WO2020039782A1 - Automatic traveling system for work vehicle - Google Patents

Automatic traveling system for work vehicle Download PDF

Info

Publication number
WO2020039782A1
WO2020039782A1 PCT/JP2019/027385 JP2019027385W WO2020039782A1 WO 2020039782 A1 WO2020039782 A1 WO 2020039782A1 JP 2019027385 W JP2019027385 W JP 2019027385W WO 2020039782 A1 WO2020039782 A1 WO 2020039782A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
vehicle
vehicle speed
work vehicle
distance
Prior art date
Application number
PCT/JP2019/027385
Other languages
French (fr)
Japanese (ja)
Inventor
健太 池乗
優飛 兒玉
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2020039782A1 publication Critical patent/WO2020039782A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track

Definitions

  • the present invention relates to an automatic traveling system for a work vehicle that makes a work vehicle automatically travel along a target route using a satellite positioning system.
  • a work vehicle autonomous travel work vehicle
  • a target route travel route generated according to a work place (field).
  • the control device operates the speed change means to reduce the vehicle speed of the working vehicle to the turning speed (headland turning speed).
  • a control device for a work vehicle that is configured to turn the work vehicle at a turning speed in a turning area by decelerating the work vehicle to the turning speed (for example, see Patent Document 1).
  • a target route used when a work vehicle such as a tractor is automatically driven includes a plurality of parallel routes arranged in parallel in a traveling area divided in a work place, and a plurality of parallel paths arranged on an outer edge side of the traveling area. And a plurality of turning paths connecting the parallel paths in the running order.
  • Each of the parallel paths includes a work path for making the work vehicle work in the work area set at the center side of the travel area, and a work area where the work vehicle turns from the work path in the turn area set on the outer edge side of the travel area.
  • a non-work route in which the work vehicle travels in a work stopped state before reaching the route is included.
  • the turning area becomes narrower, and the vehicle speed of the work vehicle is reduced after the work vehicle enters the turning area.
  • the braking distance required to lower the Therefore the vehicle speed of the work vehicle in the work area is reduced, and the work efficiency is reduced.
  • the vehicle speed of the work vehicle on the work route is increased while the work area is widened, the vehicle speed of the work vehicle is changed from the turn of the work vehicle to the turning speed (headland turning) after the work vehicle enters the turning region. Can no longer be reduced.
  • the work vehicle may protrude from the work place during turning and come into contact with other objects such as ridges.
  • a main problem of the present invention is to improve the work efficiency by increasing the speed of a work vehicle in a work area while widening the work area in the work area.
  • a first characteristic configuration of the present invention is an automatic traveling system for a work vehicle, A vehicle speed control unit that controls the vehicle speed of the work vehicle; A storage unit for storing a target route generated according to the traveling area divided in the work place, An automatic travel control unit that automatically travels the work vehicle according to the target route using a satellite positioning system,
  • the target path includes a plurality of parallel paths arranged in parallel in the traveling area, and a plurality of turning paths arranged at an outer edge of the traveling area and connecting the plurality of parallel paths in the traveling order.
  • the automatic traveling control unit is configured to measure a separation distance from the work vehicle to an outer peripheral edge of the work place in a traveling direction of the work vehicle when the work vehicle is automatically traveling on the parallel path.
  • Part The vehicle speed control unit has a vehicle speed limiting unit that limits the vehicle speed of the work vehicle according to the separation distance.
  • the vehicle speed limiting unit is configured to control the separation distance measured by the separation distance measurement unit regardless of the work area or the turning area set in the work place.
  • the vehicle speed of the work vehicle is limited according to the condition.
  • the separation distance measured by the separation distance measurement unit is long, so the vehicle speed limiting unit is The speed limit of the work vehicle on the reciprocating route is increased according to the separation distance. That is, it is possible to improve work efficiency by increasing the vehicle speed of the work vehicle.
  • the separation distance measured by the separation distance measurement unit becomes short. Accordingly, the speed limit of the work vehicle in the reciprocating path is reduced so that the braking distance of the work vehicle is shorter than the separation distance.
  • the vehicle speed limiting unit adjusts the outer periphery of the work place according to the separation distance at that time.
  • the speed limit at which the work vehicle can be stopped by braking is set to reduce the vehicle speed of the work vehicle.
  • the work vehicle can be prevented from contacting another object such as a ridge due to the protrusion.
  • a second characteristic configuration of the present invention is:
  • the target route includes a target vehicle speed when the work vehicle automatically travels on the parallel route,
  • the vehicle speed limiter calculates a comparative braking distance shorter than the separation distance by a set distance, and while the braking distance of the work vehicle according to the target vehicle speed is shorter than the comparative braking distance, the vehicle speed of the work vehicle Performs a first vehicle speed limiting process for limiting the vehicle speed of the work vehicle so that the target vehicle speed is maintained, and when a braking distance of the work vehicle according to the target vehicle speed becomes equal to the comparative braking distance, And a second vehicle speed limiting process for reducing the vehicle speed of the work vehicle from the target vehicle speed in accordance with the decrease in the separation distance so that the brake distance of the work vehicle is maintained at the comparative brake distance.
  • the vehicle speed limitation unit performs the first vehicle speed limitation process to execute the vehicle speed limitation of the work vehicle. To the target vehicle speed.
  • fuel efficiency may be degraded due to unnecessarily increasing the vehicle speed of the work vehicle, and the work vehicle may be less able to follow the target route when the work vehicle automatically travels along the target route. Can be avoided.
  • the vehicle speed restriction unit performs the second vehicle speed restriction process, thereby performing the braking distance of the work vehicle.
  • the vehicle speed of the work vehicle is limited so that the comparative braking distance becomes shorter as the separation distance decreases.
  • the vehicle speed of the work vehicle can be sufficiently reduced.
  • the automatic traveling control unit stops the traveling of the work vehicle near the outer periphery of the work place according to the parallel route, or when the work vehicle turns around according to the turning route, the work vehicle protrudes from the work place and ridges or the like. The possibility of contact with other objects can be more reliably avoided.
  • a third characteristic configuration of the present invention is:
  • the storage unit includes a turning radius of the work vehicle, a work width of the work vehicle, a margin width set between an outer peripheral edge of the work place and the traveling area, the parallel path, and the turn path.
  • Each connection point with is stored,
  • the separation distance measurement unit determines a turning radius of the work vehicle, a half length of the work width of the work vehicle, and a margin of the work place. By adding the width, the fixed separation distance from the connection point on the end side of the parallel path to the outer peripheral edge of the work site is calculated and stored in the storage unit. Then, while the work vehicle is automatically traveling on the parallel route, the separation distance measurement unit calculates the untraveled distance between the current position of the work vehicle and the connection point on the end side of the parallel route, The above-mentioned fixed distance is added to this untraveled distance to measure the above-mentioned distance.
  • the separation distance measurement unit calculates the untraveled distance that changes according to the current position of the work vehicle on the parallel route obtained using the satellite positioning system, and the fixed separation distance that is a fixed value stored in the storage unit.
  • the separation distance will be measured based on the distance.
  • the calculation load required for measuring the separation distance can be reduced, and as a result, the separation distance can be measured quickly and accurately.
  • a fourth characteristic configuration of the present invention is:
  • the storage unit stores a plurality of shape specifying points in the work place acquired by using the satellite positioning system, and a shape specifying line that connects the plurality of shape specifying points to specify the shape of the work place.
  • the separation distance measurement unit is configured to measure a distance from a current position of the work vehicle on the parallel path acquired using the satellite positioning system to a shape identification line located on an extension of the parallel path in the traveling direction of the work vehicle. The point is that the distance is measured as the separation distance.
  • the separation distance measuring unit can relatively easily measure the separation distance while using the shape specifying line acquired when specifying the shape of the work place using the satellite positioning system. .
  • a fifth characteristic configuration of the present invention is:
  • the work vehicle is provided with a distance sensor that measures a distance to a distance measurement target existing in a traveling direction of the work vehicle,
  • the separation distance measurement unit is configured to measure the separation distance based on a measurement result of the distance sensor.
  • the separation distance can be accurately measured based on the measurement result of the distance sensor without using the satellite positioning system.
  • FIG. 2 is a block diagram showing a schematic configuration of an automatic traveling system for a work vehicle.
  • Diagram showing an example of a target route generated by a target route generation unit Flow chart of target route generation control Explanatory drawing about measurement of separation distance by separation distance measurement unit Graph showing the relationship between separation distance and vehicle speed Explanatory diagram regarding measurement of separation distance by separation distance measurement unit and measurement of comparative braking distance by vehicle speed limit unit Graph showing the relationship between separation distance and upper limit speed Flowchart of vehicle speed limit control Explanatory drawing about measurement of separation distance by separation distance measurement part in another embodiment.
  • the automatic traveling system for a work vehicle according to the present invention includes a work vehicle other than a tractor, such as a riding mower, a riding rice transplanter, a combine, a wheel loader, a snowplow, and an unmanned mowing machine. It can be applied to work vehicles.
  • the tractor 1 exemplified in this embodiment is configured to be able to automatically travel in a field A or the like, which is an example of a work place, by an automatic travel system for a work vehicle.
  • the automatic traveling system is a mobile communication terminal that is an example of an automatic traveling unit 2 mounted on a tractor 1 and a wireless communication device that is set to be able to perform wireless communication with the automatic traveling unit 2. 3, etc.
  • a tablet-type personal computer, a smartphone, or the like having a multi-touch display unit (for example, a liquid crystal panel) 4 that enables various kinds of information display and input operation related to automatic driving can be employed. it can.
  • the tractor 1 has a rotary tilling device 6, which is an example of a working device, connected to a rear portion of the tractor 1 via a three-point link mechanism 5 so as to be able to move up and down and roll.
  • a rotary tilling device 6 which is an example of a working device
  • various working devices such as a plow, a disk harrow, a cultivator, a subsoiler, a sowing device, a spraying device, and a mowing device can be connected to the rear portion of the tractor 1 in place of the rotary tilling device 6.
  • the tractor 1 has drivable left and right front wheels 10 that can be steered, left and right drivable rear wheels 11, a cabin 13 forming a riding type driving unit 12, and a common rail system.
  • Electronically controlled diesel engine (hereinafter referred to as engine) 14 transmission unit 15 for shifting power from engine 14, fully hydraulic power steering unit 16 for steering left and right front wheels 10, and braking for left and right rear wheels 11 Brake unit 17, an electro-hydraulic control type working clutch unit 19 for intermittently transmitting power to the rotary tilling device 6, an electro-hydraulic control type lifting / lowering drive unit 20 for raising and lowering the rotary tilling device 6, and the rotary tilling device 6 in the roll direction.
  • Rolling drive unit 21 of the electro-hydraulic control type that drives the tractor 1 in various setting states and
  • a vehicle state detecting device 23 including various sensors and switches for detecting an operation state and the like, a positioning unit 24 for measuring a current position p0 and a current direction of the tractor 1, and a vehicle-mounted control unit 40 having various control units.
  • the engine 14 may be an electronically controlled gasoline engine having an electronic governor.
  • the power steering unit 16 may be an electric type having an electric motor.
  • the operating unit 12 includes operating levers such as an accelerator lever and a shift lever, and operating pedals such as an accelerator pedal and a clutch pedal, and a steering wheel 30 for manual steering shown in FIG.
  • a seat 31 and a multi-touch type liquid crystal monitor 32 that enables various information displays and input operations are provided.
  • the transmission unit 15 includes an electronically controlled continuously variable transmission 36 for shifting the power from the engine 14, and the power after shifting by the continuously variable transmission 36 for forward and reverse.
  • a forward / reverse switching device 37 of an electro-hydraulic control type for switching to the other.
  • the continuously variable transmission 36 includes an I-HMT (Integrated Hydro-static Mechanical Transmission) which is an example of a hydraulic mechanical continuously variable transmission having higher transmission efficiency than a hydrostatic continuously variable transmission (HST).
  • HST hydrostatic continuously variable transmission
  • the forward / reverse switching device 37 includes a hydraulic clutch for connecting / disconnecting forward power, a hydraulic clutch for connecting / disconnecting reverse power, and an electromagnetic valve for controlling the flow of oil to the hydraulic clutch.
  • the continuously variable transmission 36 is an HMT (Hydraulic Mechanical Transmission) which is an example of a hydraulic mechanical continuously variable transmission, a hydrostatic continuously variable transmission, or a belt type continuously variable transmission.
  • HMT Hydro Mechanical Transmission
  • An apparatus may be employed.
  • the transmission unit 15 includes an electro-hydraulic control type stepped transmission having a plurality of shift hydraulic clutches and a plurality of electromagnetic valves for controlling the flow of oil to them. May be included.
  • the brake unit 17 operates the left and right brakes for individually braking the left and right rear wheels 11 and the left and right brakes in conjunction with the depression of the left and right brake pedals provided in the driving unit 12.
  • a swing brake system to be activated is included.
  • the on-vehicle control unit 40 includes an engine control unit 41 for controlling the engine 14, a vehicle speed control unit 42 for controlling the switching of the tractor 1 between the vehicle speed V and forward / backward, and a steering for controlling the steering.
  • a non-volatile in-vehicle storage unit 47 for storing a target route for automatic traveling generated according to the traveling area divided in the work place, and the like.
  • Each of the control units 41 to 46 is configured by an electronic control unit in which a microcontroller and the like are integrated, various control programs, and the like.
  • Each of the control units 41 to 46 is communicably connected via a CAN (Controller Area Network).
  • the vehicle state detection device 23 is a general term for various sensors and switches provided in each part of the tractor 1.
  • the vehicle state detecting device 23 includes an accelerator sensor for detecting an operating position of an accelerator lever, a first position sensor for shifting for detecting an operating position of a shift lever, and a forward / backward movement for detecting an operating position of a reversing lever for forward / backward switching.
  • a second position sensor for switching, a rotation sensor for detecting the output rotation speed of the engine 14, a vehicle speed sensor for detecting the vehicle speed V of the tractor 1, a steering angle sensor for detecting the steering angle of the front wheels 10, and the like are included. I have.
  • the engine control unit 41 executes an engine speed maintenance control that maintains the engine speed at a speed corresponding to the operation position of the accelerator lever based on the detection information from the accelerator sensor and the detection information from the rotation sensor. I do.
  • the vehicle speed control unit 42 performs continuously variable transmission based on the detection information from the first position sensor and the detection information from the vehicle speed sensor so that the vehicle speed V of the tractor 1 is changed to a speed corresponding to the operation position of the shift lever.
  • Vehicle speed control for controlling the operation of the device 36 and forward / reverse switching control for switching the transmission state of the forward / reverse switching device 37 based on the detection information from the second position sensor are executed.
  • the vehicle speed control includes a deceleration stop process for stopping the running of the tractor 1 by controlling the speed of the continuously variable transmission 36 to the zero speed state when the shift lever is operated to the zero speed position.
  • the positioning unit 24 is a satellite navigation device 25 that measures the current position p0 and the current direction of the tractor 1 using a GPS (Global Positioning System), which is an example of a satellite positioning system (NSS). It has an inertial measurement unit (IMU: Inertial Measurement Unit) 26 that has a gyroscope for the axis, an acceleration sensor in three directions, and measures the attitude and orientation of the tractor 1. Positioning methods using GPS include DGPS (Differential GPS: relative positioning method) and RTK-GPS (Real Time Kinematic GPS: interference positioning method). In the present embodiment, RTK-GPS suitable for positioning of a moving object is adopted. Therefore, as shown in FIG. 1, a reference station 73 that enables positioning by RTK-GPS is installed at a known position around the field.
  • GPS Global Positioning System
  • IMU Inertial Measurement Unit
  • the tractor 1 and the reference station 73 each include a GPS antenna 75, 76 for receiving a radio wave transmitted from a GPS satellite 74 (see FIG. 1), and the tractor 1 and the reference station 73.
  • communication modules 77 and 78 that enable wireless communication of each piece of information including positioning information between the two.
  • the satellite navigation device 25 of the positioning unit 24 uses the positioning information obtained by the GPS antenna 75 on the tractor side receiving the radio waves from the GPS satellites 74 and the GPS antenna 76 on the base station side to transmit the radio waves from the GPS satellites 74.
  • the current position p0 and the current azimuth of the tractor 1 can be measured with high accuracy based on the positioning information obtained by receiving the information.
  • the positioning unit 24 has the satellite navigation device 25 and the inertial measurement device 26, and measures the current position p0, the current azimuth, and the attitude angle (the yaw angle, the roll angle, and the pitch angle) of the tractor 1 with high accuracy. be able to.
  • the inertial measurement device 26 of the positioning unit 24, the GPS antenna 75, and the communication module 77 are included in the antenna unit 79 shown in FIG.
  • the antenna unit 79 is disposed at the center on the left and right in the upper part on the front side of the cabin 13.
  • the portable communication terminal 3 has a position control between an electronic control unit in which a microcontroller and the like are integrated, a terminal control unit 80 having various control programs, and a communication module 77 on the tractor side.
  • a communication module 90 that enables wireless communication of each piece of information including information is provided.
  • the terminal control unit 80 includes a display control unit 81 that controls the operation of the display unit 4, a target route generation unit 82 that generates a target route P for automatic driving, a target route P generated by the target route generation unit 82, and the like. And a non-volatile terminal storage unit 83 for storing the information.
  • the terminal storage unit 83 stores, as various types of information used for generating the target route P, vehicle body information such as the turning radius R and the working width W1 of the tractor 1 and field information such as the shape and size of the field A. Is stored.
  • the field information includes a plurality of shapes in the field A obtained by using the satellite positioning system when the tractor 1 is moved along the outer periphery of the field A in order to specify the shape and size of the field A.
  • Four corner points Ap1 to Ap4 serving as specific points (shape specifying coordinates), and a shape specifying line for connecting the corner points Ap1 to Ap4 to specify the shape and size of the field A AL (see FIG. 10).
  • the target route generation unit 82 determines the turning radius R and the work width W1 of the tractor 1 included in the vehicle body information, and the shape and size of the field A included in the field information.
  • Target route generation control for generating the target route P based on the target route P is performed. Specifically, as shown in FIG. 3, for example, in a rectangular field A, a start point p1 and an end point p2 of automatic traveling are set, and the work traveling direction of the tractor 1 is a direction along a short side of the field A. 3, the target route generation unit 82 first sets the field A to the margin area A1 adjacent to the outer peripheral edge of the field A, and positions the field A inside the margin area A1.
  • a first partitioning process (step # 1 in FIG.
  • step # 4 for partitioning into the traveling region A2 to be performed.
  • the target route generation unit 82 adds the working width W1 in the direction along the long side of the field A to the traveling area A2 divided by the first sorting process.
