレスジャンプすることよって、リセットレベルの画素信号のAD変換と信号レベルの画素信号のAD変換との間で、画素31の駆動に用いる画素電源に発生する電圧降下(IRドロップ)の度合いが変化することにより、画像に横筋が発生する。 For example, a voltage drop (IR drop) generated in the pixel power source used for driving the pixel 31 between the AD conversion of the pixel signal at the reset level and the AD conversion of the pixel signal at the signal level due to the address jump of the row address. As the degree of change changes, horizontal stripes appear in the image.
 一般的に、画素31から画素信号を読み出すリード動作が行われることにより、画素電源では、リード動作の対象となっている行で電圧降下が発生する。また、プライマリにおいてリード動作が行われている行と、セカンダリにおいてリード動作が行われている行との間隔が一定であれば、画素電源に発生する電圧降下の分布は一定であるので、画素信号に大きな影響を与えることはない。しかしながら、プライマリにおいてリード動作が行われている行と、セカンダリにおいてリード動作が行われている行との間隔が大きく変化すると、画素電源に発生する電圧降下の分布が大きく変化することになる。そのため、上述したように、リード動作を行う画素31の行アドレスを大きくアドレスジャンプするような駆動が行われたときに、画素電源に発生する電圧降下の分布が大きく変化することになる。 Generally, when a read operation for reading a pixel signal from the pixel 31 is performed, a voltage drop occurs in a row that is a target of the read operation in the pixel power supply. Further, if the interval between the row where the read operation is performed in the primary and the row where the read operation is performed in the secondary is constant, the distribution of the voltage drop generated in the pixel power supply is constant. Will not have a major impact. However, if the interval between the row in which the read operation is performed in the primary and the row in which the read operation is performed in the secondary changes greatly, the distribution of the voltage drop generated in the pixel power supply changes greatly. Therefore, as described above, when driving is performed so that the address jump of the row address of the pixel 31 that performs the read operation is greatly performed, the distribution of the voltage drop generated in the pixel power supply changes greatly.
 従って、例えば、セカンダリにおいて有効画素領域21のリード動作が行われているときに、プライマリにおいて大きなアドレスジャンプが行われたとき(タイミングT5)、画素電源に発生する電圧降下の分布が大きく変動する。この変動の影響が、セカンダリのリード動作を行っている行の画素31から出力される画素信号にノイズとして回り込んでしまい、画像に横筋が発生することになる。 Therefore, for example, when a read operation of the effective pixel region 21 is performed in the secondary and a large address jump is performed in the primary (timing T5), the distribution of the voltage drop generated in the pixel power supply greatly varies. The influence of this fluctuation wraps around as a noise in the pixel signal output from the pixel 31 in the row in which the secondary read operation is performed, resulting in a horizontal stripe in the image.
 このとき画素信号に対するノイズ量は、行アドレスをアドレスジャンプする行数(行アドレスの変化量)に依存した大きさになり、例えば、行アドレスをアドレスジャンプする行数が多いほど、このノイズ量が大きくなものとなる。なお、プライマリとセカンダリとの関係が逆であっても、同様に、画像に横筋が発生する。 At this time, the amount of noise with respect to the pixel signal has a magnitude that depends on the number of rows that jump to the address of the row address (the amount of change in the row address). It will be big. Even if the relationship between the primary and secondary is reversed, similarly, horizontal stripes occur in the image.
 従って、プライマリまたはセカンダリの一方が有効画素領域21から画素信号を読み出しているときに、他方のアドレスジャンプは横筋が発生しないように(顕著に表れない程度に)、行アドレスをアドレスジャンプする行数を所定行以下にすることで、横筋の発生を抑制することができる。つまり、画素電源に発生する電圧降下の分布の変化度合が小さくなるようにすることで、画素信号に対するノイズ量を小さくすることができ、画像に表れる横筋を抑制することができる。 Therefore, when one of the primary and secondary is reading a pixel signal from the effective pixel region 21, the number of rows in which the address jump of the row address is performed so that the other address jump does not cause a horizontal stripe (not to be noticeable). The occurrence of lateral stripes can be suppressed by setting the value to a predetermined line or less. That is, by reducing the degree of change in the distribution of the voltage drop generated in the pixel power supply, the amount of noise with respect to the pixel signal can be reduced, and the horizontal stripes appearing in the image can be suppressed.
