WO2021010297A1 - Automatic traveling system - Google Patents

Automatic traveling system Download PDF

Info

Publication number
WO2021010297A1
WO2021010297A1 PCT/JP2020/026930 JP2020026930W WO2021010297A1 WO 2021010297 A1 WO2021010297 A1 WO 2021010297A1 JP 2020026930 W JP2020026930 W JP 2020026930W WO 2021010297 A1 WO2021010297 A1 WO 2021010297A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
tractor
unit
range
control unit
Prior art date
Application number
PCT/JP2020/026930
Other languages
French (fr)
Japanese (ja)
Inventor
士郎 ▲杉▼田
卓也 岩瀬
横山 和寿
Original Assignee
ヤンマーパワーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーパワーテクノロジー株式会社 filed Critical ヤンマーパワーテクノロジー株式会社
Publication of WO2021010297A1 publication Critical patent/WO2021010297A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an automatic traveling system for automatically traveling a work vehicle.
  • an obstacle detection unit that detects an obstacle within a predetermined detection range around the work vehicle based on the detection information of an obstacle sensor provided in the work vehicle, and an obstacle detection unit thereof.
  • a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
  • the collision avoidance control unit performs various processes such as notification processing for notifying the existence of obstacles, deceleration processing for decelerating the traveling speed of the work vehicle, and traveling stop processing for stopping the traveling of the work vehicle. So, I try to avoid the collision between the obstacle and the work vehicle.
  • the obstacle detection unit changes the size of the predetermined detection range according to the traveling speed of the work vehicle, so that the collision avoidance control unit can perform appropriate processing according to the traveling speed of the work vehicle. There is.
  • the work device performs work such as mowing at a position away from the work vehicle in the left-right direction of the work vehicle. Therefore, in order to avoid a collision between the work device and an obstacle, the detection range is defined as a range from the work vehicle to a position distant from the work vehicle in the left-right direction, and when an obstacle is detected within the detection range, It is necessary to perform collision avoidance control.
  • a main object of the present invention is to provide an automatic traveling system capable of avoiding a collision between a work device and an obstacle while preventing unnecessary collision avoidance control. ..
  • the first feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
  • An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
  • a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
  • the collision avoidance control unit is configured to be switchable between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed, depending on the work device connected to the work vehicle. It is in.
  • FIG. 1 is a diagram showing a schematic configuration of an automatic traveling system.
  • FIG. 2 is a block diagram showing a schematic configuration of an automatic driving system.
  • FIG. 3 is a front view of the tractor as viewed from the front side.
  • FIG. 4 is a rear view of the tractor as viewed from the rear side.
  • FIG. 5 is a diagram showing a target traveling route in the work area.
  • FIG. 6 is a plan view showing the measurement ranges of the plurality of obstacle sensors.
  • FIG. 7 is a plan view showing a detection range for detecting an obstacle in a tractor to which an offset moa is connected.
  • FIG. 8 is a flowchart showing the operation in the obstacle detection system.
  • FIG. 8 is a flowchart showing the operation in the obstacle detection system.
  • FIG. 9 is a diagram showing a state in which the traveling position of the tractor and the detection range for detecting an obstacle are displayed on the display unit.
  • FIG. 10 is a diagram showing a state in which the traveling position of the tractor, the detection range for detecting an obstacle, and the position of the obstacle are displayed on the display unit.
  • FIG. 11 is a diagram showing a state in which the traveling position of the tractor, the measurement range of the obstacle sensor, and the range inside and outside the area in the measurement range are displayed on the display unit.
  • FIG. 12 is a flowchart showing an operation when displaying on the display unit.
  • this automatic traveling system applies the tractor 1 as a work vehicle, but other than the tractor, a passenger work vehicle such as a passenger rice transplanter, a combine, a passenger mower, a wheel loader, and a snowplow, It can also be applied to unmanned work vehicles such as unmanned mowers.
  • a passenger work vehicle such as a passenger rice transplanter, a combine, a passenger mower, a wheel loader, and a snowplow.
  • unmanned work vehicles such as unmanned mowers.
  • this automatic traveling system includes an automatic traveling unit 2 mounted on a tractor 1 and a mobile communication terminal 3 set to communicate with the automatic traveling unit 2.
  • a mobile communication terminal 3 As the mobile communication terminal 3, a tablet-type personal computer, a smartphone, or the like having a touch-operable touch panel display unit 51 (for example, a liquid crystal panel) or the like can be adopted.
  • the tractor 1 is provided with a traveling machine body 7 having left and right front wheels 5 that function as driveable steering wheels and driveable left and right rear wheels 6.
  • a bonnet 8 is arranged on the front side of the traveling machine body 7, and an electronically controlled diesel engine (hereinafter, referred to as an engine) 9 equipped with a common rail system is provided in the bonnet 8.
  • An engine 9 equipped with a common rail system is provided in the bonnet 8.
  • a cabin 10 forming a boarding-type driving unit is provided behind the bonnet 8 of the traveling machine body 7.
  • An offset moa 12 which is an example of a working device, is connected to the rear part of the traveling machine body 7 via a three-point link mechanism 11 so as to be able to move up and down and roll.
  • the tractor 1 is configured for mowing specifications.
  • various working machines such as a rotary tiller, a plow, a disc halo, a cultivator, a subsoiler, a sowing device, and a spraying device can be connected to the rear portion of the tractor 1.
  • the tractor 1 includes an electronically controlled transmission 13 that shifts the power from the engine 9, a fully hydraulic power steering mechanism 14 that steers the left and right front wheels 5, and left and right rear wheels 6.
  • Left and right side brakes for braking (not shown)
  • electronically controlled brake operation mechanism 15 that enables hydraulic operation of the left and right side brakes
  • work clutch (not shown) that interrupts transmission to the offset mower 12
  • work An electronically controlled clutch operation mechanism 16 that enables hydraulic operation of the clutch
  • an electrohydraulic control type elevating drive mechanism 17 that elevates and drives the offset mower 12, an in-vehicle electronic device having various control programs related to automatic running of the tractor 1 and the like.
  • a control unit 18, a vehicle speed sensor 19 that detects the vehicle speed of the tractor 1, a steering angle sensor 20 that detects the steering angle of the front wheels 5, a positioning unit 21 that measures the current position and the current orientation of the tractor 1, and the like are provided. ..
  • An electronically controlled gasoline engine equipped with an electronic governor may be adopted as the engine 9.
  • a hydraulic mechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted.
  • HMT hydraulic mechanical continuously variable transmission
  • HST hydrostatic continuously variable transmission
  • a belt type continuously variable transmission or the like
  • an electric power steering mechanism 14 or the like provided with an electric motor may be adopted.
  • a steering wheel 38 that enables manual steering of the left and right front wheels 5 via a power steering mechanism 14 (see FIG. 2), a driver's seat 39 for passengers, and a touch panel It is equipped with an expression display unit and various operating tools.
  • the vehicle-mounted electronic control unit 18 controls the operation of the speed change control unit 181 that controls the operation of the transmission device 13, the braking control unit 182 that controls the operation of the left and right side brakes, and the offset mower 12.
  • the device control unit 183, the steering angle setting unit 184 that sets the target steering angles of the left and right front wheels 5 during automatic driving and outputs them to the power steering mechanism 14, and the target traveling path P for automatic driving generated in advance (for example, It has a non-volatile vehicle-mounted storage unit 185 and the like for storing (see FIG. 5) and the like.
  • the positioning unit 21 is a satellite that measures the current position and the current orientation of the tractor 1 by using GPS (Global Positioning System), which is an example of a satellite positioning system (NSS: Navigation Satellite System). It is equipped with a navigation device 22, an inertial measurement unit (IMU: Inertial Measurement Unit) 23, etc., which has a 3-axis gyroscope, a 3-direction acceleration sensor, and the like to measure the attitude and orientation of the tractor 1.
  • Positioning methods using GPS include DGPS (Differential GPS: relative positioning method) and RTK-GPS (Real Time Kinematic GPS: interference positioning method).
  • RTK-GPS suitable for positioning of a moving body is adopted. Therefore, as shown in FIGS. 1 and 2, a reference station 4 that enables positioning by RTK-GPS is installed at a known position around the field.
  • the tractor 1 and the reference station 4 are connected to the positioning antennas 24 and 61 that receive the radio waves transmitted from the positioning satellite 71 (see FIG. 1), and between the tractor 1 and the reference station 4.
  • Communication modules 25, 62 and the like that enable wireless communication of various information including positioning information (correction information) in the above are provided.
  • the satellite navigation device 22 receives the positioning information obtained by the positioning antenna 24 on the tractor side receiving the radio waves from the positioning satellite 71 and the positioning antenna 61 on the base station side receiving the radio waves from the positioning satellite 71. Based on the obtained positioning information (correction information for measuring the current position of the tractor 1), the current position and the current orientation of the tractor 1 can be measured with high accuracy.
  • the positioning unit 21 is provided with the satellite navigation device 22 and the inertial measurement unit 23 to measure the current position, the current direction, and the attitude angle (yaw angle, roll angle, pitch angle) of the tractor 1 with high accuracy. Can be done.
  • the positioning antenna 24, the communication module 25, and the inertial measurement unit 23 provided in the tractor 1 are housed in the antenna unit 80 as shown in FIG.
  • the antenna unit 80 is arranged at an upper position on the front side of the cabin 10.
  • the mobile communication terminal 3 has positioning information between the terminal electronic control unit 52 having various control programs for controlling the operation of the display unit 51 and the like, and the communication module 25 on the tractor side.
  • a communication module 53 or the like that enables wireless communication of various information including the above is provided.
  • the terminal electronic control unit 52 includes a travel route generation unit 54 that generates a target travel route P (for example, see FIG. 5) for automatically traveling the tractor 1, and various input information and travel route generation units input by the user. It has a non-volatile terminal storage unit 55 and the like that stores the target travel path P and the like generated by the 54.
  • the travel route generation unit 54 When the travel route generation unit 54 generates the target travel route P, a user such as a driver or an administrator of the work vehicle follows the input guidance for setting the target travel route displayed on the display unit 51 of the mobile communication terminal 3. Vehicle body information such as the model and the type of working device such as the offset mower 12 and the working width is input, and the input vehicle body information is stored in the terminal storage unit 55.
  • the work area S (see FIG. 5) for which the target travel path P is to be generated is set as a field, and the terminal electronic control unit 52 of the mobile communication terminal 3 acquires field information including the shape and position of the field and is a terminal storage unit. I remember it at 55.
  • the terminal electronic control unit 52 obtains the shape and position of the field from the current position of the tractor 1 acquired by the positioning unit 21. It is possible to acquire the position information for specifying the above.
  • the terminal electronic control unit 52 can also acquire the position information of the field by reading the shape and position of the field from the map information or the like stored in the external management device or the like.
  • the terminal electronic control unit 52 identifies the shape and position of the field from the acquired position information, and acquires the field information including the work area S specified from the shape and position of the specified field.
  • FIG. 5 shows an example in which the rectangular work area S is specified.
  • the traveling route generation unit 54 uses the field information and the vehicle body information stored in the terminal storage unit 55 to target.
  • the travel path P is generated.
  • the traveling route generation unit 54 divides and sets the work area S into a central area R1 and an outer peripheral area R2.
  • the central area R1 is set in the central portion of the work area S, and is a reciprocating work area in which the tractor 1 is automatically traveled in the reciprocating direction to perform a predetermined work (for example, work such as tillage).
  • the outer peripheral region R2 is set around the central region R1.
  • the travel path generation unit 54 may, for example, take into account the turning radius included in the vehicle body information, the front-rear width and the left-right width of the tractor 1, and the space required for turning the tractor 1 at the shore of the field. Seeking.
  • the travel path generation unit 54 divides the work area S into a central area R1 and an outer peripheral area R2 so as to secure a space or the like obtained on the outer periphery of the central area R1.
  • the travel route generation unit 54 generates the target travel route P by using the vehicle body information, the field information, and the like.
  • the target travel path P includes a plurality of linear work paths P1 and a plurality of connection paths P2 having the same straight-line distance in the central region R1 and arranged in parallel with a certain distance corresponding to the work width.
  • the plurality of work paths P1 are routes for performing predetermined work while traveling the tractor 1 in a straight line.
  • the connecting path P2 is a U-turn path for changing the traveling direction of the tractor 1 by 180 degrees without performing a predetermined operation, and connects the end of the work path P1 and the start end of the next adjacent work path P1. ing.
  • the target travel route P shown in FIG. 5 is just an example, and what kind of target travel route is set can be changed as appropriate.
  • the travel route generation unit 54 may generate only the work route P1 without generating the connection route P2.
  • the points A and B which are the start and end points of the work are registered.
  • the traveling route generation unit 54 generates a linear initial linear path connecting the point A and the point B, and generates a plurality of parallel paths parallel to the initial linear path, thereby generating an initial linear path and a plurality of parallel paths. Can be set as the work path P1.
  • the target travel route P generated by the travel route generation unit 54 can be displayed on the display unit 51, and is stored in the terminal storage unit 55 as route information associated with vehicle body information, field information, and the like.
  • the route information includes the azimuth angle of the target traveling route P, the set engine rotation speed set according to the traveling mode of the tractor 1 on the target traveling route P, the target traveling speed, and the like.
  • the terminal electronic control unit 52 transfers the route information from the mobile communication terminal 3 to the tractor 1, so that the vehicle-mounted electronic control unit 18 of the tractor 1 However, the route information can be acquired.
  • the in-vehicle electronic control unit 18 automatically travels the tractor 1 along the target travel route P while acquiring its own current position (current position of the tractor 1) by the positioning unit 21 based on the acquired route information. Can be done.
  • the current position of the tractor 1 acquired by the positioning unit 21 is transmitted from the tractor 1 to the mobile communication terminal 3 in real time (for example, in a cycle of several milliseconds), and the current position of the tractor 1 is transmitted by the mobile communication terminal 3. I know.
  • the entire route information can be transferred from the terminal electronic control unit 52 to the vehicle-mounted electronic control unit 18 at once before the tractor 1 starts automatic traveling.
  • the route information including the target travel route P can be divided into a plurality of route portions for each predetermined distance with a small amount of information.
  • only the initial route portion of the route information is transferred from the terminal electronic control unit 52 to the vehicle-mounted electronic control unit 18.
  • the route information of only the subsequent route portion corresponding to that point is electronically controlled by the terminal electronic control unit 52. It may be transferred to the unit 18.
  • the automatic traveling of the tractor 1 When the automatic traveling of the tractor 1 is started, for example, when the user or the like moves the tractor 1 to the starting point and various automatic traveling start conditions are satisfied, the user displays the display unit 51 on the mobile communication terminal 3.
  • the mobile communication terminal 3 transmits the automatic traveling start instruction to the tractor 1 by instructing the start of the automatic traveling.
  • the in-vehicle electronic control unit 18 receives an instruction to start automatic driving, and the positioning unit 21 acquires its own current position (current position of the tractor 1) and sets the target traveling path P.
  • the automatic running control for automatically running the tractor 1 along the line is started.
  • Automatic traveling control in which the in-vehicle electronic control unit 18 automatically travels the tractor 1 along the target traveling route P in the work area S based on the positioning information of the tractor 1 acquired by the positioning unit 21 using the satellite positioning system. It is configured as an automatic driving control unit that performs the above.
  • the automatic driving control includes automatic shift control that automatically controls the operation of the transmission 13, automatic braking control that automatically controls the operation of the brake operation mechanism 15, automatic steering control that automatically steers the left and right front wheels 5, and an offset mower 12. It includes automatic control for work that automatically controls the operation of.
  • the shift control unit 181 determines the tractor 1 on the target travel path P based on the route information of the target travel path P including the target travel speed, the output of the positioning unit 21, and the output of the vehicle speed sensor 19.
  • the operation of the transmission 13 is automatically controlled so that the target traveling speed set according to the traveling mode or the like can be obtained as the vehicle speed of the tractor 1.
  • the braking control unit 182 sets the left and right side brakes on the left and right rear in the braking region included in the route information of the target traveling path P based on the target traveling path P and the output of the positioning unit 21.
  • the operation of the brake operating mechanism 15 is automatically controlled so as to properly brake the wheels 6.
  • the steering angle setting unit 184 sets the target of the left and right front wheels 5 based on the route information of the target travel path P and the output of the positioning unit 21 so that the tractor 1 automatically travels on the target travel path P.
  • the steering angle is obtained and set, and the set target steering angle is output to the power steering mechanism 14.
  • the power steering mechanism 14 automatically steers the left and right front wheels 5 based on the target steering angle and the output of the steering angle sensor 20 so that the target steering angle can be obtained as the steering angles of the left and right front wheels 5.
  • the work device control unit 183 performs work such as the start end of the work path P1 (see, for example, FIG. 5) by the tractor 1 based on the route information of the target travel path P and the output of the positioning unit 21.
  • a predetermined work for example, mowing work
  • the tractor 1 reaches the work end point such as the end of the work path P1 (for example, see FIG. 5).
  • the operation of the clutch operating mechanism 16 and the elevating drive mechanism 17 is automatically controlled so that the predetermined work by the offset mower 12 is stopped.
  • the automatic traveling unit 2 is composed of the unit 21, the communication module 25, and the like.
  • the tractor 1 can be automatically driven along the target traveling path P by the automatic traveling control by the in-vehicle electronic control unit 18 without the user or the like boarding the cabin 10, and the user or the like can board the cabin 10. Even in this case, the tractor 1 can be automatically driven along the target traveling path P by the automatic traveling control by the vehicle-mounted electronic control unit 18.
  • the vehicle-mounted electronic control unit 18 switches between an automatic driving state in which the tractor 1 is automatically driven and a manual driving state in which the tractor 1 is driven based on the driving of the user and the like. be able to. Therefore, it is possible to switch from the automatic driving state to the manual driving state while the target traveling route P is automatically traveling in the automatic driving state, and conversely, the manual driving is performed while traveling in the manual driving state. It is possible to switch from the state to the automatic driving state.
  • a switching operation unit for switching between the automatic driving state and the manual driving state can be provided in the vicinity of the driver's seat 39, and the switching operation unit is carried. It can also be displayed on the display unit 51 of the communication terminal 3. Further, when the user operates the steering wheel 38 during the automatic driving control by the vehicle-mounted electronic control unit 18, the automatic driving state can be switched to the manual driving state.
  • the tractor 1 is provided with an obstacle detection system 100 for detecting obstacles around the tractor 1 (traveling machine 7) and avoiding a collision with the obstacles.
  • the obstacle detection system 100 includes a plurality of lidar sensors 101 and 102 capable of measuring the distance to the object to be measured in three dimensions using a laser, and a plurality of lidar sensors 101 and 102 capable of measuring the distance to the object to be measured using ultrasonic waves.
  • the sonar units 103 and 104 having sonar, the cameras 105, 106.107 and 108 that image the surroundings of the tractor 1 (traveling machine 7), the obstacle detection unit 110, and the collision avoidance control unit 111 are provided. ..
  • the obstacle detection system 100 includes a plurality of obstacle sensors D such as lidar sensors 101, 102, sonar units 103, 104, and cameras 105, 106, of a plurality of obstacle sensors D. Obstacles detected by each are objects, people, and the like.
  • the rider sensors 101 and 102 are provided with a front rider sensor 101 whose measurement target is the front side of the tractor 1 and a rear rider sensor 102 whose measurement target is the rear side of the tractor 1.
  • the sonar units 103 and 104 include a right sonar unit 103 whose measurement target is the right side of the tractor 1 and a left sonar unit 104 whose measurement target is the left side of the tractor 1.
  • the cameras 105, 106, 107, 108 include a front camera 105 whose measurement target is the front side of the tractor 1, a rear camera 106 whose measurement target is the rear side of the tractor 1, and a right side whose measurement target is the right side of the tractor 1.
  • a camera 107 and a left camera 108 whose measurement target is the left side of the tractor 1 are provided.
  • the obstacle detection unit 110 repeatedly performs obstacle detection processing based on the measurement information of the rider sensors 101, 102, sonar units 103, 104, and cameras 105, 106, 107, 108 in real time, and detects the detection range C (see FIG. 7). It properly detects objects and obstacles such as people inside.
  • the collision avoidance control unit 111 performs collision avoidance control for avoiding a collision with an obstacle detected in real time.
  • the obstacle detection unit 110 and the collision avoidance control unit 111 are provided in the in-vehicle electronic control unit 18.
  • the in-vehicle electronic control unit 18 is connected to the electronic control unit for the engine, the rider sensors 101, 102, the sonar units 103, 104, the cameras 105, 106, 107, 108, etc. included in the common rail system via CAN (Controller Area Network). Is connected so that it can communicate with each other.
  • CAN Controller Area Network
  • the lidar sensors 101 and 102 measure the distance from the round-trip time until the laser beam (for example, pulsed near-infrared laser beam) hits the measurement object and bounces off to the measurement object (Time Of Flight). ..
  • the lidar sensors 101 and 102 scan the laser beam in the vertical and horizontal directions at high speed, and sequentially measure the distance to the measurement target at each scanning angle to measure the distance to the measurement target in three dimensions. I'm measuring.
  • the lidar sensors 101 and 102 repeatedly measure the distance to the object to be measured within the measurement range in real time.
  • the lidar sensors 101 and 102 are configured to generate a three-dimensional image from the measurement information and output it to the outside.
  • the three-dimensional image generated from the measurement information of the rider sensors 101 and 102 is displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the presence or absence of an obstacle. be able to.
  • a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the presence or absence of an obstacle. be able to.
  • the distance in the perspective direction can be indicated by using a color or the like.
  • the front rider sensor 101 is attached to the bottom of the antenna unit 80 arranged at the upper position on the front side of the cabin 10.
  • the antenna unit 80 is attached to a pipe-shaped antenna unit support stay 81 over the entire length of the cabin 10 in the left-right direction of the traveling machine body 7.
  • the antenna unit 80 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7.
  • the front rider sensor 101 is attached to the antenna unit 80 in a front-down posture, which is located on the lower side toward the front side portion, and is integrally provided on the antenna unit 80.
  • the front rider sensor 101 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7.
  • the front camera 105 is arranged above the front rider sensor 101. Like the front rider sensor 101, the front camera 105 is attached in a front-down posture, which is located on the lower side toward the front side portion.
  • the front camera 105 is provided so as to take an image of the front side of the traveling machine body 7 in a state of looking down from an obliquely upper side. It is configured so that the captured image captured by the front camera 105 can be output to the outside.
  • the captured image of the front camera 105 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1.
  • the front rider sensor 101 and the front camera 105 are arranged at positions corresponding to the roof 35 in the vertical direction.
  • the rear rider sensor 102 is attached to a pipe-shaped sensor support stay 82 over the entire length of the cabin 10 in the left-right direction of the traveling machine body 7.
  • the rear rider sensor 102 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7.
  • the rear rider sensor 102 is attached to the sensor support stay 82 in a rearward lowering posture, which is located on the lower side toward the rear side portion.
  • the rear camera 106 is arranged above the rear rider sensor 102. Like the rear rider sensor 102, the rear camera 106 is attached in a rear-down posture, which is located on the lower side toward the rear side portion.
  • the rear camera 106 is provided so as to take an image of the rear side of the traveling machine body 7 in a state of looking down from an obliquely upper side. It is configured so that the captured image captured by the rear camera 106 can be output to the outside.
  • the captured image of the rear camera 106 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1.
  • the rear rider sensor 102 and the rear camera 106 are arranged at positions corresponding to the roof 35 in the vertical direction.
  • the right camera 107 and the left camera 108 are provided so as to take an image while looking down from an obliquely upper side via a support stay or the like, like the front camera 105 and the rear camera 106.
  • the right camera 107 and the left camera 108 can also be arranged at positions corresponding to the roof 35 in the vertical direction.
  • the captured images captured by the right camera 107 and the left camera 108 are also configured to be output to the outside.
  • the captured images of the right camera 107 and the left camera 108 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1. ..
  • the sonar units 103 and 104 are configured to measure the distance from the measurement object from the round-trip time until the projected ultrasonic wave hits the measurement object and bounces off.
  • a right sonar unit 103 having a measurement range on the right side of the tractor 1 (traveling machine body 7) and a left sonar unit 104 having a measuring range on the left side of the tractor 1 (traveling machine body 7) (see FIG. 1). And are provided.
  • the obstacle detection system 100 detects obstacles within a predetermined detection range C (see FIG. 7) around the tractor 1, in order to detect obstacles 101, 102, sonar units 103, 104, and cameras 105, 106, 107. , 108 and a plurality of obstacle sensors D are provided.
  • the measurement range of the plurality of obstacle sensors D will be described with reference to FIG.
  • FIG. 6 is a plan view showing the measurement ranges of the plurality of obstacle sensors D.
  • the front side of the tractor 1 is provided in a state where the measurement range C1 of the front rider sensor 101 and a part of the measurement range C2 of the front camera 105 overlap.
  • Both the measurement range C1 and the measurement range C2 are set to symmetrical ranges.
  • the measurement range C2 is set so that the distance from the tractor 1 to the front side is larger than the measurement range C1 and is set to a range larger than the measurement range C1 in the left-right direction by a predetermined angle.
  • the rear side of the tractor 1 is provided in a state where the measurement range C3 of the rear rider sensor 102 and a part of the measurement range C4 of the rear camera 106 overlap. Both the measurement range C3 and the measurement range C4 are set to symmetrical ranges.
  • the measurement range C4 is set so that the distance from the tractor 1 to the rear side is larger than the measurement range C3 and is set to a range larger than the measurement range C3 in the left-right direction by a predetermined angle.
  • the right side of the tractor 1 is provided in a state where the measurement range C5 of the right sonar unit 103 and a part of the measurement range C6 of the right camera 107 overlap.
  • the measurement range C5 and the measurement range C6 are both set to be symmetrical in the front-rear direction.
  • the measurement range C6 is set so that the distance from the tractor 1 to the right side is larger than the measurement range C5, and the measurement range C6 is set to a range larger than the measurement range C5 by a predetermined angle in the front-rear direction.
  • the left side of the tractor 1 is provided in a state where the measurement range C7 of the sonar unit 104 on the left side and a part of the measurement range C8 of the left camera 108 overlap.
  • the measurement range C7 and the measurement range C8 are both set to be symmetrical in the front-rear direction.
  • the measurement range C8 is set so that the distance from the tractor 1 to the left side is larger than the measurement range C7, and the measurement range C8 is set to a range larger than the measurement range C7 by a predetermined angle in the front-rear direction.
  • the measurement ranges of the two obstacle sensors D are provided in a state of overlapping in any of the front side, the rear side, the right side, and the left side of the tractor 1, but the obstacles A plurality of obstacle sensors D may be provided in a state where the measurement ranges of the sensors D do not overlap. How to set the measurement range of the plurality of obstacle sensors D such as the rider sensors 101, 102, the sonar units 103, 104 and the cameras 105, 106, 107, 108 can be appropriately changed.
  • the obstacle detection process by the obstacle detection unit 110 will be described.
  • the obstacle detection unit 110 determines the presence or absence of an obstacle within a predetermined detection range around the tractor 1 based on the measurement information of the rider sensors 101, 102, the sonar units 103, 104, and the cameras 105, 106, 107, 108. And, it is configured to perform an obstacle detection process for detecting the position of an obstacle.
  • the obstacle detection unit 110 detects the presence or absence of an obstacle based on the measurement information of the front camera 105 as an obstacle detection process and detects the presence of the obstacle, the front rider sensor The position of the obstacle is detected based on the measurement information of 101.
  • the obstacle detection unit 110 determines the presence or absence of the obstacle and the position of the obstacle based on the measurement information of the front camera 105. Is being detected. In this way, the obstacle detection unit 110 detects the presence of an obstacle based on the measurement information of the front rider sensor 101 and the measurement information of the front camera 105 as the obstacle detection process on the front side of the tractor 1. The position of the obstacle is detected.
