WO2020039689A1 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
WO2020039689A1
WO2020039689A1 PCT/JP2019/022272 JP2019022272W WO2020039689A1 WO 2020039689 A1 WO2020039689 A1 WO 2020039689A1 JP 2019022272 W JP2019022272 W JP 2019022272W WO 2020039689 A1 WO2020039689 A1 WO 2020039689A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
control device
internal combustion
timing control
valve timing
Prior art date
Application number
PCT/JP2019/022272
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 山中
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980055008.9A priority Critical patent/CN112840106B/en
Priority to JP2020538188A priority patent/JP7085629B2/en
Publication of WO2020039689A1 publication Critical patent/WO2020039689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a valve timing control device for an internal combustion engine that controls, for example, the opening and closing timing of an intake valve and an exhaust valve.
  • Patent Document 1 As a valve timing control device for an internal combustion engine, a device described in Patent Document 1 below is known.
  • the drive rotating body includes a sprocket portion having external teeth around which a chain is wound around an outer periphery, a cylindrical housing portion disposed at a front end of the sprocket portion, and a housing portion. And a cylindrical gear portion disposed at the front end of the gear.
  • the sprocket, the housing part and the gear part are connected to each other by a plurality of bolts from the axial direction.
  • a driven rotating body having a bottomed cylindrical shape is disposed so as to be relatively rotatable.
  • a sliding surface is formed on the outer peripheral surface of the cylindrical peripheral wall so as to slide in surface contact with the inner peripheral surface of the housing portion.
  • the driven rotator is positioned in the axial direction, and the driving rotator is supported by the sliding surface of the driven rotator. Further, the driven rotator suppresses a radial inclination of the drive rotator caused by a tension of the chain during driving.
  • the driven rotor is axially positioned by the sprocket portion and the gear portion of the drive rotor, The distance from the outer surface of the bottom wall to the end surface of the cylindrical peripheral wall, that is, the axial length of the sliding surface is increased.
  • the axial length of the sliding surface is long, the radial inclination of the driving rotating body during driving can be suppressed, but the axial length of the device may be large.
  • the present invention has been devised in view of the above-mentioned conventional technical problem, and provides a valve timing control apparatus for an internal combustion engine that can reduce the size of the apparatus while suppressing the inclination of the driving rotating body with respect to the driven rotating body. For one purpose.
  • a phase change mechanism that reduces the rotation of the motor output shaft of the electric motor by a speed reduction mechanism to change the relative rotation phase between the driving rotator and the driven rotator, and A sliding bearing surface provided on a periphery, a journal portion provided to protrude radially outward from an outer periphery of the driven rotating body, an outer peripheral surface sliding on the sliding bearing surface, and a journal portion provided on the driving rotating body; A first axial direction restricting portion and a second axial direction restricting portion for restricting the axial movement of the journal portion with the journal portion sandwiched from both sides in the axial direction are provided.
  • the size of the apparatus can be reduced while suppressing the inclination of the driving rotating body.
  • FIG. 1 is a partial longitudinal sectional view of a valve timing control device according to an embodiment of the present invention.
  • FIG. 2 is an exploded view showing main constituent members provided in the present embodiment. It is a principal part enlarged view of FIG.
  • FIG. 2 is a view on arrow A in FIG. 1.
  • FIG. 2 is a view taken in the direction of arrow B in FIG. 1.
  • FIG. 2 is a sectional view taken along line CC of FIG. 1.
  • FIG. 2 is a sectional view taken along line DD of FIG. 1.
  • It is a schematic diagram which shows the length relationship of each part of a bearing recessed part and a journal part provided to this embodiment, and is an action explanatory view of an axial load mainly on the journal part when the sprocket is inclined.
  • FIG. 1 is a partial longitudinal sectional view showing a valve timing control device according to the present embodiment
  • FIG. 2 is an exploded view showing main constituent members provided in the present embodiment
  • FIG. 3 is a main part of the present embodiment shown in FIG.
  • FIG. 4 is an enlarged view of a portion
  • FIG. 1 is a partial longitudinal sectional view showing a valve timing control device according to the present embodiment
  • FIG. 2 is an exploded view showing main constituent members provided in the present embodiment
  • FIG. 3 is a main part of the present embodiment shown in FIG.
  • FIG. 4 is an enlarged view of a portion
  • valve timing control device is rotatably supported on a timing sprocket 1 (hereinafter, referred to as a sprocket 1) as a driving rotating body and on a cylinder head 01 via a bearing 02.
  • a timing sprocket 1 hereinafter, referred to as a sprocket 1
  • a camshaft 2 and a phase changing mechanism 3 disposed between the sprocket 1 and the camshaft 2 to change the relative rotational phase between the two, 1 and 2, according to the operating state of the engine.
  • the sprocket 1 is formed in a ring-like shape entirely of an iron-based metal, which is a metal material, and is provided integrally with an annular sprocket main body 1a and an outer periphery of the sprocket main body 1a, and is wound around the sprocket. And a gear portion 1b which is an external tooth that receives a rotational force from a crankshaft of the internal combustion engine via a timing chain.
  • a chain case (not shown) connected to the cylinder block and the cylinder head 01 of the internal combustion engine is provided on the outer periphery of the sprocket 1.
  • an annular internal tooth forming portion 5 which constitutes a part of a speed reduction mechanism 13 described later is integrally provided.
  • the internal tooth forming portion 5 is integrally connected to the sprocket main body 1a from the direction of the rotation axis, and has a plurality of corrugated internal teeth 5a formed on the inner periphery.
  • the sprocket main body 1a has a sliding bearing mechanism 6 provided between an inner peripheral surface thereof and an outer peripheral surface of a driven member 9 which will be described later, which is a driven rotating body fixed to one end 2a of the camshaft 2 in the rotation axis direction. I have.
  • the sliding bearing mechanism 6 rotatably supports the sprocket 1 on the outer periphery of the driven member 9 (camshaft 2). A specific description of the sliding bearing mechanism 6 will be described later.
  • a holding plate 8 as a plate member is fixed to the rear end face of the sprocket main body 1a on the side opposite to the internal teeth forming section 5.
  • the holding plate 8 is formed in an annular shape by a plate material of an iron-based metal, which is a metal material, and has an outer diameter substantially equal to the outer diameter of the sprocket body 1a.
  • the holding plate 8 is arranged such that an inner peripheral portion 8b formed on the side of the center hole 8a formed at the center covers one end opening of the bearing recess 10 of the sliding bearing mechanism 6 described later on the camshaft 2 side.
  • a portion serving as a hole edge of the central hole 8a is located inside the tooth bottom surface of the internal teeth 5a of the internal tooth forming portion 5.
  • the holding plate 8 is integrally provided with a stopper projection 8c that protrudes radially inward, that is, toward the center axis direction, at a predetermined position on the inner peripheral edge of the center hole 8a.
  • the stopper convex portion 8c is formed in a substantially inverted trapezoidal shape, and the distal end surface is formed in an arc shape along an arc-shaped inner peripheral surface of a stopper concave groove 9f of a fixed end portion 9b of the driven member 9 described later. .
  • FIG. 5 is a view on arrow B in FIG.
  • a front plate 15 serving as a cover is provided on the front end face of the sprocket 1 on the side of the internal teeth forming section 5.
  • the front plate 15 is formed by, for example, stamping an iron-based metal plate into an annular shape by press molding, and the thickness t of the front plate 15 is the thickness t1 of the holding plate 8. It is set smaller than.
  • the front plate 15 has an insertion hole 15a through which an eccentric shaft 21 to be described later is inserted.
  • the holding plate 8 has six female screw holes 8d at the positions corresponding to the bolt insertion holes 1c and 15b, into which the male screw portions 7a at the tips of the bolts 7 are screwed.
  • the two small bolt holes 1c of the sprocket body 1a and the two corresponding female screw holes 8d of the holding plate 8 have respective small side holes 1d into which the two positioning pins 30a and 30b are inserted. 8e are provided two by two.
  • the holding plate 8 is positioned relative to the sprocket 1 in the circumferential direction and the axial direction.
  • the camshaft 2 has two drive cams per cylinder for opening an intake valve (not shown) on the outer periphery. Further, the camshaft 2 is integrally provided with a flange portion 2b for positioning in the axial direction via a bearing 02 at one end of the camshaft 2 on the side of the phase changing mechanism 3 in the rotational axis direction.
  • the camshaft 2 has a female screw 2c formed in the axial direction inside the one end 2a, and the driven member 9 is fastened and fixed in the axial direction by a cam bolt 14 screwed to the female screw 2c.
  • a pin (not shown) for positioning which performs positioning with respect to the driven member 9 in the rotation direction, is press-fitted and fixed to the front end of the one end 2a of the camshaft 2 from the rotation axis direction.
  • the pin is inserted into a positioning hole 9e formed on the inner peripheral side of the front end face of the driven member 9 to perform positioning.
  • FIG. 6 is a cross-sectional view taken along line CC of FIG. 1
  • FIG. 7 is a cross-sectional view taken along line DD of FIG.
  • the driven member 9 is integrally formed of an iron-based metal, and is formed on the disk-shaped main body 9a and the rear end side (camshaft 2 side) of the disk-shaped main body 9a as shown in FIGS. And an annular fixed end 9b.
  • the disc-shaped main body 9a is provided integrally with a journal portion 11 constituting a part of the slide bearing mechanism 6 on the outer peripheral surface, and the shaft portion 14b of the cam bolt 14 is inserted in the direction of the internal axis including the fixed end portion 9b.
  • a bolt insertion hole 9c is formed to penetrate.
  • the fixed end 9b has a certain thickness, protrudes from the disc-shaped main body 9a in the direction of the camshaft 2, and has an outer diameter set to be substantially the same as that of the disc-shaped main body 9a.
  • the fixed end 9b has an annular fitting groove 9d in which the tip of the one end 2a of the camshaft 2 fits substantially at the center of the outer surface on the camshaft 2 side (outer side of the bolt insertion hole 9c). Is formed.
  • a positioning hole 9e into which a positioning pin (not shown) is inserted from the axial direction is formed in the bottom surface of the fitting groove 9d.
  • the fixed end portion 9b is provided with a stopper concave groove 9f on the outer peripheral surface along which the stopper convex portion 8c of the holding plate 8 is engaged, along the circumferential direction.
  • the stopper groove 9f is formed in an arc shape having a predetermined length in the circumferential direction. Both side surfaces of the stopper convex portion 8c rotated in the arc-shaped length range of the stopper concave groove 9f come into contact with respective circumferentially opposed surfaces.
  • the relative rotation position of the cam shaft 2 on the maximum advance side or the maximum retard side with respect to the timing sprocket 1 is mechanically regulated.
  • the driven member 9 is fixed to the one end 2a of the camshaft 2 from the axial direction by the cam bolt 14 in a state where the tip of the one end 2a of the camshaft 2 is fitted in the fitting groove 9d from the axial direction. ing.
  • the sliding bearing mechanism 6 is provided on an annular bearing recess 10 formed on the inner peripheral surface of the sprocket main body 1a and on the outer peripheral surface of the disc-shaped main body 9a. It has a journal portion 11 disposed inside and the holding plate 8 covering one end opening of the bearing recess 10.
  • the bearing recess 10 is arranged and formed only on the inner peripheral surface side of the sprocket main body 1a close to the camshaft 2 side without extending from one side surface of the sprocket main body 1a on the holding plate 8 side to the internal tooth forming portion 5.
  • the bearing recess 10 has a substantially rectangular cross-sectional shape along the radial direction from the rotation axis of the sprocket 1, and a part of the recess 10 is formed at the position where each gear portion 1b is formed. And are arranged to overlap in the axial direction.
  • the bearing recess 10 has a sliding bearing surface 10a formed on an annular bottom surface.
  • an inner side surface 10b provided on the other end side opposite to the holding plate 8 in the axial direction is notched at a substantially right angle in a radial direction from the sliding bearing surface 10a.
  • the other end of the bearing concave portion 10 is opened at the other end on the camshaft 2 side and released to the outside, and the opened other end is opened by the inner side surface 8f of the inner peripheral portion 8b of the holding plate 8. Covered.
  • journal portion 11 protrudes radially outward from the outer peripheral surface of the disk-shaped main body 9a, and is formed in a rectangular shape having a cross-sectional shape substantially similar to the cross-sectional shape of the bearing recess 10. Also, since the bearing recess 10 axially overlaps with each gear portion 1b, this journal portion 11 is also partially overlapped with each gear portion 1b of the sprocket 1 in the axial direction.
  • journal portion 11 has annular grooves 11b and 11c formed on both sides in the axial direction of the base portion 11a, which is a connection portion with the disc-shaped main body 9a.
  • the journal portion 11 has an annular outer peripheral surface 11d slidable over the entire sliding bearing surface 10a of the bearing recess 10.
  • Each of the annular grooves 11 b and 11 c prevents the journal portion from contacting the inner surface 8 f of the holding plate 8 and the inner surface 10 b of the bearing recess 10 when the driven member 9 rotates.
  • the journal portion 11 is configured such that one end surface 11e on the side of the front plate 15 in the axial direction is slidable on the inner surface 10b of the bearing recess 10.
  • the inner side surface 10b of the bearing recess 10 serves as a first axial direction restricting portion that restricts one thrust movement by contacting one end surface 11e of the journal portion 11 when the sprocket 1 is tilted.
  • the journal 11 is configured such that the other end surface 11f on the holding plate 8 side in the axial direction can slide on the inner surface 8f of the inner peripheral portion 8b of the holding plate 8.
  • the inner side surface 8f of the holding plate 8 is a second axial direction restricting portion that restricts the other thrust movement by contacting the other end surface 11f of the journal portion 11 when the sprocket 1 is tilted.
  • FIG. 8 is a schematic view showing the relationship between the lengths of the bearing recess 10 and the journal section 11, and is an explanatory view of the action of axial loads F1 and F2 mainly on the journal section 11 when the sprocket 1 is inclined. .
  • an axial width A1 between an inner surface 10b of the bearing recess 10 as the first axial direction regulating portion and an inner surface 8f of the holding plate 8 as the second axial direction regulating portion is provided.
  • the diameter of the inner peripheral surface of the slide bearing surface 10a is A2
  • the axial width between both end surfaces 11e and 11f of the journal portion 11 is B
  • the diameter of the outer peripheral surface of the journal portion 11 is D
  • Ca is an axial clearance (gap) between the axial width A1 and the axial width B of the journal portion 11.
  • Cr is a radial clearance (gap) between the outer peripheral surface (diameter D) of the journal portion 11 and the inner peripheral surface (diameter A2) of the sliding bearing surface 10a of the bearing recess 10.
  • the axial clearance Ca is set to be smaller than the radial clearance Cr ⁇ (diameter D / axial width B).
  • the cam bolt 14 has a needle roller 25a of a needle bearing 25 rotatably held on an outer peripheral surface of a head 14a.
  • a male screw portion 14c that is screwed to the female screw portion 2c of the camshaft 2 is formed on the outer periphery of the distal end portion of the shaft portion 14b.
  • the phase changing mechanism 3 includes an electric motor 12 disposed on the front end side of the fixed end 9 b of the driven member 9, and reduces the rotation speed of the electric motor 12 to reduce the rotational speed of the camshaft 2. And a speed reduction mechanism 13 for transmitting the power to the motor.
  • the electric motor 12 is a so-called brushless DC motor.
  • the electric motor 12 has a bottomed cylindrical motor housing 16 fixed to a chain case, and is provided at the rear end of the motor housing 16 so as to be internally provided.
  • a motor stator accommodating a stator coil and the like; a motor output shaft 17 arranged on the inner peripheral side of the stator coil; a cylindrical permanent magnet fixed to the outer periphery of the motor output shaft 17; 1 and a power supply mechanism 18 provided at a front end opposite to the front side.
  • the motor housing 16 is formed substantially in a cup shape, and has a through hole through which the motor output shaft 17 penetrates substantially at the center of the front end (bottom wall).
  • a flange 16a protruding radially outward is provided on the outer periphery of the rear end.
  • the flange portion 16a has three bracket pieces 16b integrally provided at a position of about 120 ° in the circumferential direction.
  • a bolt insertion hole 16c through which a bolt coupled to a chain case (not shown) is inserted is formed through the three bracket pieces 16b.
  • three different bolt insertion holes into which the three bolts 31 are inserted are formed between the bracket pieces 16b in the circumferential direction of the flange portion 16a.
  • the power supply mechanism 18 is connected to the motor housing 16 by each bolt 31.
  • the number of the bolt insertion holes 16c and the bolts 31 can be further increased.
  • the motor stator is formed integrally with a resin portion of a synthetic resin material, and a stator coil is molded and fixed inside.
  • the power supply mechanism 18 is formed in a box shape from a synthetic resin material. Inside the power supply mechanism 18, an energizing circuit such as a bus bar for supplying power to the electric motor 12, a rotation sensor for detecting the rotational position of the motor output shaft 17, and the like are accommodated. In the power supply mechanism 18, a power supply connector 18a electrically connected to a power supply circuit and a signal connector (not shown) are provided integrally on an outer peripheral portion.
