WO2020039486A1 - Wide-angle lens - Google Patents

Wide-angle lens Download PDF

Info

Publication number
WO2020039486A1
WO2020039486A1 PCT/JP2018/030695 JP2018030695W WO2020039486A1 WO 2020039486 A1 WO2020039486 A1 WO 2020039486A1 JP 2018030695 W JP2018030695 W JP 2018030695W WO 2020039486 A1 WO2020039486 A1 WO 2020039486A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
angle
group
angle lens
Prior art date
Application number
PCT/JP2018/030695
Other languages
French (fr)
Japanese (ja)
Inventor
花井 美喜雄
Original Assignee
株式会社トヨテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トヨテック filed Critical 株式会社トヨテック
Priority to PCT/JP2018/030695 priority Critical patent/WO2020039486A1/en
Publication of WO2020039486A1 publication Critical patent/WO2020039486A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to a large-aperture wide-angle lens capable of favorably correcting aberration.
  • Patent Literature 1 discloses a four-element wide-angle lens in which aberration is well corrected.
  • Patent Literature 1 has a problem that the lens system is dark due to a large F value of about 2.8 (a small aperture), and it is difficult to detect weak reflected light.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a large-aperture wide-angle lens capable of favorably correcting aberration.
  • the wide-angle lens according to the present invention comprises, in order from the object side to the image plane side, a first group having a negative refractive power and a second group having a positive refractive power.
  • the first group includes, in order from the object side, a meniscus-shaped first lens having a negative refractive power and projecting toward the object side, and one or two lenses.
  • the lens surface of one of the lenses on the image plane side is formed of an aspherical surface that is convex toward the image plane near the optical axis and concave toward the image plane at the periphery of the effective diameter.
  • the group consists of three lenses having positive refractive power.
  • the lens system is configured by the negative first group having the meniscus-shaped negative first lens convex to the object side and the second group including three positive lenses.
  • Large diameter and wide angle can be achieved.
  • the lens surface on the image surface side of the first group which is located on the image surface side with respect to the first lens has a convex shape on the image surface side near the optical axis and is concave on the image surface side on the periphery of the effective diameter. Since it is formed of an aspherical surface, it is possible to satisfactorily correct spherical aberration and field curvature of a large-aperture wide-angle lens.
  • the distance on the optical axis from the object-side lens surface of the first lens to the image plane is defined as TT, and the second group is most distant from the object-side lens surface of the first lens.
  • the distance on the optical axis to the lens surface on the side is TA, the following conditional expression (1) is satisfied.
  • the wide-angle lens according to the third aspect when the combined focal length of the second group is F2G and the focal length of the entire system is f, the following conditional expression (2) is satisfied.
  • the first group includes the first lens and one lens. Since at least two of all lens surfaces of the second group are aspherical, in addition to the effects of any one of claims 1 to 3, aberrations can be favorably corrected while increasing the diameter of the five-element wide-angle lens. .
  • each of the three lenses in the second group is a glass lens having a d-line refractive index of 1.9 or more, or a resin lens having a d-line refractive index of 1.6 or more. Consists of Therefore, in addition to the effect of any one of the first to fourth aspects, the aperture of the wide-angle lens can be further increased.
  • FIG. 3 is a cross-sectional view of the wide-angle lens according to the first embodiment. It is a longitudinal aberration figure obtained from a wide-angle lens. It is a lateral aberration figure obtained from a wide-angle lens. It is sectional drawing of the wide-angle lens in 2nd Example. It is a longitudinal aberration figure obtained from a wide-angle lens. It is a lateral aberration figure obtained from a wide-angle lens. It is sectional drawing of the wide-angle lens in 3rd Example. It is a longitudinal aberration figure obtained from a wide-angle lens. It is a lateral aberration figure obtained from a wide-angle lens. It is sectional drawing of the wide-angle lens in 4th Example.
  • FIG. 1 is a cross-sectional view including an optical axis Ax of a wide-angle lens according to an embodiment (the wide-angle lens 10 of the first example).
  • the left side of FIG. 1 is the object side, and the right side of FIG. 1 is the image plane 13 side.
  • the wide-angle lens is an imaging lens for near-infrared light used in a vehicle-mounted camera, a surveillance camera, and the like, and has a maximum angle of view (all angles of view) of 120 ° or more. Since the wide-angle lens for near-infrared light does not require correction of chromatic aberration, the number of lenses constituting the wide-angle lens can be reduced.
  • the wide-angle lens according to the present embodiment includes five or six lenses. Further, as a projection method of a wide-angle lens used for an in-vehicle camera for detecting an obstacle, an equidistant projection method in which an image size is uniform with respect to an azimuth angle is preferable. In this case, the resolution with respect to the direction of the obstacle and the distance to the obstacle can be increased.
  • the image plane formed by the wide-angle lens when the object is at infinity is the image plane 13, and the parallel-plate glass filter 12 is disposed on the image plane 13 side of the wide-angle lens.
  • the glass filter 12 has functions such as a visible light cut filter, a band pass filter, an ultraviolet cut filter, and a polarizing filter. Note that the glass filter 12 is not essential, and the glass filter 12 can be omitted.
  • the wide-angle lens includes, in order from the object side to the image plane 13 side, a first group G1 having a negative refractive power and a second group G2 having a positive refractive power.
  • Each lens constituting the wide-angle lens is configured to be line-symmetric with respect to the optical axis Ax. That is, the intersection between each lens surface and the optical axis Ax is the vertex of each lens surface.
  • the wide-angle lens is provided with an aperture 11.
  • the diaphragm 11 is for appropriately cutting the light flux (light amount) at the periphery (a part distant from the optical axis Ax). If the peripheral light amount can be appropriately cut, the position of the aperture 11 can be set relatively freely.
  • the first group G1 includes, in order from the object side, a meniscus-shaped first lens L11 having a negative refractive power and projecting toward the object side, and one or two lenses.
  • the second group G2 includes three lenses L21, L22, and L23 having a positive refractive power. The light is converged by the large positive refractive power of the second group G2 while taking in a wide range of light by the first group G1. As a result, the first group G1 and the second group G2 can increase the angle of view of the wide-angle lens and increase the diameter of the wide-angle lens (decrease the F value).
  • the aspherical surface changes from a convex shape to a concave shape as the inflection portion adjacent to the entire periphery of the central portion approaches the peripheral portion. With such an aspherical surface, spherical aberration and curvature of field, which tend to be problems when a wide-angle lens is made large in diameter, can be satisfactorily corrected.
  • the inflection portion has an inflection point at which the cross section including the optical axis Ax changes from a convex shape to a concave shape.
  • This inflection point is preferably located at a position 70% to 85% of the effective diameter from the optical axis Ax.
  • the first group G1 is composed of two lenses, the first lens L11 and one lens, and has five wide-angle lenses
  • at least two of the lens surfaces of the second group G2 are aspherical.
  • aberrations that cannot be completely corrected by the two-group first group G1 can be satisfactorily corrected by the two aspheric surfaces of the second group G2.
  • the three lenses L21, L22, and L23 of the second group G2 are each made of a glass lens with a d-line refractive index of 1.9 or more, or a resin lens with a d-line refractive index of 1.6 or more. Thereby, the positive refractive power of the second group G2 can be further increased, so that the aperture of the wide-angle lens can be further increased.
  • the resin lens is lighter than the glass lens, the weight of the wide-angle lens can be reduced by increasing the number of resin lenses. Also, providing an aspherical surface on a resin lens makes it easier to form an aspherical surface as compared with the case where an aspherical surface is provided on a glass lens, and can reduce the cost of forming an aspherical surface.
  • the wide-angle lens has a distance TT on the optical axis Ax from the object-side lens surface R1 of the first lens L11 to the image plane 13 (the total length of the wide-angle lens), and the first lens L11 has a distance from the object-side lens surface R1.
  • TA the distance on the optical axis Ax from the lens surface closest to the object side of the second group G2 (surface R7 in the first embodiment) is TA, it is preferable to satisfy the following conditional expression (1).
  • conditional expression (1) If the lower limit of conditional expression (1) is not exceeded, the overall length of the first unit G1 will be larger than the overall length of the wide-angle lens. Then, the outer diameter of the first lens L11 increases, and the outer diameter of the wide-angle lens whose brightness is ensured increases. On the other hand, by satisfying conditional expression (1), the outer diameter of the first lens L11 can be reduced. In order to capture a wide range of light, the outer diameter of the first lens L11 closest to the object is likely to be larger than the outer diameters of the other lenses. However, by reducing the outer diameter of the first lens L11, the brightness is reduced. The outer diameter of the wide-angle lens in which is secured can be reduced.
  • the wide-angle lens preferably satisfies the following conditional expression (2) when the combined focal length of the second group G2 is F2G and the focal length of the entire system is f.
  • the focal length in the present specification is a focal length at a wavelength (940 nm in the present embodiment) mainly received by a wide-angle lens.
  • conditional Expression (2) below the lower limit of Conditional Expression (2), the spherical aberration generated in the second lens unit G2 tends to increase. In order to correct this spherical aberration, the second group G2 may require four or more lenses. In that case, the overall length of the wide-angle lens becomes longer. Above the upper limit of conditional expression (2), the overall length of the wide-angle lens becomes longer. By satisfying conditional expression (2), it is possible to shorten the overall length while sufficiently increasing the diameter of the wide-angle lens.
  • an aspherical surface that is convex near the optical axis Ax and concave at the periphery is disposed closest to the image plane 13 of the first lens unit G1.
  • an aspherical surface that is convex near the optical axis Ax and concave at the periphery is provided on the image plane 13 side of the meniscus lens that is convex on the image plane 13 side.
  • the change in the lateral aberration in the tangential direction can be flattened, and the aperture of the wide-angle lens can be further increased.
  • such a meniscus lens is located closest to the image plane 13 of the first group G1. As a result, the change in the lateral aberration in the tangential direction can be further flattened, and the aperture of the wide-angle lens can be further increased.
  • all lens surfaces of the first group G1 located closer to the image plane 13 than the first lens L1 are aspherical. Thereby, various aberrations such as spherical aberration, curvature of field, astigmatism, and distortion can be easily controlled, and various aberrations can be satisfactorily corrected.
  • the wide-angle lens 10 in the first embodiment is composed of six lenses.
  • the first group G1 of the wide-angle lens 10 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side.
  • the second group G2 of the wide-angle lens 10 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and convex on the image surface 13 side, a biconvex fifth lens L22, and a biconvex lens.
  • the sixth lens L23 The diaphragm 11 is arranged between the second lens L12 and the third lens L13.
  • the first lens L11, fourth lens L21, fifth lens L22, and sixth lens L23 of the wide-angle lens 10 are glass lenses.
  • the second lens L12 and the third lens L13 of the wide-angle lens 10 are resin lenses.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • Table 1 shows optical values and lens data of the wide-angle lens 10.
  • the focal length f (940 nm) is the focal length of the entire wide-angle lens 10 when near-infrared light having a wavelength of 940 nm is used.
  • the distance between the surfaces R1 to R14 and the upper surface of the stop 11 indicates the distance on the optical axis Ax between the surface and the surface on the image plane 13 side.
  • the refractive index N940 is the refractive index of each of the lenses L11 to L23 when near infrared light having a wavelength of 940 nm is used.
  • the refractive index nd (d-line refractive index) and Abbe number ⁇ d are the refractive index and Abbe number of each of the lenses L11 to L23 when a d-line having a wavelength of 587.56 nm is used.
  • the symbol * of the surface number in Table 1 indicates an aspheric surface.
  • the surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspheric.
  • the shape of the aspheric surface is represented by the following equation (3).
  • z sag amount (distance in the optical axis Ax direction from an intersection with the optical axis Ax to a point on the aspheric surface)
  • c curvature (curvature at the vertex of the lens surface)
  • r distance from the optical axis Ax in the radial direction (perpendicular to the optical axis Ax) to a point on the aspherical surface