  • a parallel path generation process (step # 2 in FIG. 4) for generating a plurality of parallel paths P1 arranged in parallel at a predetermined interval, and a plurality of parallel paths P1 arranged at the outer edge of each long side in the traveling area A2.
  • Turning path generation processing (step # 3 in FIG. 4) for generating a plurality of turning paths P2 connecting the parallel paths P1 in the running order.
  • the traveling area A2 divided by the first division processing is set between a pair of non-operation areas A2a set at outer edges of the long sides of the traveling area A2 and an operation set between the pair of non-operation areas A2a.
  • a second partitioning process (step # 4 in FIG. 4) for partitioning into the area A2b is performed, and each of the parallel paths P1 generated in the parallel path generating processing is divided into a non-work path P1a included in the pair of non-work areas A2a.
  • a path segmentation process (step # 5 in FIG. 4) for segmentation into the work route P1b included in the work area A2b is performed.
  • the target route generation unit 82 can generate a target route P suitable for automatically driving the tractor 1 in the field A shown in FIG.
  • each non-work route P1a and each turning route P2 are routes on which the tractor 1 automatically travels without performing the tillage work
  • each of the above-described work routes P1b is , A route in which the tractor 1 automatically travels while performing the tillage work.
  • the start point p3 of each work path P1b is a work start point at which the tractor 1 starts tillage work
  • the end point p4 of each work path P1b is a work stop point at which the tractor 1 stops tillage work.
  • Each of the non-work paths P1a includes a work stop point p4 before the tractor 1 turns on the turning path P2 and a work start point p3 after the tractor 1 turns on the turning path P2.
  • each non-work path P1a is determined based on vehicle body information of the tractor 1 including the positional relationship of the rotary tilling device 6 in the tractor 1.
  • the connection point p5 on the end side of each parallel path P1 is the turning start point of the tractor 1
  • each of the parallel paths A connection point p6 on the starting end side in P1 is a turning end point of the tractor 1.
  • the start point p3 and the end point p4 of each work path P1b, the connection points p5 and p6 between the parallel path P1 and each turn path P2 in the target path P, and the length L1 of each non-work path P1a , Etc. are included in the target route P stored in the terminal storage unit 83.
  • the above-described margin area A1 is formed by the rotary tilling device 6 or the like adjacent to the field A. This is an area secured between the outer peripheral edge of the field A and the traveling area A2 in order to prevent contact with other objects. Then, the distance between the outer periphery of the field A and the traveling area A2 in the margin area A1 is stored in the terminal storage unit 83 as a margin width W2 which is one of the field information.
  • Each of the non-work areas A2a described above is a ridge turn area for the tractor 1 to turn from the current work path P1b to the next work path P1b when the tractor 1 ridges on the field A.
  • the sum of the length L1 of the non-working path (positioning path) P1a, the turning radius R of the tractor 1, and the half length W1 / 2 of the working width W1 of the tractor 1 is a non-working distance.
  • the ridge turning width W3 between the margin area A1 and the work area A2b in the work area (ridge turning area) A2a, and the ridge turning width W3 is stored in the terminal storage unit 83 as one of the field information. ing.
  • the target route P shown in FIGS. 3, 5, and 7 is merely an example, and the target route generating unit 82 is configured to output different vehicle body information depending on the model of the tractor 1, the type of work, and the like. Based on field information such as the shape and size of the different fields A, various target paths P suitable for the fields can be generated.
  • the target route P is stored in the terminal storage unit 83 in a state where the target route P is associated with vehicle body information, field information, and the like, and can be displayed on the display unit 4 of the mobile communication terminal 3.
  • the target route P includes a first vehicle speed V1 (see FIG. 6) set as the target vehicle speed of the tractor 1 in each parallel route P3, and a second vehicle speed V2 (see FIG. 6) set as the target vehicle speed of the tractor 1 in each turning route P2b. 6), the front wheel steering angle in each parallel path P1, the front wheel steering angle in each turning path P2b, and the like.
  • the terminal control unit 80 divides the target route P into a plurality of pieces of divided route information for each predetermined distance, and the traveling distance of the tractor 1 reaches the predetermined distance from a stage before the tractor 1 starts automatic traveling. Each time, a predetermined number of divided route information according to the traveling order of the tractor 1 may be sequentially transmitted from the terminal storage unit 83 to the on-vehicle control unit 40.
  • the automatic traveling control unit 46 In the in-vehicle control unit 40, detection information from various sensors and switches included in the vehicle state detection device 23 is input to the automatic traveling control unit 46 via the vehicle speed control unit 42, the steering control unit 43, and the like. ing. Thereby, the automatic traveling control unit 46 can monitor various setting states in the tractor 1 and operation states of the respective units.
  • the automatic traveling control unit 46 starts the automatic traveling by operating the display unit 4 of the mobile communication terminal 3 by a user such as a passenger or a manager outside the vehicle. Is issued, the positioning unit 24 starts the automatic traveling control for automatically traveling the tractor 1 according to the target route P while acquiring the current position p0 and the current direction of the tractor 1.
  • the automatic cruise control by the automatic cruise control unit 46 includes an automatic cruise control process for transmitting an automatic cruise control command relating to the engine 14 to the engine control unit 41, and a cruise control for automatic cruise control relating to switching of the vehicle speed V of the tractor 1 and forward / backward travel.
  • the automatic traveling control unit 46 sends an engine speed change command to instruct the engine control unit 41 to change the engine speed based on the set speed included in the target route P, and the like. Send.
  • the engine control unit 41 executes an engine speed change control for automatically changing the engine speed in response to various control commands for the engine 14 transmitted from the automatic traveling control unit 46.
  • the automatic traveling control unit 46 includes a shift operation command for instructing a shift operation of the continuously variable transmission 36 based on the target vehicle speed included in the target route P, and a shift operation command included in the target route P.
  • a forward / reverse switching command for instructing a forward / backward switching operation of the forward / backward switching device 37 based on the traveling direction of the tractor 1 or the like is transmitted to the vehicle speed control unit 42.
  • the vehicle speed control unit 42 automatically controls the operation of the continuously variable transmission 36 according to various control commands related to the continuously variable transmission 36 and the forward / reverse switching device 37 transmitted from the automatic traveling control unit 46.
  • the control and the automatic forward / reverse switching control for automatically controlling the operation of the forward / backward switching device 37 are executed.
  • the vehicle speed control for example, when the target vehicle speed included in the target path P is zero speed, an automatic deceleration stop process for controlling the deceleration of the continuously variable transmission 36 to zero speed and stopping the tractor 1 is stopped. And so on.
  • the automatic traveling control unit 46 transmits to the steering control unit 43 a steering command for instructing steering of the left and right front wheels 10 based on the front wheel steering angle and the like included in the target path P. .
  • the steering control unit 43 controls the operation of the power steering unit 16 to steer the left and right front wheels 10 according to the steering command transmitted from the automatic traveling control unit 46, and sets the left and right front wheels 10
  • an automatic brake turning control for operating the brake unit 17 to operate the brake inside the turning is executed.
  • the automatic traveling control unit 46 performs a work start command for instructing the rotary tilling apparatus 6 to switch to the work state based on the work start point p3 included in the target path P, and a target path.
  • a work stop command for instructing switching of the rotary tillage device 6 to the non-working state based on the work stop point p4 included in P is transmitted to the work device control unit 44.
  • the work device control unit 44 controls the operation of the lifting drive unit 20 and the work clutch unit 19 according to various control commands related to the rotary till device 6 transmitted from the automatic traveling control unit 46, and controls the rotary till device 6 to operate.
  • the automatic work start control that lowers the working height to the operation and the automatic work stop control that stops the rotary tilling device 6 and raises the height to the non-working height are executed.
  • the working device control unit 44 raises and lowers the rotary tilling device 6 based on the detection of the tilling depth sensor that detects the tilling depth by the rotary tilling device 6.
  • Automatic tillage depth maintenance control for controlling the operation of the unit 20 to maintain the tillage depth of the rotary tillage device 6 at the set depth, and an inclination sensor for detecting the roll angle of the tractor 1 and an acceleration sensor for the inertial measurement device 26. Based on the detection, an automatic roll angle maintaining control for controlling the operation of the rolling drive unit 21 to maintain the inclined posture in the roll direction of the rotary tilling device 6 at a set posture (for example, a horizontal posture) is executed.
  • the automatic traveling unit 2 includes the power steering unit 16, the brake unit 17, the work clutch unit 19, the lifting / lowering drive unit 20, the rolling drive unit 21, the vehicle state detection device 23, the positioning unit 24, the on-vehicle control unit 40, And a communication module 77.
  • the tractor 1 can be automatically driven with high accuracy in accordance with the target route P, and the rotary tilling device 6 can properly perform tilling.
  • the automatic traveling control unit 46 starts from the front end of the tractor 1 in the traveling direction of the tractor 1.
  • a separation distance measuring unit 46A for measuring a separation distance D1 to the outer peripheral edge of the field A is provided.
  • the vehicle speed control unit 42 has a vehicle speed limiting unit 42A that limits the vehicle speed V of the tractor 1 according to the separation distance D1 measured by the separation distance measuring unit 46A.
  • the vehicle body information stored in the in-vehicle storage unit 47 includes the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75 in a plan view of the tractor 1, the relationship between the vehicle speed V of the tractor 1 and the braking distance. And the map shown.
  • the separation distance measurement unit 46A includes the current position p0 of the tractor 1 on the parallel path P1 acquired using the satellite positioning system, and the parallel path P1 stored in the in-vehicle storage unit 47. , The turning radius R of the tractor 1, the working width W1 of the tractor 1, the margin width W2 of the field A, and the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75. And the separation distance D1 is measured based on
  • the separation distance measuring unit 46A determines that the turning radius R of the tractor 1 and half the working width W1 of the tractor 1 By adding W1 / 2 and the margin width W2 of the field A, a fixed separation distance D3 from the terminal point p5 on the parallel path P1 to the outer peripheral edge of the field A is calculated and stored in the in-vehicle storage unit 47. . Then, while the tractor 1 is automatically traveling on the parallel route P1 by the automatic traveling control, the separation distance measuring unit 46A calculates the distance from the current position p0 of the tractor 1 and the connection point p5 on the end side of the parallel route P1. An untraveled distance D4 between them is calculated, and the above-described longitudinal length L2 is subtracted from the sum of the untraveled distance D4 and the fixed clearance D3, thereby measuring the above-mentioned clearance D1.
  • the separation distance measuring unit 46A uses the untraveled distance D4 that changes according to the current position p0 of the tractor 1 on the parallel path P1 obtained using the satellite positioning system, and the fixed value stored in the in-vehicle storage unit 47.
  • the separation distance D1 is measured based on the above-mentioned fixed separation distance D3 and the front and rear length L2. Thereby, the calculation load required for measuring the separation distance D1 can be reduced, and as a result, the separation distance D1 can be measured quickly and accurately.
  • the separation distance measuring unit 46A sets the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75. Based on this, it may be configured to correct the deviation between the current position p0 of the tractor 1 and the front end position of the tractor 1. Further, the separation distance measuring unit 46A determines that the turning radius R of the tractor 1 and the half length W1 / 2 of the working width W1 of the tractor 1 before the tractor 1 automatically runs on the parallel path P1 by the automatic running control.
  • the fixed distance D3 obtained by adding the margin width W2 of the field A to the fixed distance D3, and subtracting the above-mentioned length L2 from the fixed distance D3 as a fixed value for measuring the distance, and storing it in the vehicle-mounted storage unit 47.
  • You may be comprised so that it may make it. In this case, the calculation load required for measuring the separation distance D1 can be further reduced.
  • the vehicle speed limiting unit 42A controls the vehicle speed V of the tractor 1 according to the separation distance D1 measured by the separation distance measuring unit 46A while the tractor 1 is automatically running on the parallel path P1 by the automatic running control.
  • the vehicle speed limiting unit 42A first determines the separation distance D1 measured by the separation distance measurement unit 46A.
  • a braking distance calculation process (step # 10 in FIG. 9) for calculating a comparative braking distance D2 shorter than the separation distance D1 by the set distance D5.
  • the calculated relative braking distance D2 is, as shown in FIG. 7, a travel limit at which the current position p0 of the tractor 1 is an intersection between the outer peripheral edge of the field A located in the traveling direction of the tractor 1 and the parallel path P1.
  • the vehicle speed limiting unit 42A sets the vehicle speed V of the tractor 1 according to the comparative braking distance D2 as the upper limit speed Vmax based on the comparative braking distance D2 obtained in the braking distance calculation process and the above-described map. (Step # 11 in FIG. 9) is performed.
  • the upper limit speed Vmax set here becomes slower as the separation distance D1 becomes shorter with the automatic traveling of the tractor 1 on the parallel path P1, and the front end position of the tractor 1 becomes the traveling limit.
  • the vehicle speed limiting unit 42A compares the upper limit speed Vmax set in the upper limit speed setting process with the first vehicle speed V1 which is the target vehicle speed of the tractor 1 in the parallel path P1 (step # 12 in FIG. 9). I do. Then, as shown in FIG. 6, the braking distance of the tractor 1 corresponding to the first vehicle speed V1 is shorter than the comparative braking distance D2 until the upper limit speed Vmax decreases to the first vehicle speed V1 in the comparison processing. Therefore, the vehicle speed limiting unit 42A performs a first vehicle speed limiting process (step # 13 in FIG.
  • the vehicle speed limiting unit 42A performs a second vehicle speed limiting process (a second vehicle speed limiting process that reduces the vehicle speed V of the tractor 1 from the first vehicle speed V1 in accordance with the decrease in the separation distance D1 so that the braking distance of the tractor 1 is maintained at the comparative braking distance D2. Step # 14) of FIG. 9 is performed.
  • the vehicle speed limiting unit 42A performs a determination process (step # 15 in FIG. 9) to determine whether the tractor 1 has reached the connection point (turning start point) p5 on the end side of the parallel path P1. Then, the vehicle speed limiting unit 42A continues the second vehicle speed limiting process until it is determined in the determination process that the current position p0 of the tractor 1 has reached the connection point (turning start point) p5. The vehicle speed limiting unit 42A ends the vehicle speed limiting control when it is determined in the determination process that the current position p0 of the tractor 1 has reached the connection point (turning start point) p5.
  • the vehicle speed V of the tractor 1 which has been reduced in accordance with the decrease in the separation distance D1 due to the second vehicle speed limiting process, is changed from the current position p0 of the tractor 1 to the connection point (turning start point) p5 as shown in FIG. , The vehicle stops at the vehicle speed corresponding to the separation distance D1 obtained at this time.
  • the vehicle speed control unit 42 executes the vehicle speed control, and changes the vehicle speed V of the tractor 1 while the tractor 1 is automatically traveling on the turning path P2b.
  • the second vehicle speed V2 (see FIG. 6), which is the target vehicle speed of the tractor 1 on the route P2b, is maintained.
  • the vehicle speed V of the tractor 1 is changed from the second vehicle speed V2 to the first vehicle speed V1, and the vehicle speed control is terminated to stop the vehicle speed control.
  • the vehicle speed limiting control by 42A is executed.
  • the vehicle speed limiting unit 42A Performs the first vehicle speed limiting process to limit the vehicle speed V of the tractor 1 to the first vehicle speed V1.
  • the vehicle speed V of the tractor 1 becomes unnecessarily high, so that the fuel efficiency is deteriorated, and the ability of the tractor 1 to follow the target route P when the tractor 1 automatically travels along the target route P is reduced. Can be avoided.
  • the vehicle speed limiting unit 42A performs the second vehicle speed limiting process, and performs the braking distance of the tractor 1.
  • the vehicle speed V of the tractor 1 is limited such that the vehicle speed V is maintained at the comparative braking distance D2 that becomes shorter as the separation distance D1 decreases.
  • a tractor 1 includes two lidar sensors (LiDAR Sensor: Light Detection and Range Sensor) which measure a distance to a measurement target in three dimensions using a laser and generate a three-dimensional image. ) 100 and 101 and left and right sonar units 102 for measuring the distance to the measurement object using ultrasonic waves.
  • LiDAR Sensor Light Detection and Range Sensor
  • the front rider sensor 100 looks down the front side of the tractor 1 from an obliquely upper side at the upper left and right center position on the front side of the cabin 13 where the above-described antenna unit 79 is disposed. It is arranged in a forward-lowering position. Thereby, the front rider sensor 100 is set so that the front side of the tractor 1 is the measurement range.
  • the rear rider sensor 101 is arranged at the center of the rear end of the cabin 13 in the upper right and left sides, with the rear side of the tractor 1 looking down diagonally from the upper side in a rearward downward posture. Thus, the rear rider sensor 101 is set such that the rear side of the tractor 1 is the measurement range.
  • the left and right sonar units 102 are attached to the left and right getting on and off steps disposed below the left and right sides of the cabin 13 in a left and right outward posture having a small depression angle. Accordingly, the left and right sonar units 102 are arranged at a relatively high position between the front wheel 10 and the rear wheel 11 in a state where the left and right outer sides of the tractor 1 are set to be in the measurement range.
  • the front and rear rider sensors 100 and 101 and the left and right sonar units 102 are connected to the automatic traveling control unit 46 of the on-vehicle control unit 40 via a CAN so that they can communicate with each other.
  • the automatic traveling control unit 46 can monitor the surroundings of the tractor 1 based on information from the front and rear rider sensors 100 and 101 and the left and right sonar units 102. Accordingly, for example, when the tractor 1 approaches another object such as a ridge adjacent to the field A, or when another object such as another work vehicle approaches the tractor 1, the automatic traveling control unit 46 The situation at that time can be accurately grasped, and vehicle speed control and automatic steering control suitable for the situation at that time can be executed. As a result, the possibility that the tractor 1 contacts another object can be avoided.
  • the work vehicle 1 may be configured to have a semi-crawler specification including left and right crawlers instead of the left and right rear wheels 11.
  • the work vehicle 1 may be configured as a full crawler specification including left and right crawlers in place of the left and right front wheels 10 and the left and right rear wheels 11.
  • the work vehicle 1 may be configured to have an electric specification including an electric motor instead of the engine 14.
  • the work vehicle 1 may be configured to have a hybrid specification including the engine 14 and the electric motor.
  • the separation distance measuring unit 46A determines the current position p0 of the tractor 1 on the parallel path P1 acquired using the satellite positioning system and the work site shape stored in the vehicle-mounted storage unit 47, as shown in FIG.
  • the distance from the current position p0 of the tractor 1 to the shape specifying line AL located on the extension of the parallel path P1 in the traveling direction of the tractor 1 is measured as the separation distance D1 based on the shape specifying line AL for use. It may be configured.
  • the separation distance measuring unit 46A may be configured to measure the separation distance D1 based on the measurement result of the front rider sensor 100 which is an example of the distance sensor. Note that a stereo camera or the like may be employed as the distance sensor.
  • the automatic traveling system for a working vehicle is, for example, a tractor, a riding mower, a riding rice transplanter, a combine, a wheel loader, a snowplow, and other riding working vehicles, and unmanned working vehicles such as unmanned mowers. Can be applied.
  • Reference Signs List 1 work vehicle 42 vehicle speed control unit 42A vehicle speed limit unit 46 automatic traveling control unit 46A separation distance measurement unit 47 storage unit 100 distance sensor A work place A2 running area Ap1 shape specification point Ap4 shape specification point AL shape specification line D1 separation distance D2 Comparison Braking distance D5 Set distance P Target route P1 Parallel route P2 Turning route R Turning radius V1 Target vehicle speed W Working width W2 Margin width p0 Current position p5 Connection point p6 Connection point