  • the obstacle detection unit 110 also detects the presence of obstacles on the rear side of the tractor 1 based on the measurement information of the rear rider sensor 102 and the measurement information of the rear camera 106 as the obstacle detection process. At the same time as detecting, the position of the obstacle is detected.
  • the obstacle detection unit 110 detects the presence or absence of an obstacle based on the measurement information of the right camera 107 as an obstacle detection process and detects the presence of the obstacle, the right side The position of the obstacle is detected based on the measurement information of the sonar unit 103.
  • the obstacle detection unit 110 determines the presence or absence of the obstacle and the position of the obstacle based on the measurement information of the right camera 107. Is being detected.
  • the obstacle detection unit 110 detects the presence of an obstacle based on the measurement information of the right sonar unit 103 and the measurement information of the right camera 107 as the obstacle detection process on the right side of the tractor 1, and also detects the presence of the obstacle. The position of the obstacle is detected. Regarding the left side of the tractor 1, the obstacle detection unit 110 also detects the presence of an obstacle based on the measurement information of the left sonar unit 104 and the measurement information of the left camera 108 as the obstacle detection process on the left side of the tractor 1. At the same time, the position of the obstacle is detected.
  • the obstacle detection unit 110 When the obstacle detection unit 110 detects an obstacle, the obstacle detection unit 110 is a plurality of obstacle sensors D such as a rider sensor 101, 102, a sonar unit 103, 104, and a camera 105, 106, 107, 1089. Each is configured to be switchable between an operating state and a non-operating state.
  • the obstacle detection unit 110 does not switch all of the plurality of obstacle sensors D to the operating state, but as shown in FIG. 7, depending on the traveling state of the tractor 1 and the state of the work device such as the offset mower 12. , A part of the plurality of obstacle sensors D is switched to the operating state, and the remaining part is switched to the non-operating state.
  • FIG. 7 shows the measurement range of the obstacle sensor D in the operating state.
  • the obstacle detection unit 110 switches each of the plurality of obstacle sensors D between an operating state and a non-operating state, so that the entire system can be adjusted according to the traveling state of the tractor 1 and the status of the working device such as the offset mower 12.
  • the detection range C for detecting obstacles can be changed freely.
  • the obstacle detection unit 110 reduces the processing load of the obstacle detection unit 110 by switching a part of the plurality of obstacle sensors D to the non-operating state, improves the processing speed, and accurately and quickly. I try to detect obstacles.
  • the obstacle detection unit 110 switches the front rider sensor 101 and the front camera 105 to the operating state, and does not switch the rear rider sensor 102 and the rear camera 106. Switching to the operating state.
  • the obstacle detection unit 110 switches the rear rider sensor 102 and the rear camera 106 into the operating state, and the front rider sensor 101 and the front camera 105. Is switched to the non-operating state.
  • the obstacle detection unit 110 sets the left sonar unit 104, the right sonar unit 103, and the left camera 108 as shown in FIG. It is switched to the operating state, and the right camera 107 is switched to the non-operating state.
  • the obstacle detection unit 110 switches the right sonar unit 103 to the operating state to detect obstacles only in a range close to the tractor 1 on the right side of the tractor 1, but does not detect the right sonar unit 103. It can also be switched to the operating state.
  • the obstacle detection unit 110 is the right sonar unit 103, the left sonar unit 104, and the right camera, although not shown.
  • the 107 is switched to the operating state
  • the left camera 108 is switched to the non-operating state.
  • the obstacle detection unit 110 switches the left sonar unit 104 to the operating state to detect obstacles only in a range close to the tractor 1 on the left side of the tractor 1, but does not detect the left sonar unit 104. It can also be switched to the operating state.
  • the obstacle detection unit 110 determines whether the tractor 1 is traveling forward or backward based on the operating state of the forward / backward switching lever provided in the control unit of the tractor 1.
  • vehicle body information including information about the work device such as the type and work width of the work device is input, so that the obstacle detection unit 110 inputs.
  • the obstacle detection unit 110 acquires the traveling state of the tractor 1 based on the operating state of the forward / backward switching lever, acquires the status of the work device based on the vehicle body information, and acquires the traveling state of the acquired tractor 1.
  • each of the plurality of obstacle sensors D is switched between the operating state and the non-operating state.
  • the obstacle detection unit 110 switches each of the plurality of obstacle sensors D between the operating state and the non-operating state, so that the obstacle detection unit 110 can switch between the operating state and the non-operating state, depending on the traveling state of the tractor 1 and the state of the work device such as the offset mower 12.
  • the detection range C for detecting obstacles is changed and set for the entire system.
  • FIG. 7 shows the detection range C of the entire system in a state where the tractor 1 is traveling forward and the offset moa 12 is offset to the left side of the tractor 1.
  • the obstacle detection unit 110 changes the detection range C for detecting an obstacle by switching each of the plurality of obstacle sensors D between an operating state and a non-operating state.
  • the measurement range C for detecting obstacles in the entire system.
  • the measurement of the front rider sensor 101 is performed by changing the distance from the tractor 1 to the front end of the measurement range C1 and the angle between the left and right ends in the left-right direction.
  • the range C1 can be changed.
  • the obstacle detection unit 110 approaches the measurement range C1 of the front rider sensor 101 and the measurement range C2 of the front camera 105 with respect to the distance from the tractor 1 and the angle in the left-right direction. Can be set to be larger than the measurement range C3 of the rear rider sensor 102 and the measurement range C4 of the rear camera 106.
  • the obstacle detection unit 110 determines the measurement range C3 of the rear rider sensor 102 and the measurement range of the rear camera 106 with respect to the distance from the tractor 1 and the angle in the left-right direction.
  • C4 can be set to be larger than the measurement range C1 of the front rider sensor 101 and the measurement range C2 of the front camera 105.
  • the obstacle detection unit 110 determines the distance from the tractor 1 and the angle in the front-rear direction of the left camera 108.
  • the measurement range C8 can be set to be larger than the measurement range C6 of the right camera 107.
  • the obstacle detection unit 110 determines the distance from the tractor 1 and the angle in the front-rear direction with respect to the right camera 107.
  • the measurement range C6 of the left camera 108 can be set to be larger than the measurement range C8 of the left camera 108.
  • the obstacle detection unit 110 changes the measurement range itself of the obstacle sensor D according to the traveling state of the tractor 1 and the state of the work device such as the offset moa 12, and thereby the obstacle as a whole system. It is also possible to change and set the detection range C for detecting.
  • the tractor 1 When changing the measurement range itself of the obstacle sensor D, for example, in the case of a work device existing at a position close to the tractor 1, in order to avoid a collision between the work device and the obstacle, the tractor 1 is used.
  • the detection range may be up to a close position.
  • the detection range should be a position away from the tractor 1 in order to avoid a collision between the work device and an obstacle. Is required. Therefore, the obstacle detection unit 110 detects obstacles as a whole system by changing the distance from the tractor 1 in the measurement range of the obstacle sensor D according to the distance from the tractor 1 to the work device.
  • the range C can be changed and set.
  • the collision avoidance control by the collision avoidance control unit 111 will be described.
  • the collision avoidance control unit 111 is configured to perform collision avoidance control for decelerating the tractor 1 or stopping the traveling of the tractor 1 when the obstacle detection unit 110 detects an obstacle. For example, within the detection range C (see FIG. 7), when the distance from the tractor 1 to the position where the obstacle exists is equal to or greater than a predetermined distance, the collision avoidance control unit 111 decelerates the tractor 1 as collision avoidance control. .. Further, if the distance from the tractor 1 to the position where the obstacle exists within the detection range C is less than a predetermined distance, the collision avoidance control unit 111 stops the tractor 1 from traveling as a collision avoidance control.
  • the predetermined distance may be different from the predetermined distance for the front side of the tractor 1 and the predetermined distance for the rear side of the tractor 1, or the predetermined distance may be changed and set according to the traveling speed of the tractor 1. it can. Regarding the predetermined distance, what kind of distance is set can be appropriately changed according to various conditions.
  • the collision avoidance control unit 111 In the collision avoidance control, the collision avoidance control unit 111 not only decelerates the tractor 1 or stops the tractor 1 from traveling, but also activates a notification device 26 such as a notification buzzer and a notification lamp to indicate that an obstacle exists. I am informing you.
  • the collision avoidance control unit 111 communicates with the mobile communication terminal 3 from the tractor 1 by using the communication modules 25 and 53 to display the presence of the obstacle on the display unit 51, so that the obstacle exists. It is possible to notify what to do.
  • the obstacle detection unit 110 determines whether the tractor 1 is traveling forward or backward from the operation state of the forward / backward switching lever, etc., and acquires the traveling state of the tractor 1 (step # 1). ).
  • the obstacle detection unit 110 determines from the vehicle body information including information about the work device such as the type and work width of the work device, which position the work device such as the offset mower 12 is located in the left-right direction with respect to the tractor 1.
  • the status of the work device such as the position information of the work device as to what distance the work device is located with respect to 1 is acquired (step # 2).
  • the obstacle detection unit 110 sets the detection range C for detecting obstacles in the entire system according to the traveling state of the tractor 1 and the state of the work device such as the offset moa 12 (step # 3). For example, as shown in FIG. 7, when the tractor 1 is traveling forward and the offset mower 12 is located on the left side of the tractor 1, the obstacle detection unit 110 determines the front rider sensor 101, the front camera 105, and the front camera 105.
  • the detection range C is set by switching the left sonar unit 104, the right sonar unit 103, and the left camera 108 to the operating state, and switching the rear rider sensor 102, the rear camera 106, and the right camera 107 to the non-operating state.
  • the obstacle detection unit 110 performs an obstacle detection process for detecting the presence / absence of an obstacle and the position of the obstacle within the set detection range C (step # 4).
  • the collision avoidance control unit 111 performs collision avoidance control (in the case of Yes in step # 5, step # 6).
  • the obstacle detection system 100 repeatedly repeats the operations of steps # 1 to # 6 during the automatic traveling of the tractor 1, and causes a collision between the work device such as the tractor 1 and the offset mower 12 and the obstacle. While avoiding it, the tractor 1 is automatically driven along the target traveling route P.
  • the position information of the tractor 1 in the work area S and the detection of detecting an obstacle in the obstacle detection system 100 The range C is displayed on the display unit 51.
  • the user or the like can grasp the traveling condition of the tractor 1 and the detection range C of the obstacle during the automatic traveling of the tractor 1.
  • the position information and the like of the tractor 1 can be displayed not only on the display unit 51 of the mobile communication terminal 3 but also on the display unit of the tractor 1 and the display unit of the external management device. Since the configuration for displaying the position information of the tractor 1 is the same, the case of displaying the position information on the display unit 51 of the mobile communication terminal 3 will be described below.
  • the mobile communication terminal 3 acquires the position information of the work vehicle position information acquisition unit 56 that acquires the position information of the tractor 1 and the position information of the detection range C that detects an obstacle in the obstacle detection system 100.
  • the detection range position information acquisition unit 57, the obstacle position information acquisition unit 58 that acquires the position information of the obstacle when the obstacle detection system 100 detects an obstacle, and the display mode of the display unit 51 are controlled.
  • a display control unit 59 is provided.
  • the work vehicle position information acquisition unit 56 communicates with the communication module 25 on the tractor 1 side and the mobile communication terminal 3 side.
  • the position information of the tractor 1 is acquired via wireless communication with the module 53.
  • the obstacle detection unit 110 in the obstacle detection system 100 of the tractor 1 sets a detection range C for detecting obstacles in the entire system according to the traveling state of the tractor 1 and the state of the work device such as the offset mower 12. Therefore, the position information of the detection range C with respect to the tractor 1 is grasped.
  • the detection range position information acquisition unit 57 acquires the position information of the detection range C with respect to the tractor 1 via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side. There is.
  • the obstacle detection unit 110 in the obstacle detection system 100 of the tractor 1 executes the obstacle detection process to grasp the position information of the obstacle with respect to the tractor 1 when the obstacle is detected.
  • the obstacle position information acquisition unit 58 acquires the position information of the obstacle with respect to the tractor 1 via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side. ..
  • the display control unit 59 specifies the traveling position of the tractor 1 (current position of the tractor 1) based on the position information of the tractor 1 acquired by the work vehicle position information acquisition unit 56, and the detection range position information acquisition unit 57 The position of the detection range C with respect to the traveling position of the tractor 1 is specified based on the position information of the detection range C with respect to the tractor 1 acquired in. As shown in FIG. 9, the display control unit 59 causes the display unit 51 to display the traveling position and the detection range C of the specified tractor 1 on the map.
  • the display control unit 59 has the measurement ranges C1, C2, C5, C7, C8 (measurement ranges shown in gray in FIG. 9) and the non-operating state of the plurality of obstacle sensors D in the operating state of the obstacle sensor D.
  • the measurement ranges C3, C4, and C6 (measurement ranges shown in white in FIG. 9) of the obstacle sensor D are displayed in different display modes. As a different display mode, various display modes can be different, for example, changing the color to be displayed.
  • the display unit 51 displays the entire measurement range C1 to C8 of the plurality of obstacle sensors D, while detecting the detection range C which is the measurement range of the obstacle sensor D in the operating state and the obstacle in the non-operating state.
  • the display control unit 59 acquires the position information of the tractor 1 by the work vehicle position information acquisition unit 56.
  • the traveling position of the tractor 1 (current position of the tractor 1) is specified based on the above, and the position of the detected obstacle based on the position information of the obstacle with respect to the tractor 1 acquired by the obstacle position information acquisition unit 58. (Position indicated by "x" in FIG. 10) is displayed on the display unit 51.
  • the display control unit 59 has measurement ranges C1 and C2 (FIG. 10) of the obstacle sensor D in the detection state in which the obstacle is detected among the obstacle sensors D in the operating state.
  • the display mode is different between the measurement range C5, C7, and C8 (the range shown in light gray in FIG. 10) in the obstacle sensor D in the non-detection state where no obstacle is detected. It is displayed at.
  • the user or the like can recognize which range is the detection range C and which range is the measurement range of the obstacle sensor D in the non-operating state, and in the detection range C, the obstacle is detected in which range. Can be easily recognized.
  • the display control unit 59 only displays the traveling position of the tractor 1 and the position of the detection range C (measurement range of the obstacle sensor D in the operating state). is not.
  • the range C1a inside the work area S and the range C1b outside the work area T are different. It is displayed in the display mode.
  • various display modes can be different, for example, changing the color to be displayed.
  • the measurement ranges C2, C4, C6, and C8 of the cameras 105, 106, 107, and 108 are omitted.
  • the mobile communication terminal 3 is provided with a work area position information acquisition unit 60 for acquiring the position information of the work area S in order to display the range C1a within the area and the range C1b outside the area.
  • a work area position information acquisition unit 60 for acquiring the position information of the work area S in order to display the range C1a within the area and the range C1b outside the area.
  • the position information of the work area S is acquired from the information.
  • the display control unit 59 identifies the position of the outer end portion of the work area S from the position information of the work area S acquired by the work area position information acquisition unit 60, and as shown in FIG. 11, the work area S of the work area S.
  • the measurement range C1 is displayed by dividing the range C1a inside the region and the range C1b outside the region with reference to the position of the outer end portion.
  • the work area position information acquisition unit 60 acquires the position information of the work area S, it is an obstacle via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side.
  • the detection system 100 can acquire the position information of the work area S. Therefore, even if the obstacle detection unit 110 detects an obstacle in the out-of-region range C1b by removing the out-of-region range C1b from the detection range C in the measurement range C1 of the operating obstacle sensor D,
  • the collision avoidance control unit 111 is in a non-execution state in which the collision avoidance control is not executed.
  • the work vehicle position information acquisition unit 56 acquires the position information of the tractor 1
  • the detection range position information acquisition unit 57 acquires the position information of the detection range C, and acquires the position information of the tractor 1 and the detection range C (step). # 11).
  • the display control unit 59 is shown in FIG. 9 based on the position information of the tractor 1 acquired by the work vehicle position information acquisition unit 56 and the position information of the detection range C acquired by the detection range position information acquisition unit 57. As described above, the traveling position of the tractor 1 and a plurality of obstacles are displayed while displaying the detection range C, which is the measurement range of the obstacle sensor D in the operating state, and the measurement range of the obstacle sensor D in the non-operating state in different display modes. A display process for displaying the measurement ranges C1 to C8 of the object sensor D is being performed (step # 12).
  • the display control unit 59 is based on the obstacle position information acquired by the obstacle position information acquisition unit 58 as shown in FIG. ,
  • the position of the obstacle (the position indicated by "x" in FIG. 10) is displayed, and the measurement ranges C1 and C2 (the range indicated by dark gray in FIG. 10) in the obstacle sensor D in the detected state are not displayed.
  • the position of the obstacle is displayed so that the measurement ranges C5, C7, and C8 (the range shown in light gray in FIG. 10) of the obstacle sensor D in the detected state are displayed in different display modes (step # 13). In the case of Yes, step # 14).
  • the display control unit 59 determines whether or not T outside the work area is included in the measurement range of the obstacle sensor D in the operating state from the position information of the work area S acquired by the work area position information acquisition unit 60. Yes (step # 15).
  • the measurement range of the obstacle sensor D in the operating state includes the work area T outside the work area
  • the work area acquired by the work area position information acquisition unit 60 by the display control unit 59 as shown in FIG.
  • the display mode is different between the range C1a (the range shown in gray) and the range C1b (the range shown in white) outside the area. Is displayed at (step # 16).
  • steps # 11 to # 16 are repeated, and during the automatic traveling of the tractor 1, not only the traveling position of the tractor 1 but also the measurement ranges C1 to C8 of the plurality of obstacle sensors D, and The positions of obstacles are displayed on the display unit 51 so that the user or the like can easily recognize them.
  • This second embodiment is another embodiment of the obstacle detection system 100 in the first embodiment, and mainly describes the points different from the first embodiment, and the same points as the first embodiment will be described. Omit.
  • the obstacle detection unit 110 is configured to freely change the detection range C for detecting obstacles according to a working device such as an offset moa 12 connected to the tractor 1.
  • a working device such as an offset moa 12 connected to the tractor 1.
  • the collision avoidance control unit 111 depends on the working device such as the offset mower 12 connected to the tractor 1. It is configured to be freely switchable between an executed state in which collision avoidance control is executed and a non-execution state in which collision avoidance control is not executed.
  • the obstacle detection unit 110 is in the operating state of all of the plurality of obstacle sensors D, and as shown in FIG. 6, all of the plurality of obstacle sensors D. Obstacles are detected in the measurement range C1 to C8. As a result, the obstacle detection unit 110 detects the obstacle regardless of the direction of the front side, the rear side, the right side, or the left side of the tractor 1.
  • the collision avoidance control unit 111 may collide with the obstacle depending on the traveling state of the tractor 1 and the condition of the work device such as the offset moa 12. Whether or not there is a possibility is determined, and based on the determination result, the execution state in which the collision avoidance control is executed and the non-execution state in which the collision avoidance control is not executed are switched.
  • the collision avoidance control unit 111 switches to the execution state in which the collision avoidance control is executed, performs the collision avoidance control, and performs processing such as decelerating or stopping the running of the tractor 1.
  • the collision avoidance control unit 111 switches to the non-execution state in which the collision avoidance control is not executed and performs the collision avoidance control. Absent.
  • the tractor When a working device such as an offset mower 12 is located on the left side of the tractor 1 (see FIG. 7), the tractor is located in the measurement ranges C1 to C8 of the plurality of obstacle sensors D as shown in FIG.
  • the collision avoidance control unit 111 switches to the execution state for executing the collision avoidance control, performs the collision avoidance control, and decelerates or stops the tractor 1. Etc. are performed.
  • the collision avoidance control unit 111 switches to the non-execution state in which the collision avoidance control is not executed, and the collision avoidance control is not performed.
  • the control unit 111 has switched to the execution state for executing the collision avoidance control.
  • the collision avoidance control unit 111 does not execute the collision avoidance control. Switching to the running state. At this time, on the right side of the tractor 1, only the measurement range C5, which is close to the tractor 1, is switched to the execution state in which the collision avoidance control unit 111 executes the collision avoidance control, but an obstacle is detected in the measurement range C5. However, the collision avoidance control unit 111 can be switched to the non-execution state in which the collision avoidance control is not executed.
  • the collision avoidance control unit 111 detects the obstacle while the obstacle detection unit 110 detects the obstacle in all the measurement ranges C1 to C8 of the plurality of obstacle sensors D.
  • the collision avoidance control is not uniformly executed, but the collision avoidance control is executed depending on the traveling state of the tractor 1, the state of the working device such as the offset mower 12, and the range in which the obstacle is detected. And the non-execution state where collision avoidance control is not executed.
  • the collision avoidance control unit 111 When switching between the execution state in which the collision avoidance control is executed and the non-execution state in which the collision avoidance control is not executed, as described above, when the collision avoidance control unit 111 detects an obstacle in the obstacle detection unit 110, the tractor 1 It is determined whether or not there is a possibility of collision with an obstacle according to the running state and the condition of the work device such as the offset mower 12, and the execution state and the non-execution state are switched based on the determination result. There is.
  • a plurality of collision avoidance control units 111 may be used depending on the traveling state of the tractor 1 and the status of the work device such as the offset mower 12.
  • the measurement range of the obstacle sensor D is set in advance as a measurement range for the running state and a measurement range for the non-execution state.
  • the collision avoidance control unit 111 switches to the execution state if the position of the detected obstacle is within the measurement range for the execution state, and the position of the detected obstacle is changed. If it is within the measurement range for the non-execution state, it can be switched to the non-execution state.
  • the configuration of the work vehicle can be changed in various ways.
  • the work vehicle may be configured to have a hybrid specification including an engine 9 and an electric motor for traveling, or may be configured to have an electric specification including an electric motor for traveling instead of the engine 9. .
  • the work vehicle may be configured as a semi-crawler specification in which left and right crawlers are provided instead of the left and right rear wheels 6 as a traveling portion.
  • the work vehicle may be configured with rear wheel steering specifications in which the left and right rear wheels 6 function as steering wheels.
  • Etc. are provided in the mobile communication terminal 3, but can also be provided in the tractor 1 (working vehicle) or an external management device.
  • a display control unit 59 is provided in a management device provided in an external monitoring center, and the display control unit 59 can control the display state of a display device such as a monitor provided in the monitoring center.
  • the position information of the work vehicle and the measurement range of the obstacle sensor in the operating state among the plurality of obstacle sensors can be displayed on the monitor of the monitoring center. It is possible to monitor the running condition of the vehicle and the measurement range of the obstacle sensor.
  • the obstacle sensor D the rider sensors 101, 102, the sonar units 103, 104, and the cameras 105, 106, 107, 108 are provided.
  • the right camera 107 and the left camera 108 are provided.
  • a long-distance measuring device such as a millimeter-wave radar capable of measuring an obstacle far from the tractor 1 can be provided, and what kind of sensor is provided as the obstacle sensor D can be appropriately changed. ..
  • the first feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
  • An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
  • a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
  • the collision avoidance control unit is configured to be switchable between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed, depending on the work device connected to the work vehicle. It is in.
  • the collision avoidance control unit does not uniformly perform the collision avoidance control, but executes the collision avoidance control according to the working device. It is switched between the state and the non-execution state in which collision avoidance control is not executed.
  • the collision avoidance control unit switches to an execution state for executing the collision avoidance control and performs collision avoidance control. It is possible to avoid a collision between an obstacle and a work device.
  • the collision avoidance control unit switches to a non-execution state in which the collision avoidance control is not executed. It is possible to prevent the collision avoidance control from being unnecessarily performed.
  • the second feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
  • An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
  • a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
  • the obstacle detection unit is configured so that the detection range can be freely changed according to the work device connected to the work vehicle.
  • the obstacle detection unit does not set the detection range for detecting obstacles to a fixed range, but changes and sets the detection range according to the working device.
  • the obstacle detection unit changes and sets the detection range so that the obstacles that may collide with the work device are included in the detection range depending on the position of the work device. Therefore, it is possible to appropriately set the detection range corresponding to the work device without including the obstacle that does not collide with the work device in the detection range. Therefore, it is possible to avoid a collision between the work device and an obstacle while preventing the collision avoidance control from being unnecessarily executed.
  • the third characteristic configuration of the present invention is that the obstacle detection unit includes a plurality of obstacle sensors capable of detecting obstacles within the measurement range, and when the work vehicle is automatically driven, a plurality of obstacles Each object sensor is configured to be switchable between an operating state and a non-operating state.
  • a display control unit for displaying the position information of the work vehicle acquired by using the positioning satellite system and the measurement range of the obstacle sensor in the operating state among the plurality of obstacle sensors is provided. There is a point.
  • the display control unit displays the position information of the work vehicle and the measurement range of the obstacle sensor in the operating state on the display unit, so that the user or the like can work during the automatic running of the work vehicle.
  • the traveling position of the vehicle and the measurement range for detecting an obstacle can be easily recognized.
  • the measurement range of the obstacle sensor in the operating state is displayed, the user or the like can easily recognize which of the plurality of obstacle sensors is in the operating state.
  • the display control unit detects the measurement range and the obstacle in the obstacle sensor in the detection state in which the obstacle is detected when there are a plurality of obstacle sensors in the operating state. The point is that the measurement range of the obstacle sensor in the non-detected state is displayed on the display unit in a different display mode.
  • the display control unit displays the measurement range of the obstacle sensor in the detected state and the measurement range of the obstacle sensor in the non-detection state in different display modes.
  • the user or the like can quickly and appropriately recognize which obstacle sensor among the plurality of obstacle sensors has detected the obstacle. Therefore, it is possible to smoothly respond to the detection of obstacles and improve work efficiency.
  • the automatic traveling control unit automatically travels the work vehicle within a preset work area.
  • the display control unit displays the measurement range of the obstacle sensor in the operating state on the display unit
  • the display control unit displays the range inside the work area and the range outside the work area in different display modes. The point is to display on the display unit.
  • the display control unit displays the range inside the area and the range outside the area on the display unit in different display modes, so that the user or the like can display any range in the measurement range of the obstacle sensor in the operating state. Is the range within the region, and it is possible to easily recognize which range is the range outside the region.