  • the power supply connector 18a has an internal terminal connected to a battery, which is a power supply, via a female terminal to a control unit (not shown).
  • the signal connector has an internal terminal (not shown) connected to the control unit via a female terminal, and outputs a rotation angle signal detected by the rotation sensor to the control unit.
  • the motor output shaft 17 is formed of a metal material in a cylindrical shape, and an intermediate member 20 that constitutes a part of an Oldham coupling 19 that is a coupling mechanism connected to the reduction mechanism 13 is provided on a distal end side of the reduction mechanism 13. ing.
  • the intermediate member 20 has a cylindrical base 20a fixed to the distal end 17a of the motor output shaft 17, and two transmission keys 20b and 20c provided integrally on the outer peripheral surface of the cylindrical base 20a. ing.
  • the cylindrical base portion 20a is formed of a metal material, for example, an iron-based metal, and has a fixing hole 20d in the center through which the distal end portion 17a of the motor output shaft 17 is inserted and fixed. Further, the cylindrical base 20a has two flat portions having a width across flats at a position of about 180 ° on the outer peripheral surface.
  • Each transmission key 20b, 20c is formed in a substantially rectangular block shape, and protrudes radially outward from two flat portions of the cylindrical base 20a.
  • the control unit detects the current engine operating state based on information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, and an accelerator opening sensor not shown, and controls the engine based on this. Is going.
  • the control unit controls the rotation of the motor output shaft 17 by energizing the coil unit based on the information signals and the rotation position detection mechanism, and controls the relative rotation phase of the camshaft 2 with respect to the timing sprocket 1 by the reduction mechanism 13. Is controlled.
  • the speed reduction mechanism 13 is provided separately from the electric motor 12 in the axial direction, and each component is accommodated and arranged inside the sprocket 1 between the holding plate 8 and the front plate 15. ing.
  • the speed reducing mechanism 13 includes a cylindrical eccentric shaft 21 partially disposed inside the sprocket body 1a, A ball bearing 22 provided on the outer periphery, a roller 23 provided on the outer periphery of the ball bearing 22 and being a rolling member rotatably held in each of the internal teeth 5 a of the internal tooth forming section 5,
  • the eccentric shaft 21 includes an eccentric shaft portion 21a disposed on an outer periphery of a needle bearing 25 provided on an outer periphery of the head portion 14a of the cam bolt 14, and a large-diameter cylindrical portion 21b provided on the electric motor 12 side of the eccentric shaft portion 21a. ,have.
  • the thickness of the eccentric shaft portion 21 a in the circumferential direction changes in thickness, and the axis X is slightly eccentric with respect to the axis Y of the cam bolt 14.
  • the large-diameter cylindrical portion 21b constitutes a part of the Oldham coupling 19 and protrudes from the inside of the sprocket body 1a toward the electric motor 12 through the insertion hole 15a of the front plate 15.
  • the large-diameter cylindrical portion 21b has a two-sided width fitting hole 21c into which the two-sided width cylindrical base 20a of the intermediate member 20 can be fitted in the axial direction. Is formed.
  • the large-diameter cylindrical portion 21b has two key grooves 21d at which the transmission keys 20b and 20c of the intermediate member 20 can be fitted from the rotation axis direction at a position of about 180 ° in the circumferential direction of the tip portion on the electric motor 12 side. , 21e are formed.
  • the needle bearing 25 is fixed to a plurality of needle rollers 25a that roll on the outer peripheral surface of the head portion 14a of the cam bolt 14 and a step surface formed on the inner peripheral surface of the eccentric shaft portion 21a. And a shell 25b having a plurality of grooves for rollingly holding the 25a.
  • the ball bearing 22 is arranged so as to substantially entirely overlap the radial position of the needle bearing 25.
  • the ball bearing 22 includes an inner race 22a, an outer race 22b, a ball 22c interposed between the two races 22a and 22b, and a cage 22d for holding the ball 22c.
  • the outer ring 22b is free without being fixed in the axial direction.
  • the outer ring 22b is configured such that one end surface on the electric motor 12 side in the axial direction does not contact the inner surface of the front plate 15 via the minute clearance. Further, the other end surface of the outer ring 22b in the axial direction is also prevented from contacting the rear surface of the disk-shaped main body 9a of the driven member 9 facing the outer ring 22b via a minute clearance.
  • each roller 23 is in rolling contact with the outer peripheral surface of the outer ring 22b.
  • An annular clearance is formed between the outer peripheral surface of the outer ring 22b and the inner surface of the retainer 24. Therefore, the entire ball bearing 22 can be eccentrically moved in the radial direction with the eccentric rotation of the eccentric shaft portion 21a via the clearance.
  • the retainer 24 is formed in an annular plate shape, and is provided integrally with the outer peripheral portion of the disk-shaped main body 9a. That is, the retainer 24 is formed so as to linearly protrude from the base 11a of the journal portion 11 of the disc-shaped main body 9a toward the front plate 15. A predetermined clearance C is formed between the tip surface 24a of the retainer 24 and the inner surface 15c of the front plate 15.
  • the retainer 24 is formed with a plurality of substantially rectangular roller holding holes 24b respectively rotatably holding the plurality of rollers 23 at substantially equal intervals in the circumferential direction.
  • the roller holding holes 24b are provided at equal intervals in the circumferential direction of the holder 24, are closed at the tip end side, and are formed in a rectangular shape elongated in the front-rear direction, and the total number thereof (the number of the rollers 23) is inside.
  • the number of the internal teeth 5a of the tooth forming section 5 is smaller than the total number of teeth, so that a predetermined reduction ratio is obtained.
  • Each roller 23 is formed of an iron-based metal, and is fitted in the internal teeth 5 a of the internal tooth forming section 5 while moving in the radial direction with the eccentric movement of the ball bearing 22. Further, each roller 23 swings in the radial direction while being guided in the circumferential direction by both side edges of the roller holding hole 24b of the holder 24.
  • the deceleration mechanism 13 is configured such that lubricating oil is supplied inside through a lubricating oil supply passage.
  • the lubricating oil supply passage extends from the main oil gallery of the engine to the oil passage 26 formed inside the camshaft 2 from inside the cylinder head 01 and the disc-shaped main body 9 a of the driven member 9 in the axial direction of the camshaft 2. And an oil hole 27 formed therethrough.
  • the oil hole 27 has an upstream large-diameter end portion 27a communicating with the oil passage 26, and a downstream small-diameter other end portion 27b communicating with the vicinity of a side portion of the shell 25b of the needle bearing 25. ing.
  • the lubricating oil flowing into the inside of the speed reduction mechanism 13 from the oil hole 27 passes through the inside of the ball bearing 22 and the inside of the retainer 24 on the outer peripheral side as shown by the arrow in the drawing, and from there, the bearing recess 10 and It flows in between the journal unit 11.
  • the lubricating oil is provided for lubrication by passing between the both end surfaces 11 e and 11 f and the outer peripheral surface 11 d of the journal portion 11 and the inner side surface 10 b and the sliding bearing surface 10 a of the bearing recess 10.
  • the air is further discharged from the insertion hole 15a of the front plate 15 to the outside.
  • the main oil gallery is supplied with lubricating oil from a discharge passage of an oil pump (not shown).
  • a control current from the control unit is supplied to the coil of the electric motor 12 to drive the motor output shaft 17 to rotate forward and reverse.
  • the torque of the motor output shaft 17 is transmitted to the eccentric shaft 21, and the reduced torque is transmitted to the camshaft 2 by the operation of the speed reduction mechanism 13.
  • the camshaft 2 rotates forward and reverse relative to the timing sprocket 1 to change the relative rotation phase. Therefore, the opening and closing timing of each intake valve is controlled to be converted to the advance side or the retard side.
  • the sprocket 1 when the chain tension is applied to the gear portion 1b during the rotation driving, the sprocket 1 exerts a force (rotational force) in a tilt direction about the rotation center O, which is the center in the radial and axial directions of the journal portion 11, as a fulcrum. Moment).
  • the bearing recess 10 abuts on the journal portion 11 in the axial direction, and axial loads F1 and F2 are generated.
  • the axial loads F1 and F2 can be received by both end surfaces 11e and 11f of the journal portion 11. Therefore, the tilting of the sprocket 1 can be suppressed.
  • the length relationship between the bearing recess 10 (including the holding plate 8) and the journal 11 is set so as to satisfy the expression Ca ⁇ Cr. (D / B).
  • the sprocket 1 when the sprocket 1 is tilted counterclockwise in the figure with respect to the driven member 9, one end face 11e of the journal portion 11 is located on the lower side in the figure.
  • An axial load F1 (open arrow) is received from the inner surface 10b.
  • the other end surface 11f of the journal portion 11 receives an axial load F2 (open arrow) from the inner side surface 8f of the holding plate 8.
  • one of the one end 11da and the other end 11db in the axial direction of the outer peripheral surface 11d of the journal portion 11 is separated from the sliding bearing surface 10a of the bearing recess 10 by the inclination of the sprocket 1.
  • the one end surface 11e and the other end surface 11f of the journal portion 11 abut against the inner side surface 10b and the inner side surface 8f of the bearing recess 10. That is, in a state where the sprocket 1 is inclined, the sliding bearing surface 10a does not contact both the one end 11da and the other end 11db of the outer peripheral surface 11d of the journal portion 11, and the axial side surfaces 10b, 8f of the bearing recess 10 are formed. Abuts on the journal section 11.
  • the effect of suppressing the inclination of the sprocket 1 is, for example, as shown in FIG. 8, when the arrangement of the gear portion 1b of the sprocket 1 is moved toward the front plate 15, that is, with respect to the rotation center O of the inclination of the sprocket 1. It is also effective when the point where the chain tension is applied is offset.
  • both axial loads F1 and F2 are received and regulated by both end faces 11e and 11f of the journal portion 11, a large rotational moment acts on the sprocket 1 and the journal portion 11 causes the bearing recess 10 to contact the sliding bearing surface 10a.
  • the radial load F3 (open arrow), which is a radial load, can be sufficiently reduced.
  • both the one end 11da and the other end 11db of the outer peripheral surface 11d of the journal 11 contact the sliding bearing surface 10a in a state where the sprocket 1 is inclined.
  • the friction ratio between the outer peripheral surface 11d of the journal 11 and the sliding bearing surface 10a is determined by the diameter D of the journal 11. And the axial width B. Therefore, if B ⁇ D as in the present embodiment, the effect is higher.
  • the sliding bearing surface 10a of the bearing recess 10 is formed at a position axially overlapping the gear portion 1b of the sprocket 1. For this reason, the tension load of the chain wound around the gear portion 1b acts on the journal portion 11 via the sliding bearing surface 10a, so that the inclination of the sprocket 1 can be further suppressed.
  • journal portion 11 is formed so as to protrude radially outward from the outer peripheral surface of the disk-shaped main body 9a, the axial width length B of the journal portion 11 which is the means for suppressing the inclination of the sprocket 1, ie, the holding plate
  • the length A1 between the inner side surface 8f of the base 8 and the inner side surface 10b of the bearing recess 10 can be made sufficiently shorter than that of the conventional technique. As a result, the axial length of the entire device can be reduced, so that the device can be downsized.
  • a clearance C is formed between the distal end surface 24a of the retainer 24 and the inner side surface 15c of the front plate 15, and the journal portion 1 and the bearing recess 10 restrict the movement of the driven member 9 in the axial direction. Therefore, the occurrence of friction between the retainer 24 (the driven member 9) and the front plate 15 is suppressed. Therefore, the responsiveness of the relative rotation between the sprocket 1 and the driven member 9 is improved, and the generation of sound vibration can be suppressed.
  • the lubricating oil supplied from the oil passage 26 to the inside of the speed reduction mechanism 13 through the oil hole 27 is moved between the sliding bearing surface 10a of the bearing recess 10 and the outer peripheral surface 11d of the journal 11 by centrifugal force during driving. Forced supply. Therefore, the lubricating properties of the inner surface of the bearing recess 10 and the entire outer surface of the journal portion 11 including between the two 10a and 11d are improved.
  • the sliding bearing surface 10a is located radially outside the tooth bottom surface of the internal teeth 5a of the internal tooth forming section 5, lubricating oil is likely to flow from the internal teeth 5a side due to centrifugal force. Accordingly, the lubricity between the two 10a and 11d is further improved.
  • the lubricating oil that has flowed into the bearing recess 10 is stored here even when the engine is stopped, so that the lubricating oil quickly moves between the entire inner surface of the bearing recess 10 and the entire outer surface of the journal 11 after driving. A lubricating action is obtained.
  • a portion that becomes a hole edge of the central hole 8a of the inner peripheral portion 8b of the holding plate 8 is disposed inside the tooth bottom surface of each internal tooth 5a of the internal tooth forming portion 5.
  • the inner peripheral portion 8b functions as a dam, so that lubricating oil is sufficiently applied not only to the bearing recess 10 but also to the tooth bottom surface of each internal tooth 5a. It becomes possible to store. Therefore, the lubricity between each internal tooth 5a and each roller 23 during driving is improved, and smooth rotation of the speed reduction mechanism 13 is obtained.
  • the holding plate 8 has a thickness t1 larger than the thickness t of the front plate 15 and has a high rigidity. Therefore, the holding plate 8 has durability against an axial load received from the other end surface 11f of the journal portion 11. Improvement can be achieved. On the other hand, since the axial load from the one end surface 11e of the journal portion 11 is not directly received on the inner side surface 15c of the front plate 15, the thickness t can be made as small as possible. Therefore, the overall weight can be reduced.
  • the second axial direction regulating portion uses the front plate 15 that covers the bearing recess 10, the manufacturing operation thereof is simple.
  • the reduction mechanism 13 may be, for example, a planetary gear type.
  • journal portion 11 is formed in the radial direction while keeping the axial width unchanged, the radial length of both end surfaces 11e and 11f increases, so that the inner peripheral portion 8b of the holding plate 8
  • the regulation effect in the axial (axial direction) by the side surface 8f and the inner side surface 10b of the bearing recess 10 increases. Thereby, the inclination of the sprocket 1 can be suppressed more effectively.
  • the entire bearing concave portion 10 may be formed in a concave shape on the inner peripheral surface of the sprocket 1, and the inner peripheral portion 8b of the holding plate 8 may not be used as the inclination suppressing means.
  • the joint mechanism may be a joint other than the Oldham joint.
  • valve timing control device for an internal combustion engine based on the above-described embodiment, for example, the following embodiments can be considered.
  • a driving rotator to which torque from a crankshaft is transmitted a driven rotator fixed to a camshaft and rotating integrally with the camshaft, and a motor output of an electric motor
  • a phase change mechanism that changes the relative rotation phase of the driving rotator and the driven rotator by reducing the rotation of the shaft by a reduction mechanism, a sliding bearing surface provided on an inner periphery of the driving rotator, and the driven rotator
  • a journal portion that is provided so as to protrude radially outward from the outer periphery of the journal, and has an outer peripheral surface that slides on the sliding bearing surface; and the journal that is provided on the drive rotating body and sandwiches the journal portion from both sides in the axial direction.
  • a first axial direction restricting portion and a second axial direction restricting portion for restricting axial movement of the portion.
  • the sliding bearing surface is offset in a rotation axis direction of the driving rotating body with respect to a meshing portion of the speed reduction mechanism, and is provided radially outside of the rotating shaft of the driving rotating body with respect to the meshing portion. Have been.
  • the lubricating oil in the speed reduction mechanism is supplied between the sliding bearing surface and the journal by centrifugal force, lubricity between the two is improved.
  • the meshing portion meshes with an internal tooth provided on an inner periphery of the driving rotating body, and the rotation of the motor output shaft is reduced and transmitted to a transmitting portion of the driven rotating body.
  • the sliding bearing surface is provided radially outside of the tooth bottom of the internal teeth.
  • the transmission portion is provided in an annular shape protruding from the edge of the driven rotating body on the journal portion side toward the inner peripheral side of the internal teeth, and the driving rotating body is configured to drive the driving portion of the transmission portion.
  • the clearance is provided between the cover and the distal end surface of the transmission portion, the occurrence of friction between the cover and the driven rotating body is suppressed. Therefore, the responsiveness of the relative rotation between the driven rotor and the drive rotor is improved.
  • the driven rotating body has an oil hole for communicating an oil passage of the lubricating oil provided in the camshaft with a space radially inside the transmitting portion.
  • the driving rotating body is provided on an inner periphery of the driving rotating body, and has a concave portion having the sliding bearing surface on a bottom surface,
  • the first axial direction restricting portion is one end surface of the recess in the rotation axis direction of the driving rotating body.
  • annular plate member that covers the other end of the concave portion is fixed to the other side in the rotation axis direction of the drive rotating body, and the second axial direction restriction portion is formed by the plate member.
  • the second axial direction regulating portion has an inner diameter located radially inward of the root of the internal teeth.
  • the thickness of the plate member in the rotation axis direction of the driving rotator is larger than the thickness of the cover in the rotation axis direction of the driving rotator.
