WO2020039655A1 - X線位相イメージング装置 - Google Patents

X線位相イメージング装置 Download PDF

Info

Publication number
WO2020039655A1
WO2020039655A1 PCT/JP2019/017376 JP2019017376W WO2020039655A1 WO 2020039655 A1 WO2020039655 A1 WO 2020039655A1 JP 2019017376 W JP2019017376 W JP 2019017376W WO 2020039655 A1 WO2020039655 A1 WO 2020039655A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
subject
background
detector
Prior art date
Application number
PCT/JP2019/017376
Other languages
English (en)
French (fr)
Inventor
直樹 森本
木村 健士
太郎 白井
貴弘 土岐
哲 佐野
日明 堀場
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020538170A priority Critical patent/JP7111166B2/ja
Publication of WO2020039655A1 publication Critical patent/WO2020039655A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to an X-ray phase imaging apparatus, and more particularly, to an X-ray phase imaging apparatus that generates a phase contrast image including at least one of an absorption image, a phase differential image, and a dark field image.
  • an X-ray phase imaging apparatus that generates a phase contrast image including at least one of an absorption image, a phase differential image, and a dark field image is known.
  • Such an X-ray phase imaging apparatus is disclosed, for example, in International Publication WO2014 / 030115.
  • WO 2014/030115 discloses an X-ray source, an X-ray detector, and a plurality of gratings (a source grating, a phase grating (first grating) and a plurality of gratings arranged between the X-ray source and the X-ray detector).
  • X-ray phase imaging apparatus having an analysis grating (second grating)).
  • a source grating, a phase grating, and an analysis grating are arranged in this order from the X-ray source side to the X-ray detector side.
  • X-rays emitted from an X-ray source and passed through a source grating pass through the phase grating, so that the phase grating is positioned at a predetermined distance from the phase grating.
  • a self-image is formed.
  • the X-ray detector is configured to detect interference fringes (moire fringes) generated by interference between the self-image and the analysis grating.
  • X-ray detection is performed by detecting a change in moiré fringes that is changed by translating (scanning fringes) one of a plurality of gratings (source grating) at a predetermined cycle.
  • the detector is configured to generate a plurality of X-ray images.
  • a plurality of X-ray images background acquired images
  • the X-ray source and the X-ray A plurality of X-ray images (subject acquired images) when a subject is arranged between the detector and the detector are generated.
  • the generated plurality of acquired background images and the plurality of acquired subject images are analyzed, and a background analysis image and a subject analysis image are generated, respectively.
  • a phase contrast image including an absorption image, a phase differential image, and a dark field image is generated based on the generated background analysis image and subject analysis image.
  • the absorption image is an X-ray image formed based on the difference in the degree of X-ray absorption by the subject.
  • the phase differential image is an X-ray image formed based on the phase shift of the X-ray.
  • the dark-field image is a visibility image obtained by a change in visibility (clarity) based on small-angle scattering of an object.
  • the generated X-ray image includes the statistical variation of the X-ray dose. This causes noise (quantum noise). Then, as the quantum noise increases, the image quality of the phase contrast image generated based on the background acquired image and the subject acquired image decreases. Note that, as the imaging time (X-ray detection time) becomes longer, the statistical variation of the X-ray dose converges, so that the quantum noise generated in the X-ray image is reduced. That is, there is a trade-off between shortening the shooting time and improving the image quality.
  • the quantum noise is sufficiently reduced in order to secure a predetermined level of image quality in the generated phase contrast image.
  • the imaging time X-ray detection time
  • An advantage of some aspects of the invention is to reduce a photographing time while securing a predetermined level of image quality in a generated phase contrast image. It is an object of the present invention to provide an X-ray phase imaging apparatus capable of performing the above.
  • an X-ray phase imaging apparatus includes an X-ray source, a detector that detects X-rays emitted from the X-ray source, an X-ray source and a detector. And a plurality of gratings including a first grating for forming a self-image by X-rays emitted from the X-ray source, and a second grating for causing interference with the self-image of the first grating.
  • Phase contrast including at least one And an image processing unit for generating an image, wherein the image processing unit detects an X-ray amount detected by a detector in at least one of the background acquired image and the background analysis image before the phase contrast image is generated. It is configured to perform noise reduction processing for reducing quantum noise due to statistical fluctuation of.
  • the image processing unit applies quantum noise to at least one of the background acquired image and the background analysis image before the phase contrast image is generated. It is configured to perform noise reduction processing for reducing noise.
  • noise reduction processing By performing the noise reduction processing on either the background acquired image or the background analysis image, a phase contrast image can be generated based on the background analysis image in which the quantum noise has been reduced and the subject analysis image. it can.
  • a phase contrast image with reduced influence of quantum noise is generated. be able to. This makes it possible to shorten the photographing time while securing a predetermined level of image quality in the generated phase contrast image.
  • the noise reduction processing for reducing quantum noise corresponds to filtering processing for smoothing an image.
  • the image processing unit does not perform noise reduction processing on any of the subject acquisition image and the subject analysis image, and at least one of the background acquisition image and the background analysis image. It is configured to generate a phase contrast image by performing noise reduction processing on one side.
  • the noise reduction processing is not performed on the subject acquired image and the subject analysis image including the subject spatial information, and the background acquired image and the background analysis image that do not include the subject spatial information are included. Since at least one of the noise reduction processes is performed, a phase contrast image is generated in which the deterioration of the image quality due to the influence of quantum noise is suppressed without adversely affecting the spatial information of the subject, such as a reduction in spatial resolution due to smoothing. can do.
  • the detection time for generating the background acquisition image is shorter than the detection time for X-rays by the detector for generating the subject acquisition image. ing.
  • the detection time for generating the background acquisition image is relatively short, so that it is possible to reliably shorten the shooting time while securing a predetermined level of image quality in the generated phase contrast image. it can.
  • the image processing unit is configured to adjust so as to increase the degree of noise reduction in the noise reduction processing as the detection time for generating the background acquired image is shortened.
  • the quantum noise increased by shortening the detection time can be reliably reduced from either the background acquisition image or the background analysis image.
  • the image processing unit is configured to perform a predetermined correction process on the background acquired image or the background analysis image before performing the noise reduction process.
  • the background acquired image may have a singular point derived from the detector such as a pixel defect.
  • a wrapping region where the phase value is discontinuous between the background acquired images may occur due to a displacement of a lattice when acquiring the background acquired images. is there. Therefore, with the above configuration, the noise reduction processing (filtering processing for smoothing an image) for reducing the quantum noise is performed on the singular point and the wrapping area, so that the singular point and the wrapping area are smoothed with the surroundings. It is possible to suppress the formation of artifacts (virtual images) caused by the conversion.
  • the predetermined correction processing includes at least one of dark correction, gain correction, loss correction, and unwrapping correction.
  • the singular point can be easily corrected by dark correction, gain correction, and loss correction.
  • the wrapping area can be easily corrected by the unwrapping correction.
  • the noise reduction processing includes at least one of an averaging filter, a Gaussian filter, a low-pass filter, and a median filter.
  • a filter generally used for smoothing an image such as an averaging filter, a Gaussian filter, a low-pass filter, or a median filter, causes quantum noise, which is noise due to statistical variation in X-ray dose, to be generated. Can be easily reduced.
  • the X-ray phase imaging apparatus preferably, at least one of the plurality of gratings, the X-ray source, the subject, and the detector is subjected to fringe scanning for translating at a predetermined cycle.
  • the image processing unit generates a plurality of background acquired images and a plurality of subject acquired images detected by the detector by performing stripe scanning, and a plurality of background acquired images and a plurality of subject acquired images. Are analyzed to generate a background analysis image and a subject analysis image, respectively.
  • the image processing unit generates one background acquired image and one subject acquired image based on the X-ray, and one background acquired image and one subject acquired image.
  • the image is configured to generate a background analysis image and a subject analysis image by performing a Fourier transform process and an inverse Fourier transform process, respectively.
  • the imaging is performed while securing a predetermined level of image quality in the generated phase contrast image. Time can be shortened.
  • the plurality of gratings are arranged between the X-ray source and the first grating to enhance coherence of X-rays emitted from the X-ray source.
  • a third grating preferably, the third grating can form the self-image of the first grating without depending on the focal diameter of the X-ray source, so that the degree of freedom in selecting the X-ray source can be improved. it can.
  • the shooting time can be shortened while securing a predetermined level of image quality in the generated phase contrast image.
  • FIG. 1 is a diagram illustrating an overall configuration of an X-ray phase imaging apparatus according to an embodiment (first modification, second modification, and third modification) of the present invention.
  • FIG. 2 is a diagram for explaining a grating position adjusting mechanism of the X-ray phase imaging device according to one embodiment of the present invention.
  • FIG. 3 is a diagram for explaining generation of a phase contrast image in the X-ray phase imaging apparatus according to one embodiment of the present invention.
  • FIG. 4 is a diagram for explaining noise reduction processing on an image in the X-ray phase imaging apparatus according to one embodiment of the present invention.
  • FIG. 9 is a diagram for explaining noise reduction processing on an image in the X-ray phase imaging apparatus according to the first modification of the present invention.
  • FIG. 1 is a diagram illustrating an overall configuration of an X-ray phase imaging apparatus according to an embodiment (first modification, second modification, and third modification) of the present invention.
  • FIG. 2 is a diagram for explaining a grating position adjusting mechanism of the X-
  • FIG. 11 is a diagram for describing noise reduction processing on an image in an X-ray phase imaging apparatus according to a second modified example of the present invention.
  • FIG. 13 is a diagram for explaining noise reduction processing on an image in the X-ray phase imaging apparatus according to the third modification of the present invention.
  • the X-ray phase imaging apparatus 100 is an apparatus that images the inside of the subject P using the Talbot effect.
  • the X-ray phase imaging apparatus 100 includes an X-ray tube 11, a detector 12, a plurality of gratings G including a first grating G1, a second grating G2, and a third grating G3, a control unit 13, A lattice position adjusting mechanism 14, a subject stage 15, and a filter 16 are provided.
  • the X-ray tube 11 is an example of the “X-ray source” in the claims.
  • the X-ray tube 11, the third grating G3, the first grating G1, the second grating G2, and the detector 12 are arranged so that the X-ray irradiation axis direction (optical axis direction, Z Direction) in this order. That is, the first grating G1, the second grating G2, and the third grating G3 are arranged between the X-ray tube 11 and the detector 12.
  • the direction from the X-ray tube 11 toward the first grating G1 is defined as a Z2 direction
  • the opposite direction is defined as a Z1 direction.
  • a direction in which a later-described lattice G of each of the plurality of lattices G extends is defined as an X direction
  • a direction orthogonal to the Z direction and the X direction is defined as a Y direction.
  • the X-ray tube 11 is an X-ray generator capable of generating X-rays when a high voltage is applied.
  • the X-ray tube 11 is configured to irradiate the generated X-ray in the Z2 direction.
  • the detector 12 detects the X-rays emitted from the X-ray tube 11 and converts the detected X-rays into an electric signal.
  • the detector 12 is, for example, an FPD (Flat @ Panel @ Detector).
  • the detector 12 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements.
