WO2020038414A1 - 一种层状结构的硬质合金数控刀片及其制备方法 - Google Patents
一种层状结构的硬质合金数控刀片及其制备方法 Download PDFInfo
- Publication number
- WO2020038414A1 WO2020038414A1 PCT/CN2019/101845 CN2019101845W WO2020038414A1 WO 2020038414 A1 WO2020038414 A1 WO 2020038414A1 CN 2019101845 W CN2019101845 W CN 2019101845W WO 2020038414 A1 WO2020038414 A1 WO 2020038414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cemented carbide
- pellets
- matrix
- layered structure
- numerical control
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/067—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to the field of numerically controlled blades, and more particularly, to a layered structure hard alloy numerically controlled blade and a preparation method thereof.
- CNC inserts are the mainstream products of modern metal cutting applications, mainly used for metal turning, milling, cutting and grooving, thread turning, etc.
- chips or some small hard spots on the surface of the workpiece will cause mechanical wear on the surface of the CNC blade and affect its service life.
- a cemented carbide with a network structure and a preparation method thereof are disclosed.
- the two matrix materials are respectively made into pellets and slurry and then uniformly fired.
- a certain number of high-hardness cemented carbide particles are distributed on the low-hardness cemented carbide mesh matrix.
- This kind of cemented carbide is mainly used to make cemented carbide ball teeth, and its service life is improved. It is suitable for use in high hardness and dense rock formations, but the overall hardness and toughness improvement is not obvious.
- the cutting surface of CNC inserts will wear under the action of chips and high cutting temperature, which will affect the performance.
- the cemented carbide with a mesh structure improves the wear resistance and the service life, but the hardness and toughness have not increased significantly, and it is not suitable for the field of numerically controlled inserts.
- the technical problem to be solved by the present invention is to provide a hard alloy numerical control blade with a layered structure, aiming at the problems of insufficient hardness and toughness of the numerical control blade in the prior art.
- the blade includes a cemented carbide substrate and a coating.
- the cemented carbide substrate has layered agglomerates, and the overall hardness and toughness are good.
- Another technical problem to be solved by the present invention is to provide a method for preparing the cemented carbide numerical control blade of the layered structure, which respectively prepares two kinds of matrix materials into material particles, mixes them uniformly, and then presses and sinters them to form a cemented carbide matrix.
- CNC coating is made after coating the hard alloy substrate. Carbide agglomerates are evenly distributed on the substrate, which improves the performance of CNC carbide inserts.
- a cemented carbide numerical control blade with a layered structure includes a cemented carbide substrate and a coating, and agglomerates are distributed on the cemented carbide substrate; the pellets are distributed in a layered manner on the cemented carbide substrate, and the weight of the pellets and the cemented carbide substrate is The ratio is 1 to 4: 6 to 9; the components of the pellet and the cemented carbide matrix are both Co and WC.
- the mass fraction of Co in the pellets is 5 to 6%
- the balance is WC
- the Vickers hardness of the pellets is 1700 to 1780
- the mass fraction of Co in the cemented carbide matrix is 6 to 7%
- the balance is It is WC
- the Vickers hardness of the cemented carbide matrix is 1500-1580.
- the agglomerates are distributed in layers on the cemented carbide substrate.
- the hardness of the pellets is high, the toughness is low, and the hardness of the cemented carbide matrix is low.
- the toughness is high; the two materials cooperate with each other to improve the hardness and toughness of the CNC blade.
- the increase in toughness also improves the impact resistance of the CNC blade, which greatly improves the CNC blade Performance.
- the invention also provides a method for preparing the cemented carbide numerical control blade of the layered structure, comprising the following steps:
- the raw materials of the granules are compounded, and then mixed with the molding agent uniformly, and then wet-milled, sieved and granulated to obtain granules;
- the raw materials of the matrix are compounded, and then mixed with the molding agent uniformly, and then wet-milled, sieved and granulated to obtain matrix particles;
- step S3 Mix the agglomerate particles prepared in step S1 and the matrix particles prepared in step S2 uniformly, press the mixture and sinter to obtain a cemented carbide matrix;
- step S4 Apply the CVD coating on the cemented carbide substrate prepared in step S3 to obtain a numerically controlled insert.