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

In the present invention, work efficiency is improved by increasing the vehicle speed of a work vehicle in a work area within a work field while the work area is widened. This automatic traveling system for a work vehicle has a vehicle speed control unit (42), a storage unit (47) for storing a target path, and an automatic traveling control unit (46) for causing a work vehicle (1) to perform automatic traveling according to the target path by use of a satellite positioning system. The target path includes a plurality of parallel paths arranged in parallel in a traveling area in a field and a plurality of turning paths for connecting, in a traveling order, the plurality of parallel paths in an outer edge part of the traveling area. The automatic traveling control unit (46) has a separation distance measurement unit (46A) that, when the work vehicle is performing automatic traveling on a parallel path, measures a separation distance, in the work vehicle advancing direction, from the work vehicle to the outer peripheral edge of the work field. The vehicle speed control unit (42) has a vehicle speed limitation unit (42A) that limits the vehicle speed of the work vehicle in accordance with the separation distance.

Description

作業車両用の自動走行システムAutomatic driving system for work vehicles
 本発明は、衛星測位システムを利用して作業車両を目標経路に従って自動走行させる作業車両用の自動走行システムに関する。 The present invention relates to an automatic traveling system for a work vehicle that makes a work vehicle automatically travel along a target route using a satellite positioning system.
 従来、衛星測位システムを利用して作業車両を目標経路に従って自動走行させるものとしては、作業車両(自律走行作業車両)を、作業地(圃場)に応じて生成された目標経路(走行経路)に沿って往復走行させるとともに、作業車両が作業地における外縁側の旋回領域(枕地旋回領域)に入ると、制御装置が変速手段を作動させて作業車両の車速を旋回速度(枕地旋回速度)まで減速させることで、旋回領域においては作業車両を旋回速度で旋回走行させるように構成された作業車両の制御装置がある(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, as a method of automatically driving a work vehicle according to a target route using a satellite positioning system, a work vehicle (autonomous travel work vehicle) is moved to a target route (travel route) generated according to a work place (field). When the work vehicle enters the turning area (headland turning area) on the outer edge side of the work place, the control device operates the speed change means to reduce the vehicle speed of the working vehicle to the turning speed (headland turning speed). There is a control device for a work vehicle that is configured to turn the work vehicle at a turning speed in a turning area by decelerating the work vehicle to the turning speed (for example, see Patent Document 1).
国際公開第2015/147108号公報International Publication No. WO 2015/147108
 通常、トラクタなどの作業車両を自動走行させる場合に使用する目標経路には、作業地内に区分けされた走行領域において並列に配置される複数の並列経路と、走行領域の外縁側に配置されて複数の並列経路を走行順に接続する複数の旋回経路とが含まれている。そして、各並列経路には、走行領域の中央側に設定された作業領域において作業車両を作業走行させる作業経路と、走行領域の外縁側に設定された旋回領域において、作業車両が作業経路から旋回経路に至るまでの間、作業車両を作業停止状態で走行させる非作業経路とが含まれている。 Usually, a target route used when a work vehicle such as a tractor is automatically driven includes a plurality of parallel routes arranged in parallel in a traveling area divided in a work place, and a plurality of parallel paths arranged on an outer edge side of the traveling area. And a plurality of turning paths connecting the parallel paths in the running order. Each of the parallel paths includes a work path for making the work vehicle work in the work area set at the center side of the travel area, and a work area where the work vehicle turns from the work path in the turn area set on the outer edge side of the travel area. A non-work route in which the work vehicle travels in a work stopped state before reaching the route is included.
 特許文献1に記載の作業車両の制御装置においては、例えば、作業効率の向上を図るために目標経路に含まれた作業経路における作業車両の車速を速くすると、作業車両が旋回領域に入ってから作業車両の車速を旋回速度まで低下させるのに必要な制動距離が長くなる。そのため、作業地における旋回領域が広くなるとともに作業領域が狭くなる。作業領域は、作業車両が自動走行しながら作業を行う領域であることから、作業領域が狭くなると、作業地内においてユーザが作業車両を手動走行させながら作業を行う領域が広くなり、ユーザにかかる負担が大きくなる。 In the control device for a work vehicle described in Patent Literature 1, for example, if the speed of the work vehicle on the work route included in the target route is increased in order to improve work efficiency, the work vehicle enters a turning area. The braking distance required to reduce the vehicle speed of the work vehicle to the turning speed increases. Therefore, the turning area in the work place becomes wider and the work area becomes narrower. Since the work area is an area in which the work vehicle performs the work while automatically traveling, when the work area is narrow, the area in which the user performs the work while manually moving the work vehicle in the work place becomes large, and the burden on the user is increased. Becomes larger.
 そこで、ユーザにかかる負担を小さくするために作業領域を広くすることが考えられるが、この場合には、旋回領域が狭くなるとともに、作業車両が旋回領域に入ってから作業車両の車速を旋回速度まで低下させるのに必要な制動距離が短くなる。そのため、作業領域における作業車両の車速が遅くなり、作業効率の低下を招くことになる。又、作業領域を広くしつつ作業経路における作業車両の車速を速くすると、作業車両が旋回領域に入ってから旋回走行(枕地旋回)を開始するまでの間において、作業車両の車速を旋回速度まで低下させることができなくなる。その結果、作業車両が旋回走行時に作業地からはみ出して畦などの他物に接触する不都合を招く虞がある。 Therefore, it is conceivable to widen the work area in order to reduce the burden on the user. In this case, the turning area becomes narrower, and the vehicle speed of the work vehicle is reduced after the work vehicle enters the turning area. The braking distance required to lower the Therefore, the vehicle speed of the work vehicle in the work area is reduced, and the work efficiency is reduced. Also, if the vehicle speed of the work vehicle on the work route is increased while the work area is widened, the vehicle speed of the work vehicle is changed from the turn of the work vehicle to the turning speed (headland turning) after the work vehicle enters the turning region. Can no longer be reduced. As a result, there is a possibility that the work vehicle may protrude from the work place during turning and come into contact with other objects such as ridges.
 この実情に鑑み、本発明の主たる課題は、作業地内の作業領域を広くしながら、作業領域における作業車両の車速を速くして作業効率の向上を図れるようにする点にある。 In view of this situation, a main problem of the present invention is to improve the work efficiency by increasing the speed of a work vehicle in a work area while widening the work area in the work area.
 本発明の第1特徴構成は、作業車両用の自動走行システムにおいて、
 作業車両の車速を制御する車速制御部と、
 作業地内に区分けされた走行領域に応じて生成された目標経路を記憶する記憶部と、
 衛星測位システムを利用して前記作業車両を前記目標経路に従って自動走行させる自動走行制御部とを有し、
 前記目標経路には、前記走行領域において並列に配置される複数の並列経路と、前記走行領域の外縁部に配置されて複数の前記並列経路を走行順に接続する複数の旋回経路とが含まれており、
 前記自動走行制御部は、前記作業車両が前記並列経路を自動走行しているときに、前記作業車両の進行方向における前記作業車両から前記作業地の外周縁までの離隔距離を測定する離隔距離測定部を有し、
 前記車速制御部は、前記離隔距離に応じて前記作業車両の車速を制限する車速制限部を有している点にある。
A first characteristic configuration of the present invention is an automatic traveling system for a work vehicle,
A vehicle speed control unit that controls the vehicle speed of the work vehicle;
A storage unit for storing a target route generated according to the traveling area divided in the work place,
An automatic travel control unit that automatically travels the work vehicle according to the target route using a satellite positioning system,
The target path includes a plurality of parallel paths arranged in parallel in the traveling area, and a plurality of turning paths arranged at an outer edge of the traveling area and connecting the plurality of parallel paths in the traveling order. Yes,
The automatic traveling control unit is configured to measure a separation distance from the work vehicle to an outer peripheral edge of the work place in a traveling direction of the work vehicle when the work vehicle is automatically traveling on the parallel path. Part
The vehicle speed control unit has a vehicle speed limiting unit that limits the vehicle speed of the work vehicle according to the separation distance.
 本構成によれば、作業車両が並列経路を自動走行しているときは、車速制限部が、作業地内に設定される作業領域や旋回領域に関係なく、離隔距離測定部によって測定される離隔距離に応じて作業車両の車速を制限する。 According to this configuration, when the work vehicle is automatically traveling on the parallel route, the vehicle speed limiting unit is configured to control the separation distance measured by the separation distance measurement unit regardless of the work area or the turning area set in the work place. The vehicle speed of the work vehicle is limited according to the condition.
 具体的には、往復経路を走行する作業車両が進行方向に位置する作業地の外縁から大きく離れている間は、離隔距離測定部によって測定される離隔距離が長くなることから、車速制限部は、その離隔距離に応じて往復経路における作業車両の制限速度を速くする。つまり、作業車両の車速を速くすることによる作業効率の向上を図ることができる。 Specifically, while the work vehicle traveling on the reciprocating route is far away from the outer edge of the work site located in the traveling direction, the separation distance measured by the separation distance measurement unit is long, so the vehicle speed limiting unit is The speed limit of the work vehicle on the reciprocating route is increased according to the separation distance. That is, it is possible to improve work efficiency by increasing the vehicle speed of the work vehicle.
 そして、往復経路を走行する作業車両が進行方向に位置する作業地の外周縁に近づいてくると、離隔距離測定部によって測定される離隔距離が短くなることから、車速制限部は、その離隔距離に応じて、作業車両の制動距離が離隔距離よりも短くなるように往復経路における作業車両の制限速度を遅くする。つまり、作業地内に設定される作業領域や旋回領域に関係なく、作業車両が作業地の外周縁に近づいたときは、車速制限部が、そのときの離隔距離に応じて、作業地の外周縁までの間において作業車両を制動停止させることが可能な制限速度を設定して作業車両の車速を低下させる。これにより、自動走行制御部が、並列経路に従って作業車両を作業地の外周縁付近で走行停止させるときや、作業車両を旋回経路に従って旋回走行させるときに、作業車両が作業地からはみ出すことを防止することができ、そのはみ出しに起因して作業車両が畦などの他物に接触する虞を回避することができる。 When the work vehicle traveling on the reciprocating route approaches the outer peripheral edge of the work site located in the traveling direction, the separation distance measured by the separation distance measurement unit becomes short. Accordingly, the speed limit of the work vehicle in the reciprocating path is reduced so that the braking distance of the work vehicle is shorter than the separation distance. In other words, regardless of the work area and the turning area set in the work place, when the work vehicle approaches the outer periphery of the work place, the vehicle speed limiting unit adjusts the outer periphery of the work place according to the separation distance at that time. The speed limit at which the work vehicle can be stopped by braking is set to reduce the vehicle speed of the work vehicle. This prevents the automatic traveling control unit from protruding from the work place when the work vehicle stops traveling near the outer peripheral edge of the work place according to the parallel path or when the work vehicle is turned along the turning path. The work vehicle can be prevented from contacting another object such as a ridge due to the protrusion.
 つまり、作業地内において作業車両が自動走行しながら作業を行う作業領域を広くしつつ、作業領域における作業車両の車速を速くすることができる。その結果、ユーザにかかる負担を軽減することができるとともに、作業効率の向上を図ることができる。 In other words, it is possible to increase the speed of the work vehicle in the work area while widening the work area in which the work vehicle performs work while automatically traveling in the work area. As a result, the burden on the user can be reduced, and work efficiency can be improved.
 本発明の第2特徴構成は、
 前記目標経路には、前記作業車両が前記並列経路を自動走行するときの目標車速が含まれており、
 前記車速制限部は、前記離隔距離よりも設定距離だけ短い比較制動距離を演算し、前記目標車速に応じた前記作業車両の制動距離が前記比較制動距離よりも短い間は、前記作業車両の車速が前記目標車速に維持されるように前記作業車両の車速を制限する第1車速制限処理を行い、前記目標車速に応じた前記作業車両の制動距離が前記比較制動距離と同じになったときは、前記作業車両の制動距離が前記比較制動距離に維持されるように、前記離隔距離の減少に応じて前記作業車両の車速を前記目標車速から低下させる第2車速制限処理を行う点にある。
A second characteristic configuration of the present invention is:
The target route includes a target vehicle speed when the work vehicle automatically travels on the parallel route,
The vehicle speed limiter calculates a comparative braking distance shorter than the separation distance by a set distance, and while the braking distance of the work vehicle according to the target vehicle speed is shorter than the comparative braking distance, the vehicle speed of the work vehicle Performs a first vehicle speed limiting process for limiting the vehicle speed of the work vehicle so that the target vehicle speed is maintained, and when a braking distance of the work vehicle according to the target vehicle speed becomes equal to the comparative braking distance, And a second vehicle speed limiting process for reducing the vehicle speed of the work vehicle from the target vehicle speed in accordance with the decrease in the separation distance so that the brake distance of the work vehicle is maintained at the comparative brake distance.
 本構成によれば、車速制限部は、離隔距離が長くて目標車速に応じた作業車両の制動距離が比較制動距離よりも短くなる間は、第1車速制限処理を行うことで作業車両の車速を目標車速に制限する。これにより、作業車両の車速が不必要に速くなることに起因して、燃費が悪くなることや、目標経路に従って作業車両を自動走行させるときに目標経路に対する作業車両の追従性が低下する虞を回避することができる。 According to this configuration, while the separation distance is long and the braking distance of the work vehicle according to the target vehicle speed is shorter than the comparison braking distance, the vehicle speed limitation unit performs the first vehicle speed limitation process to execute the vehicle speed limitation of the work vehicle. To the target vehicle speed. As a result, fuel efficiency may be degraded due to unnecessarily increasing the vehicle speed of the work vehicle, and the work vehicle may be less able to follow the target route when the work vehicle automatically travels along the target route. Can be avoided.
 そして、車速制限部は、離隔距離が短くなって目標車速に応じた作業車両の制動距離が比較制動距離と同じになったときは、第2車速制限処理を行うことで、作業車両の制動距離が、離隔距離の減少に応じて短くなる比較制動距離に維持されるように、作業車両の車速を制限する。これにより、作業車両が作業地の外周縁に接近したときや旋回経路に達したときには、作業車両の車速を十分に低下させておくことができる。その結果、自動走行制御部が、並列経路に従って作業車両を作業地の外周縁付近で走行停止させるときや、作業車両を旋回経路に従って旋回走行させるときに、作業車両が作業地からはみ出して畦などの他物に接触する虞をより確実に回避することができる。 When the separation distance becomes short and the braking distance of the work vehicle according to the target vehicle speed becomes the same as the comparison braking distance, the vehicle speed restriction unit performs the second vehicle speed restriction process, thereby performing the braking distance of the work vehicle. However, the vehicle speed of the work vehicle is limited so that the comparative braking distance becomes shorter as the separation distance decreases. Thus, when the work vehicle approaches the outer peripheral edge of the work place or reaches a turning path, the vehicle speed of the work vehicle can be sufficiently reduced. As a result, when the automatic traveling control unit stops the traveling of the work vehicle near the outer periphery of the work place according to the parallel route, or when the work vehicle turns around according to the turning route, the work vehicle protrudes from the work place and ridges or the like. The possibility of contact with other objects can be more reliably avoided.
 本発明の第3特徴構成は、
 前記記憶部には、前記作業車両の旋回半径と、前記作業車両の作業幅と、前記作業地の外周縁と前記走行領域との間に設定されたマージン幅と、前記並列経路と前記旋回経路との各接続地点とが記憶され、
 前記離隔距離測定部は、前記衛星測位システムを利用して取得した前記並列経路における前記作業車両の現在位置、及び、前記記憶部に記憶された前記並列経路における終端側の前記接続地点と、前記作業車両の旋回半径と、前記作業車両の作業幅と、前記マージン幅とに基づいて前記離隔距離を測定する点にある。
A third characteristic configuration of the present invention is:
The storage unit includes a turning radius of the work vehicle, a work width of the work vehicle, a margin width set between an outer peripheral edge of the work place and the traveling area, the parallel path, and the turn path. Each connection point with is stored,
The separation distance measurement unit, the current position of the work vehicle in the parallel path obtained using the satellite positioning system, and the connection point on the terminal side in the parallel path stored in the storage unit, The separation distance is measured based on a turning radius of the work vehicle, a work width of the work vehicle, and the margin width.
 本構成によれば、例えば、離隔距離測定部は、作業車両が並列経路を自動走行する前の段階において、作業車両の旋回半径と、作業車両の作業幅の半分の長さと、作業地のマージン幅とを足し合わせて、並列経路における終端側の接続地点から作業地の外周縁までの固定離隔距離を演算して記憶部に記憶する。そして、離隔距離測定部は、作業車両が並列経路を自動走行している間は、作業車両の現在位置と並列経路における終端側の接続地点とから、それらの間の未走行距離を演算し、この未走行距離に前述した固定離隔距離を足し合わせることで、前述した離隔距離を測定する。 According to this configuration, for example, at a stage before the work vehicle automatically travels on the parallel path, the separation distance measurement unit determines a turning radius of the work vehicle, a half length of the work width of the work vehicle, and a margin of the work place. By adding the width, the fixed separation distance from the connection point on the end side of the parallel path to the outer peripheral edge of the work site is calculated and stored in the storage unit. Then, while the work vehicle is automatically traveling on the parallel route, the separation distance measurement unit calculates the untraveled distance between the current position of the work vehicle and the connection point on the end side of the parallel route, The above-mentioned fixed distance is added to this untraveled distance to measure the above-mentioned distance.
 つまり、離隔距離測定部は、衛星測位システムを利用して取得する並列経路における作業車両の現在位置に応じて変化する未走行距離と、記憶部に記憶された固定値である固定離隔距離とに基づいて離隔距離を測定することになる。これにより、離隔距離の測定に要する演算負荷を軽減することができ、結果、離隔距離を迅速に精度良く測定することができる。 That is, the separation distance measurement unit calculates the untraveled distance that changes according to the current position of the work vehicle on the parallel route obtained using the satellite positioning system, and the fixed separation distance that is a fixed value stored in the storage unit. The separation distance will be measured based on the distance. As a result, the calculation load required for measuring the separation distance can be reduced, and as a result, the separation distance can be measured quickly and accurately.
 本発明の第4特徴構成は、
 前記記憶部には、前記衛星測位システムを利用して取得した前記作業地における複数の形状特定地点と、複数の前記形状特定地点を繋いで前記作業地の形状を特定する形状特定線とが記憶され、
 前記離隔距離測定部は、前記衛星測位システムを利用して取得した前記並列経路における前記作業車両の現在位置から、前記作業車両の進行方向における前記並列経路の延長線上に位置する形状特定線までの距離を前記離隔距離として測定する点にある。
A fourth characteristic configuration of the present invention is:
The storage unit stores a plurality of shape specifying points in the work place acquired by using the satellite positioning system, and a shape specifying line that connects the plurality of shape specifying points to specify the shape of the work place. And
The separation distance measurement unit is configured to measure a distance from a current position of the work vehicle on the parallel path acquired using the satellite positioning system to a shape identification line located on an extension of the parallel path in the traveling direction of the work vehicle. The point is that the distance is measured as the separation distance.
 本構成によれば、離隔距離測定部は、衛星測位システムを利用して作業地の形状を特定するときに取得した形状特定線を利用しながら、離隔距離を比較的簡単に測定することができる。 According to this configuration, the separation distance measuring unit can relatively easily measure the separation distance while using the shape specifying line acquired when specifying the shape of the work place using the satellite positioning system. .
 本発明の第5特徴構成は、
 前記作業車両には、前記作業車両の進行方向に存在する測距対象物までの距離を測定する距離センサが備えられ、
 前記離隔距離測定部は、前記距離センサの測定結果に基づいて前記離隔距離を測定する点にある。
A fifth characteristic configuration of the present invention is:
The work vehicle is provided with a distance sensor that measures a distance to a distance measurement target existing in a traveling direction of the work vehicle,
The separation distance measurement unit is configured to measure the separation distance based on a measurement result of the distance sensor.
 本構成によれば、衛星測位システムを利用することなく、距離センサの測定結果に基づいて離隔距離を精度良く測定することができる。 According to this configuration, the separation distance can be accurately measured based on the measurement result of the distance sensor without using the satellite positioning system.