Abstract

The present invention is provided with: an automatic traveling control unit (18) which makes a working vehicle automatically travel on the basis of positioning information about the working vehicle, the positioning information being acquired by using a satellite positioning system; an obstacle detection unit (110) which can detect an obstacle within a prescribed detection range around the working vehicle on the basis of measurement information from an obstacle sensor (D); and a collision avoidance control unit (111) which performs a collision avoidance control for avoiding a collision with the obstacle, when the obstacle is detected by the obstacle detection unit (110), wherein the collision avoidance control unit (111) is configured to freely switch between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed in response to a working device connected to the working vehicle.

Description

自動走行システムAutonomous driving system
 本発明は、作業車両を自動走行させる自動走行システムに関する。 The present invention relates to an automatic traveling system for automatically traveling a work vehicle.
 上記の自動走行システムとして、障害物との衝突を回避しながら、作業車両を自動走行させるシステムが知られている(例えば、特許文献1参照。)。 As the above-mentioned automatic traveling system, a system for automatically traveling a work vehicle while avoiding a collision with an obstacle is known (see, for example, Patent Document 1).
 特許文献1に記載のシステムでは、作業車両に備えられた障害物センサの検出情報に基づいて、作業車両の周囲における所定の検出範囲内での障害物を検出する障害物検出部と、その障害物検出部にて障害物を検出した場合には、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられている。 In the system described in Patent Document 1, an obstacle detection unit that detects an obstacle within a predetermined detection range around the work vehicle based on the detection information of an obstacle sensor provided in the work vehicle, and an obstacle detection unit thereof. When an obstacle is detected by the object detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
 衝突回避制御部は、衝突回避制御として、障害物の存在を報知する報知処理、作業車両の走行速度を減速させる減速処理や、作業車両を走行停止させる走行停止処理等の各種の処理を行うことで、障害物と作業車両との衝突を回避するようにしている。 As collision avoidance control, the collision avoidance control unit performs various processes such as notification processing for notifying the existence of obstacles, deceleration processing for decelerating the traveling speed of the work vehicle, and traveling stop processing for stopping the traveling of the work vehicle. So, I try to avoid the collision between the obstacle and the work vehicle.
 障害物検出部は、作業車両の走行速度に応じて所定の検出範囲の大きさ等を変更しており、衝突回避制御部が、作業車両の走行速度に応じた適切な処理を行えるようにしている。 The obstacle detection unit changes the size of the predetermined detection range according to the traveling speed of the work vehicle, so that the collision avoidance control unit can perform appropriate processing according to the traveling speed of the work vehicle. There is.
国際公開2015/147149号International Publication 2015/147149
 作業車両では、各種の作業を行うために、各種の作業装置が装着されることになる。よって、障害物に対して、作業車両だけでなく、作業装置との衝突を回避することを考慮する必要がある。 In the work vehicle, various work devices will be installed in order to perform various tasks. Therefore, it is necessary to consider avoiding collisions with not only the work vehicle but also the work equipment against obstacles.
 しかしながら、特許文献1に記載のシステムでは、作業装置との衝突までは考慮されておらず、作業装置に対応した状態での衝突回避制御が行われていなかった。 However, in the system described in Patent Document 1, the collision with the working device is not taken into consideration, and the collision avoidance control in the state corresponding to the working device is not performed.
 例えば、オフセットモア等の作業装置では、作業車両の左右方向で作業車両から外方側に離れた位置にて作業装置が草刈等の作業を行う。よって、この作業装置と障害物との衝突を回避するためには、左右方向で作業車両から外方側に離れた位置までの範囲を検出範囲とし、その検出範囲内で障害物を検出すると、衝突回避制御を行う必要がある。 For example, in a work device such as an offset moa, the work device performs work such as mowing at a position away from the work vehicle in the left-right direction of the work vehicle. Therefore, in order to avoid a collision between the work device and an obstacle, the detection range is defined as a range from the work vehicle to a position distant from the work vehicle in the left-right direction, and when an obstacle is detected within the detection range, It is necessary to perform collision avoidance control.
 そこで、障害物を検出する検出範囲を広げることが考えられるが、単純に、検出範囲を広げるだけでは、衝突回避制御が無駄に行われて、作業効率の低下を招く可能性がある。オフセットモア等の作業装置は、作業車両の左右方向の一方側だけに存在し、左右方向の反対側には作業装置が存在しないので、作業装置が存在しない範囲までを検出範囲に含めると、作業装置と衝突することのない障害物の検出により、衝突回避制御が無駄に行われてしまう。 Therefore, it is conceivable to widen the detection range for detecting obstacles, but simply widening the detection range may result in wasteful collision avoidance control and a decrease in work efficiency. Work devices such as offset mowers exist only on one side of the work vehicle in the left-right direction, and there is no work device on the opposite side in the left-right direction. Therefore, if the detection range includes the range in which the work device does not exist, the work Collision avoidance control is wasted by detecting obstacles that do not collide with the device.
 この実情に鑑み、本発明の主たる課題は、無駄に衝突回避制御が実行されるのを防止しながら、作業装置と障害物との衝突を回避することができる自動走行システムを提供する点にある。 In view of this situation, a main object of the present invention is to provide an automatic traveling system capable of avoiding a collision between a work device and an obstacle while preventing unnecessary collision avoidance control. ..
 本発明の第1特徴構成は、衛星測位システムを利用して取得される作業車両の測位情報に基づいて、作業車両を自動走行させる自動走行制御部と、
 障害物センサの測定情報に基づいて、前記作業車両の周囲における所定の検出範囲内での障害物を検出可能な障害物検出部と、
 前記障害物検出部にて障害物を検出した場合に、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられ、
 前記衝突回避制御部は、前記作業車両に連結される作業装置に応じて、前記衝突回避制御を実行する実行状態と前記衝突回避制御を実行しない非実行状態とに切替自在に構成されている点にある。
The first feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
When an obstacle is detected by the obstacle detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
The collision avoidance control unit is configured to be switchable between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed, depending on the work device connected to the work vehicle. It is in.
 本構成によれば、無駄に衝突回避制御が実行されるのを防止しながら、作業装置と障害物との衝突を回避することができる。 According to this configuration, it is possible to avoid a collision between the work device and an obstacle while preventing unnecessary collision avoidance control from being executed.
図1は、自動走行システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an automatic traveling system. 図2は、自動走行システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of an automatic driving system. 図3は、トラクタを前方側から見た正面図である。FIG. 3 is a front view of the tractor as viewed from the front side. 図4は、トラクタを後方側から見た後面図である。FIG. 4 is a rear view of the tractor as viewed from the rear side. 図5は、作業領域における目標走行経路を示す図である。FIG. 5 is a diagram showing a target traveling route in the work area. 図6は、複数の障害物センサの測定範囲を示す平面図である。FIG. 6 is a plan view showing the measurement ranges of the plurality of obstacle sensors. 図7は、オフセットモアが連結されたトラクタにおいて、障害物を検出する検出範囲を示す平面図である。FIG. 7 is a plan view showing a detection range for detecting an obstacle in a tractor to which an offset moa is connected. 図8は、障害物検出システムにおける動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation in the obstacle detection system. 図9は、表示部において、トラクタの走行位置及び障害物を検出する検出範囲を表示させた状態を示す図である。FIG. 9 is a diagram showing a state in which the traveling position of the tractor and the detection range for detecting an obstacle are displayed on the display unit. 図10は、表示部において、トラクタの走行位置、障害物を検出する検出範囲、及び、障害物の位置を表示させた状態を示す図である。FIG. 10 is a diagram showing a state in which the traveling position of the tractor, the detection range for detecting an obstacle, and the position of the obstacle are displayed on the display unit. 図11は、表示部において、トラクタの走行位置、障害物センサの測定範囲、及び、測定範囲における領域内範囲と領域外範囲を表示させた状態を示す図である。FIG. 11 is a diagram showing a state in which the traveling position of the tractor, the measurement range of the obstacle sensor, and the range inside and outside the area in the measurement range are displayed on the display unit. 図12は、表示部への表示を行う場合の動作を示すフローチャートである。FIG. 12 is a flowchart showing an operation when displaying on the display unit.
 本発明に係る自動走行システムの実施形態を図面に基づいて説明する。この自動走行システムは、図1に示すように、作業車両としてトラクタ1を適用しているが、トラクタ以外の、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車等の乗用作業車両、及び、無人草刈機等の無人作業車両に適用することができる。 An embodiment of the automatic driving system according to the present invention will be described with reference to the drawings. As shown in FIG. 1, this automatic traveling system applies the tractor 1 as a work vehicle, but other than the tractor, a passenger work vehicle such as a passenger rice transplanter, a combine, a passenger mower, a wheel loader, and a snowplow, It can also be applied to unmanned work vehicles such as unmanned mowers.
 〔第1実施形態〕
 この自動走行システムは、図1及び図2に示すように、トラクタ1に搭載された自動走行ユニット2、及び、自動走行ユニット2と通信可能に通信設定された携帯通信端末3を備えている。携帯通信端末3には、タッチ操作可能なタッチパネル式の表示部51(例えば、液晶パネル)等を有するタブレット型のパーソナルコンピュータやスマートフォン等を採用することができる。
[First Embodiment]
As shown in FIGS. 1 and 2, this automatic traveling system includes an automatic traveling unit 2 mounted on a tractor 1 and a mobile communication terminal 3 set to communicate with the automatic traveling unit 2. As the mobile communication terminal 3, a tablet-type personal computer, a smartphone, or the like having a touch-operable touch panel display unit 51 (for example, a liquid crystal panel) or the like can be adopted.
 トラクタ1は、駆動可能な操舵輪として機能する左右の前輪5、及び、駆動可能な左右の後輪6を有する走行機体7が備えられている。走行機体7の前方側には、ボンネット8が配置され、ボンネット8内には、コモンレールシステムを備えた電子制御式のディーゼルエンジン(以下、エンジンと称する)9が備えられている。走行機体7のボンネット8よりも後方側には、搭乗式の運転部を形成するキャビン10が備えられている。 The tractor 1 is provided with a traveling machine body 7 having left and right front wheels 5 that function as driveable steering wheels and driveable left and right rear wheels 6. A bonnet 8 is arranged on the front side of the traveling machine body 7, and an electronically controlled diesel engine (hereinafter, referred to as an engine) 9 equipped with a common rail system is provided in the bonnet 8. A cabin 10 forming a boarding-type driving unit is provided behind the bonnet 8 of the traveling machine body 7.
 走行機体7の後部には、3点リンク機構11を介して、作業装置の一例であるオフセットモア12が昇降可能かつローリング可能に連結されている。これにより、このトラクタ1は草刈り仕様に構成されている。トラクタ1の後部には、オフセットモア12に代えて、ロータリ耕耘装置、プラウ、ディスクハロー、カルチベータ、サブソイラ、播種装置、散布装置等の各種の作業機を連結することができる。 An offset moa 12, which is an example of a working device, is connected to the rear part of the traveling machine body 7 via a three-point link mechanism 11 so as to be able to move up and down and roll. As a result, the tractor 1 is configured for mowing specifications. In place of the offset moa 12, various working machines such as a rotary tiller, a plow, a disc halo, a cultivator, a subsoiler, a sowing device, and a spraying device can be connected to the rear portion of the tractor 1.
 トラクタ1には、図2に示すように、エンジン9からの動力を変速する電子制御式の変速装置13、左右の前輪5を操舵する全油圧式のパワーステアリング機構14、左右の後輪6を制動する左右のサイドブレーキ(図示せず)、左右のサイドブレーキの油圧操作を可能にする電子制御式のブレーキ操作機構15、オフセットモア12への伝動を断続する作業クラッチ(図示せず)、作業クラッチの油圧操作を可能にする電子制御式のクラッチ操作機構16、オフセットモア12を昇降駆動する電子油圧制御式の昇降駆動機構17、トラクタ1の自動走行等に関する各種の制御プログラム等を有する車載電子制御ユニット18、トラクタ1の車速を検出する車速センサ19、前輪5の操舵角を検出する舵角センサ20、及び、トラクタ1の現在位置及び現在方位を測定する測位ユニット21等が備えられている。 As shown in FIG. 2, the tractor 1 includes an electronically controlled transmission 13 that shifts the power from the engine 9, a fully hydraulic power steering mechanism 14 that steers the left and right front wheels 5, and left and right rear wheels 6. Left and right side brakes for braking (not shown), electronically controlled brake operation mechanism 15 that enables hydraulic operation of the left and right side brakes, work clutch (not shown) that interrupts transmission to the offset mower 12, work An electronically controlled clutch operation mechanism 16 that enables hydraulic operation of the clutch, an electrohydraulic control type elevating drive mechanism 17 that elevates and drives the offset mower 12, an in-vehicle electronic device having various control programs related to automatic running of the tractor 1 and the like. A control unit 18, a vehicle speed sensor 19 that detects the vehicle speed of the tractor 1, a steering angle sensor 20 that detects the steering angle of the front wheels 5, a positioning unit 21 that measures the current position and the current orientation of the tractor 1, and the like are provided. ..
 なお、エンジン9には、電子ガバナを備えた電子制御式のガソリンエンジンを採用してもよい。変速装置13には、油圧機械式無段変速装置(HMT)、静油圧式無段変速装置(HST)、又は、ベルト式無段変速装置等を採用することができる。パワーステアリング機構14には、電動モータを備えた電動式のパワーステアリング機構14等を採用してもよい。 An electronically controlled gasoline engine equipped with an electronic governor may be adopted as the engine 9. As the transmission 13, a hydraulic mechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted. As the power steering mechanism 14, an electric power steering mechanism 14 or the like provided with an electric motor may be adopted.
 キャビン10の内部には、図1に示すように、パワーステアリング機構14(図2参照)を介した左右の前輪5の手動操舵を可能にするステアリングホイール38、搭乗者用の運転席39、タッチパネル式の表示部、及び、各種の操作具等が備えられている。 Inside the cabin 10, as shown in FIG. 1, a steering wheel 38 that enables manual steering of the left and right front wheels 5 via a power steering mechanism 14 (see FIG. 2), a driver's seat 39 for passengers, and a touch panel It is equipped with an expression display unit and various operating tools.
 図2に示すように、車載電子制御ユニット18は、変速装置13の作動を制御する変速制御部181、左右のサイドブレーキの作動を制御する制動制御部182、オフセットモア12の作動を制御する作業装置制御部183、自動走行時に左右の前輪5の目標操舵角を設定してパワーステアリング機構14に出力する操舵角設定部184、及び、予め生成された自動走行用の目標走行経路P(例えば、図5参照)等を記憶する不揮発性の車載記憶部185等を有している。 As shown in FIG. 2, the vehicle-mounted electronic control unit 18 controls the operation of the speed change control unit 181 that controls the operation of the transmission device 13, the braking control unit 182 that controls the operation of the left and right side brakes, and the offset mower 12. The device control unit 183, the steering angle setting unit 184 that sets the target steering angles of the left and right front wheels 5 during automatic driving and outputs them to the power steering mechanism 14, and the target traveling path P for automatic driving generated in advance (for example, It has a non-volatile vehicle-mounted storage unit 185 and the like for storing (see FIG. 5) and the like.
 図2に示すように、測位ユニット21には、衛星測位システム(NSS:Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用してトラクタ1の現在位置と現在方位とを測定する衛星航法装置22、及び、3軸のジャイロスコープ及び3方向の加速度センサ等を有してトラクタ1の姿勢や方位等を測定する慣性計測装置(IMU:Inertial Measurement Unit)23等が備えられている。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK-GPS(Real Time Kinematic GPS:干渉測位方式)等がある。本実施形態においては、移動体の測位に適したRTK-GPSが採用されている。そのため、圃場周辺の既知位置には、図1及び図2に示すように、RTK-GPSによる測位を可能にする基準局4が設置されている。 As shown in FIG. 2, the positioning unit 21 is a satellite that measures the current position and the current orientation of the tractor 1 by using GPS (Global Positioning System), which is an example of a satellite positioning system (NSS: Navigation Satellite System). It is equipped with a navigation device 22, an inertial measurement unit (IMU: Inertial Measurement Unit) 23, etc., which has a 3-axis gyroscope, a 3-direction acceleration sensor, and the like to measure the attitude and orientation of the tractor 1. Positioning methods using GPS include DGPS (Differential GPS: relative positioning method) and RTK-GPS (Real Time Kinematic GPS: interference positioning method). In this embodiment, RTK-GPS suitable for positioning of a moving body is adopted. Therefore, as shown in FIGS. 1 and 2, a reference station 4 that enables positioning by RTK-GPS is installed at a known position around the field.
 トラクタ1と基準局4との夫々には、図2に示すように、測位衛星71(図1参照)から送信された電波を受信する測位アンテナ24,61、及び、トラクタ1と基準局4との間における測位情報(補正情報)を含む各種情報の無線通信を可能にする通信モジュール25,62等が備えられている。これにより、衛星航法装置22は、トラクタ側の測位アンテナ24が測位衛星71からの電波を受信して得た測位情報と、基地局側の測位アンテナ61が測位衛星71からの電波を受信して得た測位情報(トラクタ1の現在位置を測定するための補正情報)とに基づいて、トラクタ1の現在位置及び現在方位を高い精度で測定することができる。また、測位ユニット21は、衛星航法装置22と慣性計測装置23とを備えることにより、トラクタ1の現在位置、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。 As shown in FIG. 2, the tractor 1 and the reference station 4 are connected to the positioning antennas 24 and 61 that receive the radio waves transmitted from the positioning satellite 71 (see FIG. 1), and between the tractor 1 and the reference station 4. Communication modules 25, 62 and the like that enable wireless communication of various information including positioning information (correction information) in the above are provided. As a result, the satellite navigation device 22 receives the positioning information obtained by the positioning antenna 24 on the tractor side receiving the radio waves from the positioning satellite 71 and the positioning antenna 61 on the base station side receiving the radio waves from the positioning satellite 71. Based on the obtained positioning information (correction information for measuring the current position of the tractor 1), the current position and the current orientation of the tractor 1 can be measured with high accuracy. Further, the positioning unit 21 is provided with the satellite navigation device 22 and the inertial measurement unit 23 to measure the current position, the current direction, and the attitude angle (yaw angle, roll angle, pitch angle) of the tractor 1 with high accuracy. Can be done.
 トラクタ1に備えられる測位アンテナ24、通信モジュール25、及び、慣性計測装置23は、図1に示すように、アンテナユニット80に収納されている。アンテナユニット80は、キャビン10の前面側の上部位置に配置されている。 The positioning antenna 24, the communication module 25, and the inertial measurement unit 23 provided in the tractor 1 are housed in the antenna unit 80 as shown in FIG. The antenna unit 80 is arranged at an upper position on the front side of the cabin 10.
 図2に示すように、携帯通信端末3には、表示部51等の作動を制御する各種の制御プログラム等を有する端末電子制御ユニット52、及び、トラクタ側の通信モジュール25との間における測位情報を含む各種情報の無線通信を可能にする通信モジュール53等が備えられている。端末電子制御ユニット52は、トラクタ1を自動走行させるための目標走行経路P(例えば、図5参照)を生成する走行経路生成部54、及び、ユーザが入力した各種の入力情報や走行経路生成部54が生成した目標走行経路P等を記憶する不揮発性の端末記憶部55等を有している。 As shown in FIG. 2, the mobile communication terminal 3 has positioning information between the terminal electronic control unit 52 having various control programs for controlling the operation of the display unit 51 and the like, and the communication module 25 on the tractor side. A communication module 53 or the like that enables wireless communication of various information including the above is provided. The terminal electronic control unit 52 includes a travel route generation unit 54 that generates a target travel route P (for example, see FIG. 5) for automatically traveling the tractor 1, and various input information and travel route generation units input by the user. It has a non-volatile terminal storage unit 55 and the like that stores the target travel path P and the like generated by the 54.
 走行経路生成部54が目標走行経路Pを生成するに当たり、携帯通信端末3の表示部51に表示された目標走行経路設定用の入力案内に従って、運転者や管理者等のユーザ等が作業車両の機種及びオフセットモア12等の作業装置の種類や作業幅等の車体情報を入力しており、入力された車体情報が端末記憶部55に記憶されている。目標走行経路Pの生成対象となる作業領域S(図5参照)を圃場としており、携帯通信端末3の端末電子制御ユニット52は、圃場の形状や位置を含む圃場情報を取得して端末記憶部55に記憶している。 When the travel route generation unit 54 generates the target travel route P, a user such as a driver or an administrator of the work vehicle follows the input guidance for setting the target travel route displayed on the display unit 51 of the mobile communication terminal 3. Vehicle body information such as the model and the type of working device such as the offset mower 12 and the working width is input, and the input vehicle body information is stored in the terminal storage unit 55. The work area S (see FIG. 5) for which the target travel path P is to be generated is set as a field, and the terminal electronic control unit 52 of the mobile communication terminal 3 acquires field information including the shape and position of the field and is a terminal storage unit. I remember it at 55.
 圃場情報の取得について説明すると、ユーザ等が運転してトラクタ1を実際に走行させることで、端末電子制御ユニット52は、測位ユニット21にて取得するトラクタ1の現在位置等から圃場の形状や位置等を特定するための位置情報を取得することができる。端末電子制御ユニット52は、外部の管理装置等に記憶されている地図情報等から圃場の形状や位置を読み取ることで、圃場の位置情報を取得することもできる。端末電子制御ユニット52は、取得した位置情報から圃場の形状及び位置を特定し、その特定した圃場の形状及び位置から特定した作業領域Sを含む圃場情報を取得している。図5では、矩形状の作業領域Sが特定された例を示している。 Explaining the acquisition of field information, when a user or the like drives and actually runs the tractor 1, the terminal electronic control unit 52 obtains the shape and position of the field from the current position of the tractor 1 acquired by the positioning unit 21. It is possible to acquire the position information for specifying the above. The terminal electronic control unit 52 can also acquire the position information of the field by reading the shape and position of the field from the map information or the like stored in the external management device or the like. The terminal electronic control unit 52 identifies the shape and position of the field from the acquired position information, and acquires the field information including the work area S specified from the shape and position of the specified field. FIG. 5 shows an example in which the rectangular work area S is specified.
 特定された圃場の形状や位置等を含む圃場情報が端末記憶部55に記憶されると、走行経路生成部54は、端末記憶部55に記憶されている圃場情報や車体情報を用いて、目標走行経路Pを生成する。 When the field information including the shape and position of the specified field is stored in the terminal storage unit 55, the traveling route generation unit 54 uses the field information and the vehicle body information stored in the terminal storage unit 55 to target. The travel path P is generated.
 図5に示すように、走行経路生成部54は、作業領域S内を中央領域R1と外周領域R2とに区分け設定している。中央領域R1は、作業領域Sの中央部に設定されており、トラクタ1を往復方向に自動走行させて所定の作業(例えば、耕耘等の作業)を行う往復作業領域となっている。外周領域R2は、中央領域R1の周囲に設定されている。走行経路生成部54は、例えば、車体情報に含まれる旋回半径やトラクタ1の前後幅及び左右幅等から、トラクタ1を圃場の畔際で旋回走行させるために必要となる旋回走行用のスペース等を求めている。走行経路生成部54は、中央領域R1の外周に求めたスペース等を確保するように、作業領域S内を中央領域R1と外周領域R2とに区分けしている。 As shown in FIG. 5, the traveling route generation unit 54 divides and sets the work area S into a central area R1 and an outer peripheral area R2. The central area R1 is set in the central portion of the work area S, and is a reciprocating work area in which the tractor 1 is automatically traveled in the reciprocating direction to perform a predetermined work (for example, work such as tillage). The outer peripheral region R2 is set around the central region R1. The travel path generation unit 54 may, for example, take into account the turning radius included in the vehicle body information, the front-rear width and the left-right width of the tractor 1, and the space required for turning the tractor 1 at the shore of the field. Seeking. The travel path generation unit 54 divides the work area S into a central area R1 and an outer peripheral area R2 so as to secure a space or the like obtained on the outer periphery of the central area R1.