- This embodiment provides a method for preparing a hard alloy numerical control blade with a layered structure, including the following steps:
- agglomerated particles in which the mass fraction of Co is 5%, the balance is WC, and then mixed with polyethylene glycol with a weight of 2% of the raw material to mix uniformly; put all materials into a ball mill for wet grinding, and the wet grinding medium is alcohol ,
- the ball-to-material ratio is 4: 1, the amount of alcohol is 30% of the amount of raw materials; sieved with a 60-mesh sieve after wet milling, and agglomerated particles are obtained after granulation.
- step S3 Mix the agglomerate particles prepared in step S1 and the matrix particles prepared in S2 uniformly, the mass ratio of the two is 10:90, press the mixture into a blade WNMG080408, and then sinter.
- the sintering process is as follows: put the blade into a hydrogen atmosphere In the sintering furnace, the temperature was uniformly increased from 25 ° C to 180 ° C in the first 30 minutes, then to 310 ° C in 30 minutes, then to 370 ° C in 60 minutes, then to 380 ° C in 270 minutes, and then to 450 ° C in 120 minutes, and then the temperature was maintained.
- the hydrogen flow rate during the above sintering process was 100 slm; then the gas in the sintering furnace was drawn out to a vacuum state, and the temperature was uniformly increased from 450 ° C to 800 ° C for 90 minutes, followed by a 60-minute warm-up, followed by a constant-temperature rise to 1200 ° C for 90-minutes, followed by a 30-minute warm-up, followed by a constant-speed of 20 minutes The temperature was raised to 1300 ° C, and then the temperature was uniformly increased to 1350 ° C in 30 minutes.
- step S4 Applying the CVD coating to the cemented carbide substrate prepared in step S3 to obtain a cemented carbide numerical control blade with a layered structure.
- This embodiment provides a method for preparing a hard alloy numerical control blade with a layered structure, including the following steps:
- the hydrogen flow rate during the above sintering process was 100 slm; then the gas in the sintering furnace was drawn out to a vacuum state, and the temperature was uniformly increased from 450 ° C to 800 ° C for 90 minutes, followed by a 60-minute warm-up, followed by a constant-temperature rise to 1200 ° C for 90-minutes, followed by a 30-minute warm-up, followed by a constant-speed of 20 minutes The temperature was raised to 1300 ° C, and then the temperature was uniformly increased to 1350 ° C in 30 minutes.
- argon was injected into the sintering furnace to an argon pressure of 52 bar, and then the temperature was uniformly increased from 1350 ° C to 1450 ° C in 30 minutes. After the temperature reached 1450 ° C, the furnace was charged. Inject argon to a pressure of 90 bar and keep it for 40 minutes; then naturally cool to 120 ° C to obtain a cemented carbide matrix;
- step S3 Mix the agglomerate particles prepared in step S1 and the matrix particles prepared in S2 uniformly. The mass ratio of the two is 40:60.
- the mixture is pressed into a blade WNMG080408 and then sintered.
- the sintering process is as follows: put the blade into a hydrogen atmosphere In the sintering furnace, the temperature was uniformly increased from 25 ° C to 180 ° C in the first 30 minutes, then to 310 ° C in 30 minutes, then to 370 ° C in 60 minutes, then to 380 ° C in 270 minutes, and then to 450 ° C in 120 minutes, and then the temperature was maintained.