 そこで、撮像素子11は、プライマリまたはセカンダリの一方が有効画素領域21から画素信号を読み出しているとき、他方のアドレスジャンプを所定行数以下で行うような駆動方法を採用する。これにより、上述したような横筋に発生を抑制して、画質の低下を回避することができる。 Therefore, the image sensor 11 employs a driving method in which when one of the primary and secondary is reading a pixel signal from the effective pixel region 21, the other address jump is performed with a predetermined number of rows or less. Thereby, generation | occurrence | production to a horizontal stripe as mentioned above can be suppressed, and the fall of an image quality can be avoided.
 図7を参照して、撮像素子11における駆動方法について説明する。 With reference to FIG. 7, a driving method in the image sensor 11 will be described.
 撮像素子11において1フレームの撮像が開始される前には、ダミー領域23-1の所定行の画素31に対する駆動が行われている。また、以下の説明においては、オプティカルブラック領域22および有効画素領域21に対するリード動作が開始される前の所定期間、並びに、有効画素領域21に対するリード動作が終了された後の所定期間を、行アクセス遷移期間と称する。 Before the imaging device 11 starts imaging one frame, the pixels 31 in a predetermined row in the dummy area 23-1 are driven. In the following description, the row access is performed for a predetermined period before the read operation for the optical black area 22 and the effective pixel area 21 is started and for a predetermined period after the read operation for the effective pixel area 21 is ended. This is called a transition period.
 そして、撮像素子11において1フレームの撮像を開始するとき、垂直駆動回路13は、まず、プライマリについてオプティカルブラック領域22の画素31に対するリード動作が開始されるタイミングT1より前の行アクセス遷移期間P1において、ダミー領域23-1の画素31に対して、上述したような横筋が発生しない程度に所定行数以下の小さな幅でアドレスジャンプを繰り返すこと(以下適宜、間引きアクセスと称する)によるリード動作を行う。 When the imaging device 11 starts imaging one frame, the vertical drive circuit 13 first starts in the row access transition period P1 before the timing T1 at which the read operation for the pixel 31 in the optical black region 22 is started for the primary. Then, a read operation is performed on the pixels 31 in the dummy area 23-1 by repeating an address jump with a small width equal to or less than a predetermined number of rows to the extent that the above-described horizontal stripe does not occur (hereinafter referred to as thinning access as appropriate). .
 そして、タイミングT1において、プライマリについてオプティカルブラック領域22の画素31に対するリード動作を開始した後、垂直駆動回路13は、セカンダリについてオプティカルブラック領域22の画素31に対するリード動作が開始されるタイミングT2より前の行アクセス遷移期間P2において、ダミー領域23-1の画素31に対する間引きアクセスによるリード動作を行う。このように、図6に示したタイミングT2でセカンダリにおいて大きなアドレスジャンプが行われることを回避することで、タイミングT2でプライマリにおいて発生する横筋を抑制することができる。 Then, after starting the read operation for the pixel 31 in the optical black region 22 for the primary at the timing T1, the vertical drive circuit 13 before the timing T2 when the read operation for the pixel 31 in the optical black region 22 is started for the secondary. In the row access transition period P2, a read operation is performed by thinning access to the pixels 31 in the dummy area 23-1. Thus, by avoiding a large address jump from being performed at the secondary at the timing T2 shown in FIG. 6, it is possible to suppress the horizontal stripes occurring at the primary at the timing T2.
 続いて、垂直駆動回路13は、プライマリについて有効画素領域21の画素31に対するリード動作が開始されるタイミングT3より前の行アクセス遷移期間P3において、オプティカルブラック領域22の画素31に対する間引きアクセスによるリード動作を行う。同様に、垂直駆動回路13は、セカンダリについて有効画素領域21の画素31に対するリード動作が開始されるタイミングT4より前の行アクセス遷移期間P4において、オプティカルブラック領域22の画素31に対する間引きアクセスによるリード動作を行う。従って、タイミングT3およびT4において大きなアドレスジャンプが行われることを回避して、それぞれのタイミングで発生する横筋を抑制することができる。 Subsequently, the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the optical black region 22 in the row access transition period P3 before the timing T3 when the read operation for the pixels 31 in the effective pixel region 21 is started for the primary. I do. Similarly, the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the optical black region 22 in the row access transition period P4 before the timing T4 when the read operation for the pixels 31 in the effective pixel region 21 is started for the secondary. I do. Accordingly, it is possible to avoid a large address jump at the timings T3 and T4 and to suppress the horizontal stripes generated at the respective timings.
