WO2020038359A1 - 检测系统及方法 - Google Patents

检测系统及方法 Download PDF

Info

Publication number
WO2020038359A1
WO2020038359A1 PCT/CN2019/101586 CN2019101586W WO2020038359A1 WO 2020038359 A1 WO2020038359 A1 WO 2020038359A1 CN 2019101586 W CN2019101586 W CN 2019101586W WO 2020038359 A1 WO2020038359 A1 WO 2020038359A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
area
spot
measured
light spot
Prior art date
Application number
PCT/CN2019/101586
Other languages
English (en)
French (fr)
Inventor
陈鲁
黄有为
崔高增
王天民
Original Assignee
深圳中科飞测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810954689.XA external-priority patent/CN110849898A/zh
Priority claimed from CN201810955348.4A external-priority patent/CN110849900A/zh
Application filed by 深圳中科飞测科技有限公司 filed Critical 深圳中科飞测科技有限公司
Publication of WO2020038359A1 publication Critical patent/WO2020038359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present application belongs to the field of detection, and particularly relates to a detection system and method.
  • Wafer defect inspection refers to detecting the presence of defects such as grooves, particles, scratches, and defect locations in the wafer. Wafer defect detection is widely used: On the one hand, as a chip substrate, the presence of defects on the wafer may cause the expensive processes made above to fail. Wafer manufacturers often perform defect inspection to ensure product qualification rates, and wafer users also need to Determining the cleanliness of the wafer before use can ensure the product pass rate. On the other hand, because semiconductor processing is very strict in controlling additional pollution during processing, and it is difficult to directly monitor additional pollution during processing, people often pass wafer bare chips. Defect comparison before and after processing to determine the degree of additional pollution of the process. Therefore, people have explored various wafer defect detection methods.
  • the commonly used wafer defect detection methods mainly include electron beam detection and optical detection. Thanks to the extreme wavelength of the electron wave, the electron beam detection can directly image and the resolution can reach 1 to 2 nanometers. However, it takes a long time to detect and requires a high vacuum environment. It is usually used to sample a few key circuit links an examination.
  • Optical inspection is a general term for a method that uses light to interact with a chip to achieve inspection. Its basic principle is to scan for the presence and intensity of incident light and scattered light from defects, and determine the presence and size of defects.
  • the present invention proposes a system and method capable of realizing multi-incident angle detection on a wafer.
  • the present invention proposes a detection system including: a detection component configured to generate at least two detection spots corresponding to different incident angles based on a received detection beam; and a signal collection component configured to collect The signal light generated by the test object under the action of the at least two detection light spots, thereby generating at least two sets of detection information; a processor component configured to determine the test object based on the at least two sets of detection information Defect feature information on objects.
  • the present invention also provides a detection method, which includes: generating at least two detection spots corresponding to different incident angles based on the received detection beam; collecting a test object under the action of the at least two detection spots Signal light to generate at least two sets of detection information; and determine defect feature information on the measured object based on the at least two sets of detection information.
  • the moving time of the wafer is saved, and because the re-moving to the starting point is avoided, the positioning error is reduced, so that the algorithm for matching and aligning the two detection results is much simpler and can significantly increase the detection speed.
  • a light source with the same wavelength can be used to detect different particles.
  • the moving time of the machine used to carry the wafer can be saved, and the detection trajectories of the two spots are the same, making the algorithm for matching and aligning the two detection results much simpler. Can significantly increase the detection speed.
  • a light source with the same wavelength can be used to detect different particles.
  • FIG. 1 is a structural diagram of a detection system according to an embodiment of the present invention.
  • FIG. 2 is an optical architecture diagram of a detection system according to an embodiment of the present invention.
  • 3a is a flowchart of a first detection method according to an embodiment of the present invention.
  • 3a is a flowchart of a second detection method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a detection path according to an embodiment of the present invention.
  • 5a is a structural diagram of a signal collection component according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of an imaging-like collection principle according to an embodiment of the present invention.
  • FIG. 6 is an optical architecture diagram of a detection system according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a signal collection component according to another embodiment of the present invention.
  • FIG. 8a is a schematic diagram of a detection spot distribution according to the first embodiment of the present invention.
  • FIG. 8b is a schematic diagram of a detection spot distribution according to a second embodiment of the present invention.
  • FIG. 8c is a schematic diagram of a detection spot distribution according to a third embodiment of the present invention.
  • the detection beam refers to a beam generated by the light source assembly to finally form a detection spot.
  • the angle of incidence refers to the angle between the detection beam and the normal direction of the surface of the object (such as a wafer).
  • the detection area is the illumination area corresponding to the signal light received by the detector. For example, the part with relatively strong light intensity in the detection spot illumination area is received by the detector to analyze the measured object.
  • the inventors found that according to the angle of incident light (for example, normal incidence or oblique incidence, and the corresponding oblique incidence angle), the range of signal light collection angles (normal collection or illegal collection).
  • the range of signal light collection angles normal collection or illegal collection.
  • the light scattering method including: (1) normal collection of normal incidence lighting (2) illegal collection of normal incidence lighting (3) normal collection of oblique incidence lighting (4) and illegal collection of oblique incidence lighting .
  • the scattered light will exhibit different distribution characteristics.
  • the scattered light of the defects is more evenly distributed in the normal and illegal collection channels; for the pits distributed on the wafer Defects.
  • the scattered light of the defects is mainly distributed in the normal collection channel, and the scattered light collected by the illegal collection channel is relatively weak.
  • the scattered light of the defect is mainly distributed in the illegal collecting channel; for pit defects distributed on the wafer, when the light is incident obliquely, the collecting channel is illegally collected.
  • the collected scattered light is weak. It can be understood that, for oblique incidence, when the light incident angle changes, the corresponding scattered light distribution also changes accordingly.
  • test object is a wafer. It can be understood that the test object can also be a chip, a glass substrate, or the like.
  • FIG. 1 is a structural diagram of a detection system according to an embodiment of the present invention.
  • the detection system includes a light source component 101, a detection component 102, a signal collection component 103, and a processor component 104.
  • the light source assembly 101 is used to provide a detection beam, for example, the detection beam is provided by one or more lasers.
  • the detection component 102 is configured to generate a detection spot corresponding to a specified incident angle based on the received detection beam.
  • the detection component 102 may include at least two optical branches. When one of the optical branches is in a working state designated by the processor component 104, the optical branch will generate a detection spot based on the detection beam from the light source component 101. Therefore, the incident angle corresponding to the detection spot is determined by the optical branch that generates the detection spot.
  • the detection component 102 sets the incident angle of the detection spot by including at least two optical branches, in other embodiments, the detection component 102 can also implement the detection spot in other ways.
  • the setting of the incident angle for example, by setting the position of the detection component 102 itself, or setting the state of the optical branch, etc., need not be listed one by one.
  • the aforementioned at least two optical branches may respectively correspond to at least two different incident angles.
  • the wafer can be detected at different incident angles.
  • the wafer will generate (for example, by scattering or reflection) corresponding signal light under the effect of the detection spot.
  • the signal light generated will vary depending on the type of defect or other parameters.
  • the inspection component 102 also includes a machine for carrying wafers, and the machine is moved under the control of the processor component 104, so that the wafer can be moved according to a specified trajectory, and the relative position of the wafer and the inspection light spot can be adjusted to realize scanning inspection .
  • the signal collection component 103 collects the signal light linearly and generates detection information associated with the incident angle. Specifically, since each optical branch has an angle of incidence different from that of the other optical branches, each optical branch can generate a signal light associated with the angle of incidence. Obviously, each set of detection information is associated with the corresponding incident angle.
  • the processor component 104 obtains detection information from the signal collection component 103, for example, at least two groups. The processor component 104 then determines defect feature information on the wafer based on at least two sets of inspection information, such as the type, location, and other parameters of the defect. In one embodiment, one of the at least two sets of detection information corresponds to an incidence angle of 0 ° (i.e., normal incidence). In this way, both bump-type defects and pit-type defects on the wafer can be accurately detected.
  • the incident angle of the first optical branch is basically 0 °
  • the incident angle of the second optical branch is basically 60 ° (that is, oblique incidence).
  • the range of the incident angle here is only an example, and the user can adjust the incident angles corresponding to the first and second optical branches according to the defect characteristics on the wafer.
  • FIG. 2 is an optical architecture diagram of a detection system according to an embodiment of the present invention.
  • the detection system can implement normal and oblique incidence detection methods.
  • the laser 201 generates a detection beam
  • the detection component 202 receives the detection beam to generate a detection spot corresponding to a specified incident angle.
  • the processor component determines which optical branch can receive the detection beam through the switcher 2021. Therefore, the switcher 2021 can provide a detection light beam to a designated optical branch under the control of the processor component. It can be understood that the switcher 2021 may be a mirror or other components capable of switching the detection light beam.
  • the switcher 2021 When the wafer is inspected in a normal incidence manner, the switcher 2021 provides the detection beam to the first optical branch, that is, the wave shaper 2022 to the shaping mirror group 2023, and then to the wafer surface through the reflection mirrors 2024 and 2025. And a detection spot is formed. It can be understood that the shape and length of the detection spot are controlled by the shaping lens group 2023. For example, the shaping lens group 2023 can also adjust the detection spot to a spot spot or a round spot.
  • the switcher 2021 supplies the detection beam to the second optical branch, that is, to the mirror 2026, and then to the shaping mirror group 2028 via the wave plate 2027, and then via the mirror 2029 Reach the wafer surface and form a detection spot.
  • the detection light spot formed by the oblique incidence method and the detection light spot formed by the normal incidence method have the same position and the same length. In this way, the detection light spots formed by the two incident methods can share a signal collection channel.
  • the wave plates 2022 and 2027 can be quarter or half wave plates, which can be used to change the polarization state of the detection beam. For example, different polarization states are achieved for different detection beams, such as p-light, s-light, and circularly-polarized light.
  • wafers can be inspected at two different angles of incidence at different times.
  • the light source assembly may include multiple lasers, that is, each optical branch may not share a laser, that is, the two lasers each provide a detection beam for normal incidence and oblique incidence.
  • the switch 2021 can be omitted and processed.
  • the controller component can control the corresponding laser.
  • FIG. 4 is a schematic diagram of a detection path according to an embodiment of the present invention.
  • a linear light spot is used to detect the wafer.
  • a dotted line is taken as an example of a concentric circle in FIG. 4. It can be understood that the dotted line corresponds to the center of the detection spot detection area. Scanning a circle with a linear spot can complete the scanning of a circular area.
  • the following description is based on detecting the entire wafer (that is, the area to be tested is circular), those skilled in the art can understand that the area to be tested can also have other shapes.
  • Inspection method 1 Based on the first incident angle, the wafer is inspected in a first inspection path, and then based on the second incident angle, the wafer is inspected in a second inspection path.
  • the detection spot In the initial state of detection, the detection spot is located at the outermost position of the wafer by the movement of the machine (as shown in the spot position of Fig. 4). It can be understood that in this embodiment, the entire wafer is tested. If the area to be tested is part of the wafer, the detection spot needs to be moved to the outermost side of the area to be tested. It can be understood that the detection light spot includes a detection area. In this embodiment, the detection area is linear.
  • Step S301a Based on the first incident angle, the wafer is detected based on the first to Nth concentric circles.
  • the first to Nth concentric circles are a plurality of concentric circles arranged in the first radial direction (the center of the circle facing the wafer).
  • the first concentric circle may correspond to the outermost side of the wafer
  • the Nth The concentric circles correspond to the innermost sides of the wafer.
  • the wafer is detected at a first incident angle.
  • the machine drives the wafer to rotate, and the signal light scattered by the wafer is collected in a normal direction and an illegal direction at the same time through a signal collection component (not shown in Figure 2).
  • the machine drives the wafer to move, so that the detection spot moves a distance d in the first radial direction (that is, the distance between the centers of adjacent concentric circles) for the next scan. .
  • the detection along the Nth concentric circle is completed (at this time, the light spot is irradiated to the center of the wafer), thereby scanning the wafer and obtaining the first set of detection information corresponding to the first incident angle.
  • the moving distance d is greater than or equal to 60% of the length of the detection spot, and less than or equal to the length of the detection spot. Specifically, d is less than or equal to the length of the detection area. As such, in this embodiment, d is equal to the length of the detection area. d is equal to the length of the detection area, which can improve scanning efficiency and simplify signal processing.
  • Step S302a at the second incident angle, detect the wafer according to the Nth to the first concentric circles.
  • the wafer is inspected at a second angle of incidence.
  • the machine drives the wafer to rotate, and the signal light scattered by the wafer is collected in the normal direction and illegally at the same time by the signal collection component.
  • the machine drives the wafer to move, so that the detection spot moves in the second radial direction (away from the center of the wafer) by a distance d for the next scan, and so on, until it corresponds to the first 1