  • the driving rotating body has external teeth on the outer periphery of which the rotational force from the crankshaft is transmitted, and the sliding bearing surface is arranged in the rotation axis direction of the driving rotating body with respect to the external teeth. It is in the overlapping position.
  • the speed reduction mechanism the motor output shaft is fitted, an eccentric shaft whose axis is eccentric with respect to the axis of the motor output shaft, an outer periphery of the eccentric shaft and an inner periphery of the internal teeth.
  • a retainer provided on the driven rotating body and having a plurality of roller holding holes for holding the plurality of rollers.
  • the axial width between the first axial direction regulating portion and the second axial direction regulating portion is A1
  • the diameter of the sliding bearing surface is A2
  • the axial width of the journal portion is B
  • the diameter of the journal portion is D
  • the driving rotating body has external teeth on the outer periphery of which the rotational force from the crankshaft is transmitted, and the sliding bearing surface is arranged in the rotation axis direction of the driving rotating body with respect to the external teeth. It is in the offset position.
  • a driving rotary member to which a rotational force from a crankshaft is transmitted, a driven rotary member fixed to a camshaft and rotating integrally with the camshaft, and a rotation of a motor output shaft of the electric motor
  • a phase change mechanism that changes the relative rotational phase of the driving rotator and the driven rotator by reducing the speed of the driven rotator by a speed reduction mechanism;
  • a journal portion that is provided to protrude radially outward from the outer periphery of the rotating body and slides on the slide bearing surface, and is provided on the drive rotating body, and is axially sandwiched between the journal portions from both sides in the axial direction.
  • a first axial direction restricting portion and a second axial direction restricting portion for restricting movement are provided on one side in the rotation axis direction with respect to the meshing portion of the speed reduction mechanism.
  • the meshing portion includes a protruding portion that protrudes in an axial direction from the driven rotating body, and the reduced rotational force of the electric motor is transmitted to the protruding portion, and the driving rotating body includes the protruding portion.
  • a plate member that covers one end of the driving rotator in the direction of the rotation axis, wherein the projecting portion contacts the plate member even if the driving rotator is inclined with respect to the driven rotator.
  • a clearance is set between the one end and the plate member so as not to contact.
  • the first axial direction restricting portion abuts on one end surface of the journal portion in the axial direction, and the second axial direction restricting portion.
  • the radial gap between the sliding bearing surface and the journal portion is set such that the abutment is in contact with the other axial end surface of the journal portion.
  • SYMBOLS 1 Timing sprocket (drive rotary body), 1a ... Sprocket main body, 1b ... Gear part (external teeth), 2 ... Camshaft, 2a ... One end part, 3 ... Phase change mechanism, 8 ... Holding plate (plate member), 8b ... Inner peripheral part, 8f ... Inner surface (second axial direction restricting part), 9 ... Driving member (driven rotating body), 9a ... Disc-shaped body, 9b ... Fixed end part, 10 ... Bearing recess, 10a ...
  • roller holder Holding hole 25: Needle bearing, A1: Axial width between inner surface of bearing recess and inner surface of holding plate, A2: Diameter of sliding bearing surface, B: Axial width of journal portion, D: Journal Diameter, Ca: clearance (gap) between both end surfaces of the journal portion and the inner surface of the bearing recess and the inner surface of the holding plate, Cr: clearance (gap) between the sliding bearing surface and the outer peripheral surface of the journal portion ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The device of the present invention comprises a bearing recess 10 that is provided in a part of the inner peripheral surface of a sprocket body 1a on a holding plate 8 side and has a sliding bearing surface 10a formed on the bottom surface, and a journal portion 11 that is provided to protrude radially outward from the outer peripheral surface of a disc-shaped body 9a, fits into the bearing recess 10 and slides by the outer peripheral surface on the sliding bearing surface 10a. Axial loads F1, F2 are received by an inner side surface 10b of the bearing recess 10 and an inner side surface 8f of an inner peripheral portion 8b of the holding plate 8 in a state where both end surfaces 11e, 11f of a journal portion 11 are sandwiched from both sides in the axial direction. As a result, the device can be reduced in size while suppressing the inclination of a drive rotor relative to a driven rotor.

Description

内燃機関のバルブタイミング制御装置Valve timing control device for internal combustion engine
 本発明は、例えば吸気弁や排気弁の開閉タイミングを制御する内燃機関のバルブタイミング制御装置に関する。 The present invention relates to a valve timing control device for an internal combustion engine that controls, for example, the opening and closing timing of an intake valve and an exhaust valve.
 内燃機関のバルブタイミング制御装置としては、以下の特許文献1に記載されているものが知られている。 As a valve timing control device for an internal combustion engine, a device described in Patent Document 1 below is known.
 このバルブタイミング制御装置にあっては、駆動回転体が、外周にチェーンが巻回される外歯を有するスプロケット部と、このスプロケット部の前端に配置された円筒状のハウジング部と、このハウジング部の前端に配置された円筒状の歯車部と、を備えている。前記スプロケットとハウジング部及び歯車部は、複数のボルトによって軸方向から結合されている。 In this valve timing control device, the drive rotating body includes a sprocket portion having external teeth around which a chain is wound around an outer periphery, a cylindrical housing portion disposed at a front end of the sprocket portion, and a housing portion. And a cylindrical gear portion disposed at the front end of the gear. The sprocket, the housing part and the gear part are connected to each other by a plurality of bolts from the axial direction.
 前記ハウジング部の内周側には、有底円筒状の従動回転体が相対回転可能に配置されている。この従動回転体は、筒状周壁の外周面に前記ハウジング部の内周面に面接触状態で摺動する摺動面が形成されている。 に は On the inner peripheral side of the housing portion, a driven rotating body having a bottomed cylindrical shape is disposed so as to be relatively rotatable. In the driven rotating body, a sliding surface is formed on the outer peripheral surface of the cylindrical peripheral wall so as to slide in surface contact with the inner peripheral surface of the housing portion.
 また、従動回転体は、円盤状の底壁の外面が前記スプロケット部の凹状の底面に軸方向から当接して規制される一方、筒状周壁の環状先端面が前記歯車部の後端面に当接して規制されるようになっている。これによって、従動回転体の軸方向の位置決めがされると共に、従動回転体の摺動面により駆動回転体が軸受されている。また、この従動回転体によって、駆動中におけるチェーンの張力などに起因した駆動回転体の径方向の傾きを抑制されるようになっている。 Further, in the driven rotor, the outer surface of the disc-shaped bottom wall abuts against the concave bottom surface of the sprocket portion from the axial direction, while the annular distal end surface of the cylindrical peripheral wall abuts on the rear end surface of the gear portion. It is regulated in contact. Thus, the driven rotator is positioned in the axial direction, and the driving rotator is supported by the sliding surface of the driven rotator. Further, the driven rotator suppresses a radial inclination of the drive rotator caused by a tension of the chain during driving.
特開2017-172442号公報(図2)JP-A-2017-172442 (FIG. 2)
 しかしながら、特許文献1に記載のバルブタイミング制御装置にあっては、前述のように、従動回転体が、前記駆動回転体のスプロケット部と前記歯車部によって軸方向の位置決めがなされていることから、底壁の外面から筒状周壁の先端面までの距離、つまり摺動面の軸方向の長さが大きくなっている。 However, in the valve timing control device described in Patent Document 1, as described above, the driven rotor is axially positioned by the sprocket portion and the gear portion of the drive rotor, The distance from the outer surface of the bottom wall to the end surface of the cylindrical peripheral wall, that is, the axial length of the sliding surface is increased.
 したがって、前記摺動面の軸方向の長さが長いことから、駆動中における駆動回転体の径方向の傾きは抑制できるものの、装置の軸方向の長さが大きくなるおそれがある。 Therefore, since the axial length of the sliding surface is long, the radial inclination of the driving rotating body during driving can be suppressed, but the axial length of the device may be large.
 本発明は、前記従来の技術的課題に鑑みて案出されたもので、従動回転体に対する駆動回転体の傾きを抑制しつつ装置の小型化が図れる内燃機関のバルブタイミング制御装置を提供することを一つの目的としている。 The present invention has been devised in view of the above-mentioned conventional technical problem, and provides a valve timing control apparatus for an internal combustion engine that can reduce the size of the apparatus while suppressing the inclination of the driving rotating body with respect to the driven rotating body. For one purpose.
 好ましい態様の一つとしては、とりわけ、電動モータのモータ出力軸の回転を減速機構によって減速して駆動回転体と従動回転体の相対回転位相を変更する位相変更機構と、前記駆動回転体の内周に設けられた滑り軸受面と、前記従動回転体の外周から径方向外側に突出して設けられ、外周面が前記滑り軸受面に摺動するジャーナル部と、前記駆動回転体に設けられ、前記ジャーナル部を軸方向の両側から挟んだ状態で前記ジャーナル部の軸方向の移動を規制する第1軸方向規制部及び第2軸方向規制部と、を備えたことを特徴としている。 As one of preferred embodiments, in particular, a phase change mechanism that reduces the rotation of the motor output shaft of the electric motor by a speed reduction mechanism to change the relative rotation phase between the driving rotator and the driven rotator, and A sliding bearing surface provided on a periphery, a journal portion provided to protrude radially outward from an outer periphery of the driven rotating body, an outer peripheral surface sliding on the sliding bearing surface, and a journal portion provided on the driving rotating body; A first axial direction restricting portion and a second axial direction restricting portion for restricting the axial movement of the journal portion with the journal portion sandwiched from both sides in the axial direction are provided.
 本発明の好ましい態様によれば、駆動回転体の傾きを抑制しつつ装置の小型化を図ることができる。 According to a preferred embodiment of the present invention, the size of the apparatus can be reduced while suppressing the inclination of the driving rotating body.
本発明の一実施形態におけるバルブタイミング制御装置の一部縦断面図である。1 is a partial longitudinal sectional view of a valve timing control device according to an embodiment of the present invention. 図2は本実施形態に供される主要な構成部材を示す分解図である。FIG. 2 is an exploded view showing main constituent members provided in the present embodiment. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図1のA矢視図である。FIG. 2 is a view on arrow A in FIG. 1. 図1のB矢視図である。FIG. 2 is a view taken in the direction of arrow B in FIG. 1. 図1のC-C線断面図である。FIG. 2 is a sectional view taken along line CC of FIG. 1. 図1のD-D線断面図である。FIG. 2 is a sectional view taken along line DD of FIG. 1. 本実施形態に供される軸受凹部とジャーナル部の各部の長さ関係を示す模式図であって、スプロケットが傾いた場合のジャーナル部に対する主として軸方向のアキシャル荷重の作用説明図である。It is a schematic diagram which shows the length relationship of each part of a bearing recessed part and a journal part provided to this embodiment, and is an action explanatory view of an axial load mainly on the journal part when the sprocket is inclined.
 以下、本発明に係る内燃機関のバルブタイミング制御装置の実施形態を図面に基づいて詳述する。本実施形態では、バルブタイミング制御装置を吸気側に適用したものを示しているが、排気側に適用することも可能である。
〔実施形態〕
 図1は本実施形態におけるバルブタイミング制御装置を示す一部縦断面図、図2は本実施形態に供される主要な構成部材を示す分解図、図3は図1に示す本実施形態の要部拡大図、図4は図1のA矢視図である。
Hereinafter, an embodiment of a valve timing control device for an internal combustion engine according to the present invention will be described in detail with reference to the drawings. In the present embodiment, the valve timing control device is applied to the intake side, but may be applied to the exhaust side.
[Embodiment]
FIG. 1 is a partial longitudinal sectional view showing a valve timing control device according to the present embodiment, FIG. 2 is an exploded view showing main constituent members provided in the present embodiment, and FIG. 3 is a main part of the present embodiment shown in FIG. FIG. 4 is an enlarged view of a portion, and FIG.
 バルブタイミング制御装置は、図1及び図2に示すように、駆動回転体であるタイミングスプロケット1(以下、スプロケット1という。)と、シリンダヘッド01上に軸受02を介して回転自在に支持されたカムシャフト2と、スプロケット1とカムシャフト2との間に配置されて、機関運転状態に応じて両者1,2の相対回転位相を変更する位相変更機構3と、を備えている。 As shown in FIGS. 1 and 2, the valve timing control device is rotatably supported on a timing sprocket 1 (hereinafter, referred to as a sprocket 1) as a driving rotating body and on a cylinder head 01 via a bearing 02. A camshaft 2 and a phase changing mechanism 3 disposed between the sprocket 1 and the camshaft 2 to change the relative rotational phase between the two, 1 and 2, according to the operating state of the engine.
 スプロケット1は、全体が金属材である鉄系金属によって環状一体に形成されており、円環状のスプロケット本体1aと、該スプロケット本体1aの外周に一体に設けられて、巻回された図外のタイミングチェーンを介して内燃機関のクランクシャフトからの回転力を受ける外歯である歯車部1bと、を備えている。 The sprocket 1 is formed in a ring-like shape entirely of an iron-based metal, which is a metal material, and is provided integrally with an annular sprocket main body 1a and an outer periphery of the sprocket main body 1a, and is wound around the sprocket. And a gear portion 1b which is an external tooth that receives a rotational force from a crankshaft of the internal combustion engine via a timing chain.
 また、スプロケット1の外周には、内燃機関のシリンダブロックとシリンダヘッド01に結合された図外のチェーンケースが設けられている。 A chain case (not shown) connected to the cylinder block and the cylinder head 01 of the internal combustion engine is provided on the outer periphery of the sprocket 1.
 スプロケット本体1aの前端側には、後述する減速機構13の一部を構成する円環状の内歯構成部5が一体に設けられている。この内歯構成部5は、スプロケット本体1aに回転軸方向から一体に結合されていると共に、内周には波形状の複数の内歯5aが形成されている。 円 At the front end side of the sprocket main body 1a, an annular internal tooth forming portion 5 which constitutes a part of a speed reduction mechanism 13 described later is integrally provided. The internal tooth forming portion 5 is integrally connected to the sprocket main body 1a from the direction of the rotation axis, and has a plurality of corrugated internal teeth 5a formed on the inner periphery.
 スプロケット本体1aは、その内周面とカムシャフト2の回転軸方向の一端部2aに固定された従動回転体である後述する従動部材9の外周面との間に滑り軸受機構6が設けられている。この滑り軸受機構6は、従動部材9(カムシャフト2)の外周でスプロケット1を相対回転自在に軸受けしている。この滑り軸受機構6の具体的な説明については後述する。 The sprocket main body 1a has a sliding bearing mechanism 6 provided between an inner peripheral surface thereof and an outer peripheral surface of a driven member 9 which will be described later, which is a driven rotating body fixed to one end 2a of the camshaft 2 in the rotation axis direction. I have. The sliding bearing mechanism 6 rotatably supports the sprocket 1 on the outer periphery of the driven member 9 (camshaft 2). A specific description of the sliding bearing mechanism 6 will be described later.
 さらに、スプロケット本体1aの内歯構成部5と反対側の後端面には、プレート部材である保持プレート8が固定されている。この保持プレート8は、図2~図4に示すように、金属材である鉄系金属の板材によって円環状に形成され、外径がスプロケット本体1aの外径とほぼ同一に設定されている。また、保持プレート8は、中央に形成された中央孔8a側の内周部8bが後述する滑り軸受機構6の軸受凹部10のカムシャフト2側の一端開口を覆うように配置されている。この内周部8bは、中央孔8aの孔縁となる部位が、内歯構成部5の内歯5aの歯底面よりも内側に位置している。 保持 Furthermore, a holding plate 8 as a plate member is fixed to the rear end face of the sprocket main body 1a on the side opposite to the internal teeth forming section 5. As shown in FIGS. 2 to 4, the holding plate 8 is formed in an annular shape by a plate material of an iron-based metal, which is a metal material, and has an outer diameter substantially equal to the outer diameter of the sprocket body 1a. In addition, the holding plate 8 is arranged such that an inner peripheral portion 8b formed on the side of the center hole 8a formed at the center covers one end opening of the bearing recess 10 of the sliding bearing mechanism 6 described later on the camshaft 2 side. In the inner peripheral portion 8b, a portion serving as a hole edge of the central hole 8a is located inside the tooth bottom surface of the internal teeth 5a of the internal tooth forming portion 5.
 また、保持プレート8は、中央孔8aの内周縁の所定位置に、径方向内側、つまり中心軸方向に向かって突出したストッパ凸部8cが一体に設けられている。このストッパ凸部8cは、ほぼ逆台形状に形成されて、先端面が従動部材9の後述する固定端部9bのストッパ凹溝9fの円弧状内周面に沿った円弧状に形成されている。 保持 Further, the holding plate 8 is integrally provided with a stopper projection 8c that protrudes radially inward, that is, toward the center axis direction, at a predetermined position on the inner peripheral edge of the center hole 8a. The stopper convex portion 8c is formed in a substantially inverted trapezoidal shape, and the distal end surface is formed in an arc shape along an arc-shaped inner peripheral surface of a stopper concave groove 9f of a fixed end portion 9b of the driven member 9 described later. .