 さらに、垂直駆動回路13は、プライマリにおいて有効画素領域21のリード動作が終了されるタイミングT5より後の行アクセス遷移期間P5において、ダミー領域23-2の画素31に対する間引きアクセスによるリード動作を行う。このように、図6に示したタイミングT5でセカンダリにおいて大きなアドレスジャンプが行われることを回避することで、タイミングT5でセカンダリにおいて発生する横筋を抑制することができる。 Further, the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the dummy region 23-2 in the row access transition period P5 after the timing T5 when the read operation of the effective pixel region 21 is finished in the primary. In this way, by avoiding a large address jump at the secondary at the timing T5 shown in FIG. 6, it is possible to suppress the horizontal stripes that occur at the secondary at the timing T5.
 また、同様に、垂直駆動回路13は、セカンダリにおいて有効画素領域21のリード動作が終了されるタイミングT6より後の行アクセス遷移期間P6において、ダミー領域23-2の画素31に対する間引きアクセスによるリード動作を行う。その後、プライマリおよびセカンダリの両方について、有効画素領域21の画素31に対するリード動作が行われていないブランキング期間におけるタイミングT7において、ダミー領域23-2からダミー領域23-1へのアドレスジャンプが行われる。 Similarly, the vertical drive circuit 13 performs the read operation by thinning access to the pixels 31 in the dummy region 23-2 in the row access transition period P6 after the timing T6 when the read operation of the effective pixel region 21 is finished in the secondary. I do. Thereafter, for both the primary and secondary, an address jump from the dummy area 23-2 to the dummy area 23-1 is performed at a timing T7 in a blanking period when the read operation for the pixel 31 in the effective pixel area 21 is not performed. .
 以上のように、撮像素子11は、リード動作を行う画素の行アドレスのアドレスジャンプが適切なタイミングとなるように制御することで、上述したような横筋の発生を抑制して、画質の低下を回避することができる。なお、間引きアクセスにより画素31から読み出された画素信号は、画像の構築には用いられずに破棄される。 As described above, the image pickup device 11 controls the occurrence of the horizontal stripe as described above by controlling the address jump of the row address of the pixel that performs the read operation at an appropriate timing, thereby reducing the image quality. It can be avoided. The pixel signal read from the pixel 31 by the thinning access is discarded without being used for image construction.
 次に、図8は、撮像素子11において1フレームの撮像が行われる際の駆動方法を説明するフローチャートである。 Next, FIG. 8 is a flowchart for explaining a driving method when one image is captured by the image sensor 11.
 例えば、撮像素子11は、垂直同期信号(V sync)に従って1フレームごとに撮像を行い、図7に示したように、ブランキング期間では、ダミー領域23-1の所定行の画素31に対する駆動が行われている。そして、ステップS11において、垂直駆動回路13は、プライマリのオプティカルブラック領域22のリード動作が開始されるタイミングT1より前の行アクセス遷移期間P1について、ダミー領域23-1の画素31に対し、間引きアクセスによるリード動作を行う。 For example, the image sensor 11 captures an image for each frame in accordance with the vertical synchronization signal (V sync), and as shown in FIG. 7, during the blanking period, driving of the pixels 31 in a predetermined row in the dummy region 23-1 is performed. Has been done. In step S11, the vertical drive circuit 13 performs thinning access to the pixels 31 in the dummy area 23-1 for the row access transition period P1 before the timing T1 when the read operation of the primary optical black area 22 is started. Read operation is performed.
 そして、垂直駆動回路13は、プライマリのオプティカルブラック領域22のリード動作が開始されるタイミングT1になると、ステップS12において、プライマリについて、オプティカルブラック領域22の画素31に対するリード動作を行う。 Then, at the timing T1 when the read operation of the primary optical black region 22 is started, the vertical drive circuit 13 performs a read operation on the pixels 31 in the optical black region 22 for the primary in step S12.
 ステップS13において、垂直駆動回路13は、セカンダリのオプティカルブラック領域22のリード動作が開始されるタイミングT2より前の行アクセス遷移期間P2について、ダミー領域23-1の画素31に対し、間引きアクセスによるリード動作を行う。 In step S13, the vertical drive circuit 13 reads the pixel 31 in the dummy area 23-1 by thinning access for the row access transition period P2 before the timing T2 when the read operation of the secondary optical black area 22 is started. Perform the action.