  • the detection of the concentric circles is completed (at this time, the detection spot is irradiated to the outermost position of the wafer), so that the entire scan is completed, and the second set of detection information corresponding to the second incident angle is obtained.
  • Detection method 2 each concentric circle is scanned twice at the first and second angles of incidence, and then the next concentric circle scan is performed.
  • the machine drives the wafer to move the detection spot (or detection area) to the outermost position of the wafer (as shown in the spot position of FIG. 4). Take the detection from the outer ring to the inner ring of the wafer as an example.
  • Step S301b Based on the first incident angle, the wafer is detected with a first concentric circle.
  • the wafer is detected at a first incident angle.
  • the machine drives the wafer so that the detection light spot rotates along the first concentric circle on the wafer, and the signal light scattered by the wafer is collected in the normal direction and the illegal direction at the same time by the signal collection component.
  • Step S302b Based on the second incident angle, the wafer is detected based on the first concentric circle.
  • the wafer is detected at the second incident angle, and the machine drives the wafer so that the detection spot rotates along the first concentric circle on the wafer, and the signal light scattered by the wafer is simultaneously performed by the signal collection component. Normal collection and illegal collection.
  • Step S303b Based on the second incident angle, the wafer is detected along the second concentric circle.
  • the machine drives the wafer to move, so that the detection spot moves a distance d in the first radial direction (toward the center of the wafer) for the next scan.
  • the wafer is detected at the second incident angle, and the machine drives the wafer so that the detection spot rotates along the second concentric circle on the wafer.
  • Step S304b Based on the first incident angle, the wafer is detected based on the second concentric circle
  • the wafer is detected at the first incident angle, and the machine drives the wafer so that the detection spot rotates on the wafer along a second concentric circle.
  • the first detection path corresponding to the first incident angle and the second detection path corresponding to the second incident angle both include a plurality of concentric circles arranged along the first radial direction, and the concentric circles As a unit, the wafer is inspected according to the current concentric circle at the first incident angle and the second incident angle in sequence.
  • different angles of incidence correspond to the same direction of rotation, which can simplify control and reduce the complexity of processing the data obtained twice.
  • two sets of detection information corresponding to the two incident methods can be obtained through the detection methods 1 or 2, and the processor component can determine the type of defects on the wafer and the distribution of the defects through the two sets of detection information.
  • the scan can also be moved from the inner ring to the outer ring.
  • the first radial direction is away from the center of the circle.
  • the detection path may also be a spiral, a Z-shape, an S-shape, a rectangle, or the like, and details are not described herein.
  • the wafer when the detection light spot is projected onto the wafer surface, the wafer will generate corresponding signal light under the effect of the detection light spot.
  • the distribution of signal light is also different. For convex defects, the sensitivity of oblique incidence detection is higher; for concave defects, normal incidence has a higher detection sensitivity.
  • the multi-channel collection of signal light is more conducive to accurately determine the defects on the wafer.
  • the present invention proposes an architecture of a signal collection component. As described above, since the detection spots formed by the normal incidence method and the oblique incidence method in the present invention overlap, a signal collection channel can be shared.
  • FIG. 5a is a structural diagram of a signal collection component according to an embodiment of the present invention.
  • the signal collection component includes detection branches 501-503 corresponding to a plurality of collection channels.
  • the detection branch 501 is a normal collection channel corresponding to the detection spot
  • the detection branch 502 is a first illegal collection channel corresponding to the detection spot
  • the detection branch 503 is a second illegal direction corresponding to the detection spot. Collect channels.
  • each detection branch is further provided with a detection lens group (not shown) to project the collected signal light to a designated position of the line detector.
  • each detection branch includes a line detector to collect the illegal scattered light generated by the wafer under the action of the detection spot. In this way, through the detection lens group and the line detector, a relatively strong light intensity portion in the spot irradiation area, that is, a linear detection area can be obtained.
  • FIG. 5b is a schematic diagram of an imaging-like collection principle according to an embodiment of the present invention.
  • the detection beam is irradiated on the wafer surface to form a detection spot.
  • the scattered light generated by the defect under the action of the detection spot travels in all directions above the wafer.
  • a plurality of collection channels are provided in a normal direction and an illegal direction, and each collection channel collects scattered light that is spatially distributed at a nearby angle with a scattering angle as a center.
  • the defect at the position A emits scattered light within a specific angle range and is projected to a designated position of the detector TCa via the detection lens group 51.
  • the defect is detected at the spot B.
  • the scattered light generated under the action is projected to a designated position of the detector TCb via the detection lens group 52.
  • the scattered light of the defect at the position A is projected to the position next to the detector TCb via the detection lens group 52.
  • the scattered light of the defect at the position B is projected to the position next to the detector TCa via the detection lens group 51. Therefore, the detectors TCa and TCb independently collect the scattered light generated by the defects at the A and B positions, and do not interfere with each other.
  • the signal collection component can collect the scattered light of the detection spot from multiple angles, and then generate detection information corresponding to the signal light.
  • the processor component can determine the type and distribution of defects on the wafer.
  • each detection branch corresponds to At a different angle of incidence than the other detection branches.
  • the present invention also provides a detection method, including: generating a first detection light beam having a first incident angle, thereby forming a first detection light spot on a surface of a measured object, the first detection light spot including a first detection area;
  • the detection beam scans the area to be measured of the measured object and detects the area to be measured, and then obtains the first detection information generated by the first detection beam after the action of the measured object; generates a second detection beam with a second incident angle
  • the second detection light beam forms a second detection light spot on the surface of the area to be measured of the measured object.
  • the second detection light spot includes a second detection area and the center of the second detection area is the same as the center position of the first detection area.
  • a second scan is performed on the measured area of the measured object through the second detection beam to obtain the second detection information; according to the first detection information and the second detection The information obtains the defect characteristic information of the measured object. It may be understood that the second scan may further include a return along a path of the first scan.
  • the size of the first detection spot and the second detection spot are the same.
  • the first detection light spot and the second detection light spot are linear light spots, and both extend along the radial direction of the area to be measured.
  • the first detection area is linear and the second detection area is linear.
  • the center of the first detection area coincides with the center of the first detection spot; the center of the second detection area coincides with the center of the second detection spot; the first detection The length of the area is shorter than the length of the first detection spot, and the length of the second detection area is shorter than the length of the second detection spot.
  • an included angle between an extension direction of the first detection light spot and a direction of the first scanning during the first detection process is greater than zero, and the second The included angle between the extension direction of the detection spot and the direction of the second scan during the second detection process is greater than zero. It can be understood that when the detection spot and the scanning direction are perpendicular to each other, the detection range is the largest.
  • detection of the measured object can be achieved by setting the scanning paths of the first and second scanning.
  • each concentric circle is scanned twice.
  • the first scanning step includes: performing a first rotation of the measured object around an axis of the measured area and an axis perpendicular to the surface of the measured area.
  • the second scanning step includes: performing a second rotation around the center of the area to be measured and the axis perpendicular to the area to be measured. In this way, the same concentric circle can be scanned at different angles. In one embodiment, the directions of the first rotation and the second rotation are the same, thereby simplifying control and reducing the complexity of processing the data obtained twice.
  • the position of the object to be measured relative to the first detection spot is translated along the diameter direction of the region to be measured by a specific step (to reach another concentric circle). Then, the steps of the first scanning, the second scanning, and / or the panning are repeated until the areas to be measured are both detected by the first detection spot and the second detection spot.
  • the lengths of the first detection area and the second detection area are equal to each other in the direction of translation, and are equal to the specific step size.
  • the first scanning step includes: making the object to be measured rotate around the center of the region to be measured and perpendicular to the axis perpendicular to the region to be measured, and performing the first detection; after the first rotation, the object to be measured is moved along the A first translation is performed in the first diameter direction; the steps of the first rotation and the first detection and / or the first translation are repeated until the measured area is detected by the first detection spot.
  • the second scanning step includes: rotating the measured object around the center of the measured area and perpendicular to the axis of the measured area for a second rotation and performing a second detection; after the second rotation, the measured object moves along the diameter of the measured area A second translation is performed in the direction, and the direction of the second translation is opposite to the direction of the first translation; the steps of the first rotation and the first detection and / or the first translation are repeated until the measured area is detected.
  • the directions of the first rotation and the second rotation are the same.
  • the size of the first detection area and the second detection area along the radial direction of the area to be measured are the same, and the step size of the first translation is equal to the step size of the second translation. In one embodiment, in the direction along the first translation, the size of the first detection area is equal to the step size of the first translation, and the size of the second detection area is equal to the step size of the second translation.
  • the area to be measured of the measured object may also be circular, and the scanning trajectory may be a spiral.
  • the first scanning step includes: performing a third rotation around the center of the area to be measured and perpendicular to the axis of the area to be measured; and during the first rotation, making the detection spot relative to the first
  • the detection light spot performs a third translation along the diameter direction of the area to be measured.
  • the second scanning step includes: performing a fourth rotation of the measured object around the center of the area to be measured and perpendicular to the axis of the area to be measured; and during the second rotation, making the detection spot relative to the second detection spot along the target
  • a fourth translation is performed in the diameter direction of the measurement area.
  • the direction of the third rotation is opposite to the direction of the fourth rotation, so that the areas of the two sketches are the same, and the scanning area can be accurately analyzed.
  • the detection method of the present invention saves the wafer moving time, and reduces the positioning error because it avoids re-moving to the starting point. Therefore, the algorithm for matching and aligning the two detection results is much simpler and can significantly increase the detection speed.
  • the detection method of the present invention is also applicable to point light spot or surface light spot detection methods. Understandably, when a spot / area spot is used to detect a wafer, the shaping lens group needs to be adjusted to form a spot / area spot.
  • a spot can be used to detect a wafer by means of a spiral line, that is, the spiral line is used for inspection first, and after the detection is completed, the end of the spiral line is then inspected in the reverse direction.
  • the spiral line refers to the scanning trajectory.
  • the invention also proposes a detection system using multi-spot measurement.
  • the detection system includes a light source component 101, a detection component 102, a signal collection component 103, and a processor component 104, wherein the light source component 101 provides a detection beam through a light generator (such as one or more lasers).
  • a light generator such as one or more lasers
  • the detection component 102 is configured to generate two detection spots corresponding to different incident angles based on the received detection beam. It can be understood that the two detection spots are separated from each other on the measured object, that is, there is no overlap region between the two detection spots.
  • the detection component 102 includes two optical branches that can work at the same time. The two optical branches can work under the control of the processor component 104, and further generate the two detection light spots based on the detection beam from the light source component 101. It can be understood that although it is described herein that the detection component 102 can generate two detection spots simultaneously through two optical branches, in other embodiments, the detection component 102 can also include other numbers of optical branches, which can generate A corresponding number of detection spots.
  • the wafer When the wafer is under inspection (that is, the detection spot is illuminated on the wafer), the wafer will generate (for example, by scattering or reflection) corresponding signal light under the effect of the detection spot. It can be understood that when the detection spot is irradiated to the defect, the signal light generated will change according to the type of the defect or other parameters.
  • the signal collection component 103 includes detection branches corresponding to a plurality of scattered light collection channels, and can collect signal light generated by two detection spots at different angles, thereby generating two sets of detection information corresponding to an incident angle.
  • the processor component 104 obtains the two sets of inspection information from the signal collection component 103, and then determines defect feature information on the wafer.
  • the incident angle of the optical branch in the detection component 102 can be determined according to the type of defect on the wafer. In other words, if it is known before the inspection that the wafer includes at least pit-type and bump-type defects, the two optical branches include one normal incident optical branch (that is, the incident angle is substantially 0 °).
  • the incident angle of the first optical branch is basically 0 °
  • the incident angle of the second optical branch is basically 60 ° (that is, oblique incidence).
  • the value of the incident angle here is only an example, and the user can adjust the incident angles corresponding to the first and second optical branches according to the defect characteristics on the wafer.