 走行経路生成部54は、図5に示すように、車体情報や圃場情報等を用いて、目標走行経路Pを生成している。例えば、目標走行経路Pは、中央領域R1において同じ直進距離を有して作業幅に対応する一定距離をあけて平行に配置設定された直線状の複数の作業経路P1と複数の連結経路P2とを有している。複数の作業経路P1は、トラクタ1を直進走行させながら、所定の作業を行うための経路である。連結経路P2は、所定の作業を行わずに、トラクタ1の走行方向を180度転換させるためのUターン経路であり、作業経路P1の終端と隣接する次の作業経路P1の始端とを連結している。 As shown in FIG. 5, the travel route generation unit 54 generates the target travel route P by using the vehicle body information, the field information, and the like. For example, the target travel path P includes a plurality of linear work paths P1 and a plurality of connection paths P2 having the same straight-line distance in the central region R1 and arranged in parallel with a certain distance corresponding to the work width. have. The plurality of work paths P1 are routes for performing predetermined work while traveling the tractor 1 in a straight line. The connecting path P2 is a U-turn path for changing the traveling direction of the tractor 1 by 180 degrees without performing a predetermined operation, and connects the end of the work path P1 and the start end of the next adjacent work path P1. ing.
 ちなみに、図5に示す目標走行経路Pは、あくまで一例であり、どのような目標走行経路を設定するかは適宜変更が可能である。例えば、走行経路生成部54は、連結経路P2を生成せずに、作業経路P1のみを生成することもできる。この場合には、ユーザ等が運転してトラクタ1を実際に走行させたときに、図5に示すように、作業の始端地点及び終端地点となる地点Aと地点Bとを登録する。走行経路生成部54は、地点Aと地点Bとを結ぶ直線状の初期直線経路を生成し、その初期直線経路に平行な複数の平行経路を生成することで、初期直線経路及び複数の平行経路を作業経路P1とすることができる。 By the way, the target travel route P shown in FIG. 5 is just an example, and what kind of target travel route is set can be changed as appropriate. For example, the travel route generation unit 54 may generate only the work route P1 without generating the connection route P2. In this case, when the user or the like drives and actually runs the tractor 1, as shown in FIG. 5, the points A and B which are the start and end points of the work are registered. The traveling route generation unit 54 generates a linear initial linear path connecting the point A and the point B, and generates a plurality of parallel paths parallel to the initial linear path, thereby generating an initial linear path and a plurality of parallel paths. Can be set as the work path P1.
 走行経路生成部54にて生成された目標走行経路Pは、表示部51に表示可能であり、車体情報及び圃場情報等と関連付けた経路情報として端末記憶部55に記憶されている。経路情報には、目標走行経路Pの方位角、及び、目標走行経路Pでのトラクタ1の走行形態等に応じて設定された設定エンジン回転速度や目標走行速度等が含まれている。 The target travel route P generated by the travel route generation unit 54 can be displayed on the display unit 51, and is stored in the terminal storage unit 55 as route information associated with vehicle body information, field information, and the like. The route information includes the azimuth angle of the target traveling route P, the set engine rotation speed set according to the traveling mode of the tractor 1 on the target traveling route P, the target traveling speed, and the like.
 このようにして、走行経路生成部54が目標走行経路Pを生成すると、端末電子制御ユニット52が、携帯通信端末3からトラクタ1に経路情報を転送することで、トラクタ1の車載電子制御ユニット18が、経路情報を取得することができる。車載電子制御ユニット18は、取得した経路情報に基づいて、測位ユニット21にて自己の現在位置(トラクタ1の現在位置)を取得しながら、目標走行経路Pに沿ってトラクタ1を自動走行させることができる。測位ユニット21にて取得するトラクタ1の現在位置については、リアルタイム(例えば、数ミリ秒周期)でトラクタ1から携帯通信端末3に送信されており、携帯通信端末3にてトラクタ1の現在位置を把握している。 When the travel route generation unit 54 generates the target travel route P in this way, the terminal electronic control unit 52 transfers the route information from the mobile communication terminal 3 to the tractor 1, so that the vehicle-mounted electronic control unit 18 of the tractor 1 However, the route information can be acquired. The in-vehicle electronic control unit 18 automatically travels the tractor 1 along the target travel route P while acquiring its own current position (current position of the tractor 1) by the positioning unit 21 based on the acquired route information. Can be done. The current position of the tractor 1 acquired by the positioning unit 21 is transmitted from the tractor 1 to the mobile communication terminal 3 in real time (for example, in a cycle of several milliseconds), and the current position of the tractor 1 is transmitted by the mobile communication terminal 3. I know.
 経路情報の転送に関しては、トラクタ1が自動走行を開始する前の段階において、経路情報の全体を端末電子制御ユニット52から車載電子制御ユニット18に一挙に転送することができる。また、例えば、目標走行経路Pを含む経路情報を、情報量の少ない所定距離ごとの複数の経路部分に分割することもできる。この場合には、トラクタ1が自動走行を開始する前の段階においては、経路情報の初期経路部分のみが端末電子制御ユニット52から車載電子制御ユニット18に転送される。自動走行の開始後は、トラクタ1が情報量等に応じて設定された経路取得地点に達するごとに、その地点に対応する以後の経路部分のみの経路情報が端末電子制御ユニット52から車載電子制御ユニット18に転送するようにしてもよい。 Regarding the transfer of route information, the entire route information can be transferred from the terminal electronic control unit 52 to the vehicle-mounted electronic control unit 18 at once before the tractor 1 starts automatic traveling. Further, for example, the route information including the target travel route P can be divided into a plurality of route portions for each predetermined distance with a small amount of information. In this case, in the stage before the tractor 1 starts the automatic traveling, only the initial route portion of the route information is transferred from the terminal electronic control unit 52 to the vehicle-mounted electronic control unit 18. After the start of automatic driving, every time the tractor 1 reaches a route acquisition point set according to the amount of information or the like, the route information of only the subsequent route portion corresponding to that point is electronically controlled by the terminal electronic control unit 52. It may be transferred to the unit 18.
 トラクタ1の自動走行を開始する場合には、例えば、ユーザ等がスタート地点にトラクタ1を移動させて、各種の自動走行開始条件が満たされると、携帯通信端末3にて、ユーザが表示部51を操作して自動走行の開始を指示することで、携帯通信端末3は、自動走行の開始指示をトラクタ1に送信する。これにより、トラクタ1では、車載電子制御ユニット18が、自動走行の開始指示を受けることで、測位ユニット21にて自己の現在位置(トラクタ1の現在位置)を取得しながら、目標走行経路Pに沿ってトラクタ1を自動走行させる自動走行制御を開始する。車載電子制御ユニット18が、衛星測位システムを用いて測位ユニット21により取得されるトラクタ1の測位情報に基づいて、作業領域S内の目標走行経路Pに沿ってトラクタ1を自動走行させる自動走行制御を行う自動走行制御部として構成されている。 When the automatic traveling of the tractor 1 is started, for example, when the user or the like moves the tractor 1 to the starting point and various automatic traveling start conditions are satisfied, the user displays the display unit 51 on the mobile communication terminal 3. The mobile communication terminal 3 transmits the automatic traveling start instruction to the tractor 1 by instructing the start of the automatic traveling. As a result, in the tractor 1, the in-vehicle electronic control unit 18 receives an instruction to start automatic driving, and the positioning unit 21 acquires its own current position (current position of the tractor 1) and sets the target traveling path P. The automatic running control for automatically running the tractor 1 along the line is started. Automatic traveling control in which the in-vehicle electronic control unit 18 automatically travels the tractor 1 along the target traveling route P in the work area S based on the positioning information of the tractor 1 acquired by the positioning unit 21 using the satellite positioning system. It is configured as an automatic driving control unit that performs the above.
 自動走行制御には、変速装置13の作動を自動制御する自動変速制御、ブレーキ操作機構15の作動を自動制御する自動制動制御、左右の前輪5を自動操舵する自動操舵制御、及び、オフセットモア12の作動を自動制御する作業用自動制御等が含まれている。   The automatic driving control includes automatic shift control that automatically controls the operation of the transmission 13, automatic braking control that automatically controls the operation of the brake operation mechanism 15, automatic steering control that automatically steers the left and right front wheels 5, and an offset mower 12. It includes automatic control for work that automatically controls the operation of.
 自動変速制御においては、変速制御部181が、目標走行速度を含む目標走行経路Pの経路情報と測位ユニット21の出力と車速センサ19の出力とに基づいて、目標走行経路Pでのトラクタ1の走行形態等に応じて設定された目標走行速度がトラクタ1の車速として得られるように変速装置13の作動を自動制御する。 In the automatic shift control, the shift control unit 181 determines the tractor 1 on the target travel path P based on the route information of the target travel path P including the target travel speed, the output of the positioning unit 21, and the output of the vehicle speed sensor 19. The operation of the transmission 13 is automatically controlled so that the target traveling speed set according to the traveling mode or the like can be obtained as the vehicle speed of the tractor 1.
 自動制動制御においては、制動制御部182が、目標走行経路Pと測位ユニット21の出力とに基づいて、目標走行経路Pの経路情報に含まれている制動領域において左右のサイドブレーキが左右の後輪6を適正に制動するようにブレーキ操作機構15の作動を自動制御する。 In the automatic braking control, the braking control unit 182 sets the left and right side brakes on the left and right rear in the braking region included in the route information of the target traveling path P based on the target traveling path P and the output of the positioning unit 21. The operation of the brake operating mechanism 15 is automatically controlled so as to properly brake the wheels 6.
 自動操舵制御においては、トラクタ1が目標走行経路Pを自動走行するように、操舵角設定部184が、目標走行経路Pの経路情報と測位ユニット21の出力とに基づいて左右の前輪5の目標操舵角を求めて設定し、設定した目標操舵角をパワーステアリング機構14に出力する。パワーステアリング機構14が、目標操舵角と舵角センサ20の出力とに基づいて、目標操舵角が左右の前輪5の操舵角として得られるように左右の前輪5を自動操舵する。 In the automatic steering control, the steering angle setting unit 184 sets the target of the left and right front wheels 5 based on the route information of the target travel path P and the output of the positioning unit 21 so that the tractor 1 automatically travels on the target travel path P. The steering angle is obtained and set, and the set target steering angle is output to the power steering mechanism 14. The power steering mechanism 14 automatically steers the left and right front wheels 5 based on the target steering angle and the output of the steering angle sensor 20 so that the target steering angle can be obtained as the steering angles of the left and right front wheels 5.
 作業用自動制御においては、作業装置制御部183が、目標走行経路Pの経路情報と測位ユニット21の出力とに基づいて、トラクタ1が作業経路P1の始端(例えば、図5参照)等の作業開始地点に達するのに伴ってオフセットモア12による所定の作業(例えば草刈作業)が開始され、かつ、トラクタ1が作業経路P1の終端(例えば、図5参照)等の作業終了地点に達するのに伴ってオフセットモア12による所定の作業が停止されるように、クラッチ操作機構16及び昇降駆動機構17の作動を自動制御する。 In the automatic work control, the work device control unit 183 performs work such as the start end of the work path P1 (see, for example, FIG. 5) by the tractor 1 based on the route information of the target travel path P and the output of the positioning unit 21. A predetermined work (for example, mowing work) by the offset mower 12 is started as the start point is reached, and the tractor 1 reaches the work end point such as the end of the work path P1 (for example, see FIG. 5). Along with this, the operation of the clutch operating mechanism 16 and the elevating drive mechanism 17 is automatically controlled so that the predetermined work by the offset mower 12 is stopped.
 このようにして、トラクタ1においては、変速装置13、パワーステアリング機構14、ブレーキ操作機構15、クラッチ操作機構16、昇降駆動機構17、車載電子制御ユニット18、車速センサ19、舵角センサ20、測位ユニット21、及び、通信モジュール25等によって自動走行ユニット2が構成されている。 In this way, in the tractor 1, the transmission 13, the power steering mechanism 14, the brake operation mechanism 15, the clutch operation mechanism 16, the elevating drive mechanism 17, the in-vehicle electronic control unit 18, the vehicle speed sensor 19, the steering angle sensor 20, and the positioning. The automatic traveling unit 2 is composed of the unit 21, the communication module 25, and the like.
 この実施形態では、キャビン10にユーザ等が搭乗せずにトラクタ1を自動走行させるだけでなく、キャビン10にユーザ等が搭乗した状態でトラクタ1を自動走行させることも可能となっている。よって、キャビン10にユーザ等が搭乗せずに、車載電子制御ユニット18による自動走行制御により、トラクタ1を目標走行経路Pに沿って自動走行させることができるだけでなく、キャビン10にユーザ等が搭乗している場合でも、車載電子制御ユニット18による自動走行制御により、トラクタ1を目標走行経路Pに沿って自動走行させることができる。 In this embodiment, it is possible not only to automatically drive the tractor 1 without the user or the like boarding the cabin 10, but also to automatically drive the tractor 1 with the user or the like boarding the cabin 10. Therefore, the tractor 1 can be automatically driven along the target traveling path P by the automatic traveling control by the in-vehicle electronic control unit 18 without the user or the like boarding the cabin 10, and the user or the like can board the cabin 10. Even in this case, the tractor 1 can be automatically driven along the target traveling path P by the automatic traveling control by the vehicle-mounted electronic control unit 18.
 キャビン10にユーザ等が搭乗している場合には、車載電子制御ユニット18にてトラクタ1を自動走行させる自動走行状態と、ユーザ等の運転に基づいてトラクタ1を走行させる手動走行状態とに切り替えることができる。よって、自動走行状態にて目標走行経路Pを自動走行している途中に、自動走行状態から手動走行状態に切り替えることができ、逆に、手動走行状態にて走行している途中に、手動走行状態から自動走行状態に切り替えることができる。手動走行状態と自動走行状態との切り替えについては、例えば、運転席39の近傍に、自動走行状態と手動走行状態とに切り替えるための切替操作部を備えることができるとともに、その切替操作部を携帯通信端末3の表示部51に表示させることもできる。また、車載電子制御ユニット18による自動走行制御中に、ユーザがステアリングホイール38を操作すると、自動走行状態から手動走行状態に切り替えることができる。 When a user or the like is on board the cabin 10, the vehicle-mounted electronic control unit 18 switches between an automatic driving state in which the tractor 1 is automatically driven and a manual driving state in which the tractor 1 is driven based on the driving of the user and the like. be able to. Therefore, it is possible to switch from the automatic driving state to the manual driving state while the target traveling route P is automatically traveling in the automatic driving state, and conversely, the manual driving is performed while traveling in the manual driving state. It is possible to switch from the state to the automatic driving state. Regarding switching between the manual driving state and the automatic driving state, for example, a switching operation unit for switching between the automatic driving state and the manual driving state can be provided in the vicinity of the driver's seat 39, and the switching operation unit is carried. It can also be displayed on the display unit 51 of the communication terminal 3. Further, when the user operates the steering wheel 38 during the automatic driving control by the vehicle-mounted electronic control unit 18, the automatic driving state can be switched to the manual driving state.
 トラクタ1には、図1及び図2に示すように、トラクタ1(走行機体7)の周囲における障害物を検出して、障害物との衝突を回避するための障害物検出システム100が備えられている。障害物検出システム100は、レーザを用いて測定対象物までの距離を3次元で測定可能な複数のライダーセンサ101,102と、超音波を用いて測定対象物までの距離を測定可能な複数のソナーを有するソナーユニット103,104と、トラクタ1(走行機体7)の周囲を撮像するカメラ105,106.107,108と、障害物検出部110と、衝突回避制御部111とが備えられている。 As shown in FIGS. 1 and 2, the tractor 1 is provided with an obstacle detection system 100 for detecting obstacles around the tractor 1 (traveling machine 7) and avoiding a collision with the obstacles. ing. The obstacle detection system 100 includes a plurality of lidar sensors 101 and 102 capable of measuring the distance to the object to be measured in three dimensions using a laser, and a plurality of lidar sensors 101 and 102 capable of measuring the distance to the object to be measured using ultrasonic waves. The sonar units 103 and 104 having sonar, the cameras 105, 106.107 and 108 that image the surroundings of the tractor 1 (traveling machine 7), the obstacle detection unit 110, and the collision avoidance control unit 111 are provided. ..
 図2に示すように、障害物検出システム100は、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106等の複数の障害物センサDを備えている、複数の障害物センサDの夫々にて検出する障害物は、物体や人等としている。ライダーセンサ101,102は、トラクタ1の前方側を測定対象とする前ライダーセンサ101と、トラクタ1の後方側を測定対象とする後ライダーセンサ102とが備えられている。ソナーユニット103,104は、トラクタ1の右側を測定対象とする右側のソナーユニット103と、トラクタ1の左側を測定対象とする左側のソナーユニット104とが備えられている。カメラ105,106,107,108は、トラクタ1の前方側を測定対象とする前カメラ105と、トラクタ1の後方側を測定対象とする後カメラ106と、トラクタ1の右側を測定対象とする右カメラ107と、トラクタ1の左側を測定対象とする左カメラ108とが備えられている。 As shown in FIG. 2, the obstacle detection system 100 includes a plurality of obstacle sensors D such as lidar sensors 101, 102, sonar units 103, 104, and cameras 105, 106, of a plurality of obstacle sensors D. Obstacles detected by each are objects, people, and the like. The rider sensors 101 and 102 are provided with a front rider sensor 101 whose measurement target is the front side of the tractor 1 and a rear rider sensor 102 whose measurement target is the rear side of the tractor 1. The sonar units 103 and 104 include a right sonar unit 103 whose measurement target is the right side of the tractor 1 and a left sonar unit 104 whose measurement target is the left side of the tractor 1. The cameras 105, 106, 107, 108 include a front camera 105 whose measurement target is the front side of the tractor 1, a rear camera 106 whose measurement target is the rear side of the tractor 1, and a right side whose measurement target is the right side of the tractor 1. A camera 107 and a left camera 108 whose measurement target is the left side of the tractor 1 are provided.
 障害物検出部110は、ライダーセンサ101,102,ソナーユニット103,104及びカメラ105,106,107,108の測定情報に基づく障害物検出処理をリアルタイムで繰り返し行い、検出範囲C(図7参照)内での物体や人等の障害物を適切に検出している。衝突回避制御部111は、リアルタイムで検出される障害物との衝突を回避するための衝突回避制御を行うようにしている。 The obstacle detection unit 110 repeatedly performs obstacle detection processing based on the measurement information of the rider sensors 101, 102, sonar units 103, 104, and cameras 105, 106, 107, 108 in real time, and detects the detection range C (see FIG. 7). It properly detects objects and obstacles such as people inside. The collision avoidance control unit 111 performs collision avoidance control for avoiding a collision with an obstacle detected in real time.
 障害物検出部110及び衝突回避制御部111は、車載電子制御ユニット18に備えられている。車載電子制御ユニット18は、コモンレールシステムに含まれたエンジン用の電子制御ユニット、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,108等にCAN(Controller Area Network)を介して通信可能に接続されている。 The obstacle detection unit 110 and the collision avoidance control unit 111 are provided in the in-vehicle electronic control unit 18. The in-vehicle electronic control unit 18 is connected to the electronic control unit for the engine, the rider sensors 101, 102, the sonar units 103, 104, the cameras 105, 106, 107, 108, etc. included in the common rail system via CAN (Controller Area Network). Is connected so that it can communicate with each other.
 ライダーセンサ101,102は、レーザ光(例えば、パルス状の近赤外レーザ光)が測定対象物に当たって跳ね返ってくるまでの往復時間から測定対象物までの距離を測定している(Time Of Flight)。ライダーセンサ101,102は、レーザ光を上下方向及び左右方向に高速で走査し、各走査角における測定対象物までの距離を順次測定していくことで、測定対象物までの距離を3次元で測定している。ライダーセンサ101,102は、測定範囲内における測定対象物までの距離をリアルタイムで繰り返し測定している。ライダーセンサ101,102は、測定情報から3次元画像を生成して外部に出力可能に構成されている。ライダーセンサ101,102の測定情報から生成された3次元画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等に障害物の有無を視認させることができる。ちなみに、3次元画像では、例えば、色等を用いて遠近方向での距離を示すことができる。 The lidar sensors 101 and 102 measure the distance from the round-trip time until the laser beam (for example, pulsed near-infrared laser beam) hits the measurement object and bounces off to the measurement object (Time Of Flight). .. The lidar sensors 101 and 102 scan the laser beam in the vertical and horizontal directions at high speed, and sequentially measure the distance to the measurement target at each scanning angle to measure the distance to the measurement target in three dimensions. I'm measuring. The lidar sensors 101 and 102 repeatedly measure the distance to the object to be measured within the measurement range in real time. The lidar sensors 101 and 102 are configured to generate a three-dimensional image from the measurement information and output it to the outside. The three-dimensional image generated from the measurement information of the rider sensors 101 and 102 is displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the presence or absence of an obstacle. be able to. By the way, in the three-dimensional image, for example, the distance in the perspective direction can be indicated by using a color or the like.
 前ライダーセンサ101は、図1及び図3に示すように、キャビン10の前面側の上部位置に配置されたアンテナユニット80の底部に取り付けられている。アンテナユニット80は、図3に示すように、走行機体7の左右方向においてキャビン10の全長に亘るパイプ状のアンテナユニット支持ステー81に取り付けられている。アンテナユニット80は、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。前ライダーセンサ101は、前方側部位ほど下方側に位置する前下がり姿勢にてアンテナユニット80に取り付けられ、アンテナユニット80に一体的に備えられている。前ライダーセンサ101は、アンテナユニット80と同様に、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。 As shown in FIGS. 1 and 3, the front rider sensor 101 is attached to the bottom of the antenna unit 80 arranged at the upper position on the front side of the cabin 10. As shown in FIG. 3, the antenna unit 80 is attached to a pipe-shaped antenna unit support stay 81 over the entire length of the cabin 10 in the left-right direction of the traveling machine body 7. The antenna unit 80 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7. The front rider sensor 101 is attached to the antenna unit 80 in a front-down posture, which is located on the lower side toward the front side portion, and is integrally provided on the antenna unit 80. Like the antenna unit 80, the front rider sensor 101 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7.
 前カメラ105は、前ライダーセンサ101の上方側に配置されている。前カメラ105は、前ライダーセンサ101と同様に、前方側部位ほど下方側に位置する前下がり姿勢にて取り付けられている。前カメラ105は、走行機体7の前方側を斜め上方側から見下ろす状態で撮像するように備えられている。前カメラ105にて撮像した撮像画像を外部に出力可能に構成されている。前カメラ105の撮像画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等にトラクタ1の周囲の状況を視認させることができる。前ライダーセンサ101及び前カメラ105は、上下方向でルーフ35に相当する位置に配置されている。 The front camera 105 is arranged above the front rider sensor 101. Like the front rider sensor 101, the front camera 105 is attached in a front-down posture, which is located on the lower side toward the front side portion. The front camera 105 is provided so as to take an image of the front side of the traveling machine body 7 in a state of looking down from an obliquely upper side. It is configured so that the captured image captured by the front camera 105 can be output to the outside. The captured image of the front camera 105 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1. The front rider sensor 101 and the front camera 105 are arranged at positions corresponding to the roof 35 in the vertical direction.
 後ライダーセンサ102は、図4に示すように、走行機体7の左右方向においてキャビン10の全長に亘るパイプ状のセンサ支持ステー82に取り付けられている。後ライダーセンサ102は、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。後ライダーセンサ102は、後方側部位ほど下方側に位置する後下がり姿勢にてセンサ支持ステー82に取り付けられている。 As shown in FIG. 4, the rear rider sensor 102 is attached to a pipe-shaped sensor support stay 82 over the entire length of the cabin 10 in the left-right direction of the traveling machine body 7. The rear rider sensor 102 is arranged at a position corresponding to the central portion of the cabin 10 in the left-right direction of the traveling machine body 7. The rear rider sensor 102 is attached to the sensor support stay 82 in a rearward lowering posture, which is located on the lower side toward the rear side portion.