  • k conic constant A, B, C, D: aspherical coefficient (fourth order, sixth order, eighth order in order) 10th)
  • Tables 2 and 3 show the conic constants and aspheric coefficients of the surfaces R3 to R6.
  • a power of 10 is represented by using E (for example, 1.0 ⁇ 10 ⁇ 4 is 1.0E ⁇ 4).
  • the tenth-order aspherical surface coefficient D of the surfaces R3 to R6 is zero.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 2 shows a longitudinal aberration diagram obtained from the wide-angle lens 10 when near-infrared light having a wavelength of 940 nm is used, and a lateral aberration diagram obtained from the wide-angle lens 10 when using near-infrared light having a wavelength of 940 nm. 3 is shown.
  • the horizontal axis of the spherical aberration diagram (LONGITUDINAL @ SPHERICAL @ ABER.) In FIG. 2 is the shift amount (FOCUS (mm)) in the direction of the optical axis Ax from the image plane 13 near the optical axis Ax.
  • the vertical axis of the spherical aberration diagram is the entrance pupil coordinate (a value obtained by standardizing the height of incidence on the pupil with its maximum height).
  • the horizontal axis of the astigmatism diagram (ASTIGMATIC FIELD CURVES) in FIG. 2 is the shift amount (FOCUS (mm)) in the direction of the optical axis Ax from the image plane near the optical axis Ax.
  • the vertical axis of the astigmatism diagram is a half angle of view (ANGLE (°)), which is an angle between the optical axis Ax and the principal ray.
  • ANGLE angle of view
  • the curvature S of the sagittal image surface is shown by a solid line
  • the curvature T of the tangential image surface is shown by a broken line.
  • the astigmatism (astigmatic difference) can be read from the deviation between the two lines.
  • the horizontal axis of the distortion diagram (DISTORTION) in FIG. 2 is the distortion (DISTORTION (%)).
  • the vertical axis of the distortion diagram is the half angle of view (ANGLE (°)), which is the angle between the optical axis Ax and the principal ray.
  • FIG. 3 shows a lateral aberration diagram in a tangential (TANGENTIAL) direction at a predetermined image height ratio (RELATIVE / FIELD / HEIGHT) and a half angle of view on the left side of the drawing.
  • the lateral aberration diagram in the direction ()) is shown on the right side of the drawing.
  • the horizontal axis is the entrance pupil coordinate
  • the vertical axis is the lateral aberration (mm).
  • the image height ratio is a value obtained by standardizing the image height with the maximum image height.
  • the wide-angle lens 20 includes six lenses.
  • the first group G1 of the wide-angle lens 20 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 that is convex on the image surface 13 side, and has a positive refractive power on the image surface 13 side. And a third lens L13 having a convex meniscus shape.
  • the second group G2 of the wide-angle lens 20 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and convex on the image surface 13 side, a biconvex fifth lens L22, and an object-side lens. And a sixth lens L23 having a substantially plano-convex shape.
  • the stop 11 is arranged between the third lens L13 and the fourth lens L21.
  • the first lens L11, the fourth lens L21, and the fifth lens L22 of the wide-angle lens 20 are glass lenses.
  • the second lens L12, the third lens L13, and the sixth lens L23 of the wide-angle lens 20 are resin lenses.
  • Table 4 shows optical values and lens data of the wide-angle lens 20.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • the surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspheric.
  • Tables 5 and 6 show the conic constants and aspheric coefficients of the surfaces R3 to R6.
  • the tenth-order aspheric coefficient D of the surfaces R3 to R6 is zero.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 5 shows a longitudinal aberration diagram obtained from the wide-angle lens 20 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 6 shows a lateral aberration diagram obtained from the wide-angle lens 20 when near-infrared light having a wavelength of 940 nm is used.
  • the wide-angle lens 30 in the third embodiment is composed of six lenses.
  • the first group G1 of the wide-angle lens 30 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side.
  • the second group G2 of the wide-angle lens 30 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image plane 13, a biconvex fifth lens L22, and a biconvex lens.
  • the sixth lens L23 The diaphragm 11 is arranged between the fourth lens L21 and the fifth lens L22.
  • the first lens L11 of the wide-angle lens 30 is a glass lens.
  • the second lens L12, the third lens L13, the fourth lens L21, the fifth lens L22, and the sixth lens L23 of the wide-angle lens 30 are resin lenses.
  • Table 7 shows optical values and lens data of the wide-angle lens 30.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • the surfaces R3 to R10 of the second lens L12, the third lens L13, the fourth lens L21, and the fifth lens L22 are all aspheric.
  • Tables 8 to 11 show the conic constants and aspherical coefficients of the surfaces R3 to R10.
  • the 10th-order aspherical surface coefficient D of the surfaces R3 to R10 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 to R10 is 0.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 8 shows a longitudinal aberration diagram obtained from the wide-angle lens 30 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 9 shows a lateral aberration diagram obtained from the wide-angle lens 30 when near-infrared light having a wavelength of 940 nm is used.
  • the wide-angle lens 40 in the fourth embodiment is composed of six lenses.
  • the first group G1 of the wide-angle lens 40 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image surface 13 side, and a positive refractive power.
  • the second group G2 of the wide-angle lens 40 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power.
  • the stop 11 is arranged between the third lens L13 and the fourth lens L21.
  • the first lens L11, the fifth lens L22, and the sixth lens L23 of the wide-angle lens 40 are glass lenses.
  • the second lens L12, the third lens L13, and the fourth lens L21 of the wide-angle lens 40 are resin lenses.
  • Table 12 shows optical values and lens data of the wide-angle lens 40.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • the surfaces R3 to R8 of the second lens L12, the third lens L13, and the fourth lens L21 are all aspherical.
  • Tables 13 to 15 show the conic constants and aspheric coefficients of the surfaces R3 to R8.
  • the 10th-order aspherical surface coefficient D of the surfaces R3 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 and R8 is 0.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 11 shows a longitudinal aberration diagram obtained from the wide-angle lens 40 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 12 shows a lateral aberration diagram obtained from the wide-angle lens 40 when near-infrared light having a wavelength of 940 nm is used.
  • the wide-angle lens 50 in the fifth embodiment is composed of six lenses.
  • the first group G1 of the wide-angle lens 50 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power.
  • the second group G2 of the wide-angle lens 50 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power.
  • the stop 11 is arranged between the third lens L13 and the fourth lens L21.
  • the first lens L11 and the fifth lens L22 of the wide-angle lens 50 are glass lenses.
  • the second lens L12, the third lens L13, the fourth lens L21, and the sixth lens L23 of the wide-angle lens 50 are resin lenses.
  • Table 16 shows optical values and lens data of the wide-angle lens 50.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • the surfaces R3 to R8 of the second lens L12, the third lens L13, and the fourth lens L21 are all aspherical.
  • Tables 17 to 19 show the conic constants and aspheric coefficients of the surfaces R3 to R8.
  • the 10th-order aspherical surface coefficient D of the surfaces R3 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 and R8 is 0.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 14 shows a longitudinal aberration diagram obtained from the wide-angle lens 50 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 15 shows a lateral aberration diagram obtained from the wide-angle lens 50 when near-infrared light having a wavelength of 940 nm is used.
  • the wide-angle lens 60 includes six lenses.
  • the first group G1 of the wide-angle lens 60 includes, in order from the object side, a first lens L11, a biconvex second lens L12, and a third meniscus-shaped third lens having a positive refractive power and convex to the image plane 13 side. And a lens L13.
  • the second group G2 of the wide-angle lens 60 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power.
  • the stop 11 is arranged between the third lens L13 and the fourth lens L21.
  • the first lens L11, fourth lens L21, fifth lens L22, and sixth lens L23 of the wide-angle lens 60 are glass lenses.
  • the second lens L12 and the third lens L13 of the wide-angle lens 60 are resin lenses.
  • Table 20 shows optical values and lens data of the wide-angle lens 60.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side.
  • the object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
  • the surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspherical.
  • Tables 21 and 22 show the conic constants and aspherical coefficients of the surfaces R3 to R6.
  • the tenth-order aspheric coefficient D of the surfaces R3 to R6 is zero.
  • the surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
  • FIG. 17 shows a longitudinal aberration diagram obtained from the wide-angle lens 60 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 18 shows a lateral aberration diagram obtained from the wide-angle lens 60 when near-infrared light having a wavelength of 940 nm is used.
  • the wide-angle lens 70 in the seventh embodiment is composed of five lenses.
  • the first group G1 of the wide-angle lens 70 includes, in order from the object side, a first lens L11 and a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side.
  • the second group G2 of the wide-angle lens 70 includes, in order from the object side, a biconvex third lens L21, a biconvex fourth lens L22, and a biconvex fifth lens L23.
  • the stop 11 is disposed between the second lens L12 and the third lens L21.
  • the fifth lens L23 of the wide-angle lens 70 is a glass lens.
  • the first lens L11, the second lens L12, the third lens L21, and the fourth lens L22 of the wide-angle lens 70 are resin lenses.
  • Table 23 shows optical values and lens data of the wide-angle lens 70.
  • the lens surfaces of the lenses L11 to L23 are surfaces R1 to R10 in order from the object side.
  • the object side of the glass filter 12 is a surface R11, and the image surface 13 side is a surface R12.
  • the surfaces R3 to R8 of the second lens L12, the third lens L21, and the fourth lens L22 are all aspheric.
  • Tables 24 to 26 show the conic constants and aspherical coefficients of the surfaces R3 to R8.
  • the 10th-order aspherical surface coefficient D of the surfaces R4 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R5 to R8 is 0.
  • the surface R4 is an aspheric surface that is convex near the optical axis Ax and concave at the peripheral edge.
  • FIG. 20 shows a longitudinal aberration diagram obtained from the wide-angle lens 70 when near-infrared light having a wavelength of 940 nm is used.
  • FIG. 21 shows a lateral aberration diagram obtained from the wide-angle lens 70 when near-infrared light having a wavelength of 940 nm is used.
  • the angle of view ⁇ , the F value, the value of TT / TA in conditional expression (1), the value of F2G / f in conditional expression (2), and the position of the inflection point of the wide-angle lenses 10 to 70 in the above embodiments are shown. 27.
  • the inflection point position in Table 27 refers to an aspheric surface that is convex near the optical axis Ax and concave at the periphery of the second lens L12 or the third lens L13 of the first group G1. Is the ratio obtained by dividing the distance from the optical axis Ax in the direction perpendicular to the axis to the inflection point by the effective diameter.
  • the F-number can be increased to about 0.7 while widening the angle of view to 120 ° or more, and various aberrations (particularly, spherical aberration and curvature of field) can be corrected well.
  • the wide-angle lenses 10 to 70 of each embodiment satisfy the conditional expression (1), the outer diameter of the wide-angle lenses 10 to 70 whose brightness is ensured can be reduced.
  • the wide-angle lenses 10 to 70 of each embodiment satisfy the conditional expression (2), the overall length can be reduced while the wide-angle lenses 10 to 70 have a sufficiently large aperture.
  • the inflection point of the aspheric surface having a convex shape near the optical axis Ax and a concave shape at the peripheral edge in the second lens L12 or the third lens L13 of the first group G1. are located 70% to 85% of the effective diameter from the optical axis Ax.
  • the aspherical surface that is convex near the optical axis Ax and concave at the periphery is a meniscus shape convex to the image surface 13 side in the first group G1.
  • the third lens L13 is provided on a surface R6 on the image plane 13 side.
  • the aspherical surface that is convex near the optical axis Ax and concave at the periphery is the second meniscus convex surface of the first group G1 that faces the image surface 13. It is provided on a surface R4 on the image plane 13 side of the lens L12.
  • a lens having little refractive power (such as a cover glass) may be provided on the object side or the image plane 13 side of the wide-angle lenses 10 to 70. Further, the materials of the lenses L11 to L23 may be appropriately changed. An aspherical surface may be provided on the glass lens.
  • the surface R6 of the third lens L13 is a convex aspherical surface near the optical axis Ax and a concave aspherical surface at the periphery, but is not necessarily limited to this. Absent.
  • the surface R4 of the second lens L12 may be an aspheric surface that is convex near the optical axis Ax and concave at the peripheral edge. Also in this case, the spherical aberration and the field curvature of the large-diameter wide-angle lens can be corrected well.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