作業車両用の自動走行システムの概略構成を示す図Diagram showing a schematic configuration of an automatic traveling system for a work vehicle 作業車両用の自動走行システムの概略構成を示すブロック図FIG. 2 is a block diagram showing a schematic configuration of an automatic traveling system for a work vehicle. 目標経路生成部により生成される目標経路の一例を示す図Diagram showing an example of a target route generated by a target route generation unit 目標経路生成制御のフローチャートFlow chart of target route generation control 離隔距離測定部による離隔距離の測定に関する説明図Explanatory drawing about measurement of separation distance by separation distance measurement unit 離隔距離と車速との関係を示すグラフGraph showing the relationship between separation distance and vehicle speed 離隔距離測定部による離隔距離の測定と車速制限部による比較制動距離の測定に関する説明図Explanatory diagram regarding measurement of separation distance by separation distance measurement unit and measurement of comparative braking distance by vehicle speed limit unit 離隔距離と上限速度との関係を示すグラフGraph showing the relationship between separation distance and upper limit speed 車速制限制御のフローチャートFlowchart of vehicle speed limit control 別実施形態での離隔距離測定部による離隔距離の測定に関する説明図Explanatory drawing about measurement of separation distance by separation distance measurement part in another embodiment.
 以下、本発明を実施するための形態の一例として、本発明に係る作業車両用の自動走行システムを、作業車両の一例であるトラクタに適用した実施形態を図面に基づいて説明する。
 なお、本発明に係る作業車両用の自動走行システムは、トラクタ以外の、例えば乗用草刈機、乗用田植機、コンバイン、ホイールローダ、除雪車、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。
Hereinafter, as an example of an embodiment for carrying out the present invention, an embodiment in which an automatic traveling system for a work vehicle according to the present invention is applied to a tractor as an example of a work vehicle will be described with reference to the drawings.
The automatic traveling system for a work vehicle according to the present invention includes a work vehicle other than a tractor, such as a riding mower, a riding rice transplanter, a combine, a wheel loader, a snowplow, and an unmanned mowing machine. It can be applied to work vehicles.
 図3に示すように、この実施形態で例示するトラクタ1は、作業車両用の自動走行システムによって作業地の一例である圃場Aなどにおいて自動走行可能に構成されている。図1~2に示すように、自動走行システムは、トラクタ1に搭載された自動走行ユニット2、及び、自動走行ユニット2と無線通信可能に通信設定された無線通信機器の一例である携帯通信端末3、などを備えている。携帯通信端末3には、自動走行に関する各種の情報表示や入力操作などを可能にするマルチタッチ式の表示部(例えば液晶パネル)4などを有するタブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。 As shown in FIG. 3, the tractor 1 exemplified in this embodiment is configured to be able to automatically travel in a field A or the like, which is an example of a work place, by an automatic travel system for a work vehicle. As shown in FIGS. 1 and 2, the automatic traveling system is a mobile communication terminal that is an example of an automatic traveling unit 2 mounted on a tractor 1 and a wireless communication device that is set to be able to perform wireless communication with the automatic traveling unit 2. 3, etc. As the mobile communication terminal 3, a tablet-type personal computer, a smartphone, or the like having a multi-touch display unit (for example, a liquid crystal panel) 4 that enables various kinds of information display and input operation related to automatic driving can be employed. it can.
 図1に示すように、トラクタ1は、その後部に3点リンク機構5を介して、作業装置の一例であるロータリ耕耘装置6が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1はロータリ耕耘仕様に構成されている。
 なお、トラクタ1の後部には、ロータリ耕耘装置6に代えて、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、散布装置、草刈装置、などの各種の作業装置を連結することができる。
As shown in FIG. 1, the tractor 1 has a rotary tilling device 6, which is an example of a working device, connected to a rear portion of the tractor 1 via a three-point link mechanism 5 so as to be able to move up and down and roll. Thus, the tractor 1 is configured for a rotary tilling specification.
In addition, various working devices such as a plow, a disk harrow, a cultivator, a subsoiler, a sowing device, a spraying device, and a mowing device can be connected to the rear portion of the tractor 1 in place of the rotary tilling device 6.
 図1~2に示すように、トラクタ1には、駆動可能で操舵可能な左右の前輪10、駆動可能な左右の後輪11、搭乗式の運転部12を形成するキャビン13、コモンレールシステムを有する電子制御式のディーゼルエンジン(以下、エンジンと称する)14、エンジン14からの動力を変速する変速ユニット15、左右の前輪10を操舵する全油圧式のパワーステアリングユニット16、左右の後輪11を制動するブレーキユニット17、ロータリ耕耘装置6への伝動を断続する電子油圧制御式の作業クラッチユニット19、ロータリ耕耘装置6を昇降駆動する電子油圧制御式の昇降駆動ユニット20、ロータリ耕耘装置6をロール方向に駆動する電子油圧制御式のローリング駆動ユニット21、トラクタ1における各種の設定状態や各部の動作状態などを検出する各種のセンサやスイッチなどを含む車両状態検出機器23、トラクタ1の現在位置p0や現在方位などを測定する測位ユニット24、及び、各種の制御部を有する車載制御ユニット40、などが備えられている。
 なお、エンジン14には、電子ガバナを有する電子制御式のガソリンエンジンなどを採用してもよい。パワーステアリングユニット16は電動モータを備えた電動式であってもよい。
As shown in FIGS. 1 and 2, the tractor 1 has drivable left and right front wheels 10 that can be steered, left and right drivable rear wheels 11, a cabin 13 forming a riding type driving unit 12, and a common rail system. Electronically controlled diesel engine (hereinafter referred to as engine) 14, transmission unit 15 for shifting power from engine 14, fully hydraulic power steering unit 16 for steering left and right front wheels 10, and braking for left and right rear wheels 11 Brake unit 17, an electro-hydraulic control type working clutch unit 19 for intermittently transmitting power to the rotary tilling device 6, an electro-hydraulic control type lifting / lowering drive unit 20 for raising and lowering the rotary tilling device 6, and the rotary tilling device 6 in the roll direction. Rolling drive unit 21 of the electro-hydraulic control type that drives the tractor 1 in various setting states and A vehicle state detecting device 23 including various sensors and switches for detecting an operation state and the like, a positioning unit 24 for measuring a current position p0 and a current direction of the tractor 1, and a vehicle-mounted control unit 40 having various control units. And so on.
The engine 14 may be an electronically controlled gasoline engine having an electronic governor. The power steering unit 16 may be an electric type having an electric motor.
 運転部12には、アクセルレバーや変速レバーなどの操作レバー類、及び、アクセルペダルやクラッチペダルなどの操作ペダル類、などとともに、図1に示す手動操舵用のステアリングホイール30と、搭乗者用の座席31と、各種の情報表示や入力操作などを可能にするマルチタッチ式の液晶モニタ32とが備えられている。 The operating unit 12 includes operating levers such as an accelerator lever and a shift lever, and operating pedals such as an accelerator pedal and a clutch pedal, and a steering wheel 30 for manual steering shown in FIG. A seat 31 and a multi-touch type liquid crystal monitor 32 that enables various information displays and input operations are provided.
 図2に示すように、変速ユニット15には、エンジン14からの動力を変速する電子制御式の無段変速装置36、及び、無段変速装置36による変速後の動力を前進用と後進用とに切り換える電子油圧制御式の前後進切換装置37、などが含まれている。無段変速装置36には、静油圧式無段変速装置(HST:Hydro Static Transmission)よりも伝動効率が高い油圧機械式無段変速装置の一例であるI-HMT(Integrated Hydro-static Mechanical Transmission)が採用されている。前後進切換装置37には、前進動力断続用の油圧クラッチと、後進動力断続用の油圧クラッチと、それらに対するオイルの流れを制御する電磁バルブとが含まれている。
 なお、無段変速装置36には、I-HMTの代わりに、油圧機械式無段変速装置の一例であるHMT(Hydraulic Mechanical Transmission)、静油圧式無段変速装置、又は、ベルト式無段変速装置、などを採用してもよい。又、変速ユニット15には、無段変速装置36の代わりに、複数の変速用の油圧クラッチとそれらに対するオイルの流れを制御する複数の電磁バルブとを有する電子油圧制御式の有段変速装置が含まれていてもよい。
As shown in FIG. 2, the transmission unit 15 includes an electronically controlled continuously variable transmission 36 for shifting the power from the engine 14, and the power after shifting by the continuously variable transmission 36 for forward and reverse. And a forward / reverse switching device 37 of an electro-hydraulic control type for switching to the other. The continuously variable transmission 36 includes an I-HMT (Integrated Hydro-static Mechanical Transmission) which is an example of a hydraulic mechanical continuously variable transmission having higher transmission efficiency than a hydrostatic continuously variable transmission (HST). Has been adopted. The forward / reverse switching device 37 includes a hydraulic clutch for connecting / disconnecting forward power, a hydraulic clutch for connecting / disconnecting reverse power, and an electromagnetic valve for controlling the flow of oil to the hydraulic clutch.
Instead of the I-HMT, the continuously variable transmission 36 is an HMT (Hydraulic Mechanical Transmission) which is an example of a hydraulic mechanical continuously variable transmission, a hydrostatic continuously variable transmission, or a belt type continuously variable transmission. An apparatus may be employed. Instead of the continuously variable transmission 36, the transmission unit 15 includes an electro-hydraulic control type stepped transmission having a plurality of shift hydraulic clutches and a plurality of electromagnetic valves for controlling the flow of oil to them. May be included.
 図示は省略するが、ブレーキユニット17には、左右の後輪11を個別に制動する左右のブレーキ、運転部12に備えられた左右のブレーキペダルの踏み込み操作に連動して左右のブレーキを作動させるフットブレーキ系、運転部12に備えられたパーキングレバーの操作に連動して左右のブレーキを作動させるパーキングブレーキ系、及び、左右の前輪10の設定角度以上の操舵に連動して旋回内側のブレーキを作動させる旋回ブレーキ系、などが含まれている。 Although not shown, the brake unit 17 operates the left and right brakes for individually braking the left and right rear wheels 11 and the left and right brakes in conjunction with the depression of the left and right brake pedals provided in the driving unit 12. A foot brake system, a parking brake system for actuating left and right brakes in conjunction with the operation of a parking lever provided in the driving unit 12, and a brake inside the turn in conjunction with steering of the left and right front wheels 10 at a set angle or more. A swing brake system to be activated is included.
 図2に示すように、車載制御ユニット40には、エンジン14に関する制御を行うエンジン制御部41、トラクタ1の車速Vや前後進の切り換えに関する制御を行う車速制御部42、ステアリングに関する制御を行うステアリング制御部43、ロータリ耕耘装置6などの作業装置に関する制御を行う作業装置制御部44、液晶モニタ32などによる表示や報知に関する制御を行う表示制御部45、自動走行に関する制御を行う自動走行制御部46、及び、作業地内に区分けされた走行領域に応じて生成された自動走行用の目標経路などを記憶する不揮発性の車載記憶部47、などが含まれている。各制御部41~46は、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどによって構築されている。各制御部41~46は、CAN(Controller Area Network)を介して相互通信可能に接続されている。 As shown in FIG. 2, the on-vehicle control unit 40 includes an engine control unit 41 for controlling the engine 14, a vehicle speed control unit 42 for controlling the switching of the tractor 1 between the vehicle speed V and forward / backward, and a steering for controlling the steering. A control unit 43, a working device control unit 44 for controlling a working device such as the rotary tillage device 6, a display control unit 45 for controlling display and notification by the liquid crystal monitor 32 and the like, and an automatic traveling control unit 46 for controlling automatic traveling. And a non-volatile in-vehicle storage unit 47 for storing a target route for automatic traveling generated according to the traveling area divided in the work place, and the like. Each of the control units 41 to 46 is configured by an electronic control unit in which a microcontroller and the like are integrated, various control programs, and the like. Each of the control units 41 to 46 is communicably connected via a CAN (Controller Area Network).
 車両状態検出機器23は、トラクタ1の各部に備えられた各種のセンサやスイッチなどの総称である。車両状態検出機器23には、アクセルレバーの操作位置を検出するアクセルセンサ、変速レバーの操作位置を検出する変速用の第1位置センサ、前後進切り換え用のリバーサレバーの操作位置を検出する前後進切り換え用の第2位置センサ、エンジン14の出力回転数を検出する回転センサ、トラクタ1の車速Vを検出する車速センサ、及び、前輪10の操舵角を検出する舵角センサ、などが含まれている。 The vehicle state detection device 23 is a general term for various sensors and switches provided in each part of the tractor 1. The vehicle state detecting device 23 includes an accelerator sensor for detecting an operating position of an accelerator lever, a first position sensor for shifting for detecting an operating position of a shift lever, and a forward / backward movement for detecting an operating position of a reversing lever for forward / backward switching. A second position sensor for switching, a rotation sensor for detecting the output rotation speed of the engine 14, a vehicle speed sensor for detecting the vehicle speed V of the tractor 1, a steering angle sensor for detecting the steering angle of the front wheels 10, and the like are included. I have.
 エンジン制御部41は、アクセルセンサからの検出情報と回転センサからの検出情報とに基づいて、エンジン回転数をアクセルレバーの操作位置に応じた回転数に維持するエンジン回転数維持制御、などを実行する。 The engine control unit 41 executes an engine speed maintenance control that maintains the engine speed at a speed corresponding to the operation position of the accelerator lever based on the detection information from the accelerator sensor and the detection information from the rotation sensor. I do.
 車速制御部42は、第1位置センサからの検出情報と車速センサからの検出情報などに基づいて、トラクタ1の車速Vが変速レバーの操作位置に応じた速度に変更されるように無段変速装置36の作動を制御する車速制御、及び、第2位置センサからの検出情報に基づいて前後進切換装置37の伝動状態を切り換える前後進切り換え制御、などを実行する。車速制御には、変速レバーが零速位置に操作された場合に、無段変速装置36を零速状態まで減速制御してトラクタ1の走行を停止させる減速停止処理が含まれている。 The vehicle speed control unit 42 performs continuously variable transmission based on the detection information from the first position sensor and the detection information from the vehicle speed sensor so that the vehicle speed V of the tractor 1 is changed to a speed corresponding to the operation position of the shift lever. Vehicle speed control for controlling the operation of the device 36 and forward / reverse switching control for switching the transmission state of the forward / reverse switching device 37 based on the detection information from the second position sensor are executed. The vehicle speed control includes a deceleration stop process for stopping the running of the tractor 1 by controlling the speed of the continuously variable transmission 36 to the zero speed state when the shift lever is operated to the zero speed position.
 測位ユニット24は、衛星測位システム(NSS:Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用してトラクタ1の現在位置p0と現在方位とを測定する衛星航法装置25、及び、3軸のジャイロスコープ及び3方向の加速度センサなどを有してトラクタ1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)26、などを有している。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK-GPS(Real Time Kinematic GPS:干渉測位方式)などがある。本実施形態においては、移動体の測位に適したRTK-GPSが採用されている。そのため、図1に示すように、圃場周辺の既知位置には、RTK-GPSによる測位を可能にする基準局73が設置されている。 The positioning unit 24 is a satellite navigation device 25 that measures the current position p0 and the current direction of the tractor 1 using a GPS (Global Positioning System), which is an example of a satellite positioning system (NSS). It has an inertial measurement unit (IMU: Inertial Measurement Unit) 26 that has a gyroscope for the axis, an acceleration sensor in three directions, and measures the attitude and orientation of the tractor 1. Positioning methods using GPS include DGPS (Differential GPS: relative positioning method) and RTK-GPS (Real Time Kinematic GPS: interference positioning method). In the present embodiment, RTK-GPS suitable for positioning of a moving object is adopted. Therefore, as shown in FIG. 1, a reference station 73 that enables positioning by RTK-GPS is installed at a known position around the field.
 図1~2に示すように、トラクタ1と基準局73とのそれぞれには、GPS衛星74(図1参照)から送信された電波を受信するGPSアンテナ75,76、及び、トラクタ1と基準局73との間における測位情報を含む各情報の無線通信を可能にする通信モジュール77,78、などが備えられている。これにより、測位ユニット24の衛星航法装置25は、トラクタ側のGPSアンテナ75がGPS衛星74からの電波を受信して得た測位情報と、基地局側のGPSアンテナ76がGPS衛星74からの電波を受信して得た測位情報とに基づいて、トラクタ1の現在位置p0及び現在方位を高い精度で測定することができる。又、測位ユニット24は、衛星航法装置25と慣性計測装置26とを有することにより、トラクタ1の現在位置p0、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。 As shown in FIGS. 1 and 2, the tractor 1 and the reference station 73 each include a GPS antenna 75, 76 for receiving a radio wave transmitted from a GPS satellite 74 (see FIG. 1), and the tractor 1 and the reference station 73. And communication modules 77 and 78 that enable wireless communication of each piece of information including positioning information between the two. As a result, the satellite navigation device 25 of the positioning unit 24 uses the positioning information obtained by the GPS antenna 75 on the tractor side receiving the radio waves from the GPS satellites 74 and the GPS antenna 76 on the base station side to transmit the radio waves from the GPS satellites 74. The current position p0 and the current azimuth of the tractor 1 can be measured with high accuracy based on the positioning information obtained by receiving the information. In addition, the positioning unit 24 has the satellite navigation device 25 and the inertial measurement device 26, and measures the current position p0, the current azimuth, and the attitude angle (the yaw angle, the roll angle, and the pitch angle) of the tractor 1 with high accuracy. be able to.
 このトラクタ1において、測位ユニット24の慣性計測装置26、GPSアンテナ75、及び、通信モジュール77は、図1に示すアンテナユニット79に含まれている。アンテナユニット79は、キャビン13の前面側における上部の左右中央箇所に配置されている。 In the tractor 1, the inertial measurement device 26 of the positioning unit 24, the GPS antenna 75, and the communication module 77 are included in the antenna unit 79 shown in FIG. The antenna unit 79 is disposed at the center on the left and right in the upper part on the front side of the cabin 13.
 図2に示すように、携帯通信端末3には、マイクロコントローラなどが集積された電子制御ユニットや各種の制御プログラムなどを有する端末制御ユニット80、及び、トラクタ側の通信モジュール77との間における測位情報を含む各情報の無線通信を可能にする通信モジュール90、などが備えられている。端末制御ユニット80には、表示部4の作動を制御する表示制御部81、自動走行用の目標経路Pを生成する目標経路生成部82、及び、目標経路生成部82が生成した目標経路Pなどを記憶する不揮発性の端末記憶部83、などが含まれている。端末記憶部83には、目標経路Pの生成に使用する各種の情報として、トラクタ1の旋回半径Rや作業幅W1などの車体情報、及び、圃場Aの形状や大きさなどの圃場情報、などが記憶されている。圃場情報には、圃場Aの形状や大きさなどを特定するために、トラクタ1を圃場Aの外周縁に沿って走行させたときに衛星測位システムを利用して取得した圃場Aにおける複数の形状特定地点(形状特定座標)となる4つの角部地点Ap1~Ap4(図10参照)、及び、それらの角部地点Ap1~Ap4を繋いで圃場Aの形状や大きさなどを特定する形状特定線AL(図10参照)、などが含まれている。 As shown in FIG. 2, the portable communication terminal 3 has a position control between an electronic control unit in which a microcontroller and the like are integrated, a terminal control unit 80 having various control programs, and a communication module 77 on the tractor side. A communication module 90 that enables wireless communication of each piece of information including information is provided. The terminal control unit 80 includes a display control unit 81 that controls the operation of the display unit 4, a target route generation unit 82 that generates a target route P for automatic driving, a target route P generated by the target route generation unit 82, and the like. And a non-volatile terminal storage unit 83 for storing the information. The terminal storage unit 83 stores, as various types of information used for generating the target route P, vehicle body information such as the turning radius R and the working width W1 of the tractor 1 and field information such as the shape and size of the field A. Is stored. The field information includes a plurality of shapes in the field A obtained by using the satellite positioning system when the tractor 1 is moved along the outer periphery of the field A in order to specify the shape and size of the field A. Four corner points Ap1 to Ap4 (see FIG. 10) serving as specific points (shape specifying coordinates), and a shape specifying line for connecting the corner points Ap1 to Ap4 to specify the shape and size of the field A AL (see FIG. 10).
 図3~4に示すように、目標経路生成部82は、車体情報に含まれたトラクタ1の旋回半径Rや作業幅W1、及び、圃場情報に含まれた圃場Aの形状や大きさ、などに基づいて目標経路Pを生成する目標経路生成制御を実行する。
 具体的には、図3に示すように、例えば矩形状の圃場Aにおいて、自動走行の開始地点p1と終了地点p2とが設定され、トラクタ1の作業走行方向が圃場Aの短辺に沿う方向に設定されている場合は、図3~4に示すように、目標経路生成部82は、先ず、圃場Aを、圃場Aの外周縁に隣接するマージン領域A1と、マージン領域A1の内側に位置する走行領域A2とに区分けする第1区分け処理(図4のステップ#1)を行う。
 次に、目標経路生成部82は、トラクタ1の旋回半径Rや作業幅W1などに基づいて、第1区分け処理で区分けした走行領域A2に、圃場Aの長辺に沿う方向に作業幅W1に応じた一定間隔をあけて並列に配置される複数の並列経路P1を生成する並列経路生成処理(図4のステップ#2)と、走行領域A2における各長辺側の外縁部に配置されて複数の並列経路P1を走行順に接続する複数の旋回経路P2を生成する旋回経路生成処理(図4のステップ#3)とを行う。
 そして、第1区分け処理で区分けした走行領域A2を、走行領域A2における各長辺側の外縁部に設定される一対の非作業領域A2aと、一対の非作業領域A2aの間に設定される作業領域A2bとに区分けする第2区分け処理(図4のステップ#4)を行うとともに、並列経路生成処理で生成した各並列経路P1を、一対の非作業領域A2aに含まれる非作業経路P1aと、作業領域A2bに含まれる作業経路P1bとに区分けする経路区分け処理(図4のステップ#5)を行う。
 これにより、目標経路生成部82は、図3に示す圃場Aにおいてトラクタ1を自動走行させるのに適した目標経路Pを生成することができる。
As shown in FIGS. 3 and 4, the target route generation unit 82 determines the turning radius R and the work width W1 of the tractor 1 included in the vehicle body information, and the shape and size of the field A included in the field information. Target route generation control for generating the target route P based on the target route P is performed.
Specifically, as shown in FIG. 3, for example, in a rectangular field A, a start point p1 and an end point p2 of automatic traveling are set, and the work traveling direction of the tractor 1 is a direction along a short side of the field A. 3, the target route generation unit 82 first sets the field A to the margin area A1 adjacent to the outer peripheral edge of the field A, and positions the field A inside the margin area A1. A first partitioning process (step # 1 in FIG. 4) for partitioning into the traveling region A2 to be performed.