 後カメラ106は、後ライダーセンサ102の上方側に配置されている。後カメラ106は、後ライダーセンサ102と同様に、後方側部位ほど下方側に位置する後下がり姿勢にて取り付けられている。後カメラ106は、走行機体7の後方側を斜め上方側から見下ろす状態で撮像するように備えられている。後カメラ106にて撮像した撮像画像を外部に出力可能に構成されている。後カメラ106の撮像画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等にトラクタ1の周囲の状況を視認させることができる。後ライダーセンサ102及び後カメラ106は、上下方向でルーフ35に相当する位置に配置されている。 The rear camera 106 is arranged above the rear rider sensor 102. Like the rear rider sensor 102, the rear camera 106 is attached in a rear-down posture, which is located on the lower side toward the rear side portion. The rear camera 106 is provided so as to take an image of the rear side of the traveling machine body 7 in a state of looking down from an obliquely upper side. It is configured so that the captured image captured by the rear camera 106 can be output to the outside. The captured image of the rear camera 106 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1. The rear rider sensor 102 and the rear camera 106 are arranged at positions corresponding to the roof 35 in the vertical direction.
 右カメラ107及び左カメラ108について、図示は省略するが、前カメラ105及び後カメラ106と同様に、支持ステー等を介して、斜め上方側から見下ろす状態で撮像するように備えられている。右カメラ107及び左カメラ108も、上下方向でルーフ35に相当する位置に配置させることができる。右カメラ107及び左カメラ108にて撮像した撮像画像も、外部に出力可能に構成されている。右カメラ107及び左カメラ108の撮像画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等にトラクタ1の周囲の状況を視認させることができる。 Although not shown, the right camera 107 and the left camera 108 are provided so as to take an image while looking down from an obliquely upper side via a support stay or the like, like the front camera 105 and the rear camera 106. The right camera 107 and the left camera 108 can also be arranged at positions corresponding to the roof 35 in the vertical direction. The captured images captured by the right camera 107 and the left camera 108 are also configured to be output to the outside. The captured images of the right camera 107 and the left camera 108 can be displayed on a display device such as a display unit of the tractor 1 or a display unit 51 of the mobile communication terminal 3 so that the user or the like can visually recognize the situation around the tractor 1. ..
 ソナーユニット103,104は、投射した超音波が測定対象物に当たって跳ね返ってくるまでの往復時間から測定対象物までの距離を測定するように構成されている。ソナーユニット103,104として、トラクタ1(走行機体7)の右側を測定範囲とする右ソナーユニット103と、トラクタ1(走行機体7)の左側を測定範囲とする左ソナーユニット104(図1参照)とが備えられている。 The sonar units 103 and 104 are configured to measure the distance from the measurement object from the round-trip time until the projected ultrasonic wave hits the measurement object and bounces off. As sonar units 103 and 104, a right sonar unit 103 having a measurement range on the right side of the tractor 1 (traveling machine body 7) and a left sonar unit 104 having a measuring range on the left side of the tractor 1 (traveling machine body 7) (see FIG. 1). And are provided.
 障害物検出システム100は、トラクタ1の周囲における所定の検出範囲C(図7参照)内で障害物を検出するために、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,108等の複数の障害物センサDが備えられている。複数の障害物センサDの測定範囲について、図6に基づいて説明する。図6は、複数の障害物センサDの測定範囲を示す平面図である。 The obstacle detection system 100 detects obstacles within a predetermined detection range C (see FIG. 7) around the tractor 1, in order to detect obstacles 101, 102, sonar units 103, 104, and cameras 105, 106, 107. , 108 and a plurality of obstacle sensors D are provided. The measurement range of the plurality of obstacle sensors D will be described with reference to FIG. FIG. 6 is a plan view showing the measurement ranges of the plurality of obstacle sensors D.
 図6に示すように、トラクタ1の前方側には、前ライダーセンサ101の測定範囲C1と前カメラ105の測定範囲C2の一部とが重複する状態で備えられている。測定範囲C1及び測定範囲C2は、いずれも左右対称な範囲に設定されている。測定範囲C2は、トラクタ1から前方側への距離が測定範囲C1よりも大きな範囲であり、且つ、左右方向で測定範囲C1よりも所定角度だけ大きな範囲に設定されている。 As shown in FIG. 6, the front side of the tractor 1 is provided in a state where the measurement range C1 of the front rider sensor 101 and a part of the measurement range C2 of the front camera 105 overlap. Both the measurement range C1 and the measurement range C2 are set to symmetrical ranges. The measurement range C2 is set so that the distance from the tractor 1 to the front side is larger than the measurement range C1 and is set to a range larger than the measurement range C1 in the left-right direction by a predetermined angle.
 トラクタ1の後方側には、トラクタ1の前方側と同様に、後ライダーセンサ102の測定範囲C3と後カメラ106の測定範囲C4の一部とが重複する状態で備えられている。測定範囲C3及び測定範囲C4は、いずれも左右対称な範囲に設定されている。測定範囲C4は、トラクタ1から後方側への距離が測定範囲C3よりも大きな範囲であり、且つ、左右方向で測定範囲C3よりも所定角度だけ大きな範囲に設定されている。 Similar to the front side of the tractor 1, the rear side of the tractor 1 is provided in a state where the measurement range C3 of the rear rider sensor 102 and a part of the measurement range C4 of the rear camera 106 overlap. Both the measurement range C3 and the measurement range C4 are set to symmetrical ranges. The measurement range C4 is set so that the distance from the tractor 1 to the rear side is larger than the measurement range C3 and is set to a range larger than the measurement range C3 in the left-right direction by a predetermined angle.
 トラクタ1の右側には、右側のソナーユニット103の測定範囲C5と右カメラ107の測定範囲C6の一部とが重複する状態で備えられている。測定範囲C5及び測定範囲C6は、いずれも前後方向に対称な範囲に設定されている。測定範囲C6が、トラクタ1から右側への距離が測定範囲C5よりも大きな範囲であり、且つ、前後方向で測定範囲C5よりも所定角度だけ大きな範囲に設定されている。 The right side of the tractor 1 is provided in a state where the measurement range C5 of the right sonar unit 103 and a part of the measurement range C6 of the right camera 107 overlap. The measurement range C5 and the measurement range C6 are both set to be symmetrical in the front-rear direction. The measurement range C6 is set so that the distance from the tractor 1 to the right side is larger than the measurement range C5, and the measurement range C6 is set to a range larger than the measurement range C5 by a predetermined angle in the front-rear direction.
 トラクタ1の左側には、トラクタ1の右側と同様に、左側のソナーユニット104の測定範囲C7と左カメラ108の測定範囲C8の一部とが重複する状態で備えられている。測定範囲C7及び測定範囲C8は、いずれも前後方向に対称な範囲に設定されている。測定範囲C8が、トラクタ1から左側への距離が測定範囲C7よりも大きな範囲であり、且つ、前後方向で測定範囲C7よりも所定角度だけ大きな範囲に設定されている。 Similar to the right side of the tractor 1, the left side of the tractor 1 is provided in a state where the measurement range C7 of the sonar unit 104 on the left side and a part of the measurement range C8 of the left camera 108 overlap. The measurement range C7 and the measurement range C8 are both set to be symmetrical in the front-rear direction. The measurement range C8 is set so that the distance from the tractor 1 to the left side is larger than the measurement range C7, and the measurement range C8 is set to a range larger than the measurement range C7 by a predetermined angle in the front-rear direction.
 このように、図6に示すものでは、トラクタ1の前方側、後方側、右側、左側のどの方向でも、2つの障害物センサDの測定範囲を重複させる状態で備えられているが、障害物センサDの測定範囲が重複しない状態で複数の障害物センサDを備えることもできる。ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,108等の複数の障害物センサDの測定範囲をどのように設定するかは適宜変更が可能である。 As described above, in the one shown in FIG. 6, the measurement ranges of the two obstacle sensors D are provided in a state of overlapping in any of the front side, the rear side, the right side, and the left side of the tractor 1, but the obstacles A plurality of obstacle sensors D may be provided in a state where the measurement ranges of the sensors D do not overlap. How to set the measurement range of the plurality of obstacle sensors D such as the rider sensors 101, 102, the sonar units 103, 104 and the cameras 105, 106, 107, 108 can be appropriately changed.
 障害物検出部110による障害物検出処理について説明する。障害物検出部110は、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,108の測定情報に基づいて、トラクタ1の周囲における所定の検出範囲内において、障害物の存否及び障害物の位置を検出する障害物検出処理を行うように構成されている。 The obstacle detection process by the obstacle detection unit 110 will be described. The obstacle detection unit 110 determines the presence or absence of an obstacle within a predetermined detection range around the tractor 1 based on the measurement information of the rider sensors 101, 102, the sonar units 103, 104, and the cameras 105, 106, 107, 108. And, it is configured to perform an obstacle detection process for detecting the position of an obstacle.
 トラクタ1の前方側について、障害物検出部110が、障害物検出処理として、例えば、前カメラ105の測定情報に基づいて障害物の存否を検出し、障害物の存在を検出すると、前ライダーセンサ101の測定情報に基づいて、その障害物の位置を検出している。ちなみに、前カメラ105の測定範囲C2だけの範囲に障害物が存在する場合には、障害物検出部110が、前カメラ105の測定情報に基づいて、障害物の存否、及び、障害物の位置を検出している。このように、障害物検出部110は、トラクタ1の前方側における障害物検出処理として、前ライダーセンサ101の測定情報及び前カメラ105の測定情報に基づいて、障害物の存在を検出するとともに、その障害物の位置を検出している。トラクタ1の後方側についても、障害物検出部110は、トラクタ1の後方側における障害物検出処理として、後ライダーセンサ102の測定情報及び後カメラ106の測定情報に基づいて、障害物の存在を検出するとともに、その障害物の位置を検出している。 On the front side of the tractor 1, when the obstacle detection unit 110 detects the presence or absence of an obstacle based on the measurement information of the front camera 105 as an obstacle detection process and detects the presence of the obstacle, the front rider sensor The position of the obstacle is detected based on the measurement information of 101. By the way, when an obstacle exists only in the measurement range C2 of the front camera 105, the obstacle detection unit 110 determines the presence or absence of the obstacle and the position of the obstacle based on the measurement information of the front camera 105. Is being detected. In this way, the obstacle detection unit 110 detects the presence of an obstacle based on the measurement information of the front rider sensor 101 and the measurement information of the front camera 105 as the obstacle detection process on the front side of the tractor 1. The position of the obstacle is detected. Regarding the rear side of the tractor 1, the obstacle detection unit 110 also detects the presence of obstacles on the rear side of the tractor 1 based on the measurement information of the rear rider sensor 102 and the measurement information of the rear camera 106 as the obstacle detection process. At the same time as detecting, the position of the obstacle is detected.
 また、トラクタ1の右側については、障害物検出部110が、障害物検出処理として、例えば、右カメラ107の測定情報に基づいて障害物の存否を検出し、障害物の存在を検出すると、右ソナーユニット103の測定情報に基づいて、その障害物の位置を検出している。ちなみに、右カメラ107の測定範囲C6だけの範囲に障害物が存在する場合には、障害物検出部110が、右カメラ107の測定情報に基づいて、障害物の存否、及び、障害物の位置を検出している。このように、障害物検出部110は、トラクタ1の右側における障害物検出処理として、右ソナーユニット103の測定情報及び右カメラ107の測定情報に基づいて、障害物の存在を検出するとともに、その障害物の位置を検出している。トラクタ1の左側についても、障害物検出部110は、トラクタ1の左側における障害物検出処理として、左ソナーユニット104の測定情報及び左カメラ108の測定情報に基づいて、障害物の存在を検出するとともに、その障害物の位置を検出している。 On the right side of the tractor 1, when the obstacle detection unit 110 detects the presence or absence of an obstacle based on the measurement information of the right camera 107 as an obstacle detection process and detects the presence of the obstacle, the right side The position of the obstacle is detected based on the measurement information of the sonar unit 103. By the way, when an obstacle exists only in the measurement range C6 of the right camera 107, the obstacle detection unit 110 determines the presence or absence of the obstacle and the position of the obstacle based on the measurement information of the right camera 107. Is being detected. In this way, the obstacle detection unit 110 detects the presence of an obstacle based on the measurement information of the right sonar unit 103 and the measurement information of the right camera 107 as the obstacle detection process on the right side of the tractor 1, and also detects the presence of the obstacle. The position of the obstacle is detected. Regarding the left side of the tractor 1, the obstacle detection unit 110 also detects the presence of an obstacle based on the measurement information of the left sonar unit 104 and the measurement information of the left camera 108 as the obstacle detection process on the left side of the tractor 1. At the same time, the position of the obstacle is detected.
 障害物検出部110にて障害物を検出するに当たり、障害物検出部110は、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,1089等の複数の障害物センサDの夫々について、作動状態と非作動状態とに切替自在に構成されている。障害物検出部110は、複数の障害物センサDの全てを作動状態に切り替えるのではなく、図7に示すように、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、複数の障害物センサDの一部を作動状態に切り替え、残りの一部を非作動状態に切り替えている。図7では、作動状態の障害物センサDの測定範囲を示している。 When the obstacle detection unit 110 detects an obstacle, the obstacle detection unit 110 is a plurality of obstacle sensors D such as a rider sensor 101, 102, a sonar unit 103, 104, and a camera 105, 106, 107, 1089. Each is configured to be switchable between an operating state and a non-operating state. The obstacle detection unit 110 does not switch all of the plurality of obstacle sensors D to the operating state, but as shown in FIG. 7, depending on the traveling state of the tractor 1 and the state of the work device such as the offset mower 12. , A part of the plurality of obstacle sensors D is switched to the operating state, and the remaining part is switched to the non-operating state. FIG. 7 shows the measurement range of the obstacle sensor D in the operating state.
 障害物検出部110は、複数の障害物センサDの夫々を作動状態と非作動状態とに切り替えることで、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、システム全体として障害物を検出する検出範囲Cを変更自在としている。障害物検出部110は、複数の障害物センサDの一部を非作動状態に切り替えることで、障害物検出部110の処理負担を軽減して、処理スピードの向上を図り、精度良く且つ迅速に障害物を検出するようにしている。 The obstacle detection unit 110 switches each of the plurality of obstacle sensors D between an operating state and a non-operating state, so that the entire system can be adjusted according to the traveling state of the tractor 1 and the status of the working device such as the offset mower 12. The detection range C for detecting obstacles can be changed freely. The obstacle detection unit 110 reduces the processing load of the obstacle detection unit 110 by switching a part of the plurality of obstacle sensors D to the non-operating state, improves the processing speed, and accurately and quickly. I try to detect obstacles.
 トラクタ1が前進走行する場合には、図7に示すように、障害物検出部110が、前ライダーセンサ101及び前カメラ105を作動状態に切り替え、且つ、後ライダーセンサ102及び後カメラ106を非作動状態に切り替えている。図示は省略するが、逆に、トラクタ1が後進走行する場合には、障害物検出部110が、後ライダーセンサ102及び後カメラ106を作動状態に切り替え、且つ、前ライダーセンサ101及び前カメラ105を非作動状態に切り替えている。 When the tractor 1 travels forward, as shown in FIG. 7, the obstacle detection unit 110 switches the front rider sensor 101 and the front camera 105 to the operating state, and does not switch the rear rider sensor 102 and the rear camera 106. Switching to the operating state. Although not shown, on the contrary, when the tractor 1 travels backward, the obstacle detection unit 110 switches the rear rider sensor 102 and the rear camera 106 into the operating state, and the front rider sensor 101 and the front camera 105. Is switched to the non-operating state.
 作業装置であるオフセットモア12がトラクタ1よりも左側にオフセットしている場合には、図7に示すように、障害物検出部110が、左ソナーユニット104、右ソナーユニット103及び左カメラ108を作動状態に切り替え、且つ、右カメラ107を非作動状態に切り替えている。この場合に、障害物検出部110は、右ソナーユニット103を作動状態に切り替えることで、トラクタ1の右側でトラクタ1の近い範囲だけは障害物を検出しているが、右ソナーユニット103を非作動状態に切り替えることもできる。 When the offset moa 12 which is a working device is offset to the left side of the tractor 1, the obstacle detection unit 110 sets the left sonar unit 104, the right sonar unit 103, and the left camera 108 as shown in FIG. It is switched to the operating state, and the right camera 107 is switched to the non-operating state. In this case, the obstacle detection unit 110 switches the right sonar unit 103 to the operating state to detect obstacles only in a range close to the tractor 1 on the right side of the tractor 1, but does not detect the right sonar unit 103. It can also be switched to the operating state.
 逆に、作業装置であるオフセットモア12がトラクタ1よりも右側にオフセットしている場合には、図示は省略するが、障害物検出部110が、右ソナーユニット103、左ソナーユニット104及び右カメラ107を作動状態に切り替え、且つ、左カメラ108を非作動状態に切り替えている。この場合に、障害物検出部110は、左ソナーユニット104を作動状態に切り替えることで、トラクタ1の左側でトラクタ1の近い範囲だけは障害物を検出しているが、左ソナーユニット104を非作動状態に切り替えることもできる。 On the contrary, when the offset moa 12 which is a working device is offset to the right side of the tractor 1, the obstacle detection unit 110 is the right sonar unit 103, the left sonar unit 104, and the right camera, although not shown. The 107 is switched to the operating state, and the left camera 108 is switched to the non-operating state. In this case, the obstacle detection unit 110 switches the left sonar unit 104 to the operating state to detect obstacles only in a range close to the tractor 1 on the left side of the tractor 1, but does not detect the left sonar unit 104. It can also be switched to the operating state.
 障害物検出部110は、トラクタ1の操縦部に備えられる前後進切替レバーの操作状態に基づいて、トラクタ1が前進走行であるか又は後進走行であるかを判定している。トラクタ1を自動走行させるための目標走行経路Pを生成する際に、作業装置の種類や作業幅等の作業装置に関する情報を含む車体情報が入力されているので、障害物検出部110は、入力された車体情報に基づいて、オフセットモア12等の作業装置が左右方向でトラクタ1に対してどちらに位置するかを判定している。よって、障害物検出部110は、前後進切替レバーの操作状態に基づいてトラクタ1の走行状態を取得し、車体情報に基づいて作業装置の状況を取得しており、取得したトラクタ1の走行状態及び作業装置の状況に応じて、複数の障害物センサDの夫々を作動状態と非作動状態とに切り替えている。 The obstacle detection unit 110 determines whether the tractor 1 is traveling forward or backward based on the operating state of the forward / backward switching lever provided in the control unit of the tractor 1. When generating the target travel path P for automatically traveling the tractor 1, vehicle body information including information about the work device such as the type and work width of the work device is input, so that the obstacle detection unit 110 inputs. Based on the vehicle body information, it is determined which position the working device such as the offset mower 12 is located with respect to the tractor 1 in the left-right direction. Therefore, the obstacle detection unit 110 acquires the traveling state of the tractor 1 based on the operating state of the forward / backward switching lever, acquires the status of the work device based on the vehicle body information, and acquires the traveling state of the acquired tractor 1. And, depending on the situation of the working device, each of the plurality of obstacle sensors D is switched between the operating state and the non-operating state.
 このように、障害物検出部110が複数の障害物センサDの夫々を作動状態と非作動状態とに切り替えることで、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、システム全体として障害物を検出する検出範囲Cを変更設定している。図7に示すものは、トラクタ1が前進走行する状態で、且つ、オフセットモア12がトラクタ1よりも左側にオフセットしている状態におけるシステム全体の検出範囲Cを示している。 In this way, the obstacle detection unit 110 switches each of the plurality of obstacle sensors D between the operating state and the non-operating state, so that the obstacle detection unit 110 can switch between the operating state and the non-operating state, depending on the traveling state of the tractor 1 and the state of the work device such as the offset mower 12. , The detection range C for detecting obstacles is changed and set for the entire system. FIG. 7 shows the detection range C of the entire system in a state where the tractor 1 is traveling forward and the offset moa 12 is offset to the left side of the tractor 1.
 図7に示すものでは、障害物検出部110が複数の障害物センサDの夫々を作動状態と非作動状態とに切り替えることで、障害物を検出する検出範囲Cを変更しているが、障害物センサD自体の測定範囲を変更することで、システム全体として障害物を検出する検出範囲Cを変更することもできる。例えば、図6において、前ライダーセンサ101の測定範囲C1について、トラクタ1から測定範囲C1の前端部までの距離や左右方向における左右両端部までの角度を変更することで、前ライダーセンサ101の測定範囲C1を変更することができる。 In the one shown in FIG. 7, the obstacle detection unit 110 changes the detection range C for detecting an obstacle by switching each of the plurality of obstacle sensors D between an operating state and a non-operating state. By changing the measurement range of the object sensor D itself, it is possible to change the detection range C for detecting obstacles in the entire system. For example, in FIG. 6, regarding the measurement range C1 of the front rider sensor 101, the measurement of the front rider sensor 101 is performed by changing the distance from the tractor 1 to the front end of the measurement range C1 and the angle between the left and right ends in the left-right direction. The range C1 can be changed.
 トラクタ1が前進走行する場合には、例えば、障害物検出部110が、トラクタ1からの距離や左右方向での角度について、前ライダーセンサ101の測定範囲C1及び前カメラ105の測定範囲C2の方が、後ライダーセンサ102の測定範囲C3及び後カメラ106の測定範囲C4よりも大きくなるように設定することができる。逆に、トラクタ1が後進走行する場合には、例えば、障害物検出部110が、トラクタ1からの距離や左右方向での角度について、後ライダーセンサ102の測定範囲C3及び後カメラ106の測定範囲C4の方が、前ライダーセンサ101の測定範囲C1及び前カメラ105の測定範囲C2よりも大きくなるように設定することができる。 When the tractor 1 travels forward, for example, the obstacle detection unit 110 approaches the measurement range C1 of the front rider sensor 101 and the measurement range C2 of the front camera 105 with respect to the distance from the tractor 1 and the angle in the left-right direction. Can be set to be larger than the measurement range C3 of the rear rider sensor 102 and the measurement range C4 of the rear camera 106. On the contrary, when the tractor 1 travels backward, for example, the obstacle detection unit 110 determines the measurement range C3 of the rear rider sensor 102 and the measurement range of the rear camera 106 with respect to the distance from the tractor 1 and the angle in the left-right direction. C4 can be set to be larger than the measurement range C1 of the front rider sensor 101 and the measurement range C2 of the front camera 105.
 また、作業装置であるオフセットモア12がトラクタ1よりも左側にオフセットしている場合には、例えば、障害物検出部110が、トラクタ1からの距離や前後方向での角度について、左カメラ108の測定範囲C8の方が、右カメラ107の測定範囲C6よりも大きくなるように設定することができる。逆に、作業装置であるオフセットモア12がトラクタ1よりも右側にオフセットしている場合には、例えば、障害物検出部110が、トラクタ1からの距離や前後方向での角度について、右カメラ107の測定範囲C6の方が、左カメラ108の測定範囲C8よりも大きくなるように設定することができる。 When the offset mower 12 which is a working device is offset to the left side of the tractor 1, for example, the obstacle detection unit 110 determines the distance from the tractor 1 and the angle in the front-rear direction of the left camera 108. The measurement range C8 can be set to be larger than the measurement range C6 of the right camera 107. On the contrary, when the offset mower 12 which is a working device is offset to the right side of the tractor 1, for example, the obstacle detection unit 110 determines the distance from the tractor 1 and the angle in the front-rear direction with respect to the right camera 107. The measurement range C6 of the left camera 108 can be set to be larger than the measurement range C8 of the left camera 108.
 このように、障害物検出部110は、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、障害物センサDの測定範囲自体を変更することで、システム全体として障害物を検出する検出範囲Cを変更設定することもできる。 In this way, the obstacle detection unit 110 changes the measurement range itself of the obstacle sensor D according to the traveling state of the tractor 1 and the state of the work device such as the offset moa 12, and thereby the obstacle as a whole system. It is also possible to change and set the detection range C for detecting.