Provided is a large-aperture wide-angle lens that can excellently correct aberration. A wide-angle lens (10) comprises a first group (G1) having a negative refractive power and a second group (G2) having a positive refractive power sequentially from the object side toward an image surface (13) side. The first group (G1) comprises a meniscus-shaped first lens (L11) that has a negative refractive power and that is convex to the object side, and one or two lenses (L12, L13), sequentially from the object side. The lens surface (R6) on the side of an image surface (13) of the one of the one or two lenses is an aspherical surface that is convex to the image surface (13) side near the optical axis (Ax) and that is concave to the image surface side at the effective-diameter peripheral edge. The second group (G2) comprises three lenses (L21, L22, L23) having a positive refractive power.

Description

広角レンズWide-angle lens
 本発明は、収差を良好に補正できる大口径の広角レンズに関するものである。 The present invention relates to a large-aperture wide-angle lens capable of favorably correcting aberration.
 発光素子から光を投射し、対象物で反射した光をレンズ系で受けて、対象物までの距離や対象物の位置を測定する装置がある。この反射した光を受けるレンズ系には、広角でありながら収差が良好に補正され、小型のものが求められる。このようなレンズ系として、特許文献1には、収差が良好に補正された4枚構成の広角レンズが開示されている。 装置 There is a device that projects light from a light emitting element, receives light reflected by an object through a lens system, and measures the distance to the object and the position of the object. The lens system that receives the reflected light is required to be small in size while having a wide angle and good correction of aberrations. As such a lens system, Patent Literature 1 discloses a four-element wide-angle lens in which aberration is well corrected.
特開2007-94032号公報JP 2007-94032 A
 しかしながら、上記特許文献1に記載された技術では、F値が約2.8と大きい(小口径である)ためにレンズ系が暗く、弱い反射光を感知し難いという問題点がある。 However, the technique described in Patent Literature 1 has a problem that the lens system is dark due to a large F value of about 2.8 (a small aperture), and it is difficult to detect weak reflected light.
 本発明は上述した問題点を解決するためになされたものであり、収差を良好に補正できる大口径の広角レンズを提供することを目的とする。 The present invention has been made to solve the above-described problems, and has as its object to provide a large-aperture wide-angle lens capable of favorably correcting aberration.
 この目的を達成するために本発明の広角レンズは、物体側から像面側へ向かって順に、負の屈折力を有する第1群と、正の屈折力を有する第2群とからなるものであって、前記第1群は、物体側から順に、負の屈折力を有して物体側に凸のメニスカス形状の第1レンズと、1又は2枚のレンズとからなり、その1又は2枚のレンズのうち1枚の像面側のレンズ面は、光軸近傍で像面側に凸形状であって有効径の周縁部で像面側に凹形状である非球面からなり、前記第2群は、正の屈折力を有する3枚のレンズからなる。 In order to achieve this object, the wide-angle lens according to the present invention comprises, in order from the object side to the image plane side, a first group having a negative refractive power and a second group having a positive refractive power. The first group includes, in order from the object side, a meniscus-shaped first lens having a negative refractive power and projecting toward the object side, and one or two lenses. The lens surface of one of the lenses on the image plane side is formed of an aspherical surface that is convex toward the image plane near the optical axis and concave toward the image plane at the periphery of the effective diameter. The group consists of three lenses having positive refractive power.
 請求項1記載の広角レンズによれば、物体側に凸のメニスカス形状の負の第1レンズを有する負の第1群と、正の3枚のレンズからなる第2群とによって、レンズ系を大口径化および広角化できる。さらに、第1群のうち第1レンズよりも像面側に位置する像面側のレンズ面が、光軸近傍で像面側に凸形状であって有効径の周縁部で像面側に凹形状である非球面からなるので、大口径の広角レンズの球面収差および像面湾曲を良好に補正できる。 According to the wide-angle lens according to the first aspect, the lens system is configured by the negative first group having the meniscus-shaped negative first lens convex to the object side and the second group including three positive lenses. Large diameter and wide angle can be achieved. Further, the lens surface on the image surface side of the first group which is located on the image surface side with respect to the first lens has a convex shape on the image surface side near the optical axis and is concave on the image surface side on the periphery of the effective diameter. Since it is formed of an aspherical surface, it is possible to satisfactorily correct spherical aberration and field curvature of a large-aperture wide-angle lens.
 請求項2記載の広角レンズによれば、第1レンズの物体側のレンズ面から像面までの光軸上の距離をTTとし、第1レンズの物体側のレンズ面から第2群の最も物体側のレンズ面までの光軸上の距離をTAとしたときに、以下の条件式(1)を満足する。これにより、請求項1の効果に加え、明るさが確保された広角レンズの外径を小さくできる。
Figure JPOXMLDOC01-appb-M000003
According to the wide-angle lens described in claim 2, the distance on the optical axis from the object-side lens surface of the first lens to the image plane is defined as TT, and the second group is most distant from the object-side lens surface of the first lens. When the distance on the optical axis to the lens surface on the side is TA, the following conditional expression (1) is satisfied. Thereby, in addition to the effect of the first aspect, the outer diameter of the wide-angle lens whose brightness is ensured can be reduced.
Figure JPOXMLDOC01-appb-M000003
 請求項3記載の広角レンズによれば、第2群の合成焦点距離をF2Gとし、全系の焦点距離をfとしたときに、以下の条件式(2)を満足する。これにより、請求項1又は2の効果に加え、広角レンズを十分に大口径化しつつ、広角レンズの全長を短くできる。
Figure JPOXMLDOC01-appb-M000004
According to the wide-angle lens according to the third aspect, when the combined focal length of the second group is F2G and the focal length of the entire system is f, the following conditional expression (2) is satisfied. Thus, in addition to the effects of the first and second aspects, it is possible to shorten the overall length of the wide-angle lens while sufficiently increasing the diameter of the wide-angle lens.
Figure JPOXMLDOC01-appb-M000004
 請求項4記載の広角レンズによれば、第1群は、第1レンズと1枚のレンズとからなる。第2群の全レンズ面のうち少なくとも2面が非球面であるので、請求項1から3のいずれかの効果に加え、5枚構成の広角レンズを大口径化しつつ、収差を良好に補正できる。 According to the wide-angle lens according to the fourth aspect, the first group includes the first lens and one lens. Since at least two of all lens surfaces of the second group are aspherical, in addition to the effects of any one of claims 1 to 3, aberrations can be favorably corrected while increasing the diameter of the five-element wide-angle lens. .
 請求項5記載の広角レンズによれば、第2群の3枚のレンズは、それぞれd線屈折率1.9以上のガラスレンズ、又は、d線屈折率1.6以上の樹脂レンズのいずれかからなる。そのため、請求項1から4のいずれかの効果に加え、広角レンズをより大口径化できる。 According to the wide-angle lens according to the fifth aspect, each of the three lenses in the second group is a glass lens having a d-line refractive index of 1.9 or more, or a resin lens having a d-line refractive index of 1.6 or more. Consists of Therefore, in addition to the effect of any one of the first to fourth aspects, the aperture of the wide-angle lens can be further increased.
第1実施例における広角レンズの断面図である。FIG. 3 is a cross-sectional view of the wide-angle lens according to the first embodiment. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第2実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 2nd Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第3実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 3rd Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第4実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 4th Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第5実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 5th Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第6実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 6th Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens. 第7実施例における広角レンズの断面図である。It is sectional drawing of the wide-angle lens in 7th Example. 広角レンズから得られる縦収差図である。It is a longitudinal aberration figure obtained from a wide-angle lens. 広角レンズから得られる横収差図である。It is a lateral aberration figure obtained from a wide-angle lens.
 以下、好ましい実施形態について、添付図面を参照して説明する。まず、図1を参照して、一実施形態における広角レンズについて説明する。図1は、一実施形態における広角レンズ(第1実施例の広角レンズ10)の光軸Axを含む断面図である。なお、図1の紙面左側が物体側であり、図1の紙面右側が像面13側である。 Hereinafter, preferred embodiments will be described with reference to the accompanying drawings. First, a wide-angle lens according to an embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view including an optical axis Ax of a wide-angle lens according to an embodiment (the wide-angle lens 10 of the first example). The left side of FIG. 1 is the object side, and the right side of FIG. 1 is the image plane 13 side.
 図1に示すように、広角レンズは、車載カメラや監視カメラ等に用いられる近赤外光用の結像レンズであり、最大画角(全画角)が120°以上に構成されている。近赤外光用の広角レンズは、色収差の補正が不要なので、広角レンズを構成するレンズ枚数を少なくできる。本実施形態の広角レンズは、5又は6枚のレンズからなる。また、障害物検知用の車載カメラに用いられる広角レンズの射影方式は、方位角度に対して像の大きさが均一な等距離射影方式が好ましい。この場合には、障害物の方位と障害物までの距離とに対する分解能を高くできる。 As shown in FIG. 1, the wide-angle lens is an imaging lens for near-infrared light used in a vehicle-mounted camera, a surveillance camera, and the like, and has a maximum angle of view (all angles of view) of 120 ° or more. Since the wide-angle lens for near-infrared light does not require correction of chromatic aberration, the number of lenses constituting the wide-angle lens can be reduced. The wide-angle lens according to the present embodiment includes five or six lenses. Further, as a projection method of a wide-angle lens used for an in-vehicle camera for detecting an obstacle, an equidistant projection method in which an image size is uniform with respect to an azimuth angle is preferable. In this case, the resolution with respect to the direction of the obstacle and the distance to the obstacle can be increased.
 物体無限遠時において広角レンズにより結像される面が像面13であり、広角レンズの像面13側には平行平板状のガラスフィルタ12が配置されている。ガラスフィルタ12は、可視光線カットフィルタやバンドパスファイルタ、紫外線カットフィルタ、偏光フィルタ等の機能を有する。なお、ガラスフィルタ12は必須ではなく、ガラスフィルタ12を省略することは可能である。 {Circle around (3)} The image plane formed by the wide-angle lens when the object is at infinity is the image plane 13, and the parallel-plate glass filter 12 is disposed on the image plane 13 side of the wide-angle lens. The glass filter 12 has functions such as a visible light cut filter, a band pass filter, an ultraviolet cut filter, and a polarizing filter. Note that the glass filter 12 is not essential, and the glass filter 12 can be omitted.
 広角レンズは、物体側から像面13側へ向かって順に、負の屈折力を有する第1群G1と、正の屈折力を有する第2群G2とからなる。広角レンズを構成する各レンズは、光軸Axに関して線対称に構成されている。即ち、各レンズ面と光軸Axとの交点が各レンズ面の頂点である。 The wide-angle lens includes, in order from the object side to the image plane 13 side, a first group G1 having a negative refractive power and a second group G2 having a positive refractive power. Each lens constituting the wide-angle lens is configured to be line-symmetric with respect to the optical axis Ax. That is, the intersection between each lens surface and the optical axis Ax is the vertex of each lens surface.
 広角レンズには、絞り11が設けられる。絞り11は、周辺(光軸Axから離れた部分)の光束(光量)を適度にカットするためのものである。周辺光量を適度にカットできれば、絞り11の位置は比較的自由に設定できる。 絞 り The wide-angle lens is provided with an aperture 11. The diaphragm 11 is for appropriately cutting the light flux (light amount) at the periphery (a part distant from the optical axis Ax). If the peripheral light amount can be appropriately cut, the position of the aperture 11 can be set relatively freely.
 第1群G1は、物体側から順に、負の屈折力を有して物体側に凸のメニスカス形状の第1レンズL11と、1又は2枚のレンズとからなる。第2群G2は、正の屈折力を有する3枚のレンズL21,L22,L23からなる。このような第1群G1により広範囲の光を取り込みつつ、第2群G2の大きな正の屈折力によって光が収束される。その結果、第1群G1及び第2群G2によって、広角レンズの画角を広角化できると共に、広角レンズを大口径化(F値を小さく)できる。 The first group G1 includes, in order from the object side, a meniscus-shaped first lens L11 having a negative refractive power and projecting toward the object side, and one or two lenses. The second group G2 includes three lenses L21, L22, and L23 having a positive refractive power. The light is converged by the large positive refractive power of the second group G2 while taking in a wide range of light by the first group G1. As a result, the first group G1 and the second group G2 can increase the angle of view of the wide-angle lens and increase the diameter of the wide-angle lens (decrease the F value).