  • FIG. 6 is an optical architecture diagram of a detection system according to an embodiment of the present invention.
  • the detection system can implement both normal incidence and oblique incidence detection modes.
  • the laser 601 generates a detection beam
  • the beam splitter 6021 in the detection component 602 splits the received detection beam, and makes the detection beam after the scored beam incident on the first optical branch and the second Optical branch.
  • the beam splitter 6021 supplies the split detection beam to the first optical branch to form a detection spot S1.
  • the detection light beam is provided to the shaping mirror group 6023 through the wave plate 6022, and then reaches the wafer surface through the reflection mirrors 6024 and 6025 to form a detection light spot S1.
  • the shape and length of the detection spot S1 can be controlled by the shaping lens group 6023.
  • the shaping lens group 6023 can also adjust the detection spot S1 to a spot spot or a round spot.
  • the beam splitter 6021 supplies the detection beam to the second optical branch to form a detection spot S2.
  • the detection light beam is provided to the reflection mirror 6026, and then to the shaping mirror group 6028 via the wave plate 6027, and then reaches the wafer surface via the reflection mirror 6029, and forms a detection light spot S2. It can be understood that in order to be able to collect the signal light corresponding to the detection spots S1 and S2, different signal collection channels need to be used for collection.
  • the wave plates 6022 and 6027 may be quarter or half wave plates, which may be used to change the polarization state of the detection beam. For example, different polarization states are achieved for different detection beams, such as p-light, s-light, and circularly-polarized light.
  • the light source assembly may include multiple lasers, that is, each optical branch may not share a laser, that is, two lasers may be used to provide a detection beam for normal incidence and oblique incidence respectively. In this way, a beam splitter 6021 may be omitted.
  • the processor component can control the corresponding laser.
  • the beam splitter 6021 can be set so that the specified optical branch can receive the detection beam, thereby generating multiple non-overlapping multiples on the wafer. Detection spots.
  • the present invention proposes a corresponding signal collection component 103 structure.
  • each collection channel independent of each other, when it is necessary to collect normal and oblique incident light spots respectively in normal and illegal directions, multi-channel collection of signal light can be realized.
  • FIG. 7 is a schematic diagram of a signal collection component according to an embodiment of the present invention.
  • the detection spot S1 corresponds to the normal collection channel P11, the illegal collection channels P12 and P13; the detection spot S2 corresponds to the normal collection channel P21, and the illegal collection channels P22 and P23.
  • the signal collection component includes first to fifth detection branches, wherein the first detection branch includes a detector TC1 and a first detection lens group (not shown) to collect wafers in the illegal direction under the action of the detection spot S1.
  • the generated signal light; the third detection branch includes a detector TC3 and a third detection lens group pair (not shown) to collect the wafers on the normal collection channels P11 and P21 under the action of the detection spots S1 and S2.
  • the signal light generated; the fourth detection branch includes a detector TC4 and a fourth detection lens group (not shown) to collect the signal light generated by the wafer on the illegal collection channel P22 under the action of the detection spot S2;
  • the fifth detection branch includes a detector TC5 and a fifth detection lens group (not shown) to collect signal light generated by the wafer on the illegal collection channel P23 under the action of the detection spot S2.
  • the normal collection channels P21 and P22 of the detection spots S1 and S2 share a detector TC3, which can reduce the collection space of the signal light.
  • the scattered light of the two detection spots can be separated in space, and the signal light collected at different positions on the detector corresponds to the signal light emitted from different positions on the wafer. Therefore, by adjusting the position of the detector, light corresponding to a designated detection spot can be received, while signal light corresponding to another detection spot can hardly be collected.
  • a relatively strong portion of the light spot irradiated area can be obtained. For example, a line detector is used to make the detection area of the light spot to be linear.
  • FIG. 7b has only three detection branches for each incident method, in other embodiments, other numbers of detection branches may be set according to the defect characteristics of the wafer, where each detection branch corresponds to An angle of incidence different from the other detection branches.
  • FIGS. 8a, 8b, and 8c are schematic diagrams of detection light spot distributions according to the first, second, and third embodiments of the present invention, respectively.
  • a dotted line is taken as an example of a concentric circle in the figure. It can be understood that the dotted line corresponds to the center of the concentric circle.
  • the first detection area and the second detection area are adjacently arranged along the same circle on the same concentric circle.
  • the concentric circles shown by the dotted lines in the figure are the scanning of the center of the detection area for detecting the light spot relative to the wafer surface Track.
  • the two spots are adjacently distributed along the circumference on the same concentric circle, and both extend in the radial direction. It can be understood that, since the sizes of the detection spots S1 and S2 are greatly different from the size of the wafer, the two detection spots are distributed substantially in parallel.
  • the two inspection spots S1 and S2 are located at the outermost position of the wafer by the movement of the machine (as shown in the spot location of Fig. 8a). It can be understood that in this embodiment, the entire wafer is tested. If the area to be tested is part of the wafer, the detection spot needs to be moved to the outermost side of the area to be tested. Then, the machine drives the wafer to rotate, and the signal light scattered by the wafer is collected in the normal direction and the illegal direction at the same time by the signal collection component.
  • the machine After completing one revolution along the first concentric circle, the machine drives the wafer to move, so that the detection spot moves a distance d in the first radial direction (that is, the distance between the centers of adjacent concentric circles) for the next scan. And so on, until the detection along the Nth concentric circle is completed (at this time, the light spot is irradiated to the center of the wafer), thereby scanning the wafer, and obtaining two sets of detection information corresponding to the detection spots S1 and S2.
  • the moving distance d is greater than or equal to 60% of the length of the detection spot, and less than or equal to the length of the detection spot.
  • the detection spots S1, S2 are adjacently distributed along the same radial direction.
  • the detection spots are aligned collinearly in the radial direction, and the extending directions are the same.
  • the extending direction of the detection spot is perpendicular to the scanning direction, and the scanning trajectories are also arranged in concentric circles.
  • the machine drives the wafer to move, so that the detection spot moves a distance d in the first radial direction for the next revolution scan.
  • the scanning of the wafer is completed, and two sets of detection information corresponding to the detection spots S1 and S2 are obtained.
  • the first radial direction is the same as the arrangement direction of the first detection area and the second detection area.
  • the detection light spot S2 may be located outside the wafer, and the detection light spot S1 may be located at the outermost position of the wafer. In another embodiment, in the initial state of detection, the detection spot S2 is located at the outermost position of the wafer (ie, the spot position in FIG. 8b). It can be understood that when there are multiple detection light spots, the multiple detection light spots can still be distributed along the same radial direction.
  • the detection light spot S1 is adjacent to the detection light spot S2, so the scanning trajectories of the detection light spot S1 and the detection light spot S2 are similar, so that the detection light spot S1 and the detection light spot S2 can detect the entire area to be detected in a short scanning time. .
  • the scanning can also be performed by moving from the inner ring to the outer ring. It can be understood that the scanning path of the wafer may also be spiral, Z-shaped, S-shaped, rectangular, etc., which are not listed here one by one.
  • the detection spots S1 and S2 are distributed far away in the same radial direction.
  • the detection spots S1, S2 are aligned collinearly in the radial direction, and the extension directions are the same.
  • the extending direction of the detection spot is perpendicular to the scanning direction, and the scanning trajectories are also arranged in concentric circles.
  • the detection spot S2 may be located at the outermost concentric circle, and the detection spot S1 may be located at the center of the wafer (ie, the center of each concentric circle).
  • the machine drives the wafer to move, so that the detection spot moves a distance d in the first radial direction for the next revolution scan.
  • the detection along the Nth concentric circle is completed (at this time, the light spot is irradiated to the center of the wafer)
  • the scanning of the wafer is completed, and two sets of detection information corresponding to the detection spots S1 and S2 are obtained.
  • FIG. 8c Although the embodiment described in FIG. 8c is performed from the outer ring to the inner ring of the wafer, it can be understood that, in another embodiment, the scanning from the inner ring to the outer ring can also be adopted. It can be understood that the scanning path of the wafer may also be spiral, which is not listed here one by one.
  • the detection area of the detector is the portion with the strongest light intensity (line shape) in each detection spot. Therefore, the detection spots can also be partially provided that the detection areas do not overlap each other. Ground overlap or non-overlap.
  • the invention also proposes a detection method, which comprises: simultaneously generating a third detection spot and a fourth detection spot respectively corresponding to different incident angles based on the detection beam; and simultaneously detecting the object by using the third detection spot and the fourth detection spot. And collect signal light generated by the object under the action of the third detection spot and the fourth detection spot, and then generate third detection information and fourth detection information corresponding to the third detection spot and the fourth detection spot, respectively; Based on at least the third detection information and the fourth detection information, the defect characteristic information of the measured object is determined.
  • the step of detecting the test object includes: detecting the test object by causing a third detection light spot along a first detection track and a fourth detection light spot along a second detection track, wherein the third detection light spot includes a third detection area,
  • the signal collection component collects signal light generated under the action of the third detection area; the fourth detection spot includes the fourth detection area, and the signal collection component can also collect signal light produced under the action of the fourth detection area.
  • the first detection trajectory is a scanning trajectory of the center of the third detection area of the third detection spot relative to the surface of the measured object
  • the second detection trajectory is the scanning of the center of the fourth detection area of the fourth detection spot relative to the surface of the measured object Track.
  • the extension directions of the third detection area and the fourth detection area are perpendicular to the traveling directions of the first detection trajectory and the second detection trajectory, respectively.
  • the first detection trajectory includes a plurality of first concentric circles arranged in a radial direction
  • the second detection trajectory includes a plurality of second concentric circles arranged in a radial direction.
  • the difference between the radii of adjacent first concentric circles is greater than or equal to 60% of the length of the third detection spot, and is less than or equal to the length of the third detection spot. 60%, which is less than or equal to the length of the fourth detection spot.
  • the length of the third detection region in the radial direction is the same as the length of the fourth detection region in the radial direction.
  • the distance between the third detection area and the center of the fourth detection area is equal to the radius of the measured area minus half the size of the third detection area along the radial direction of the measured area.
  • the third detection area and the fourth detection area are distributed away from each other in the same radial direction.
  • the third detection area is located in the area to be measured, and the edge of the third detection area and the area to be measured The edges coincide; the center of the fourth detection area coincides with the center of the area to be measured.
  • the third detection area does not overlap with the fourth detection spot, and the fourth detection area does not overlap with the third detection spot; and / or the third detection spot and the fourth detection spot do not overlap with each other or partially overlapping.
  • the third detection spot may be adjacent to the fourth detection area, and / or the third detection area may be adjacent to the fourth detection spot; or the third detection spot may be adjacent to the fourth detection spot.
  • the third detection region and the fourth detection region are distributed along the circumference on the same concentric circle, and the two detection regions are adjacent; or, the third detection region and the fourth detection region are aligned in the same radial direction. Neighbor distribution.
  • the step of detecting the measured object includes: rotating the measured object around the center of the measured area; while rotating the measured object around the center of the measured area, making the measured object Relative to the third detection light spot and the fourth detection light spot, moving along the diameter direction of the area to be measured;
  • the step of detecting the measured object includes: rotating the measured object around the center of the measured area; and rotating the measured object around the center of the measured area, and then rotating the measured object relative to the third detection spot and the first detection spot.
  • the four detection spots are translated along the diameter of the area to be measured by a specific step; the above steps are repeated until the area to be measured is scanned by the third detection spot and the fourth detection spot.
  • the detection component generates a third detection spot and a fourth detection spot based on the detection beam, and under the control of the processor, the third detection spot and the fourth detection spot are used to detect the measured object according to the specified detection path, and
  • the signal collection component is used to collect the signal light generated by the object under the action of the third detection spot and the fourth detection spot, and then generate third detection information and a fourth detection spot corresponding to the third detection spot and the fourth detection spot.
  • Detection information and determining, by the processor component, defect characteristic information of the detected object based on at least two sets of detection information.
  • the detection method of the present invention is also applicable to spot light spots or surface light spots. Understandably, when a spot / area spot is used to detect a wafer, the shaping lens group needs to be adjusted to form a spot / area spot. In addition, when a spot / area spot is used, the detection path also needs to be adjusted. For example, a spot can be used to detect a wafer by a spiral method. Accordingly, the detection device includes a point detector and a surface detector.
  • the detection method of the present invention avoids switching detection light by generating two or more detection light spots at the same time, reduces implementation and saves wafer moving time, so that the algorithm for matching and aligning the two detection results is much simpler and can be significantly improved. Increase detection speed and accuracy.