  • the plurality of conversion elements and the pixel electrodes are arranged in the X direction and the Y direction at a predetermined cycle (pixel pitch).
  • the detection signal (image signal) of the detector 12 is sent to an image processing unit 13a (described later) provided in the control unit 13.
  • the first grating G1 has slits G1a and X-ray phase change portions G1b arranged at a predetermined period (grating pitch) d1 in the Y direction. Each slit G1a and the X-ray phase change portion G1b are formed so as to extend linearly in the X direction.
  • the first grating G1 is a so-called phase grating.
  • the first grating G1 is disposed between the X-ray tube 11 and the second grating G2, and is provided to form a self-image (by the Talbot effect) by the X-rays emitted from the X-ray tube 11. I have.
  • the Talbot effect is such that when the coherent X-ray passes through the first grating G1 in which the slit G1a is formed, the first grating G1 is located at a predetermined distance (Talbot distance) from the first grating G1. (Self image) is formed.
  • the second grating G2 has a plurality of X-ray transmitting portions G2a and X-ray absorbing portions G2b arranged at a predetermined period (grating pitch) d2 in the Y direction. Each X-ray transmitting portion G2a and X-ray absorbing portion G2b are formed so as to extend linearly in the X direction.
  • the second grating G2 is a so-called absorption grating.
  • the second grating G2 is arranged between the first grating G1 and the detector 12, and is configured to interfere with the self-image formed by the first grating G1.
  • the second grating G2 is arranged at a position away from the first grating G1 by the Talbot distance in order to cause the self-image and the second grating G2 to interfere with each other. That is, in the X-ray phase imaging apparatus 100, the interference fringes (Moire fringes) generated by the interference between the self-image and the second grating G2 are detected by the detector 12 as X-rays.
  • the third grating G3 has a plurality of slits G3a and X-ray absorbing portions G3b arranged at a predetermined period (pitch) d3. Each of the slits G3a and the X-ray absorbing portion G3b is formed to extend linearly in the X direction.
  • the third grating G3 is arranged between the X-ray tube 11 and the first grating G1, and is irradiated with X-rays from the X-ray tube 11.
  • the third grating G3 is configured to use the X-rays that have passed through each slit G3a as a line light source corresponding to the position of each slit G3a. That is, the third grating G3 is provided to increase the coherence of the X-rays emitted from the X-ray tube 11.
  • the control unit 13 includes an image processing unit 13a that can generate an image.
  • the control unit 13 is configured to control the operations of the lattice position adjustment mechanism 14 and the subject stage 15.
  • Control unit 13 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the image processing unit 13a is configured to generate an image such as a phase contrast image C (see FIG. 3) based on the detection signal sent from the detector 12.
  • the image processing unit 13a includes, for example, a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing. The details of the generation of the phase contrast image C (see FIG. 3) by the image processing unit 13a will be described later.
  • the grating position adjusting mechanism 14 adjusts the first grating G1 to the X direction, the Y direction, the Z direction, the rotation direction Rz around the axis in the Z direction, the rotation direction Rx around the axis in the X direction, and , And is movable in a rotation direction Ry about an axis in the Y direction.
  • the lattice position adjustment mechanism 14 includes an X-direction translation mechanism 14a, a Z-direction translation mechanism 14b, a Y-direction translation mechanism 14c, a translation mechanism connection section 14d, a stage support driving section 14e, and a stage support section. 14f, a stage driving unit 14g, and a stage 14h.
  • the X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c are configured to be movable in the X, Z, and Y directions, respectively.
  • the X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c include, for example, a stepping motor.
  • the lattice position adjusting mechanism 14 moves the first lattice G1 in the X direction, the Z direction, and the Y direction, respectively, by the operations of the X direction linear moving mechanism 14a, the Z direction linear moving mechanism 14b, and the Y direction linear moving mechanism 14c. It is configured as follows.
  • the stage support 14f supports the stage 14h for mounting (or holding) the first lattice G1 from the Z2 direction.
  • the stage drive unit 14g is configured to reciprocate the stage 14h in the X direction.
  • the stage 14h has a bottom formed in a convex curved shape toward the stage support portion 14f, and is configured to rotate around an axis in the Y direction (Ry direction) by being reciprocated in the X direction. I have.
  • the stage support driving unit 14e is configured to reciprocate the stage support 14f in the Y direction.
  • the linear motion mechanism connecting portion 14d is provided on the X direction linear motion mechanism 14a so as to be rotatable around the axis in the Z direction (Rz direction).
  • the stage support portion 14f has a bottom portion formed in a convex curved shape toward the linear motion mechanism connection portion 14d, and reciprocates in the Y direction to rotate around the axis in the X direction (Rx direction). It is configured as follows.
  • the grid position adjusting mechanism 14 may have a mechanism for holding the first grid G1, such as a chuck mechanism or a hand mechanism, for example.
  • the subject stage 15 has a mounting surface (not shown) on which the subject P is mounted.
  • the subject stage 15 is configured to be movable in the X and Y directions under the control of the control unit 13 while the subject P is placed on the placement surface.
  • the subject stage 15 is composed of, for example, an XY stage.
  • the subject stage 15 may have a mechanism for holding the subject P, such as a chuck mechanism or a hand mechanism, for example.
  • the filter 16 is a filter for adjusting the spectrum of the X-ray emitted from the X-ray tube 11.
  • the filter 16 is arranged between the X-ray tube 11 and the third grating G3.
  • the filter 16 includes, for example, silver, rhodium, or the like. Accordingly, the low-energy X-rays that do not contribute to the generation of the phase contrast image C can be shielded by the filter 16, so that the exposure dose of the subject P can be suppressed from increasing.
  • a phase contrast image C refers to at least one of the plurality of gratings G, the X-ray tube 11, the subject P, and the detector 12 at a predetermined cycle. This is an image generated based on an image detected by the detector 12 by performing stripe scanning for translation (step).
  • the first grating G1 is operated by the operation of the Y-direction linear movement mechanism 14c (see FIG. 2) of the grating position adjusting mechanism 14. Is configured to scan stripes.
  • the image processing unit 13a is configured to generate an AIR acquired image A10 and a SAMPLE acquired image S10 detected by the detector 12 by performing the fringe scanning. ing.
  • the AIR acquired image A10 is an image obtained by imaging a detection signal detected by the detector 12 in a state where the subject P is not arranged between the X-ray tube 11 and the detector 12.
  • the SAMPLE acquired image S10 is an image obtained by imaging a detection signal detected by the detector 12 in a state where the subject P is arranged between the X-ray tube 11 and the detector 12.
  • the AIR acquired image A10 and the SAMPLE acquired image S10 are examples of the “background acquired image” and the “subject acquired image” in the claims, respectively.
  • the image processing unit 13a is configured to generate an AIR intermediate image A20 and a SAMPLE intermediate image S20.
  • the AIR intermediate image A20 and the SAMPLE intermediate image S20 are images obtained by analyzing the AIR acquired image A10 and the SAMPLE acquired image S10, respectively.
  • the AIR intermediate image A20 and the SAMPLE intermediate image S20 are examples of a “background analysis image” and a “subject analysis image”, respectively.
  • the image processing unit 13a is configured to generate a final image (phase contrast image C) based on the AIR intermediate image A20 and the SAMPLE intermediate image S20.
  • the phase contrast image C includes an absorption image C1, a phase differential image C2, and a dark field image C3.
  • the absorption image C1 is an image formed based on the difference in the degree of X-ray absorption by the subject P.
  • the phase differential image C2 is an image formed based on the phase shift of the X-ray.
  • the dark-field image C3 is a visibility image obtained by a change in visibility (clarity) based on small-angle scattering of an object.
  • the dark-field image is also called a small-angle scattering image.
  • the first grid G1 is moved by the grid position adjusting mechanism 14 in the direction of the grid pitch (Y X-rays are detected at a plurality of positions while scanning stripes at a predetermined period in the direction (direction). Then, as shown in FIG. 3, the image processing unit 13a generates a plurality of AIR-acquired images A10 having different intensities of the detection signals based on the detection signals detected by the detector 12. Further, as shown in FIG.
  • the first grid G1 is moved in the direction of the grid pitch (Y direction) by the grid position adjusting mechanism 14. X-rays are detected at a plurality of positions while performing stripe scanning at a predetermined cycle. Then, as shown in FIG. 3, the image processing unit 13a generates a plurality of SAMPLE acquired images S10 having different detection signal intensities based on the detection signals detected by the detector 12.
  • FIG. 3 shows an example in which four AIR acquired images A10 and four SAMPLE acquired images S10 are generated.
  • the image processing unit 13a acquires a signal intensity change curve (step curve) in which the signal intensity is fitted with a sine function for each of the plurality of AIR acquired images A10. Then, the image processing unit 13a generates three types of fitting coefficients (average value, phase, and amplitude) acquired from the step curve as AIR intermediate images A21, A22, and A23, respectively. Further, the image processing unit 13a acquires a signal intensity change curve (step curve) obtained by fitting the signal intensity with a sine function for each of the plurality of SAMPLE acquired images S10. Then, the image processing unit 13a generates three types of fitting coefficients (average value, phase, and amplitude) acquired from the step curve as SAMPLE intermediate images S21, S22, and S23, respectively.
  • the image processing unit 13a generates the absorption image C1 by calculating the average value (SAMPLE) / average value (AIR) for each pixel. Further, the image processing unit 13a generates a phase differential image C2 by calculating a phase (SAMPLE) -phase (AIR) for each pixel. Further, a dark field image C3 is generated by calculating (amplitude (SAMPLE) / average value (SAMPLE)) / (amplitude (AIR) / average value (AIR)) for each pixel.
  • the average value (AIR), phase (AIR), and amplitude (AIR) are fitting coefficients of the AIR intermediate images A21, A22, and A23, respectively.
  • the average value (SAMPLE), phase (SAMPLE), and amplitude (SAMPLE) are fitting coefficients of the SAMPLE intermediate images S21, S22, and S23, respectively.
  • the image processing unit 13a is configured to perform a noise reduction process for reducing quantum noise on the AIR acquired image A10 before the phase contrast image C is generated. . Specifically, the image processing unit 13a generates the phase contrast image C by performing the noise reduction processing on the AIR acquired image A10 without performing the noise reduction processing on any of the SAMPLE acquired image S10 and the SAMPLE intermediate image S20. It is configured to be. Further, the image processing unit 13a is configured to perform a predetermined correction process for correcting a singular point in an image or a wrapping region between images on the AIR acquired image A10 before performing the noise reduction process. .
  • the image processing unit 13a first performs a predetermined correction process on the AIR acquired image A10 to correct a singular point in the image or a wrapping area between the images.
  • the AIR acquired image A10 subjected to the predetermined correction processing becomes an AIR acquired image A10a in which a singular point in the image and a wrapping area between the images have been corrected.
  • the image processing unit 13a performs a noise reduction process on the AIR acquired image A10a to reduce quantum noise.
  • the AIR acquired image A10a on which the noise reduction processing has been performed becomes the AIR acquired image A10b with reduced quantum noise.
  • the image processing unit 13a generates the AIR intermediate image A20 in which the quantum noise is reduced by analyzing the AIR acquired image A10b in which the quantum noise is reduced.
  • the AIR acquired image A10a and the AIR acquired image A10b are examples of the "background acquired image" in the claims.
  • the image processing unit 13a generates the SAMPLE intermediate image S20 by analyzing the SAMPLE acquired image S10 without performing a predetermined correction process and a noise reduction process on the SAMPLE acquired image S10. Then, the image processing unit 13a performs a predetermined correction process and a noise reduction process on the SAMPLE intermediate image S20, and based on the AIR intermediate image A20 in which the quantum noise is reduced and the SAMPLE intermediate image S20, A phase contrast image C in which a decrease in image quality is suppressed is generated.
  • the noise reduction processing includes at least one of an averaging filter, a Gaussian filter, a low-pass filter, a median filter, and the like. That is, the noise reduction process is a filtering process for smoothing an image for reducing quantum noise.
  • the predetermined correction processing includes at least one of dark correction, gain correction, loss correction, and unwrapping correction.