 障害物センサDの測定範囲自体を変更するに当たり、例えば、トラクタ1に対して近い位置に存在する作業装置であれば、その作業装置と障害物との衝突を回避するためには、トラクタ1から近い位置までを検出範囲とすればよい。それに対して、トラクタ1に対して離れた位置に存在する作業装置であれば、その作業装置と障害物との衝突を回避するためには、トラクタ1から離れた位置までを検出範囲とすることが必要となる。そこで、障害物検出部110は、トラクタ1から作業装置までの距離に応じて、障害物センサDの測定範囲について、トラクタ1からの距離を変更することで、システム全体として障害物を検出する検出範囲Cを変更設定することができる。 When changing the measurement range itself of the obstacle sensor D, for example, in the case of a work device existing at a position close to the tractor 1, in order to avoid a collision between the work device and the obstacle, the tractor 1 is used. The detection range may be up to a close position. On the other hand, if the work device is located at a position away from the tractor 1, the detection range should be a position away from the tractor 1 in order to avoid a collision between the work device and an obstacle. Is required. Therefore, the obstacle detection unit 110 detects obstacles as a whole system by changing the distance from the tractor 1 in the measurement range of the obstacle sensor D according to the distance from the tractor 1 to the work device. The range C can be changed and set.
 衝突回避制御部111による衝突回避制御について説明する。衝突回避制御部111は、障害物検出部110にて障害物を検出すると、トラクタ1を減速させる又はトラクタ1を走行停止させる衝突回避制御を行うように構成されている。例えば、検出範囲C(図7参照)内において、障害物の存在位置までのトラクタ1からの距離が所定距離以上であると、衝突回避制御部111は、衝突回避制御として、トラクタ1を減速させる。また、検出範囲C内において、障害物の存在位置までのトラクタ1からの距離が所定距離未満であると、衝突回避制御部111は、衝突回避制御として、トラクタ1を走行停止させる。この場合に、所定距離について、トラクタ1の前方側用の所定距離とトラクタ1の後方側用の所定距離とを異なる距離としたり、トラクタ1の走行速度に応じて所定距離を変更設定することもできる。所定距離については、各種の条件に応じて、どのような距離を設定するかは適宜変更可能である。 The collision avoidance control by the collision avoidance control unit 111 will be described. The collision avoidance control unit 111 is configured to perform collision avoidance control for decelerating the tractor 1 or stopping the traveling of the tractor 1 when the obstacle detection unit 110 detects an obstacle. For example, within the detection range C (see FIG. 7), when the distance from the tractor 1 to the position where the obstacle exists is equal to or greater than a predetermined distance, the collision avoidance control unit 111 decelerates the tractor 1 as collision avoidance control. .. Further, if the distance from the tractor 1 to the position where the obstacle exists within the detection range C is less than a predetermined distance, the collision avoidance control unit 111 stops the tractor 1 from traveling as a collision avoidance control. In this case, the predetermined distance may be different from the predetermined distance for the front side of the tractor 1 and the predetermined distance for the rear side of the tractor 1, or the predetermined distance may be changed and set according to the traveling speed of the tractor 1. it can. Regarding the predetermined distance, what kind of distance is set can be appropriately changed according to various conditions.
 衝突回避制御部111は、衝突回避制御において、トラクタ1を減速させる又はトラクタ1を走行停止させるだけでなく、報知ブザーや報知ランプ等の報知装置26を作動させて、障害物が存在することを報知している。衝突回避制御部111は、衝突回避制御において、通信モジュール25,53を用いて、トラクタ1から携帯通信端末3に通信して表示部51に障害物の存在を表示させることで、障害物が存在することを報知可能としている。 In the collision avoidance control, the collision avoidance control unit 111 not only decelerates the tractor 1 or stops the tractor 1 from traveling, but also activates a notification device 26 such as a notification buzzer and a notification lamp to indicate that an obstacle exists. I am informing you. In the collision avoidance control, the collision avoidance control unit 111 communicates with the mobile communication terminal 3 from the tractor 1 by using the communication modules 25 and 53 to display the presence of the obstacle on the display unit 51, so that the obstacle exists. It is possible to notify what to do.
 障害物検出システム100の動作について、図8のフローチャートに基づいて説明する。障害物検出部110は、前後進切替レバーの操作状態等から、トラクタ1が前進走行であるか又は後進走行であるかを判定して、トラクタ1の走行状態を取得している(ステップ#1)。障害物検出部110は、作業装置の種類や作業幅等の作業装置に関する情報を含む車体情報から、オフセットモア12等の作業装置が左右方向でトラクタ1に対してどちらに位置するかや、トラクタ1に対してどのような距離に作業装置が位置しているかの作業装置の位置情報等の作業装置の状況を取得している(ステップ#2)。 The operation of the obstacle detection system 100 will be described based on the flowchart of FIG. The obstacle detection unit 110 determines whether the tractor 1 is traveling forward or backward from the operation state of the forward / backward switching lever, etc., and acquires the traveling state of the tractor 1 (step # 1). ). The obstacle detection unit 110 determines from the vehicle body information including information about the work device such as the type and work width of the work device, which position the work device such as the offset mower 12 is located in the left-right direction with respect to the tractor 1. The status of the work device such as the position information of the work device as to what distance the work device is located with respect to 1 is acquired (step # 2).
 障害物検出部110は、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況に応じて、システム全体として障害物を検出する検出範囲Cを設定している(ステップ#3)。例えば、図7に示すように、トラクタ1が前進走行であり、且つ、オフセットモア12がトラクタ1の左側に位置する場合には、障害物検出部110が、前ライダーセンサ101、前カメラ105、左ソナーユニット104、右ソナーユニット103及び左カメラ108を作動状態に切り替え、且つ、後ライダーセンサ102、後カメラ106及び右カメラ107を非作動状態に切り替えて、検出範囲Cを設定している。 The obstacle detection unit 110 sets the detection range C for detecting obstacles in the entire system according to the traveling state of the tractor 1 and the state of the work device such as the offset moa 12 (step # 3). For example, as shown in FIG. 7, when the tractor 1 is traveling forward and the offset mower 12 is located on the left side of the tractor 1, the obstacle detection unit 110 determines the front rider sensor 101, the front camera 105, and the front camera 105. The detection range C is set by switching the left sonar unit 104, the right sonar unit 103, and the left camera 108 to the operating state, and switching the rear rider sensor 102, the rear camera 106, and the right camera 107 to the non-operating state.
 障害物検出部110は、設定した検出範囲C内において、障害物の存否、及び、障害物の位置を検出する障害物検出処理を行う(ステップ#4)。障害物検出部110が障害物検出処理により障害物を検出した場合には、衝突回避制御部111が衝突回避制御を行う(ステップ#5のYesの場合、ステップ#6)。 The obstacle detection unit 110 performs an obstacle detection process for detecting the presence / absence of an obstacle and the position of the obstacle within the set detection range C (step # 4). When the obstacle detection unit 110 detects an obstacle by the obstacle detection process, the collision avoidance control unit 111 performs collision avoidance control (in the case of Yes in step # 5, step # 6).
 このようにして、障害物検出システム100は、トラクタ1の自動走行中に、ステップ#1~ステップ#6の動作を繰り返し行い、トラクタ1及びオフセットモア12等の作業装置と障害物との衝突を回避しながら、目標走行経路Pに沿ってトラクタ1を自動走行させている。 In this way, the obstacle detection system 100 repeatedly repeats the operations of steps # 1 to # 6 during the automatic traveling of the tractor 1, and causes a collision between the work device such as the tractor 1 and the offset mower 12 and the obstacle. While avoiding it, the tractor 1 is automatically driven along the target traveling route P.
 携帯通信端末3では、トラクタ1を自動走行させる際等に、図9~図11に示すように、作業領域Sにおけるトラクタ1の位置情報、及び、障害物検出システム100において障害物を検出する検出範囲Cを表示部51に表示させている。これにより、トラクタ1の自動走行中に、ユーザ等が、トラクタ1の走行状況や障害物の検出範囲Cを把握することができる。 In the mobile communication terminal 3, when the tractor 1 is automatically driven or the like, as shown in FIGS. 9 to 11, the position information of the tractor 1 in the work area S and the detection of detecting an obstacle in the obstacle detection system 100 The range C is displayed on the display unit 51. As a result, the user or the like can grasp the traveling condition of the tractor 1 and the detection range C of the obstacle during the automatic traveling of the tractor 1.
 トラクタ1の位置情報等の表示については、携帯通信端末3の表示部51だけでなく、トラクタ1の表示部や外部の管理装置の表示部にも表示させることができる。トラクタ1の位置情報等の表示を行うための構成については、同様であるので、以下、携帯通信端末3の表示部51に表示させる場合について説明する。 The position information and the like of the tractor 1 can be displayed not only on the display unit 51 of the mobile communication terminal 3 but also on the display unit of the tractor 1 and the display unit of the external management device. Since the configuration for displaying the position information of the tractor 1 is the same, the case of displaying the position information on the display unit 51 of the mobile communication terminal 3 will be described below.
 携帯通信端末3には、図2に示すように、トラクタ1の位置情報を取得する作業車両位置情報取得部56と、障害物検出システム100における障害物を検出する検出範囲Cの位置情報を取得する検出範囲位置情報取得部57と、障害物検出システム100にて障害物を検出した場合にその障害物の位置情報を取得する障害物位置情報取得部58と、表示部51における表示態様を制御する表示制御部59とが備えられている。 As shown in FIG. 2, the mobile communication terminal 3 acquires the position information of the work vehicle position information acquisition unit 56 that acquires the position information of the tractor 1 and the position information of the detection range C that detects an obstacle in the obstacle detection system 100. The detection range position information acquisition unit 57, the obstacle position information acquisition unit 58 that acquires the position information of the obstacle when the obstacle detection system 100 detects an obstacle, and the display mode of the display unit 51 are controlled. A display control unit 59 is provided.
 トラクタ1の測位ユニット21は、衛星測位システムを用いてトラクタ1の位置情報を取得しているので、作業車両位置情報取得部56は、トラクタ1側の通信モジュール25と携帯通信端末3側の通信モジュール53との間での無線通信を介して、トラクタ1の位置情報を取得している。 Since the positioning unit 21 of the tractor 1 acquires the position information of the tractor 1 using the satellite positioning system, the work vehicle position information acquisition unit 56 communicates with the communication module 25 on the tractor 1 side and the mobile communication terminal 3 side. The position information of the tractor 1 is acquired via wireless communication with the module 53.
 トラクタ1の障害物検出システム100における障害物検出部110は、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、システム全体として障害物を検出する検出範囲Cを設定しているので、トラクタ1に対する検出範囲Cの位置情報を把握している。検出範囲位置情報取得部57は、トラクタ1側の通信モジュール25と携帯通信端末3側の通信モジュール53との間での無線通信を介して、トラクタ1に対する検出範囲Cの位置情報を取得している。 The obstacle detection unit 110 in the obstacle detection system 100 of the tractor 1 sets a detection range C for detecting obstacles in the entire system according to the traveling state of the tractor 1 and the state of the work device such as the offset mower 12. Therefore, the position information of the detection range C with respect to the tractor 1 is grasped. The detection range position information acquisition unit 57 acquires the position information of the detection range C with respect to the tractor 1 via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side. There is.
 トラクタ1の障害物検出システム100における障害物検出部110は、障害物検出処理を実行することで、障害物を検出した場合に、トラクタ1に対する障害物の位置情報を把握している。障害物位置情報取得部58は、トラクタ1側の通信モジュール25と携帯通信端末3側の通信モジュール53との間での無線通信を介して、トラクタ1に対する障害物の位置情報を取得している。 The obstacle detection unit 110 in the obstacle detection system 100 of the tractor 1 executes the obstacle detection process to grasp the position information of the obstacle with respect to the tractor 1 when the obstacle is detected. The obstacle position information acquisition unit 58 acquires the position information of the obstacle with respect to the tractor 1 via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side. ..
 表示制御部59は、作業車両位置情報取得部56にて取得するトラクタ1の位置情報に基づいてトラクタ1の走行位置(トラクタ1の現在位置)を特定しており、検出範囲位置情報取得部57にて取得するトラクタ1に対する検出範囲Cの位置情報に基づいて、トラクタ1の走行位置に対する検出範囲Cの位置を特定している。表示制御部59は、図9に示すように、地図上において、特定したトラクタ1の走行位置と検出範囲Cとを表示部51に表示させている。 The display control unit 59 specifies the traveling position of the tractor 1 (current position of the tractor 1) based on the position information of the tractor 1 acquired by the work vehicle position information acquisition unit 56, and the detection range position information acquisition unit 57 The position of the detection range C with respect to the traveling position of the tractor 1 is specified based on the position information of the detection range C with respect to the tractor 1 acquired in. As shown in FIG. 9, the display control unit 59 causes the display unit 51 to display the traveling position and the detection range C of the specified tractor 1 on the map.
 表示制御部59は、複数の障害物センサDについて、作動状態の障害物センサDにおける測定範囲C1,C2,C5,C7,C8(図9中、グレーにて示す測定範囲)と非作動状態の障害物センサDにおける測定範囲C3,C4,C6(図9中、白にて示す測定範囲)とを異なる表示態様にて表示させている。異なる表示態様としては、例えば、表示させる色を変える等、各種の表示形態を異ならせることができる。これにより、表示部51には、複数の障害物センサDにおける測定範囲C1~C8の全てを表示させながら、作動状態の障害物センサDの測定範囲である検出範囲Cと、非作動状態の障害物センサDの測定範囲とを識別可能としている。よって、ユーザ等は、障害物を検出する検出範囲Cがどのような範囲となっているのかだけでなく、非作動状態となっている障害物センサDの測定範囲がどのような範囲となっているかも容易に認識することができる。 The display control unit 59 has the measurement ranges C1, C2, C5, C7, C8 (measurement ranges shown in gray in FIG. 9) and the non-operating state of the plurality of obstacle sensors D in the operating state of the obstacle sensor D. The measurement ranges C3, C4, and C6 (measurement ranges shown in white in FIG. 9) of the obstacle sensor D are displayed in different display modes. As a different display mode, various display modes can be different, for example, changing the color to be displayed. As a result, the display unit 51 displays the entire measurement range C1 to C8 of the plurality of obstacle sensors D, while detecting the detection range C which is the measurement range of the obstacle sensor D in the operating state and the obstacle in the non-operating state. It is possible to distinguish it from the measurement range of the object sensor D. Therefore, the user or the like can see not only what kind of range C is the detection range for detecting obstacles, but also what kind of range is the measurement range of the obstacle sensor D that is inactive. You can easily recognize the presence.
 図9に示すものでは、表示制御部59が、作業領域S内における地図上にて、トラクタ1の走行位置及び検出範囲Cとを表示させているので、トラクタ1の走行位置に対して、作業領域S内に生成されている作業経路P1を重畳表示させている。 In the one shown in FIG. 9, since the display control unit 59 displays the traveling position of the tractor 1 and the detection range C on the map in the work area S, the operation is performed with respect to the traveling position of the tractor 1. The work path P1 generated in the area S is superimposed and displayed.
 図10に示すように、障害物検出部110にて検出範囲C内に障害物を検出した場合には、表示制御部59が、作業車両位置情報取得部56にて取得するトラクタ1の位置情報に基づいてトラクタ1の走行位置(トラクタ1の現在位置)を特定しており、障害物位置情報取得部58にて取得するトラクタ1に対する障害物の位置情報に基づいて、検出した障害物の位置(図10中、「×」にて示す位置)を表示部51に表示させている。表示制御部59は、障害物の位置情報を表示させるのに加えて、作動状態の障害物センサDのうち、障害物を検出した検出状態の障害物センサDにおける測定範囲C1,C2(図10中、濃いグレーにて示す範囲)と障害物を検出していない非検出状態の障害物センサDにおける測定範囲C5,C7,C8(図10中、薄いグレーにて示す範囲)とを異なる表示態様にて表示させている。これにより、ユーザ等は、どの範囲が検出範囲Cであり、どの範囲が非作動状態の障害物センサDの測定範囲かを認識できるとともに、検出範囲Cにおいて、どの範囲にて障害物を検出したのかをも容易に認識することができる。 As shown in FIG. 10, when the obstacle detection unit 110 detects an obstacle within the detection range C, the display control unit 59 acquires the position information of the tractor 1 by the work vehicle position information acquisition unit 56. The traveling position of the tractor 1 (current position of the tractor 1) is specified based on the above, and the position of the detected obstacle based on the position information of the obstacle with respect to the tractor 1 acquired by the obstacle position information acquisition unit 58. (Position indicated by "x" in FIG. 10) is displayed on the display unit 51. In addition to displaying the position information of the obstacle, the display control unit 59 has measurement ranges C1 and C2 (FIG. 10) of the obstacle sensor D in the detection state in which the obstacle is detected among the obstacle sensors D in the operating state. The display mode is different between the measurement range C5, C7, and C8 (the range shown in light gray in FIG. 10) in the obstacle sensor D in the non-detection state where no obstacle is detected. It is displayed at. As a result, the user or the like can recognize which range is the detection range C and which range is the measurement range of the obstacle sensor D in the non-operating state, and in the detection range C, the obstacle is detected in which range. Can be easily recognized.
 トラクタ1の自動走行中には、図9に示すように、表示制御部59が、トラクタ1の走行位置と検出範囲C(作動状態の障害物センサDの測定範囲)の位置とを表示させるだけではない。図11に示すように、作動状態の障害物センサDの測定範囲C1を表示部51に表示させる際に、作業領域S内の領域内範囲C1aと作業領域外Tの領域外範囲C1bとを異なる表示態様にて表示させている。異なる表示態様としては、例えば、表示させる色を変える等、各種の表示形態を異ならせることができる。ちなみに、図11では、領域内範囲C1aと領域外範囲C1bとを分かり易くするために、カメラ105,106,107,108の測定範囲C2,C4,C6,C8を省略して図示している。 During the automatic traveling of the tractor 1, as shown in FIG. 9, the display control unit 59 only displays the traveling position of the tractor 1 and the position of the detection range C (measurement range of the obstacle sensor D in the operating state). is not. As shown in FIG. 11, when the measurement range C1 of the obstacle sensor D in the operating state is displayed on the display unit 51, the range C1a inside the work area S and the range C1b outside the work area T are different. It is displayed in the display mode. As a different display mode, various display modes can be different, for example, changing the color to be displayed. Incidentally, in FIG. 11, in order to make it easy to understand the in-region range C1a and the out-of-region range C1b, the measurement ranges C2, C4, C6, and C8 of the cameras 105, 106, 107, and 108 are omitted.
 領域内範囲C1aと領域外範囲C1bとを表示させるために、図2に示すように、携帯通信端末3には、作業領域Sの位置情報を取得する作業領域位置情報取得部60が備えられている。トラクタ1を自動走行させるための目標走行経路Pを生成する際に、作業領域S(圃場)の形状や位置等を圃場情報として取得しているので、作業領域位置情報取得部60は、その圃場情報から、作業領域Sの位置情報を取得している。表示制御部59は、作業領域位置情報取得部60にて取得する作業領域Sの位置情報から、作業領域Sの外端部の位置を特定し、図11に示すように、その作業領域Sの外端部の位置を基準にして測定範囲C1を領域内範囲C1aと領域外範囲C1bとを区分けして表示させている。 As shown in FIG. 2, the mobile communication terminal 3 is provided with a work area position information acquisition unit 60 for acquiring the position information of the work area S in order to display the range C1a within the area and the range C1b outside the area. There is. When the target travel path P for automatically traveling the tractor 1 is generated, the shape and position of the work area S (field) are acquired as field information, so that the work area position information acquisition unit 60 acquires the field. The position information of the work area S is acquired from the information. The display control unit 59 identifies the position of the outer end portion of the work area S from the position information of the work area S acquired by the work area position information acquisition unit 60, and as shown in FIG. 11, the work area S of the work area S. The measurement range C1 is displayed by dividing the range C1a inside the region and the range C1b outside the region with reference to the position of the outer end portion.
 図11では、トラクタ1が前進走行しているので、前ライダーセンサ101が作動状態となっており、表示制御部59は、前ライダーセンサ101の測定範囲C1において、域領域内範囲C1a(グレーにて示す範囲)と領域外範囲C1b(白にて示す範囲)とに異なる表示態様にて表示させている。 In FIG. 11, since the tractor 1 is traveling forward, the front rider sensor 101 is in the operating state, and the display control unit 59 in the measurement range C1 of the front rider sensor 101 is in the range C1a (gray). The range shown above) and the range C1b outside the area (the range shown in white) are displayed in different display modes.
 作業領域位置情報取得部60は、作業領域Sの位置情報を取得するので、トラクタ1側の通信モジュール25と携帯通信端末3側の通信モジュール53との間での無線通信を介して、障害物検出システム100が、作業領域Sの位置情報を取得することができる。よって、障害物検出部110は、作動状態の障害物センサDの測定範囲C1において、領域外範囲C1bを検出範囲Cから外す等して、領域外範囲C1bにて障害物を検出しても、衝突回避制御部111が衝突回避制御を実行しない非実行状態としている。 Since the work area position information acquisition unit 60 acquires the position information of the work area S, it is an obstacle via wireless communication between the communication module 25 on the tractor 1 side and the communication module 53 on the mobile communication terminal 3 side. The detection system 100 can acquire the position information of the work area S. Therefore, even if the obstacle detection unit 110 detects an obstacle in the out-of-region range C1b by removing the out-of-region range C1b from the detection range C in the measurement range C1 of the operating obstacle sensor D, The collision avoidance control unit 111 is in a non-execution state in which the collision avoidance control is not executed.
 表示制御部59が表示部51にトラクタ1の走行位置等を表示させる場合の動作について、図12のフローチャートに基づいて説明する。作業車両位置情報取得部56がトラクタ1の位置情報を取得し、検出範囲位置情報取得部57が検出範囲Cの位置情報を取得して、トラクタ1及び検出範囲Cの位置情報を取得する(ステップ#11)。 The operation when the display control unit 59 causes the display unit 51 to display the traveling position and the like of the tractor 1 will be described with reference to the flowchart of FIG. The work vehicle position information acquisition unit 56 acquires the position information of the tractor 1, the detection range position information acquisition unit 57 acquires the position information of the detection range C, and acquires the position information of the tractor 1 and the detection range C (step). # 11).
 表示制御部59は、作業車両位置情報取得部56にて取得したトラクタ1の位置情報、及び、検出範囲位置情報取得部57にて取得した検出範囲Cの位置情報に基づいて、図9に示すように、作動状態の障害物センサDの測定範囲である検出範囲Cと非作動状態の障害物センサDの測定範囲とを異なる表示態様にて表示させながら、トラクタ1の走行位置及び複数の障害物センサDの測定範囲C1~C8を表示させる表示処理を行っている(ステップ#12)。 The display control unit 59 is shown in FIG. 9 based on the position information of the tractor 1 acquired by the work vehicle position information acquisition unit 56 and the position information of the detection range C acquired by the detection range position information acquisition unit 57. As described above, the traveling position of the tractor 1 and a plurality of obstacles are displayed while displaying the detection range C, which is the measurement range of the obstacle sensor D in the operating state, and the measurement range of the obstacle sensor D in the non-operating state in different display modes. A display process for displaying the measurement ranges C1 to C8 of the object sensor D is being performed (step # 12).
 障害物位置情報取得部58が障害物位置情報を取得した場合には、表示制御部59が、図10に示すように、障害物位置情報取得部58にて取得した障害物位置情報に基づいて、障害物の位置(図10中、「×」にて示す位置)を表示させるとともに、検出状態の障害物センサDにおける測定範囲C1,C2(図10中、濃いグレーにて示す範囲)と非検出状態の障害物センサDにおける測定範囲C5,C7,C8(図10中、薄いグレーにて示す範囲)とを異なる表示態様にて表示させる障害物の位置表示を行っている(ステップ#13のYesの場合、ステップ#14)。 When the obstacle position information acquisition unit 58 acquires the obstacle position information, the display control unit 59 is based on the obstacle position information acquired by the obstacle position information acquisition unit 58 as shown in FIG. , The position of the obstacle (the position indicated by "x" in FIG. 10) is displayed, and the measurement ranges C1 and C2 (the range indicated by dark gray in FIG. 10) in the obstacle sensor D in the detected state are not displayed. The position of the obstacle is displayed so that the measurement ranges C5, C7, and C8 (the range shown in light gray in FIG. 10) of the obstacle sensor D in the detected state are displayed in different display modes (step # 13). In the case of Yes, step # 14).