Next, based on the turning radius R of the tractor 1, the working width W1, and the like, the target route generation unit 82 adds the working width W1 in the direction along the long side of the field A to the traveling area A2 divided by the first sorting process. A parallel path generation process (step # 2 in FIG. 4) for generating a plurality of parallel paths P1 arranged in parallel at a predetermined interval, and a plurality of parallel paths P1 arranged at the outer edge of each long side in the traveling area A2. Turning path generation processing (step # 3 in FIG. 4) for generating a plurality of turning paths P2 connecting the parallel paths P1 in the running order.
Then, the traveling area A2 divided by the first division processing is set between a pair of non-operation areas A2a set at outer edges of the long sides of the traveling area A2 and an operation set between the pair of non-operation areas A2a. A second partitioning process (step # 4 in FIG. 4) for partitioning into the area A2b is performed, and each of the parallel paths P1 generated in the parallel path generating processing is divided into a non-work path P1a included in the pair of non-work areas A2a. A path segmentation process (step # 5 in FIG. 4) for segmentation into the work route P1b included in the work area A2b is performed.
Thus, the target route generation unit 82 can generate a target route P suitable for automatically driving the tractor 1 in the field A shown in FIG.
 図3、図5、図7に示す目標経路Pにおいて、各非作業経路P1aと各旋回経路P2は、トラクタ1が耕耘作業を行わずに自動走行する経路であり、前述した各作業経路P1bは、トラクタ1が耕耘作業を行いながら自動走行する経路である。そして、各作業経路P1bの始端地点p3は、トラクタ1が耕耘作業を開始する作業開始地点であり、各作業経路P1bの終端地点p4は、トラクタ1が耕耘作業を停止する作業停止地点である。又、各非作業経路P1aは、トラクタ1が旋回経路P2にて旋回走行する前の作業停止地点p4と、トラクタ1が旋回経路P2にて旋回走行した後の作業開始地点p3とを、トラクタ1の作業走行方向で揃えるための位置合せ経路である。そして、各非作業経路P1aの長さL1は、トラクタ1におけるロータリ耕耘装置6の位置関係を含むトラクタ1の車体情報に基づいて決定される。
 又、目標経路Pにおける各並列経路P1と各旋回経路P2との各接続地点p5,p6のうち、各並列経路P1における終端側の接続地点p5はトラクタ1の旋回開始地点であり、各並列経路P1における始端側の接続地点p6はトラクタ1の旋回終了地点である。
 そして、前述した各作業経路P1bの始端地点p3と終端地点p4、目標経路Pにおける各並列経路P1と各旋回経路P2との各接続地点p5,p6、及び、各非作業経路P1aの長さL1、などは端末記憶部83に記憶される目標経路Pに含まれている。
In the target route P shown in FIGS. 3, 5, and 7, each non-work route P1a and each turning route P2 are routes on which the tractor 1 automatically travels without performing the tillage work, and each of the above-described work routes P1b is , A route in which the tractor 1 automatically travels while performing the tillage work. The start point p3 of each work path P1b is a work start point at which the tractor 1 starts tillage work, and the end point p4 of each work path P1b is a work stop point at which the tractor 1 stops tillage work. Each of the non-work paths P1a includes a work stop point p4 before the tractor 1 turns on the turning path P2 and a work start point p3 after the tractor 1 turns on the turning path P2. It is an alignment path for aligning in the work traveling direction. Then, the length L1 of each non-work path P1a is determined based on vehicle body information of the tractor 1 including the positional relationship of the rotary tilling device 6 in the tractor 1.
In addition, of the connection points p5 and p6 between the parallel paths P1 and the turning paths P2 on the target path P, the connection point p5 on the end side of each parallel path P1 is the turning start point of the tractor 1, and each of the parallel paths A connection point p6 on the starting end side in P1 is a turning end point of the tractor 1.
Then, the start point p3 and the end point p4 of each work path P1b, the connection points p5 and p6 between the parallel path P1 and each turn path P2 in the target path P, and the length L1 of each non-work path P1a , Etc. are included in the target route P stored in the terminal storage unit 83.
 図3、図5、図7に示す圃場Aにおいて、前述したマージン領域A1は、トラクタ1が走行領域A2の外周部を自動走行するときに、ロータリ耕耘装置6などが圃場Aに隣接する畦などの他物に接触することを防止するために、圃場Aの外周縁と走行領域A2との間に確保された領域である。そして、マージン領域A1における圃場Aの外周縁と走行領域A2との間の距離は、圃場情報の一つであるマージン幅W2として端末記憶部83に記憶されている。
 又、前述した各非作業領域A2aは、トラクタ1が圃場Aの畦際において現在の作業経路P1bから次の作業経路P1bに旋回移動するための畦際旋回領域である。そして、前述した非作業経路(位置合せ経路)P1aの長さL1と、トラクタ1の旋回半径Rと、トラクタ1における作業幅W1の半分の長さW1/2とを足し合わせた距離が、非作業領域(畦際旋回領域)A2aにおけるマージン領域A1と作業領域A2bとの間の畦際旋回幅W3であり、この畦際旋回幅W3は、圃場情報の一つとして端末記憶部83に記憶されている。
In the field A shown in FIG. 3, FIG. 5, and FIG. 7, when the tractor 1 automatically travels on the outer periphery of the travel area A2, the above-described margin area A1 is formed by the rotary tilling device 6 or the like adjacent to the field A. This is an area secured between the outer peripheral edge of the field A and the traveling area A2 in order to prevent contact with other objects. Then, the distance between the outer periphery of the field A and the traveling area A2 in the margin area A1 is stored in the terminal storage unit 83 as a margin width W2 which is one of the field information.
Each of the non-work areas A2a described above is a ridge turn area for the tractor 1 to turn from the current work path P1b to the next work path P1b when the tractor 1 ridges on the field A. The sum of the length L1 of the non-working path (positioning path) P1a, the turning radius R of the tractor 1, and the half length W1 / 2 of the working width W1 of the tractor 1 is a non-working distance. The ridge turning width W3 between the margin area A1 and the work area A2b in the work area (ridge turning area) A2a, and the ridge turning width W3 is stored in the terminal storage unit 83 as one of the field information. ing.
 なお、図3、図5、図7に示す目標経路Pはあくまでも一例であり、目標経路生成部82は、トラクタ1の機種や作業の種類などに応じて異なる車体情報、及び、圃場Aに応じて異なる圃場Aの形状や大きさなどの圃場情報、などに基づいて、それらに適した種々の目標経路Pを生成することができる。 Note that the target route P shown in FIGS. 3, 5, and 7 is merely an example, and the target route generating unit 82 is configured to output different vehicle body information depending on the model of the tractor 1, the type of work, and the like. Based on field information such as the shape and size of the different fields A, various target paths P suitable for the fields can be generated.
 目標経路Pは、車体情報や圃場情報などに関連付けされた状態で端末記憶部83に記憶されており、携帯通信端末3の表示部4にて表示することができる。目標経路Pには、各並列経路P3におけるトラクタ1の目標車速として設定された第1車速V1(図6参照)、各旋回経路P2bにおけるトラクタ1の目標車速として設定された第2車速V2(図6参照)、各並列経路P1における前輪操舵角、及び、各旋回経路P2bにおける前輪操舵角、などが含まれている。 The target route P is stored in the terminal storage unit 83 in a state where the target route P is associated with vehicle body information, field information, and the like, and can be displayed on the display unit 4 of the mobile communication terminal 3. The target route P includes a first vehicle speed V1 (see FIG. 6) set as the target vehicle speed of the tractor 1 in each parallel route P3, and a second vehicle speed V2 (see FIG. 6) set as the target vehicle speed of the tractor 1 in each turning route P2b. 6), the front wheel steering angle in each parallel path P1, the front wheel steering angle in each turning path P2b, and the like.
 端末制御ユニット80は、車載制御ユニット40からの送信要求指令に応じて、端末記憶部83に記憶されている車体情報と圃場情報と目標経路Pなどを車載制御ユニット40に送信する。車載制御ユニット40は、受信した車体情報と圃場情報と目標経路Pなどを車載記憶部47に記憶する。目標経路Pの送信に関しては、例えば、端末制御ユニット80が、トラクタ1が自動走行を開始する前の段階において、目標経路Pの全てを端末記憶部83から車載制御ユニット40に一挙に送信するようにしてもよい。又、例えば、端末制御ユニット80が、目標経路Pを所定距離ごとの複数の分割経路情報に分割して、トラクタ1が自動走行を開始する前の段階からトラクタ1の走行距離が所定距離に達するごとに、トラクタ1の走行順位に応じた所定数の分割経路情報を端末記憶部83から車載制御ユニット40に逐次送信するようにしてもよい。 The terminal control unit 80 transmits the vehicle body information, the field information, the target route P, and the like stored in the terminal storage unit 83 to the vehicle-mounted control unit 40 in response to the transmission request command from the vehicle-mounted control unit 40. The vehicle-mounted control unit 40 stores the received vehicle body information, field information, the target route P, and the like in the vehicle-mounted storage unit 47. Regarding the transmission of the target route P, for example, the terminal control unit 80 transmits all of the target route P from the terminal storage unit 83 to the on-vehicle control unit 40 at a time before the tractor 1 starts the automatic traveling. It may be. Further, for example, the terminal control unit 80 divides the target route P into a plurality of pieces of divided route information for each predetermined distance, and the traveling distance of the tractor 1 reaches the predetermined distance from a stage before the tractor 1 starts automatic traveling. Each time, a predetermined number of divided route information according to the traveling order of the tractor 1 may be sequentially transmitted from the terminal storage unit 83 to the on-vehicle control unit 40.
 車載制御ユニット40において、自動走行制御部46には、車両状態検出機器23に含まれた各種のセンサやスイッチなどからの検出情報が、車速制御部42やステアリング制御部43などを介して入力されている。これにより、自動走行制御部46は、トラクタ1における各種の設定状態や各部の動作状態などを監視することができる。 In the in-vehicle control unit 40, detection information from various sensors and switches included in the vehicle state detection device 23 is input to the automatic traveling control unit 46 via the vehicle speed control unit 42, the steering control unit 43, and the like. ing. Thereby, the automatic traveling control unit 46 can monitor various setting states in the tractor 1 and operation states of the respective units.
 自動走行制御部46は、トラクタ1の走行モードが自動走行モードに切り換えられた状態において、搭乗者や車外の管理者などのユーザによって携帯通信端末3の表示部4が操作されて自動走行の開始が指令された場合に、測位ユニット24にてトラクタ1の現在位置p0や現在方位などを取得しながら目標経路Pに従ってトラクタ1を自動走行させる自動走行制御を開始する。 In a state where the traveling mode of the tractor 1 is switched to the automatic traveling mode, the automatic traveling control unit 46 starts the automatic traveling by operating the display unit 4 of the mobile communication terminal 3 by a user such as a passenger or a manager outside the vehicle. Is issued, the positioning unit 24 starts the automatic traveling control for automatically traveling the tractor 1 according to the target route P while acquiring the current position p0 and the current direction of the tractor 1.
 自動走行制御部46による自動走行制御には、エンジン14に関する自動走行用の制御指令をエンジン制御部41に送信するエンジン用自動制御処理、トラクタ1の車速Vや前後進の切り換えに関する自動走行用の制御指令を車速制御部42に送信する車速用自動制御処理、ステアリングに関する自動走行用の制御指令をステアリング制御部43に送信するステアリング用自動制御処理、及び、ロータリ耕耘装置6などの作業装置に関する自動走行用の制御指令を作業装置制御部44に送信する作業用自動制御処理、などが含まれている。 The automatic cruise control by the automatic cruise control unit 46 includes an automatic cruise control process for transmitting an automatic cruise control command relating to the engine 14 to the engine control unit 41, and a cruise control for automatic cruise control relating to switching of the vehicle speed V of the tractor 1 and forward / backward travel. A vehicle speed automatic control process for transmitting a control command to the vehicle speed control unit 42, a steering automatic control process for transmitting a steering automatic control command to the steering control unit 43, and an automatic operation for a working device such as the rotary tilling device 6. It includes a work automatic control process of transmitting a traveling control command to the work device control unit 44, and the like.
 自動走行制御部46は、エンジン用自動制御処理においては、目標経路Pに含まれた設定回転数などに基づいてエンジン回転数の変更を指示するエンジン回転数変更指令、などをエンジン制御部41に送信する。エンジン制御部41は、自動走行制御部46から送信されたエンジン14に関する各種の制御指令に応じてエンジン回転数を自動で変更するエンジン回転数変更制御、などを実行する。 In the automatic control process for the engine, the automatic traveling control unit 46 sends an engine speed change command to instruct the engine control unit 41 to change the engine speed based on the set speed included in the target route P, and the like. Send. The engine control unit 41 executes an engine speed change control for automatically changing the engine speed in response to various control commands for the engine 14 transmitted from the automatic traveling control unit 46.
 自動走行制御部46は、車速用自動制御処理においては、目標経路Pに含まれた目標車速に基づいて無段変速装置36の変速操作を指示する変速操作指令、及び、目標経路Pに含まれたトラクタ1の進行方向などに基づいて前後進切換装置37の前後進切り換え操作を指示する前後進切り換え指令、などを車速制御部42に送信する。車速制御部42は、自動走行制御部46から送信された無段変速装置36や前後進切換装置37などに関する各種の制御指令に応じて、無段変速装置36の作動を自動で制御する自動車速制御、及び、前後進切換装置37の作動を自動で制御する自動前後進切り換え制御、などを実行する。自動車速制御には、例えば、目標経路Pに含まれた目標車速が零速である場合に、無段変速装置36を零速状態まで減速制御してトラクタ1の走行を停止させる自動減速停止処理などが含まれている。 In the vehicle speed automatic control process, the automatic traveling control unit 46 includes a shift operation command for instructing a shift operation of the continuously variable transmission 36 based on the target vehicle speed included in the target route P, and a shift operation command included in the target route P. A forward / reverse switching command for instructing a forward / backward switching operation of the forward / backward switching device 37 based on the traveling direction of the tractor 1 or the like is transmitted to the vehicle speed control unit 42. The vehicle speed control unit 42 automatically controls the operation of the continuously variable transmission 36 according to various control commands related to the continuously variable transmission 36 and the forward / reverse switching device 37 transmitted from the automatic traveling control unit 46. The control and the automatic forward / reverse switching control for automatically controlling the operation of the forward / backward switching device 37 are executed. In the vehicle speed control, for example, when the target vehicle speed included in the target path P is zero speed, an automatic deceleration stop process for controlling the deceleration of the continuously variable transmission 36 to zero speed and stopping the tractor 1 is stopped. And so on.
 自動走行制御部46は、ステアリング用自動制御処理においては、目標経路Pに含まれた前輪操舵角などに基づいて左右の前輪10の操舵を指示する操舵指令、などをステアリング制御部43に送信する。ステアリング制御部43は、自動走行制御部46から送信された操舵指令に応じて、パワーステアリングユニット16の作動を制御して左右の前輪10を操舵する自動操舵制御、及び、左右の前輪10が設定角度以上に操舵された場合に、ブレーキユニット17を作動させて旋回内側のブレーキを作動させる自動ブレーキ旋回制御、などを実行する。 In the steering automatic control process, the automatic traveling control unit 46 transmits to the steering control unit 43 a steering command for instructing steering of the left and right front wheels 10 based on the front wheel steering angle and the like included in the target path P. . The steering control unit 43 controls the operation of the power steering unit 16 to steer the left and right front wheels 10 according to the steering command transmitted from the automatic traveling control unit 46, and sets the left and right front wheels 10 When the steering is performed at an angle or more, an automatic brake turning control for operating the brake unit 17 to operate the brake inside the turning is executed.
 自動走行制御部46は、作業用自動制御処理においては、目標経路Pに含まれた作業開始地点p3に基づいてロータリ耕耘装置6の作業状態への切り換えを指示する作業開始指令、及び、目標経路Pに含まれた作業停止地点p4に基づいてロータリ耕耘装置6の非作業状態への切り換えを指示する作業停止指令、などを作業装置制御部44に送信する。作業装置制御部44は、自動走行制御部46から送信されたロータリ耕耘装置6に関する各種の制御指令に応じて、昇降駆動ユニット20と作業クラッチユニット19の作動を制御して、ロータリ耕耘装置6を作業高さまで下降させて作動させる自動作業開始制御、及び、ロータリ耕耘装置6を停止させて非作業高さまで上昇させる自動作業停止制御、などを実行する。又、作業装置制御部44は、ロータリ耕耘装置6を作業高さまで下降させて作動させた作業状態においては、ロータリ耕耘装置6による耕耘深さを検出する耕深センサの検出に基づいて、昇降駆動ユニット20の作動を制御してロータリ耕耘装置6による耕耘深さを設定深さに維持する自動耕深維持制御、及び、トラクタ1のロール角を検出する傾斜センサと慣性計測装置26の加速度センサの検出とに基づいて、ローリング駆動ユニット21の作動を制御してロータリ耕耘装置6のロール方向での傾斜姿勢を設定姿勢(例えば水平姿勢)に維持する自動ロール角維持制御を実行する。 In the work automatic control process, the automatic traveling control unit 46 performs a work start command for instructing the rotary tilling apparatus 6 to switch to the work state based on the work start point p3 included in the target path P, and a target path. A work stop command for instructing switching of the rotary tillage device 6 to the non-working state based on the work stop point p4 included in P is transmitted to the work device control unit 44. The work device control unit 44 controls the operation of the lifting drive unit 20 and the work clutch unit 19 according to various control commands related to the rotary till device 6 transmitted from the automatic traveling control unit 46, and controls the rotary till device 6 to operate. The automatic work start control that lowers the working height to the operation and the automatic work stop control that stops the rotary tilling device 6 and raises the height to the non-working height are executed. In the working state in which the rotary tilling device 6 is lowered to the working height and operated, the working device control unit 44 raises and lowers the rotary tilling device 6 based on the detection of the tilling depth sensor that detects the tilling depth by the rotary tilling device 6. Automatic tillage depth maintenance control for controlling the operation of the unit 20 to maintain the tillage depth of the rotary tillage device 6 at the set depth, and an inclination sensor for detecting the roll angle of the tractor 1 and an acceleration sensor for the inertial measurement device 26. Based on the detection, an automatic roll angle maintaining control for controlling the operation of the rolling drive unit 21 to maintain the inclined posture in the roll direction of the rotary tilling device 6 at a set posture (for example, a horizontal posture) is executed.
 つまり、前述した自動走行ユニット2には、パワーステアリングユニット16、ブレーキユニット17、作業クラッチユニット19、昇降駆動ユニット20、ローリング駆動ユニット21、車両状態検出機器23、測位ユニット24、車載制御ユニット40、及び、通信モジュール77、などが含まれている。そして、これらが適正に作動することにより、トラクタ1を目標経路Pに従って精度よく自動走行させることができるとともに、ロータリ耕耘装置6による耕耘を適正に行うことができる。 That is, the automatic traveling unit 2 includes the power steering unit 16, the brake unit 17, the work clutch unit 19, the lifting / lowering drive unit 20, the rolling drive unit 21, the vehicle state detection device 23, the positioning unit 24, the on-vehicle control unit 40, And a communication module 77. When these components operate properly, the tractor 1 can be automatically driven with high accuracy in accordance with the target route P, and the rotary tilling device 6 can properly perform tilling.
 図2、図5、図7に示すように、自動走行制御部46は、自動走行制御によってトラクタ1が並列経路P1を自動走行しているときに、トラクタ1の進行方向におけるトラクタ1の前端から圃場Aの外周縁までの離隔距離D1を測定する離隔距離測定部46Aを有している。車速制御部42は、離隔距離測定部46Aが測定した離隔距離D1に応じてトラクタ1の車速Vを制限する車速制限部42Aを有している。車載記憶部47に記憶された車体情報には、トラクタ1の平面視におけるトラクタ1の前端からGPSアンテナ75の取り付け位置までの前後長さL2と、トラクタ1の車速Vと制動距離との関係を示すマップとが含まれている。 As shown in FIGS. 2, 5, and 7, when the tractor 1 is automatically traveling on the parallel path P <b> 1 by the automatic traveling control, the automatic traveling control unit 46 starts from the front end of the tractor 1 in the traveling direction of the tractor 1. A separation distance measuring unit 46A for measuring a separation distance D1 to the outer peripheral edge of the field A is provided. The vehicle speed control unit 42 has a vehicle speed limiting unit 42A that limits the vehicle speed V of the tractor 1 according to the separation distance D1 measured by the separation distance measuring unit 46A. The vehicle body information stored in the in-vehicle storage unit 47 includes the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75 in a plan view of the tractor 1, the relationship between the vehicle speed V of the tractor 1 and the braking distance. And the map shown.
 図5、図7に示すように、離隔距離測定部46Aは、衛星測位システムを利用して取得した並列経路P1におけるトラクタ1の現在位置p0、及び、車載記憶部47に記憶された並列経路P1における終端側の接続地点p5と、トラクタ1の旋回半径Rと、トラクタ1の作業幅W1と、圃場Aのマージン幅W2と、トラクタ1の前端からGPSアンテナ75の取り付け位置までの前後長さL2とに基づいて離隔距離D1を測定する。 As shown in FIGS. 5 and 7, the separation distance measurement unit 46A includes the current position p0 of the tractor 1 on the parallel path P1 acquired using the satellite positioning system, and the parallel path P1 stored in the in-vehicle storage unit 47. , The turning radius R of the tractor 1, the working width W1 of the tractor 1, the margin width W2 of the field A, and the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75. And the separation distance D1 is measured based on