 そして、垂直駆動回路13は、セカンダリのオプティカルブラック領域22のリード動作が開始されるタイミングT2になると、ステップS14において、セカンダリについて、オプティカルブラック領域22の画素31に対するリード動作を行う。 Then, at the timing T2 when the read operation of the secondary optical black region 22 is started, the vertical drive circuit 13 performs a read operation on the pixel 31 in the optical black region 22 for the secondary in step S14.
 ステップS15において、垂直駆動回路13は、プライマリの有効画素領域21のリード動作が開始されるタイミングT3より前の行アクセス遷移期間P3について、オプティカルブラック領域22の画素31に対し、間引きアクセスによるリード動作を行う。 In step S15, the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the optical black region 22 for the row access transition period P3 before the timing T3 when the read operation of the primary effective pixel region 21 is started. I do.
 そして、垂直駆動回路13は、プライマリの有効画素領域21のリード動作が開始されるタイミングT3になると、ステップS16において、プライマリについて、有効画素領域21の画素31に対するリード動作を行う。 The vertical drive circuit 13 performs a read operation on the pixels 31 in the effective pixel region 21 for the primary in step S16 at the timing T3 when the read operation on the primary effective pixel region 21 is started.
 ステップS17において、垂直駆動回路13は、セカンダリの有効画素領域21のリード動作が開始されるタイミングT4より前の行アクセス遷移期間P4について、オプティカルブラック領域22の画素31に対し、間引きアクセスによるリード動作を行う。 In step S <b> 17, the vertical drive circuit 13 performs a read operation by thinning access to the pixels 31 in the optical black region 22 for the row access transition period P <b> 4 before the timing T <b> 4 when the read operation of the secondary effective pixel region 21 is started. I do.
 そして、垂直駆動回路13は、セカンダリの有効画素領域21のリード動作が開始されるタイミングT4になると、ステップS18において、セカンダリについて、有効画素領域21の画素31に対するリード動作を行う。 The vertical drive circuit 13 performs a read operation on the pixels 31 in the effective pixel region 21 for the secondary in step S18 at the timing T4 when the read operation of the secondary effective pixel region 21 is started.
 その後、プライマリおよびセカンダリともに有効画素領域21の画素31に対するリード動作が1行ずつ行われ、プライマリにおいて有効画素領域21のリード動作が終了されるタイミングT5になると、処理はステップS19に進む。ステップS19において、垂直駆動回路13は、タイミングT5より後の行アクセス遷移期間P5において、ダミー領域23-2の画素31に対し、間引きアクセスによるリード動作を行う。 Thereafter, the read operation for the pixels 31 in the effective pixel region 21 is performed row by row for both the primary and secondary, and when the timing T5 at which the read operation of the effective pixel region 21 is completed in the primary, the process proceeds to step S19. In step S19, the vertical drive circuit 13 performs a read operation by thinning access on the pixels 31 in the dummy region 23-2 in the row access transition period P5 after the timing T5.
 同様に、セカンダリにおいて有効画素領域21のリード動作が終了されるタイミングT6になると、ステップS20において、垂直駆動回路13は、タイミングT6より後の行アクセス遷移期間P6において、ダミー領域23-2の画素31に対し、間引きアクセスによるリード動作を行う。 Similarly, when the timing T6 at which the reading operation of the effective pixel region 21 is finished in the secondary is reached, in step S20, the vertical drive circuit 13 detects the pixels in the dummy region 23-2 in the row access transition period P6 after the timing T6. 31 is read by thinning access.
 ステップS21において、垂直駆動回路13は、プライマリおよびセカンダリともに、タイミングT6より後のタイミングT7で、ダミー領域23-2からダミー領域23-1にリード動作をジャンプする。 In step S21, the vertical drive circuit 13 jumps the read operation from the dummy area 23-2 to the dummy area 23-1 at the timing T7 after the timing T6 for both the primary and secondary.
 ステップS21の処理後、処理は終了され、次のフレームの撮像が開始されるタイミングになると、同様の処理が繰り返して行われる。 After the process in step S21, the process is terminated, and the same process is repeated when the next frame starts to be imaged.
 以上のように、撮像素子11では、行アクセス遷移期間において間引きアクセスによるリード動作を行うこと、および、ダミー領域23-2からダミー領域23-1へのリード動作のジャンプを有効画素領域21のリード動作が行われていないブランキング期間に行うことによって、上述したように、画像に発生する横筋を抑制して、画質の低下を回避することができる。 As described above, the image sensor 11 performs the read operation by the thinning access in the row access transition period, and performs the jump of the read operation from the dummy region 23-2 to the dummy region 23-1 to read the effective pixel region 21. By performing it during a blanking period in which no operation is performed, as described above, it is possible to suppress the horizontal streak generated in the image and avoid the deterioration of the image quality.