Abstract

一种检测系统,能节约晶圆的移动时间,明显增加检测速度。检测系统包括:检测组件(102,202,602),其被配置为基于所接收到的检测光束来产生对应于不同入射角的至少两个检测光斑(S1,S2);信号收集组件(103),其被配置为收集被测物在至少两个检测光斑(S1,S2)的作用下而产生的信号光,进而产生至少两组检测信息;处理器组件(104),其被配置为基于至少两组检测信息来确定被测物上的缺陷特征信息。

Description

检测系统及方法 技术领域
本申请属于检测领域,尤其涉及一种检测系统及方法。
背景技术
晶圆缺陷检测是指检测晶圆中是否存在凹槽、颗粒、划痕等缺陷以及缺陷位置。晶圆缺陷检测应用十分广泛:一方面,作为芯片基底,晶圆上存在缺陷将可能导致上面制作的昂贵工艺失效,晶圆生产方常进行缺陷检测确保产品合格率,晶圆使用方也需要在使用前确定晶圆的干净程度能保证产品合格率;另一方面,由于半导体加工对加工过程中附加污染控制十分严格,而直接监测加工过程中附加污染难度较大,人们常通过晶圆裸片加工前后缺陷对比来判断该工艺附加污染程度。因此,人们进行了各种晶圆缺陷检测手段的探索。
目前常用晶圆缺陷检测方法的主要包括电子束检测和光学检测两大类。得益于电子波的极端波长,电子束检测能直接成像且分辨率可达到1至2纳米,然而它检测所需的时间较长且检测需要高真空环境,通常用来对少数关键电路环节抽样检查。光学检测是利用光与芯片相互作用实现检测的方法的总称,其基本原理是通过扫描检测入射光与缺陷散射光是否存在及其强度,判断缺陷有无及大小。
发明内容
本发明针对上述问题,提出一种能够实现对晶圆进行多入射角检测的系统与方法。
首先,本发明提出了一种检测系统,其包括:检测组件,其被配置为基于所接收到的检测光束产生对应于不同入射角的至少两个检测光斑;信号收集组件,其被配置为收集被测物在所述至少两个检测光斑的作用下而产生的信号光,进而产生至少两组检测信息;处理器组件,其被配置为基于所述至少两组检测信息来确定所述被测物上的缺陷特征信息。
本发明还提出了一种检测方法,其包括:基于所接收到的检测光束产 生对应于不同入射角的至少两个检测光斑;收集被测物在所述至少两个检测光斑的作用下而产生的信号光,进而产生至少两组检测信息;以及基于所述至少两组检测信息来确定所述被测物上的缺陷特征信息。
通过采用本发明的技术方案,节约了晶圆的移动时间,并且由于避免了重新移动到起点,减少了定位误差,从而使得两次检测结果匹配对准的算法简单许多,能明显增加检测速度。另外,通过使用本发明的技术方案,可以使用同一波长的光源来对不同颗粒进行检测。另外,通过使用两个检测光斑同时对晶圆检测,可以节约用于承载晶圆的机台的移动时间,并且两个光斑的探测轨迹相同,使得两次检测结果匹配对准的算法简单许多,能明显增加检测速度。另外,通过使用本发明的技术方案,可以使用同一波长的光源来对不同颗粒进行检测。
附图说明
参考附图示出并阐明实施例。这些附图用于阐明基本原理,从而仅仅示出了对于理解基本原理必要的方面。这些附图不是按比例的。在附图中,相同的附图标记表示相似的特征。
图1为依据本发明实施例的检测系统架构图;
图2为依据本发明实施例的检测系统的光学架构图;
图3a为依据本发明实施例的第一检测方法流程图;
图3a为依据本发明实施例的第二检测方法流程图;
图4为依据本发明实施例的检测路径示意图;
图5a为依据本发明实施例的信号收集组件架构图;
图5b为依据本发明实施例的类成像式收集原理示意图。
图6为依据本发明另一实施例的检测系统的光学架构图;
图7为依据本发明另一实施例的信号收集组件示意图;
图8a为依据本发明第一实施例的检测光斑分布示意图;
图8b为依据本发明第二实施例的检测光斑分布示意图;
图8c为依据本发明第三实施例的检测光斑分布示意图。
具体实施方式
在以下优选的实施例的具体描述中,将参考构成本申请一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本申请的特定的实施例。示例的实施例并不旨在穷尽根据本申请的所有实施例。可以理解,在不偏离本申请的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本申请的范围由所附的权利要求所限定。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
首先,对本申请所涉及到的术语进行阐述。检测光束是指由光源组件产生最后形成检测光斑的光束。入射角是指检测光束与被测物(比如,晶圆)表面法线方向的夹角。探测区域则是探测器接收到的信号光所对应的照明区域,譬如,检测光斑斑照射区域中光强相对较强的部分,该部分被探测器所接收,以对被测物进行分析。
发明人发现根据入射光角度(譬如,正入射还是斜入射,以及相应的斜入射角)、信号光收集角度范围(法向收集或非法向收集)。光散射法有多种实现方式,包括:(1)正入射照明法向收集(2)正入射照明非法向收集(3)斜入射照明法向收集(4)以及斜入射照明非法向收集四种。取决于入射光角度及缺陷类型,散射光将呈现不同的分布特点。
具体而言,对于晶圆上分布的凸起类缺陷(譬如,颗粒),当光正入射时,缺陷散射光比较平均地分布在法向和非法向收集信道;对于晶圆上分布的凹坑类缺陷,当光正入射时,缺陷散射光主要分布在法向收集信道,非法向收集信道所收集到缺陷散射光相对较弱。同理,对于晶圆上分布的颗粒缺陷,当光斜入射时,缺陷散射光主要分布在非法向收集信道;对于晶圆上分布的凹坑缺陷,当光斜入射时,非法向收集信道所收集到的缺陷散射光较弱。可以理解的,对于斜入射,当光入射角产生变化时,相应的散射光分布也会随之变化。
由上可知,对于凸起类缺陷,斜入射检测灵敏度更高;对于凹坑类缺陷,正入射具有更高的检测灵敏度。因此,基于检测方式以及相应的信号分布,可以进行缺陷类型分析。本发明通过分时入射的方式来实现正入射、斜入射的独立检测,进而节省检测时间。
下面以被测物为晶圆进行阐述,可以理解的,被测物还可以是芯片、 玻璃基板等类似的物体。
图1为依据本发明实施例的检测系统架构图。
检测系统包括光源组件101、检测组件102、信号收集组件103以及处理器组件104。
具体而言,光源组件101用来提供检测光束,譬如,通过一个或多个激光器来提供检测光束。
检测组件102用于基于所接收到的检测光束而产生对应于指定的入射角的检测光斑。譬如,检测组件102可以包括至少两个光学支路,当其中一个光学支路由处理器组件104指定而处于工作状态时,该光学支路将基于来自光源组件101的检测光束来产生检测光斑。因此,与检测光斑相对应的入射角由生成该检测光斑的光学支路而确定。可以理解的,虽然此处描述了检测组件102通过包括至少两个光学支路来实现对检测光斑入射角的设置,但是在其他实施方式中,检测组件102也能够以其他方式来实现对检测光斑入射角的设置,譬如,通过设置检测组件102自身的位置、或是,设置光学支路的状态等等,对此,无需一一列举。
在一种实施方式中,前述的至少两个光学支路可以分别对应于至少两个不同的入射角,如此,通过选择不同的光学支路,可以使得晶圆能够在不同的入射角下被检测。可以理解的,当晶圆处于被检测时(即,检测光斑照射到晶圆上),晶圆将在检测光斑的作用下产生(比如,通过散射或反射的方式)相应的信号光。当检测光斑照射到缺陷时,所产生的信号光将根据缺陷的类型或其它参数而变化。
检测组件102还包括用于承载晶圆的机台,并且该机台在处理器组件104的控制下移动,进而可以按照指定轨迹移动晶圆,调整晶圆与检测光斑的相对位置,实现扫描检测。
信号收集组件103用来线形地收集该信号光,并生成与入射角相关联的检测信息。具体而言,由于每个光学支路均具有不同于其他光学支路的入射角时,因此,每个光学支路均可以产生与入射角相关联的信号光。显然,每组检测信息均与相应的入射角相关联。
处理器组件104从信号收集组件103处获得检测信息,譬如,至少两组。然后,处理器组件104基于至少两组检测信息确定晶圆上缺陷特征信息,譬如,缺陷的类型、位置以及其它参数。在一种实施方式中,至少两 组检测信息中有一组信息对应于0°入射角(即,正入射)。如此,晶圆上的凸起类缺陷和凹坑类缺陷均可以被精确检测到。
下面以检测组件包括两个光学支路为例进行阐述,其中,第一光学支路的入射角基本上是0°,第二光学支路的入射角基本上是60°(即,斜入射)。可以理解的,此处的入射角的范围仅仅作为示例,用户可以根据晶圆上的缺陷特征来调整第一、第二光学支路所对应的入射角。
图2为依据本发明实施例的检测系统的光学架构图,在图2中,检测系统可以实现正入射和斜入射的检测方式。
激光器201生成检测光束,检测组件202接收该检测光束以生成对应于指定入射角的检测光斑。具体而言,处理器组件(未示出)通过切换器2021来确定哪个光学支路可以接收到该检测光束。因此,切换器2021可以在处理器组件的控制下将检测光束提供到指定的光学支路。可以理解的,切换器2021可以是反射镜或是其他能够切换检测光束的部件。
当以正入射的方式来检测晶圆时,切换器2021将检测光束提供到第一光学支路,即经由波片2022提供到整形镜组2023,再经由反射镜2024、2025到达晶圆表面,并且形成检测光斑。可以理解的,检测光斑的形状、长度由整形镜组2023来控制。譬如,整形镜组2023还可以将检测光斑调整为点光斑或是圆光斑。
当以斜入射的方式来检测晶圆时,切换器2021将检测光束提供到第二光学支路,即提供到反射镜2026,然后经由波片2027提供到整形镜组2028,再经由反射镜2029到达晶圆表面,并且形成检测光斑。可以理解的,以斜入射方式形成的检测光斑与以正入射的方式形成的检测光斑位置相同且长度一致。如此,以该两种入射方式形成的检测光斑可以共用信号收集通道。
波片2022、2027可以是四分之一或二分之一波片,其可以用来改变检测光束的偏振态。譬如,根据需求对不同的检测光束实现不同偏振态,如:p光、s光、圆偏振光等。
基于上述的架构,可以在不同的时间利用两种不同的入射角来检测晶圆。可以理解的,光源组件中可以包括多个激光器,即每个光学支路可以不共用激光器,即两个激光器各为正入射、斜入射提供检测光束,如此,可以省去切换器2021,而处理器组件则控制相应的激光器即可。
基于图2中的检测系统的架构,本发明提出了两种检测方法,结合图 3a、图3b以及图4对该两种检测方法进行阐述,其中,图3a、3b分别为依据本发明实施例的第一、第二检测方法流程图,图4为依据本发明实施例的检测路径示意图。在本实施例中,采用线形光斑来对晶圆进行检测。为了便于理解,图4中以虚线作为同心圆示例,可以理解的是,虚线对应于检测光斑探测区域的中心,以线形光斑扫描一圈,便可以完成对一个环形区域的扫描。另外,虽然下面是以检测整个晶圆进行阐述(即,待测区为圆形),本领域技术人员可以理解的是,待测区还可以是其他形状。
检测方法1:基于第一入射角,以第一检测路径完成检测晶圆,然后基于第二入射角,以第二检测路径完成检测晶圆。
在检测初始状态,通过机台的移动,使得检测光斑位于晶圆最外侧位置(如图4光斑位置所示)。可以理解的,本实施例是对整个晶圆进行检测,如果待测区域是晶圆的一部分,则需要将检测光斑移动至该待测区域的最外侧处。可以理解的,检测光斑包括探测区域,在本实施例中,探测区域为线形。
步骤S301a:基于第一入射角,根据第1至第N同心圆检测晶圆。
此处,第1至第N同心圆是沿第一径向(朝向晶圆的圆心)排列的多个同心圆,换句话说,第1同心圆可以对应于晶圆的最外侧,而第N同心圆则是对应于晶圆的最内侧。
在此步骤中,以第一入射角来检测晶圆。机台带动晶圆旋转,并通过信号收集组件(图2未示出)对晶圆散射出的信号光同时进行法向收集和非法向收集。在沿以第1同心圆转完一圈后,机台带动晶圆移动,使得检测光斑在第一径向上移动距离d(即,相邻同心圆的中心之间的距离)进行下一圈扫描。以此类推,直至沿第N同心圆的检测完成(此时,光斑照射至晶圆中心),从而完成对晶圆的扫描,获取与第一入射角相对应的第一组检测信息。在一种实施方式中,移动距离d大于等于检测光斑长度的60%,小于等于检测光斑的长度。具体的,d小于或等于探测区域的长度。如此,本实施例中,d等于探测区域的长度。d等于探测区域的长度可以提升扫描的效率,并且简化信号处理。
步骤S302a:在第二入射角下,根据第N至第1同心圆检测晶圆。
在此步骤中,以第二入射角来检测晶圆。同样,机台带动晶圆旋转,并通过信号收集组件对晶圆散射出的信号光同时进行法向收集和非法向收 集。以第N同心圆转完一圈后,机台带动晶圆移动,使得检测光斑在第二径向上(远离晶圆的圆心)移动距离d进行下一圈扫描,以此类推,直至对应于第1同心圆的检测完成(此时,检测光斑照射至晶圆最外侧位置),从而完成整片扫描,获取与第二入射角相对应的第二组检测信息。
检测方法2:每一同心圆以第一、第二入射角分别扫描两次,再进行下一同心圆扫描。
同样,在检测初始状态,机台带动晶圆使检测光斑(或,探测区域)移动至晶圆最外侧位置(如图4光斑位置所示)。以从晶圆的外圈向内圈检测为例。
步骤S301b:基于第一入射角,以第1同心圆检测晶圆。
在此步骤中,以第一入射角来检测晶圆。机台带动晶圆,使得检测光斑在晶圆上沿第1同心圆旋转,并通过信号收集组件对晶圆散射出的信号光同时进行法向收集和非法向收集。
步骤S302b:基于第二入射角,根据第1同心圆检测晶圆。
在此步骤中,以第二入射角来检测晶圆,机台带动晶圆,使得检测光斑在晶圆上沿第1同心圆旋转,并通过信号收集组件对晶圆散射出的信号光同时进行法向收集和非法向收集。
步骤S303b:基于第二入射角,沿第2同心圆检测晶圆。
机台带动晶圆移动,使得检测光斑在第一径向上(朝向晶圆的圆心)移动距离d进行下一圈扫描。此时以第二入射角来检测晶圆,机台带动晶圆,使得检测光斑在晶圆上沿第2同心圆旋转。
步骤S304b:基于第一入射角,根据第2同心圆检测晶圆
在此步骤中,以第一入射角来检测晶圆,机台带动晶圆,使得检测光斑在晶圆上沿第2同心圆旋转。
以此类推,直至对第N同心圆完成两个入射角的检测,进而实现对整个晶圆的检测(步骤S305b)。
由上可知,检测方法2中,与第一入射角对应的第一检测路径和与第二入射角对应的第二检测路径均包括沿第一径向排列的多个同心圆,并且以同心圆为单位,依次以第一入射角、第二入射角来根据当前的同心圆对晶圆进行检测。在一种实施方式中,不同的入射角对应于相同的旋转方向,如此可以简化控制,降低对两次所获得的数据进行处理的复杂度。
因此,通过检测方法1或2均可以得到分别对应于两种入射方式的两组检测信息,处理器组件通过该两组检测信息,可以确定晶圆上的缺陷类型以及缺陷的分布。
虽然上述实施例是从晶圆的外圈向内圈进行检测,可以理解的,在另一实施方式中,也可以采用从内圈向外圈移动扫描,此时,第一径向为远离圆心的方向。另外,本领域技术人员能够理解的时,检测路径还可以是螺旋线、Z形、S形、矩形等,在此不进行赘述。
如前述,当检测光斑投射到晶圆表面时,晶圆将在检测光斑的作用下产生相应的信号光。对应于不同的缺陷,信号光的分布也有所不同。对于凸起类缺陷,斜入射检灵敏度更高;对于凹坑类缺陷,正入射具有更高的检测灵敏度。
因此,对信号光进行多通道收集,更加利于准确地确定晶圆上的缺陷。针对信号光的多通道收集,本发明提出了一种信号收集组件的架构。如前述,由于本发明中由正入射方式和斜入射方式形成的检测光斑重合,因此,可以共用信号收集通道。
图5a为依据本发明实施例的信号收集组件架构图。
信号收集组件包括对应于多个收集通道的探测支路501-503。具体而言,探测支路501为对应于检测光斑的法向收集通道,探测支路502为对应于检测光斑的第一非法向收集通道,探测支路503为对应于检测光斑的第二非法向收集通道。
为了收集尽可能多的信号光,每个探测支路还设置有探测透镜组(未示出),以将收集到的信号光成像式地投射到线探测器的指定位置处。譬如,对于非法向收集通道,每个探测支路均包括一个线探测器,以用来收集晶圆在检测光斑的作用下所产生的非法向的散射光。如此,通过探测透镜组以及线探测器,可以获取光斑照射区域中光强相对较强的部分,即,线形的探测区域。
图5b为依据本发明实施例的类成像式收集原理示意图。
如图所示,检测光束照射到晶圆表面进而形成检测光斑,当位置A处存在缺陷时,缺陷在检测光斑的作用下所产生的散射光向晶圆上方各个方向传播。在本实施例中,在法向方向、非法向方向设置多个收集通道,每个收集通道收集以一个散射角为中心空间分布于附近角度的散射光。
如图5b所示,位置A处的缺陷在特定角度范围内发出散射光经由探测透镜组51投射到探测器TCa的指定位置处;同样,当位置B处存在缺陷时,缺陷在检测光斑B的作用下所产生的散射光经由探测透镜组52投射到探测器TCb的指定位置处。位置A处缺陷的散射光经由探测透镜组52将投射到探测器TCb旁边位置,类似,位置B处缺陷的散射光经由探测透镜组51将投射到探测器TCa旁边位置。因此探测器TCa与TCb分别独立收集A、B位置缺陷产生的散射光,互不干扰。
通过以上配置,信号收集组件可以对检测光斑的散射光进行多角度地收集,进而产生与信号光相对应的检测信息。当信号收集组件将检测信息发送到处理器组件后,该处理器组件便能够确定晶圆上缺陷的类型与分布。
可以理解的,虽然图5中仅仅示出了3个探测支路,但在其他实施方式中,还可以根据晶圆的缺陷特征来设置其它数目的探测支路,其中,每个探测支路对应于一个与其他探测支路不同的入射角。
本发明还提出了一种检测方法,包括:产生具有第一入射角的第一检测光束,从而在被测物表面形成第一检测光斑,该第一检测光斑包括第一探测区域;通过第一检测光束对被测物的待测区进行扫描,并对待测区进行检测,进而获取第一检测光束经被测物作用后产生的第一检测信息;产生具有第二入射角的第二检测光束,第二检测光束在被测物的待测区表面形成第二检测光斑,该第二检测光斑包括第二探测区域并且第二探测区域中心与第一探测区域中心位置相同。当第一扫描完成后,以第一扫描的终点为起点,通过第二检测光束对被测物的待测区进行第二扫描,以获取第二检测信息;根据第一检测信息和第二检测信息获取被测物的缺陷特征信息。可以理解的,第二扫描还可以包括沿第一扫描的路径返回。
在一种实施方式中,第一检测光斑和第二检测光斑的尺寸相同。第一检测光斑和第二检测光斑为线光斑,且均沿待测区的半径方向延伸。
在一种实施方式中,第一探测区域为线形、第二探测区域为线形,第一探测区域中心与第一检测光斑中心重合;第二探测区域中心与第二检测光斑中心重合;第一探测区域长度小于第一检测光斑长度,第二探测区域长度小于第二检测光斑长度。
在一种实施方式中,当第一检测光斑和第二检测光斑为线光斑时,第一检测光斑的延伸方向与第一检测过程中第一扫描的方向之间的夹角大于 零,第二检测光斑的延伸方向与第二检测过程中第二扫描的方向之间的夹角大于零。可以理解的是,当检测光斑与扫描的方向相互垂直时,检测范围最大。
当待测区为圆形时,可以使用同心圆、螺旋线或是其他扫描路径来对被测物进行扫描。
具体而言,当扫描轨迹为同心圆时,可以通过设置第一、第二扫描的扫描路径来实现对被测物的检测。
(1)根据同心圆的排列顺序,每个同心圆进行两次扫描。
第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区表面的轴进行第一旋转。第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第二旋转。如此,可以对同一个同心圆进行不同角度的扫描。在一种实施方式中,第一旋转和第二旋转的方向相同,从而简化了控制,降低了对两次所获得的数据进行处理的复杂度。
当第二旋转完成之后,使被测物相对于第一检测光斑的位置沿待测区直径方向平移特定步长(到达另一个同心圆)。然后,重复第一扫描、第二扫描和/或平移的步骤,直至待测区均被第一检测光斑和第二检测光斑检测。在一种实施方式中,在沿平移的方向上,第一探测区域和第二探测区域的长度相等,且等于该特定步长。
(2)使用第一检测光束对待测区扫描完成后,再以相反的路径使用第二检测光束对待测区进行扫描。
第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第一旋转,并进行第一检测;第一旋转之后,使被测物沿待测区的第一直径方向进行第一平移;重复所述第一旋转和第一检测和/或第一平移的步骤直至被测区均被第一检测光斑检测。第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第二旋转,并进行第二检测;第二旋转之后,使被测物沿待测区直径方向进行第二平移,第二平移的方向与第一平移的方向相反;重复第一旋转和第一检测和/或第一平移的步骤直至所述被测区均被检测。在一种实施方式中,第一旋转与第二旋转的方向相同。
在一种实施方式中,第一探测区域和第二探测区域沿待测区半径方向的尺寸相同,第一平移的步长与第二平移的步长相等。在一种实施方式中, 在沿第一平移的方向上,第一探测区域的尺寸等于第一平移的步长,第二探测区域的尺寸等于第二平移的步长。
如前述,被测物的待测区还可以是圆形,扫描轨迹可以是螺旋线。
具体而言,第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第三旋转;并在第一旋转的过程中,使检测光斑相对于第一检测光斑沿待测区直径方向进行第三平移。第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第四旋转;并在第二旋转的过程中,使检测光斑相对于第二检测光斑沿待测区直径方向进行第四平移。在一种实施方式中,第三旋转的方向与第四旋转的方向相反,从而使得两次素描的区域相同,能够对扫描区域进行精确分析。
由上可知,相较于传统的检测方法(即,检测完一遍回到起点再次检测),本发明的检测方法节约了晶圆的移动时间,并且由于避免了重新移动到起点,减少了定位误差,从而使得两次检测结果匹配对准的算法简单许多,能明显增加检测速度。
另外,由于不同颗粒色散作用强度不同,因此,通过使用本发明的技术方案,可以基于同一个光源来实现多角度检测。换而言之,可以使用同一波长的光源来对不同颗粒进行检测。
虽然上述实施例利用线光斑进行检测,但本发明的检测方法也同样适用于点光斑或面光斑检测方法。可以理解的,当使用点/面光斑来检测晶圆时,需要对整形镜组进行调整,以形成点/面光斑。譬如,可以通过螺旋线方式来使用点光斑来对晶圆进行检测,即先以螺旋线进行检测,检测完成后,在螺旋线的末端再反向进行检测。本领域技术人员可以理解的是,螺旋线指的是扫描轨迹。
本发明还提出了一种利用多光斑测量的检测系统。
仍然参照图1,检测系统包括光源组件101、检测组件102、信号收集组件103以及处理器组件104,其中,光源组件101通过光生成器(譬如一个或多个激光器)来提供检测光束。
检测组件102用于基于所接收到的检测光束而产生对应于不同入射角的两个检测光斑。可以理解的,该两个检测光斑在被测物上彼此分开,即,该两个检测光斑之间不存在重合区域。检测组件102包括可以同时工作的两个光学支路,该两个光学支路可以在处理器组件104的控制下进行工作, 进而基于来自光源组件101的检测光束而产生上述两个检测光斑。可以理解的,虽然此处描述了检测组件102通过两个光学支路来实现同时产生两个检测光斑,但是在其他实施方式中,检测组件102也可以包括其他数目的光学支路,进而能够产生相应数目的检测光斑。
当晶圆处于被检测时(即,检测光斑照射到晶圆上),晶圆将在检测光斑的作用下产生(比如,通过散射或反射的方式)相应的信号光。可以理解的,当检测光斑照射到缺陷时,所产生的信号光将根据缺陷的类型或其它参数而变化。
信号收集组件103包括对应于多个散射光的收集通道的探测支路,能够以不同的角度来收集由两个检测光斑所产生的信号光,进而产生与入射角相对应的两组检测信息。
处理器组件104从信号收集组件103处获得该两组检测信息,进而确定晶圆上缺陷特征信息。
本领域技术人员可以理解的是,根据晶圆上的缺陷类型能够确定检测组件102中的光学支路的入射角。换而言之,若在检测前能够知晓晶圆至少包括凹坑类和凸起类缺陷,则两个光学支路中包括一个正入射光学支路(即,入射角基本上是0°)。
下面以检测组件包括两个光学支路为例进行阐述,其中,第一光学支路的入射角基本上是0°,第二光学支路的入射角基本上是60°(即,斜入射)。可以理解的,此处的入射角的值仅仅作为示例,用户可以根据晶圆上的缺陷特征来调整第一、第二光学支路所对应的入射角。
图6为依据本发明实施例的检测系统的光学架构图,在该光学架构图中,检测系统可以同时实现正入射和斜入射的检测方式。
如图所示,激光器601生成检测光束,检测组件602中的分束器6021对所接收到的检测光束进行分束,并使得分束后的检测光束分别入射到第一光学支路和第二光学支路。
对于正入射的方式,分束器6021将分束后的检测光束提供到第一光学支路以形成检测光斑S1。具体而言,检测光束经由波片6022被提供到整形镜组6023,再经由反射镜6024、6025到达晶圆表面,形成检测光斑S1。可以理解的,检测光斑S1的形状、长度可以由整形镜组6023来控制。譬如,整形镜组6023还可以将检测光斑S1调整为点光斑或是圆光斑。
对于斜入射的方式,分束器6021将检测光束提供到第二光学支路以形成检测光斑S2。具体而言,检测光束被提供到反射镜6026,然后经由波片6027提供到整形镜组6028,再经由反射镜6029到达晶圆表面,并且形成检测光斑S2。可以理解的,为了能够分别收集与检测光斑S1、S2相对应的信号光,需要用不同的信号收集通道来进行收集。
在本实施例中,波片6022、6027可以是四分之一或二分之一波片,其可以用来改变检测光束的偏振态。譬如,根据需求对不同的检测光束实现不同偏振态,如:p光、s光、圆偏振光等。
基于上述的架构,可以在同时通过两种不同的入射角来检测晶圆。可以理解的,光源组件中可以包括多个激光器,即每个光学支路可以不共用激光器,即可以利用两个激光器分别为正入射、斜入射提供检测光束,如此,可以省去分束器6021,处理器组件控制相应的激光器即可。
可以理解的,当检测组件602包括更多的光学支路时,可以对分束器6021进行设置,以使得指定的光学支路能够接收到检测光束,进而在晶圆上产生相互不重叠的多个检测光斑。
针对同时使用两个检测光斑来检测晶圆,本发明提出了相应的信号收集组件103的结构。
通过使得各个收集通道相互独立,当需要对正入射、斜入射光斑分别进行法向及非法向收集时,可以实现对信号光的多通道收集。
下面对本发明的信号光收集光路进行阐述,图7为依据本发明实施例的信号收集组件示意图。
如图7所示,对于检测光斑S1、S2,均设置有法向收集通道及非法向收集通道。具体而言,检测光斑S1对应于法向收集通道P11、非法向收集通道P12和P13;检测光斑S2对应于法向收集通道P21、非法向收集通道P22和P23。
信号收集组件包括第一至第五探测支路,其中,第一探测支路包括探测器TC1和第一探测透镜组(未示出),以收集晶圆在检测光斑S1的作用下在非法向收集通道P12上所产生的信号光;第二探测支路包括探测器TC2和第二探测透镜组(未示出),以收集晶圆在检测光斑S1的作用下在非法向收集通道P13上所产生的信号光;第三探测支路包括探测器TC3和第三探测透镜组对(未示出),以收集晶圆在检测光斑S1、S2的作用下在法向 收集通道P11、P21上所产生的信号光;第四探测支路包括探测器TC4和第四探测透镜组(未示出),以收集晶圆在检测光斑S2的作用下在非法向收集通道P22上所产生的信号光;第五探测支路包括探测器TC5和第五探测透镜组(未示出),以收集晶圆在检测光斑S2的作用下在非法向收集通道P23上所产生的信号光。检测光斑S1、S2的法向收集通道P21、P22共用一个探测器TC3,可以减小信号光的收集空间。
由于收集光路的成像式设计,两个检测光斑的散射光在空间上能够分开,并且探测器上不同位置处所收集的信号光对应于晶圆上不同位置发出的信号光。因此,通过调整探测器位置,可以接收到对应于指定的检测光斑的光,而基本收集不到对应于另一个检测光斑的信号光。另外,通过探测透镜组以及探测器,可以获取光斑照射区域中光强相对较强的部分,譬如通过线探测器来使得检测光斑的探测区域为线形。
虽然图7b中针对每种入射方式仅仅具有三个探测支路,但在其他实施方式中,还可以根据晶圆的缺陷特征来设置其它数目的探测支路,其中,每个探测支路对应于一个与其他探测支路不同的入射角。
图8a、8b、8c分别为依据本发明第一、第二、第三实施例的检测光斑分布示意图。为了便于理解,图中以虚线作为同心圆示例,可以理解的是,虚线对应于同心圆的中心。
请参阅图8a,第一探测区域和第二探测区域在同一个同心圆上沿圆周相邻分布,图中虚线所示出的同心圆为检测光斑的探测区域的中心相对于晶圆表面的扫描轨迹。
当检测光斑S1、S2为线光斑时,该两个光斑在同一个同心圆上沿圆周相邻分布,并且均沿径向延伸。可以理解的,由于检测光斑S1、S2的尺寸相较于晶圆的尺寸相差很大,因此,该两个检测光斑为基本上平行的分布。
在检测初始状态,通过机台的移动,使得两个检测光斑S1、S2位于晶圆最外侧位置(如图8a光斑位置所示)。可以理解的,本实施例是对整个晶圆进行检测,如果待测区域是晶圆的一部分,则需要将检测光斑移动至该待测区域的最外侧处。然后,机台带动晶圆旋转,并通过信号收集组件对晶圆散射出的信号光同时进行法向收集和非法向收集。在沿第1同心圆转完一圈后,机台带动晶圆移动,使得检测光斑在第一径向上移动距离d(即相邻的同心圆的中心之间的距离)进行下一圈扫描。以此类推,直至 沿第N同心圆的检测完成(此时,光斑照射至晶圆中心),从而完成对晶圆的扫描,获取与检测光斑S1、S2相对应的两组检测信息。在一种实施方式中,移动距离d大于等于检测光斑长度的60%,小于等于检测光斑的长度。
请参阅图8b,检测光斑S1、S2沿同一径向相邻分布。
在此实施例中,检测光斑沿径向共线排列,延伸方向相同。此时,检测光斑的延伸方向与扫描方向相垂直,扫描轨迹同样为同心圆排列。类似的,在沿第1同心圆转完一圈后,机台带动晶圆移动,使得检测光斑在第一径向上移动距离d进行下一圈扫描。以此类推,直至沿第N同心圆的检测完成(此时,光斑照射至晶圆中心),从而完成对晶圆的扫描,获取与检测光斑S1、S2相对应的两组检测信息。
在一种实施方式中,第一径向与第一探测区域和第二探测区域的排列方向相同。
在检测初始状态,检测光斑S2可以位于晶圆外,检测光斑S1位于晶圆最外侧位置。在另一实施方式中,在检测初始状态,检测光斑S2位于晶圆最外侧位置(即,图8b中光斑位置)。可以理解的,当存在多个检测光斑时,该多个检测光斑仍可以沿同一径向相邻分布。
检测光斑S1与检测光斑S2相邻,则检测光斑S1和检测光斑S2的扫描轨迹相近,从而能够在较短的扫描时间内,使检测光斑S1和检测光斑S2均能对整个待检测区进行检测。
虽然上述实施例是从晶圆的外圈向内圈进行检测,可以理解的,在另一实施方式中,也可以采用从内圈向外圈移动扫描。可以理解的是,晶圆的扫描路径还可以是螺旋线形、Z形、S形、矩形等,在此不一一列举。
请参阅图8c,检测光斑S1、S2在同一径向上远离分布。
在此实施例中,检测光斑S1、S2沿径向共线排列,延伸方向相同。此时,检测光斑的延伸方向与扫描方向相垂直,扫描轨迹同样为同心圆排列。在检测初始状态,检测光斑S2可以位于最外侧的同心圆,检测光斑S1位于晶圆的中心(即,各同心圆的圆心)。
类似的,在沿第1同心圆转完一圈后,机台带动晶圆移动,使得检测光斑在第一径向上移动距离d进行下一圈扫描。以此类推,直至沿第N同心圆的检测完成(此时,光斑照射至晶圆中心),从而完成对晶圆的扫描,获取与检测光斑S1、S2相对应的两组检测信息。
虽然图8c所述的实施例是从晶圆的外圈向内圈进行检测,可以理解的,在另一实施方式中,也可以采用从内圈向外圈移动扫描。可以理解的是,晶圆的扫描路径还可以是螺旋线形,在此不一一列举。
另外,当上述探测器为线探测器时,探测器的探测区域为每个检测光斑中光强最强的部分(线形),因此,在探测区域相互不重叠的情况下,检测光斑也可以部分地重叠或是不重叠。
本发明还提出了一种检测方法,包括:基于检测光束,同时产生分别对应于不同入射角的第三检测光斑和第四检测光斑;同时利用第三检测光斑和第四检测光斑检测被测物,并收集被测物在第三检测光斑和第四检测光斑的作用下而产生的信号光,进而产生与第三检测光斑和第四检测光斑分别对应的第三检测信息和第四检测信息;至少基于所述第三检测信息和第四检测信息,确定被测物的缺陷特征信息。
检测被测物的步骤包括:使第三检测光斑沿第一探测轨迹、并使第四检测光斑沿第二探测轨迹来对被测物进行检测,其中,第三检测光斑包括第三探测区域,信号收集组件收集第三探测区域作用下产生的信号光;第四检测光斑包括第四探测区域,信号收集组件还可以收集第四探测区域作用下产生的信号光。第一探测轨迹为第三检测光斑的第三探测区域的中心相对于被测物表面的扫描轨迹,第二探测轨迹为第四检测光斑的第四探测区域的中心相对于被测物表面的扫描轨迹。
在一种实施方式中,第三探测区域和第四探测区域的延伸方向分别垂直于第一探测轨迹和第二探测轨迹的行进方向。
在一种实施方式中,第一探测轨迹包括在径向上排列的多个第一同心圆,第二探测轨迹包括在径向上排列的多个第二同心圆。相邻的第一同心圆的半径之差大于等于第三检测光斑长度的60%,小于等于第三检测光斑的长度,并且相邻的第二同心圆的半径之差大于等于第四检测光斑长度的60%,小于等于第四检测光斑的长度。
在一种实施方式中,第三探测区域在径向上的长度与第四探测区域在径向上的长度相同。
当被测物的待测区为圆形时,第三探测区域与第四探测区域中心之间的距离等于待测区半径减去第三探测区域沿待测区半径方向尺寸的一半。在一种实施方式中,第三探测区域和第四探测区域沿同一径向远离分布, 其中,在检测初始状态,第三探测区域位于待测区中,且第三探测区域边缘与待测区边缘重合;第四探测区域中心与待测区圆心重合。
在一种实施方式中,第三探测区域与第四检测光斑不重叠,且第四探测区域与第三检测光斑不重叠;和/或第三检测光斑和第四检测光斑相互不重叠或部分地重叠。
对于检测光斑的位置,第三检测光斑可以与第四探测区域相邻,和/或,第三探测区域与第四检测光斑相邻;或者第三检测光斑与第四检测光斑相邻。在另一实施方式中,第三探测区域和第四探测区域在同一个同心圆上沿圆周分布,且两个探测区域相邻;或者,第三探测区域和第四探测区域沿同一径向相邻分布。
对于被测物的待测区为圆形的情形,检测被测物的步骤包括:使被测物绕待测区圆心旋转;使被测物绕待测区圆心旋转的同时,使被测物相对于第三检测光斑和第四检测光斑沿待测区直径方向移动;
在另一实施方式中,检测被测物的步骤包括:使被测物绕待测区圆心旋转;使被测物绕待测区圆心旋转之后,使被测物相对于第三检测光斑和第四检测光斑沿待测区直径方向平移特定步长;重复上述步骤直至待测区均被第三检测光斑和第四检测光斑扫描。
针对上述方法,通过检测组件基于检测光束产生第三检测光斑和第四检测光斑,在处理器的控制下,利用第三检测光斑和第四检测光斑根据指定的检测路径来检测被测物,并且通过信号收集组件来收集被测物在第三检测光斑和第四检测光斑的作用下而产生的信号光,进而生成与第三检测光斑和第四检测光斑相对应的第三检测信息和第四检测信息;以及通过处理器组件基于至少两组检测信息,确定被测物的缺陷特征信息。
虽然上述实施例利用线光斑进行检测,但本发明的检测方法也同样适用于点光斑或面光斑。可以理解的,当使用点/面光斑来检测晶圆时,需要对整形镜组进行调整,以形成点/面光斑。另外,使用点/面光斑时,检测路径也需要进行调整,譬如,可以通过螺旋线方式来使用点光斑来对晶圆进行检测。相应的,探测装置包括点探测器和面探测器。
本发明的检测方法通过同时产生两个或更多个检测光斑,避免了切换检测光,减少了实施节约了晶圆的移动时间,从而使得两次检测结果匹配对准的算法简单许多,能明显增加检测速度和精度。
因此,虽然参照特定的示例来描述了本发明,其中,这些特定的示例仅仅旨在是示例性的,而不是对本发明进行限制,但对于本领域普通技术人员来说显而易见的是,在不脱离本发明的精神和保护范围的基础上,可以对所公开的实施例进行改变、增加或者删除。

Claims (43)

  1. 一种检测系统,其特征在于,包括:
    检测组件,其被配置为基于所接收到的检测光束产生对应于不同入射角的至少两个检测光斑;
    信号收集组件,其被配置为收集被测物在所述至少两个检测光斑的作用下而产生的信号光,进而产生至少两组检测信息;
    处理器组件,其被配置为基于所述至少两组检测信息来确定所述被测物上的缺陷特征信息。
  2. 如权利要求1所述的检测系统,其特征在于,
    所述处理器组件还被配置为使得所述检测组件基于所接收到的检测光束以第一入射角与第二入射角依次生成所述检测光斑,并至少基于对应于所述第一、第二入射角的第一、第二检测信息来确定所述被测物上的缺陷特征信息,其中,
    所述第一处理器组件还被配置为使得所述检测组件进行如下操作:
    基于所述第一入射角,以第一检测路径对所述被测物进行检测;以及
    基于所述第二入射角,以与所述第一检测路径相对应的第二检测路径来对所述被测物进行检测;
  3. 如权利要求1所述的检测系统,其特征在于,
    所述检测组件还被配置为来产生对应于第一入射角的第一检测光斑与对应于第二入射角的第二检测光斑;
    所述信号收集组件还被配置为同时收集被测物在所述第一检测光斑与所述第二检测光斑的作用下而产生的信号光,进而生成分别与所述第一检测光斑和所述第二检测光斑相对应的第三检测信息和第四检测信息;以及
    所述处理器组件还被配置为至少基于所述第三检测信息和第四检测信息来确定所述被测物上的缺陷特征信息。
  4. 如权利要求2所述的检测系统,其特征在于,
    所述第一检测路径包括沿第一径向排列的多个同心圆,所述第二检测路径包括沿与所述第一径向相反的第二径向排列的多个同心圆;或者
    所述第一检测路径和所述第二检测路径均包括沿第一径向排列的多个同心圆,其中,当依据相同的同心圆进行检测时,在所述相同的同心圆上进行对应于不同入射角检测光斑之间的切换。
  5. 如权利要求3所述的检测系统,其特征在于,所述同心圆为于所述检测光斑对应的探测区域的中心的扫描轨迹,其中,所述探测区域沿所述同心圆的径向延伸。
  6. 如权利要求4所述的检测系统,其特征在于,所述相邻的所述同心圆半径之差等于或小于所述探测区域的长度。
  7. 如权利要求2所述的检测系统,其特征在于,所述第一检测组件包括:
    第一光学支路,其被配置为基于所接收到的检测光束以所述第一入射角来产生所述检测光斑;
    第二光学支路,其被配置为基于所接收到的检测光束以所述第二入射角来产生所述检测光斑,其中,所述第二入射角不同于所述第一入射角;切换器,其被配置为将所述检测光束提供到所述第一光学支路或所述第二光学支路。
  8. 如权利要求3所述的检测系统,其特征在于,所述第二处理器组件还被配置为:
    使得所述检测组件以根据第一探测轨迹和第二探测轨迹来对所述被测物进行检测,
    所述第一检测光斑包括第一探测区域,所述信号收集组件用于收集第一探测区域作用下产生的信号光;所述第二检测光斑包括第二探测区域,所述信号收集组件用于收集第二探测区域作用下产生的信号光;
    其中,所述第一探测轨迹为所述第一探测区域的中心相对于所述被测物表面的扫描轨迹,所述第二探测轨迹为所述第二探测区域的中心相对于 所述被测物表面的扫描轨迹。
  9. 如权利要求8所述的检测系统,其特征在于,所述第一探测轨迹包括在径向上排列的多个第一同心圆,所述第二探测轨迹包括在径向上排列的多个第二同心圆。
  10. 如权利要求9所述的检测系统,其特征在于,
    相邻的所述第一同心圆的半径之差大于等于所述第一检测光斑长度的60%,小于等于所述第一检测光斑的长度,并且
    相邻的所述第二同心圆的半径之差大于等于所述第二检测光斑长度的60%,小于等于所述第一检测光斑的长度。
  11. 如权利要求8所述的检测方法,其特征在于,
    所述第一探测区域与所述第二检测光斑不重叠,且所述第二探测区域与所述第一检测光斑不重叠;和/或
    所述第一检测光斑和所述第二检测光斑相互不重叠或部分地重叠。
  12. 如权利要求11所述的检测系统,其特征在于,
    所述第一探测区域和所述第二探测区域在同一个所述同心圆上沿圆周相邻分布;
    或者,所述第一探测区域和所述第二探测区域沿同一径向相邻分布。
  13. 如权利要9所述的检测系统,其特征在于,所述被测物的待测区为圆形;
    所述第一探测区域与所述第二探测区域中心之间的距离等于待测区半径减去第一探测区域在待测区半径方向上尺寸的一半。
  14. 如权利要求9所述的检测系统,其特征在于,所述第二信号收集组件包括:
    分别对应于至少两个收集通道的至少两个探测支路,其中,每个所述探测支路包括探测透镜组,以将所收集到的信号光成像式地投射到探测器。
  15. 如权利要求14所述的检测系统,其特征在于,所述至少两个探测支路包括对应于法向收集通道的法向探测支路,其中,所述法向探测支路包括:
    探测透镜组,其被配置为接收与所述第一检测光斑和所述第二检测光斑相对应的信号光;
    探测器,其被配置为通过所述探测透镜组来接收与所述第一检测光斑和所述第二检测光斑相对应的信号光。
  16. 一种检测方法,其特征在于,包括:
    基于所接收到的检测光束产生对应于不同入射角的至少两个检测光斑;
    收集被测物在所述至少两个检测光斑的作用下而产生的信号光,进而产生至少两组检测信息;以及
    基于所述至少两组检测信息来确定所述被测物上的缺陷特征信息。
  17. 如权利要求16所述的检测方法,其特征在于,还包括:
    产生第一检测光束,所述第一检测光束具有第一入射角,所述第一检测光束在所述被测物表面形成第一检测光斑,所述第一检测光斑包括第一探测区域;
    通过所述第一检测光束对所述被测物的待测区进行第一扫描,并对待测区进行第一检测,获取第一检测光束经所述被测物作用后产生的第一检测信息;
    产生第二检测光束,所述第二检测光束具有第二入射角,所述第二入射角与第一入射角不相同,所述第二检测光束在所述被测物的待测区表面形成第二检测光斑,所述第二检测光斑包括第二探测区域,所述第二探测区域中心与第一探测区域中心位置相同;
    其中,所述第一扫描之后,以所述第一扫描的终点为起点,通过所述第二检测光束对被测物的待测区进行第二扫描,并对待测区进行第二检测,获取第二检测信息;
    根据所述第一检测信息和所述第二检测信息获取所述被测物的缺陷特 征信息。
  18. 如权利要求16所述的检测方法,其特征在于,还包括:
    基于检测光束,同时产生分别对应于不同入射角的第三检测光斑和第四检测光斑;
    同时利用所述第三检测光斑和第四检测光斑检测所述被测物,并收集所述被测物在所述第三检测光斑和第四检测光斑的作用下而产生的信号光,进而产生与所述第三检测光斑和第四检测光斑分别对应的第三检测信息和第四检测信息;
    至少基于所述第三检测信息和第四检测信息,确定所述被测物的缺陷特征信息。
  19. 如权利要求17所述的检测方法,其特征在于,被测物的待测区为圆形;
    所述第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区表面的轴进行第一旋转;
    所述第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第二旋转。
  20. 如权利要求19所述的检测方法,其特征在于,还包括:所述第二旋转之后,使所述被测物相对于所述第一光斑的位置沿待测区直径方向平移特定步长;
    重复所述第一扫描、第二扫描和/或平移的步骤,直至所述待测区均被所述第一检测光斑和所述第二检测光斑检测。
  21. 如权利要求20所述的检测方法,其特征在于,在沿所述平移的方向上,所述第一探测区域和第二探测区域的长度相等,且等于所述特定步长。
  22. 如权利要求19所述的检测方法,其特征在于,所述第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第一旋转,并 进行所述第一检测;所述第一旋转之后,使所述被测物沿所述待测区的第一直径方向进行第一平移;重复所述第一旋转和第一检测和/或第一平移的步骤直至所述被测区均被所述第一检测光斑检测;
    所述第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第二旋转,并进行所述第二检测;所述第二旋转之后,使所述被测物沿所述待测区直径方向进行第二平移,所述第二平移的方向与第一平移的方向相反;重复所述第二旋转和第二检测和/或第二平移的步骤直至所述被测区均被所述第二检测光斑检测。
  23. 如权利要求19或22所述的检测方法,其特征在于,所述第一旋转与第二旋转的方向相同。
  24. 如权利要求22所述的检测方法,其特征在于,所述第一探测区域和第二探测区域沿所述待测区半径方向的尺寸相同,所述第一平移的步长与第二平移的步长相等。
  25. 如权利要求19或24所述的检测方法,其特征在于,在沿所述第一平移的方向上,所述第一探测区域的尺寸等于第一平移的步长,所述第二探测区域的尺寸等于第二平移的步长。
  26. 如权利要求17所述的检测方法,其特征在于,被测物的待测区为圆形;
    所述第一扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第三旋转;并在所述第一旋转的过程中,使所述检测光斑相对于所述第一检测光斑沿待测区直径方向进行第三平移;
    所述第二扫描的步骤包括:使被测物绕过待测区圆心且垂直于待测区的轴进行第四旋转;并在所述第二旋转的过程中,使所述检测光斑相对于所述第二检测光斑沿待测区直径方向进行第四平移。
  27. 如权利要求26所述的检测方法,其特征在于,所述第三旋转的方向与所述第四旋转的方向相反。
  28. 如权利要求17所述的检测方法,其特征在于,所述第二扫描的步骤包括:
    沿所述第一扫描的路径返回;
    在垂直于所述第一扫描的方向上,所述第一检测光斑和第二检测光斑的尺寸相同。
  29. 如权利要求17所述的检测方法,所述第一检测光斑和第二检测光斑为线形,所述第一检测光斑的延伸方向沿所述待测区的半径方向;所述第二检测光斑的延伸方向沿所述待测区的半径方向。
  30. 如权利要求17、19、20任意一项所述的检测方法,其特征在于,所述第一检测光斑和第二检测光斑为线光斑。
  31. 如权利要求17所述的检测方法,所述第一探测区域为线形、所述第二探测区域为线形,所述第一探测区域中心与第一检测光斑中心重合;所述第二探测区域中心与第二检测光斑中心重合;所述第一探测区域长度小于第一检测光斑长度,所述第二探测区域长度小于第二检测光斑长度。
  32. 如权利要求31所述的检测方法,其特征在于,所述第一光斑和第二检测光斑为线光斑时,所述第一检测光斑的延伸方向与第一检测过程中第一扫描的方向之间的夹角大于零,所述第二检测光斑的延伸方向与第二检测过程中第二扫描的方向之间的夹角大于零。
  33. 如权利要求18所述的检测方法,其特征在于,检测被测物的步骤包括:
    使所述第三检测光斑沿第一探测轨迹、并使所述第四检测光斑沿第二探测轨迹来对所述被测物进行检测,
    所述第三检测光斑包括第三探测区域,所述信号收集组件用于收集第三探测区域作用下产生的信号光;所述第四检测光斑包括第四探测区域,所述信号收集组件用于收集第四探测区域作用下产生的信号光;
    其中,所述第一探测轨迹为所述第三检测光斑的第三探测区域的中心相对于所述被测物表面的扫描轨迹,所述第二探测轨迹为所述第四检测光斑的第四探测区域的中心相对于所述被测物表面的扫描轨迹。
  34. 如权利要求33所述的检测方法,其特征在于,所述第三探测区域的延伸方向与所述第三检测光斑的扫描方向之间的夹角大于0°小于180°;所述第四探测区域的延伸方向与所述第四检测光斑的扫描方向之间的夹角大于0°小于180°。
  35. 如权利要求34所述的检测方法,其特征在于,所述第一探测轨迹包括在径向上排列的多个第一同心圆,所述第二探测轨迹包括在径向上排列的多个第二同心圆;
    检测被测物的步骤包括:使所述第三检测光斑沿所述多个第一同心圆中的一个进行扫描,并使所述第四检测光斑沿所述多个第二同心圆中的一个进行扫描;
    使所述第三检测光斑中心移动至下一第一同心圆,并使第四检测光斑中心移动至下一第二同心圆;使所述第三检测光斑对所述下一同一圆进行扫描,并使第四检测光斑对所述下一第二同心圆进行扫描;
    重复上述移动第三检测光斑和沿第一同心圆扫描,以及移动第四检测光斑和沿第二同心圆扫描的步骤,直至通过第三检测光斑和第四检测光斑扫描完成所有第一同一圆和第二同心圆。
  36. 如权利要求35所述的检测方法,其特征在于,
    相邻的所述第一同心圆的半径之差大于等于所述第三检测光斑长度的60%,小于等于所述第三检测光斑的长度,并且
    相邻的所述第二同心圆的半径之差大于等于所述第四检测光斑长度的60%,小于等于所述第四检测光斑的长度。
  37. 如权利要求34所述的检测方法,其特征在于,所述第三探测区域在径向上的长度与所述第四探测区域在径向上的长度相同。
  38. 如权利要求33所述的检测方法,其特征在于,
    所述被测物的待测区为圆形;
    所述第三探测区域与所述第四探测区域中心之间的距离等于待测区半径减去第三探测区域沿待测区半径方向尺寸的一半。
  39. 如权利要求33所述的检测方法,其特征在于,
    所述第三探测区域与所述第四检测光斑不重叠,且所述第四探测区域与所述第三检测光斑不重叠;和/或
    所述第三检测光斑和所述第四检测光斑相互不重叠或部分地重叠。
  40. 如权利要求39所述的检测方法,其特征在于,
    所述第三检测光斑与所述第四探测区域相邻,和/或,所述第三探测区域与所述第四检测光斑相邻;或者
    所述第三检测光斑与所述第四检测光斑相邻。
  41. 如权利要求35所述的检测方法,其特征在于,
    所述第三探测区域和所述第四探测区域在同一个所述同心圆上沿圆周分布,且两个探测区域相邻;
    所述至第三探测区域和所述第四探测区域沿同一径向相邻分布。
  42. 如权利要求38所述的检测方法,其特征在于,所述被测物的待测区为圆形;
    检测被测物的步骤包括:使所述被测物绕待测区圆心旋转;使所述被测物绕待测区圆心旋转的同时,使所述被测物相对于所述第三检测光斑和第四检测光斑沿待测区直径方向移动;
    或者,检测被测物的步骤包括:使所述被测物绕待测区圆心旋转;使所述被测物绕待测区圆心旋转之后,使所述被测物相对于所述第三检测光斑和第四检测光斑沿待测区直径方向平移特定步长;重复上述步骤直至待测区均被第三检测光斑和第四检测光斑扫描;
    所述第三探测区域和所述第四探测区域沿同一径向远离分布,其中,在检测初始状态,所述第三探测区域位于所述待测区中,且所述第三探测区域边缘与待测区边缘重合;所述第四探测区域中心与所述待测区圆心重 合。
  43. 如权利要求18所述的检测方法,其特征在于,所述第三检测光斑的第三探测区域和所述第四检测光斑的第四探测区域均为线状或点状。
PCT/CN2019/101586 2018-08-21 2019-08-20 检测系统及方法 WO2020038359A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810954689.XA CN110849898A (zh) 2018-08-21 2018-08-21 晶圆缺陷检测系统及方法
CN201810955348.4A CN110849900A (zh) 2018-08-21 2018-08-21 晶圆缺陷检测系统及方法
CN201810954689.X 2018-08-21
CN201810955348.4 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020038359A1 true WO2020038359A1 (zh) 2020-02-27