 具体的には、離隔距離測定部46Aは、自動走行制御によってトラクタ1が並列経路P1を自動走行する前の段階において、トラクタ1の旋回半径Rと、トラクタ1における作業幅W1の半分の長さW1/2と、圃場Aのマージン幅W2とを足し合わせて、並列経路P1における終端側の接続地点p5から圃場Aの外周縁までの固定離隔距離D3を演算して車載記憶部47に記憶する。そして、離隔距離測定部46Aは、自動走行制御によってトラクタ1が並列経路P1を自動走行している間は、前述したトラクタ1の現在位置p0と並列経路P1における終端側の接続地点p5とから、それらの間の未走行距離D4を演算し、この未走行距離D4に固定離隔距離D3を足し合わせたものから前述した前後長さL2を差し引くことで、前述した離隔距離D1を測定する。 Specifically, at a stage before the tractor 1 automatically travels on the parallel path P1 by the automatic traveling control, the separation distance measuring unit 46A determines that the turning radius R of the tractor 1 and half the working width W1 of the tractor 1 By adding W1 / 2 and the margin width W2 of the field A, a fixed separation distance D3 from the terminal point p5 on the parallel path P1 to the outer peripheral edge of the field A is calculated and stored in the in-vehicle storage unit 47. . Then, while the tractor 1 is automatically traveling on the parallel route P1 by the automatic traveling control, the separation distance measuring unit 46A calculates the distance from the current position p0 of the tractor 1 and the connection point p5 on the end side of the parallel route P1. An untraveled distance D4 between them is calculated, and the above-described longitudinal length L2 is subtracted from the sum of the untraveled distance D4 and the fixed clearance D3, thereby measuring the above-mentioned clearance D1.
 つまり、離隔距離測定部46Aは、衛星測位システムを利用して取得する並列経路P1におけるトラクタ1の現在位置p0に応じて変化する未走行距離D4と、車載記憶部47に記憶された固定値である前述した固定離隔距離D3と前後長さL2とに基づいて離隔距離D1を測定することになる。これにより、離隔距離D1の測定に要する演算負荷を軽減することができ、結果、離隔距離D1を迅速に精度良く測定することができる。 In other words, the separation distance measuring unit 46A uses the untraveled distance D4 that changes according to the current position p0 of the tractor 1 on the parallel path P1 obtained using the satellite positioning system, and the fixed value stored in the in-vehicle storage unit 47. The separation distance D1 is measured based on the above-mentioned fixed separation distance D3 and the front and rear length L2. Thereby, the calculation load required for measuring the separation distance D1 can be reduced, and as a result, the separation distance D1 can be measured quickly and accurately.
 なお、離隔距離測定部46Aは、衛星測位システムを利用して並列経路P1におけるトラクタ1の現在位置p0を取得した段階において、トラクタ1の前端からGPSアンテナ75の取り付け位置までの前後長さL2に基づいて、トラクタ1の現在位置p0とトラクタ1の前端位置とのズレを補正するように構成されていてもよい。
 又、離隔距離測定部46Aは、自動走行制御によってトラクタ1が並列経路P1を自動走行する前の段階において、トラクタ1の旋回半径Rと、トラクタ1における作業幅W1の半分の長さW1/2と、圃場Aのマージン幅W2とを足し合わせて得た固定離隔距離D3から、前述した前後長さL2を差し引いたものを、離隔距離測定用の固定値として演算して車載記憶部47に記憶させるように構成されていてもよい。この場合、離隔距離D1の測定に要する演算負荷の軽減を更に図ることができる。
In addition, at the stage where the current position p0 of the tractor 1 in the parallel path P1 is acquired using the satellite positioning system, the separation distance measuring unit 46A sets the front-rear length L2 from the front end of the tractor 1 to the mounting position of the GPS antenna 75. Based on this, it may be configured to correct the deviation between the current position p0 of the tractor 1 and the front end position of the tractor 1.
Further, the separation distance measuring unit 46A determines that the turning radius R of the tractor 1 and the half length W1 / 2 of the working width W1 of the tractor 1 before the tractor 1 automatically runs on the parallel path P1 by the automatic running control. And the fixed distance D3 obtained by adding the margin width W2 of the field A to the fixed distance D3, and subtracting the above-mentioned length L2 from the fixed distance D3 as a fixed value for measuring the distance, and storing it in the vehicle-mounted storage unit 47. You may be comprised so that it may make it. In this case, the calculation load required for measuring the separation distance D1 can be further reduced.
 車速制限部42Aは、自動走行制御によってトラクタ1が並列経路P1を自動走行している間は、離隔距離測定部46Aが測定した離隔距離D1に応じてトラクタ1の車速Vを制限する車速制限制御を実行する。 The vehicle speed limiting unit 42A controls the vehicle speed V of the tractor 1 according to the separation distance D1 measured by the separation distance measuring unit 46A while the tractor 1 is automatically running on the parallel path P1 by the automatic running control. Execute
 図9に示すフローチャートに基づいて、車速制限制御における車速制限部42Aの制御作動について説明すると、車速制限部42Aは、先ず、図7に示すように、離隔距離測定部46Aが測定した離隔距離D1に応じて、離隔距離D1よりも設定距離D5だけ短い比較制動距離D2を演算する制動距離演算処理(図9のステップ#10)を行う。ここで演算される比較制動距離D2は、図7に示すように、トラクタ1の現在位置p0が、トラクタ1の進行方向に位置する圃場Aの外周縁と並列経路P1との交点である走行限界位置p10に近づくに連れて短くなり、トラクタ1の前端位置が、走行限界位置p10から設定距離D5だけ圃場Aに入り込んだ走行制限位置p11に達したときに零になる。
 次に、車速制限部42Aは、制動距離演算処理で得た比較制動距離D2と前述したマップとから、比較制動距離D2に応じたトラクタ1の車速Vを上限速度Vmaxとして設定する上限速度設定処理(図9のステップ#11)を行う。ここで設定される上限速度Vmaxは、図6、図8に示すように、トラクタ1の並列経路P1での自動走行に伴って離隔距離D1が短くなるほど遅くなり、トラクタ1の前端位置が走行制限位置p11に達したとき(図7参照)に零速になる。
 又、車速制限部42Aは、上限速度設定処理にて設定した上限速度Vmaxと、並列経路P1におけるトラクタ1の目標車速である第1車速V1とを比較する比較処理(図9のステップ#12)を行う。
 そして、図6に示すように、比較処理において上限速度Vmaxが第1車速V1に低下するまでの間は、第1車速V1に応じたトラクタ1の制動距離が比較制動距離D2よりも短くなることから、車速制限部42Aは、トラクタ1の車速Vが第1車速V1に維持されるようにトラクタ1の車速Vを制限する第1車速制限処理(図9のステップ#13)を行う。
 又、図6に示すように、比較処理において上限速度Vmaxが第1車速V1まで低下したときは、第1車速V1に応じたトラクタ1の制動距離が比較制動距離D2と同じになることから、車速制限部42Aは、トラクタ1の制動距離が比較制動距離D2に維持されるように、離隔距離D1の減少に応じてトラクタ1の車速Vを第1車速V1から低下させる第2車速制限処理(図9のステップ#14)を行う。
 その後、車速制限部42Aは、トラクタ1が並列経路P1における終端側の接続地点(旋回開始地点)p5に達したか否かを判定する判定処理(図9のステップ#15)を行う。
 そして、車速制限部42Aは、判定処理においてトラクタ1の現在位置p0が接続地点(旋回開始地点)p5に達したと判定されるまでの間は第2車速制限処理を継続する。
 又、車速制限部42Aは、判定処理においてトラクタ1の現在位置p0が接続地点(旋回開始地点)p5に達したと判定されたときに車速制限制御を終了する。これにより、第2車速制限処理によって離隔距離D1の減少に応じて低下していたトラクタ1の車速Vは、図6に示すように、トラクタ1の現在位置p0が接続地点(旋回開始地点)p5に達したときに、このときに得られる離隔距離D1に応じた車速で下げ止まる。
 そして、車速制限部42Aが車速制限制御を終了すると、車速制御部42が自動車速制御を実行して、トラクタ1が旋回経路P2bを自動走行している間は、トラクタ1の車速Vを、旋回経路P2bにおけるトラクタ1の目標車速である第2車速V2(図6参照)に維持する。その後、トラクタ1が旋回経路P2bから並列経路P1に移動するのに伴って、トラクタ1の車速Vを第2車速V2から第1車速V1に変更するとともに、自動車速制御を終了して車速制限部42Aによる車速制限制御を実行させる。
The control operation of the vehicle speed limiting unit 42A in the vehicle speed limiting control will be described with reference to the flowchart shown in FIG. 9. First, as shown in FIG. 7, the vehicle speed limiting unit 42A first determines the separation distance D1 measured by the separation distance measurement unit 46A. , A braking distance calculation process (step # 10 in FIG. 9) for calculating a comparative braking distance D2 shorter than the separation distance D1 by the set distance D5. The calculated relative braking distance D2 is, as shown in FIG. 7, a travel limit at which the current position p0 of the tractor 1 is an intersection between the outer peripheral edge of the field A located in the traveling direction of the tractor 1 and the parallel path P1. The distance becomes shorter as approaching the position p10, and becomes zero when the front end position of the tractor 1 reaches the travel limit position p11 that has entered the field A by the set distance D5 from the travel limit position p10.
Next, the vehicle speed limiting unit 42A sets the vehicle speed V of the tractor 1 according to the comparative braking distance D2 as the upper limit speed Vmax based on the comparative braking distance D2 obtained in the braking distance calculation process and the above-described map. (Step # 11 in FIG. 9) is performed. As shown in FIGS. 6 and 8, the upper limit speed Vmax set here becomes slower as the separation distance D1 becomes shorter with the automatic traveling of the tractor 1 on the parallel path P1, and the front end position of the tractor 1 becomes the traveling limit. When it reaches the position p11 (see FIG. 7), the speed becomes zero.
Further, the vehicle speed limiting unit 42A compares the upper limit speed Vmax set in the upper limit speed setting process with the first vehicle speed V1 which is the target vehicle speed of the tractor 1 in the parallel path P1 (step # 12 in FIG. 9). I do.
Then, as shown in FIG. 6, the braking distance of the tractor 1 corresponding to the first vehicle speed V1 is shorter than the comparative braking distance D2 until the upper limit speed Vmax decreases to the first vehicle speed V1 in the comparison processing. Therefore, the vehicle speed limiting unit 42A performs a first vehicle speed limiting process (step # 13 in FIG. 9) for limiting the vehicle speed V of the tractor 1 so that the vehicle speed V of the tractor 1 is maintained at the first vehicle speed V1.
As shown in FIG. 6, when the upper limit speed Vmax decreases to the first vehicle speed V1 in the comparison process, the braking distance of the tractor 1 corresponding to the first vehicle speed V1 becomes the same as the comparative braking distance D2. The vehicle speed limiting unit 42A performs a second vehicle speed limiting process (a second vehicle speed limiting process that reduces the vehicle speed V of the tractor 1 from the first vehicle speed V1 in accordance with the decrease in the separation distance D1 so that the braking distance of the tractor 1 is maintained at the comparative braking distance D2. Step # 14) of FIG. 9 is performed.
Thereafter, the vehicle speed limiting unit 42A performs a determination process (step # 15 in FIG. 9) to determine whether the tractor 1 has reached the connection point (turning start point) p5 on the end side of the parallel path P1.
Then, the vehicle speed limiting unit 42A continues the second vehicle speed limiting process until it is determined in the determination process that the current position p0 of the tractor 1 has reached the connection point (turning start point) p5.
The vehicle speed limiting unit 42A ends the vehicle speed limiting control when it is determined in the determination process that the current position p0 of the tractor 1 has reached the connection point (turning start point) p5. As a result, the vehicle speed V of the tractor 1, which has been reduced in accordance with the decrease in the separation distance D1 due to the second vehicle speed limiting process, is changed from the current position p0 of the tractor 1 to the connection point (turning start point) p5 as shown in FIG. , The vehicle stops at the vehicle speed corresponding to the separation distance D1 obtained at this time.
When the vehicle speed limiting unit 42A ends the vehicle speed limiting control, the vehicle speed control unit 42 executes the vehicle speed control, and changes the vehicle speed V of the tractor 1 while the tractor 1 is automatically traveling on the turning path P2b. The second vehicle speed V2 (see FIG. 6), which is the target vehicle speed of the tractor 1 on the route P2b, is maintained. Thereafter, as the tractor 1 moves from the turning path P2b to the parallel path P1, the vehicle speed V of the tractor 1 is changed from the second vehicle speed V2 to the first vehicle speed V1, and the vehicle speed control is terminated to stop the vehicle speed control. The vehicle speed limiting control by 42A is executed.
 つまり、トラクタ1が並列経路P1での自動走行を開始すると、離隔距離D1が長くて第1車速V1に応じたトラクタ1の制動距離が比較制動距離D2よりも短くなる間は、車速制限部42Aが第1車速制限処理を行ってトラクタ1の車速Vを第1車速V1に制限する。これにより、トラクタ1の車速Vが不必要に速くなることに起因して、燃費が悪くなることや、目標経路Pに従ってトラクタ1を自動走行させるときに目標経路Pに対するトラクタ1の追従性が低下する虞を回避することができる。 That is, when the tractor 1 starts automatic traveling on the parallel path P1, while the separation distance D1 is long and the braking distance of the tractor 1 according to the first vehicle speed V1 is shorter than the comparison braking distance D2, the vehicle speed limiting unit 42A Performs the first vehicle speed limiting process to limit the vehicle speed V of the tractor 1 to the first vehicle speed V1. As a result, the vehicle speed V of the tractor 1 becomes unnecessarily high, so that the fuel efficiency is deteriorated, and the ability of the tractor 1 to follow the target route P when the tractor 1 automatically travels along the target route P is reduced. Can be avoided.
 その後、離隔距離D1が短くなって第1車速V1に応じたトラクタ1の制動距離が比較制動距離D2と同じになると、車速制限部42Aが第2車速制限処理を行って、トラクタ1の制動距離が、離隔距離D1の減少に応じて短くなる比較制動距離D2に維持されるようにトラクタ1の車速Vを制限する。これにより、トラクタ1が圃場Aの外周縁に接近したときや旋回経路P2に達したときには、トラクタ1の車速Vを十分に低下させておくことができる。その結果、自動走行制御部46が、例えば、並列経路P1に従ってトラクタ1を圃場Aの外周縁付近で走行停止させるときや、トラクタ1を旋回経路P2に従って旋回走行させるときに、トラクタ1が圃場Aからはみ出して畦などの他物に接触する虞を回避することができる。 Thereafter, when the separation distance D1 becomes shorter and the braking distance of the tractor 1 according to the first vehicle speed V1 becomes the same as the comparative braking distance D2, the vehicle speed limiting unit 42A performs the second vehicle speed limiting process, and performs the braking distance of the tractor 1. However, the vehicle speed V of the tractor 1 is limited such that the vehicle speed V is maintained at the comparative braking distance D2 that becomes shorter as the separation distance D1 decreases. Thereby, when the tractor 1 approaches the outer peripheral edge of the field A or reaches the turning path P2, the vehicle speed V of the tractor 1 can be sufficiently reduced. As a result, for example, when the automatic traveling control unit 46 stops traveling of the tractor 1 near the outer peripheral edge of the field A according to the parallel path P1 or turns the tractor 1 according to the turning path P2, It is possible to avoid the possibility of protruding and contacting other objects such as ridges.
 図1に示すように、トラクタ1には、レーザを用いて測定対象物までの距離を3次元で測定して3次元画像を生成する前後2台のライダーセンサ(LiDAR Sensor:Light Detection and Ranging Sensor)100,101と、超音波を用いて測定対象物までの距離を測定する左右のソナーユニット102とを備えている。 As shown in FIG. 1, a tractor 1 includes two lidar sensors (LiDAR Sensor: Light Detection and Range Sensor) which measure a distance to a measurement target in three dimensions using a laser and generate a three-dimensional image. ) 100 and 101 and left and right sonar units 102 for measuring the distance to the measurement object using ultrasonic waves.
 前後のライダーセンサ100,101のうち、前ライダーセンサ100は、前述したアンテナユニット79が配置されているキャビン13の前面側における上部の左右中央箇所に、トラクタ1の前方側を斜め上方側から見下ろす前下がり姿勢で配置されている。これにより、前ライダーセンサ100は、トラクタ1の前方側が測定範囲となるように設定されている。後ライダーセンサ101は、キャビン13の後端側における上部の左右中央箇所に、トラクタ1の後方側を斜め上方側から見下ろす後下がり姿勢で配置されている。これにより、後ライダーセンサ101は、トラクタ1の後方側が測定範囲となるように設定されている。 Among the front and rear rider sensors 100 and 101, the front rider sensor 100 looks down the front side of the tractor 1 from an obliquely upper side at the upper left and right center position on the front side of the cabin 13 where the above-described antenna unit 79 is disposed. It is arranged in a forward-lowering position. Thereby, the front rider sensor 100 is set so that the front side of the tractor 1 is the measurement range. The rear rider sensor 101 is arranged at the center of the rear end of the cabin 13 in the upper right and left sides, with the rear side of the tractor 1 looking down diagonally from the upper side in a rearward downward posture. Thus, the rear rider sensor 101 is set such that the rear side of the tractor 1 is the measurement range.
 左右のソナーユニット102は、キャビン13における左右両側部の下部側に配置された左右の乗降ステップに、小さい俯角を有する左右外向き姿勢で取り付けられている。これにより、左右のソナーユニット102は、トラクタ1の左右外方が測定範囲となるように設定された状態で前輪10と後輪11との間の比較的高い位置に配置されている。 The left and right sonar units 102 are attached to the left and right getting on and off steps disposed below the left and right sides of the cabin 13 in a left and right outward posture having a small depression angle. Accordingly, the left and right sonar units 102 are arranged at a relatively high position between the front wheel 10 and the rear wheel 11 in a state where the left and right outer sides of the tractor 1 are set to be in the measurement range.
 前後のライダーセンサ100,101及び左右のソナーユニット102は、車載制御ユニット40の自動走行制御部46にCANを介して相互通信可能に接続されている。これにより、自動走行制御部46は、前後のライダーセンサ100,101及び左右のソナーユニット102からの情報に基づいて、トラクタ1の周囲を監視することができる。これにより、例えば、トラクタ1が圃場Aに隣接する畦などの他物に接近した場合や、トラクタ1に他の作業車などの他物が接近してきた場合には、自動走行制御部46は、そのときの状況を的確に把握することができ、そのときの状況に適した自動車速制御や自動操舵制御などを実行することができる。その結果、トラクタ1が他物に接触する虞を回避することができる。 The front and rear rider sensors 100 and 101 and the left and right sonar units 102 are connected to the automatic traveling control unit 46 of the on-vehicle control unit 40 via a CAN so that they can communicate with each other. Thereby, the automatic traveling control unit 46 can monitor the surroundings of the tractor 1 based on information from the front and rear rider sensors 100 and 101 and the left and right sonar units 102. Accordingly, for example, when the tractor 1 approaches another object such as a ridge adjacent to the field A, or when another object such as another work vehicle approaches the tractor 1, the automatic traveling control unit 46 The situation at that time can be accurately grasped, and vehicle speed control and automatic steering control suitable for the situation at that time can be executed. As a result, the possibility that the tractor 1 contacts another object can be avoided.
〔別実施形態〕
 本発明の別実施形態について説明する。
 なお、以下に説明する各別実施形態の構成は、それぞれ単独で適用することに限らず、他の別実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the present invention will be described.
The configuration of each of the different embodiments described below is not limited to being applied independently, and can be applied in combination with the configuration of another alternative embodiment.
(1)作業車両1の構成に関する代表的な別実施形態は以下の通りである。
 例えば、作業車両1は、左右の後輪11に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
 例えば、作業車両1は、左右の前輪10及び左右の後輪11に代えて左右のクローラを備えるフルクローラ仕様に構成されていてもよい。
 例えば、作業車両1は、エンジン14の代わりに電動モータを備える電動仕様に構成されていてもよい。
 例えば、作業車両1は、エンジン14と電動モータとを備えるハイブリッド仕様に構成されていてもよい。
(1) Another representative embodiment relating to the configuration of the work vehicle 1 is as follows.
For example, the work vehicle 1 may be configured to have a semi-crawler specification including left and right crawlers instead of the left and right rear wheels 11.
For example, the work vehicle 1 may be configured as a full crawler specification including left and right crawlers in place of the left and right front wheels 10 and the left and right rear wheels 11.
For example, the work vehicle 1 may be configured to have an electric specification including an electric motor instead of the engine 14.
For example, the work vehicle 1 may be configured to have a hybrid specification including the engine 14 and the electric motor.
(2)離隔距離測定部46Aは、図10に示すように、衛星測位システムを利用して取得した並列経路P1におけるトラクタ1の現在位置p0と、車載記憶部47に記憶された作業地形状特定用の形状特定線ALとに基づいて、トラクタ1の現在位置p0から、トラクタ1の進行方向における並列経路P1の延長線上に位置する形状特定線ALまでの距離を離隔距離D1として測定するように構成されていてもよい。 (2) The separation distance measuring unit 46A determines the current position p0 of the tractor 1 on the parallel path P1 acquired using the satellite positioning system and the work site shape stored in the vehicle-mounted storage unit 47, as shown in FIG. The distance from the current position p0 of the tractor 1 to the shape specifying line AL located on the extension of the parallel path P1 in the traveling direction of the tractor 1 is measured as the separation distance D1 based on the shape specifying line AL for use. It may be configured.
(3)離隔距離測定部46Aは、距離センサの一例である前ライダーセンサ100の測定結果に基づいて離隔距離D1を測定するように構成されていてもよい。
 なお、距離センサとしてステレオカメラなどを採用してもよい。
(3) The separation distance measuring unit 46A may be configured to measure the separation distance D1 based on the measurement result of the front rider sensor 100 which is an example of the distance sensor.
Note that a stereo camera or the like may be employed as the distance sensor.
 本発明に係る作業車両用の自動走行システムは、例えば、トラクタ、乗用草刈機、乗用田植機、コンバイン、ホイールローダ、除雪車、などの乗用作業車両、及び、無人草刈機などの無人作業車両に適用することができる。 The automatic traveling system for a working vehicle according to the present invention is, for example, a tractor, a riding mower, a riding rice transplanter, a combine, a wheel loader, a snowplow, and other riding working vehicles, and unmanned working vehicles such as unmanned mowers. Can be applied.
1   作業車両
42  車速制御部
42A 車速制限部
46  自動走行制御部
46A 離隔距離測定部
47  記憶部
100 距離センサ
A   作業地
A2  走行領域
Ap1 形状特定地点
Ap4 形状特定地点
AL  形状特定線
D1  離隔距離
D2  比較制動距離
D5  設定距離
P   目標経路
P1  並列経路
P2  旋回経路
R   旋回半径
V1  目標車速
W   作業幅
W2  マージン幅
p0  現在位置
p5  接続地点
p6  接続地点
Reference Signs List 1 work vehicle 42 vehicle speed control unit 42A vehicle speed limit unit 46 automatic traveling control unit 46A separation distance measurement unit 47 storage unit 100 distance sensor A work place A2 running area Ap1 shape specification point Ap4 shape specification point AL shape specification line D1 separation distance D2 Comparison Braking distance D5 Set distance P Target route P1 Parallel route P2 Turning route R Turning radius V1 Target vehicle speed W Working width W2 Margin width p0 Current position p5 Connection point p6 Connection point