 なお、撮像素子11では、プライマリまたはセカンダリの一方が有効画素領域21から画素信号を読み出しているときに、他方のリード動作のアドレスジャンプが所定行数以下となればよく、例えば、同一の行に対して繰り返してリード動作を行ってもよい。また、横筋が発生しない程度に行うアドレスジャンプの所定行数としては、例えば、100行以下とすることが好ましく、50行以下とすることがより好ましい。 In the image pickup device 11, when one of the primary and secondary is reading a pixel signal from the effective pixel region 21, the address jump of the other read operation may be equal to or less than a predetermined number of rows. On the other hand, the read operation may be repeated. Further, the predetermined number of address jumps performed to such an extent that no horizontal stripes occur is, for example, preferably 100 lines or less, and more preferably 50 lines or less.
 また、撮像素子11では、画素領域12に設けられる有効画素領域21を分割して用いてもよい。 In the image sensor 11, the effective pixel area 21 provided in the pixel area 12 may be divided and used.
 なお、上述したような撮像素子11は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。 Note that the imaging device 11 as described above is applied to various electronic devices such as an imaging system such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. can do.
 <撮像装置の構成例> <Example configuration of imaging device>
 図9は、電子機器に搭載される撮像装置の構成例を示すブロック図である。 FIG. 9 is a block diagram illustrating a configuration example of an imaging device mounted on an electronic device.
 図9に示すように、撮像装置101は、光学系102、撮像素子103、信号処理回路104、モニタ105、およびメモリ106を備えて構成され、静止画像および動画像を撮像可能である。 As shown in FIG. 9, the imaging apparatus 101 includes an optical system 102, an imaging element 103, a signal processing circuit 104, a monitor 105, and a memory 106, and can capture still images and moving images.
 光学系102は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子103に導き、撮像素子103の受光面(センサ部)に結像させる。 The optical system 102 includes one or more lenses, guides image light (incident light) from a subject to the image sensor 103, and forms an image on a light receiving surface (sensor unit) of the image sensor 103.
 撮像素子103としては、上述した撮像素子11が適用される。撮像素子103には、光学系102を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子103に蓄積された電子に応じた信号が信号処理回路104に供給される。 As the image sensor 103, the above-described image sensor 11 is applied. In the image sensor 103, electrons are accumulated for a certain period according to an image formed on the light receiving surface via the optical system 102. Then, a signal corresponding to the electrons accumulated in the image sensor 103 is supplied to the signal processing circuit 104.
 信号処理回路104は、撮像素子103から出力された画素信号に対して各種の信号処理を施す。信号処理回路104が信号処理を施すことにより得られた画像(画像データ)は、モニタ105に供給されて表示されたり、メモリ106に供給されて記憶(記録)されたりする。 The signal processing circuit 104 performs various signal processing on the pixel signal output from the image sensor 103. An image (image data) obtained by performing signal processing by the signal processing circuit 104 is supplied to the monitor 105 and displayed, or supplied to the memory 106 and stored (recorded).
 このように構成されている撮像装置101では、上述した撮像素子11を適用することで、例えば、画質の低下を回避して、より高画質な画像を撮像することができる。 In the imaging apparatus 101 configured as described above, by applying the imaging element 11 described above, for example, it is possible to capture a higher quality image while avoiding deterioration in image quality.
 <イメージセンサの使用例> <Example of use of image sensor>
 図10は、上述のイメージセンサを使用する使用例を示す図である。 FIG. 10 is a diagram illustrating a usage example in which the above-described image sensor is used.