 第1群G1のうち第1レンズL1よりも像面13側に位置する像面13側のレンズ面(第1実施例では面R6)は、光軸Ax近傍の中心部で像面13側に凸形状であって有効径の周縁部で像面側に凹形状である非球面からなる。この非球面は、中心部の周縁の全周に隣接する変曲部が周縁部へ向かうにつれて凸形状から凹形状に変化する。このような非球面によって、広角レンズを大口径化した場合に問題になり易い球面収差および像面湾曲を良好に補正できる。 The lens surface (surface R6 in the first embodiment) on the image surface 13 side of the first group G1, which is located closer to the image surface 13 than the first lens L1, is closer to the image surface 13 at the center near the optical axis Ax. It is formed of an aspherical surface that is convex and concave on the image surface side at the periphery of the effective diameter. The aspherical surface changes from a convex shape to a concave shape as the inflection portion adjacent to the entire periphery of the central portion approaches the peripheral portion. With such an aspherical surface, spherical aberration and curvature of field, which tend to be problems when a wide-angle lens is made large in diameter, can be satisfactorily corrected.
 なお、変曲部は、光軸Axを含む断面において、凸形状から凹形状に変化する変曲点を有する。この変曲点は、光軸Axから有効径の70%~85%離れた位置にあることが好ましい。これにより、大口径の広角レンズの球面収差および像面湾曲をより良好に補正できる。 The inflection portion has an inflection point at which the cross section including the optical axis Ax changes from a convex shape to a concave shape. This inflection point is preferably located at a position 70% to 85% of the effective diameter from the optical axis Ax. Thereby, the spherical aberration and the field curvature of the large-diameter wide-angle lens can be corrected more favorably.
 第1群G1が第1レンズL11と1枚のレンズとの2枚からなり、広角レンズが5枚構成である場合には、第2群G2の全レンズ面のうち少なくとも2面が非球面であることが好ましい。この場合には、2枚構成の第1群G1で補正しきれない収差を第2群G2の2面の非球面で良好に補正できる。その結果、5枚構成の広角レンズを大口径化しつつ、収差を良好に補正できる。 When the first group G1 is composed of two lenses, the first lens L11 and one lens, and has five wide-angle lenses, at least two of the lens surfaces of the second group G2 are aspherical. Preferably, there is. In this case, aberrations that cannot be completely corrected by the two-group first group G1 can be satisfactorily corrected by the two aspheric surfaces of the second group G2. As a result, it is possible to satisfactorily correct aberrations while increasing the diameter of the five-element wide-angle lens.
 第2群G2の3枚のレンズL21,L22,L23は、それぞれd線屈折率1.9以上のガラスレンズ、又は、d線屈折率1.6以上の樹脂レンズのいずれかからなる。これにより、第2群G2の正の屈折力をより大きくできるので、広角レンズをより大口径化できる。 The three lenses L21, L22, and L23 of the second group G2 are each made of a glass lens with a d-line refractive index of 1.9 or more, or a resin lens with a d-line refractive index of 1.6 or more. Thereby, the positive refractive power of the second group G2 can be further increased, so that the aperture of the wide-angle lens can be further increased.
 なお、ガラスレンズと比べて樹脂レンズは軽いので、樹脂レンズの枚数を増やすことで、広角レンズを軽量化できる。また、ガラスレンズに非球面を設ける場合に比べて、樹脂レンズに非球面を設ける方が非球面を形成し易く、非球面の形成にかかるコストを低減できる。 樹脂 Because the resin lens is lighter than the glass lens, the weight of the wide-angle lens can be reduced by increasing the number of resin lenses. Also, providing an aspherical surface on a resin lens makes it easier to form an aspherical surface as compared with the case where an aspherical surface is provided on a glass lens, and can reduce the cost of forming an aspherical surface.
 広角レンズは、第1レンズL11の物体側のレンズ面R1から像面13までの光軸Ax上の距離(広角レンズの全長)をTTとし、第1レンズL11の物体側のレンズ面R1から第2群G2の最も物体側のレンズ面(第1実施例では面R7)までの光軸Ax上の距離をTAとしたときに、以下の条件式(1)を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000005
The wide-angle lens has a distance TT on the optical axis Ax from the object-side lens surface R1 of the first lens L11 to the image plane 13 (the total length of the wide-angle lens), and the first lens L11 has a distance from the object-side lens surface R1. Assuming that the distance on the optical axis Ax from the lens surface closest to the object side of the second group G2 (surface R7 in the first embodiment) is TA, it is preferable to satisfy the following conditional expression (1).
Figure JPOXMLDOC01-appb-M000005
 条件式(1)の下限値以下では、広角レンズの全長に対して第1群G1の全長が大きくなってしまう。そうすると、第1レンズL11の外径が大きくなり、明るさが確保された広角レンズの外径が大きくなる。一方、条件式(1)を満足することで、第1レンズL11の外径を小さくできる。広範囲の光を取り込むために、最も物体側の第1レンズL11の外径が他のレンズの外径に比べて大きくなり易いが、その第1レンズL11の外径を小さくすることで、明るさが確保された広角レンズの外径を小さくできる。 If the lower limit of conditional expression (1) is not exceeded, the overall length of the first unit G1 will be larger than the overall length of the wide-angle lens. Then, the outer diameter of the first lens L11 increases, and the outer diameter of the wide-angle lens whose brightness is ensured increases. On the other hand, by satisfying conditional expression (1), the outer diameter of the first lens L11 can be reduced. In order to capture a wide range of light, the outer diameter of the first lens L11 closest to the object is likely to be larger than the outer diameters of the other lenses. However, by reducing the outer diameter of the first lens L11, the brightness is reduced. The outer diameter of the wide-angle lens in which is secured can be reduced.
 広角レンズは、第2群G2の合成焦点距離をF2Gとし、全系の焦点距離をfとしたときに、以下の条件式(2)を満足することが好ましい。なお、本明細書の焦点距離は、広角レンズが主に受光する波長(本実施形態では940nm)における焦点距離である。
Figure JPOXMLDOC01-appb-M000006
The wide-angle lens preferably satisfies the following conditional expression (2) when the combined focal length of the second group G2 is F2G and the focal length of the entire system is f. Note that the focal length in the present specification is a focal length at a wavelength (940 nm in the present embodiment) mainly received by a wide-angle lens.
Figure JPOXMLDOC01-appb-M000006
 条件式(2)の下限値以下では、第2群G2で発生する球面収差が大きくなり易い。この球面収差を補正するためには、第2群G2に4枚以上のレンズが必要となる場合がある。その場合、広角レンズの全長が長くなる。条件式(2)の上限値以上では、広角レンズの全長が長くなる。条件式(2)を満足することで、広角レンズを十分に大口径化しつつ、全長を短くできる。 で は Below the lower limit of Conditional Expression (2), the spherical aberration generated in the second lens unit G2 tends to increase. In order to correct this spherical aberration, the second group G2 may require four or more lenses. In that case, the overall length of the wide-angle lens becomes longer. Above the upper limit of conditional expression (2), the overall length of the wide-angle lens becomes longer. By satisfying conditional expression (2), it is possible to shorten the overall length while sufficiently increasing the diameter of the wide-angle lens.
 光軸Ax近傍で凸形状であって周縁部で凹形状の非球面が第1群G1の最も像面13側に配置されることが好ましい。これにより、大口径の広角レンズの球面収差および像面湾曲を良好に補正できる。 非 It is preferable that an aspherical surface that is convex near the optical axis Ax and concave at the periphery is disposed closest to the image plane 13 of the first lens unit G1. Thereby, the spherical aberration and the curvature of field of the large-diameter wide-angle lens can be favorably corrected.
 光軸Ax近傍で凸形状であって周縁部で凹形状の非球面が、像面13側に凸のメニスカス形状のレンズのうち像面13側に設けられることが好ましい。これにより、タンジェンシャル方向の横収差の変化を平坦化できるので、広角レンズをより大口径化できる。特に、このようなメニスカス形状のレンズが第1群G1の最も像面13側に位置することが好ましい。その結果、タンジェンシャル方向の横収差の変化を更に平坦化できるので、広角レンズを更に大口径化できる。 It is preferable that an aspherical surface that is convex near the optical axis Ax and concave at the periphery is provided on the image plane 13 side of the meniscus lens that is convex on the image plane 13 side. As a result, the change in the lateral aberration in the tangential direction can be flattened, and the aperture of the wide-angle lens can be further increased. In particular, it is preferable that such a meniscus lens is located closest to the image plane 13 of the first group G1. As a result, the change in the lateral aberration in the tangential direction can be further flattened, and the aperture of the wide-angle lens can be further increased.
 第1群G1のうち第1レンズL1よりも像面13側に位置するレンズ面は、全て非球面であることが好ましい。これにより、球面収差、像面湾曲、非点収差、歪曲収差などの諸収差をコントロールし易くでき、諸収差を良好に補正できる。 レ ン ズ It is preferable that all lens surfaces of the first group G1 located closer to the image plane 13 than the first lens L1 are aspherical. Thereby, various aberrations such as spherical aberration, curvature of field, astigmatism, and distortion can be easily controlled, and various aberrations can be satisfactorily corrected.
 以下、実施例を参照して本発明を具体的に説明するが、本発明はこの実施例に限定されない。なお、各実施例で共通する説明は、第1実施例でのみ説明し、その他の実施例での説明を省略する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Note that the description common to each embodiment will be described only in the first embodiment, and the description in the other embodiments will be omitted.
 (第1実施例)
 図1に示すように、第1実施例における広角レンズ10は、6枚のレンズから構成される。広角レンズ10の第1群G1は、物体側から順に、第1レンズL11と、負の屈折力を有して像面13側に凸のメニスカス形状の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ10の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、両凸の第5レンズL22と、両凸の第6レンズL23と、からなる。絞り11は、第2レンズL12と第3レンズL13との間に配置される。
(First embodiment)
As shown in FIG. 1, the wide-angle lens 10 in the first embodiment is composed of six lenses. The first group G1 of the wide-angle lens 10 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side. The second group G2 of the wide-angle lens 10 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and convex on the image surface 13 side, a biconvex fifth lens L22, and a biconvex lens. And the sixth lens L23. The diaphragm 11 is arranged between the second lens L12 and the third lens L13.
 広角レンズ10の第1レンズL11、第4レンズL21、第5レンズL22及び第6レンズL23は、ガラスレンズである。広角レンズ10の第2レンズL12及び第3レンズL13は、樹脂レンズである。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。 The first lens L11, fourth lens L21, fifth lens L22, and sixth lens L23 of the wide-angle lens 10 are glass lenses. The second lens L12 and the third lens L13 of the wide-angle lens 10 are resin lenses. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
 広角レンズ10の光学諸値およびレンズデータを表1に示す。なお、焦点距離f(940nm)は、波長940nmの近赤外光を用いた場合の広角レンズ10全系の焦点距離である。各面R1~R14及び絞り11の軸上面間隔は、その面と像面13側の面との光軸Ax上の距離を示している。屈折率N940は、波長940nmの近赤外光を用いた場合の各レンズL11~L23の屈折率である。屈折率nd(d線屈折率)及びアッベ数νdは、それぞれ波長587.56nmのd線を用いた場合の各レンズL11~L23の屈折率およびアッベ数である。
Figure JPOXMLDOC01-appb-T000007
Table 1 shows optical values and lens data of the wide-angle lens 10. Note that the focal length f (940 nm) is the focal length of the entire wide-angle lens 10 when near-infrared light having a wavelength of 940 nm is used. The distance between the surfaces R1 to R14 and the upper surface of the stop 11 indicates the distance on the optical axis Ax between the surface and the surface on the image plane 13 side. The refractive index N940 is the refractive index of each of the lenses L11 to L23 when near infrared light having a wavelength of 940 nm is used. The refractive index nd (d-line refractive index) and Abbe number νd are the refractive index and Abbe number of each of the lenses L11 to L23 when a d-line having a wavelength of 587.56 nm is used.
Figure JPOXMLDOC01-appb-T000007
 表1の面番号の*記号は非球面を示している。第2レンズL12及び第3レンズL13の面R3~R6は全て非球面である。なお、非球面の形状は以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000008
 但し、
 z:サグ量(光軸Axとの交点から非球面上の点までの光軸Ax方向の距離)
 c:曲率(レンズ面の頂点での曲率)
 r:径方向(光軸Axに関して垂直方向)の光軸Axから非球面上の点までの距離
 k:コーニック定数
 A、B、C、D:非球面係数(順に4次、6次、8次、10次)
The symbol * of the surface number in Table 1 indicates an aspheric surface. The surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspheric. Note that the shape of the aspheric surface is represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000008
However,
z: sag amount (distance in the optical axis Ax direction from an intersection with the optical axis Ax to a point on the aspheric surface)
c: curvature (curvature at the vertex of the lens surface)
r: distance from the optical axis Ax in the radial direction (perpendicular to the optical axis Ax) to a point on the aspherical surface k: conic constant A, B, C, D: aspherical coefficient (fourth order, sixth order, eighth order in order) 10th)
 面R3~R6のコーニック定数および非球面係数を表2,3に示す。なお、本明細書では10のべき乗数をEを用いて表す(例えば、1.0×10-4は1.0E-4である)。また、広角レンズ10では、面R3~R6の10次の非球面係数Dが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
 