 図5は図1のB矢視図である。 FIG. 5 is a view on arrow B in FIG.
 また、スプロケット1の内歯構成部5側の前端面には、カバーであるフロントプレート15が設けられている。このフロントプレート15は、図1~図3、図5に示すように、例えば鉄系金属板を円環状にプレス成形で打ち抜き形成されたもので、その肉厚tが保持プレート8の肉厚t1よりも小さく設定されている。また、このフロントプレート15は、中央に後述する偏心軸21が挿入される挿入孔15aが貫通形成されている。 フ ロ ン ト Furthermore, a front plate 15 serving as a cover is provided on the front end face of the sprocket 1 on the side of the internal teeth forming section 5. As shown in FIGS. 1 to 3 and 5, the front plate 15 is formed by, for example, stamping an iron-based metal plate into an annular shape by press molding, and the thickness t of the front plate 15 is the thickness t1 of the holding plate 8. It is set smaller than. The front plate 15 has an insertion hole 15a through which an eccentric shaft 21 to be described later is inserted.
 内歯構成部5を含むスプロケット本体1aとフロントプレート15の各外周部には、複数(本実施形態では6本)のボルト7が挿通する6つのボルト挿通孔1c、15bが周方向のほぼ等間隔位置にそれぞれ貫通形成されている。また、保持プレート8は、前記各ボルト挿通孔1c、15bに対応する位置に各ボルト7の先端部の雄ねじ部7aが螺着する6つの雌ねじ孔8dが形成されている。 Six bolt insertion holes 1c and 15b, through which a plurality of (six in this embodiment) bolts 7 are inserted, are formed in the outer peripheral portions of the sprocket main body 1a including the internal tooth forming portion 5 and the front plate 15 in substantially the circumferential direction. The through holes are formed at the respective intervals. The holding plate 8 has six female screw holes 8d at the positions corresponding to the bolt insertion holes 1c and 15b, into which the male screw portions 7a at the tips of the bolts 7 are screwed.
 なお、スプロケット本体1aの2つのボルト挿通孔1cと保持プレート8の対応する2つの雌ねじ孔8dの各側部には、2つの位置決め用のピン30a、30bが挿入する位置決め用の小孔1d、8eが2つずつ設けられている。これらによって、保持プレート8が、スプロケット1に対して周方向及び軸方向の位置決めがなされるようになっている。 The two small bolt holes 1c of the sprocket body 1a and the two corresponding female screw holes 8d of the holding plate 8 have respective small side holes 1d into which the two positioning pins 30a and 30b are inserted. 8e are provided two by two. Thus, the holding plate 8 is positioned relative to the sprocket 1 in the circumferential direction and the axial direction.
 カムシャフト2は、外周に図外の吸気弁を開作動させる一気筒当たり2つの駆動カムを有している。また、カムシャフト2は、回転軸方向の位相変更機構3側の一端部には、軸受02を介して軸方向の位置決めを行うフランジ部2bが一体に設けられている。また、カムシャフト2は、一端部2aの内部軸方向に雌ねじ部2cが形成され、この雌ねじ部2cに螺着するカムボルト14によって従動部材9が軸方向から締結固定されている。さらに、カムシャフト2の一端部2aの前端には、従動部材9との回転方向の位置決めを行う位置決め用の図外のピンが回転軸方向から圧入固定されている。このピンは、従動部材9の前端面の内周側に形成された位置決め用の孔9eに挿入されて位置決めを行うようになっている。 The camshaft 2 has two drive cams per cylinder for opening an intake valve (not shown) on the outer periphery. Further, the camshaft 2 is integrally provided with a flange portion 2b for positioning in the axial direction via a bearing 02 at one end of the camshaft 2 on the side of the phase changing mechanism 3 in the rotational axis direction. The camshaft 2 has a female screw 2c formed in the axial direction inside the one end 2a, and the driven member 9 is fastened and fixed in the axial direction by a cam bolt 14 screwed to the female screw 2c. Further, a pin (not shown) for positioning, which performs positioning with respect to the driven member 9 in the rotation direction, is press-fitted and fixed to the front end of the one end 2a of the camshaft 2 from the rotation axis direction. The pin is inserted into a positioning hole 9e formed on the inner peripheral side of the front end face of the driven member 9 to perform positioning.
 図6は図1のC-C線断面図、図7は図1のD-D線断面図である。 6 is a cross-sectional view taken along line CC of FIG. 1, and FIG. 7 is a cross-sectional view taken along line DD of FIG.
 従動部材9は、鉄系金属によって一体に形成され、図1~図4、図6に示すように、円盤状本体9aと、該円盤状本体9aの後端側(カムシャフト2側)に形成された円環状の固定端部9bと、から主として構成されている。 The driven member 9 is integrally formed of an iron-based metal, and is formed on the disk-shaped main body 9a and the rear end side (camshaft 2 side) of the disk-shaped main body 9a as shown in FIGS. And an annular fixed end 9b.
 円盤状本体9aは、外周面に滑り軸受機構6の一部を構成するジャーナル部11が一体に設けられていると共に、固定端部9bを含む内部軸心方向にカムボルト14の軸部14bが挿通するボルト挿通孔9cが貫通形成されている。 The disc-shaped main body 9a is provided integrally with a journal portion 11 constituting a part of the slide bearing mechanism 6 on the outer peripheral surface, and the shaft portion 14b of the cam bolt 14 is inserted in the direction of the internal axis including the fixed end portion 9b. A bolt insertion hole 9c is formed to penetrate.
 固定端部9bは、一定の肉厚を有して円盤状本体9aからカムシャフト2方向へ突出していると共に、外径が円盤状本体9aとほぼ同じに設定されている。また、固定端部9bは、カムシャフト2側の外側面のほぼ中央(ボルト挿通孔9cの外周側)にカムシャフト2の一端部2aの先端部が嵌合する円環状の嵌合溝9dが形成されている。また、この嵌合溝9dの底面には、図外の位置決め用のピンが軸方向から挿入される位置決め用の孔9eが形成されている。 The fixed end 9b has a certain thickness, protrudes from the disc-shaped main body 9a in the direction of the camshaft 2, and has an outer diameter set to be substantially the same as that of the disc-shaped main body 9a. The fixed end 9b has an annular fitting groove 9d in which the tip of the one end 2a of the camshaft 2 fits substantially at the center of the outer surface on the camshaft 2 side (outer side of the bolt insertion hole 9c). Is formed. A positioning hole 9e into which a positioning pin (not shown) is inserted from the axial direction is formed in the bottom surface of the fitting groove 9d.
 また、固定端部9bは、外周面に保持プレート8のストッパ凸部8cが係入するストッパ凹溝9fが円周方向に沿って形成されている。このストッパ凹溝9fは、円周方向へ所定長さの円弧状に形成されている。このストッパ凹溝9fの円弧状の長さ範囲で回動したストッパ凸部8cの両側面が、周方向の対向面にそれぞれ当接するようになっている。これによって、タイミングスプロケット1に対するカムシャフト2の最大進角側、あるいは最大遅角側の相対回転位置を機械的に規制するようになっている。 固定 Further, the fixed end portion 9b is provided with a stopper concave groove 9f on the outer peripheral surface along which the stopper convex portion 8c of the holding plate 8 is engaged, along the circumferential direction. The stopper groove 9f is formed in an arc shape having a predetermined length in the circumferential direction. Both side surfaces of the stopper convex portion 8c rotated in the arc-shaped length range of the stopper concave groove 9f come into contact with respective circumferentially opposed surfaces. Thus, the relative rotation position of the cam shaft 2 on the maximum advance side or the maximum retard side with respect to the timing sprocket 1 is mechanically regulated.
 従動部材9は、嵌合溝9dにカムシャフト2の一端部2aの先端部が軸方向から嵌合した状態で、カムボルト14によってカムシャフト2の一端部2aに軸方向から固定されるようになっている。 The driven member 9 is fixed to the one end 2a of the camshaft 2 from the axial direction by the cam bolt 14 in a state where the tip of the one end 2a of the camshaft 2 is fitted in the fitting groove 9d from the axial direction. ing.
 そして、滑り軸受機構6は、図3にも示すように、スプロケット本体1aの内周面に形成された円環状の軸受凹部10と、円盤状本体9aの外周面に設けられ、軸受凹部10の内部に配置されたジャーナル部11と、軸受凹部10の一端開口を覆う前記保持プレート8と、を有している。 As shown in FIG. 3, the sliding bearing mechanism 6 is provided on an annular bearing recess 10 formed on the inner peripheral surface of the sprocket main body 1a and on the outer peripheral surface of the disc-shaped main body 9a. It has a journal portion 11 disposed inside and the holding plate 8 covering one end opening of the bearing recess 10.
 軸受凹部10は、スプロケット本体1aの保持プレート8側の一方側面から内歯構成部5まで延びることなく、カムシャフト2側に寄ったスプロケット本体1aの内周面側のみに配置形成されている。また、軸受凹部10は、図1に示すように、スプロケット1の回転軸心から径方向に沿った断面形状がほぼ矩形状に形成されていると共に、その一部が各歯車部1bの形成位置と軸方向でオーバーラップするように配置されている。 The bearing recess 10 is arranged and formed only on the inner peripheral surface side of the sprocket main body 1a close to the camshaft 2 side without extending from one side surface of the sprocket main body 1a on the holding plate 8 side to the internal tooth forming portion 5. As shown in FIG. 1, the bearing recess 10 has a substantially rectangular cross-sectional shape along the radial direction from the rotation axis of the sprocket 1, and a part of the recess 10 is formed at the position where each gear portion 1b is formed. And are arranged to overlap in the axial direction.
 さらに、軸受凹部10は、円環状の底面に滑り軸受面10aが形成されている。また、軸受凹部10は、軸方向で保持プレート8と反対側の他端側に有する内側面10bが滑り軸受面10aから径方向へほぼ直角に切欠されている。また、軸受凹部10は、前述したように、カムシャフト2側の他端部が開口されて外部に解放され、この解放された他端開口が保持プレート8の内周部8bの内側面8fによって覆われている。 Furthermore, the bearing recess 10 has a sliding bearing surface 10a formed on an annular bottom surface. In the bearing recess 10, an inner side surface 10b provided on the other end side opposite to the holding plate 8 in the axial direction is notched at a substantially right angle in a radial direction from the sliding bearing surface 10a. As described above, the other end of the bearing concave portion 10 is opened at the other end on the camshaft 2 side and released to the outside, and the opened other end is opened by the inner side surface 8f of the inner peripheral portion 8b of the holding plate 8. Covered.
 ジャーナル部11は、図3に示すように、円盤状本体9aの外周面から径方向外側へ突出して、断面形状が軸受凹部10の断面形状とほぼ相似形の矩形状に形成されている。また、このジャーナル部11は、軸受凹部10が各歯車部1bと軸方向でオーバーラップしていることから、同じく一部がスプロケット1の各歯車部1bと軸方向でオーバーラップ配置されている。 (3) As shown in FIG. 3, the journal portion 11 protrudes radially outward from the outer peripheral surface of the disk-shaped main body 9a, and is formed in a rectangular shape having a cross-sectional shape substantially similar to the cross-sectional shape of the bearing recess 10. Also, since the bearing recess 10 axially overlaps with each gear portion 1b, this journal portion 11 is also partially overlapped with each gear portion 1b of the sprocket 1 in the axial direction.
 さらに、ジャーナル部11は、円盤状本体9aとの結合部位である基部11aの軸方向両側にそれぞれ円環溝11b、11cが形成されている。また、ジャーナル部11は、環状の外周面11dが軸受凹部10の滑り軸受面10a全体に摺動可能になっている。各円環溝11b、11cは、従動部材9の回転時においてジャーナル部が、保持プレート8の内側面8fと軸受凹部10の内側面10bと接触するのを回避するようになっている。 ジ ャ ー ナ ル Furthermore, the journal portion 11 has annular grooves 11b and 11c formed on both sides in the axial direction of the base portion 11a, which is a connection portion with the disc-shaped main body 9a. The journal portion 11 has an annular outer peripheral surface 11d slidable over the entire sliding bearing surface 10a of the bearing recess 10. Each of the annular grooves 11 b and 11 c prevents the journal portion from contacting the inner surface 8 f of the holding plate 8 and the inner surface 10 b of the bearing recess 10 when the driven member 9 rotates.
 ジャーナル部11は、軸方向のフロントプレート15側の一端面11eが軸受凹部10の内側面10bに摺動可能になっている。この軸受凹部10の内側面10bが、スプロケット1の傾動時においてジャーナル部11の一端面11eに当接して一方のスラスト移動を規制する第1軸方向規制部になっている。 The journal portion 11 is configured such that one end surface 11e on the side of the front plate 15 in the axial direction is slidable on the inner surface 10b of the bearing recess 10. The inner side surface 10b of the bearing recess 10 serves as a first axial direction restricting portion that restricts one thrust movement by contacting one end surface 11e of the journal portion 11 when the sprocket 1 is tilted.
 また、ジャーナル部11は、軸方向の保持プレート8側の他端面11fが保持プレート8の内周部8bの内側面8fに摺動可能になっている。この保持プレート8の内側面8fが、スプロケット1の傾動時においてジャーナル部11の他端面11fに当接して他方のスラスト移動を規制する第2軸方向規制部になっている。 The journal 11 is configured such that the other end surface 11f on the holding plate 8 side in the axial direction can slide on the inner surface 8f of the inner peripheral portion 8b of the holding plate 8. The inner side surface 8f of the holding plate 8 is a second axial direction restricting portion that restricts the other thrust movement by contacting the other end surface 11f of the journal portion 11 when the sprocket 1 is tilted.
 図8は軸受凹部10とジャーナル部11の各部の長さ関係を示す模式図であって、スプロケット1が傾いた場合のジャーナル部11に対する主として軸方向のアキシャル荷重F1、F2の作用説明図である。 FIG. 8 is a schematic view showing the relationship between the lengths of the bearing recess 10 and the journal section 11, and is an explanatory view of the action of axial loads F1 and F2 mainly on the journal section 11 when the sprocket 1 is inclined. .
 すなわち、図8に示すように、第1軸方向規制部である軸受凹部10の内側面10bと第2軸方向規制部である保持プレート8の内側面8fとの間の軸方向幅A1とし、滑り軸受面10aの内周面の直径をA2とし、さらに、ジャーナル部11の両端面11e、11f間の軸方向幅をBとし、ジャーナル部11の外周面の直径をDとしたときに、以下の式を満足するように設定されている。 That is, as shown in FIG. 8, an axial width A1 between an inner surface 10b of the bearing recess 10 as the first axial direction regulating portion and an inner surface 8f of the holding plate 8 as the second axial direction regulating portion is provided. When the diameter of the inner peripheral surface of the slide bearing surface 10a is A2, the axial width between both end surfaces 11e and 11f of the journal portion 11 is B, and the diameter of the outer peripheral surface of the journal portion 11 is D, Is set to satisfy the equation.
 Ca=A1-B
 Cr=A2-D
 Ca<Cr・(D/B)
 ここで、Caは、前記軸方向幅A1とジャーナル部11の軸方向幅Bとの間の軸方向クリアランス(隙間)。Crは、前記ジャーナル部11の外周面(直径D)と軸受凹部10の滑り軸受面10aの内周面(直径A2)との間の径方向クリアランス(隙間)である。
Ca = A1-B
Cr = A2-D
Ca <Cr ・ (D / B)
Here, Ca is an axial clearance (gap) between the axial width A1 and the axial width B of the journal portion 11. Cr is a radial clearance (gap) between the outer peripheral surface (diameter D) of the journal portion 11 and the inner peripheral surface (diameter A2) of the sliding bearing surface 10a of the bearing recess 10.
 そして、本実施形態では、前記軸方向クリアランスCaが、径方向クリアランスCr×(直径D/軸方向幅B)よりも小さくなるように設定されているのである。 In the present embodiment, the axial clearance Ca is set to be smaller than the radial clearance Cr × (diameter D / axial width B).
 カムボルト14は、図1に示すように、頭部14aの外周面にニードルベアリング25の各ニードルローラ25aが転動可能に保持されている。また、軸部14bの先端部外周には、カムシャフト2の雌ねじ部2cに螺着する雄ねじ部14cが形成されている。 As shown in FIG. 1, the cam bolt 14 has a needle roller 25a of a needle bearing 25 rotatably held on an outer peripheral surface of a head 14a. A male screw portion 14c that is screwed to the female screw portion 2c of the camshaft 2 is formed on the outer periphery of the distal end portion of the shaft portion 14b.
 位相変更機構3は、図1及び図2に示すように、従動部材9の固定端部9bの前端側に配置された電動モータ12と、この電動モータ12の回転速度を減速してカムシャフト2に伝達する減速機構13と、から主として構成されている。 As shown in FIGS. 1 and 2, the phase changing mechanism 3 includes an electric motor 12 disposed on the front end side of the fixed end 9 b of the driven member 9, and reduces the rotation speed of the electric motor 12 to reduce the rotational speed of the camshaft 2. And a speed reduction mechanism 13 for transmitting the power to the motor.