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
 前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
 を備え、
 前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
 固体撮像素子。
(2)
 複数の前記系統ごとに設けられる垂直信号線と、
 前記画素から出力される画素信号と所定の参照信号とを比較する比較器と、
 複数の前記系統ごとの前記垂直信号線と前記比較器の入力端子との接続を切り替えて、前記画素信号をデジタル信号に変換する変換処理の対象となる前記画素を選択する選択部と
 をさらに備える上記(1)に記載の固体撮像素子。
(3)
 前記駆動制御回路により行アドレスのジャンプが所定行数以下で行われるように駆動される前記画素から出力される画素信号は破棄される
 上記(1)または(2)に記載の固体撮像素子。
(4)
 前記駆動制御回路は、前記有効画素領域に配置されている前記画素に対する前記リード動作が開始されるタイミングより前の所定期間において、前記無効画素領域に配置されている前記画素に対する前記リード動作の対象とする行アドレスのジャンプが所定行数以下の幅で行われるように駆動を制御する
 上記(1)から(3)までのいずれかに記載の固体撮像素子。
(5)
 前記駆動制御回路は、前記有効画素領域に配置されている前記画素に対する前記リード動作が終了されたタイミングより後の所定期間において、前記無効画素領域に配置されている前記画素に対する前記リード動作の対象とする行アドレスのジャンプが所定行数以下の幅で行われるように駆動を制御する
 上記(1)から(4)までのいずれかに記載の固体撮像素子。
(6)
 前記駆動制御回路は、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれの前記画像においても前記有効画素領域の前記画素から画素信号を読み出すリード動作が行われていないときに、前記リード動作の対象とする前記画素の行アドレスを、前記有効画素領域に対して垂直方向の上方および下方に配置されている前記無効画素領域の一方から他方にジャンプするように駆動を制御する
 上記(1)から(5)までのいずれかに記載の固体撮像素子。
(7)
 複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
 前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
 を備える固体撮像素子の駆動方法であって、
 前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
 ステップを含む駆動方法。
(8)
 複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
 前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
 を備え、
 前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
 固体撮像素子を備える電子機器。
In addition, this technique can also take the following structures.
(1)
An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A drive control circuit to control,
When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, the solid-state imaging device that controls the drive so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
(2)
A plurality of vertical signal lines provided for each of the systems;
A comparator that compares a pixel signal output from the pixel with a predetermined reference signal;
A selector that selects a pixel that is to be subjected to a conversion process for converting the pixel signal into a digital signal by switching connection between the vertical signal line for each of the plurality of systems and the input terminal of the comparator; The solid-state imaging device according to (1) above.
(3)
The solid-state imaging device according to (1) or (2), wherein a pixel signal output from the pixel driven so that a jump of a row address is performed by a predetermined number of rows or less by the drive control circuit is discarded.
(4)
The drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period before the timing when the read operation for the pixels arranged in the effective pixel region is started. The solid-state imaging device according to any one of (1) to (3), wherein driving is controlled so that a jump of a row address is performed with a width equal to or less than a predetermined number of rows.
(5)
The drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period after the timing when the read operation for the pixels arranged in the effective pixel region is completed. The solid-state imaging device according to any one of (1) to (4), wherein the driving is controlled so that the jump of the row address is performed with a width equal to or less than a predetermined number of rows.
(6)
The drive control circuit does not perform a read operation of reading a pixel signal from the pixels in the effective pixel region in any of the plurality of images captured in the first driving method. Sometimes, the drive is performed so that the row address of the pixel to be read is jumped from one of the invalid pixel regions arranged above and below in the vertical direction to the effective pixel region to the other. The solid-state imaging device according to any one of (1) to (5).
(7)
An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A driving control circuit for controlling the solid-state imaging device,
When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, the driving method includes a step of controlling the driving so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
(8)
An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A drive control circuit to control,
When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, an electronic device including a solid-state imaging device that controls driving so that a jump of a row address of the pixel that is a target of the read operation for another image is equal to or less than a predetermined number of rows.
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the present embodiment is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
 11 撮像素子, 12 画素領域, 13 垂直駆動回路, 14 カラム信号処理回路, 15 水平駆動回路, 16 出力回路, 17 制御回路, 21 有効画素領域, 22 オプティカルブラック領域, 23-1および23-2 ダミー領域, 31 画素, 32 画素共有単位, 33 垂直信号線, 34 定電流源, 41 スイッチ, 42および43 キャパシタ, 44 比較器, 45 カウンタ 11 Image sensor, 12 pixel area, 13 vertical drive circuit, 14 column signal processing circuit, 15 horizontal drive circuit, 16 output circuit, 17 control circuit, 21 effective pixel area, 22 optical black area, 23-1 and 23-2 dummy Area, 31 pixels, 32 pixel sharing units, 33 vertical signal lines, 34 constant current sources, 41 switches, 42 and 43 capacitors, 44 comparators, 45 counters

Claims (8)

  1.  複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
     前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
     を備え、
     前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
     固体撮像素子。
    An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
    A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A drive control circuit to control,
    When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, the solid-state imaging device that controls the drive so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
  2.  複数の前記系統ごとに設けられる垂直信号線と、
     前記画素から出力される画素信号と所定の参照信号とを比較する比較器と、
     複数の前記系統ごとの前記垂直信号線と前記比較器の入力端子との接続を切り替えて、前記画素信号をデジタル信号に変換する変換処理の対象となる前記画素を選択する選択部と
     をさらに備える請求項1に記載の固体撮像素子。
    A plurality of vertical signal lines provided for each of the systems;
    A comparator that compares a pixel signal output from the pixel with a predetermined reference signal;
    A selector that selects a pixel that is to be subjected to a conversion process for converting the pixel signal into a digital signal by switching connection between the vertical signal line for each of the plurality of systems and the input terminal of the comparator; The solid-state imaging device according to claim 1.