  • the dark correction is a process of subtracting an image (dark image) shot without X-ray irradiation from an image shot with X-ray irradiation.
  • the gain correction is a process of dividing an image captured by irradiating X-rays without placing the grid G from an image captured by placing the grid G.
  • the loss correction is a process of correcting a loss portion where the sensitivity of the detector 12 is significantly reduced, by averaging with surrounding pixels or the like. That is, the dark correction, the gain correction, and the loss correction are processes for correcting a singular point derived from the detector 12.
  • the unwrapping correction is a process of correcting the phase value of a wrapping region, which is discontinuous due to a shift of a phase value between images of pixels by one period, so that the phase value changes continuously.
  • the X-ray phase imaging apparatus 100 sets the detection time for generating the AIR acquired image A10 to be shorter than the X-ray detection time for the detector 12 for generating the SAMPLE acquired image S10. Is configured. Further, the image processing unit 13a is configured to adjust so as to increase the degree of noise reduction in the noise reduction processing as the detection time for generating the AIR acquired image A10 is shortened. For example, the standard detection time of X-rays by the detector 12 for generating the SAMPLE acquired image S10 and the AIR acquired image A10 is 10 minutes, respectively.
  • the degree of the noise reduction processing (the degree of image smoothing) is set to 10 so as to reduce the increased noise of 10%.
  • the degree of noise reduction processing is set to 20 so as to reduce the increased noise of 20%.
  • the image processing unit 13a is configured to perform the noise reduction processing for reducing the quantum noise on the AIR acquired image A10 before the phase contrast image C is generated.
  • the phase contrast image C can be generated based on the AIR intermediate image A20 and the SAMPLE intermediate image S20 in which the quantum noise has been reduced.
  • the phase contrast image C in which the influence of the quantum noise is reduced is generated. can do. This makes it possible to shorten the photographing time while securing a predetermined level of image quality in the generated phase contrast image C.
  • the image processing unit 13a performs the noise reduction processing on the AIR acquired image A10 without performing the noise reduction processing on any of the SAMPLE acquired image S10 and the SAMPLE intermediate image S20.
  • a phase contrast image C is generated. Accordingly, the noise reduction processing is not performed on the SAMPLE acquired image S10 and the SAMPLE intermediate image S20 including the spatial information of the subject P, and the noise reduction processing is performed on the AIR acquired image A10 not including the spatial information of the subject P. Therefore, it is possible to generate the phase contrast image C in which the deterioration of the image quality due to the influence of the quantum noise is suppressed, without adversely affecting the spatial information of the subject P such as a decrease in the spatial resolution.
  • the X-ray phase imaging apparatus 100 performs the detection for generating the AIR acquired image A10 more than the detection time of the X-ray by the detector 12 for generating the SAMPLE acquired image S10. Configure to reduce time.
  • the detection time for generating the AIR-acquired image A10 becomes relatively short, so that the imaging time can be reliably shortened while securing a predetermined level of image quality in the generated phase contrast image C.
  • the image processing unit 13a increases the degree of noise reduction in the noise reduction processing as the detection time for generating the AIR-acquired image A10 decreases. Configure to adjust. Thereby, the quantum noise increased by shortening the detection time can be reliably reduced from the AIR acquired image A10.
  • the image processing unit 13a is configured to perform a predetermined correction process on the AIR acquired image A10 before performing the noise reduction process. Due to this, noise reduction processing (filtering processing for smoothing an image) for reducing quantum noise is performed on a singular point or a wrapping area, so that the singular point or the wrapping area is smoothed with the surroundings. It is possible to suppress the formation of an artifact (virtual image).
  • the predetermined correction processing includes at least one of dark correction, gain correction, loss correction, and unwrapping correction. This makes it possible to easily correct a singular point or a wrapping area.
  • the noise reduction processing includes at least one of an averaging filter, a Gaussian filter, a low-pass filter, and a median filter.
  • an averaging filter a Gaussian filter
  • a low-pass filter a filter that reduces quantum noise
  • a median filter a filter that reduces quantum noise due to statistical variation in X-ray dose
  • the first grating G1 is configured to perform the fringe scanning for translating and moving at a predetermined cycle.
  • the image processing unit 13a generates a plurality of AIR-acquired images A10 and a plurality of SAMPLE-acquired images S10 detected by the detector 12 by performing stripe scanning, and a plurality of AIR-acquired images A10 and a plurality of SAMPLE-acquired images.
  • the image S10 is analyzed to generate an AIR intermediate image A20 and a SAMPLE intermediate image S20, respectively. Accordingly, in the configuration in which the AIR acquisition image A10 and the SAMPLE acquisition image S10 are generated by performing the fringe scanning, the imaging time can be shortened while securing a predetermined level of image quality in the generated phase contrast image C. .
  • the plurality of gratings G are arranged between the X-ray tube 11 and the first grating G1, and increase the coherence of X-rays emitted from the X-ray tube 11.
  • the self-image of the first grating G1 can be formed by the third grating G3 without depending on the focal diameter of the X-ray tube 11, so that the degree of freedom in selecting the X-ray tube 11 can be improved. it can.
  • the image processing unit 13a is configured to perform a predetermined correction process on the AIR-acquired image A10 before performing the noise reduction process.
  • the image processing unit 113a does not perform predetermined correction processing on the AIR-acquired image A10 before performing the noise reduction processing. It may be configured as follows.
  • the image processing unit 113a performs a noise reduction process on the AIR acquired image A10 to reduce quantum noise.
  • the AIR acquired image A10 subjected to the noise reduction processing becomes an AIR acquired image A210b in which the quantum noise has been reduced.
  • the image processing unit 113a analyzes the AIR acquired image A210b in which the quantum noise has been reduced, thereby generating an AIR intermediate image A220 in which the quantum noise has been reduced.
  • the image processing unit 113a performs a predetermined correction process and a noise reduction process on the SAMPLE intermediate image S20, and based on the AIR intermediate image A220 in which the quantum noise is reduced and the SAMPLE intermediate image S20.
  • a phase contrast image C200 in which a decrease in image quality is suppressed is generated.
  • the AIR acquired image A210b is an example of the “background acquired image” in the claims.
  • the AIR intermediate image A220 is an example of the “background analysis image” in the claims.
  • the image processing unit 13a is configured to adjust so as to increase the degree of noise reduction in the noise reduction processing as the detection time for generating the AIR acquired image A10 is shortened.
  • the present invention is not limited to this.
  • the image processing unit may be configured to adjust the degree of noise reduction in the noise reduction processing regardless of the detection time for generating the AIR acquired image A10.
  • the image processing unit 13a is configured to perform the noise reduction processing for reducing the quantum noise on the AIR acquired image A10, but the present invention is not limited to this.
  • the image processing unit 213a see FIG. 1 of the second modified example shown in FIG. 6 and the image processing unit 313a (see FIG. 1) of the third modified example shown in FIG.
  • a noise reduction process for reducing quantum noise may be performed.
  • the image processing unit may be configured to perform noise reduction processing for reducing quantum noise on both the AIR acquired image A10 and the AIR intermediate image A20.
  • a predetermined correction process is performed on the image on which the noise reduction process is performed before the noise reduction process is performed.
  • the AIR intermediate image A320 is an example of the “background analysis image” in the claims.
  • the image processing unit 213a In the second modification shown in FIG. 6, the image processing unit 213a generates an AIR intermediate image A320 from the AIR acquired image A10 without performing a predetermined correction process and a noise reduction process on the AIR acquired image A10. .
  • the image processing unit 213a performs a predetermined correction process on the AIR intermediate image A320 to correct a singular point in the image or a wrapping area between the images.
  • the AIR intermediate image A320 that has been subjected to the predetermined correction processing becomes an AIR intermediate image A320a in which a singular point in the image and a wrapping area between the images have been corrected.
  • the image processing unit 213a performs a noise reduction process on the AIR intermediate image A320a to reduce quantum noise.
  • the AIR intermediate image A320a on which the noise reduction processing has been performed becomes an AIR intermediate image A320b with reduced quantum noise. Then, the image processing unit 213a performs a predetermined correction process and a noise reduction process on the SAMPLE intermediate image S20, and based on the AIR intermediate image A320b in which the quantum noise is reduced and the SAMPLE intermediate image S20. A phase contrast image C300 in which a decrease in image quality is suppressed is generated.
  • the AIR intermediate image A320a and the AIR intermediate image A320b are examples of the "background analysis image" in the claims.
  • the image processing unit 313a performs the AIR acquisition without performing the predetermined correction process and the noise reduction process on the AIR acquired image A10, as in the example illustrated in FIG.
  • An AIR intermediate image A320 is generated from the image A10.
  • the image processing unit 313a performs a noise reduction process on the AIR intermediate image A320 to reduce quantum noise.
  • the AIR intermediate image A320a that has been subjected to the noise reduction processing becomes an AIR intermediate image A420b in which the quantum noise has been reduced.
  • the image processing unit 313a performs a predetermined correction process and a noise reduction process on the SAMPLE intermediate image S20, and based on the AIR intermediate image A420b in which the quantum noise has been reduced and the SAMPLE intermediate image S20.
  • a phase contrast image C400 in which a decrease in image quality is suppressed is generated.
  • the AIR intermediate image A420b is an example of the “background analysis image” in the claims.
  • the first grating G1 is configured to perform the fringe scanning that translates in a predetermined cycle, but the present invention is not limited to this.
  • it may be configured to perform a fringe scan for translating any one of the second grating G2, the third grating G3, the X-ray tube 11, the subject P, and the detector 12 at a predetermined cycle.
  • it is also possible to perform a fringe scan in which a plurality of the first grating G1, the second grating G2, the third grating G3, the X-ray tube 11, the subject P and the detector 12 are translated at a predetermined cycle. Good.
  • the image processing unit 13a generates a plurality of AIR-acquired images A10 and a plurality of SAMPLE-acquired images S10 detected by the detector 12 by performing a fringe scan. Also, an example has been shown in which the SAMPLE acquired images S10 are analyzed to generate the AIR intermediate image A20 and the SAMPLE intermediate image S20, respectively, but the present invention is not limited to this. In the present invention, the image processing unit generates one AIR acquired image A10 and one SAMPLE acquired image S10 based on X-rays, and performs Fourier transform on one AIR acquired image A10 and one SAMPLE acquired image S10, respectively.
  • the AIR intermediate image A20 and the SAMPLE intermediate image S20 may be generated by performing the processing and the inverse Fourier transform processing.
  • the photographing time is maintained while securing a predetermined level of image quality in the generated phase contrast image C. Can be shortened.
  • the plurality of gratings G are arranged between the X-ray tube 11 and the first grating G1, and the third grating G for increasing the coherence of the X-ray emitted from the X-ray tube 11 is provided.
  • G3 is included
  • the present invention is not limited to this. In the present invention, the third grating G3 may not be included.
  • the present invention is not limited to this.
  • an absorption grating may be used instead of the phase grating.
  • a region (a non-interferometer) where a stripe pattern simply occurs due to optical conditions such as a distance, and a region where a self-image due to the Talbot effect occurs (an interferometer) are generated.
  • X-ray phase imaging device A10, A10a, A10b, A210b AIR acquired image (background acquired image) A20 (A21, A22, A23), A20a, A20b, A220, A320, A320a, A320b, A420b AIR intermediate image (background analysis image) C, C200, C300, C400 Phase contrast image C1 Absorption image C2 Phase differential image C3 Dark field image G Grid G1 First grid G2 Second grid G3 Third grid P Subject S10 SAMPLE acquired image (subject acquired image) S20 (S21, S22, S23) SAMPLE intermediate image (subject analysis image)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