 電動モータ12は、いわゆるブラシレスDCモータであって、簡単に説明すれば、チェーンケースに固定される有底円筒状のモータハウジング16と、該モータハウジング16の後端部に設けられて、内部にステータコイルなどが収容されたモータステータと、ステータコイルの内周側に配置されたモータ出力軸17と、該モータ出力軸17の外周に固定された円筒状の永久磁石と、モータハウジング16のスプロケット1と反対側の前端部に設けられた給電機構18と、を有している。 The electric motor 12 is a so-called brushless DC motor. In short, the electric motor 12 has a bottomed cylindrical motor housing 16 fixed to a chain case, and is provided at the rear end of the motor housing 16 so as to be internally provided. A motor stator accommodating a stator coil and the like; a motor output shaft 17 arranged on the inner peripheral side of the stator coil; a cylindrical permanent magnet fixed to the outer periphery of the motor output shaft 17; 1 and a power supply mechanism 18 provided at a front end opposite to the front side.
 モータハウジング16は、ほぼカップ状に形成されて、前端部(底壁)のほぼ中央にモータ出力軸17が貫通する貫通孔が形成されている。一方、後端部の外周には、径方向外側に突出したフランジ部16aが設けられている。このフランジ部16aは、円周方向の約120°位置に3つのブラケット片16bが一体に設けられている。また、この3つのブラケット片16bには、図外のチェーンケースに結合されるボルトが挿通されるボルト挿通孔16cが貫通形成されている。 The motor housing 16 is formed substantially in a cup shape, and has a through hole through which the motor output shaft 17 penetrates substantially at the center of the front end (bottom wall). On the other hand, a flange 16a protruding radially outward is provided on the outer periphery of the rear end. The flange portion 16a has three bracket pieces 16b integrally provided at a position of about 120 ° in the circumferential direction. A bolt insertion hole 16c through which a bolt coupled to a chain case (not shown) is inserted is formed through the three bracket pieces 16b.
 さらに、フランジ部16aの円周方向の各ブラケット片16bの間には、3つのボルト31が挿通する別異の3つのボルト挿通孔が形成されている。給電機構18は、各ボルト31によってモータハウジング16に結合されている。なお、前記ボルト挿通孔16cやボルト31などは、さらに増加することも可能である。 Furthermore, three different bolt insertion holes into which the three bolts 31 are inserted are formed between the bracket pieces 16b in the circumferential direction of the flange portion 16a. The power supply mechanism 18 is connected to the motor housing 16 by each bolt 31. The number of the bolt insertion holes 16c and the bolts 31 can be further increased.
 モータステータは、主として合成樹脂材の樹脂部によって一体に形成されて、内部にステータコイルがモールド固定されている。 The motor stator is formed integrally with a resin portion of a synthetic resin material, and a stator coil is molded and fixed inside.
 給電機構18は、合成樹脂材によってボックス状に形成されている。この給電機構18の内部には、電動モータ12へ給電するバスバーなどの通電回路やモータ出力軸17の回転位置を検出する回転センサなどが収容配置されている。また、給電機構18は、外周部に通電回路に電気的に接続される給電用コネクタ18aと図外の信号用コネクタが一体に設けられている。 The power supply mechanism 18 is formed in a box shape from a synthetic resin material. Inside the power supply mechanism 18, an energizing circuit such as a bus bar for supplying power to the electric motor 12, a rotation sensor for detecting the rotational position of the motor output shaft 17, and the like are accommodated. In the power supply mechanism 18, a power supply connector 18a electrically connected to a power supply circuit and a signal connector (not shown) are provided integrally on an outer peripheral portion.
 給電用コネクタ18aは、内部の端子が図外のコントロールユニットに雌端子を介して電源であるバッテリーに接続されている。一方、信号用コネクタは、図外の内部の端子がコントロールユニットに雌端子を介して接続され、回転センサで検出された回転角信号をコントロールユニットに出力するようになっている。 The power supply connector 18a has an internal terminal connected to a battery, which is a power supply, via a female terminal to a control unit (not shown). On the other hand, the signal connector has an internal terminal (not shown) connected to the control unit via a female terminal, and outputs a rotation angle signal detected by the rotation sensor to the control unit.
 モータ出力軸17は、金属材によって円筒状に形成されて、減速機構13側の先端側に減速機構13に接続される継手機構であるオルダム継手19の一部を構成する中間部材20が設けられている。この中間部材20は、モータ出力軸17の先端部17aに固定される筒状基部20aと、該筒状基部20aの外周面に一体に設けられた2つの伝達キー20b、20cと、を有している。 The motor output shaft 17 is formed of a metal material in a cylindrical shape, and an intermediate member 20 that constitutes a part of an Oldham coupling 19 that is a coupling mechanism connected to the reduction mechanism 13 is provided on a distal end side of the reduction mechanism 13. ing. The intermediate member 20 has a cylindrical base 20a fixed to the distal end 17a of the motor output shaft 17, and two transmission keys 20b and 20c provided integrally on the outer peripheral surface of the cylindrical base 20a. ing.
 筒状基部20aは、金属材である例えば鉄系金属によって形成され、中央にモータ出力軸17の先端部17aが挿通固定される固定用孔20dを有している。また、筒状基部20aは、外周面の約180°位置に二面幅状の2つの平面部を有している。 The cylindrical base portion 20a is formed of a metal material, for example, an iron-based metal, and has a fixing hole 20d in the center through which the distal end portion 17a of the motor output shaft 17 is inserted and fixed. Further, the cylindrical base 20a has two flat portions having a width across flats at a position of about 180 ° on the outer peripheral surface.
 各伝達キー20b、20cは、ほぼ矩形ブロック状に形成されて、筒状基部20aの2つの平面部から径方向外側に向かって突出している。 伝 達 Each transmission key 20b, 20c is formed in a substantially rectangular block shape, and protrudes radially outward from two flat portions of the cylindrical base 20a.
 コントロールユニットは、図外のクランク角センサやエアーフローメータ、水温センサ、アクセル開度センサなど各種のセンサ類からの情報信号に基づいて現在の機関運転状態を検出し、これに基づいて機関制御を行っている。また、コントロールユニットは、前記各情報信号や回転位置検出機構に基づいて、コイル部に通電してモータ出力軸17の回転制御を行い、減速機構13によってカムシャフト2のタイミングスプロケット1に対する相対回転位相を制御するようになっている。 The control unit detects the current engine operating state based on information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, and an accelerator opening sensor not shown, and controls the engine based on this. Is going. The control unit controls the rotation of the motor output shaft 17 by energizing the coil unit based on the information signals and the rotation position detection mechanism, and controls the relative rotation phase of the camshaft 2 with respect to the timing sprocket 1 by the reduction mechanism 13. Is controlled.
 減速機構13は、図1に示すように、電動モータ12とは軸方向から分離独立して設けられ、各構成部材が保持プレート8とフロントプレート15との間のスプロケット1の内部に収容配置されている。 As shown in FIG. 1, the speed reduction mechanism 13 is provided separately from the electric motor 12 in the axial direction, and each component is accommodated and arranged inside the sprocket 1 between the holding plate 8 and the front plate 15. ing.
 具体的に説明すれば、減速機構13は、図1~図3、図7に示すように、スプロケット本体1aの内部に一部が配置された円筒状の偏心軸21と、該偏心軸21の外周に設けられたボールベアリング22と、該ボールベアリング22の外周に設けられ、内歯構成部5の各内歯5a内に転動自在に保持された伝達部材であるローラ23と、該ローラ23を転動方向に保持しつつ径方向の移動を許容する伝達部(突出部)である保持器24と、該保持器24と一体の前述した従動部材9と、から主として構成されている。 More specifically, as shown in FIGS. 1 to 3 and 7, the speed reducing mechanism 13 includes a cylindrical eccentric shaft 21 partially disposed inside the sprocket body 1a, A ball bearing 22 provided on the outer periphery, a roller 23 provided on the outer periphery of the ball bearing 22 and being a rolling member rotatably held in each of the internal teeth 5 a of the internal tooth forming section 5, Mainly comprises a retainer 24 which is a transmitting portion (protruding portion) that allows radial movement while holding the in the rolling direction, and the above-described driven member 9 integrated with the retainer 24.
 偏心軸21は、カムボルト14の頭部14aの外周に設けられたニードルベアリング25の外周に配置された偏心軸部21aと、該偏心軸部21aの電動モータ12側に有する大径円筒部21bと、を有している。 The eccentric shaft 21 includes an eccentric shaft portion 21a disposed on an outer periphery of a needle bearing 25 provided on an outer periphery of the head portion 14a of the cam bolt 14, and a large-diameter cylindrical portion 21b provided on the electric motor 12 side of the eccentric shaft portion 21a. ,have.
 偏心軸部21aは、周方向の肉厚が厚薄変化して軸心Xがカムボルト14の軸心Yに対して僅かに偏心している。 The thickness of the eccentric shaft portion 21 a in the circumferential direction changes in thickness, and the axis X is slightly eccentric with respect to the axis Y of the cam bolt 14.
 大径円筒部21bは、オルダム継手19の一部を構成し、スプロケット本体1aの内部からフロントプレート15の挿入孔15aを介して電動モータ12方向に突出している。この大径円筒部21bは、図5にも示すように、内部に前記中間部材20の二面幅状の筒状基部20aが軸方向から嵌合可能な二面幅状の嵌合孔21cが形成されている。また、大径円筒部21bは、電動モータ12側の先端部の周方向約180°の位置に、中間部材20の各伝達キー20b、20cが回転軸方向から嵌合可能な2つのキー溝21d、21eが形成されている。 The large-diameter cylindrical portion 21b constitutes a part of the Oldham coupling 19 and protrudes from the inside of the sprocket body 1a toward the electric motor 12 through the insertion hole 15a of the front plate 15. As shown in FIG. 5, the large-diameter cylindrical portion 21b has a two-sided width fitting hole 21c into which the two-sided width cylindrical base 20a of the intermediate member 20 can be fitted in the axial direction. Is formed. The large-diameter cylindrical portion 21b has two key grooves 21d at which the transmission keys 20b and 20c of the intermediate member 20 can be fitted from the rotation axis direction at a position of about 180 ° in the circumferential direction of the tip portion on the electric motor 12 side. , 21e are formed.
 ニードルベアリング25は、カムボルト14の頭部14aの外周面を転動する複数のニードルローラ25aと、偏心軸部21aの内周面に形成された段差面に固定されて、内周面にニードルローラ25aを転動可能に保持する複数の溝部を有するシェル25bと、を有している。 The needle bearing 25 is fixed to a plurality of needle rollers 25a that roll on the outer peripheral surface of the head portion 14a of the cam bolt 14 and a step surface formed on the inner peripheral surface of the eccentric shaft portion 21a. And a shell 25b having a plurality of grooves for rollingly holding the 25a.
 ボールベアリング22は、ニードルベアリング25の径方向位置で全体がほぼオーバーラップする状態に配置されている。また、ボールベアリング22は、内輪22aと、外輪22b、該両輪22a、22bとの間に介装されたボール22cと、該ボール22cを保持するケージ22dと、から構成されている。 The ball bearing 22 is arranged so as to substantially entirely overlap the radial position of the needle bearing 25. The ball bearing 22 includes an inner race 22a, an outer race 22b, a ball 22c interposed between the two races 22a and 22b, and a cage 22d for holding the ball 22c.
 内輪22aは、偏心軸部21aの外周面に圧入固定されているのに対して、外輪22bは、軸方向で固定されることなくフリーな状態になっている。つまり、この外輪22bは、軸方向の電動モータ12側の一端面がフロントプレート15の内側面に微小クリアランスを介して接触しないようになっている。また、外輪22bの軸方向の他端面も、これに対向する従動部材9の円盤状本体9aの背面に微小なクリアランスを介して接触しないようになっている。 While the inner ring 22a is press-fitted and fixed to the outer peripheral surface of the eccentric shaft portion 21a, the outer ring 22b is free without being fixed in the axial direction. In other words, the outer ring 22b is configured such that one end surface on the electric motor 12 side in the axial direction does not contact the inner surface of the front plate 15 via the minute clearance. Further, the other end surface of the outer ring 22b in the axial direction is also prevented from contacting the rear surface of the disk-shaped main body 9a of the driven member 9 facing the outer ring 22b via a minute clearance.
 また、外輪22bは、外周面に各ローラ23の外周面が転動自在に当接している。また、外輪22bの外周面と保持器24の内面との間に、円環状のクリアランスが形成されている。したがって、ボールベアリング22は、クリアランスを介して全体が偏心軸部21aの偏心回転に伴って径方向へ偏心動可能になっている。 外 In addition, the outer peripheral surface of each roller 23 is in rolling contact with the outer peripheral surface of the outer ring 22b. An annular clearance is formed between the outer peripheral surface of the outer ring 22b and the inner surface of the retainer 24. Therefore, the entire ball bearing 22 can be eccentrically moved in the radial direction with the eccentric rotation of the eccentric shaft portion 21a via the clearance.
 保持器24は、円環板状に形成されて、円盤状本体9aの外周部に一体に設けられている。つまり、この保持器24は、円盤状本体9aのジャーナル部11の基部11aからフロントプレート15方向へ直線状に突出形成されている。保持器24の先端面24aと、フロントプレート15の内側面15cとの間には、所定のクリアランスCが形成されている。 The retainer 24 is formed in an annular plate shape, and is provided integrally with the outer peripheral portion of the disk-shaped main body 9a. That is, the retainer 24 is formed so as to linearly protrude from the base 11a of the journal portion 11 of the disc-shaped main body 9a toward the front plate 15. A predetermined clearance C is formed between the tip surface 24a of the retainer 24 and the inner surface 15c of the front plate 15.
 また、保持器24は、周方向のほぼ等間隔位置に複数のローラ23をそれぞれ転動自在に保持するほぼ長方形状の複数のローラ保持孔24bが形成されている。このローラ保持孔24bは、保持器24の円周方向の等間隔位置に設けられ、先端部側が閉塞されて前後方向に細長い長方形状に形成され、その全体の数(ローラ23の数)が内歯構成部5の内歯5aの全体の歯数よりも少なくなっており、これによって、所定の減速比を得るようになっている。 保持 Further, the retainer 24 is formed with a plurality of substantially rectangular roller holding holes 24b respectively rotatably holding the plurality of rollers 23 at substantially equal intervals in the circumferential direction. The roller holding holes 24b are provided at equal intervals in the circumferential direction of the holder 24, are closed at the tip end side, and are formed in a rectangular shape elongated in the front-rear direction, and the total number thereof (the number of the rollers 23) is inside. The number of the internal teeth 5a of the tooth forming section 5 is smaller than the total number of teeth, so that a predetermined reduction ratio is obtained.
 各ローラ23は、鉄系金属によって形成され、ボールベアリング22の偏心動に伴って径方向へ移動しつつ内歯構成部5の内歯5aに嵌入している。また各ローラ23は、保持器24のローラ保持孔24bの両側縁によって周方向にガイドされつつ径方向へ揺動運動するようになっている。 Each roller 23 is formed of an iron-based metal, and is fitted in the internal teeth 5 a of the internal tooth forming section 5 while moving in the radial direction with the eccentric movement of the ball bearing 22. Further, each roller 23 swings in the radial direction while being guided in the circumferential direction by both side edges of the roller holding hole 24b of the holder 24.
 また、減速機構13は、図3に示すように、潤滑油供給通路を介して内部に潤滑油が供給されるようになっている。潤滑油供給通路は、機関のメインオイルギャラリーから分岐されてシリンダヘッド01内からカムシャフト2の内部に形成された油通路26と、従動部材9の円盤状本体9aをカムシャフト2の軸方向に沿って貫通形成された油孔27と、を有している。 減速 Further, as shown in FIG. 3, the deceleration mechanism 13 is configured such that lubricating oil is supplied inside through a lubricating oil supply passage. The lubricating oil supply passage extends from the main oil gallery of the engine to the oil passage 26 formed inside the camshaft 2 from inside the cylinder head 01 and the disc-shaped main body 9 a of the driven member 9 in the axial direction of the camshaft 2. And an oil hole 27 formed therethrough.
 油孔27は、上流側の大径な一端部27aが、前記油通路26と連通していると共に、下流側の小径な他端部27bがニードルベアリング25のシェル25bの側部付近に連通している。 The oil hole 27 has an upstream large-diameter end portion 27a communicating with the oil passage 26, and a downstream small-diameter other end portion 27b communicating with the vicinity of a side portion of the shell 25b of the needle bearing 25. ing.