Claims (5)

  1.  作業車両の車速を制御する車速制御部と、
     作業地内に区分けされた走行領域に応じて生成された目標経路を記憶する記憶部と、
     衛星測位システムを利用して前記作業車両を前記目標経路に従って自動走行させる自動走行制御部とを有し、
     前記目標経路には、前記走行領域において並列に配置される複数の並列経路と、前記走行領域の外縁部に配置されて複数の前記並列経路を走行順に接続する複数の旋回経路とが含まれており、
     前記自動走行制御部は、前記作業車両が前記並列経路を自動走行しているときに、前記作業車両の進行方向における前記作業車両から前記作業地の外周縁までの離隔距離を測定する離隔距離測定部を有し、
     前記車速制御部は、前記離隔距離に応じて前記作業車両の車速を制限する車速制限部を有している作業車両用の自動走行システム。
    A vehicle speed control unit that controls the vehicle speed of the work vehicle;
    A storage unit for storing a target route generated according to the traveling area divided in the work place,
    An automatic travel control unit that automatically travels the work vehicle according to the target route using a satellite positioning system,
    The target path includes a plurality of parallel paths arranged in parallel in the traveling area, and a plurality of turning paths arranged at an outer edge of the traveling area and connecting the plurality of parallel paths in the traveling order. Yes,
    The automatic traveling control unit is configured to measure a separation distance from the work vehicle to an outer peripheral edge of the work place in a traveling direction of the work vehicle when the work vehicle is automatically traveling on the parallel path. Part
    The automatic traveling system for a work vehicle, wherein the vehicle speed control unit includes a vehicle speed limiting unit that limits a vehicle speed of the work vehicle according to the separation distance.
  2.  前記目標経路には、前記作業車両が前記並列経路を自動走行するときの目標車速が含まれており、
     前記車速制限部は、前記離隔距離よりも設定距離だけ短い比較制動距離を演算し、前記目標車速に応じた前記作業車両の制動距離が前記比較制動距離よりも短い間は、前記作業車両の車速が前記目標車速に維持されるように前記作業車両の車速を制限する第1車速制限処理を行い、前記目標車速に応じた前記作業車両の制動距離が前記比較制動距離と同じになったときは、前記作業車両の制動距離が前記比較制動距離に維持されるように、前記離隔距離の減少に応じて前記作業車両の車速を前記目標車速から低下させる第2車速制限処理を行う請求項1に記載の作業車両用の自動走行システム。
    The target route includes a target vehicle speed when the work vehicle automatically travels on the parallel route,
    The vehicle speed limiter calculates a comparative braking distance shorter than the separation distance by a set distance, and while the braking distance of the work vehicle according to the target vehicle speed is shorter than the comparative braking distance, the vehicle speed of the work vehicle Performs a first vehicle speed limiting process for limiting the vehicle speed of the work vehicle so that the target vehicle speed is maintained, and when a braking distance of the work vehicle according to the target vehicle speed becomes equal to the comparative braking distance, And performing a second vehicle speed limiting process of reducing a vehicle speed of the work vehicle from the target vehicle speed in accordance with a decrease in the separation distance so that a braking distance of the work vehicle is maintained at the comparative braking distance. An automatic traveling system for a working vehicle as described.
  3.  前記記憶部には、前記作業車両の旋回半径と、前記作業車両の作業幅と、前記作業地の外周縁と前記走行領域との間に設定されたマージン幅と、前記並列経路と前記旋回経路との各接続地点とが記憶され、
     前記離隔距離測定部は、前記衛星測位システムを利用して取得した前記並列経路における前記作業車両の現在位置、及び、前記記憶部に記憶された前記並列経路における終端側の前記接続地点と、前記作業車両の旋回半径と、前記作業車両の作業幅と、前記マージン幅とに基づいて前記離隔距離を測定する請求項1又は2に記載の作業車両用の自動走行システム。
    The storage unit includes a turning radius of the work vehicle, a work width of the work vehicle, a margin width set between an outer peripheral edge of the work place and the traveling area, the parallel path, and the turn path. Each connection point with is stored,
    The separation distance measurement unit, the current position of the work vehicle in the parallel path obtained using the satellite positioning system, and the connection point on the terminal side in the parallel path stored in the storage unit, The automatic traveling system for a work vehicle according to claim 1 or 2, wherein the separation distance is measured based on a turning radius of the work vehicle, a work width of the work vehicle, and the margin width.
  4.  前記記憶部には、前記衛星測位システムを利用して取得した前記作業地における複数の形状特定地点と、複数の前記形状特定地点を繋いで前記作業地の形状を特定する形状特定線とが記憶され、
     前記離隔距離測定部は、前記衛星測位システムを利用して取得した前記並列経路における前記作業車両の現在位置から、前記作業車両の進行方向における前記並列経路の延長線上に位置する形状特定線までの距離を前記離隔距離として測定する請求項1又は2に記載の作業車両用の自動走行システム。
    The storage unit stores a plurality of shape specifying points in the work place acquired by using the satellite positioning system, and a shape specifying line that connects the plurality of shape specifying points to specify the shape of the work place. And
    The separation distance measurement unit is configured to measure a distance from a current position of the work vehicle on the parallel path acquired using the satellite positioning system to a shape identification line located on an extension of the parallel path in the traveling direction of the work vehicle. The automatic traveling system for a work vehicle according to claim 1 or 2, wherein a distance is measured as the separation distance.
  5.  前記作業車両には、前記作業車両の進行方向に存在する測距対象物までの距離を測定する距離センサが備えられ、
     前記離隔距離測定部は、前記距離センサの測定結果に基づいて前記離隔距離を測定する請求項1又は2に記載の作業車両用の自動走行システム。
    The work vehicle is provided with a distance sensor that measures a distance to a distance measurement target existing in a traveling direction of the work vehicle,
    The automatic traveling system for a work vehicle according to claim 1, wherein the separation distance measurement unit measures the separation distance based on a measurement result of the distance sensor.
PCT/JP2019/027385 2018-08-22 2019-07-10 Automatic traveling system for work vehicle WO2020039782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-155194 2018-08-22
JP2018155194A JP7091189B2 (en) 2018-08-22 2018-08-22 Automatic driving system for work vehicles