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Tables 2 and 3 show the conic constants and aspheric coefficients of the surfaces R3 to R6. In this specification, a power of 10 is represented by using E (for example, 1.0 × 10 −4 is 1.0E−4). In the wide-angle lens 10, the tenth-order aspherical surface coefficient D of the surfaces R3 to R6 is zero. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 波長940nmの近赤外光を用いた場合に広角レンズ10から得られる縦収差図を図2に示し、波長940nmの近赤外光を用いた場合に広角レンズ10から得られる横収差図を図3に示す。図2の球面収差図(LONGITUDINAL SPHERICAL ABER.)の横軸は、光軸Ax近傍の像面13からの光軸Ax方向のズレ量(FOCUS(mm))である。球面収差図の縦軸は、入射瞳座標(瞳への入射高さをその最大高さで規格化した値)である。 FIG. 2 shows a longitudinal aberration diagram obtained from the wide-angle lens 10 when near-infrared light having a wavelength of 940 nm is used, and a lateral aberration diagram obtained from the wide-angle lens 10 when using near-infrared light having a wavelength of 940 nm. 3 is shown. The horizontal axis of the spherical aberration diagram (LONGITUDINAL @ SPHERICAL @ ABER.) In FIG. 2 is the shift amount (FOCUS (mm)) in the direction of the optical axis Ax from the image plane 13 near the optical axis Ax. The vertical axis of the spherical aberration diagram is the entrance pupil coordinate (a value obtained by standardizing the height of incidence on the pupil with its maximum height).
 図2の非点収差図(ASTIGMATIC FIELD CURVES)の横軸は、光軸Ax近傍の像面からの光軸Ax方向のズレ量(FOCUS(mm))である。非点収差図の縦軸は、光軸Axと主光線とのなす角度である半画角(ANGLE(°))である。非点収差図は、サジタル像面の湾曲Sを実線、タンジェンシャル像面の湾曲Tを破線で示している。また、この2線のズレから非点収差(非点隔差)が読み取れる。 The horizontal axis of the astigmatism diagram (ASTIGMATIC FIELD CURVES) in FIG. 2 is the shift amount (FOCUS (mm)) in the direction of the optical axis Ax from the image plane near the optical axis Ax. The vertical axis of the astigmatism diagram is a half angle of view (ANGLE (°)), which is an angle between the optical axis Ax and the principal ray. In the astigmatism diagram, the curvature S of the sagittal image surface is shown by a solid line, and the curvature T of the tangential image surface is shown by a broken line. Also, the astigmatism (astigmatic difference) can be read from the deviation between the two lines.
 図2の歪曲収差図(DISTORTION)の横軸は、歪曲収差(DISTORTION(%))である。歪曲収差図の縦軸は、光軸Axと主光線とのなす角度である半画角(ANGLE(°))である。 横 The horizontal axis of the distortion diagram (DISTORTION) in FIG. 2 is the distortion (DISTORTION (%)). The vertical axis of the distortion diagram is the half angle of view (ANGLE (°)), which is the angle between the optical axis Ax and the principal ray.
 図3には、所定の像高比(RELATIVE FIELD HEIGHT)及び半画角におけるタンジェンシャル(TANGENTIAL)方向の横収差図が紙面左側に示され、所定の像高比および半画角におけるサジタル(SAGITTAL)方向の横収差図が紙面右側に示される。各横収差図は、横軸が入射瞳座標であり、縦軸が横収差(mm)である。なお、像高比とは、像高を最大像高で規格化した値である。 FIG. 3 shows a lateral aberration diagram in a tangential (TANGENTIAL) direction at a predetermined image height ratio (RELATIVE / FIELD / HEIGHT) and a half angle of view on the left side of the drawing. The lateral aberration diagram in the direction ()) is shown on the right side of the drawing. In each lateral aberration diagram, the horizontal axis is the entrance pupil coordinate, and the vertical axis is the lateral aberration (mm). The image height ratio is a value obtained by standardizing the image height with the maximum image height.
 (第2実施例)
 図4に示すように、第2実施例における広角レンズ20は、6枚のレンズから構成される。広角レンズ20の第1群G1は、物体側から順に、第1レンズL11と、像面13側に凸のメニスカス形状の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ20の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、両凸の第5レンズL22と、物体側に凸の略平凸形状の第6レンズL23と、からなる。絞り11は、第3レンズL13と第4レンズL21との間に配置される。
(Second embodiment)
As shown in FIG. 4, the wide-angle lens 20 according to the second embodiment includes six lenses. The first group G1 of the wide-angle lens 20 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 that is convex on the image surface 13 side, and has a positive refractive power on the image surface 13 side. And a third lens L13 having a convex meniscus shape. The second group G2 of the wide-angle lens 20 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and convex on the image surface 13 side, a biconvex fifth lens L22, and an object-side lens. And a sixth lens L23 having a substantially plano-convex shape. The stop 11 is arranged between the third lens L13 and the fourth lens L21.
 広角レンズ20の第1レンズL11、第4レンズL21及び第5レンズL22は、ガラスレンズである。広角レンズ20の第2レンズL12、第3レンズL13及び第6レンズL23は、樹脂レンズである。 The first lens L11, the fourth lens L21, and the fifth lens L22 of the wide-angle lens 20 are glass lenses. The second lens L12, the third lens L13, and the sixth lens L23 of the wide-angle lens 20 are resin lenses.
 広角レンズ20の光学諸値およびレンズデータを表4に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。
Figure JPOXMLDOC01-appb-T000011
Table 4 shows optical values and lens data of the wide-angle lens 20. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
Figure JPOXMLDOC01-appb-T000011
 第2レンズL12及び第3レンズL13の面R3~R6は、全て非球面である。この面R3~R6のコーニック定数および非球面係数を表5,6に示す。また、広角レンズ20では、面R3~R6の10次の非球面係数Dが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
The surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspheric. Tables 5 and 6 show the conic constants and aspheric coefficients of the surfaces R3 to R6. In the wide-angle lens 20, the tenth-order aspheric coefficient D of the surfaces R3 to R6 is zero. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 波長940nmの近赤外光を用いた場合に広角レンズ20から得られる縦収差図を図5に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ20から得られる横収差図を図6に示す。 FIG. 5 shows a longitudinal aberration diagram obtained from the wide-angle lens 20 when near-infrared light having a wavelength of 940 nm is used. FIG. 6 shows a lateral aberration diagram obtained from the wide-angle lens 20 when near-infrared light having a wavelength of 940 nm is used.
 (第3実施例)
 図7に示すように、第3実施例における広角レンズ30は、6枚のレンズから構成される。広角レンズ30の第1群G1は、物体側から順に、第1レンズL11と、負の屈折力を有して像面13側に凸のメニスカス形状の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ30の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、両凸の第5レンズL22と、両凸の第6レンズL23と、からなる。絞り11は、第4レンズL21と第5レンズL22との間に配置される。
(Third embodiment)
As shown in FIG. 7, the wide-angle lens 30 in the third embodiment is composed of six lenses. The first group G1 of the wide-angle lens 30 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side. The second group G2 of the wide-angle lens 30 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image plane 13, a biconvex fifth lens L22, and a biconvex lens. And the sixth lens L23. The diaphragm 11 is arranged between the fourth lens L21 and the fifth lens L22.
 広角レンズ30の第1レンズL11は、ガラスレンズである。広角レンズ30の第2レンズL12、第3レンズL13、第4レンズL21、第5レンズL22及び第6レンズL23は、樹脂レンズである。 第 The first lens L11 of the wide-angle lens 30 is a glass lens. The second lens L12, the third lens L13, the fourth lens L21, the fifth lens L22, and the sixth lens L23 of the wide-angle lens 30 are resin lenses.
 広角レンズ30の光学諸値およびレンズデータを表7に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。
Figure JPOXMLDOC01-appb-T000014
Table 7 shows optical values and lens data of the wide-angle lens 30. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
Figure JPOXMLDOC01-appb-T000014
 第2レンズL12、第3レンズL13、第4レンズL21及び第5レンズL22の面R3~R10は、全て非球面である。この面R3~R10のコーニック定数および非球面係数を表8~11に示す。また、広角レンズ30では、面R3~R10の10次の非球面係数Dが0であり、面R7~R10の8次の非球面係数Cが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
The surfaces R3 to R10 of the second lens L12, the third lens L13, the fourth lens L21, and the fifth lens L22 are all aspheric. Tables 8 to 11 show the conic constants and aspherical coefficients of the surfaces R3 to R10. In the wide-angle lens 30, the 10th-order aspherical surface coefficient D of the surfaces R3 to R10 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 to R10 is 0. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 波長940nmの近赤外光を用いた場合に広角レンズ30から得られる縦収差図を図8に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ30から得られる横収差図を図9に示す。 FIG. 8 shows a longitudinal aberration diagram obtained from the wide-angle lens 30 when near-infrared light having a wavelength of 940 nm is used. FIG. 9 shows a lateral aberration diagram obtained from the wide-angle lens 30 when near-infrared light having a wavelength of 940 nm is used.
 (第4実施例)
 図10に示すように、第4実施例における広角レンズ40は、6枚のレンズから構成される。広角レンズ40の第1群G1は、物体側から順に、第1レンズL11と、負の屈折力を有して像面13側に凸のメニスカス形状の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ40の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、正の屈折力を有して像面13側に凸のメニスカス形状の第5レンズL22と、正の屈折力を有して物体側に凸のメニスカス形状の第6レンズL23と、からなる。絞り11は、第3レンズL13と第4レンズL21との間に配置される。
(Fourth embodiment)
As shown in FIG. 10, the wide-angle lens 40 in the fourth embodiment is composed of six lenses. The first group G1 of the wide-angle lens 40 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image surface 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side. The second group G2 of the wide-angle lens 40 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power. A fifth lens L22 having a convex meniscus shape on the side and a sixth lens L23 having a positive refractive power and having a convex meniscus shape on the object side. The stop 11 is arranged between the third lens L13 and the fourth lens L21.
 広角レンズ40の第1レンズL11、第5レンズL22及び第6レンズL23は、ガラスレンズである。広角レンズ40の第2レンズL12、第3レンズL13及び第4レンズL21は、樹脂レンズである。 The first lens L11, the fifth lens L22, and the sixth lens L23 of the wide-angle lens 40 are glass lenses. The second lens L12, the third lens L13, and the fourth lens L21 of the wide-angle lens 40 are resin lenses.
 広角レンズ40の光学諸値およびレンズデータを表12に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。
Figure JPOXMLDOC01-appb-T000019
Table 12 shows optical values and lens data of the wide-angle lens 40. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
Figure JPOXMLDOC01-appb-T000019
 第2レンズL12、第3レンズL13、第4レンズL21の面R3~R8は、全て非球面である。この面R3~R8のコーニック定数および非球面係数を表13~15に示す。また、広角レンズ40では、面R3~R8の10次の非球面係数Dが0であり、面R7,R8の8次の非球面係数Cが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
The surfaces R3 to R8 of the second lens L12, the third lens L13, and the fourth lens L21 are all aspherical. Tables 13 to 15 show the conic constants and aspheric coefficients of the surfaces R3 to R8. In the wide-angle lens 40, the 10th-order aspherical surface coefficient D of the surfaces R3 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 and R8 is 0. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 波長940nmの近赤外光を用いた場合に広角レンズ40から得られる縦収差図を図11に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ40から得られる横収差図を図12に示す。 FIG. 11 shows a longitudinal aberration diagram obtained from the wide-angle lens 40 when near-infrared light having a wavelength of 940 nm is used. FIG. 12 shows a lateral aberration diagram obtained from the wide-angle lens 40 when near-infrared light having a wavelength of 940 nm is used.
 (第5実施例)
 図13に示すように、第5実施例における広角レンズ50は、6枚のレンズから構成される。広角レンズ50の第1群G1は、物体側から順に、第1レンズL11と、負の屈折力を有して像面13側に凸のメニスカス形状の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ50の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、正の屈折力を有して像面13側に凸のメニスカス形状の第5レンズL22と、正の屈折力を有して物体側に凸のメニスカス形状の第6レンズL23と、からなる。絞り11は、第3レンズL13と第4レンズL21との間に配置される。
(Fifth embodiment)
As shown in FIG. 13, the wide-angle lens 50 in the fifth embodiment is composed of six lenses. The first group G1 of the wide-angle lens 50 includes, in order from the object side, a first lens L11, a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side, and a positive refractive power. And a third lens L13 having a meniscus shape protruding toward the image surface 13 side. The second group G2 of the wide-angle lens 50 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power. A fifth lens L22 having a convex meniscus shape on the side and a sixth lens L23 having a positive refractive power and having a convex meniscus shape on the object side. The stop 11 is arranged between the third lens L13 and the fourth lens L21.
 広角レンズ50の第1レンズL11及び第5レンズL22は、ガラスレンズである。広角レンズ50の第2レンズL12、第3レンズL13、第4レンズL21及び第6レンズL23は、樹脂レンズである。 The first lens L11 and the fifth lens L22 of the wide-angle lens 50 are glass lenses. The second lens L12, the third lens L13, the fourth lens L21, and the sixth lens L23 of the wide-angle lens 50 are resin lenses.
 広角レンズ50の光学諸値およびレンズデータを表16に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。
Figure JPOXMLDOC01-appb-T000023