 また、油孔27から減速機構13の内部に流入した潤滑油は、図中矢印で示すように、ボールベアリング22の内部や外周側の保持器24内などを通り、ここから、軸受凹部10とジャーナル部11との間に流入する。つまり、潤滑油は、ジャーナル部11の両端面11e、11fや外周面11dと軸受凹部10の内側面10bや滑り軸受面10aとの間を通って潤滑に供される。そして、ここからさらに、フロントプレート15の挿入孔15aから外部に排出されるようになっている。 Further, the lubricating oil flowing into the inside of the speed reduction mechanism 13 from the oil hole 27 passes through the inside of the ball bearing 22 and the inside of the retainer 24 on the outer peripheral side as shown by the arrow in the drawing, and from there, the bearing recess 10 and It flows in between the journal unit 11. In other words, the lubricating oil is provided for lubrication by passing between the both end surfaces 11 e and 11 f and the outer peripheral surface 11 d of the journal portion 11 and the inner side surface 10 b and the sliding bearing surface 10 a of the bearing recess 10. The air is further discharged from the insertion hole 15a of the front plate 15 to the outside.
 なお、メインオイルギャラリーには、図外のオイルポンプの吐出通路から潤滑油が圧送されるようになっている。
〔本実施形態の作用効果〕
 以下、本実施形態におけるバルブタイミング制御装置の作用について説明する。
The main oil gallery is supplied with lubricating oil from a discharge passage of an oil pump (not shown).
[Operation and effect of the present embodiment]
Hereinafter, the operation of the valve timing control device according to the present embodiment will be described.
 まず、機関のクランクシャフトの回転駆動に伴ってタイミングチェーンを介してタイミングスプロケット1が回転すると、この回転力が内歯構成部5に伝達される。この内歯構成部5の回転力が、各ローラ23から保持器24及び従動部材9を経由してカムシャフト2に伝達される。これによって、カムシャフト2の駆動カムが各吸気弁を開閉作動させる。 First, when the timing sprocket 1 rotates via the timing chain with the rotation drive of the crankshaft of the engine, this rotational force is transmitted to the internal gear forming section 5. The rotational force of the internal teeth forming section 5 is transmitted from each roller 23 to the camshaft 2 via the retainer 24 and the driven member 9. Thus, the drive cam of the camshaft 2 opens and closes each intake valve.
 機関始動後の所定の機関運転時には、コントロールユニットからの制御電流が電動モータ12のコイル部に通電されてモータ出力軸17が正逆回転駆動される。このモータ出力軸17の回転力が、偏心軸21に伝達されて減速機構13の作動によりカムシャフト2に対し減速された回転力が伝達される。 時 に は During a predetermined engine operation after the engine is started, a control current from the control unit is supplied to the coil of the electric motor 12 to drive the motor output shaft 17 to rotate forward and reverse. The torque of the motor output shaft 17 is transmitted to the eccentric shaft 21, and the reduced torque is transmitted to the camshaft 2 by the operation of the speed reduction mechanism 13.
 これによって、カムシャフト2が、タイミングスプロケット1に対して正逆相対回転して相対回転位相が変換される。したがって、各吸気弁は、開閉タイミングを進角側あるいは遅角側に変換制御されるのである。 Accordingly, the camshaft 2 rotates forward and reverse relative to the timing sprocket 1 to change the relative rotation phase. Therefore, the opening and closing timing of each intake valve is controlled to be converted to the advance side or the retard side.
 このように、吸気弁の開閉タイミングが進角側あるいは遅角側へ連続的に変換されることによって、機関の燃費や出力などの機関性能の向上が図れる。 As described above, since the opening / closing timing of the intake valve is continuously converted to the advance side or the retard side, engine performance such as fuel efficiency and output of the engine can be improved.
 そして、本実施形態では、回転駆動中においてチェーン張力が歯車部1bに掛かると、スプロケット1にジャーナル部11の径方向及び軸方向の中心である回転中心Oを支点とする傾き方向の力(回転モーメント)が発生する。この回転モータによって軸受凹部10がジャーナル部11に軸方向から当接し、アキシャル荷重F1,F2が発生する。このアキシャル荷重F1,F2をジャーナル部11の両端面11e、11fによって受け止めることができる。したがって、スプロケット1の傾動を抑制することが可能になる。 In this embodiment, when the chain tension is applied to the gear portion 1b during the rotation driving, the sprocket 1 exerts a force (rotational force) in a tilt direction about the rotation center O, which is the center in the radial and axial directions of the journal portion 11, as a fulcrum. Moment). With this rotary motor, the bearing recess 10 abuts on the journal portion 11 in the axial direction, and axial loads F1 and F2 are generated. The axial loads F1 and F2 can be received by both end surfaces 11e and 11f of the journal portion 11. Therefore, the tilting of the sprocket 1 can be suppressed.
 すなわち、前述したように、軸受凹部10(保持プレート8を含む)とジャーナル部11との各部の長さ関係を、Ca<Cr・(D/B)の式を満足するように設定した。これによって、図8に示すように、スプロケット1が従動部材9に対して図中、左回転方向へ傾いた場合は、図中、下側では、ジャーナル部11の一端面11eが軸受凹部10の内側面10bからのアキシャル荷重F1(白抜き矢印)を受ける。一方、同時に上側では、ジャーナル部11の他端面11fが保持プレート8の内側面8fからのアキシャル荷重F2(白抜き矢印)を受ける。 That is, as described above, the length relationship between the bearing recess 10 (including the holding plate 8) and the journal 11 is set so as to satisfy the expression Ca <Cr. (D / B). As a result, as shown in FIG. 8, when the sprocket 1 is tilted counterclockwise in the figure with respect to the driven member 9, one end face 11e of the journal portion 11 is located on the lower side in the figure. An axial load F1 (open arrow) is received from the inner surface 10b. On the other hand, at the same time, on the upper side, the other end surface 11f of the journal portion 11 receives an axial load F2 (open arrow) from the inner side surface 8f of the holding plate 8.
 このように設定することによって、スプロケット1の傾きによって、ジャーナル部11の外周面11dの軸方向の一端部11daと他端部11dbのうちの一方が軸受凹部10の滑り軸受面10aから離れた状態で、ジャーナル部11の一端面11eと他端面11fが軸受凹部10の内側面10b及び内側面8fに当接する。つまり、スプロケット1が傾いた状態で、ジャーナル部11の外周面11dの一端部11daと他端部11dbの両方に滑り軸受面10aが当接せず、軸受凹部10の軸方向の側面10b、8fがジャーナル部11に当接するようになっている。 By setting as described above, one of the one end 11da and the other end 11db in the axial direction of the outer peripheral surface 11d of the journal portion 11 is separated from the sliding bearing surface 10a of the bearing recess 10 by the inclination of the sprocket 1. Thus, the one end surface 11e and the other end surface 11f of the journal portion 11 abut against the inner side surface 10b and the inner side surface 8f of the bearing recess 10. That is, in a state where the sprocket 1 is inclined, the sliding bearing surface 10a does not contact both the one end 11da and the other end 11db of the outer peripheral surface 11d of the journal portion 11, and the axial side surfaces 10b, 8f of the bearing recess 10 are formed. Abuts on the journal section 11.
 換言すれば、スプロケット1が左回転方向への傾動によってアキシャル荷重F1,F2が働くと、この両アキシャル荷重F1,F2を、軸受凹部10の内側面10bと保持プレート8の内側面8fを介してジャーナル部11の両端面11e、11fによってそれぞれ受け止めて規制することができる。 In other words, when the axial loads F1 and F2 are applied by the tilting of the sprocket 1 in the counterclockwise direction, the axial loads F1 and F2 are applied via the inner surface 10b of the bearing recess 10 and the inner surface 8f of the holding plate 8. Both ends 11e and 11f of the journal portion 11 can receive and regulate the journal.
 これによって、スプロケット1の従動部材9に対する傾きを効果的に抑制することが可能になる。 This makes it possible to effectively suppress the inclination of the sprocket 1 with respect to the driven member 9.
 なお、このスプロケット1の傾き抑制効果は、例えば、図8に示すように、スプロケット1の歯車部1bの配置をフロントプレート15側へ寄せた場合、つまり、スプロケット1の傾きの回転中心Oに対してチェーン張力の掛かるポイントがオフセットしている場合についても十分に発揮する。 The effect of suppressing the inclination of the sprocket 1 is, for example, as shown in FIG. 8, when the arrangement of the gear portion 1b of the sprocket 1 is moved toward the front plate 15, that is, with respect to the rotation center O of the inclination of the sprocket 1. It is also effective when the point where the chain tension is applied is offset.
 しかも、両アキシャル荷重F1,F2を、ジャーナル部11の両端面11e、11fで受け止めて規制することから、スプロケット1に対する回転モーメントが大きく作用し、ジャーナル部11から軸受凹部10の滑り軸受面10aに対する径方向荷重であるラジアル荷重F3(白抜き矢印)を十分に小さくすることができる。 In addition, since both axial loads F1 and F2 are received and regulated by both end faces 11e and 11f of the journal portion 11, a large rotational moment acts on the sprocket 1 and the journal portion 11 causes the bearing recess 10 to contact the sliding bearing surface 10a. The radial load F3 (open arrow), which is a radial load, can be sufficiently reduced.
 このため、ジャーナル部11の外周面と滑り軸受面10aとの間のフリクションを十分に小さくすることが可能になる。この結果、スプロケット1の従動部材9に対する常時円滑な軸受作用が得られる。これによって、バルブタイミング制御装置の位相の変換速度が向上する。 Therefore, it is possible to sufficiently reduce the friction between the outer peripheral surface of the journal portion 11 and the slide bearing surface 10a. As a result, an always smooth bearing action for the driven member 9 of the sprocket 1 can be obtained. This improves the phase conversion speed of the valve timing control device.
 さらに、スプロケット1が傾いた状態でジャーナル部11の外周面11dの一端部11daと他端部11dbの両方が滑り軸受面10aに当接する場合と、スプロケット1が傾いた状態でジャーナル部11の一端面11eと他端面11fが軸受凹部10の内側面10b及び内側面8fに当接する場合のジャーナル部11の外周面11dと滑り軸受面10aとの間のフリクションの比は、ジャーナル部11の直径Dと軸方向幅Bの比によって決定される。よって、本実施形態にようにB<Dであればより効果が高い。 Further, both the one end 11da and the other end 11db of the outer peripheral surface 11d of the journal 11 contact the sliding bearing surface 10a in a state where the sprocket 1 is inclined. When the end surface 11e and the other end surface 11f abut on the inner surface 10b and the inner surface 8f of the bearing recess 10, the friction ratio between the outer peripheral surface 11d of the journal 11 and the sliding bearing surface 10a is determined by the diameter D of the journal 11. And the axial width B. Therefore, if B <D as in the present embodiment, the effect is higher.
 また、軸受凹部10の滑り軸受面10aは、スプロケット1の歯車部1bに対して軸方向でオーバーラップした位置に形成されている。このため、歯車部1bに巻回されるチェーンのテンション荷重が滑り軸受面10aを介してジャーナル部11に作用するので、スプロケット1の傾きをさらに抑制することが可能になる。 滑 り The sliding bearing surface 10a of the bearing recess 10 is formed at a position axially overlapping the gear portion 1b of the sprocket 1. For this reason, the tension load of the chain wound around the gear portion 1b acts on the journal portion 11 via the sliding bearing surface 10a, so that the inclination of the sprocket 1 can be further suppressed.
 また、ジャーナル部11は、円盤状本体9aの外周面から径方向外側に突出して形成されているので、スプロケット1の傾き抑制手段であるジャーナル部11の軸方向幅長さB、つまり、保持プレート8の内側面8fと軸受凹部10の内側面10bとの間の長さA1を、前記従来の技術に比較して十分に短くすることができる。これによって、装置全体の軸方向の長さを短くできるので、装置の小型化が図れる。 Further, since the journal portion 11 is formed so as to protrude radially outward from the outer peripheral surface of the disk-shaped main body 9a, the axial width length B of the journal portion 11 which is the means for suppressing the inclination of the sprocket 1, ie, the holding plate The length A1 between the inner side surface 8f of the base 8 and the inner side surface 10b of the bearing recess 10 can be made sufficiently shorter than that of the conventional technique. As a result, the axial length of the entire device can be reduced, so that the device can be downsized.
 また、前記内側面8fと内側面10bとの間の長さA1を短くできることによって、内側面8fと内側面10b及びジャーナル部11との間の寸法精度の管理が容易になる。この結果、製造作業が容易になる。 In addition, since the length A1 between the inner side surface 8f and the inner side surface 10b can be reduced, the dimensional accuracy between the inner side surface 8f, the inner side surface 10b, and the journal portion 11 can be easily managed. As a result, the manufacturing operation becomes easy.
 また、保持器24の先端面24aとフロントプレート15の内側面15cとの間にクリアランスCが形成されており、かつ、ジャーナル部1と軸受凹部10によって従動部材9の軸方向移動が規制されていることから、保持器24(従動部材9)とフロントプレート15との間のフリクションの発生が抑制される。このため、スプロケット1と従動部材9との相対回転の応答性が向上すると共に、音振の発生も抑制できる。 Further, a clearance C is formed between the distal end surface 24a of the retainer 24 and the inner side surface 15c of the front plate 15, and the journal portion 1 and the bearing recess 10 restrict the movement of the driven member 9 in the axial direction. Therefore, the occurrence of friction between the retainer 24 (the driven member 9) and the front plate 15 is suppressed. Therefore, the responsiveness of the relative rotation between the sprocket 1 and the driven member 9 is improved, and the generation of sound vibration can be suppressed.
 さらに、油通路26から油孔27を通って減速機構13の内部に供給された潤滑油は、駆動中における遠心力によって軸受凹部10の滑り軸受面10aとジャーナル部11の外周面11dの間に強制的に供給される。このため、両者10a、11dなどの間を含めた軸受凹部10の内面とジャーナル部11の外面全体の潤滑性が良好になる。 Further, the lubricating oil supplied from the oil passage 26 to the inside of the speed reduction mechanism 13 through the oil hole 27 is moved between the sliding bearing surface 10a of the bearing recess 10 and the outer peripheral surface 11d of the journal 11 by centrifugal force during driving. Forced supply. Therefore, the lubricating properties of the inner surface of the bearing recess 10 and the entire outer surface of the journal portion 11 including between the two 10a and 11d are improved.
 特に、滑り軸受面10aは、内歯構成部5の内歯5aの歯底面よりも径方向外側に有することから、潤滑油が遠心力によって内歯5a側から流入し易くなる。したがって、両者10a、11d間の潤滑性がさらに良好になる。 Particularly, since the sliding bearing surface 10a is located radially outside the tooth bottom surface of the internal teeth 5a of the internal tooth forming section 5, lubricating oil is likely to flow from the internal teeth 5a side due to centrifugal force. Accordingly, the lubricity between the two 10a and 11d is further improved.
 特に、軸受凹部10に流入した潤滑油は、機関停止時においてもここで貯留された状態になることから、駆動後における軸受凹部10の内面全体とジャーナル部11の外面全体との間の速やかな潤滑作用が得られる。 In particular, the lubricating oil that has flowed into the bearing recess 10 is stored here even when the engine is stopped, so that the lubricating oil quickly moves between the entire inner surface of the bearing recess 10 and the entire outer surface of the journal 11 after driving. A lubricating action is obtained.
 さらに、保持プレート8の内周部8bの中央孔8aの孔縁となる部位が、内歯構成部5の各内歯5aの歯底面よりも内側に配置されている。このため、機関停止時においては、図3に示すように、内周部8bがダムとしての機能を発揮するので、軸受凹部10の他に各内歯5aの歯底面にも潤滑油を十分に貯留することが可能になる。したがって、駆動時における各内歯5aと各ローラ23との間の潤滑性が向上して、減速機構13の円滑な回転が得られる。 部位 Furthermore, a portion that becomes a hole edge of the central hole 8a of the inner peripheral portion 8b of the holding plate 8 is disposed inside the tooth bottom surface of each internal tooth 5a of the internal tooth forming portion 5. For this reason, when the engine is stopped, as shown in FIG. 3, the inner peripheral portion 8b functions as a dam, so that lubricating oil is sufficiently applied not only to the bearing recess 10 but also to the tooth bottom surface of each internal tooth 5a. It becomes possible to store. Therefore, the lubricity between each internal tooth 5a and each roller 23 during driving is improved, and smooth rotation of the speed reduction mechanism 13 is obtained.
 また、保持プレート8は、その肉厚t1がフロントプレート15の肉厚tよりも大きく設定されて、剛性が高くなっていることから、ジャーナル部11の他端面11fから受けるアキシャル荷重に対する耐久性の向上が図れる。一方、フロントプレート15の内側面15cには、ジャーナル部11の一端面11eからのアキシャル荷重を直接受けることがないので、肉厚tを可及的に小さくすることができる。このため、全体の軽量化が図れる。 The holding plate 8 has a thickness t1 larger than the thickness t of the front plate 15 and has a high rigidity. Therefore, the holding plate 8 has durability against an axial load received from the other end surface 11f of the journal portion 11. Improvement can be achieved. On the other hand, since the axial load from the one end surface 11e of the journal portion 11 is not directly received on the inner side surface 15c of the front plate 15, the thickness t can be made as small as possible. Therefore, the overall weight can be reduced.
 また、第2軸方向規制部は、軸受凹部10を覆うフロントプレート15を利用したことから、その製造作業が簡単である。 製造 Further, since the second axial direction regulating portion uses the front plate 15 that covers the bearing recess 10, the manufacturing operation thereof is simple.