Publications (1)

Publication Number Publication Date
WO2020039782A1 true WO2020039782A1 (en) 2020-02-27

Family

ID=69591907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027385 WO2020039782A1 (en) 2018-08-22 2019-07-10 Automatic traveling system for work vehicle

Country Status (2)

Country Link
JP (1) JP7091189B2 (en)
WO (1) WO2020039782A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024050A1 (en) * 2019-08-05 2021-02-11 Precision Planting Llc Speed control of implements during transitions of settings of agricultural parameters
US20210076561A1 (en) * 2019-09-13 2021-03-18 Kanzaki Kokyukoki Mfg. Co., Ltd. Lawn mower with autonomous traveling function
CN112514723A (en) * 2020-11-30 2021-03-19 广西水力机械研究所有限公司 Computerized fruit tree row planting arrangement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163939B2 (en) * 2020-05-07 2022-11-01 井関農機株式会社 work vehicle
JP7437340B2 (en) 2021-03-15 2024-02-22 株式会社クボタ Work vehicles and work vehicle control systems
JP7453172B2 (en) 2021-03-15 2024-03-19 株式会社クボタ Work vehicles and work vehicle control systems
US20220287218A1 (en) 2021-03-15 2022-09-15 Kubota Corporation Work vehicle and control system for work vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222919A (en) * 1996-02-19 1997-08-26 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for guiding work wagon by utilizing beam light
JP2006034137A (en) * 2004-07-23 2006-02-09 Iseki & Co Ltd Sulky seedling transplanter
US20140336818A1 (en) * 2013-05-10 2014-11-13 Cnh Industrial America Llc Control architecture for multi-robot system
JP2017123829A (en) * 2016-01-15 2017-07-20 株式会社クボタ Field work vehicle
JP2017127290A (en) * 2016-01-22 2017-07-27 ヤンマー株式会社 Agricultural working vehicle
JP2018120491A (en) * 2017-01-27 2018-08-02 ヤンマー株式会社 Route generation system and autonomous traveling system for running work vehicle along route generated by the same
JP2018121538A (en) * 2017-01-30 2018-08-09 ヤンマー株式会社 Work vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222919A (en) * 1996-02-19 1997-08-26 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for guiding work wagon by utilizing beam light
JP2006034137A (en) * 2004-07-23 2006-02-09 Iseki & Co Ltd Sulky seedling transplanter
US20140336818A1 (en) * 2013-05-10 2014-11-13 Cnh Industrial America Llc Control architecture for multi-robot system
JP2017123829A (en) * 2016-01-15 2017-07-20 株式会社クボタ Field work vehicle
JP2017127290A (en) * 2016-01-22 2017-07-27 ヤンマー株式会社 Agricultural working vehicle
JP2018120491A (en) * 2017-01-27 2018-08-02 ヤンマー株式会社 Route generation system and autonomous traveling system for running work vehicle along route generated by the same
JP2018121538A (en) * 2017-01-30 2018-08-09 ヤンマー株式会社 Work vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024050A1 (en) * 2019-08-05 2021-02-11 Precision Planting Llc Speed control of implements during transitions of settings of agricultural parameters
US20210076561A1 (en) * 2019-09-13 2021-03-18 Kanzaki Kokyukoki Mfg. Co., Ltd. Lawn mower with autonomous traveling function
US12005787B2 (en) * 2019-09-13 2024-06-11 Kanzaki Kokyukoki Mfg. Co., Ltd. Lawn mower with autonomous traveling function
CN112514723A (en) * 2020-11-30 2021-03-19 广西水力机械研究所有限公司 Computerized fruit tree row planting arrangement method

Also Published As

Publication number Publication date
JP7091189B2 (en) 2022-06-27
JP2020028243A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2020039782A1 (en) Automatic traveling system for work vehicle
KR102283927B1 (en) Task vehicle control system
JP7384950B2 (en) automatic driving system
JP7262374B2 (en) Automated driving system for work vehicles
JP2019165665A (en) Automatic travel system for work vehicle
WO2021025108A1 (en) Automatic travel system for work vehicle
WO2020235470A1 (en) Automatic travel system
WO2022065091A1 (en) Automatic traveling system, automatic traveling method, and automatic traveling program
JP7223552B2 (en) Display device and automatic driving system
JP2024053067A (en) Autonomous driving system and method
WO2021010297A1 (en) Automatic traveling system
WO2020158295A1 (en) Target route generation system for work vehicle
TW202045384A (en) Automatic travel system
JP2022188155A (en) Automatic travel system for work vehicle
JP7316198B2 (en) Automated driving system for work vehicles
JP7247240B2 (en) Automated driving system for work vehicles
JP7438718B2 (en) Automated driving system for work vehicles
JP7246918B2 (en) RUNNING STATE DISPLAY DEVICE AND AUTOMATIC RUNNING SYSTEM
WO2021020333A1 (en) Automatic traveling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852203

Country of ref document: EP

Kind code of ref document: A1