  3.  前記駆動制御回路により行アドレスのジャンプが所定行数以下で行われるように駆動される前記画素から出力される画素信号は破棄される
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a pixel signal output from the pixel driven so that a jump of a row address is performed by a predetermined number of rows or less by the drive control circuit is discarded.
  4.  前記駆動制御回路は、前記有効画素領域に配置されている前記画素に対する前記リード動作が開始されるタイミングより前の所定期間において、前記無効画素領域に配置されている前記画素に対する前記リード動作の対象とする行アドレスのジャンプが所定行数以下の幅で行われるように駆動を制御する
     請求項1に記載の固体撮像素子。
    The drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period before the timing when the read operation for the pixels arranged in the effective pixel region is started. The solid-state imaging device according to claim 1, wherein driving is controlled so that a jump of a row address is performed with a width equal to or less than a predetermined number of rows.
  5.  前記駆動制御回路は、前記有効画素領域に配置されている前記画素に対する前記リード動作が終了されたタイミングより後の所定期間において、前記無効画素領域に配置されている前記画素に対する前記リード動作の対象とする行アドレスのジャンプが所定行数以下の幅で行われるように駆動を制御する
     請求項1に記載の固体撮像素子。
    The drive control circuit is a target of the read operation for the pixels arranged in the invalid pixel region in a predetermined period after the timing when the read operation for the pixels arranged in the effective pixel region is completed. The solid-state imaging device according to claim 1, wherein driving is controlled so that a jump of a row address is performed with a width equal to or less than a predetermined number of rows.
  6.  前記駆動制御回路は、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれの前記画像においても前記有効画素領域の前記画素から画素信号を読み出すリード動作が行われていないときに、前記リード動作の対象とする前記画素の行アドレスを、前記有効画素領域に対して垂直方向の上方および下方に配置されている前記無効画素領域の一方から他方にジャンプするように駆動を制御する
     請求項1に記載の固体撮像素子。
    The drive control circuit does not perform a read operation of reading a pixel signal from the pixels in the effective pixel region in any of the plurality of images captured in the first driving method. Sometimes, the drive is performed so that the row address of the pixel to be read is jumped from one of the invalid pixel regions arranged above and below in the vertical direction to the effective pixel region to the other. The solid-state imaging device according to claim 1 to be controlled.
  7.  複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
     前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
     を備える固体撮像素子の駆動方法であって、
     前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
     ステップを含む駆動方法。
    An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
    A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A driving control circuit for controlling the solid-state imaging device,
    When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, the driving method includes a step of controlling the driving so that the jump of the row address of the pixel that is the target of the read operation for the other image is equal to or less than a predetermined number of rows.