Table 16 shows optical values and lens data of the wide-angle lens 50. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
Figure JPOXMLDOC01-appb-T000023
 第2レンズL12、第3レンズL13、第4レンズL21の面R3~R8は、全て非球面である。この面R3~R8のコーニック定数および非球面係数を表17~19に示す。また、広角レンズ50では、面R3~R8の10次の非球面係数Dが0であり、面R7,R8の8次の非球面係数Cが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
The surfaces R3 to R8 of the second lens L12, the third lens L13, and the fourth lens L21 are all aspherical. Tables 17 to 19 show the conic constants and aspheric coefficients of the surfaces R3 to R8. In the wide-angle lens 50, the 10th-order aspherical surface coefficient D of the surfaces R3 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R7 and R8 is 0. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 波長940nmの近赤外光を用いた場合に広角レンズ50から得られる縦収差図を図14に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ50から得られる横収差図を図15に示す。 FIG. 14 shows a longitudinal aberration diagram obtained from the wide-angle lens 50 when near-infrared light having a wavelength of 940 nm is used. FIG. 15 shows a lateral aberration diagram obtained from the wide-angle lens 50 when near-infrared light having a wavelength of 940 nm is used.
 (第6実施例)
 図16に示すように、第6実施例における広角レンズ60は、6枚のレンズから構成される。広角レンズ60の第1群G1は、物体側から順に、第1レンズL11と、両凸の第2レンズL12と、正の屈折力を有して像面13側に凸のメニスカス形状の第3レンズL13と、からなる。広角レンズ60の第2群G2は、物体側から順に、正の屈折力を有して像面13側に凸のメニスカス形状の第4レンズL21と、正の屈折力を有して像面13側に凸のメニスカス形状の第5レンズL22と、正の屈折力を有して物体側に凸のメニスカス形状の第6レンズL23と、からなる。絞り11は、第3レンズL13と第4レンズL21との間に配置される。
(Sixth embodiment)
As shown in FIG. 16, the wide-angle lens 60 according to the sixth embodiment includes six lenses. The first group G1 of the wide-angle lens 60 includes, in order from the object side, a first lens L11, a biconvex second lens L12, and a third meniscus-shaped third lens having a positive refractive power and convex to the image plane 13 side. And a lens L13. The second group G2 of the wide-angle lens 60 includes, in order from the object side, a meniscus-shaped fourth lens L21 having a positive refractive power and projecting toward the image surface 13 side, and an image surface 13 having a positive refractive power. A fifth lens L22 having a convex meniscus shape on the side and a sixth lens L23 having a positive refractive power and having a convex meniscus shape on the object side. The stop 11 is arranged between the third lens L13 and the fourth lens L21.
 広角レンズ60の第1レンズL11、第4レンズL21、第5レンズL22及び第6レンズL23は、ガラスレンズである。広角レンズ60の第2レンズL12及び第3レンズL13は、樹脂レンズである。 The first lens L11, fourth lens L21, fifth lens L22, and sixth lens L23 of the wide-angle lens 60 are glass lenses. The second lens L12 and the third lens L13 of the wide-angle lens 60 are resin lenses.
 広角レンズ60の光学諸値およびレンズデータを表20に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R12である。また、ガラスフィルタ12の物体側が面R13、像面13側が面R14である。
Figure JPOXMLDOC01-appb-T000027
Table 20 shows optical values and lens data of the wide-angle lens 60. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R12 in order from the object side. The object side of the glass filter 12 is a surface R13, and the image surface 13 side is a surface R14.
Figure JPOXMLDOC01-appb-T000027
 第2レンズL12、第3レンズL13の面R3~R6は、全て非球面である。この面R3~R6のコーニック定数および非球面係数を表21,22に示す。また、広角レンズ60では、面R3~R6の10次の非球面係数Dが0である。面R6は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
The surfaces R3 to R6 of the second lens L12 and the third lens L13 are all aspherical. Tables 21 and 22 show the conic constants and aspherical coefficients of the surfaces R3 to R6. In the wide-angle lens 60, the tenth-order aspheric coefficient D of the surfaces R3 to R6 is zero. The surface R6 is an aspheric surface that is convex near the optical axis Ax and concave at the periphery.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 波長940nmの近赤外光を用いた場合に広角レンズ60から得られる縦収差図を図17に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ60から得られる横収差図を図18に示す。 FIG. 17 shows a longitudinal aberration diagram obtained from the wide-angle lens 60 when near-infrared light having a wavelength of 940 nm is used. FIG. 18 shows a lateral aberration diagram obtained from the wide-angle lens 60 when near-infrared light having a wavelength of 940 nm is used.
 (第7実施例)
 図19に示すように、第7実施例における広角レンズ70は、5枚のレンズから構成される。広角レンズ70の第1群G1は、物体側から順に、第1レンズL11と、負の屈折力を有して像面13側に凸のメニスカス形状の第2レンズL12と、からなる。広角レンズ70の第2群G2は、物体側から順に、両凸の第3レンズL21と、両凸の第4レンズL22と、両凸の第5レンズL23と、からなる。絞り11は、第2レンズL12と第3レンズL21との間に配置される。
(Seventh embodiment)
As shown in FIG. 19, the wide-angle lens 70 in the seventh embodiment is composed of five lenses. The first group G1 of the wide-angle lens 70 includes, in order from the object side, a first lens L11 and a meniscus-shaped second lens L12 having a negative refractive power and projecting toward the image plane 13 side. The second group G2 of the wide-angle lens 70 includes, in order from the object side, a biconvex third lens L21, a biconvex fourth lens L22, and a biconvex fifth lens L23. The stop 11 is disposed between the second lens L12 and the third lens L21.
 広角レンズ70の第5レンズL23は、ガラスレンズである。広角レンズ70の第1レンズL11、第2レンズL12、第3レンズL21及び第4レンズL22は、樹脂レンズである。 第 The fifth lens L23 of the wide-angle lens 70 is a glass lens. The first lens L11, the second lens L12, the third lens L21, and the fourth lens L22 of the wide-angle lens 70 are resin lenses.
 広角レンズ70の光学諸値およびレンズデータを表23に示す。各レンズL11~L23のレンズ面は、物体側から順に面R1~面R10である。また、ガラスフィルタ12の物体側が面R11、像面13側が面R12である。
Figure JPOXMLDOC01-appb-T000030
Table 23 shows optical values and lens data of the wide-angle lens 70. The lens surfaces of the lenses L11 to L23 are surfaces R1 to R10 in order from the object side. The object side of the glass filter 12 is a surface R11, and the image surface 13 side is a surface R12.
Figure JPOXMLDOC01-appb-T000030
 第2レンズL12、第3レンズL21及び第4レンズL22の面R3~R8は、全て非球面である。この面R3~R8のコーニック定数および非球面係数を表24~26に示す。また、広角レンズ70では、面R4~R8の10次の非球面係数Dが0であり、面R5~R8の8次の非球面係数Cが0である。面R4は、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
The surfaces R3 to R8 of the second lens L12, the third lens L21, and the fourth lens L22 are all aspheric. Tables 24 to 26 show the conic constants and aspherical coefficients of the surfaces R3 to R8. In the wide-angle lens 70, the 10th-order aspherical surface coefficient D of the surfaces R4 to R8 is 0, and the 8th-order aspherical surface coefficient C of the surfaces R5 to R8 is 0. The surface R4 is an aspheric surface that is convex near the optical axis Ax and concave at the peripheral edge.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 波長940nmの近赤外光を用いた場合に広角レンズ70から得られる縦収差図を図20に示す。また、波長940nmの近赤外光を用いた場合に広角レンズ70から得られる横収差図を図21に示す。 FIG. 20 shows a longitudinal aberration diagram obtained from the wide-angle lens 70 when near-infrared light having a wavelength of 940 nm is used. FIG. 21 shows a lateral aberration diagram obtained from the wide-angle lens 70 when near-infrared light having a wavelength of 940 nm is used.
 上記各実施例の広角レンズ10~70の画角ω、F値、条件式(1)のTT/TAの値、条件式(2)のF2G/fの値、及び、変曲点位置を表27に示す。なお、表27の変曲点位置とは、第1群G1の第2レンズL12又は第3レンズL13における光軸Ax近傍で凸形状であって周縁部で凹形状の非球面に関して、その非球面の変曲点までの光軸Axからの軸直角方向距離を有効径で除した割合である。
Figure JPOXMLDOC01-appb-T000034
The angle of view ω, the F value, the value of TT / TA in conditional expression (1), the value of F2G / f in conditional expression (2), and the position of the inflection point of the wide-angle lenses 10 to 70 in the above embodiments are shown. 27. Note that the inflection point position in Table 27 refers to an aspheric surface that is convex near the optical axis Ax and concave at the periphery of the second lens L12 or the third lens L13 of the first group G1. Is the ratio obtained by dividing the distance from the optical axis Ax in the direction perpendicular to the axis to the inflection point by the effective diameter.
Figure JPOXMLDOC01-appb-T000034
 表27及び図2,3,5,6,8,9,11,12,14,15,17,18,20,21に示すように、各実施例の広角レンズ10~70によれば、5又は6枚のレンズ構成において、画角120°以上に広角化しつつ、F値0.7程度に大口径化できると共に、諸収差(特に球面収差および像面湾曲)を良好に補正できることがわかる。また、各実施例の広角レンズ10~70が条件式(1)を満足するので、明るさが確保された広角レンズ10~70の外径を小さくできる。さらに、各実施例の広角レンズ10~70が条件式(2)を満足するので、広角レンズ10~70を十分に大口径化しつつ、全長を短くできる。 As shown in Table 27 and FIGS. 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, and 21, according to the wide-angle lenses 10 to 70 of each embodiment, 5 Alternatively, it can be seen that in the six-lens configuration, the F-number can be increased to about 0.7 while widening the angle of view to 120 ° or more, and various aberrations (particularly, spherical aberration and curvature of field) can be corrected well. In addition, since the wide-angle lenses 10 to 70 of each embodiment satisfy the conditional expression (1), the outer diameter of the wide-angle lenses 10 to 70 whose brightness is ensured can be reduced. Further, since the wide-angle lenses 10 to 70 of each embodiment satisfy the conditional expression (2), the overall length can be reduced while the wide-angle lenses 10 to 70 have a sufficiently large aperture.
 また、各実施例の広角レンズ10~70では、第1群G1の第2レンズL12又は第3レンズL13における光軸Ax近傍で凸形状であって周縁部で凹形状の非球面の変曲点が、光軸Axから有効径の70%~85%離れた位置にある。これにより、大口径の広角レンズ10~70の球面収差および像面湾曲が良好に補正されている。 In addition, in the wide-angle lenses 10 to 70 of each embodiment, the inflection point of the aspheric surface having a convex shape near the optical axis Ax and a concave shape at the peripheral edge in the second lens L12 or the third lens L13 of the first group G1. Are located 70% to 85% of the effective diameter from the optical axis Ax. As a result, the spherical aberration and the field curvature of the large-aperture wide-angle lenses 10 to 70 are favorably corrected.
 第1~6実施例の広角レンズ10~60では、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面が、第1群G1のうち像面13側に凸のメニスカス形状の第3レンズL13の像面13側の面R6に設けられる。また、第7実施例の広角レンズ70では、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面が、第1群G1のうち像面13側に凸のメニスカス形状の第2レンズL12の像面13側の面R4に設けられる。これにより、タンジェンシャル方向の横収差の変化が平坦化されている。 In the wide-angle lenses 10 to 60 of the first to sixth embodiments, the aspherical surface that is convex near the optical axis Ax and concave at the periphery is a meniscus shape convex to the image surface 13 side in the first group G1. The third lens L13 is provided on a surface R6 on the image plane 13 side. In the wide-angle lens 70 according to the seventh embodiment, the aspherical surface that is convex near the optical axis Ax and concave at the periphery is the second meniscus convex surface of the first group G1 that faces the image surface 13. It is provided on a surface R4 on the image plane 13 side of the lens L12. Thereby, the change of the lateral aberration in the tangential direction is flattened.
 以上、実施形態および実施例に基づき本発明を説明したが、本発明は上記実施形態および上記実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。広角レンズ10~70の物体側や像面13側に、屈折力が殆どないレンズ(カバーガラス等)を設けても良い。また、各レンズL11~L23の材質は適宜変更しても良い。ガラスレンズに非球面を設けても良い。 As described above, the present invention has been described based on the embodiments and the examples. However, the present invention is not limited to the above embodiments and the above examples, and various improvements and modifications may be made without departing from the spirit of the present invention. What is possible can easily be inferred. A lens having little refractive power (such as a cover glass) may be provided on the object side or the image plane 13 side of the wide-angle lenses 10 to 70. Further, the materials of the lenses L11 to L23 may be appropriately changed. An aspherical surface may be provided on the glass lens.
 第1~6実施例では、第3レンズL13の面R6が、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面である場合について説明したが、必ずしもこれに限られるものではない。第2レンズL12の面R4を、光軸Ax近傍で凸形状であって周縁部で凹形状の非球面としても良い。この場合にも、大口径の広角レンズの球面収差および像面湾曲を良好に補正できる。 In the first to sixth embodiments, the case has been described where the surface R6 of the third lens L13 is a convex aspherical surface near the optical axis Ax and a concave aspherical surface at the periphery, but is not necessarily limited to this. Absent. The surface R4 of the second lens L12 may be an aspheric surface that is convex near the optical axis Ax and concave at the peripheral edge. Also in this case, the spherical aberration and the field curvature of the large-diameter wide-angle lens can be corrected well.
 10,20,30,40,50,60,70 広角レンズ
 13 像面
 G1 第1群
 G2 第2群
 L11 第1レンズ
10, 20, 30, 40, 50, 60, 70 Wide-angle lens 13 Image plane G1 First group G2 Second group L11 First lens