- argon was injected into the sintering furnace to an argon pressure of 52 bar, and then the temperature was uniformly increased from 1350 ° C to 1450 ° C in 30 minutes. After the temperature reached 1450 ° C, the furnace was charged. Inject argon to a pressure of 90 bar and keep it for 40 minutes; then naturally cool to 120 ° C to obtain a cemented carbide matrix;
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种层状结构的硬质合金数控刀片及其制备方法,层状结构的硬质合金数控刀片包括硬质合金基体和涂层;在硬质合金基体上分布有团粒,团粒呈层状分布。该数控刀片的制备方法如下:将团粒原材料进行配料,研磨,制粒;将硬质合金基体原材料进行配料研磨,制粒;将制作好的两种物料颗粒在混合器中混合均匀;对混合料进行压制,烧结,形成硬质合金基体,团粒在硬质合金基体上层状分布;然后在硬质合金基体上涂覆CVD涂层,得数控刀片。层状结构的硬质合金数控刀片硬度高、韧性好,提升了数控刀片的工作性能。
Description
本发明涉及数控刀片领域,更具体地,涉及一种层状结构的硬质合金数控刀片及其制备方法。
数控刀片是现代金属切削应用的主流产品,主要用于金属的车削、铣削、切断切槽、螺纹车削等。数控刀片在使用时,切屑或工件表面的一些微小硬质点,会在数控刀片表面造成机械磨损,影响其使用寿命。
在公告号为CN101787479B的中国发明专利文件中,公开了一种网状结构硬质合金及其制备方法,由两种基体材料分别制成团粒和料浆混合均匀后烧制而成。在硬度较低的硬质合金网状基体上分布有一定数量的另一种高硬度硬质合金团粒。这种硬质合金主要用于制成硬质合金球齿,使用寿命有所提高,适宜在高硬度、致密性岩层中使用,但是整体的硬度和韧性提升并不明显。
对于数控刀片来说,在加工工件时,数控刀片的刀面在切屑与高切削温度作用下会产生磨损,影响使用性能。现有技术中,网状结构硬质合金提高了耐磨性和使用寿命,但硬度和韧性未有明显增长,不适合用于数控刀片领域。
发明内容
本发明要解决的技术问题是针对现有技术中数控刀片硬度和韧性不足的问题,提供一种层状结构的硬质合金数控刀片。该刀片包括硬质合金基体和涂层,硬质合金基体上有层状分布的团粒,整体硬度和韧性较好。
本发明要解决的另一技术问题是提供所述层状结构的硬质合金数控刀片的制备方法,将两种基体材料分别制备成物料颗粒,混合均匀后再压制烧结制成硬质合金基体,在硬质合金基体上涂覆涂层后制成数控刀片。硬质合金团粒均匀分布在基体上,提升了硬质合金数控刀片的性能。
本发明的目的通过以下技术方案实现:
一种层状结构的硬质合金数控刀片,包括硬质合金基体和涂层,在硬质合金基体上分布有团粒;团粒在硬质合金基体上层状分布,团粒与硬质合金基体的重量比例为1~4:6~9;团粒和硬质合金基体的成分为均为Co和WC。
进一步地,团粒中Co的质量分数为5~6%,余量为WC,所述团粒维氏硬 度为1700~1780;所述硬质合金基体中Co的质量分数为6~7%,余量为WC,所述硬质合金基体的维氏硬度为1500~1580。
本发明提供的层状结构的硬质合金数控刀片中,团粒在硬质合金基体上层状分布。其中团粒硬度高韧性低,硬质合金基体硬度低韧性高;两种材料相互配合提高了数控刀片的硬度和韧性,韧性的提高也改善了数控刀片的抗冲击性能,极大地提升了数控刀片的工作性能。
本发明还提供一种所述层状结构的硬质合金数控刀片制备方法,包括以下步骤:
S1.按团粒的成分和性能的要求,将团粒原材料进行配料,然后与成型剂混合均匀,再湿磨,过筛,制粒,得团粒粒子;
S2.按硬质合金基体的成分和性能的要求,将基体原材料进行配料,然后与成型剂混合均匀,再湿磨,过筛,制粒,得基体粒子;
S3.将步骤S1制备的团粒粒子和步骤S2中制备的基体粒子混合均匀,对混合料进行压制,烧结,得硬质合金基体;
S4.将步骤S3中制备的硬质合金基体涂覆CVD涂层,得数控刀片。
本发明在制备数控刀片过程中,无需对团粒和硬质合金基体原材料进行预烧,原材料中的晶粒尺寸和晶界分布未受影响。团粒粒子和基体粒子都是单独的粒子,两种粒子的硬度不同。将团粒粒子和基体粒子混合均匀后再压制、烧结后,得硬质合金基体,硬度较高的团粒层状分布在硬度较低的硬质合金基体上。