  8.  複数の画素が行列状に配置されており、複数の前記画素のうち、画像の構築に用いられる画素信号を出力する前記画素である有効画素が配置される有効画素領域、並びに、前記有効画素領域に対して垂直方向の上方および下方の少なくとも一方に配置され、前記有効画素とは異なる前記画素である無効画素が配置される無効画素領域が設けられる画素領域と、
     前記画素領域に配置されている前記画素を行ごとに駆動するための駆動信号を出力し、1フレーム時間内に複数枚の画像を順次撮像する第1の駆動方法、および、1列に配置される前記画素を複数の系統に分け、前記画素から出力される画素信号をデジタル信号に変換する変換処理を前記系統ごとに切り替えて並列的に行う第2の駆動方法を組み合わせて前記画素の駆動を制御する駆動制御回路と
     を備え、
     前記駆動制御回路が、前記第1の駆動方法において撮像される前記複数枚の画像のうちの、いずれかの前記画像について前記有効画素領域の前記画素から画素信号を読み出すリード動作を行っているときに、他の前記画像について前記リード動作の対象とする前記画素の行アドレスのジャンプが所定行数以下となるように駆動を制御する
     固体撮像素子を備える電子機器。
    An effective pixel area in which a plurality of pixels are arranged in a matrix, and an effective pixel that is a pixel that outputs a pixel signal used to construct an image among the plurality of pixels, and the effective pixel area A pixel area provided with an invalid pixel area in which an invalid pixel that is the pixel different from the effective pixel is disposed at least one of the upper and lower sides in the vertical direction with respect to
    A first driving method for outputting a driving signal for driving the pixels arranged in the pixel area for each row and sequentially capturing a plurality of images within one frame time, and arranged in one column The pixel is divided into a plurality of systems, and the pixel is driven by combining a second driving method in which conversion processing for converting a pixel signal output from the pixel into a digital signal is performed for each system in parallel. A drive control circuit to control,
    When the drive control circuit performs a read operation of reading a pixel signal from the pixels in the effective pixel region for any one of the plurality of images picked up by the first driving method. In addition, an electronic device including a solid-state imaging device that controls driving so that a jump of a row address of the pixel that is a target of the read operation for another image is equal to or less than a predetermined number of rows.
PCT/JP2017/014894 2016-04-26 2017-04-12 Solid-state imaging element, driving method, and electronic device WO2017187975A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087752A JP2017199993A (en) 2016-04-26 2016-04-26 Solid-state image pick-up device, drive method, and electronic apparatus
JP2016-087752 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017187975A1 true WO2017187975A1 (en) 2017-11-02

Family

ID=60160535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014894 WO2017187975A1 (en) 2016-04-26 2017-04-12 Solid-state imaging element, driving method, and electronic device

Country Status (2)

Country Link
JP (1) JP2017199993A (en)
WO (1) WO2017187975A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165051A (en) * 2008-01-10 2009-07-23 Canon Inc Solid-state imaging apparatus, imaging system, and driving method of solid-state imaging apparatus
JP2013055589A (en) * 2011-09-06 2013-03-21 Sony Corp Imaging device, control method, and imaging apparatus
JP2013081060A (en) * 2011-10-04 2013-05-02 Canon Inc Image composition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165051A (en) * 2008-01-10 2009-07-23 Canon Inc Solid-state imaging apparatus, imaging system, and driving method of solid-state imaging apparatus
JP2013055589A (en) * 2011-09-06 2013-03-21 Sony Corp Imaging device, control method, and imaging apparatus
JP2013081060A (en) * 2011-10-04 2013-05-02 Canon Inc Image composition device

Also Published As

Publication number Publication date
JP2017199993A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
KR102547435B1 (en) Imaging element, imaging method and electronic apparatus
JP5850680B2 (en) Imaging apparatus and control method thereof
JP6922889B2 (en) Solid-state image sensor, drive method, and electronic equipment
WO2017169885A1 (en) Imaging device, drive method, and electronic device
WO2016114153A1 (en) Solid-state image capturing device, drive method, and electronic instrument
US10313588B2 (en) Image capturing system and control method of image capturing system
US9392193B2 (en) Image pickup apparatus, control method therefor and image pickup system
WO2018025658A1 (en) Image capture element, drive method, and electronic device
WO2017082090A1 (en) Image capturing element, image capturing method and electronic device
JP7091052B2 (en) Image sensor and image sensor
WO2018012316A1 (en) Solid-state imaging element, method for operating solid-state imaging element, imaging device, and electronic device
JP5106055B2 (en) Imaging apparatus and flicker detection method thereof
WO2017187975A1 (en) Solid-state imaging element, driving method, and electronic device
WO2016208416A1 (en) Solid-state image capturing device and electronic instrument
WO2020095659A1 (en) Solid-state imaging device and electronic apparatus
WO2015008635A1 (en) Solid-state imaging element, method for driving same, and electronic apparatus
JP6903417B2 (en) Solid-state image sensor and control method, and electronic equipment
JP2011182321A (en) Solid-state imaging apparatus, driving method and imaging apparatus
WO2019216029A1 (en) Imaging device, electronic apparatus, and drive method
JP2016187072A (en) Image sensor, processing method and electronic apparatus
WO2020039909A1 (en) Solid-state imaging element and electronic device
JP2009124239A (en) Imaging apparatus, and flicker detection method therefor
WO2016190127A1 (en) Image sensor, processing method and electronic device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789262

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789262

Country of ref document: EP

Kind code of ref document: A1