Claims (5)

  1.  物体側から像面側へ向かって順に、負の屈折力を有する第1群と、正の屈折力を有する第2群とからなる広角レンズであって、
     前記第1群は、物体側から順に、負の屈折力を有して物体側に凸のメニスカス形状の第1レンズと、
     1又は2枚のレンズとからなり、
     その1又は2枚のレンズのうち1枚の像面側のレンズ面は、光軸近傍で像面側に凸形状であって有効径の周縁部で像面側に凹形状である非球面からなり、
     前記第2群は、正の屈折力を有する3枚のレンズからなることを特徴とする広角レンズ。
    A wide-angle lens including, in order from the object side to the image plane side, a first group having a negative refractive power and a second group having a positive refractive power,
    The first group includes, in order from the object side, a meniscus-shaped first lens having a negative refractive power and projecting toward the object side;
    Consisting of one or two lenses,
    One of the one or two lenses has an image-side lens surface that is convex from the image surface near the optical axis and concave from the image surface at the periphery of the effective diameter. Become
    The wide-angle lens according to claim 2, wherein the second group includes three lenses having a positive refractive power.
  2.  前記第1レンズの物体側のレンズ面から像面までの前記光軸上の距離をTTとし、前記第1レンズの物体側のレンズ面から前記第2群の最も物体側のレンズ面までの前記光軸上の距離をTAとしたときに、以下の条件式(1)を満足することを特徴とする請求項1記載の広角レンズ。
    Figure JPOXMLDOC01-appb-M000001
    The distance on the optical axis from the object side lens surface of the first lens to the image plane is TT, and the distance from the object side lens surface of the first lens to the most object side lens surface of the second group is The wide-angle lens according to claim 1, wherein the following conditional expression (1) is satisfied when a distance on the optical axis is TA.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記第2群の合成焦点距離をF2Gとし、全系の焦点距離をfとしたときに、以下の条件式(2)を満足することを特徴とする請求項1又は2に記載の広角レンズ。
    Figure JPOXMLDOC01-appb-M000002
    3. The wide-angle lens according to claim 1, wherein the following conditional expression (2) is satisfied, where F2G is a combined focal length of the second group and f is a focal length of the entire system. 4.
    Figure JPOXMLDOC01-appb-M000002
  4.  前記第1群は、前記第1レンズと1枚のレンズとからなり、
     前記第2群は、全レンズ面のうち少なくとも2面が非球面であることを特徴とする請求項1から3のいずれかに記載の広角レンズ。
    The first group includes the first lens and one lens,
    The wide-angle lens according to any one of claims 1 to 3, wherein at least two surfaces of the second group are aspherical among all lens surfaces.
  5.  前記第2群の3枚のレンズは、それぞれd線屈折率1.9以上のガラスレンズ、又は、d線屈折率1.6以上の樹脂レンズのいずれかからなることを特徴とする請求項1から4のいずれかに記載の広角レンズ。 3. The three lenses of the second group are each made of a glass lens having a d-line refractive index of 1.9 or more, or a resin lens having a d-line refractive index of 1.6 or more. 5. The wide-angle lens according to any one of items 1 to 4.
PCT/JP2018/030695 2018-08-20 2018-08-20 Wide-angle lens WO2020039486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030695 WO2020039486A1 (en) 2018-08-20 2018-08-20 Wide-angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030695 WO2020039486A1 (en) 2018-08-20 2018-08-20 Wide-angle lens