进一步地,步骤S1和S2中所述湿磨过程采用球磨机,球料比为4:1,湿磨介质均为酒精,酒精用量为原材料的30%。
进一步地,步骤S1和S2中所用筛网目数均为60目,成型剂均为聚乙二醇,成型剂的用量为原材料质量的2%。
进一步地,步骤S3中所述团粒粒子与基体粒子的重量比为1~4:6~9,混合时间为10min。
进一步地,步骤S3中烧结成型过程为连续烧结,包括正压脱脂,真空烧结、分压烧结、终温烧结和冷却五个阶段。
进一步地,正压脱脂阶段工艺为:前30min从25℃匀速升温至180℃,随后30min匀速升温至310℃,随后60min匀速升温至370℃,随后270min匀速升温至380℃,随后120min匀速升温至450℃,随后保温150min;氢气烧结过程中 氢气流量为100slm。
本发明通过正压脱脂阶段消除制备过程中添加的聚乙二醇,提高了硬质合金的纯度。
进一步地,极限真空烧结阶段工艺为:前90min从450℃匀速升温至800℃,随后保温60min,随后90min匀速升温至1200℃,随后保温30min,随后20min匀速升温至1300℃,随后30min匀速升温至1350℃。
进一步地,分压烧结阶段工艺为:将氩气充入烧结炉内,30min内从1350℃匀速升温至1450℃,升温过程中氩气压强为52bar;达到终温1450℃时;
进一步地,终温烧结阶段工艺如下:温度为1450℃,氩气压强为90bar,时间为40min。
进一步地,冷却阶段将硬质合金基体自然降温冷却至120℃。
本发明与现有技术相比的有益效果如下:
本发明以团粒粒子和基体粒子为原材料,将硬度高韧性低的团粒粒子和硬度低韧性高的基体粒子两种原材料混合后直接进行压制、烧结,团粒粒子在硬质合金基体上层状分布。既能保证高韧性的同时且能保证整体硬度变化不大或微弱提高,并且能够增加耐磨性能,从而提高整体的使用性能。同时本发明提供的制备方法中,无需对原材料进行预烧结处理,在烧结成型时形成层状分布结构,使层状结构的硬质合金数控刀片具有更高的强度,同时抗冲击性能也得到了提升。
图1为实施例1硬质合金基体金相照片。
其中,图中黑色部分为团粒结构,白色部分为硬质合金基体。
附图仅用于示例性说明,不能理解为对本发明的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本发明的限制。
实施例1
本实施例提供一种层状结构的硬质合金数控刀片的制备方法,包括以下步骤:
S1.制备团粒粒子,其中Co的质量分数为5.5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为 酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得团粒粒子,团粒粒子维氏硬度为1720;
S2.制备基体粒子,其中Co的质量分数为6.5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得基体粒子,基体粒子维氏硬度为1540;
S3.将步骤S1制备的团粒粒子与S2制备的基体粒子混合均匀,两者的质量比例为20:80,将混合料压制成刀片WNMG080408,然后进行烧结,烧结工艺如下:将刀片放入氢气气氛的烧结炉中,前30min从25℃匀速升温至180℃,随后30min匀速升温至310℃,随后60min匀速升温至370℃,随后270min匀速升温至380℃,随后120min匀速升温至450℃,随后保温150min,上述烧结过程中氢气流量为100slm;随后抽出烧结炉内气体至真空状态,90min从450℃匀速升温至800℃,随后保温60min,随后90min匀速升温至1200℃,随后保温30min,随后20min匀速升温至1300℃,随后30min匀速升温至1350℃;然后向烧结炉内注入氩气至氩气压强为52bar,随后30min内从1350℃匀速升温至1450℃;温度达到1450℃后,往炉内充入氩气至压强为90bar,并保温40min;随后自然冷却至120℃,得硬质合金基体;
S4.将步骤S3制备的硬质合金基体涂覆CVD涂层,得层状结构的硬质合金数控刀片。
实施例2
本实施例提供一种层状结构的硬质合金数控刀片的制备方法,包括以下步骤:
S1.制备团粒粒子,其中Co的质量分数为5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得团粒粒子,团粒粒子维氏硬度为1780;
S2.制备基体粒子,其中Co的质量分数为6%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得基体粒子,基体粒子维氏硬度为1580;
S3.将步骤S1制备的团粒粒子与S2制备的基体粒子混合均匀,两者的质量 比例为10:90,将混合料压制成刀片WNMG080408,然后进行烧结,烧结工艺如下:将刀片放入氢气气氛的烧结炉中,前30min从25℃匀速升温至180℃,随后30min匀速升温至310℃,随后60min匀速升温至370℃,随后270min匀速升温至380℃,随后120min匀速升温至450℃,随后保温150min,上述烧结过程中氢气流量为100slm;随后抽出烧结炉内气体至真空状态,90min从450℃匀速升温至800℃,随后保温60min,随后90min匀速升温至1200℃,随后保温30min,随后20min匀速升温至1300℃,随后30min匀速升温至1350℃;然后向烧结炉内注入氩气至氩气压强为52bar,随后30min内从1350℃匀速升温至1450℃;温度达到1450℃后,往炉内充入氩气至压强为90bar,并保温40min;随后自然冷却至120℃,得硬质合金基体;
S4.将步骤S3制备的硬质合金基体涂覆CVD涂层,得层状结构的硬质合金数控刀片。
实施例3
本实施例提供一种层状结构的硬质合金数控刀片的制备方法,包括以下步骤:
S1.制备团粒粒子,其中Co的质量分数为5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得团粒粒子,团粒粒子维氏硬度为1700;
S2.制备基体粒子,其中Co的质量分数为6%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得基体粒子,基体粒子维氏硬度为1500;
S3.将步骤S1制备的团粒粒子与S2制备的基体粒子混合均匀,两者的质量比例为30:70,将混合料压制成刀片WNMG080408,然后进行烧结,烧结工艺如下:将刀片放入氢气气氛的烧结炉中,前30min从25℃匀速升温至180℃,随后30min匀速升温至310℃,随后60min匀速升温至370℃,随后270min匀速升温至380℃,随后120min匀速升温至450℃,随后保温150min,上述烧结过程中氢气流量为100slm;随后抽出烧结炉内气体至真空状态,90min从450℃匀速升温至800℃,随后保温60min,随后90min匀速升温至1200℃,随后保温30min,随后20min匀速升温至1300℃,随后30min匀速升温至1350℃;然后向烧结炉 内注入氩气至氩气压强为52bar,随后30min内从1350℃匀速升温至1450℃;温度达到1450℃后,往炉内充入氩气至压强为90bar,并保温40min;随后自然冷却至120℃,得硬质合金基体;
S4.将步骤S3制备的硬质合金基体涂覆CVD涂层,得层状结构的硬质合金数控刀片。
实施例4
本实施例提供一种层状结构的硬质合金数控刀片的制备方法,包括以下步骤:
S1.制备团粒粒子,其中Co的质量分数为5.5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得团粒粒子,团粒粒子维氏硬度为1720;
S2.制备基体粒子,其中Co的质量分数为6.5%,余量为WC,然后掺入原材料重量2%的聚乙二醇混合均匀;将所有材料放入球磨机中湿磨,湿磨介质为酒精,球料比为4:1,酒精用量为原材料用量的30%;湿磨后用60目筛网过筛,制粒后得基体粒子,基体粒子维氏硬度为1540;
S3.将步骤S1制备的团粒粒子与S2制备的基体粒子混合均匀,两者的质量比例为40:60,将混合料压制成刀片WNMG080408,然后进行烧结,烧结工艺如下:将刀片放入氢气气氛的烧结炉中,前30min从25℃匀速升温至180℃,随后30min匀速升温至310℃,随后60min匀速升温至370℃,随后270min匀速升温至380℃,随后120min匀速升温至450℃,随后保温150min,上述烧结过程中氢气流量为100slm;随后抽出烧结炉内气体至真空状态,90min从450℃匀速升温至800℃,随后保温60min,随后90min匀速升温至1200℃,随后保温30min,随后20min匀速升温至1300℃,随后30min匀速升温至1350℃;然后向烧结炉内注入氩气至氩气压强为52bar,随后30min内从1350℃匀速升温至1450℃;温度达到1450℃后,往炉内充入氩气至压强为90bar,并保温40min;随后自然冷却至120℃,得硬质合金基体;
S4.将步骤S3制备的硬质合金基体涂覆CVD涂层,得层状结构的硬质合金数控刀片。
对实施例1~4制备的层状结构的硬质合金数控刀片和现有数控刀片进行各项性能检测,结果如表1所示:
表1
D,g/cm 3 | COM,% | HC,KA/M | HV | K1C,MPa/m 2 | TRS,MPa | |
实施例1 | 14.93 | 5.8 | 18.6 | 1580 | 9.5 | 2450 |
实施例2 | 14.93 | 5.8 | 18.3 | 1560 | 9.2 | 2430 |
实施例3 | 14.93 | 5.7 | 18.5 | 1570 | 9.4 | 2430 |
实施例4 | 14.92 | 5.8 | 18.3 | 1560 | 9.1 | 2400 |
现有刀片 | 14.92 | 5.6 | 17.9 | 1550 | 8.5 | 2270 |
通过对表1中的各项数据进行分析可知,与现有数控刀片对比,本发明所提供的数控刀片检测的各项性能COM(Co磁),HC(矫顽磁力),HV(维氏硬度),K1C(断裂韧性)和TRS(抗弯强度)都有所提升,本发明提供的层状结构基体刀片可以满足生产需要。
显然,上述实施例仅仅是为清楚地说明本发明的技术方案所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (7)
- 一种层状结构的硬质合金数控刀片,包括硬质合金基体和涂层,其特征在于,在硬质合金基体上分布有团粒;所述团粒在硬质合金基体上层状分布,所述团粒与硬质合金基体的重量比例为1~4:6~9;所述团粒和硬质合金基体的成分为均为Co和WC。
- 根据权利要求1所述一种层状结构的硬质合金数控刀片,其特征在于,所述团粒中Co的质量分数为5~6%,余量为WC,所述团粒维氏硬度为1700~1780;所述硬质合金基体中Co的质量分数为6~7%,余量为WC,所述硬质合金基体的维氏硬度为1500~1580。.
- 一种权利要求2所述的层状结构的硬质合金数控刀片的制备方法,包括如下步骤:S1.按权利要求2中对团粒的成分和性能的要求,将团粒原材料进行配料,然后与成型剂混合均匀,再湿磨,过筛,制粒,得团粒粒子;S2.按权利要求2中对硬质合金基体的成分和性能的要求,将基体原材料进行配料,然后与成型剂混合均匀,再湿磨,过筛,制粒,得基体粒子;S3.将步骤S1制备的团粒粒子和步骤S2中制备的基体粒子混合均匀,对混合料进行压制,烧结,得硬质合金基体;S4.将步骤S3中制备的硬质合金基体涂覆CVD涂层,得层状结构的硬质合金数控刀片。
- 根据权利要求3所述的层状结构的硬质合金数控刀片制备方法,其特征在于,步骤S1和S2中所述湿磨过程采用球磨机,球料比为4:1,湿磨介质均为酒精,所述酒精用量为原材料的30%。
- 根据权利要求3所述的层状结构的硬质合金数控刀片制备方法,其特征在于,步骤S1和S2中所述筛网目数均为60目,所述成型剂均为聚乙二醇,所述成型剂用量为原材料的2%。
- 根据权利要求3所述的层状结构的硬质合金数控刀片制备方法,其特征在于,步骤S3中所述团粒粒子与基体粒子的重量比为1~4:6~9,所述混合时间为10min。
- 根据权利要求3所述的层状结构的硬质合金数控刀片制备方法,其特征在于,步骤S3中所述烧结成型过程为连续烧结,包括正压脱脂,真空烧结、分压 烧结、终温烧结和冷却五个阶段。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810969832.2 | 2018-08-22 | ||
CN201810969832.2A CN109249027A (zh) | 2018-08-22 | 2018-08-22 | 一种层状结构的硬质合金数控刀片及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020038414A1 true WO2020038414A1 (zh) | 2020-02-27 |
Family
ID=65050412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/101845 WO2020038414A1 (zh) | 2018-08-22 | 2019-08-21 | 一种层状结构的硬质合金数控刀片及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109249027A (zh) |
WO (1) | WO2020038414A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114603132A (zh) * | 2022-03-11 | 2022-06-10 | 温州宏丰合金有限公司 | 硬质合金挤压成型剂、硬质合金挤压喂料及其制备方法 |
CN118028649A (zh) * | 2024-04-11 | 2024-05-14 | 崇义章源钨业股份有限公司 | 一种yt15硬质合金及其制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109249027A (zh) * | 2018-08-22 | 2019-01-22 | 株洲欧科亿数控精密刀具股份有限公司 | 一种层状结构的硬质合金数控刀片及其制备方法 |
CN112571003B (zh) * | 2020-12-04 | 2022-04-15 | 株洲韦凯切削工具有限公司 | 一种快进给加工用数控刀片 |
CN115466870B (zh) * | 2022-09-16 | 2023-04-18 | 株洲欧科亿数控精密刀具股份有限公司 | 一种提升硬质合金基体与涂层结合力的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH073306A (ja) * | 1992-09-17 | 1995-01-06 | Shuichi Kamoda | 高強度超硬合金複合材料およびその製造方法 |
CN1554789A (zh) * | 2003-12-29 | 2004-12-15 | 株洲硬质合金集团有限公司 | 钨钴硬质合金的制备方法 |
CN101787479A (zh) * | 2010-01-26 | 2010-07-28 | 株洲硬质合金集团有限公司 | 网状结构硬质合金及其制备方法 |
CN102453822A (zh) * | 2010-10-25 | 2012-05-16 | 李明锁 | 矿用硬质合金 |
CN104131193A (zh) * | 2014-08-18 | 2014-11-05 | 荆州荆天明建硬质合金制品有限公司 | 一种填充式层状结构硬质合金的制备方法 |
CN104879066A (zh) * | 2015-06-05 | 2015-09-02 | 株洲翔宇硬质合金有限公司 | 钻探用金刚石复合片基体制备方法及复合片基体 |
CN109249027A (zh) * | 2018-08-22 | 2019-01-22 | 株洲欧科亿数控精密刀具股份有限公司 | 一种层状结构的硬质合金数控刀片及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1261263C (zh) * | 2003-08-14 | 2006-06-28 | 陈兆盈 | 硬质合金复合材料 |
EP1518622A1 (de) * | 2003-09-26 | 2005-03-30 | Sulzer Metco (US) Inc. | Verfahren zum Herstellen eines Hartstoff enthaltenden Granulats |
CN102220533A (zh) * | 2011-06-09 | 2011-10-19 | 株洲硬质合金集团有限公司 | 网状结构硬质合金钎片及其制备方法 |
CN105132779B (zh) * | 2015-07-31 | 2018-03-30 | 株洲硬质合金集团有限公司 | 碳化钨基硬质合金以及其制备方法 |
CN105950937B (zh) * | 2016-05-23 | 2018-01-16 | 株洲钻石切削刀具股份有限公司 | 一种硬质合金刀片及其制备方法 |
CN106001561B (zh) * | 2016-06-03 | 2018-10-23 | 广东工业大学 | 一种多级复合金属陶瓷、其制备方法及盾构刀具 |
CN107557639B (zh) * | 2017-09-27 | 2019-03-08 | 武汉新锐合金工具有限公司 | 一种三相结构硬质合金及其制备方法 |
-
2018
- 2018-08-22 CN CN201810969832.2A patent/CN109249027A/zh active Pending
-
2019
- 2019-08-21 WO PCT/CN2019/101845 patent/WO2020038414A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH073306A (ja) * | 1992-09-17 | 1995-01-06 | Shuichi Kamoda | 高強度超硬合金複合材料およびその製造方法 |
CN1554789A (zh) * | 2003-12-29 | 2004-12-15 | 株洲硬质合金集团有限公司 | 钨钴硬质合金的制备方法 |
CN101787479A (zh) * | 2010-01-26 | 2010-07-28 | 株洲硬质合金集团有限公司 | 网状结构硬质合金及其制备方法 |
CN102453822A (zh) * | 2010-10-25 | 2012-05-16 | 李明锁 | 矿用硬质合金 |
CN104131193A (zh) * | 2014-08-18 | 2014-11-05 | 荆州荆天明建硬质合金制品有限公司 | 一种填充式层状结构硬质合金的制备方法 |
CN104879066A (zh) * | 2015-06-05 | 2015-09-02 | 株洲翔宇硬质合金有限公司 | 钻探用金刚石复合片基体制备方法及复合片基体 |
CN109249027A (zh) * | 2018-08-22 | 2019-01-22 | 株洲欧科亿数控精密刀具股份有限公司 | 一种层状结构的硬质合金数控刀片及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114603132A (zh) * | 2022-03-11 | 2022-06-10 | 温州宏丰合金有限公司 | 硬质合金挤压成型剂、硬质合金挤压喂料及其制备方法 |
CN118028649A (zh) * | 2024-04-11 | 2024-05-14 | 崇义章源钨业股份有限公司 | 一种yt15硬质合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109249027A (zh) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020038414A1 (zh) | 一种层状结构的硬质合金数控刀片及其制备方法 | |
CN109402479B (zh) | 一种高耐磨强韧性NbC基轻质金属陶瓷合金及其制备方法 | |
CN111304479A (zh) | 一种VCrNbMoW难熔高熵合金制备方法 | |
CN109371274A (zh) | 一种高性能粉末冶金tzm钼合金的制备方法 | |
CN105945292B (zh) | 一种金刚石复合片及其制备方法 | |
CN109534820A (zh) | 一种玻璃热弯成型用陶瓷模具及其制备方法 | |
CN102943194B (zh) | 金刚石-Ti(C,N)基金属陶瓷复合材料及制备方法 | |
CN109576545A (zh) | 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法 | |
CN104831145A (zh) | 亚微米级SiC颗粒增强Ti(C,N)基金属陶瓷材料及其制备方法 | |
CN102537510B (zh) | 无压烧结碳化硅陶瓷阀芯及其制备工艺 | |
CN109576546A (zh) | 一种高强韧性无磁Ti(C,N)基金属陶瓷的制备方法 | |
CN106756599A (zh) | cBN‑高速钢复合材料及cBN‑高速钢复合材料的制备方法 | |
CN108570590A (zh) | 一种孕镶金刚石胎体、孕镶金刚石材料及其制备方法 | |
CN106834778B (zh) | 硬质合金以及制备方法 | |
CN113681024B (zh) | 一种基于喂料打印制备钨金属零件的方法 | |
CN113278858B (zh) | 一种Y2(Zr)O3增硬增韧WC-Co硬质合金材料及其制备方法 | |
CN111961941B (zh) | 超细硬质合金刀具材料制备方法 | |
CN112647004A (zh) | 一种非均匀结构类球型硬质合金的制备方法 | |
CN109811236B (zh) | 一种高性能硬质合金材料的制备方法 | |
CN110241348B (zh) | 一种无磁金属陶瓷及其制备方法和应用 | |
CN111893447A (zh) | 一种掺杂亚微米金刚石碳化钨溅射靶材及其制备方法 | |
CN110241420A (zh) | 一种硬质合金材料和硬质合金样件 | |
CN103045167A (zh) | 一种磁性磨料及其制备方法 | |
CN107955898B (zh) | 硬质合金材料及其制造方法 | |
CN110499443B (zh) | 一种高性能模具材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19852329 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19852329 Country of ref document: EP Kind code of ref document: A1 |