 本実施形態では、従動部材9に対するスプロケット1の軸受として、ボールベアリングではなく、軸受凹部10とジャーナル部11を利用した滑り軸受を用いている。このため、構造が簡素化されて製造作業が容易になると共に、部品コストの低減化が図れる。 In the present embodiment, as the bearing of the sprocket 1 with respect to the driven member 9, not a ball bearing but a slide bearing using a bearing recess 10 and a journal 11 is used. For this reason, the structure is simplified, the manufacturing operation is facilitated, and the cost of parts can be reduced.
 本発明は、前記各実施形態の構成に限定されるものではなく、例えば、減速機構13としては例えば遊星歯車式などであっても良い。 The present invention is not limited to the configuration of each of the above embodiments. For example, the reduction mechanism 13 may be, for example, a planetary gear type.
 また、ジャーナル部11は、軸方向幅をそのままに、さらに径方向へ大きく形成すれば、両端面11e、11fの径方向の長さが大きくなることから、保持プレート8の内周部8bの内側面8fと軸受凹部10の内側面10bによるアキシャル(軸方向)方向の規制効果が大きくなる。これによって、スプロケット1の傾きをさらに効果的に抑制できる。 Also, if the journal portion 11 is formed in the radial direction while keeping the axial width unchanged, the radial length of both end surfaces 11e and 11f increases, so that the inner peripheral portion 8b of the holding plate 8 The regulation effect in the axial (axial direction) by the side surface 8f and the inner side surface 10b of the bearing recess 10 increases. Thereby, the inclination of the sprocket 1 can be suppressed more effectively.
 なお、第2軸方向規制部として、軸受凹部10全体をスプロケット1の内周面に凹状に形成して、保持プレート8の内周部8bを傾き抑制手段としないことも可能である。 As the second axial direction restricting portion, the entire bearing concave portion 10 may be formed in a concave shape on the inner peripheral surface of the sprocket 1, and the inner peripheral portion 8b of the holding plate 8 may not be used as the inclination suppressing means.
 また、継手機構としては、オルダム継手以外の継手であってもよい。 The joint mechanism may be a joint other than the Oldham joint.
 以上説明した実施形態に基づく内燃機関のバルブタイミング制御装置としては、例えば、以下に述べる態様のものが考えられる。 バ ル ブ As the valve timing control device for an internal combustion engine based on the above-described embodiment, for example, the following embodiments can be considered.
 すなわち、本発明における好ましい態様としては、クランクシャフトからの回転力が伝達される駆動回転体と、カムシャフトに固定されて、該カムシャフトと一体に回転する従動回転体と、電動モータのモータ出力軸の回転を減速機構によって減速して前記駆動回転体と従動回転体の相対回転位相を変更する位相変更機構と、前記駆動回転体の内周に設けられた滑り軸受面と、前記従動回転体の外周から径方向外側に突出して設けられ、外周面が前記滑り軸受面に摺動するジャーナル部と、前記駆動回転体に設けられ、前記ジャーナル部を軸方向の両側から挟んだ状態で前記ジャーナル部の軸方向の移動を規制する第1軸方向規制部及び第2軸方向規制部と、を備えている。 That is, in a preferred embodiment of the present invention, a driving rotator to which torque from a crankshaft is transmitted, a driven rotator fixed to a camshaft and rotating integrally with the camshaft, and a motor output of an electric motor A phase change mechanism that changes the relative rotation phase of the driving rotator and the driven rotator by reducing the rotation of the shaft by a reduction mechanism, a sliding bearing surface provided on an inner periphery of the driving rotator, and the driven rotator A journal portion that is provided so as to protrude radially outward from the outer periphery of the journal, and has an outer peripheral surface that slides on the sliding bearing surface; and the journal that is provided on the drive rotating body and sandwiches the journal portion from both sides in the axial direction. A first axial direction restricting portion and a second axial direction restricting portion for restricting axial movement of the portion.
 さらに好ましくは、前記滑り軸受面は、前記減速機構の噛み合い部に対して前記駆動回転体の回転軸方向にオフセットされ、かつ前記噛み合い部よりも前記駆動回転体の回転軸の径方向外側に設けられている。 More preferably, the sliding bearing surface is offset in a rotation axis direction of the driving rotating body with respect to a meshing portion of the speed reduction mechanism, and is provided radially outside of the rotating shaft of the driving rotating body with respect to the meshing portion. Have been.
 この発明によれば、減速機構内に有する潤滑油が、遠心力によって滑り軸受面とジャーナル部との間に供給されることから、両者間の潤滑性が良好になる。 According to the present invention, since the lubricating oil in the speed reduction mechanism is supplied between the sliding bearing surface and the journal by centrifugal force, lubricity between the two is improved.
 さらに好ましくは、前記噛み合い部は、前記駆動回転体の内周に設けられた内歯と、前記内歯に噛み合い、前記モータ出力軸の回転が減速されて前記従動回転体の伝達部に伝達する伝達部材と、を有し、
 前記滑り軸受面は、前記内歯の歯底よりも径方向外側に設けられている。
More preferably, the meshing portion meshes with an internal tooth provided on an inner periphery of the driving rotating body, and the rotation of the motor output shaft is reduced and transmitted to a transmitting portion of the driven rotating body. Having a transmission member,
The sliding bearing surface is provided radially outside of the tooth bottom of the internal teeth.
 この発明によれば、滑り軸受面が、歯底よりも径方向外側にあるのでさらに潤滑性が良好になる。 According to the present invention, since the sliding bearing surface is located radially outside the tooth bottom, lubrication is further improved.
 さらに好ましくは、前記伝達部は、前記従動回転体の前記ジャーナル部側の端縁から前記内歯の内周側へ突出した円環状に設けられ、前記駆動回転体は、前記伝達部の前記駆動回転体の回転軸方向の一方を覆うカバーを有し、前記カバーと前記伝達部の先端面との間にクリアランスを有している。 More preferably, the transmission portion is provided in an annular shape protruding from the edge of the driven rotating body on the journal portion side toward the inner peripheral side of the internal teeth, and the driving rotating body is configured to drive the driving portion of the transmission portion. There is a cover that covers one side of the rotating body in the direction of the rotation axis, and a clearance is provided between the cover and the distal end surface of the transmission unit.
 この発明によれば、カバーと伝達部の先端面との間にクリアランスを有することによって、カバーと従動回転体との間のフリクションの発生が抑制される。このため、従動回転体と駆動回転体との相対回転の応答性が良好になる。 According to the present invention, since the clearance is provided between the cover and the distal end surface of the transmission portion, the occurrence of friction between the cover and the driven rotating body is suppressed. Therefore, the responsiveness of the relative rotation between the driven rotor and the drive rotor is improved.
 さらに好ましくは、前記従動回転体は、前記カムシャフト内に有する潤滑油の油通路と前記伝達部よりも径方向内側の空間を連通させる油孔を有している。 More preferably, the driven rotating body has an oil hole for communicating an oil passage of the lubricating oil provided in the camshaft with a space radially inside the transmitting portion.
 滑り軸受面が径方向外側の位置にあることから、油孔から遠心力で径方向外側へ流れ込んだ潤滑油によって、潤滑性が良好になる。 こ と Since the sliding bearing surface is at the radially outer position, the lubricating oil flowing radially outward from the oil hole by centrifugal force improves lubricity.
 さらに好ましくは、前記駆動回転体は、該駆動回転体の内周に設けられ、底面に前記滑り軸受面を有する凹部を有し、
 前記第1軸方向規制部は、前記凹部の前記駆動回転体の回転軸方向の一端面である。
More preferably, the driving rotating body is provided on an inner periphery of the driving rotating body, and has a concave portion having the sliding bearing surface on a bottom surface,
The first axial direction restricting portion is one end surface of the recess in the rotation axis direction of the driving rotating body.
 さらに好ましくは、前記駆動回転体の回転軸方向の他方側に、前記凹部の他端側を覆う環状のプレート部材が固定され、前記第2軸方向規制部は、前記プレート部材によって形成されている。 More preferably, an annular plate member that covers the other end of the concave portion is fixed to the other side in the rotation axis direction of the drive rotating body, and the second axial direction restriction portion is formed by the plate member. .
 さらに好ましくは、前記第2軸方向規制部は、内径が前記内歯の歯底よりも径方向内側にある。 More preferably, the second axial direction regulating portion has an inner diameter located radially inward of the root of the internal teeth.
 減速機構内の潤滑油は、内歯の歯底にも溜まることから、各内歯と転動部材との間の潤滑性も良好になる。 潤滑 Since the lubricating oil in the speed reduction mechanism also accumulates at the bottom of the internal teeth, lubrication between each internal tooth and the rolling member is also improved.
 さらに好ましくは、前記プレート部材の前記駆動回転体の回転軸方向の厚さ幅は、前記カバーの前記駆動回転体の回転軸方向の厚さ幅よりも大きい。 More preferably, the thickness of the plate member in the rotation axis direction of the driving rotator is larger than the thickness of the cover in the rotation axis direction of the driving rotator.
 プレート部材の厚さ幅を大きくすることによって、第2軸方向規制部が受ける従動回転体(ジャーナル部)からの一方のアキシャル荷重に対する耐久性の向上が図れる。逆にカバーは、従動回転体からの他方のアキシャル荷重を直接受けることがないので、厚さ幅を小さくできることから、軽量化が図れる。 耐久 By increasing the thickness and width of the plate member, it is possible to improve the durability against one axial load from the driven rotating body (journal portion) which is received by the second axial direction regulating portion. Conversely, the cover does not directly receive the other axial load from the driven rotating body, so that the thickness and width can be reduced, so that the weight can be reduced.
 さらに好ましくは、前記駆動回転体は、外周に前記クランクシャフトからの回転力が伝達される外歯を有し、前記滑り軸受面は、前記外歯に対して前記駆動回転体の回転軸方向でオーバーラップした位置にある。 More preferably, the driving rotating body has external teeth on the outer periphery of which the rotational force from the crankshaft is transmitted, and the sliding bearing surface is arranged in the rotation axis direction of the driving rotating body with respect to the external teeth. It is in the overlapping position.
 オーバーラップしていることによって外歯に巻回された無端状の索条(チェーン)の荷重が掛かる箇所が滑り軸受面と重なることから、従動部材の傾きをさらに抑制できる。 箇 所 Because of the overlap, the portion of the endless cable wound around the external teeth where the load is applied overlaps with the sliding bearing surface, so that the inclination of the driven member can be further suppressed.
 さらに好ましくは、前記減速機構は、前記モータ出力軸が嵌合し、軸心が前記モータ出力軸の軸心に対して偏心した偏心軸と、前記偏心軸の外周と前記内歯の内周との間に配置された複数のローラと、前記従動回転体に設けられて、前記複数のローラを保持する複数のローラ保持孔を有する保持器と、有している。 More preferably, the speed reduction mechanism, the motor output shaft is fitted, an eccentric shaft whose axis is eccentric with respect to the axis of the motor output shaft, an outer periphery of the eccentric shaft and an inner periphery of the internal teeth. And a retainer provided on the driven rotating body and having a plurality of roller holding holes for holding the plurality of rollers.
 さらに好ましくは、前記第1軸方向規制部と前記第2軸方向規制部の間の軸方向幅をA1とし、前記滑り軸受面の直径をA2とし、前記ジャーナル部の軸方向の幅をB、前記ジャーナル部の直径をDとしたときに、
 Ca=A1-B
 Cr=A2-D
 Ca<Cr・(D/B)
 の式を満たすように設定されている。
More preferably, the axial width between the first axial direction regulating portion and the second axial direction regulating portion is A1, the diameter of the sliding bearing surface is A2, and the axial width of the journal portion is B, When the diameter of the journal portion is D,
Ca = A1-B
Cr = A2-D
Ca <Cr ・ (D / B)
Is set to satisfy the expression.
 さらに好ましくは、前記駆動回転体は、外周に前記クランクシャフトからの回転力が伝達される外歯を有し、前記滑り軸受面は、前記外歯に対して前記駆動回転体の回転軸方向でオフセットした位置にある。 More preferably, the driving rotating body has external teeth on the outer periphery of which the rotational force from the crankshaft is transmitted, and the sliding bearing surface is arranged in the rotation axis direction of the driving rotating body with respect to the external teeth. It is in the offset position.
 別の好ましい態様としては、クランクシャフトからの回転力が伝達される駆動回転体と、カムシャフトに固定されて、該カムシャフトと一体に回転する従動回転体と、電動モータのモータ出力軸の回転を減速機構によって減速して前記駆動回転体と従動回転体の相対回転位相を変更する位相変更機構と、前記駆動回転体の内周に設けられた凹部の底面に有する滑り軸受面と、前記従動回転体の外周から径方向外側に突出して設けられ、前記滑り軸受面に摺動するジャーナル部と、前記駆動回転体に設けられ、前記ジャーナル部を軸方向の両側から挟んだ状態で軸方向の移動を規制する第1軸方向規制部及び第2軸方向規制部と、を備え、
 前記第1軸方向規制部と第2軸方向規制部は、両方とも前記減速機構の噛み合い部に対して回転軸方向の一方側に設けられている。
As another preferred embodiment, a driving rotary member to which a rotational force from a crankshaft is transmitted, a driven rotary member fixed to a camshaft and rotating integrally with the camshaft, and a rotation of a motor output shaft of the electric motor A phase change mechanism that changes the relative rotational phase of the driving rotator and the driven rotator by reducing the speed of the driven rotator by a speed reduction mechanism; A journal portion that is provided to protrude radially outward from the outer periphery of the rotating body and slides on the slide bearing surface, and is provided on the drive rotating body, and is axially sandwiched between the journal portions from both sides in the axial direction. A first axial direction restricting portion and a second axial direction restricting portion for restricting movement,
Both the first axial direction restricting portion and the second axial direction restricting portion are provided on one side in the rotation axis direction with respect to the meshing portion of the speed reduction mechanism.
 さらに好ましくは、前記噛み合い部は、前記従動回転体から軸方向へ突出した突出部を含み、前記突出部に前記電動モータの減速された回転力が伝達され、前記駆動回転体は、前記突出部の前記駆動回転体の回転軸方向の一端部を覆うプレート部材を有し、前記突出部は、前記駆動回転体が前記従動回転体に対して傾いたとしても前記突出部が前記プレート部材に当接しないように、前記一端部と前記プレート部材との間にクリアランスが設定されている。 More preferably, the meshing portion includes a protruding portion that protrudes in an axial direction from the driven rotating body, and the reduced rotational force of the electric motor is transmitted to the protruding portion, and the driving rotating body includes the protruding portion. A plate member that covers one end of the driving rotator in the direction of the rotation axis, wherein the projecting portion contacts the plate member even if the driving rotator is inclined with respect to the driven rotator. A clearance is set between the one end and the plate member so as not to contact.
 さらに好ましくは、前記駆動回転体が前記従動回転体に対して傾いたときに、前記第1軸方向規制部が前記ジャーナル部の軸方向の一方の端面に当接し、前記第2軸方向規制部が前記ジャーナル部の軸方向の他方の端面に当接するように、前記滑り軸受面と前記ジャーナル部の間の径方向隙間が設定されている。 More preferably, when the driving rotary body is inclined with respect to the driven rotary body, the first axial direction restricting portion abuts on one end surface of the journal portion in the axial direction, and the second axial direction restricting portion. The radial gap between the sliding bearing surface and the journal portion is set such that the abutment is in contact with the other axial end surface of the journal portion.
1…タイミングスプロケット(駆動回転体)、1a…スプロケット本体、1b…歯車部(外歯)、2…カムシャフト、2a…一端部、3…位相変更機構、8…保持プレート(プレート部材)、8b…内周部、8f…内側面(第2軸方向規制部)、9…従動部材(従動回転体)、9a…円盤状本体、9b…固定端部、10…軸受凹部、10a…滑り軸受面、10b…内側面(一端面・第1軸方向規制部)、11…ジャーナル部、11a…基部、11d…外周面、11e…一端面、11f…他端面、12…電動モータ、13…減速機構、15…フロントプレート(カバー)、19…オルダム継手(継手機構)、20…中間部材、21…偏心軸、22…ボールベアリング、22a…内輪、22b…外輪、23…ローラ、24…保持器(伝達部・突出部)、24b…ローラ保持孔、25…ニードルベアリング、A1…軸受凹部の内側面と保持プレートの内側面との間の軸方向幅、A2…滑り軸受面の直径、B…ジャーナル部の軸方向の幅、D…ジャーナル部の直径、Ca…ジャーナル部の両端面と軸受凹部の内側面及び保持プレートの内側面との間のクリアランス(隙間)、Cr…滑り軸受面とジャーナル部の外周面との間のクリアランス(隙間)。 DESCRIPTION OF SYMBOLS 1 ... Timing sprocket (drive rotary body), 1a ... Sprocket main body, 1b ... Gear part (external teeth), 2 ... Camshaft, 2a ... One end part, 3 ... Phase change mechanism, 8 ... Holding plate (plate member), 8b ... Inner peripheral part, 8f ... Inner surface (second axial direction restricting part), 9 ... Driving member (driven rotating body), 9a ... Disc-shaped body, 9b ... Fixed end part, 10 ... Bearing recess, 10a ... Sliding bearing surface Reference numeral 10b: Inside surface (one end surface / first axial direction regulating portion), 11: Journal portion, 11a: Base portion, 11d: Outer peripheral surface, 11e: One end surface, 11f: Other end surface, 12: Electric motor, 13: Reduction mechanism , 15: Front plate (cover), 19: Oldham coupling (coupling mechanism), 20: Intermediate member, 21: Eccentric shaft, 22: Ball bearing, 22a: Inner ring, 22b: Outer ring, 23: Roller, 24: Cage ( (Transmission part / projection part), 24b ... roller holder Holding hole, 25: Needle bearing, A1: Axial width between inner surface of bearing recess and inner surface of holding plate, A2: Diameter of sliding bearing surface, B: Axial width of journal portion, D: Journal Diameter, Ca: clearance (gap) between both end surfaces of the journal portion and the inner surface of the bearing recess and the inner surface of the holding plate, Cr: clearance (gap) between the sliding bearing surface and the outer peripheral surface of the journal portion ).