このX線位相イメージング装置(100)では、画像処理部(13a)は、位相コントラスト画像(C)が生成される前に、X線源(11)と検出器(12)との間に被写体(P)を配置しない状態で検出器により検出された背景取得画像(A10)に量子ノイズを低減するノイズ低減処理を行うように構成されている。

Description

X線位相イメージング装置
 本発明は、X線位相イメージング装置に関し、特に、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置に関する。
 従来、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置が知られている。このようなX線位相イメージング装置は、たとえば、国際公開2014/030115号に開示されている。
 国際公開2014/030115号には、X線源と、X線検出器と、X線源とX線検出器との間に配置される複数の格子(ソース格子、位相格子(第1格子)および分析格子(第2格子))と、を備えたX線位相イメージング装置が開示されている。国際公開2014/030115号のX線位相イメージング装置では、ソース格子と、位相格子と、分析格子とが、X線源側からX線検出器側に向かって、この順に並んで配置されている。国際公開2014/030115号のX線位相イメージング装置では、X線源から照射されソース格子を通過したX線が位相格子を通過することにより、位相格子から所定の距離だけ離れた位置に位相格子の自己像が形成される。そして、自己像と分析格子とが干渉することにより生じた干渉縞(モアレ縞)をX線検出器で検出することが可能に構成されている。
 国際公開2014/030115号のX線位相イメージング装置では、複数の格子のうちの1つ(ソース格子)を所定の周期で並進移動(縞走査)させることにより変化するモアレ縞の変化をX線検出器で検出して、複数のX線画像を生成するように構成されている。国際公開2014/030115号のX線位相イメージング装置では、X線源とX線検出器との間に被写体を配置しない場合の複数のX線画像(背景取得画像)と、X線源とX線検出器との間に被写体を配置した場合の複数のX線画像(被写体取得画像)とが生成される。そして、生成された複数の背景取得画像および複数の被写体取得画像が解析されて、それぞれ、背景解析画像および被写体解析画像が生成される。そして、生成された背景解析画像と被写体解析画像とに基づいて、吸収像、位相微分像および暗視野像を含む位相コントラスト画像が生成される。なお、吸収像は、被写体によるX線の吸収度合の差に基づいて画像化したX線画像である。位相微分像は、X線の位相のずれに基づいて画像化したX線画像である。暗視野像は、物体の小角散乱に基づくVisibility(鮮明度)の変化によって得られる、Visibility像のことである。
国際公開2014/030115号
 ここで、X線源から照射されるX線(光子)量には、量子レベルにおいて統計的なバラつき(変動)があるので、生成されるX線画像には、X線量の統計的なバラつきに起因するノイズ(量子ノイズ)が生じる。そして、量子ノイズが増加するにしたがって、背景取得画像と被写体取得画像とに基づいて生成された位相コントラスト画像は、画質が低下する。なお、撮影時間(X線の検出時間)が長くなるにしたがって、X線量の統計的なバラつきが収束されるので、X線画像に生じる量子ノイズは低減される。すなわち、撮影時間を短くすることと、画質を向上させることとの間には、トレードオフの関係がある。このため、国際公開2014/030115号に記載のような従来のX線位相イメージング装置では、生成される位相コントラスト画像において所定の水準の画質を確保するために、量子ノイズが十分に低減されるように、撮影時間(X線の検出時間)を比較的長くする必要があるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、生成される位相コントラスト画像において所定の水準の画質を確保しながら、撮影時間を短くすることが可能なX線位相イメージング装置を提供することである。
 上記目的を達成するために、この発明の一の局面におけるX線位相イメージング装置は、X線源と、X線源から照射されたX線を検出する検出器と、X線源と検出器との間に配置され、X線源から照射されるX線により自己像を形成するための第1格子と、第1格子の自己像と干渉させるための第2格子と、を含む複数の格子と、X線源と検出器との間に被写体を配置しない状態で検出器により検出された背景取得画像と、背景取得画像を解析した背景解析画像と、X線源と検出器との間に被写体を配置した状態で検出器により検出された被写体取得画像と、被写体取得画像を解析した被写体解析画像と、背景解析画像と被写体解析画像とに基づいて、吸収像、位相微分像または暗視野像の少なくともいずれか1つを含む位相コントラスト画像と、を生成する画像処理部と、を備え、画像処理部は、位相コントラスト画像が生成される前に、背景取得画像および背景解析画像のうちの少なくとも一方に検出器で検出されるX線量の統計的変動による量子ノイズを低減するノイズ低減処理を行うように構成されている。
 この発明の一の局面によるX線位相イメージング装置では、上記のように、画像処理部は、位相コントラスト画像が生成される前に、背景取得画像および背景解析画像のうちの少なくとも一方に量子ノイズを低減するノイズ低減処理を行うように構成されている。これにより、背景取得画像または背景解析画像のいずれかにノイズ低減処理が行なわることにより、量子ノイズが低減された背景解析画像と、被写体解析画像とに基づいて、位相コントラスト画像を生成することができる。その結果、X線撮影の時間が比較的短いことに起因して、生成された背景取得画像に量子ノイズが比較的多く生じた場合でも、量子ノイズの影響が低減された位相コントラスト画像を生成することができる。これにより、生成される位相コントラスト画像において所定の水準の画質を確保しながら、撮影時間を短くすることができる。なお、量子ノイズを低減するノイズ低減処理は、画像を平滑化するフィルタリング処理に相当する。
 上記一の局面によるX線位相イメージング装置において、好ましくは、画像処理部は、被写体取得画像および被写体解析画像のいずれにもノイズ低減処理を行わずに、背景取得画像および背景解析画像のうちの少なくとも一方にノイズ低減処理を行うことにより、位相コントラスト画像を生成するように構成されている。このように構成すれば、被写体の空間情報が含まれる被写体取得画像および被写体解析画像に対してノイズ低減処理が行われずに、被写体の空間情報が含まれない背景取得画像および背景解析画像のうちの少なくとも一方にノイズ低減処理が行われるので、被写体の空間情報に対して平滑化による空間分解能の低下等の悪影響を与えることなく、量子ノイズの影響による画質の低下が抑制された位相コントラスト画像を生成することができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、被写体取得画像を生成するための検出器によるX線の検出時間よりも背景取得画像を生成するための検出時間を短くするように構成されている。このように構成すれば、背景取得画像を生成するための検出時間が比較的短くなるので、生成される位相コントラスト画像において所定の水準の画質を確保しながら、確実に撮影時間を短くすることができる。
 この場合、好ましくは、画像処理部は、背景取得画像を生成するための検出時間を短くするのにしたがって、ノイズ低減処理のノイズの低減の程度を大きくするように調整するように構成されている。このように構成すれば、検出時間を短くしたことにより増加した量子ノイズを背景取得画像および背景解析画像のいずれか一方から確実に低減することができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、画像処理部は、ノイズ低減処理を行う前に、背景取得画像または背景解析画像に対して、所定の補正処理を行うように構成されている。ここで、背景取得画像には、画素欠損等の検出器由来の特異点がある場合がある。また、複数の背景取得画像を取得した場合には、背景取得画像を取得する際の格子の位置ずれ等に起因して、背景取得画像間で位相値が不連続となるラッピング領域が生じる場合がある。したがって、上記のように構成すれば、量子ノイズを低減するノイズ低減処理(画像を平滑化するフィルタリング処理)が特異点やラッピング領域に対して行われることにより、特異点やラッピング領域が周囲と平滑化されてしまうことに起因するアーチファクト(虚像)が形成されてしまうのを抑制することができる。
 この場合、好ましくは、所定の補正処理は、ダーク補正、ゲイン補正、欠損補正およびアンラッピング補正のうちの少なくともいずれか1つを含む。このように構成すれば、ダーク補正、ゲイン補正および欠損補正により特異点を容易に補正することができる。また、アンラッピング補正により、ラッピング領域を容易に補正することができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、ノイズ低減処理は、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタおよびメディアンフィルタのうちの少なくともいずれか1つを含む。このように構成すれば、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタまたはメディアンフィルタ等の画像の平滑化に一般的に使用されるフィルタにより、X線量の統計的なバラつきに起因するノイズである量子ノイズを容易に低減することができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、複数の格子のいずれか、X線源、被写体および検出器のうちの少なくとも1つを、所定の周期で並進移動させる縞走査を行うように構成されており、画像処理部は、縞走査を行うことにより検出器で検出された複数の背景取得画像および複数の被写体取得画像を生成するとともに、複数の背景取得画像および複数の被写体取得画像を解析して、それぞれ、背景解析画像および被写体解析画像を生成するように構成されている。このように構成すれば、縞走査を行うことにより背景取得画像および被写体取得画像を生成する構成において、生成される位相コントラスト画像において所定の水準の画質を確保しながら、撮影時間を短くすることができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、画像処理部は、X線に基づく1つの背景取得画像および1つの被写体取得画像を生成するとともに、1つの背景取得画像および1つの被写体取得画像を、それぞれ、フーリエ変換処理および逆フーリエ変換処理を行うことにより背景解析画像および被写体解析画像を生成するように構成されている。このように構成すれば、フーリエ変換処理および逆フーリエ変換処理を行うことにより背景解析画像および被写体解析画像を生成する構成において、生成される位相コントラスト画像において所定の水準の画質を確保しながら、撮影時間を短くすることができる。