 表示制御部59は、作業領域位置情報取得部60にて取得する作業領域Sの位置情報から、作動状態の障害物センサDの測定範囲に作業領域外Tが含まれるか否かを判定している(ステップ#15)。作動状態の障害物センサDの測定範囲に作業領域外Tが含まれている場合には、表示制御部59が、図11に示すように、作業領域位置情報取得部60にて取得した作業領域Sの位置情報に基づいて、作動状態の障害物センサDの測定範囲C1において、域領域内範囲C1a(グレーにて示す範囲)と領域外範囲C1b(白にて示す範囲)とに異なる表示態様にて表示させている(ステップ#16)。 The display control unit 59 determines whether or not T outside the work area is included in the measurement range of the obstacle sensor D in the operating state from the position information of the work area S acquired by the work area position information acquisition unit 60. Yes (step # 15). When the measurement range of the obstacle sensor D in the operating state includes the work area T outside the work area, the work area acquired by the work area position information acquisition unit 60 by the display control unit 59, as shown in FIG. Based on the position information of S, in the measurement range C1 of the obstacle sensor D in the operating state, the display mode is different between the range C1a (the range shown in gray) and the range C1b (the range shown in white) outside the area. Is displayed at (step # 16).
 このようにして、ステップ#11~ステップ#16の動作を繰り返し行い、トラクタ1の自動走行中に、トラクタ1の走行位置だけでなく、複数の障害物センサDの測定範囲C1~C8、及び、障害物の位置を表示部51に表示させて、それらをユーザ等が容易に認識できるようにしている。 In this way, the operations of steps # 11 to # 16 are repeated, and during the automatic traveling of the tractor 1, not only the traveling position of the tractor 1 but also the measurement ranges C1 to C8 of the plurality of obstacle sensors D, and The positions of obstacles are displayed on the display unit 51 so that the user or the like can easily recognize them.
 〔第2実施形態〕
 この第2実施形態は、第1実施形態における障害物検出システム100についての別実施形態であり、第1実施形態と異なる点を中心に説明し、第1実施形態と同様の点については説明を省略する。
[Second Embodiment]
This second embodiment is another embodiment of the obstacle detection system 100 in the first embodiment, and mainly describes the points different from the first embodiment, and the same points as the first embodiment will be described. Omit.
 第1実施形態では、障害物検出部110が、トラクタ1に連結されるオフセットモア12等の作業装置に応じて、障害物を検出する検出範囲Cを変更自在に構成されている。これに代えて、第2実施形態では、衝突回避制御部111は、障害物検出部110にて障害物を検出しても、トラクタ1に連結されるオフセットモア12等の作業装置に応じて、衝突回避制御を実行する実行状態と衝突回避制御を実行しない非実行状態とに切替自在に構成されている。 In the first embodiment, the obstacle detection unit 110 is configured to freely change the detection range C for detecting obstacles according to a working device such as an offset moa 12 connected to the tractor 1. Instead of this, in the second embodiment, even if the collision avoidance control unit 111 detects an obstacle by the obstacle detection unit 110, the collision avoidance control unit 111 depends on the working device such as the offset mower 12 connected to the tractor 1. It is configured to be freely switchable between an executed state in which collision avoidance control is executed and a non-execution state in which collision avoidance control is not executed.
 第2実施形態では、第1実施形態とは異なり、障害物検出部110が、複数の障害物センサDの全てを作動状態としており、図6に示すように、複数の障害物センサDの全ての測定範囲C1~C8において、障害物を検出している。これにより、トラクタ1の前方側、後方側、右側、左側のどの方向に障害物が存在しても、障害物検出部110が、その障害物を検出している。 In the second embodiment, unlike the first embodiment, the obstacle detection unit 110 is in the operating state of all of the plurality of obstacle sensors D, and as shown in FIG. 6, all of the plurality of obstacle sensors D. Obstacles are detected in the measurement range C1 to C8. As a result, the obstacle detection unit 110 detects the obstacle regardless of the direction of the front side, the rear side, the right side, or the left side of the tractor 1.
 しかしながら、例えば、トラクタ1が前進走行している場合には、トラクタ1の後方側にて障害物を検出しても、その障害物に対してトラクタ1やオフセットモア12等の作業装置が衝突することがない。また、トラクタ1の左側にオフセットモア12等の作業装置が位置している場合には、トラクタ1の右側に障害物を検出しても、その障害物と作業装置が衝突することがない。 However, for example, when the tractor 1 is traveling forward, even if an obstacle is detected on the rear side of the tractor 1, a working device such as the tractor 1 or the offset mower 12 collides with the obstacle. Never. Further, when a working device such as an offset moa 12 is located on the left side of the tractor 1, even if an obstacle is detected on the right side of the tractor 1, the obstacle does not collide with the working device.
 そこで、衝突回避制御部111は、障害物検出部110にて障害物を検出しても、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、障害物との衝突の可能性があるか否かを判定し、その判定結果に基づいて、衝突回避制御を実行する実行状態と衝突回避制御を実行しない非実行状態とに切り替えている。 Therefore, even if the obstacle detection unit 110 detects an obstacle, the collision avoidance control unit 111 may collide with the obstacle depending on the traveling state of the tractor 1 and the condition of the work device such as the offset moa 12. Whether or not there is a possibility is determined, and based on the determination result, the execution state in which the collision avoidance control is executed and the non-execution state in which the collision avoidance control is not executed are switched.
 例えば、トラクタ1が前進走行している場合には、図6に示すように、複数の障害物センサDの測定範囲C1~C8において、トラクタ1の前方側の測定範囲C1,C2にて障害物を検出すると、衝突回避制御部111が、衝突回避制御を実行する実行状態に切り替えて、衝突回避制御を行い、トラクタ1を減速又は走行停止させる等の処理を行う。それに対して、トラクタ1の後方側の測定範囲C3,C4にて障害物を検出しても、衝突回避制御部111が、衝突回避制御を実行しない非実行状態に切り替えて、衝突回避制御を行わない。 For example, when the tractor 1 is traveling forward, as shown in FIG. 6, in the measurement ranges C1 to C8 of the plurality of obstacle sensors D, the obstacles are in the measurement ranges C1 and C2 on the front side of the tractor 1. When the above is detected, the collision avoidance control unit 111 switches to the execution state in which the collision avoidance control is executed, performs the collision avoidance control, and performs processing such as decelerating or stopping the running of the tractor 1. On the other hand, even if an obstacle is detected in the measurement ranges C3 and C4 on the rear side of the tractor 1, the collision avoidance control unit 111 switches to the non-execution state in which the collision avoidance control is not executed and performs the collision avoidance control. Absent.
 また、トラクタ1の左側にオフセットモア12等の作業装置が位置している場合(図7参照)には、図6に示すように、複数の障害物センサDの測定範囲C1~C8において、トラクタ1の左側の測定範囲C7,C8にて障害物を検出すると、衝突回避制御部111が、衝突回避制御を実行する実行状態に切り替えて、衝突回避制御を行い、トラクタ1を減速又は走行停止させる等の処理を行う。それに対して、トラクタ1の右側の測定範囲C6にて障害物を検出しても、衝突回避制御部111が、衝突回避制御を実行しない非実行状態に切り替えて、衝突回避制御を行わない。 When a working device such as an offset mower 12 is located on the left side of the tractor 1 (see FIG. 7), the tractor is located in the measurement ranges C1 to C8 of the plurality of obstacle sensors D as shown in FIG. When an obstacle is detected in the measurement ranges C7 and C8 on the left side of 1, the collision avoidance control unit 111 switches to the execution state for executing the collision avoidance control, performs the collision avoidance control, and decelerates or stops the tractor 1. Etc. are performed. On the other hand, even if an obstacle is detected in the measurement range C6 on the right side of the tractor 1, the collision avoidance control unit 111 switches to the non-execution state in which the collision avoidance control is not executed, and the collision avoidance control is not performed.
 よって、例えば、図7に示すように、トラクタ1の左側にオフセットモア12等の作業装置が位置している状態において、トラクタ1が前進走行している場合には、複数の障害物センサDの測定範囲C1~C8において、トラクタ1の前方側の測定範囲C1,C2、トラクタ1の右側の測定範囲C5、及び、トラクタ1の左側の測定範囲C7,C8にて障害物を検出すると、衝突回避制御部111が、衝突回避制御を実行する実行状態に切り替えている。それに対して、トラクタ1の後方側の測定範囲C3,C4、及び、トラクタ1の右側の測定範囲C6にて障害物を検出しても、衝突回避制御部111が、衝突回避制御を実行しない非実行状態に切り替えている。このとき、トラクタ1の右側において、トラクタ1に近い範囲である測定範囲C5だけ、衝突回避制御部111が衝突回避制御を実行する実行状態に切り替えているが、測定範囲C5にて障害物を検出しても、衝突回避制御部111が衝突回避制御を実行しない非実行状態に切り替えることもできる。 Therefore, for example, as shown in FIG. 7, when the tractor 1 is traveling forward in a state where the working device such as the offset mower 12 is located on the left side of the tractor 1, the plurality of obstacle sensors D When obstacles are detected in the measurement ranges C1 to C2 on the front side of the tractor 1, the measurement range C5 on the right side of the tractor 1, and the measurement ranges C7 and C8 on the left side of the tractor 1 in the measurement ranges C1 to C8, collision avoidance is avoided. The control unit 111 has switched to the execution state for executing the collision avoidance control. On the other hand, even if an obstacle is detected in the measurement ranges C3 and C4 on the rear side of the tractor 1 and the measurement range C6 on the right side of the tractor 1, the collision avoidance control unit 111 does not execute the collision avoidance control. Switching to the running state. At this time, on the right side of the tractor 1, only the measurement range C5, which is close to the tractor 1, is switched to the execution state in which the collision avoidance control unit 111 executes the collision avoidance control, but an obstacle is detected in the measurement range C5. However, the collision avoidance control unit 111 can be switched to the non-execution state in which the collision avoidance control is not executed.
 このようにして、障害物検出部110が複数の障害物センサDの全ての測定範囲C1~C8にて障害物を検出している状態において、衝突回避制御部111は、障害物を検出しても、一律に衝突回避制御を実行するのではなく、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況、並びに、障害物をどの範囲で検出したかによって、衝突回避制御を実行する状態と衝突回避制御を実行しない非実行状態とに切り替えている。 In this way, the collision avoidance control unit 111 detects the obstacle while the obstacle detection unit 110 detects the obstacle in all the measurement ranges C1 to C8 of the plurality of obstacle sensors D. However, the collision avoidance control is not uniformly executed, but the collision avoidance control is executed depending on the traveling state of the tractor 1, the state of the working device such as the offset mower 12, and the range in which the obstacle is detected. And the non-execution state where collision avoidance control is not executed.
 衝突回避制御を実行する実行状態と衝突回避制御を実行しない非実行状態とに切り替えるに当たり、上述の如く、衝突回避制御部111は、障害物検出部110にて障害物を検出すると、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、障害物との衝突の可能性があるか否かを判定し、その判定結果に基づいて実行状態と非実行状態とに切り替えている。 When switching between the execution state in which the collision avoidance control is executed and the non-execution state in which the collision avoidance control is not executed, as described above, when the collision avoidance control unit 111 detects an obstacle in the obstacle detection unit 110, the tractor 1 It is determined whether or not there is a possibility of collision with an obstacle according to the running state and the condition of the work device such as the offset mower 12, and the execution state and the non-execution state are switched based on the determination result. There is.
 これに代えて、障害物検出部110にて障害物を検出する前のタイミングにおいて、衝突回避制御部111は、トラクタ1の走行状態及びオフセットモア12等の作業装置の状況等に応じて、複数の障害物センサDの測定範囲を実行状態用の測定範囲と非実行状態用の測定範囲とに予め区分け設定しておく。障害物検出部110にて障害物を検出すると、衝突回避制御部111は、検出した障害物の位置が実行状態用の測定範囲内であれば、実行状態に切り替え、検出した障害物の位置が非実行状態用の測定範囲内であれば、非実行状態に切り替えることができる。 Instead of this, at the timing before the obstacle detection unit 110 detects an obstacle, a plurality of collision avoidance control units 111 may be used depending on the traveling state of the tractor 1 and the status of the work device such as the offset mower 12. The measurement range of the obstacle sensor D is set in advance as a measurement range for the running state and a measurement range for the non-execution state. When the obstacle detection unit 110 detects an obstacle, the collision avoidance control unit 111 switches to the execution state if the position of the detected obstacle is within the measurement range for the execution state, and the position of the detected obstacle is changed. If it is within the measurement range for the non-execution state, it can be switched to the non-execution state.
 〔別実施形態〕
 本発明の他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、夫々単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another Embodiment]
Other embodiments of the present invention will be described. The configurations of the respective embodiments described below are not limited to being applied individually, but can also be applied in combination with the configurations of other embodiments.
(1)作業車両の構成は種々の変更が可能である。例えば、作業車両は、エンジン9と走行用の電動モータとを備えるハイブリット仕様に構成されていてもよく、また、エンジン9に代えて走行用の電動モータを備える電動仕様に構成されていてもよい。例えば、作業車両は、走行部として、左右の後輪6に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。例えば、作業車両は、左右の後輪6が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。 (1) The configuration of the work vehicle can be changed in various ways. For example, the work vehicle may be configured to have a hybrid specification including an engine 9 and an electric motor for traveling, or may be configured to have an electric specification including an electric motor for traveling instead of the engine 9. .. For example, the work vehicle may be configured as a semi-crawler specification in which left and right crawlers are provided instead of the left and right rear wheels 6 as a traveling portion. For example, the work vehicle may be configured with rear wheel steering specifications in which the left and right rear wheels 6 function as steering wheels.
(2)上記実施形態では、走行経路生成部54、作業車両位置情報取得部56、検出範囲位置情報取得部57、障害物位置情報取得部58、表示制御部59、作業領域位置情報取得部60等を携帯通信端末3に備えているが、トラクタ1(作業車両)や外部の管理装置に備えることもできる。例えば、外部の監視センターに備えられた管理装置に表示制御部59を備え、監視センターに備えられたモニター等の表示装置の表示状態を表示制御部59が制御することができる。これにより、監視センターのモニターには、作業車両の位置情報、及び、複数の障害物センサのうち、作動状態である障害物センサの測定範囲等を表示させることができるので、監視センターにて作業車両の走行状況や障害物センサの測定範囲を監視することができる。 (2) In the above embodiment, the traveling route generation unit 54, the work vehicle position information acquisition unit 56, the detection range position information acquisition unit 57, the obstacle position information acquisition unit 58, the display control unit 59, and the work area position information acquisition unit 60. Etc. are provided in the mobile communication terminal 3, but can also be provided in the tractor 1 (working vehicle) or an external management device. For example, a display control unit 59 is provided in a management device provided in an external monitoring center, and the display control unit 59 can control the display state of a display device such as a monitor provided in the monitoring center. As a result, the position information of the work vehicle and the measurement range of the obstacle sensor in the operating state among the plurality of obstacle sensors can be displayed on the monitor of the monitoring center. It is possible to monitor the running condition of the vehicle and the measurement range of the obstacle sensor.
(3)上記実施形態では、障害物センサDとして、ライダーセンサ101,102、ソナーユニット103,104及びカメラ105,106,107,108が備えられているが、例えば、右カメラ107及び左カメラ108に代えて、トラクタ1から遠方の障害物を測定可能なミリ波レーダー等の遠距離測定装置を備えることもでき、障害物センサDとして、どのようなセンサを備えるかは適宜変更が可能である。 (3) In the above embodiment, as the obstacle sensor D, the rider sensors 101, 102, the sonar units 103, 104, and the cameras 105, 106, 107, 108 are provided. For example, the right camera 107 and the left camera 108 are provided. Alternatively, a long-distance measuring device such as a millimeter-wave radar capable of measuring an obstacle far from the tractor 1 can be provided, and what kind of sensor is provided as the obstacle sensor D can be appropriately changed. ..
[発明の付記]
 本発明の第1特徴構成は、衛星測位システムを利用して取得される作業車両の測位情報に基づいて、作業車両を自動走行させる自動走行制御部と、
 障害物センサの測定情報に基づいて、前記作業車両の周囲における所定の検出範囲内での障害物を検出可能な障害物検出部と、
 前記障害物検出部にて障害物を検出した場合に、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられ、
 前記衝突回避制御部は、前記作業車両に連結される作業装置に応じて、前記衝突回避制御を実行する実行状態と前記衝突回避制御を実行しない非実行状態とに切替自在に構成されている点にある。
[Supplementary note of invention]
The first feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
When an obstacle is detected by the obstacle detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
The collision avoidance control unit is configured to be switchable between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed, depending on the work device connected to the work vehicle. It is in.
 本構成によれば、衝突回避制御部は、障害物検出部にて障害物を検出しても、一律に衝突回避制御を行うのではなく、作業装置に応じて、衝突回避制御を実行する実行状態と衝突回避制御を実行しない非実行状態とに切り替えている。 According to this configuration, even if the obstacle detection unit detects an obstacle, the collision avoidance control unit does not uniformly perform the collision avoidance control, but executes the collision avoidance control according to the working device. It is switched between the state and the non-execution state in which collision avoidance control is not executed.
 例えば、障害物検出部にて検出した障害物の位置が作業装置と衝突する可能性がある位置であると、衝突回避制御部は、衝突回避制御を実行する実行状態に切り替えて、衝突回避制御を行い、障害物と作業装置との衝突を回避することができる。それに対して、障害物検出部にて検出した障害物の位置が作業装置と衝突する可能性がない位置であると、衝突回避制御部は、衝突回避制御を実行しない非実行状態に切り替えて、衝突回避制御が無駄に行われるのを防止することができる。 For example, if the position of the obstacle detected by the obstacle detection unit is a position where there is a possibility of collision with the work device, the collision avoidance control unit switches to an execution state for executing the collision avoidance control and performs collision avoidance control. It is possible to avoid a collision between an obstacle and a work device. On the other hand, if the position of the obstacle detected by the obstacle detection unit is a position where there is no possibility of collision with the work device, the collision avoidance control unit switches to a non-execution state in which the collision avoidance control is not executed. It is possible to prevent the collision avoidance control from being unnecessarily performed.
 本発明の第2特徴構成は、衛星測位システムを利用して取得される作業車両の測位情報に基づいて、作業車両を自動走行させる自動走行制御部と、
 障害物センサの測定情報に基づいて、前記作業車両の周囲における所定の検出範囲内での障害物を検出可能な障害物検出部と、
 前記障害物検出部にて障害物を検出した場合に、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられ、
 前記障害物検出部は、前記作業車両に連結される作業装置に応じて、検出範囲を変更自在に構成されている点にある。
The second feature configuration of the present invention includes an automatic traveling control unit that automatically travels the work vehicle based on the positioning information of the work vehicle acquired by using the satellite positioning system.
An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
When an obstacle is detected by the obstacle detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
The obstacle detection unit is configured so that the detection range can be freely changed according to the work device connected to the work vehicle.
 本構成によれば、障害物検出部は、障害物を検出する検出範囲を一定の範囲とするのではなく、作業装置に応じて検出範囲を変更設定している。これにより、例えば、作業装置がどのような位置に存在するのかによって、障害物検出部が、その作業装置と衝突する可能性のある障害物を検出範囲に含めるように、検出範囲を変更設定することができるので、作業装置と衝突する可能性のない障害物を検出範囲に含めることなく、作業装置に対応した検出範囲を適切に設定することができる。よって、無駄に衝突回避制御が実行されるのを防止しながら、作業装置と障害物との衝突を回避することができる。 According to this configuration, the obstacle detection unit does not set the detection range for detecting obstacles to a fixed range, but changes and sets the detection range according to the working device. As a result, for example, the obstacle detection unit changes and sets the detection range so that the obstacles that may collide with the work device are included in the detection range depending on the position of the work device. Therefore, it is possible to appropriately set the detection range corresponding to the work device without including the obstacle that does not collide with the work device in the detection range. Therefore, it is possible to avoid a collision between the work device and an obstacle while preventing the collision avoidance control from being unnecessarily executed.
 本発明の第3特徴構成は、前記障害物検出部は、測定範囲内での障害物を検出自在な複数の障害物センサを備え、且つ、前記作業車両を自動走行させる場合に、複数の障害物センサの夫々を作動状態と非作動状態とに切替自在に構成され、
 測位衛星システムを利用して取得される前記作業車両の位置情報、及び、複数の障害物センサのうち、作動状態である障害物センサの測定範囲を表示部に表示させる表示制御部が備えられている点にある。
The third characteristic configuration of the present invention is that the obstacle detection unit includes a plurality of obstacle sensors capable of detecting obstacles within the measurement range, and when the work vehicle is automatically driven, a plurality of obstacles Each object sensor is configured to be switchable between an operating state and a non-operating state.
A display control unit for displaying the position information of the work vehicle acquired by using the positioning satellite system and the measurement range of the obstacle sensor in the operating state among the plurality of obstacle sensors is provided. There is a point.
 本構成によれば、表示制御部は、作業車両の位置情報、及び、作動状態である障害物センサの測定範囲を表示部に表示させるので、作業車両の自動走行中に、ユーザ等が、作業車両の走行位置、及び、障害物を検出する測定範囲を容易に認識することができる。しかも、作動状態である障害物センサの測定範囲を表示させるので、複数の障害物センサのうち、どの障害物センサが作動状態であるのかも、ユーザ等が容易に認識することができる。 According to this configuration, the display control unit displays the position information of the work vehicle and the measurement range of the obstacle sensor in the operating state on the display unit, so that the user or the like can work during the automatic running of the work vehicle. The traveling position of the vehicle and the measurement range for detecting an obstacle can be easily recognized. Moreover, since the measurement range of the obstacle sensor in the operating state is displayed, the user or the like can easily recognize which of the plurality of obstacle sensors is in the operating state.
 本発明の第4特徴構成は、前記表示制御部は、作動状態である障害物センサが複数存在する場合に、障害物を検出した検出状態の障害物センサにおける測定範囲と障害物を検出していない非検出状態の障害物センサにおける測定範囲とを異なる表示態様にて前記表示部に表示させる点にある。 In the fourth characteristic configuration of the present invention, the display control unit detects the measurement range and the obstacle in the obstacle sensor in the detection state in which the obstacle is detected when there are a plurality of obstacle sensors in the operating state. The point is that the measurement range of the obstacle sensor in the non-detected state is displayed on the display unit in a different display mode.
 本構成によれば、表示制御部は、障害物を検出した場合に、検出状態の障害物センサにおける測定範囲と非検出状態の障害物センサにおける測定範囲とを異なる表示態様にて表示させるので、ユーザ等が、複数の障害物センサのうち、どの障害物センサにて障害物を検出したのかを迅速に且つ適切に認識することができる。よって、障害物の検出に対する対応をスムーズに行うことができ、作業効率の向上を図ることができる。 According to this configuration, when an obstacle is detected, the display control unit displays the measurement range of the obstacle sensor in the detected state and the measurement range of the obstacle sensor in the non-detection state in different display modes. The user or the like can quickly and appropriately recognize which obstacle sensor among the plurality of obstacle sensors has detected the obstacle. Therefore, it is possible to smoothly respond to the detection of obstacles and improve work efficiency.
 本発明の第5特徴構成は、前記自動走行制御部は、予め設定された作業領域内において前記作業車両を自動走行させ、
 前記表示制御部は、作動状態である障害物センサの測定範囲を前記表示部に表示させる場合に、前記作業領域内の領域内範囲と前記作業領域外の領域外範囲とを異なる表示態様にて前記表示部に表示させる点にある。
In the fifth feature configuration of the present invention, the automatic traveling control unit automatically travels the work vehicle within a preset work area.
When the display control unit displays the measurement range of the obstacle sensor in the operating state on the display unit, the display control unit displays the range inside the work area and the range outside the work area in different display modes. The point is to display on the display unit.
 本構成によれば、表示制御部は、領域内範囲と領域外範囲とを異なる表示態様にて表示部に表示させるので、ユーザ等が、作動状態である障害物センサの測定範囲において、どの範囲が領域内範囲であり、且つ、どの範囲が領域外範囲であるかを容易に認識することができる。