Claims (16)

  1.  クランクシャフトからの回転力が伝達される駆動回転体と、
     カムシャフトに固定されて、該カムシャフトと一体に回転する従動回転体と、
     電動モータのモータ出力軸の回転を減速機構によって減速して前記駆動回転体と従動回転体の相対回転位相を変更する位相変更機構と、
     前記駆動回転体の内周に設けられた滑り軸受面と、
     前記従動回転体の外周から径方向外側に突出して設けられ、外周面が前記滑り軸受面に摺動するジャーナル部と、
     前記駆動回転体に設けられ、前記ジャーナル部を軸方向の両側から挟んだ状態で前記ジャーナル部の軸方向の移動を規制する第1軸方向規制部及び第2軸方向規制部と、
     を備えたことを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotating body to which the rotating force from the crankshaft is transmitted;
    A driven rotating body fixed to the camshaft and rotating integrally with the camshaft;
    A phase changing mechanism that changes the relative rotation phase of the driving rotator and the driven rotator by reducing the rotation of the motor output shaft of the electric motor by a reduction mechanism;
    A sliding bearing surface provided on the inner periphery of the drive rotating body,
    A journal portion which is provided so as to protrude radially outward from the outer periphery of the driven rotor, and whose outer peripheral surface slides on the slide bearing surface;
    A first axial direction restricting portion and a second axial direction restricting portion which are provided on the drive rotating body and restrict axial movement of the journal portion while sandwiching the journal portion from both sides in the axial direction;
    A valve timing control device for an internal combustion engine, comprising:
  2.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記滑り軸受面は、前記減速機構の噛み合い部に対して前記駆動回転体の回転軸方向にオフセットされ、かつ前記噛み合い部よりも前記駆動回転体の回転軸の径方向外側に設けられていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 1,
    The sliding bearing surface is offset in a rotation axis direction of the driving rotating body with respect to a meshing portion of the speed reduction mechanism, and is provided radially outside of the rotating shaft of the driving rotating body with respect to the meshing portion. A valve timing control device for an internal combustion engine, comprising:
  3.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記噛み合い部は、前記駆動回転体の内周に設けられた内歯と、前記内歯に噛み合い、前記モータ出力軸の回転が減速されて前記従動回転体の伝達部に伝達する伝達部材と、を有し、
     前記滑り軸受面は、前記内歯の歯底よりも径方向外側に設けられていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 2,
    The meshing portion is an internal tooth provided on the inner periphery of the driving rotator, and a transmission member that meshes with the internal tooth, and transmits a rotation of the motor output shaft to a transmission portion of the driven rotator while the rotation of the motor output shaft is reduced. Has,
    The valve timing control device for an internal combustion engine, wherein the sliding bearing surface is provided radially outside a root of the internal teeth.
  4.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記伝達部は、前記従動回転体の前記ジャーナル部側の端縁から前記内歯の内周側へ突出した円環状に設けられ、
     前記駆動回転体は、前記伝達部の前記駆動回転体の回転軸方向の一方を覆うカバーを有し、
     前記カバーと前記伝達部の先端面との間にクリアランスを有することを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 3,
    The transmission portion is provided in an annular shape protruding from the edge of the driven rotating body on the journal portion side to the inner peripheral side of the internal teeth,
    The drive rotator has a cover that covers one of the transmission units in the rotation axis direction of the drive rotator,
    A valve timing control device for an internal combustion engine, comprising a clearance between the cover and a front end surface of the transmission unit.
  5.  請求項4に記載の内燃機関のバルブタイミング制御装置において、
     前記従動回転体は、前記カムシャフト内に有する潤滑油の油通路と前記伝達部よりも径方向内側の空間を連通させる油孔を有することを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 4,
    The valve timing control device for an internal combustion engine, wherein the driven rotor has an oil hole that communicates an oil passage of lubricating oil in the camshaft with a space radially inside the transmission portion.
  6.  請求項3に記載の内燃機関のバルブタイミング制御装置において、
     前記駆動回転体は、該駆動回転体の内周に設けられ、底面に前記滑り軸受面を有する凹部を有し、
     前記第1軸方向規制部は、前記凹部の前記駆動回転体の回転軸方向の一端面であることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 3,
    The drive rotating body is provided on an inner periphery of the drive rotating body, and has a concave portion having the sliding bearing surface on a bottom surface,
    The valve timing control device for an internal combustion engine, wherein the first axial direction restricting portion is one end surface of the concave portion in a rotation axis direction of the driving rotating body.
  7.  請求項6に記載の内燃機関のバルブタイミング制御装置において、
     前記駆動回転体の回転軸方向の他方側に、前記凹部の他端側を覆う環状のプレート部材が固定され、
     前記第2軸方向規制部は、前記プレート部材によって形成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 6,
    An annular plate member that covers the other end of the concave portion is fixed to the other side in the rotation axis direction of the driving rotator,
    The valve timing control device for an internal combustion engine, wherein the second axial direction restriction portion is formed by the plate member.
  8.  請求項7に記載の内燃機関のバルブタイミング制御装置において、
     前記第2軸方向規制部は、内径が前記内歯の歯底よりも径方向内側にあることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 7,
    The valve timing control device for an internal combustion engine, wherein the inner diameter of the second axial direction regulating portion is located radially inward of a root of the internal teeth.
  9.  請求項7に記載の内燃機関のバルブタイミング制御装置において、
     前記プレート部材の前記駆動回転体の回転軸方向の厚さ幅は、前記カバーの前記駆動回転体の回転軸方向の厚さ幅よりも大きいことを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 7,
    A valve timing control device for an internal combustion engine, wherein a thickness width of the plate member in a rotation axis direction of the driving rotor is larger than a thickness width of the cover in a rotation axis direction of the driving rotor.
  10.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記駆動回転体は、外周に前記クランクシャフトからの回転力が伝達される外歯を有し、
     前記滑り軸受面は、前記外歯に対して前記駆動回転体の回転軸方向でオーバーラップした位置にあることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 1,
    The drive rotating body has external teeth on the outer periphery of which rotational force from the crankshaft is transmitted,
    The valve timing control device for an internal combustion engine, wherein the sliding bearing surface is located at a position overlapping with the external teeth in a direction of a rotation axis of the driving rotating body.
  11.  請求項10に記載の内燃機関のバルブタイミング制御装置において、
     前記減速機構は、
     前記モータ出力軸が嵌合し、軸心が前記モータ出力軸の軸心に対して偏心した偏心軸と、
     前記偏心軸の外周と前記内歯の内周との間に配置された複数のローラと、
     前記従動回転体に設けられて、前記複数のローラを保持する複数のローラ保持孔を有する保持器と、
    を有することを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 10,
    The speed reduction mechanism,
    An eccentric shaft in which the motor output shaft is fitted and whose shaft center is eccentric with respect to the shaft center of the motor output shaft;
    A plurality of rollers disposed between the outer periphery of the eccentric shaft and the inner periphery of the internal teeth,
    A holder provided on the driven rotating body and having a plurality of roller holding holes for holding the plurality of rollers,
    A valve timing control device for an internal combustion engine, comprising:
  12.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記第1軸方向規制部と前記第2軸方向規制部の間の軸方向幅をA1とし、前記滑り軸受面の直径をA2とし、前記ジャーナル部の軸方向の幅をB、前記ジャーナル部の直径をDとしたときに、
     Ca=A1-B
     Cr=A2-D
     Ca<Cr・(D/B)
     の式を満たすことを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 1,
    The axial width between the first axial direction restricting portion and the second axial direction restricting portion is A1, the diameter of the sliding bearing surface is A2, the axial width of the journal portion is B, When the diameter is D,
    Ca = A1-B
    Cr = A2-D
    Ca <Cr ・ (D / B)
    A valve timing control device for an internal combustion engine, characterized by satisfying the following expression:
  13.  請求項12に記載の内燃機関のバルブタイミング制御装置において、
     前記駆動回転体は、外周に前記クランクシャフトからの回転力が伝達される外歯を有し、
     前記滑り軸受面は、前記外歯に対して前記駆動回転体の回転軸方向でオフセットした位置にあることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 12,
    The drive rotating body has external teeth on the outer periphery of which rotational force from the crankshaft is transmitted,
    The valve timing control device for an internal combustion engine, wherein the sliding bearing surface is located at a position offset with respect to the external teeth in a rotation axis direction of the driving rotating body.
  14.  クランクシャフトからの回転力が伝達される駆動回転体と、
     カムシャフトに固定されて、該カムシャフトと一体に回転する従動回転体と、
     電動モータのモータ出力軸の回転を減速機構によって減速して前記駆動回転体と従動回転体の相対回転位相を変更する位相変更機構と、
     前記駆動回転体の内周に設けられた凹部の底面に有する滑り軸受面と、
     前記従動回転体の外周から径方向外側に突出して設けられ、前記滑り軸受面に摺動するジャーナル部と、
     前記駆動回転体に設けられ、前記ジャーナル部を軸方向の両側から挟んだ状態で軸方向の移動を規制する第1軸方向規制部及び第2軸方向規制部と、
     を備え、
     前記第1軸方向規制部と第2軸方向規制部は、両方とも前記減速機構の噛み合い部に対して回転軸方向の一方側に設けられていることを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotating body to which the rotating force from the crankshaft is transmitted;
    A driven rotating body fixed to the camshaft and rotating integrally with the camshaft;
    A phase changing mechanism that changes the relative rotation phase of the driving rotator and the driven rotator by reducing the rotation of the motor output shaft of the electric motor by a reduction mechanism;
    A sliding bearing surface on the bottom surface of a concave portion provided on the inner periphery of the drive rotating body,
    A journal portion that is provided to protrude radially outward from the outer periphery of the driven rotating body and slides on the slide bearing surface,
    A first axial direction restricting portion and a second axial direction restricting portion which are provided on the drive rotating body and restrict axial movement while sandwiching the journal portion from both sides in the axial direction;
    With
    The valve timing control device for an internal combustion engine, wherein both the first axial direction restricting portion and the second axial direction restricting portion are provided on one side in the rotation axis direction with respect to a meshing portion of the speed reduction mechanism. .
  15.  請求項14に記載の内燃機関のバルブタイミング制御装置において、
     前記噛み合い部は、前記従動回転体から軸方向へ突出した突出部を含み、前記突出部に前記電動モータの減速された回転力が伝達され、
     前記駆動回転体は、前記突出部の前記駆動回転体の回転軸方向の一端部を覆うプレート部材を有し、
     前記突出部は、前記駆動回転体が前記従動回転体に対して傾いたとしても前記突出部が前記プレート部材に当接しないように、前記一端部と前記プレート部材との間にクリアランスが設定されていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 14,
    The meshing portion includes a protruding portion that protrudes in the axial direction from the driven rotating body, and the reduced rotational force of the electric motor is transmitted to the protruding portion,
    The driving rotator has a plate member that covers one end of the protrusion in the rotation axis direction of the driving rotator,
    The protrusion has a clearance set between the one end and the plate member such that the protrusion does not contact the plate member even if the drive rotor is inclined with respect to the driven rotor. A valve timing control device for an internal combustion engine, comprising:
  16.  請求項14に記載の内燃機関のバルブタイミング制御装置において、
     前記駆動回転体が前記従動回転体に対して傾いたときに、前記第1軸方向規制部が前記ジャーナル部の軸方向の一方の端面に当接し、前記第2軸方向規制部が前記ジャーナル部の軸方向の他方の端面に当接するように、前記滑り軸受面と前記ジャーナル部の間の径方向隙間が設定されていることを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 14,
    When the drive rotary body is inclined with respect to the driven rotary body, the first axial direction restricting portion contacts one end surface of the journal portion in the axial direction, and the second axial direction restricting portion is connected to the journal portion. A valve timing control device for an internal combustion engine, wherein a radial gap between the sliding bearing surface and the journal portion is set so as to contact the other end surface in the axial direction of the internal combustion engine.
PCT/JP2019/022272 2018-08-23 2019-06-05 Valve timing control device for internal combustion engine WO2020039689A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980055008.9A CN112840106B (en) 2018-08-23 2019-06-05 Valve timing control device for internal combustion engine
JP2020538188A JP7085629B2 (en) 2018-08-23 2019-06-05 Internal combustion engine valve timing controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018155903 2018-08-23
JP2018-155903 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020039689A1 true WO2020039689A1 (en) 2020-02-27

Family

ID=69593026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022272 WO2020039689A1 (en) 2018-08-23 2019-06-05 Valve timing control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP7085629B2 (en)
CN (1) CN112840106B (en)
WO (1) WO2020039689A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113747A1 (en) * 2009-04-03 2010-10-07 Ntn株式会社 Variable valve timing device
JP2013167181A (en) * 2012-02-15 2013-08-29 Hitachi Automotive Systems Ltd Valve timing control apparatus for internal combustion engine
JP2016169741A (en) * 2016-06-27 2016-09-23 日立オートモティブシステムズ株式会社 Valve timing control system of internal combustion engine
JP2018123727A (en) * 2017-01-31 2018-08-09 株式会社デンソー Valve timing adjustment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934579B2 (en) 2003-06-13 2007-06-20 株式会社日立製作所 Valve timing control device for internal combustion engine
JP5888283B2 (en) * 2013-06-14 2016-03-16 株式会社デンソー Valve timing adjustment device
CN107614840B (en) * 2015-06-02 2019-12-20 日立汽车系统株式会社 Valve timing control device for internal combustion engine
JP6790639B2 (en) * 2016-09-15 2020-11-25 アイシン精機株式会社 Valve opening / closing timing control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113747A1 (en) * 2009-04-03 2010-10-07 Ntn株式会社 Variable valve timing device
JP2013167181A (en) * 2012-02-15 2013-08-29 Hitachi Automotive Systems Ltd Valve timing control apparatus for internal combustion engine
JP2016169741A (en) * 2016-06-27 2016-09-23 日立オートモティブシステムズ株式会社 Valve timing control system of internal combustion engine
JP2018123727A (en) * 2017-01-31 2018-08-09 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
CN112840106A (en) 2021-05-25
JP7085629B2 (en) 2022-06-16
CN112840106B (en) 2023-02-17
JPWO2020039689A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP4987031B2 (en) Valve timing control device for internal combustion engine
JP5288311B2 (en) Variable valve timing device
US20110265747A1 (en) Variable valve actuation apparatus of internal combustion engine
JP2019007409A (en) Valve opening/closing timing control device
US8978610B2 (en) Valve timing control apparatus for internal combustion engine
JP5197471B2 (en) Valve timing control device for internal combustion engine
JP5411066B2 (en) Variable valve operating device for internal combustion engine
JP2010138736A (en) Valve timing control device for internal combustion engine
JP5719008B2 (en) Variable valve operating device for internal combustion engine
WO2020039689A1 (en) Valve timing control device for internal combustion engine
JP7256691B2 (en) Valve timing control device for internal combustion engine
US11242775B2 (en) Valve timing adjustment device
CN113167140B (en) Valve timing adjusting device
JP2020033961A (en) Valve timing control device of internal combustion engine
WO2023101003A1 (en) Valve timing control device for internal combustion engine
WO2023013321A1 (en) Valve timing control device for internal combustion engine
JP2020056357A (en) Valve timing control device for internal combustion engine
WO2022190569A1 (en) Valve timing control device for internal combustion engine
WO2022181017A1 (en) Internal combustion engine valve timing control device
WO2019054218A1 (en) Valve timing control device for internal combustion engine
WO2020162016A1 (en) Valve timing control device for internal combustion engine
JP2010242595A (en) Variable valve timing device
JP3989764B2 (en) Valve timing control device for internal combustion engine
JP6808844B2 (en) Internal combustion engine valve timing controller
JP2021165547A (en) Valve timing control device for internal combustion engine and speed reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852366

Country of ref document: EP

Kind code of ref document: A1