 上記一の局面によるX線位相イメージング装置において、好ましくは、複数の格子は、X線源と第1格子との間に配置され、X線源から照射されたX線の可干渉性を高めるための第3格子をさらに含む。このように構成すれば、第3格子により、X線源の焦点径に依存することなく第1格子の自己像を形成させることができるので、X線源の選択の自由度を向上させることができる。
 本発明によれば、上記のように、生成される位相コントラスト画像において所定の水準の画質を確保しながら、撮影時間を短くすることができる。
本発明の一実施形態(第1変形例、第2変形例、第3変形例)によるX線位相イメージング装置の全体構成を示した図である。 本発明の一実施形態によるX線位相イメージング装置の格子位置調整機構を説明するための図である。 本発明の一実施形態によるX線位相イメージング装置における位相コントラスト画像の生成を説明するための図である。 本発明の一実施形態によるX線位相イメージング装置における画像に対するノイズ低減処理を説明するための図である。 本発明の第1変形例によるX線位相イメージング装置における画像に対するノイズ低減処理を説明するための図である。 本発明の第2変形例によるX線位相イメージング装置における画像に対するノイズ低減処理を説明するための図である。 本発明の第3変形例によるX線位相イメージング装置における画像に対するノイズ低減処理を説明するための図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 まず、図1および図2を参照して、本発明の一実施形態によるX線位相イメージング装置100の構成について説明する。
 図1に示すように、X線位相イメージング装置100は、タルボ(Talbot)効果を利用して、被写体Pの内部を画像化する装置である。X線位相イメージング装置100は、X線管11と、検出器12と、第1格子G1と、第2格子G2と、第3格子G3と、を含む複数の格子Gと、制御部13と、格子位置調整機構14と、被写体ステージ15と、フィルタ16と、を備えている。なお、X線管11は、特許請求の範囲の「X線源」の一例である。
 X線位相イメージング装置100では、X線管11と、第3格子G3と、第1格子G1と、第2格子G2と、検出器12とが、X線の照射軸方向(光軸方向、Z方向)に、この順に並んで配置されている。すなわち、第1格子G1、第2格子G2および第3格子G3は、X線管11と検出器12との間に配置されている。なお、本明細書では、X線管11から第1格子G1に向かう方向をZ2方向、その逆方向をZ1方向とする。また、複数の格子Gそれぞれの後述する格子Gが延びる方向をX方向とし、Z方向およびX方向と直交する方向をY方向とする。
 X線管11は、高電圧が印加されることにより、X線を発生させることが可能なX線発生装置である。X線管11は、発生させたX線をZ2方向に照射するように構成されている。
 検出器12は、X線管11から照射されたX線を検出するとともに、検出されたX線を電気信号に変換する。検出器12は、たとえば、FPD(Flat Panel Detector)である。検出器12は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、X方向およびY方向に並んで配置されている。検出器12の検出信号(画像信号)は、制御部13が備える画像処理部13a(後述する)に送られる。
 第1格子G1は、Y方向に所定の周期(格子ピッチ)d1で配列されるスリットG1aおよびX線位相変化部G1bを有している。各スリットG1aおよびX線位相変化部G1bは、X方向に直線状に延びるように形成されている。第1格子G1は、いわゆる位相格子である。第1格子G1は、X線管11と第2格子G2との間に配置されており、X線管11から照射されたX線により(タルボ効果によって)自己像を形成するために設けられている。なお、タルボ効果は、可干渉性を有するX線が、スリットG1aが形成された第1格子G1を通過すると、第1格子G1から所定の距離(タルボ距離)離れた位置に、第1格子G1の像(自己像)が形成されることを意味する。
 第2格子G2は、Y方向に所定の周期(格子ピッチ)d2で配列される複数のX線透過部G2aおよびX線吸収部G2bを有している。各X線透過部G2aおよびX線吸収部G2bは、X方向に直線状に延びるように形成されている。第2格子G2は、いわゆる、吸収格子である。第2格子G2は、第1格子G1と検出器12との間に配置されており、第1格子G1により形成された自己像に干渉するように構成されている。第2格子G2は、自己像と第2格子G2とを干渉させるために、第1格子G1からタルボ距離だけ離れた位置に配置されている。すなわち、X線位相イメージング装置100では、自己像と第2格子G2とが干渉することにより生成された干渉縞(モアレ縞)が、X線として検出器12で検出される。
 第3格子G3は、所定の周期(ピッチ)d3で配列される複数のスリットG3aおよびX線吸収部G3bを有している。各スリットG3aおよびX線吸収部G3bはそれぞれ、X方向に直線状に延びるように形成されている。第3格子G3は、X線管11と第1格子G1との間に配置されており、X線管11からX線が照射される。第3格子G3は、各スリットG3aを通過したX線を、各スリットG3aの位置に対応する線光源とするように構成されている。すなわち、第3格子G3は、X線管11から照射されたX線の可干渉性を高めるために設けられている。
 制御部13は、画像を生成可能な画像処理部13aを備えている。また、制御部13は、格子位置調整機構14および被写体ステージ15の動作を制御するように構成されている。制御部13は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。
 画像処理部13aは、検出器12から送られた検出信号に基づいて、位相コントラスト画像C(図3参照)等の画像を生成するように構成されている。画像処理部13aは、たとえば、GPU(Graphics Processing Unit)や画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。なお、画像処理部13aによる位相コントラスト画像C(図3参照)の生成の詳細は後述する。
 図2に示すように、格子位置調整機構14は、第1格子G1を、X方向、Y方向、Z方向、Z方向の軸線周りの回転方向Rz、X方向の軸線周りの回転方向Rx、および、Y方向の軸線周りの回転方向Ryに移動可能に構成されている。格子位置調整機構14は、X方向直動機構14aと、Z方向直動機構14bと、Y方向直動機構14cと、直動機構接続部14dと、ステージ支持部駆動部14eと、ステージ支持部14fと、ステージ駆動部14gと、ステージ14hと、を含む。
 X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cは、それぞれ、X方向、Z方向およびY方向に移動可能に構成されている。X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cは、たとえば、ステッピングモータなどを含む。格子位置調整機構14は、X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cの動作により、それぞれ、第1格子G1を、X方向、Z方向およびY方向に移動させるように構成されている。
 ステージ支持部14fは、第1格子G1を載置(または保持)させるためのステージ14hをZ2方向から支持している。ステージ駆動部14gは、ステージ14hをX方向に往復移動させるように構成されている。ステージ14hは、底部がステージ支持部14fに向けて凸曲面状に形成されており、X方向に往復移動されることにより、Y方向の軸線周り(Ry方向)に回動するように構成されている。また、ステージ支持部駆動部14eは、ステージ支持部14fをY方向に往復移動させるように構成されている。また、直動機構接続部14dは、Z方向の軸線周り(Rz方向)に回動可能にX方向直動機構14aに設けられている。また、ステージ支持部14fは底部が直動機構接続部14dに向けて凸曲面状に形成されており、Y方向に往復移動されることにより、X方向の軸線周り(Rx方向)に回動するように構成されている。なお、格子位置調整機構14は、たとえば、チャック機構やハンド機構等の第1格子G1を保持するための機構を有していてもよい。
 図1に示すように、被写体ステージ15は、被写体Pを載置させるための載置面(図示しない)を有する。被写体ステージ15は、制御部13の制御により、被写体Pを載置面に載置させた状態で、X方向およびY方向に移動可能に構成されている。被写体ステージ15は、たとえば、X-Yステージにより構成されている。なお、被写体ステージ15は、たとえば、チャック機構やハンド機構等の被写体Pを保持するための機構を有していてもよい。
 フィルタ16は、X線管11から照射されたX線のスペクトルを調整するためのフィルタである。フィルタ16は、X線管11と第3格子G3との間に配置されている。フィルタ16は、たとえば、銀やロジウム等を含む。これにより、位相コントラスト画像Cの生成に寄与しない低エネルギーのX線をフィルタ16により遮蔽することができるので、被写体Pの被曝線量が大きくなるのを抑制することができる。
 (位相コントラスト画像の生成)
 次に、図1および図3を参照しながら、画像処理部13aによる位相コントラスト画像Cの生成について詳細に説明する。
 図1に示すように、位相コントラスト画像C(図3参照)とは、複数の格子Gのいずれか、X線管11、被写体Pおよび検出器12のうちの少なくとも1つを、所定の周期で並進移動(ステップ)させる縞走査を行うことにより、検出器12で検出された画像に基づいて生成される画像である。なお、X線位相イメージング装置100では、位相コントラスト画像C(図3参照)を生成するために、格子位置調整機構14のY方向直動機構14c(図2参照)の動作により、第1格子G1を縞走査させるように構成されている。
 詳細には、図3に示すように、画像処理部13aは、縞走査を行うことにより検出器12で検出された、AIR取得画像A10と、SAMPLE取得画像S10と、を生成するように構成されている。AIR取得画像A10は、X線管11と検出器12との間に被写体Pを配置しない状態で検出器12により検出された検出信号を画像化した画像である。SAMPLE取得画像S10は、X線管11と検出器12との間に被写体Pを配置した状態で検出器12により検出された検出信号を画像化した画像である。なお、AIR取得画像A10およびSAMPLE取得画像S10は、それぞれ、特許請求の範囲の「背景取得画像」および「被写体取得画像」の一例である。
 また、画像処理部13aは、AIR中間画像A20と、SAMPLE中間画像S20と、を生成するように構成されている。AIR中間画像A20およびSAMPLE中間画像S20は、それぞれ、AIR取得画像A10およびSAMPLE取得画像S10を解析した画像である。なお、AIR中間画像A20およびSAMPLE中間画像S20は、それぞれ、「背景解析画像」および「被写体解析画像」の一例である。
 また、画像処理部13aは、AIR中間画像A20とSAMPLE中間画像S20とに基づいて、最終画像(位相コントラスト画像C)を生成するように構成されている。位相コントラスト画像Cは、吸収像C1と、位相微分像C2と、暗視野像C3と、を含む。吸収像C1は、被写体PによるX線の吸収度合の差に基づいて画像化した画像である。位相微分像C2は、X線の位相のずれに基づいて画像化した画像である。暗視野像C3は、物体の小角散乱に基づくVisibility(鮮明度)の変化によって得られる、Visibility像のことである。また、暗視野像は、小角散乱像とも呼ばれる。
 具体的には、図1に示すように、X線管11と検出器12との間に被写体Pを配置しない状態で、格子位置調整機構14により、第1格子G1を格子ピッチの方向(Y方向)に所定の周期で縞走査させながら、複数の位置でX線を検出する。そして、図3に示すように、画像処理部13aは、検出器12で検出される検出信号に基づいて、検出信号の強度の異なる複数のAIR取得画像A10を生成する。また、図1に示すように、X線管11と検出器12との間に被写体Pを配置した状態で、格子位置調整機構14により、第1格子G1を格子ピッチの方向(Y方向)に所定の周期で縞走査させながら、複数の位置でX線を検出する。そして、図3に示すように、画像処理部13aは、検出器12で検出される検出信号に基づいて、検出信号の強度の異なる複数のSAMPLE取得画像S10を生成する。なお、図3では、AIR取得画像A10およびSAMPLE取得画像S10を、それぞれ、4つずつ生成した例を示している。
 次に、画像処理部13aは、複数のAIR取得画像A10に対して、各画素毎に、信号強度を正弦関数でフィッテングした信号強度変化曲線(ステップカーブ)を取得する。そして、画像処理部13aは、ステップカーブから取得した3種類のフィッテング係数(平均値、位相および振幅)を、それぞれ、AIR中間画像A21、A22およびA23として生成する。また、画像処理部13aは、複数のSAMPLE取得画像S10に対して、各画素毎に、信号強度を正弦関数でフィッテングした信号強度変化曲線(ステップカーブ)を取得する。そして、画像処理部13aは、ステップカーブから取得した3種類のフィッテング係数(平均値、位相および振幅)を、それぞれ、SAMPLE中間画像S21、S22およびS23として生成する。
 次に、画像処理部13aは、各画素毎に、平均値(SAMPLE)/平均値(AIR)を計算することにより、吸収像C1を生成する。また、画像処理部13aは、各画素毎に、位相(SAMPLE)-位相(AIR)を計算することにより、位相微分像C2を生成する。また、各画素毎に、(振幅(SAMPLE)/平均値(SAMPLE))/(振幅(AIR)/平均値(AIR))を計算することにより、暗視野像C3を生成する。なお、平均値(AIR)、位相(AIR)および振幅(AIR)は、それぞれ、AIR中間画像A21、A22およびA23のフィッテング係数である。また、平均値(SAMPLE)、位相(SAMPLE)および振幅(SAMPLE)は、それぞれ、SAMPLE中間画像S21、S22およびS23のフィッテング係数である。
 (AIR取得画像に対するノイズ低減処理)
 次に、図4を参照しながら、AIR取得画像A10に対するノイズ低減処理について説明する。
 図4に示すように、本実施形態では、画像処理部13aは、位相コントラスト画像Cが生成される前に、AIR取得画像A10に量子ノイズを低減するノイズ低減処理を行うように構成されている。詳細には、画像処理部13aは、SAMPLE取得画像S10およびSAMPLE中間画像S20のいずれにもノイズ低減処理を行わずに、AIR取得画像A10にノイズ低減処理を行うことにより、位相コントラスト画像Cを生成するように構成されている。また、画像処理部13aは、ノイズ低減処理を行う前に、AIR取得画像A10に対して、画像中の特異点や画像間のラッピング領域を補正する所定の補正処理を行うように構成されている。
 具体的には、画像処理部13aは、まず、AIR取得画像A10に対して、画像中の特異点や画像間のラッピング領域を補正する所定の補正処理を行う。所定の補正処理が行われたAIR取得画像A10は、画像中の特異点や画像間のラッピング領域が補正されたAIR取得画像A10aとなる。次に、画像処理部13aは、AIR取得画像A10aに対して、量子ノイズを低減するノイズ低減処理を行う。ノイズ低減処理が行われたAIR取得画像A10aは、量子ノイズが低減されたAIR取得画像A10bとなる。そして、画像処理部13aは、量子ノイズが低減されたAIR取得画像A10bを解析することにより、量子ノイズが低減されたAIR中間画像A20を生成する。なお、AIR取得画像A10aおよびAIR取得画像A10bは、特許請求の範囲の「背景取得画像」の一例である。
 また、画像処理部13aは、SAMPLE取得画像S10に対して、所定の補正処理およびノイズ低減処理を行わずに、SAMPLE取得画像S10を解析することにより、SAMPLE中間画像S20を生成する。そして、画像処理部13aは、SAMPLE中間画像S20に対して、所定の補正処理およびノイズ低減処理を行わずに、量子ノイズが低減されたAIR中間画像A20と、SAMPLE中間画像S20とに基づいて、画質の低下が抑制された位相コントラスト画像Cを生成する。
 なお、本実施形態では、ノイズ低減処理は、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタおよびメディアンフィルタ等のうちの少なくともいずれか1つを含む。すなわち、ノイズ低減処理は、量子ノイズを低減するための画像を平滑化するフィルタリング処理である。
 また、本実施形態では、所定の補正処理は、ダーク補正、ゲイン補正、欠損補正およびアンラッピング補正のうちの少なくともいずれか1つを含む。ダーク補正とは、X線を照射しない状態で撮影した画像(ダーク画像)を、X線を照射して撮影した画像から減算する処理である。また、ゲイン補正とは、格子Gを置かずにX線を照射して撮影した画像を、格子Gを置いて撮影した画像から除算する処理である。また、欠損補正とは、検出器12の感度が著しく低下した欠損箇所について、周囲の画素との平均化処理などにより、その部分を補正する処理である。すなわち、ダーク補正、ゲイン補正および欠損補正は、検出器12由来の特異点を補正する処理である。また、アンラッピング補正とは、各画素の画像間における位相値が1周期分ずれることにより不連続となるラッピング領域の位相値を連続的な変化となるように補正する処理である。
 また、本実施形態では、X線位相イメージング装置100は、SAMPLE取得画像S10を生成するための検出器12によるX線の検出時間よりもAIR取得画像A10を生成するための検出時間を短くするように構成されている。また、画像処理部13aは、AIR取得画像A10を生成するための検出時間を短くするのにしたがって、ノイズ低減処理のノイズの低減の程度を大きくするように調整するように構成されている。たとえば、SAMPLE取得画像S10およびAIR取得画像A10を生成するための検出器12によるX線の標準検出時間を、それぞれ、10分とする。そして、AIR取得画像A10を生成するための検出時間を10分から8分にした場合に、AIR取得画像A10に生じる量子ノイズが略10%増加したとする。この場合、増加した10%分のノイズを低減するようにノイズ低減処理の程度(画像の平滑化の程度)を10とする。また、AIR取得画像A10を生成するための検出時間を10分から6分にした場合に、AIR取得画像A10に生じる量子ノイズが略20%増加したとする。この場合、増加した20%分のノイズを低減するようにノイズ低減処理の程度(画像の平滑化の程度)を20とする。
 (実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、画像処理部13aを、位相コントラスト画像Cが生成される前に、AIR取得画像A10に量子ノイズを低減するノイズ低減処理を行うように構成する。これにより、AIR取得画像A10にノイズ低減処理が行なわることにより、量子ノイズが低減されたAIR中間画像A20と、SAMPLE中間画像S20とに基づいて、位相コントラスト画像Cを生成することができる。その結果、X線撮影の時間が比較的短いことに起因して生成されたAIR取得画像A10に量子ノイズが比較的多く生じた場合でも、量子ノイズの影響が低減された位相コントラスト画像Cを生成することができる。これにより、生成される位相コントラスト画像Cにおいて所定の水準の画質を確保しながら、撮影時間を短くすることができる。
 また、本実施形態では、上記のように、画像処理部13aを、SAMPLE取得画像S10およびSAMPLE中間画像S20のいずれにもノイズ低減処理を行わずに、AIR取得画像A10にノイズ低減処理を行うことにより、位相コントラスト画像Cを生成するように構成する。これにより、被写体Pの空間情報が含まれるSAMPLE取得画像S10およびSAMPLE中間画像S20に対してノイズ低減処理が行われずに、被写体Pの空間情報が含まれないAIR取得画像A10にノイズ低減処理が行われるので、被写体Pの空間情報に対して空間分解能の低下等の悪影響を与えることなく、量子ノイズの影響による画質の低下が抑制された位相コントラスト画像Cを生成することができる。
 また、本実施形態では、上記のように、X線位相イメージング装置100を、SAMPLE取得画像S10を生成するための検出器12によるX線の検出時間よりもAIR取得画像A10を生成するための検出時間を短くするように構成する。これにより、AIR取得画像A10を生成するための検出時間が比較的短くなるので、生成される位相コントラスト画像Cにおいて所定の水準の画質を確保しながら、確実に撮影時間を短くすることができる。
 また、本実施形態では、上記のように、画像処理部13aを、AIR取得画像A10を生成するための検出時間を短くするのにしたがって、ノイズ低減処理のノイズの低減の程度を大きくするように調整するように構成する。これにより、検出時間を短くしたことにより増加した量子ノイズをAIR取得画像A10から確実に低減することができる。
 また、本実施形態では、上記のように、画像処理部13aを、ノイズ低減処理を行う前に、AIR取得画像A10に対して、所定の補正処理を行うように構成する。これにより、量子ノイズを低減するノイズ低減処理(画像を平滑化するフィルタリング処理)が特異点やラッピング領域に対して行われることにより、特異点やラッピング領域が周囲と平滑化されてしまうことに起因するアーチファクト(虚像)が形成されてしまうのを抑制することができる。
 また、本実施形態では、上記のように、所定の補正処理は、ダーク補正、ゲイン補正、欠損補正およびアンラッピング補正のうちの少なくともいずれか1つを含む。これにより、特異点やラッピング領域を容易に補正することができる。
 また、本実施形態では、上記のように、ノイズ低減処理は、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタおよびメディアンフィルタのうちの少なくともいずれか1つを含む。これにより、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタまたはメディアンフィルタ等の画像の平滑化に一般的に使用されるフィルタにより、X線量の統計的なバラつきに起因するノイズである量子ノイズを容易に低減することができる。
 また、本実施形態では、上記のように、第1格子G1を、所定の周期で並進移動させる縞走査を行うように構成する。そして、画像処理部13aを、縞走査を行うことにより検出器12で検出された複数のAIR取得画像A10および複数のSAMPLE取得画像S10を生成するとともに、複数のAIR取得画像A10および複数のSAMPLE取得画像S10を解析して、それぞれ、AIR中間画像A20およびSAMPLE中間画像S20を生成するように構成する。これにより、縞走査を行うことによりAIR取得画像A10およびSAMPLE取得画像S10を生成する構成において、生成される位相コントラスト画像Cにおいて所定の水準の画質を確保しながら、撮影時間を短くすることができる。
 また、本実施形態では、上記のように、複数の格子Gは、X線管11と第1格子G1との間に配置され、X線管11から照射されたX線の可干渉性を高めるための第3格子G3を含む。これにより、第3格子G3により、X線管11の焦点径に依存することなく第1格子G1の自己像を形成させることができるので、X線管11の選択の自由度を向上させることができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、画像処理部13aを、ノイズ低減処理を行う前に、AIR取得画像A10に対して、所定の補正処理を行うように構成した例を示したが、本発明はこれに限られない。本発明では、図5に示す第1変形例のように、画像処理部113a(図1参照)を、ノイズ低減処理を行う前に、AIR取得画像A10に対して、所定の補正処理を行わないように構成してもよい。
 図5に示す第1変形例では、画像処理部113aは、AIR取得画像A10に対して、量子ノイズを低減するノイズ低減処理を行う。ノイズ低減処理が行われたAIR取得画像A10は、量子ノイズが低減されたAIR取得画像A210bとなる。そして、画像処理部113aは、量子ノイズが低減されたAIR取得画像A210bを解析することにより、量子ノイズが低減されたAIR中間画像A220を生成する。そして、画像処理部113aは、SAMPLE中間画像S20に対して、所定の補正処理およびノイズ低減処理を行わずに、量子ノイズが低減されたAIR中間画像A220と、SAMPLE中間画像S20とに基づいて、画質の低下が抑制された位相コントラスト画像C200を生成する。なお、AIR取得画像A210bは、特許請求の範囲の「背景取得画像」の一例である。また、AIR中間画像A220は、特許請求の範囲の「背景解析画像」の一例である。
 また、上記実施形態では、画像処理部13aを、AIR取得画像A10を生成するための検出時間を短くするのにしたがって、ノイズ低減処理のノイズの低減の程度を大きくするように調整するように構成した例を示したが、本発明はこれに限られない。本発明では、画像処理部を、AIR取得画像A10を生成するための検出時間に関係なく、ノイズ低減処理のノイズの低減の程度を調整するように構成してもよい。
 また、上記実施形態では、画像処理部13aを、AIR取得画像A10に対して量子ノイズを低減するノイズ低減処理を行うように構成した例を示したが、本発明はこれに限られない。本発明では、図6に示す第2変形例の画像処理部213a(図1参照)および図7に示す第3変形例の画像処理部313a(図1参照)のように、AIR中間画像A320に対して量子ノイズを低減するノイズ低減処理を行うように構成してもよい。また、画像処理部を、AIR取得画像A10およびAIR中間画像A20の両方に対して量子ノイズを低減するノイズ低減処理を行うように構成してもよい。なお、いずれの場合でも、ノイズ低減処理を行う前に、ノイズ低減処理を行う画像に対して、所定の補正処理が行われるのが好ましい。なお、AIR中間画像A320は、特許請求の範囲の「背景解析画像」の一例である。
 図6に示す第2変形例では、画像処理部213aは、AIR取得画像A10に対して、所定の補正処理およびノイズ低減処理が行われずに、AIR取得画像A10からAIR中間画像A320が生成される。次に、画像処理部213aは、AIR中間画像A320に対して、画像中の特異点や画像間のラッピング領域を補正する所定の補正処理を行う。所定の補正処理が行われたAIR中間画像A320は、画像中の特異点や画像間のラッピング領域が補正されたAIR中間画像A320aとなる。次に、画像処理部213aは、AIR中間画像A320aに対して、量子ノイズを低減するノイズ低減処理を行う。ノイズ低減処理が行われたAIR中間画像A320aは、量子ノイズが低減されたAIR中間画像A320bとなる。そして、画像処理部213aは、SAMPLE中間画像S20に対して、所定の補正処理およびノイズ低減処理を行わずに、量子ノイズが低減されたAIR中間画像A320bと、SAMPLE中間画像S20とに基づいて、画質の低下が抑制された位相コントラスト画像C300を生成する。なお、AIR中間画像A320aおよびAIR中間画像A320bは、特許請求の範囲の「背景解析画像」の一例である。
 また、図7に示す第3変形例では、画像処理部313aは、図6に示す例と同様に、AIR取得画像A10に対して、所定の補正処理およびノイズ低減処理が行われずに、AIR取得画像A10からAIR中間画像A320が生成される。次に、画像処理部313aは、AIR中間画像A320に対して、量子ノイズを低減するノイズ低減処理を行う。ノイズ低減処理が行われたAIR中間画像A320aは、量子ノイズが低減されたAIR中間画像A420bとなる。そして、画像処理部313aは、SAMPLE中間画像S20に対して、所定の補正処理およびノイズ低減処理を行わずに、量子ノイズが低減されたAIR中間画像A420bと、SAMPLE中間画像S20とに基づいて、画質の低下が抑制された位相コントラスト画像C400を生成する。なお、AIR中間画像A420bは、特許請求の範囲の「背景解析画像」の一例である。
 また、上記実施形態では、第1格子G1を、所定の周期で並進移動させる縞走査を行うように構成した例を示したが、本発明はこれに限られない。本発明では、第2格子G2、第3格子G3、X線管11、被写体Pまたは検出器12のいずれかを所定の周期で並進移動させる縞走査を行うように構成してもよい。また、第1格子G1、第2格子G2、第3格子G3、X線管11、被写体Pおよび検出器12の内の複数を所定の周期で並進移動させる縞走査を行うように構成してもよい。
 また、上記実施形態では、画像処理部13aを、縞走査を行うことにより検出器12で検出された複数のAIR取得画像A10および複数のSAMPLE取得画像S10を生成するとともに、複数のAIR取得画像A10および複数のSAMPLE取得画像S10を解析して、それぞれ、AIR中間画像A20およびSAMPLE中間画像S20を生成するように構成した例を示したが、本発明はこれに限られない。本発明では、画像処理部を、X線に基づく1つのAIR取得画像A10および1つのSAMPLE取得画像S10を生成するとともに、1つのAIR取得画像A10および1つのSAMPLE取得画像S10を、それぞれ、フーリエ変換処理および逆フーリエ変換処理を行うことによりAIR中間画像A20およびSAMPLE中間画像S20を生成するように構成してもよい。この場合、フーリエ変換処理および逆フーリエ変換処理を行うことによりAIR中間画像A20およびSAMPLE中間画像S20を生成する構成において、生成される位相コントラスト画像Cにおいて所定の水準の画質を確保しながら、撮影時間を短くすることができる。
 また、上記実施形態では、複数の格子Gは、X線管11と第1格子G1との間に配置され、X線管11から照射されたX線の可干渉性を高めるための第3格子G3を含むように構成した例を示したが、本発明はこれに限られない。本発明では、第3格子G3を含まないように構成してもよい。
 また、上記実施形態では、タルボ効果による自己像を形成するために、第1格子G1を位相格子とした例を示したが、本発明はこれに限られない。本発明では、自己像は縞模様であればよいので、位相格子の代わりに吸収格子を用いてもよい。吸収格子を用いると、距離などの光学条件により単純に縞模様が発生する領域(非干渉計)と、タルボ効果による自己像が生じる領域(干渉計)とが生じる。
 11 X線管(X線源)
 12 検出器
 13a、113a、213a、313a 画像処理部
 100 X線位相イメージング装置
 A10、A10a、A10b、A210b AIR取得画像(背景取得画像)
 A20(A21、A22、A23)、A20a、A20b、A220、A320、A320a、A320b、A420b AIR中間画像(背景解析画像)
 C、C200、C300、C400 位相コントラスト画像
 C1 吸収像
 C2 位相微分像
 C3 暗視野像
 G 格子
 G1 第1格子
 G2 第2格子
 G3 第3格子
 P 被写体
 S10 SAMPLE取得画像(被写体取得画像)
 S20(S21、S22、S23) SAMPLE中間画像(被写体解析画像)

Claims (10)

  1.  X線源と、
     前記X線源から照射されたX線を検出する検出器と、
     前記X線源と前記検出器との間に配置され、前記X線源から照射される前記X線により自己像を形成するための第1格子と、前記第1格子の自己像と干渉させるための第2格子と、を含む複数の格子と、
     前記X線源と前記検出器との間に被写体を配置しない状態で前記検出器により検出された背景取得画像と、前記背景取得画像を解析した背景解析画像と、前記X線源と前記検出器との間に前記被写体を配置した状態で前記検出器により検出された被写体取得画像と、前記被写体取得画像を解析した被写体解析画像と、前記背景解析画像と前記被写体解析画像とに基づいて、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像と、を生成する画像処理部と、
    を備え、
     前記画像処理部は、前記位相コントラスト画像が生成される前に、前記背景取得画像および前記背景解析画像のうちの少なくとも一方に前記検出器で検出されるX線量の統計的変動による量子ノイズを低減するノイズ低減処理を行うように構成されている、X線位相イメージング装置。
  2.  前記画像処理部は、前記被写体取得画像および前記被写体解析画像のいずれにも前記ノイズ低減処理を行わずに、前記背景取得画像および前記背景解析画像のうちの少なくとも一方に前記ノイズ低減処理を行うことにより、前記位相コントラスト画像を生成するように構成されている、請求項1に記載のX線位相イメージング装置。
  3.  前記被写体取得画像を生成するための前記検出器による前記X線の検出時間よりも前記背景取得画像を生成するための前記検出時間を短くするように構成されている、請求項1に記載のX線位相イメージング装置。
  4.  前記画像処理部は、前記背景取得画像を生成するための前記検出時間を短くするのにしたがって、前記ノイズ低減処理のノイズの低減の程度を大きくするように調整するように構成されている、請求項3に記載のX線位相イメージング装置。
  5.  前記画像処理部は、前記ノイズ低減処理を行う前に、前記背景取得画像または前記背景解析画像に対して、所定の補正処理を行うように構成されている、請求項1に記載のX線位相イメージング装置。
  6.  前記所定の補正処理は、ダーク補正、ゲイン補正、欠損補正およびアンラッピング補正のうちの少なくともいずれか1つを含む、請求項5に記載のX線位相イメージング装置。
  7.  前記ノイズ低減処理は、平均化フィルタ、ガウシアンフィルタ、ローパスフィルタおよびメディアンフィルタのうちの少なくともいずれか1つを含む、請求項1に記載のX線位相イメージング装置。
  8.  前記複数の格子のいずれか、前記X線源、前記被写体および前記検出器のうちの少なくとも1つを、所定の周期で並進移動させる縞走査を行うように構成されており、
     前記画像処理部は、前記縞走査を行うことにより前記検出器で検出された複数の前記背景取得画像および複数の前記被写体取得画像を生成するとともに、前記複数の背景取得画像および前記複数の被写体取得画像を解析して、それぞれ、前記背景解析画像および前記被写体解析画像を生成するように構成されている、請求項1に記載のX線位相イメージング装置。
  9.  前記画像処理部は、前記X線に基づく1つの前記背景取得画像および1つの前記被写体取得画像を生成するとともに、前記1つの背景取得画像および前記1つの被写体取得画像を、それぞれ、フーリエ変換処理および逆フーリエ変換処理を行うことにより前記背景解析画像および前記被写体解析画像を生成するように構成されている、請求項1に記載のX線位相イメージング装置。
  10.  前記複数の格子は、前記X線源と前記第1格子との間に配置され、前記X線源から照射されたX線の可干渉性を高めるための第3格子をさらに含む、請求項1に記載のX線位相イメージング装置。
PCT/JP2019/017376 2018-08-22 2019-04-24 X線位相イメージング装置 WO2020039655A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538170A JP7111166B2 (ja) 2018-08-22 2019-04-24 X線位相イメージング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018155683 2018-08-22
JP2018-155683 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020039655A1 true WO2020039655A1 (ja) 2020-02-27

Family

ID=69592581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017376 WO2020039655A1 (ja) 2018-08-22 2019-04-24 X線位相イメージング装置

Country Status (2)

Country Link
JP (1) JP7111166B2 (ja)
WO (1) WO2020039655A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063166A (ja) * 2011-09-16 2013-04-11 Fujifilm Corp 放射線撮影装置及び画像処理方法
JP2015167613A (ja) * 2014-03-05 2015-09-28 富士フイルム株式会社 放射線画像処理装置および方法並びにプログラム
JP2015529510A (ja) * 2012-08-20 2015-10-08 コーニンクレッカ フィリップス エヌ ヴェ 微分位相コントラスト撮像における複数オーダの位相調整のためのソース格子対位相格子距離の位置合わせ
JP2015190776A (ja) * 2014-03-27 2015-11-02 キヤノン株式会社 画像処理装置および撮像システム
JP2016061608A (ja) * 2014-09-16 2016-04-25 キヤノン株式会社 画像処理方法、画像処理装置、撮像システム
JP2016190012A (ja) * 2015-03-31 2016-11-10 富士フイルム株式会社 ノイズ抑制処理装置および方法並びにプログラム
WO2017212687A1 (ja) * 2016-06-10 2017-12-14 株式会社島津製作所 X線位相差撮像システム、x線位相差撮像装置およびx線位相差撮像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063166A (ja) * 2011-09-16 2013-04-11 Fujifilm Corp 放射線撮影装置及び画像処理方法
JP2015529510A (ja) * 2012-08-20 2015-10-08 コーニンクレッカ フィリップス エヌ ヴェ 微分位相コントラスト撮像における複数オーダの位相調整のためのソース格子対位相格子距離の位置合わせ
JP2015167613A (ja) * 2014-03-05 2015-09-28 富士フイルム株式会社 放射線画像処理装置および方法並びにプログラム
JP2015190776A (ja) * 2014-03-27 2015-11-02 キヤノン株式会社 画像処理装置および撮像システム
JP2016061608A (ja) * 2014-09-16 2016-04-25 キヤノン株式会社 画像処理方法、画像処理装置、撮像システム
JP2016190012A (ja) * 2015-03-31 2016-11-10 富士フイルム株式会社 ノイズ抑制処理装置および方法並びにプログラム
WO2017212687A1 (ja) * 2016-06-10 2017-12-14 株式会社島津製作所 X線位相差撮像システム、x線位相差撮像装置およびx線位相差撮像方法

Also Published As

Publication number Publication date
JP7111166B2 (ja) 2022-08-02
JPWO2020039655A1 (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
US10801971B2 (en) X-ray phase contrast imaging with fourier transform determination of grating displacement
JP6187298B2 (ja) X線撮影システム及び画像処理方法
JPWO2018016369A1 (ja) X線位相差撮像装置
CN112955735B (zh) X射线相位摄像系统
JP6673188B2 (ja) X線位相撮影装置
US11175241B2 (en) X-ray phase image capturing system
WO2019220689A1 (ja) X線イメージング装置
JPWO2019239624A1 (ja) X線イメージング装置
JP7031371B2 (ja) X線位相差撮像システム
JP7111166B2 (ja) X線位相イメージング装置
KR101284986B1 (ko) 고해상도 토모신세시스 단면 영상의 재구성 방법 및 그 장치
US9613437B2 (en) Image producing apparatus, radiation tomography apparatus, and program
JP2018029777A (ja) X線位相差撮像装置
JP6631707B2 (ja) X線位相差撮像システム
JP7040625B2 (ja) X線位相撮像システム
WO2020188856A1 (ja) X線イメージング装置
JP7021676B2 (ja) X線位相差撮像システム
JP6365746B2 (ja) 画像処理装置、x線撮影システム及び画像処理方法
JP7021705B2 (ja) X線位相イメージング装置
JP7131625B2 (ja) X線位相イメージング装置
JP2022006401A (ja) X線画像撮影装置およびx線画像の生成方法
JP7180562B2 (ja) X線位相撮像装置
WO2020054159A1 (ja) X線位相撮像システム
JP7226212B2 (ja) X線位相イメージング装置および位相コントラスト画像生成方法
WO2020054151A1 (ja) X線位相イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020538170

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852528

Country of ref document: EP

Kind code of ref document: A1