 
According to this configuration, the display control unit displays the range inside the area and the range outside the area on the display unit in different display modes, so that the user or the like can display any range in the measurement range of the obstacle sensor in the operating state. Is the range within the region, and it is possible to easily recognize which range is the range outside the region.

Claims (5)

  1.  衛星測位システムを利用して取得される作業車両の測位情報に基づいて、作業車両を自動走行させる自動走行制御部と、
     障害物センサの測定情報に基づいて、前記作業車両の周囲における所定の検出範囲内での障害物を検出可能な障害物検出部と、
     前記障害物検出部にて障害物を検出した場合に、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられ、
     前記衝突回避制御部は、前記作業車両に連結される作業装置に応じて、前記衝突回避制御を実行する実行状態と前記衝突回避制御を実行しない非実行状態とに切替自在に構成されている自動走行システム。
    Based on the positioning information of the work vehicle acquired by using the satellite positioning system, the automatic driving control unit that automatically drives the work vehicle and
    An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
    When an obstacle is detected by the obstacle detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
    The collision avoidance control unit is automatically configured to be switchable between an execution state in which the collision avoidance control is executed and a non-execution state in which the collision avoidance control is not executed, depending on the work device connected to the work vehicle. Driving system.
  2.  衛星測位システムを利用して取得される作業車両の測位情報に基づいて、作業車両を自動走行させる自動走行制御部と、
     障害物センサの測定情報に基づいて、前記作業車両の周囲における所定の検出範囲内での障害物を検出可能な障害物検出部と、
     前記障害物検出部にて障害物を検出した場合に、障害物との衝突を回避するための衝突回避制御を行う衝突回避制御部とが備えられ、
     前記障害物検出部は、前記作業車両に連結される作業装置に応じて、検出範囲を変更自在に構成されている自動走行システム。
    Based on the positioning information of the work vehicle acquired by using the satellite positioning system, the automatic driving control unit that automatically drives the work vehicle and
    An obstacle detection unit capable of detecting an obstacle within a predetermined detection range around the work vehicle based on the measurement information of the obstacle sensor, and an obstacle detection unit.
    When an obstacle is detected by the obstacle detection unit, a collision avoidance control unit that performs collision avoidance control for avoiding a collision with the obstacle is provided.
    The obstacle detection unit is an automatic traveling system configured so that the detection range can be freely changed according to the work device connected to the work vehicle.
  3.  前記障害物検出部は、測定範囲内での障害物を検出自在な複数の障害物センサを備え、且つ、前記作業車両を自動走行させる場合に、複数の障害物センサの夫々を作動状態と非作動状態とに切替自在に構成され、
     測位衛星システムを利用して取得される前記作業車両の位置情報、及び、複数の障害物センサのうち、作動状態である障害物センサの測定範囲を表示部に表示させる表示制御部が備えられている請求項1又は2に記載の自動走行システム。
    The obstacle detection unit includes a plurality of obstacle sensors capable of detecting obstacles within the measurement range, and when the work vehicle is automatically driven, each of the plurality of obstacle sensors is not in the operating state. It is configured to be switchable to the operating state,
    A display control unit for displaying the position information of the work vehicle acquired by using the positioning satellite system and the measurement range of the obstacle sensor in the operating state among the plurality of obstacle sensors is provided. The automatic traveling system according to claim 1 or 2.
  4.  前記表示制御部は、作動状態である障害物センサが複数存在する場合に、障害物を検出した検出状態の障害物センサにおける測定範囲と障害物を検出していない非検出状態の障害物センサにおける測定範囲とを異なる表示態様にて前記表示部に表示させる請求項3に記載の自動走行システム。 When there are a plurality of obstacle sensors in the operating state, the display control unit is used in the measurement range of the obstacle sensor in the detected state where the obstacle is detected and in the obstacle sensor in the non-detected state where the obstacle is not detected. The automatic traveling system according to claim 3, wherein the measurement range is displayed on the display unit in a display mode different from that of the measurement range.
  5.  前記自動走行制御部は、予め設定された作業領域内において前記作業車両を自動走行させ、
     前記表示制御部は、作動状態である障害物センサの測定範囲を前記表示部に表示させる場合に、前記作業領域内の領域内範囲と前記作業領域外の領域外範囲とを異なる表示態様にて前記表示部に表示させる請求項3又は4に記載の自動走行システム。

     
    The automatic travel control unit automatically travels the work vehicle within a preset work area.
    When the display control unit displays the measurement range of the obstacle sensor in the operating state on the display unit, the display control unit displays the range inside the work area and the range outside the work area in different display modes. The automatic traveling system according to claim 3 or 4, which is displayed on the display unit.

PCT/JP2020/026930 2019-07-12 2020-07-09 Automatic traveling system WO2021010297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130048 2019-07-12
JP2019130048A JP7269811B2 (en) 2019-07-12 2019-07-12 automatic driving system

Publications (1)

Publication Number Publication Date
WO2021010297A1 true WO2021010297A1 (en) 2021-01-21

Family

ID=74210820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026930 WO2021010297A1 (en) 2019-07-12 2020-07-09 Automatic traveling system

Country Status (2)

Country Link
JP (2) JP7269811B2 (en)
WO (1) WO2021010297A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415689A (en) * 2022-01-25 2022-04-29 无锡市金沙田科技有限公司 Following vehicle decision method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230079061A (en) * 2020-10-02 2023-06-05 가부시끼 가이샤 구보다 Agricultural machine, agricultural machine control program, recording medium recording agricultural machine control program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148246A (en) * 1998-11-13 2000-05-26 Japan Tobacco Inc Automated guided vehicle
JP2002215238A (en) * 2001-01-16 2002-07-31 Hokuyo Automatic Co Obstruction detection sensor for unmanned carrier
WO2015147149A1 (en) * 2014-03-28 2015-10-01 ヤンマー株式会社 Autonomously traveling work vehicle
JP2015191592A (en) * 2014-03-28 2015-11-02 ヤンマー株式会社 Autonomous travel work vehicle
US20180144638A1 (en) * 2016-11-21 2018-05-24 Datalogic Ip Tech S.R.L. Novel Applications of a Plurality of Safety Laser Scanners Combined with a Camera or Mobile Computer
JP2018113937A (en) * 2017-01-20 2018-07-26 株式会社クボタ Automatic travel work vehicle
JP2019103422A (en) * 2017-12-11 2019-06-27 井関農機株式会社 Work vehicle
WO2019187937A1 (en) * 2018-03-29 2019-10-03 ヤンマー株式会社 Obstacle detection system and work vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324461B2 (en) 2014-07-30 2019-06-18 Yanmar Co., Ltd. Remote control apparatus
JP6692692B2 (en) 2016-05-24 2020-05-13 ヤンマー株式会社 Autonomous driving route generation system
JP6776058B2 (en) 2016-08-26 2020-10-28 シャープ株式会社 Autonomous driving vehicle control device, autonomous driving vehicle control system and autonomous driving vehicle control method
JP7020643B2 (en) 2017-10-30 2022-02-16 国立大学法人北海道大学 Collaborative work system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148246A (en) * 1998-11-13 2000-05-26 Japan Tobacco Inc Automated guided vehicle
JP2002215238A (en) * 2001-01-16 2002-07-31 Hokuyo Automatic Co Obstruction detection sensor for unmanned carrier
WO2015147149A1 (en) * 2014-03-28 2015-10-01 ヤンマー株式会社 Autonomously traveling work vehicle
JP2015191592A (en) * 2014-03-28 2015-11-02 ヤンマー株式会社 Autonomous travel work vehicle
US20180144638A1 (en) * 2016-11-21 2018-05-24 Datalogic Ip Tech S.R.L. Novel Applications of a Plurality of Safety Laser Scanners Combined with a Camera or Mobile Computer
JP2018113937A (en) * 2017-01-20 2018-07-26 株式会社クボタ Automatic travel work vehicle
JP2019103422A (en) * 2017-12-11 2019-06-27 井関農機株式会社 Work vehicle
WO2019187937A1 (en) * 2018-03-29 2019-10-03 ヤンマー株式会社 Obstacle detection system and work vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415689A (en) * 2022-01-25 2022-04-29 无锡市金沙田科技有限公司 Following vehicle decision method and system

Also Published As

Publication number Publication date
JP2023090789A (en) 2023-06-29
JP2021015478A (en) 2021-02-12
JP7269811B2 (en) 2023-05-09
JP7470843B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP7356829B2 (en) automatic driving system
JP6926020B2 (en) Obstacle detection system
JP6850760B2 (en) Automatic traveling device for work vehicles
JP2019165665A (en) Automatic travel system for work vehicle
JP2022091836A (en) Automatic travelling system
JP7470843B2 (en) Autonomous driving system and method
US20210018617A1 (en) Obstacle Detection System for Work Vehicle
KR20220039646A (en) Automated driving systems for work vehicles
JP2024053067A (en) Autonomous driving system and method
JP2019175059A (en) Cruise control system of work vehicle
JP7223552B2 (en) Display device and automatic driving system
JP2019168888A (en) Obstacle detection system
JP7100539B2 (en) Autonomous driving system
JP2019175050A (en) Collaboration system
JP2021170377A (en) Automatic travel device of work vehicle
JP7094832B2 (en) Collaborative work system
JP7329645B2 (en) Work support system
JP7036707B2 (en) Travel route generator
WO2021020333A1 (en) Automatic traveling system
JP7068969B2 (en) Autonomous driving system
JP7094833B2 (en) Travel route display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839988

Country of ref document: EP

Kind code of ref document: A1