Publications (1)

Publication Number Publication Date
WO2020039486A1 true WO2020039486A1 (en) 2020-02-27

Family

ID=69592072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030695 WO2020039486A1 (en) 2018-08-20 2018-08-20 Wide-angle lens

Country Status (1)

Country Link
WO (1) WO2020039486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895716B2 (en) 2018-09-07 2021-01-19 Largan Precision Co., Ltd. Electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083411A (en) * 1999-09-09 2001-03-30 Fuji Photo Optical Co Ltd Wide-angle lens
JP2014209227A (en) * 2013-03-28 2014-11-06 俊博 笹谷 Image capturing optical system and image capturing device
US20150177485A1 (en) * 2013-12-20 2015-06-25 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
US20150212290A1 (en) * 2014-01-27 2015-07-30 Genius Electronic Optical Co., Ltd. Electronic device and optical imaging lens thereof
CN106547074A (en) * 2017-01-20 2017-03-29 宁波舜宇红外技术有限公司 A kind of infrared fish eye lens
CN107179599A (en) * 2017-07-26 2017-09-19 浙江舜宇光学有限公司 Optical imaging system
CN107436475A (en) * 2017-06-12 2017-12-05 玉晶光电(厦门)有限公司 Optical imaging lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083411A (en) * 1999-09-09 2001-03-30 Fuji Photo Optical Co Ltd Wide-angle lens
JP2014209227A (en) * 2013-03-28 2014-11-06 俊博 笹谷 Image capturing optical system and image capturing device
US20150177485A1 (en) * 2013-12-20 2015-06-25 Genius Electronic Optical Co., Ltd. Camera device and optical imaging lens thereof
US20150212290A1 (en) * 2014-01-27 2015-07-30 Genius Electronic Optical Co., Ltd. Electronic device and optical imaging lens thereof
CN106547074A (en) * 2017-01-20 2017-03-29 宁波舜宇红外技术有限公司 A kind of infrared fish eye lens
CN107436475A (en) * 2017-06-12 2017-12-05 玉晶光电(厦门)有限公司 Optical imaging lens
CN107179599A (en) * 2017-07-26 2017-09-19 浙江舜宇光学有限公司 Optical imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895716B2 (en) 2018-09-07 2021-01-19 Largan Precision Co., Ltd. Electronic device

Similar Documents

Publication Publication Date Title
JP6403711B2 (en) Imaging lens
CN107450157B (en) Optical imaging lens
JP6490115B2 (en) Imaging lens
WO2015020006A1 (en) Wide-angle lens
JP6353756B2 (en) Imaging lens system and imaging apparatus
JP6566492B2 (en) Imaging lens
JP2019032462A (en) Imaging lens
JP2017142363A (en) Wide-angle lens
JP2019066645A (en) Wide-angle lens
JP5796466B2 (en) Imaging lens and imaging apparatus having the imaging lens
JP2016148725A (en) Wide-angle lens and wide-angle lens unit
JP7396788B2 (en) imaging lens
CN116482836A (en) Image capturing lens and method for manufacturing the same
JP7149095B2 (en) imaging lens
JP2019045665A (en) Image capturing lens
JP2016110073A (en) Downsized image-formation lens system
JP2018155833A (en) Imaging lens and imaging apparatus
JP2020115174A (en) Image capturing lens
JP2020012925A (en) Image capturing lens
JP2018136583A (en) Imaging lens system and imaging apparatus
JP2019219476A (en) Image capturing lens
JP6587293B2 (en) Imaging lens
TWI633328B (en) Optical imaging lens
JP2015169707A (en) Imaging optical system, stereo camera, and on-vehicle camera device
CN110320637B (en) Lens and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP