WO2020038107A1 - 一种电动汽车,旋变初始位置的诊断方法和装置 - Google Patents

一种电动汽车,旋变初始位置的诊断方法和装置 Download PDF

Info

Publication number
WO2020038107A1
WO2020038107A1 PCT/CN2019/093487 CN2019093487W WO2020038107A1 WO 2020038107 A1 WO2020038107 A1 WO 2020038107A1 CN 2019093487 W CN2019093487 W CN 2019093487W WO 2020038107 A1 WO2020038107 A1 WO 2020038107A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial position
deviation
value
torque
threshold
Prior art date
Application number
PCT/CN2019/093487
Other languages
English (en)
French (fr)
Inventor
邓音龙
任强
许新
齐洪刚
王浩
Original Assignee
广州小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州小鹏汽车科技有限公司 filed Critical 广州小鹏汽车科技有限公司
Priority to EP19851693.2A priority Critical patent/EP3809580B1/en
Publication of WO2020038107A1 publication Critical patent/WO2020038107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the invention relates to the field of electric vehicles, in particular to an electric vehicle, a method and a device for diagnosing an initial position of a rotary transformer.
  • the permanent magnet synchronous motor for electric vehicles cannot directly determine the magnetic pole position.
  • a rotary transformer (resolver) needs to be installed at the end of the rotor as a sensor to give the initial position of the resolver. Through this parameter, close-loop precise control of the motor is achieved.
  • the initial position of the electric motor drive motor resolver is mainly written and solidified to the drive motor controller through the vehicle offline detection link to meet the vehicle drive requirements of control accuracy. There is no self-diagnostic correction of this parameter after the vehicle is offline.
  • the external torque causes poor accuracy of the vehicle torque control due to changes in this parameter, which may easily cause vehicle vibration, reduced driving comfort, and vehicle failure.
  • the invention aims to provide an electric vehicle, a method and a device for diagnosing an initial position of a resolver, so as to realize the diagnosis of the initial position of the resolver.
  • the present application provides a method for diagnosing an initial position of a resolver, including the following steps:
  • Detection step detecting the actual value of the initial position of the motor rotation
  • Position abnormality judging step obtaining an initial position deviation according to an initial position actual value of the motor rotation and an initial position initial value of the motor rotation; and determining a range where the initial position deviation is located according to a preset deviation threshold interval;
  • Torque abnormality judgment step obtaining a torque deviation according to the torque of the motor and a preset given torque; comparing the magnitude of the torque deviation with a preset torque deviation threshold;
  • Failure processing step judging whether the initial position of the motor rotation is normal according to the number of times the initial position deviation is greater than the deviation threshold interval and / or the number of times the torque deviation is greater than the torque deviation threshold.
  • the step of detecting the actual value of the initial position of the motor rotation includes:
  • the method further includes: if the initial position deviation is smaller than a minimum value of the deviation threshold interval, Subtract L from the first value; if the initial position deviation is within the deviation threshold interval, enter a torque abnormality judgment step; if the initial position deviation is greater than the maximum value of the deviation threshold interval, add the first value L.
  • the method further includes: if the torque deviation is greater than the torque deviation threshold, adding L to the second value; if If the torque deviation is less than or equal to the torque deviation threshold, L is subtracted from the second value.
  • the fault processing step includes:
  • the initial position of the resolver is considered normal
  • the initial position of the resolver is considered abnormal.
  • the step of considering that the initial position of the resolver is abnormal includes:
  • the user is prompted to malfunction
  • the user is prompted to have a serious failure.
  • the step of obtaining the initial position deviation based on the actual value of the initial position of the motor rotation and the original value of the initial position of the motor rotation includes:
  • N is an integer greater than or equal to 1.
  • the step of obtaining a torque deviation according to the torque of the motor and a preset given torque includes:
  • T M is the given torque
  • M is an integer greater than or equal to 1.
  • the present application provides a diagnostic device for resolving an initial position, including:
  • Detection module for detecting the actual value of the initial position of the motor rotation
  • the abnormality judgment module is configured to obtain an initial position deviation according to an actual value of the initial position of the motor rotation and an initial value of the initial position of the motor rotation; determine a range where the initial position deviation is located according to a preset deviation threshold interval; To obtain a torque deviation from a preset torque and a preset given torque; comparing the magnitude of the torque deviation with a preset torque deviation threshold;
  • a fault processing module is configured to determine whether the initial position of the motor rotation is normal according to the number of times the initial position deviation is greater than the deviation threshold interval and / or the number of times the torque deviation is greater than the torque deviation threshold.
  • the present application provides an electric vehicle, including:
  • a motor controller for controlling the torque of the motor; executing a program to implement the method as described above.
  • the present application provides a computer-readable storage medium including a program that can be executed by a processor to implement the method as described above.
  • the invention provides an electric vehicle, a method and a device for diagnosing an initial position of a resolver, wherein the method includes: detecting an actual value of an initial position of the resolver of the motor; and Obtain the initial position deviation from the original position value; determine the range of the initial position deviation according to a preset deviation threshold interval; obtain the torque deviation according to the torque of the motor and a preset given torque; compare the torque deviation with a preset The magnitude of the torque deviation threshold; judging whether the initial position of the rotation is normal according to the number of times that the initial position deviation is greater than the deviation threshold interval and / or the number of times that the torque deviation is greater than the torque deviation threshold
  • the diagnosis of the initial position of the resolver facilitates precise closed-loop control of the motor.
  • FIG. 1 is a structural block diagram of a diagnostic device for an initial position of a resolver provided by the present invention
  • FIG. 2 is a structural block diagram of an electric vehicle provided by the present invention.
  • FIG. 3 is a flowchart of a method for diagnosing an initial position of a resolver provided by the present invention
  • FIG. 4 is a detailed flowchart of a position abnormality determination step and a torque abnormality determination step in a method for diagnosing an initial position of a resolver according to the present invention
  • FIG. 5 is a detailed flowchart of a fault processing step in a method for diagnosing an initial position of a resolver provided by the present invention.
  • a diagnostic device for an initial position of a resolver (resolver) provided by the present invention includes a detection module 10, an abnormality determination module 20, and a fault processing module 30.
  • the detection module 10 is configured to detect the actual value of the initial position of the motor rotation. For example, under the trigger of a triggering condition, detect the actual value of the initial position of the motor rotation.
  • the abnormality judging module 20 is configured to obtain an initial position deviation according to an actual value of the initial position of the motor rotation and an original value of the initial position of the motor rotation; determine a range where the initial position deviation is located according to a preset deviation threshold interval; A torque deviation is obtained from the torque and a preset given torque; the magnitude of the torque deviation is compared with a preset torque deviation threshold.
  • the fault processing module 30 is configured to determine whether the initial position of the motor rotation is normal according to the number of times the initial position deviation is greater than the deviation threshold interval and / or the number of times the torque deviation is greater than the torque deviation threshold. Diagnosing whether the initial position of the resolver is normal according to the number of times can effectively avoid the interference of incidental factors and improve the accuracy of diagnosis.
  • the diagnostic device of the present invention can accurately and effectively diagnose the initial position of the resolver, thereby facilitating accurate closed-loop control of the motor.
  • the diagnostic device of the present invention can be applied to an electric vehicle.
  • the diagnostic device is a motor controller, which is located in the electric vehicle.
  • the electric vehicle includes a human-computer interaction device 1, a motor controller 2, and a motor 3.
  • the motor 3 is used to drive the wheels of the electric vehicle to rotate.
  • the motor controller 2 is used to control the torque of the motor 3; and perform the functions of the detection module 10, the abnormality determination module 20, and the fault processing module 30.
  • the detection module 10 includes a trigger unit 110 and a resolver self-learning unit 120.
  • the triggering unit 110 is configured to trigger the resolver self-learning unit 120 to work according to a triggering condition, for example, detecting the state and speed of the motor, and judging the state and speed of the motor; when the motor is in an idling state, and the speed is equal to or greater than a preset speed,
  • the trigger resolver self-learning unit 120 works.
  • the wheel speed sensor of the entire vehicle is used to indirectly measure the speed of the motor and transmitted to the motor controller 2 through the can bus.
  • the preset speed depends on the actual demand.
  • the resolver self-learning unit 120 detects the actual value of the initial position of the resolver under the trigger of the trigger unit 110; for example, the resolver self-learning program can obtain the actual value of the initial position of the resolver by self-learning.
  • the invention is not limited; the initial position of the resolver is usually expressed by an angle.
  • Each time the resolver self-learning unit 120 is triggered, an actual value of the resolver initial position is obtained through self-learning.
  • the resolver self-learning unit 120 can be triggered multiple times during one power-on period of an electric vehicle. Electric vehicles are powered on from start to stop for one power cycle.
  • the abnormality determining module 20 includes a position abnormality determining unit and a torque abnormality determining unit.
  • the position abnormality judging unit is used to obtain the actual values of N initial positions of the resolvers from the resolver self-learning unit 120. Since the resolver self-learning unit 120 has a very fast self-learning process, the position abnormality judgement unit can be used in the resolver self-learning unit 120 After being triggered for a certain period of time, the actual values of the initial positions of the resolvers are obtained from the resolver self-learning unit 120 to ensure that at least N actual values of the initial positions of the resolvers can be obtained at this time. Position abnormality judgment unit calculates the average of the actual values of N initial positions Calculate the average The absolute value of the difference from the initial position original value ⁇ 0 is used as the initial position deviation.
  • the position abnormality judging unit also compares the initial position deviation with a preset initial position deviation allowable value and a maximum allowable value of the initial position deviation, respectively.
  • the allowable value of the initial position deviation Is the minimum value of the deviation threshold interval
  • the maximum allowable value of the initial position deviation Is the maximum value of the deviation threshold interval, that is, the deviation threshold interval.
  • the initial position initial value ⁇ 0 is the initial position of the resolver set at the factory.
  • N is an integer greater than or equal to 1. To simplify the operation, N can be set to 1. Taking the actual values of the initial positions of N resolvers to find the average value, and using the average value for subsequent calculations can effectively eliminate occasional abnormal data and ensure the accuracy of diagnosis.
  • the exception judgment program is jumped out, that is, the abnormal judgment module ends the work;
  • the electrical cycle is not the first cycle, subtract L from the first value t and L from the second value k; in other words, determine whether the first value t and / or the second value k are 0. If it is, an exception is thrown
  • the judgment program if it is not 0, subtracts L from the first value t, and subtracts L from the second value k. After that, the abnormality judgment program is jumped out and processed by the fault processing module.
  • the first value is used to represent the extent to which the actual value of the initial position of the resolver deviates from the original value.
  • the initial position deviation is less than the minimum value of the deviation threshold interval This shows that the initial position of the resolver can be accepted even if there is a deviation.
  • L is an integer greater than or equal to 1, and for ease of calculation, in this embodiment, L is 1.
  • L is added to the first value t, and the abnormality determination program is jumped out, and processed by the fault processing module.
  • the starting torque abnormality judging unit judges the torque.
  • the torque abnormality judging unit is used to detect the torque of the M-time motor. For example, self-learning obtains an actual value of the initial position of the rotation and detects the torque once, or detects the torque of the M-time motor after the initial position deviation is within the deviation threshold range, and obtain M of the torque T V; the M of the torque T V M is calculated using the following formula to give a torque accuracy:
  • T M is a given torque
  • M is an integer greater than or equal to 1, in order to simplify the calculation, M can be set to 1, M can be equal to or different from N; compare the magnitude of the torque deviation with a preset torque deviation threshold.
  • the torque of the motor can be obtained by measuring the output torque of the motor, or it can be obtained by converting the torque control command output by the motor controller 2 to the motor 3, the former is the actual value of the motor output torque, and the latter is the theoretical value of the motor output torque. This embodiment adopts the latter, which can save sensors.
  • the second value k is increased by L, and the abnormality determination program is jumped out and processed by the fault processing module; the second value k is used to represent the degree of torque deviation.
  • the abnormality judgment program is jumped out, that is, the motor controller 2 ends the diagnosis and is processed by the fault processing module.
  • the cycle is not the first power-on cycle, subtract L from the first value t and L from the second value k; in other words, determine whether the first value t and / or the second value k are 0. If yes, jump out If it is not 0, the abnormality determination program subtracts L from the first value t and L from the second value k. After that, the abnormality judgment program is jumped out and processed by the fault processing module. Torque deviation Less than or equal to the torque deviation threshold x% indicates that the torque can be accepted even if there is a deviation.
  • the increase and decrease of the first value t and the second value k can be completed by two counters built in the motor controller 2.
  • the motor controller 2 further includes a memory, for example, a EEPROM, two The value recorded by the counter is stored in this memory.
  • the fault processing module 30 compares the magnitude of the first value t with a preset first threshold value b, and the magnitude of the second value k with a preset second threshold value a. If the first value t is smaller than the first threshold b and the second value k is smaller than the second threshold a, it is considered that the initial position of the resolver is normal and the vehicle is operating normally. If the first value t is greater than or equal to the first threshold b, the initial position of the resolver is considered abnormal. The selection of a and b values depends on the actual situation.
  • the user is prompted to upgrade the program on the human-computer interaction device.
  • the OTA (over-the-air) upgrade program is performed.
  • the condition is judged, and the upgrade operation is performed after the upgrade conditions are met, and the feedback is not satisfied to the user to select the next upgrade, and the counter is cleared after the upgrade (the first value and the second value are cleared).
  • the user is prompted to have a failure; for example, the user is prompted to have a failure on the human-machine interactive device, and the failure is handled and detected by after-sales service Maintenance, the counter is cleared after the upgrade.
  • the user is prompted to have a serious failure; for example, the user is prompted on the human-computer interaction device to have a serious failure, and the after-sales service handles the failure and Perform inspection and maintenance, and clear the counter after the upgrade.
  • a serious fault is higher than a fault. It can be seen that the present invention has a high fault level and actively prompts the user to go to after-sales service to perform fault detection and processing, thereby reducing risk. Different forms of processing are performed for different fault levels to improve driving comfort while ensuring safety performance.
  • the present invention improves the motor controller, so that after the entire vehicle is delivered offline to the end customer, when the driving environment determines that the driving motor is in an idling state and the speed is greater than or equal to a preset speed, the driving motor controls
  • the device enters the self-learning program of the initial angle of resolver according to the trigger condition, and obtains the actual value of the initial position of self-learning. It compares and judges with the original value of the initial position set at the factory, and determines whether to calculate the torque deviation based on the comparison result.
  • the degree of deviation and torque deviation prompts the user to perform after-sale upgrades and maintenance, etc., to ensure that the life cycle of the entire vehicle can be self-learned to correct parameters and ensure safety and stability.
  • the present invention also provides a method for diagnosing the initial position of the resolver. As shown in FIG. 3, the method includes the following steps:
  • Detection step 6 Detecting the actual value of the initial position of the resolver; for example, under the trigger of a trigger condition, detecting the actual value of the initial position of the resolver.
  • the trigger condition may be that the motor is in an idling state and the speed is greater than or equal to a preset speed.
  • the state and speed of the motor are detected; when the motor is in the idling state and the speed is greater than or equal to a preset speed, the actual value of the initial position of the resolver is detected.
  • the actual value of the initial position of the resolver can be obtained through a resolver self-learning program. This process can be performed by conventional means, and the present invention is not limited thereto.
  • Step 7 for determining a position abnormality obtaining an initial position deviation according to an initial value of the initial position of the resolver and an original value of the initial position of the resolver; and determining a range where the initial position deviation is located according to a preset deviation threshold interval.
  • the actual values of N initial positions of rotations are obtained from the detection step 6, and the average of the actual values of N initial positions is calculated. Calculate the average
  • the absolute value of the difference from the initial position original value ⁇ 0 is used as the initial position deviation.
  • the position abnormality judging unit also compares the initial position deviation with a preset initial position deviation allowable value and a maximum allowable value of the initial position deviation, respectively.
  • the allowable value of the initial position deviation Is the minimum value of the deviation threshold interval, and the maximum allowable value of the initial position deviation Is the maximum value of the deviation threshold interval, that is, the deviation threshold interval is
  • the initial position initial value ⁇ 0 is the initial position of the resolver set at the factory.
  • N is an integer greater than or equal to 1. To simplify the operation, N can be set to 1. Taking the actual values of the initial positions of N resolvers to find the average value, and using the average value for subsequent calculations can effectively eliminate occasional abnormal data and ensure the accuracy of diagnosis.
  • Torque abnormality determination step 8 Obtain a torque deviation according to the torque of the motor and a preset given torque; compare the magnitude of the torque deviation with a preset torque deviation threshold.
  • steps 7 and 8 include the following steps:
  • step S72 Determine whether the initial position deviation is less than the initial position deviation allowable value If so, when the current power-up cycle is the first power-up cycle after initialization, proceed to step S84; when the current power-up cycle is not the first power-up cycle, subtract L from the first value t and The binary value k is reduced by L, and the process proceeds to step S84. Otherwise, it proceeds to step S73.
  • step S73 Determine whether the initial position deviation is within a deviation threshold interval. If yes, go to step S81; otherwise, go to step S74.
  • T M is a given torque
  • M is an integer greater than or equal to 1, in order to simplify the calculation, M can be set to 1, M can be equal to or different from N.
  • step S82 Determine whether the torque deviation is less than or equal to a preset torque deviation threshold; if so, when the current power-on cycle is the first power-on cycle after initialization, proceed to step S84; when the current cycle is not the first cycle , Subtract L from the first value t and L from the second value k, and proceed to step S84; otherwise, proceed to step S83.
  • Failure processing step 9 Determine whether the initial position of the resolver is normal according to the number of times the initial position deviation is greater than the deviation threshold interval and / or the number of times the torque deviation is greater than the torque deviation threshold. Specifically, the first numerical value t is compared with a preset first threshold value b, and the second numerical value k is compared with a preset second threshold value a. If the first value t is smaller than the first threshold b and the second value k is smaller than the second threshold a, it is considered that the initial position of the resolver is normal and the vehicle is operating normally. If the first value t is greater than or equal to the first threshold b, the initial position of the resolver is considered abnormal.
  • the fault handling step 9 includes the following steps:
  • step S91 Determine whether the second value k is smaller than a preset second threshold value a. If yes, go to step S92; otherwise, go to step S93.
  • the steps in the various methods in the foregoing embodiments may be completed by a program instructing related hardware, and the program may be stored in a computer-readable storage medium.
  • the storage medium may include a read-only memory, RAM, disk or CD, etc.
  • the steps in the above embodiments can also be written as independent programs, which can be stored on a server, a disk, an optical disk, a flash disk, and downloaded to a local device's memory, or The above functions can be realized by downloading and updating the version of the local system, and executing the program in the memory by the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车,旋变初始位置的诊断方法和装置,所述方法包括:检测电机旋变的初始位置实际值;根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述旋变初始位置是否正常,实现了对旋变初始位置的诊断,从而有利于对电机进行精确的闭环控制。

Description

一种电动汽车,旋变初始位置的诊断方法和装置 技术领域
本发明涉及电动汽车领域,具体涉及一种电动汽车,旋变初始位置的诊断方法和装置。
背景技术
电动汽车用永磁同步电机,其磁极位置无法直接确定,需要在转子端部安装旋转变压器(旋变)作为传感器给出旋变初始位置,进而间接得到与旋变存在初始位置偏差的转子磁极位置,通过该参数,实现对电机的闭环精确控制。电动汽车驱动电机旋转变压器初始位置主要通过整车下线检测环节将初始角写入固化到驱动电机控制器,从而满足控制精度要求的整车驱动。整车下线之后没有该参数的自诊断校正处理,由于外部因素引起该参数变化导致整车扭矩控制精度差,容易引起整车抖动、驾车舒适感下降及整车故障等。
发明内容
本发明旨在提供一种电动汽车,旋变初始位置的诊断方法和装置,以实现旋变初始位置的诊断。
根据本申请的第一方面,本申请提供了一种旋变初始位置的诊断方法,包括如下步骤:
检测步骤:检测电机旋变的初始位置实际值;
位置异常判断步骤:根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;
扭矩异常判断步骤:根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;
故障处理步骤:根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述电机旋变初始位置是否正常。
如上所述的方法,所述检测电机旋变的初始位置实际值的步骤,包括:
检测电机的状态和转速;当电机处于空转状态,且转速大于等于预设转速时,检测电机旋变的初始位置实际值。
如上所述的方法,所述根据预设的偏差阈值区间,判断所述初始位置偏差 所处的范围的步骤之后,还包括:若所述初始位置偏差小于所述偏差阈值区间的最小值,则对第一数值减L;若所述初始位置偏差处于所述偏差阈值区间内,则进入扭矩异常判断步骤;若所述初始位置偏差大于所述偏差阈值区间的最大值,则对第一数值加L。
如上所述的方法,所述比较所述扭矩偏差与预设的扭矩偏差阈值的大小的步骤之后,还包括:若所述扭矩偏差大于所述扭矩偏差阈值,则对第二数值加L;若所述扭矩偏差小于等于所述扭矩偏差阈值,则对第二数值减L。
如上所述的方法,所述故障处理步骤包括:
比较第一数值与预设的第一阈值的大小、第二数值与预设的第二阈值的大小;
若第一数值小于第一阈值,且第二数值小于第二阈值,则认为旋变初始位置正常;
若第一数值大于等于第一阈值,则认为旋变初始位置异常。
如上所述的方法,所述若第一数值大于等于第一阈值,则认为旋变初始位置异常的步骤,包括:
若第一数值大于等于第一阈值,且第二数值小于第二阈值,则提示用户发生故障;
若第一数值大于等于第一阈值,且第二数值大于等于第二阈值,则提示用户发生严重故障。
如上所述的方法,所述根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差的步骤,包括:
计算N个初始位置实际值的平均值,计算所述平均值与初始位置原始值差值的绝对值,将所述绝对值作为初始位置偏差;N为大于等于1的整数。
如上所述的方法,所述根据电机的扭矩和预设的给定扭矩得到扭矩偏差的步骤,包括:
检测M次电机的扭矩,将得到的M个扭矩T V按如下公式计算得到M个扭矩精度:
Figure PCTCN2019093487-appb-000001
其中,T M为所述给定扭矩;
计算M个扭矩精度的平均值,并将其作为扭矩偏差;M为大于等于1的整数。
根据本申请的第二方面,本申请提供了一种旋变初始位置的诊断装置,包括:
检测模块,用于检测电机旋变的初始位置实际值;
异常判断模块,用于根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;
故障处理模块,用于根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述电机旋变初始位置是否正常。
根据本申请的第三方面,本申请提供了一种电动汽车,包括:
人机交互装置;
电机,用于带动电动汽车车轮转动;
电机控制器,用于控制电机的扭矩;执行程序以实现如上所述的方法。
根据本申请的第四方面,本申请提供了一种计算机可读存储介质,包括程序,所述程序能够被处理器执行以实现如上所述的方法。