Family

ID=69592295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101586 WO2020038359A1 (zh) 2018-08-21 2019-08-20 检测系统及方法

Country Status (2)

Country Link
TW (1) TWI747029B (zh)
WO (1) WO2020038359A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323371A (zh) * 2020-04-10 2020-06-23 深圳中科飞测科技有限公司 一种光学检测系统和光学检测方法
CN113702397A (zh) * 2020-05-20 2021-11-26 深圳中科飞测科技股份有限公司 一种光学检测系统和光学检测方法
CN116631908A (zh) * 2023-05-16 2023-08-22 台州勃美科技有限公司 一种晶圆自动加工方法、装置及电子设备
CN116631908B (zh) * 2023-05-16 2024-04-26 台州勃美科技有限公司 一种晶圆自动加工方法、装置及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823455B (zh) * 2022-07-01 2023-05-12 西安奕斯伟材料科技有限公司 一种用于调节晶圆位置的装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129302A1 (en) * 1998-07-07 2005-06-16 Applied Materials, Inc Pixel based machine for patterned wafers
CN103346101A (zh) * 2013-06-27 2013-10-09 上海华力微电子有限公司 芯片缺陷的高精度检测方法和扫描方法
CN103646889A (zh) * 2013-11-29 2014-03-19 上海华力微电子有限公司 晶圆缺陷检测方法
CN207540992U (zh) * 2017-12-19 2018-06-26 昆山成功环保科技有限公司 一种晶圆表面缺陷检测装置
CN207650119U (zh) * 2017-12-22 2018-07-24 昆山成功环保科技有限公司 一种晶圆自动检测系统
CN209028014U (zh) * 2018-08-21 2019-06-25 深圳中科飞测科技有限公司 检测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857174B2 (ja) * 2007-04-25 2012-01-18 株式会社日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置
JP2009283633A (ja) * 2008-05-21 2009-12-03 Hitachi High-Technologies Corp 表面検査装置及び表面検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129302A1 (en) * 1998-07-07 2005-06-16 Applied Materials, Inc Pixel based machine for patterned wafers
CN103346101A (zh) * 2013-06-27 2013-10-09 上海华力微电子有限公司 芯片缺陷的高精度检测方法和扫描方法
CN103646889A (zh) * 2013-11-29 2014-03-19 上海华力微电子有限公司 晶圆缺陷检测方法
CN207540992U (zh) * 2017-12-19 2018-06-26 昆山成功环保科技有限公司 一种晶圆表面缺陷检测装置
CN207650119U (zh) * 2017-12-22 2018-07-24 昆山成功环保科技有限公司 一种晶圆自动检测系统
CN209028014U (zh) * 2018-08-21 2019-06-25 深圳中科飞测科技有限公司 检测系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323371A (zh) * 2020-04-10 2020-06-23 深圳中科飞测科技有限公司 一种光学检测系统和光学检测方法
CN113702397A (zh) * 2020-05-20 2021-11-26 深圳中科飞测科技股份有限公司 一种光学检测系统和光学检测方法
CN116631908A (zh) * 2023-05-16 2023-08-22 台州勃美科技有限公司 一种晶圆自动加工方法、装置及电子设备
CN116631908B (zh) * 2023-05-16 2024-04-26 台州勃美科技有限公司 一种晶圆自动加工方法、装置及电子设备

Also Published As

Publication number Publication date
TWI747029B (zh) 2021-11-21
TW202014691A (zh) 2020-04-16
TW202043747A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020038360A1 (zh) 检测系统
WO2020038359A1 (zh) 检测系统及方法
JP6636104B2 (ja) 検出感度改善のための検査ビームの成形
US7161668B2 (en) Wafer edge inspection
US7656519B2 (en) Wafer edge inspection
JP6433522B2 (ja) 独立的に調節可能な走査ピッチを有する表面走査検査システム
EP1061358A2 (en) Apparatus and method for reviewing defects on an object
CN110907468B (zh) 一种表面检测装置及方法
WO2023070283A1 (zh) 晶圆键合设备及方法
KR102267990B1 (ko) 에지 프로파일을 따르는 궤적을 이용한 웨이퍼 에지 검사
CN110849898A (zh) 晶圆缺陷检测系统及方法
JP3908733B2 (ja) 情報記録媒体原盤の記録装置
TWI837410B (zh) 檢測系統及方法
CN110849900A (zh) 晶圆缺陷检测系统及方法
CN110763689B (zh) 一种表面检测装置及方法
CN113884505A (zh) 球面元件表面缺陷散射探测装置和测量方法
US11041714B2 (en) Method and apparatus for characterizing objects
WO2021052463A1 (zh) 检测系统及检测方法
JP2002529697A (ja) 欠陥検出の方法及び装置
JPH10300685A (ja) 異物分析方法および装置
CN114878593A (zh) 一种晶圆表面缺陷检测装置和方法
JPH11304420A (ja) 光ビーム照射位置検出方法、照射位置検出用プレート、及び異物検出装置
CN113764298A (zh) 基底缺陷检测装置及基底缺陷检测方法
JP2021132030A (ja) 高さ測定用の干渉計を有する荷電粒子ビーム装置
KR20210107530A (ko) 반사계, 분광 광도계, 또는 엘립소미터 시스템을 사용하는 샘플 맵핑에 적용되는 세타-세타 샘플 포지셔닝 스테이지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852501

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19852501

Country of ref document: EP

Kind code of ref document: A1