本发明的有益效果是:
本发明提供一种电动汽车,旋变初始位置的诊断方法和装置,其中,所述方法包括:检测电机旋变的初始位置实际值;根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述旋变初始位置是否正常,实现了对旋变初始位置的诊断,从而有利于对电机进行精确的闭环控制。
附图说明
图1为本发明提供的旋变初始位置的诊断装置的结构框图;
图2为本发明提供的电动汽车的结构框图;
图3为本发明提供的旋变初始位置的诊断方法的流程图;
图4为本发明提供的旋变初始位置的诊断方法中,位置异常判断步骤和扭矩异常判断步骤的具体流程图;
图5为本发明提供的旋变初始位置的诊断方法中,故障处理步骤的具体流程图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
如图1所示,本发明提供的旋变(旋转变压器)初始位置的诊断装置,包括检测模块10、异常判断模块20和故障处理模块30。
检测模块10,用于检测电机旋变的初始位置实际值,例如,在触发条件的触发下,检测电机旋变的初始位置实际值。
异常判断模块20,用于根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断初始位置偏差所处的范围;根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较扭矩偏差与预设的扭矩偏差阈值的大小。
故障处理模块30,用于根据初始位置偏差大于偏差阈值区间的次数和/或扭矩偏差大于扭矩偏差阈值的次数,判断电机旋变初始位置是否正常。根据所述次数来诊断旋变初始位置是否正常,可有效的避免偶发因素的干扰,提高了诊断的准确性。
可见,本发明的诊断装置能对旋变初始位置进行准确、有效的诊断,从而有利于对电机进行精确的闭环控制。
本发明的诊断装置可以应用在电动汽车上,例如,诊断装置是电机控制器,其位于电动汽车中,如图2所示,电动汽车包括人机交互装置1、电机控制器2和电机3。
电机3,用于带动电动汽车车轮转动。
电机控制器2,用于控制电机3的扭矩;执行检测模块10、异常判断模块20和故障处理模块30的功能。
具体的,检测模块10包括触发单元110和旋变自学习单元120。触发单元110用于根据触发条件来触发旋变自学习单元120工作,例如,检测电机的状态和转速,并判断电机的状态和转速;当电机处于空转状态,且转速大于等于预设转速时,触发旋变自学习单元120工作。例如,采用整车的轮速传感器间接测量电机的转速,通过can总线传输给电机控制器2。预设转速根据实际需求而定。旋变自学习单元120在触发单元110的触发下检测旋变的初始位置实际值;例如,通过旋变自学习程序得到自学习的旋变初始位置实际值,这一过程采用常规手段即可,本发明不做限定;旋变的初始位置通常用角度表示。旋变自学习单元120每被触发一次,自学习得到一个旋变初始位置实际值。通常在电动汽车的一个上电周期内,旋变自学习单元120能够被触发多次。电动汽车从启动到停车下电为一个上电周期。
异常判断模块20包括位置异常判断单元和扭矩异常判断单元。
位置异常判断单元用于从旋变自学习单元120中获取N个旋变初始位置实际值,由于旋变自学习单元120自学习过程非常快,位置异常判断单元用可在旋变自学习单元120被触发一定时间后,从旋变自学习单元120中获取旋变初始位置实际值,确保此时能得到至少N个旋变初始位置实际值。位置异常判断单元计算N个初始位置实际值的平均值
Figure PCTCN2019093487-appb-000002
计算平均值
Figure PCTCN2019093487-appb-000003
与初始位置原始值θ 0差值的绝对值,将所述绝对值作为初始位置偏差。位置异常判断单元还将初始位置偏差与预设的初始位置偏差容许值比较、初始位置偏差最大容许值分别比较。其中,初始位置偏差容许值
Figure PCTCN2019093487-appb-000004
为偏差阈值区间的最小值,初始位置偏差最大容许值
Figure PCTCN2019093487-appb-000005
为偏差阈值区间的最大值,即偏差阈值区间为
Figure PCTCN2019093487-appb-000006
初始位置原始值θ 0即出厂时设置的旋变的初始位置。N为大于等于1的整数,为简化运算,可将N设置为1。取N个旋变初始位置实际值求平均值,采用平均值进行后续运算,能有效的剔除偶发的异常数据,确保诊断的准确性。
若初始位置偏差小于偏差阈值区间的最小值
Figure PCTCN2019093487-appb-000007
Figure PCTCN2019093487-appb-000008
则在当前的上电周期是初始化后的第一个上电周期时(此时第一数值t和第二数值k为0),跳出异常判断程序,即异常判断模块结束工作;在当前的上电周期不是第一个周期时,对第一数值t减L、对第二数值k减L;换而言之,判断第一数值t和/或第二数值k是否为0,若是则跳出异常判断程序,若不为0对第一数值t减L、对第二数值k减L。之后,跳出异常判断程序,由故障处理模块进行处理。第一数值用于表征旋变初始位置实际值偏离原始值的程度。初始位置偏差小于偏差阈值区间的最小值
Figure PCTCN2019093487-appb-000009
说明旋变的初始位置即使有偏差也能够接受。L为大于等于1的整数,为便于计算,本实施例中,L为1。
若初始位置偏差大于偏差阈值区间的最大值,则对第一数值t加L,并跳出异常判断程序,由故障处理模块进行处理。
若初始位置偏差处于偏差阈值区间内,则启动扭矩异常判断单元对扭矩进行判断。
扭矩异常判断单元,用于检测M次电机的扭矩,例如,自学习得到一个旋变初始位置实际值就检测一次扭矩,或者,初始位置偏差处于偏差阈值区间内后检测M次电机的扭矩,得到M个所述的扭矩T V;将M个所述的扭矩T V按如下公式计算得到M个扭矩精度:
Figure PCTCN2019093487-appb-000010
其中,T M为给定扭矩;
计算M个扭矩精度的平均值
Figure PCTCN2019093487-appb-000011
并将其作为扭矩偏差;M为大于等于1的整数,为简化运算,可将M设置为1,M可与N相等也可不等;比较扭矩偏差与预设的扭矩偏差阈值的大小。电机的扭矩可以通过测量电机的输出扭矩得到,也可以由电机控制器2输出给电机3的扭矩控制指令经过转换得到,前者是电机输出扭矩的实际值,后者是电机输出扭矩的理论值。本实施例采用后者,可节省传感器。
若扭矩偏差
Figure PCTCN2019093487-appb-000012
大于扭矩偏差阈值x%,则对第二数值k加L,并跳出异常判断程序,由故障处理模块进行处理;第二数值k用于表征扭矩偏离的程度。
若扭矩偏差
Figure PCTCN2019093487-appb-000013
小于等于扭矩偏差阈值x%,则在当前的上电周期是初始化后的第一个上电周期时,跳出异常判断程序,即电机控制器2结束诊断,由故障处理模块进行处理;在当前的周期不是第一个上电周期时,对第一数值t减L、对第二数值k减L;换而言之,判断第一数值t和/或第二数值k是否为0,若是则跳出异常判断程序,若不为0对第一数值t减L、对第二数值k减L。之后,跳出异常判断程序,由故障处理模块进行处理。扭矩偏差
Figure PCTCN2019093487-appb-000014
小于等于扭矩偏差阈值x%说明扭矩即使有偏差也能够接受。
第一数值t和第二数值k的增减可以通过内置在电机控制器2内的两个计数器完成,电机控制器2还包括存储器,例如带电可擦可编程只读存储器(eeprom),两个计数器记录的数值存储在该存储器内。
故障处理模块30比较第一数值t与预设的第一阈值b的大小、第二数值k与预设的第二阈值a的大小。若第一数值t小于第一阈值b,且第二数值k小于第二阈值a,则认为旋变初始位置正常,车辆正常运行。若第一数值t大于等于第一阈值b,则认为旋变初始位置异常。a和b数值的选取根据实际情况而定。
具体的,若第一数值t小于第一阈值b,且第二数值k大于等于第二阈值a, 则在人机交互装置上提示用户升级程序,用户确认之后,进行OTA(空中下载)升级程序条件判断,满足升级条件之后进行升级操作,不满足升级条件反馈至用户选择下次升级,升级后计数器清零(第一数值和第二数值清零)。可见,本发明故障等级低由用户进行手动确认升级,降低风险的同时,减少用户至售后服务处理故障的时间和费用。
若第一数值t大于等于第一阈值b,且第二数值k小于第二阈值a,则提示用户发生故障;例如,在人机交互装置上提示用户发生故障,至售后服务处理故障并进行检测维护,待升级后计数器清零。
若第一数值t大于等于第一阈值b,且第二数值k大于等于第二阈值a,则提示用户发生严重故障;例如,在人机交互装置上提示用户发生严重故障,售后服务处理故障并进行检测维护,升级后计数器清零。严重故障的等级高于故障。可见,本发明故障等级高主动提示用户至售后服务进行故障检测处理,降低风险。针对不同的故障等级进行不同形式的处理,在提高行车舒适性的同时确保了安全性能。
综上所述,本发明改进了电机控制器,使得整车下线交付给终端客户后,当行驶环境通过电机控制器判断为驱动电机处于空转状态且转速大于等于预设转速时,驱动电机控制器按照触发条件进入旋变初始角自学习程序,得到自学习的旋变初始位置实际值,与出厂设置的初始位置原始值比较判断,根据比较结果决定是否进行扭矩偏差的计算,最后根据初始位置偏差和扭矩偏差的程度,提示用户进行售后升级并维护等,保证全车生命周期即可以自学习进行参数纠正,又能确保安全和稳定性。
基于上述实施例提供的旋变初始位置的诊断装置,本发明还提供一种旋变初始位置的诊断方法,如图3所示,所述方法包括如下步骤:
检测步骤6:检测旋变的初始位置实际值;例如,在触发条件的触发下,检测旋变的初始位置实际值。触发条件可以是电机处于空转状态,且转速大于等于预设转速。例如,检测电机的状态和转速;当电机处于空转状态,且转速大于等于预设转速时,检测旋变的初始位置实际值。检测旋变的初始位置实际值,可以通过旋变自学习程序得到自学习的旋变初始位置实际值,这一过程采用常规手段即可,本发明不做限定。
位置异常判断步骤7:根据旋变的初始位置实际值、旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围。例如,从检测步骤6中获取N个旋变初始位置实际值,计算N个初始位 置实际值的平均值
Figure PCTCN2019093487-appb-000015
计算平均值
Figure PCTCN2019093487-appb-000016
与初始位置原始值θ 0差值的绝对值,将所述绝对值作为初始位置偏差。位置异常判断单元还将初始位置偏差与预设的初始位置偏差容许值比较、初始位置偏差最大容许值分别比较。其中,初始位置偏差容许值
Figure PCTCN2019093487-appb-000017
为偏差阈值区间的最小值,初始位置偏差最大容许值
Figure PCTCN2019093487-appb-000018
为偏差阈值区间的最大值,即偏差阈值区间为
Figure PCTCN2019093487-appb-000019
初始位置原始值θ 0即出厂时设置的旋变的初始位置。N为大于等于1的整数,为简化运算,可将N设置为1。取N个旋变初始位置实际值求平均值,采用平均值进行后续运算,能有效的剔除偶发的异常数据,确保诊断的准确性。
扭矩异常判断步骤8:根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小。
请参阅图4,步骤7和8(异常判断程序)具体包括如下步骤:
S71、计算N个初始位置实际值的平均值
Figure PCTCN2019093487-appb-000020
计算平均值
Figure PCTCN2019093487-appb-000021
与初始位置原始值θ 0差值的绝对值,将所述绝对值作为初始位置偏差。
S72、判断初始位置偏差是否小于初始位置偏差容许值
Figure PCTCN2019093487-appb-000022
若是,则在当前的上电周期是初始化后的第一个上电周期时,进入步骤S84;在当前的上电周期不是第一个上电周期时,对第一数值t减L、对第二数值k减L,进入步骤S84。否则进入步骤S73。
S73、判断初始位置偏差是否处于偏差阈值区间,若是,则进入步骤S81,否则,进入步骤S74。
S74、对第一数值t加L,并进入步骤S84。
S81、检测M次电机的扭矩,得到M个扭矩T V;将M个扭矩T V按如下公式计算得到M个扭矩精度:
Figure PCTCN2019093487-appb-000023
其中,T M为给定扭矩;
计算M个扭矩精度的平均值
Figure PCTCN2019093487-appb-000024
并将其作为扭矩偏差;M为大于等于1的整数,为简化运算,可将M设置为1,M可与N相等也可不等。
S82、判断扭矩偏差是否小于等于预设的扭矩偏差阈值,若是,则在当前的上电周期是初始化后的第一个上电周期时,进入步骤S84;在当前的周期不是第一个周期时,对第一数值t减L、对第二数值k减L,进入步骤S84;否则,进入步骤S83。
S83、对第二数值k加L,并进入步骤S84。
S84、跳出异常判断程序,进入步骤9。
故障处理步骤9:根据所述初始位置偏差大于所述偏差阈值区间的次数和/ 或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述旋变初始位置是否正常。具体的,比较第一数值t与预设的第一阈值b的大小、第二数值k与预设的第二阈值a的大小。若第一数值t小于第一阈值b,且第二数值k小于第二阈值a,则认为旋变初始位置正常,车辆正常运行。若第一数值t大于等于第一阈值b,则认为旋变初始位置异常。
如图5所示,故障处理步骤9具体包括如下步骤:
S91、判断第二数值k是否小于预设的第二阈值a,若是,则进入步骤S92,否则进入步骤S93。
S92、判断第一数值t是否小于预设的第一阈值b,若是,则认为旋变初始位置正常,车辆正常运行;否则提示用户发生了严重故障。
S93、判断第一数值t是否小于预设的第一阈值b,若是,则在人机交互装置上提示用户升级程序;否则提示用户发生了故障。
由于所述方法的具体步骤以及特点在上述系统实施例中已详细阐述,在此不再赘述。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分步骤可以通过程序来指令相关硬件完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。尤其是在本发明实际实施过程中,上述实施例中的步骤还可编写成独立的程序,该程序可存储在服务器、磁盘、光盘、闪存盘上,通过下载保存到本地设备的存储器中,或通过下载对本地系统进行版本更新,通过处理器执行存储器中程序,即可实现上述功能。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (11)

  1. 一种旋变初始位置的诊断方法,其特征在于,包括如下步骤:
    检测步骤:检测电机旋变的初始位置实际值;
    位置异常判断步骤:根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;
    扭矩异常判断步骤:根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;
    故障处理步骤:根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述电机旋变初始位置是否正常。
  2. 如权利要求1所述的方法,其特征在于,所述检测电机旋变的初始位置实际值的步骤,包括:
    检测电机的状态和转速;当电机处于空转状态,且转速大于等于预设转速时,检测电机旋变的初始位置实际值。
  3. 如权利要求1所述的方法,其特征在于,所述根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围的步骤之后,还包括:若所述初始位置偏差小于所述偏差阈值区间的最小值,则对第一数值减L;若所述初始位置偏差处于所述偏差阈值区间内,则进入扭矩异常判断步骤;若所述初始位置偏差大于所述偏差阈值区间的最大值,则对第一数值加L;其中L为大于等于1的整数。
  4. 如权利要求3所述的方法,其特征在于,所述比较所述扭矩偏差与预设的扭矩偏差阈值的大小的步骤之后,还包括:若所述扭矩偏差大于所述扭矩偏差阈值,则对第二数值加L;若所述扭矩偏差小于等于所述扭矩偏差阈值,则对第二数值减L。
  5. 如权利要求4所述的方法,其特征在于,所述故障处理步骤包括:
    比较第一数值与预设的第一阈值的大小、第二数值与预设的第二阈值的大小;
    若第一数值小于第一阈值,且第二数值小于第二阈值,则认为旋变初始位置正常;
    若第一数值大于等于第一阈值,则认为旋变初始位置异常。
  6. 如权利要求5所述的方法,其特征在于,所述若第一数值大于等于第一阈值,则认为旋变初始位置异常的步骤,包括:
    若第一数值大于等于第一阈值,且第二数值小于第二阈值,则提示用户发生故障;
    若第一数值大于等于第一阈值,且第二数值大于等于第二阈值,则提示用户发生严重故障。
  7. 如权利要求1所述的方法,其特征在于,所述根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差的步骤,包括:
    计算N个初始位置实际值的平均值,计算所述平均值与初始位置原始值差值的绝对值,将所述绝对值作为初始位置偏差;N为大于等于1的整数。
  8. 如权利要求1所述的方法,其特征在于,所述根据电机的扭矩和预设的给定扭矩得到扭矩偏差的步骤,包括:
    检测M次电机的扭矩,将得到的M个扭矩T V按如下公式计算得到M个扭矩精度:
    Figure PCTCN2019093487-appb-100001
    其中,T M为所述给定扭矩;
    计算M个扭矩精度的平均值,并将其作为扭矩偏差;M为大于等于1的整数。
  9. 一种旋变初始位置的诊断装置,其特征在于,包括:
    检测模块,用于检测电机旋变的初始位置实际值;
    异常判断模块,用于根据电机旋变的初始位置实际值、电机旋变的初始位置原始值得到初始位置偏差;根据预设的偏差阈值区间,判断所述初始位置偏差所处的范围;根据电机的扭矩和预设的给定扭矩得到扭矩偏差;比较所述扭矩偏差与预设的扭矩偏差阈值的大小;
    故障处理模块,用于根据所述初始位置偏差大于所述偏差阈值区间的次数和/或所述扭矩偏差大于所述扭矩偏差阈值的次数,判断所述电机旋变初始位置是否正常。
  10. 一种电动汽车,其特征在于,包括:
    人机交互装置;
    电机,用于带动电动汽车车轮转动;
    电机控制器,用于控制电机的扭矩;执行程序以实现如权利要求1-8中任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1-8中任一项所述的方法。
PCT/CN2019/093487 2018-08-22 2019-06-28 一种电动汽车,旋变初始位置的诊断方法和装置 WO2020038107A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19851693.2A EP3809580B1 (en) 2018-08-22 2019-06-28 Electric vehicle, method and device for diagnosing rotary transformer initial position, and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810962957.2 2018-08-22
CN201810962957.2A CN109286345B (zh) 2018-08-22 2018-08-22 一种电动汽车,旋变初始位置的诊断方法和装置

Publications (1)

Publication Number Publication Date
WO2020038107A1 true WO2020038107A1 (zh) 2020-02-27

Family

ID=65182966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093487 WO2020038107A1 (zh) 2018-08-22 2019-06-28 一种电动汽车,旋变初始位置的诊断方法和装置

Country Status (3)

Country Link
EP (1) EP3809580B1 (zh)
CN (1) CN109286345B (zh)
WO (1) WO2020038107A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937313A (zh) * 2021-02-08 2021-06-11 重庆长安新能源汽车科技有限公司 纯电动车电机转矩控制方法及装置、存储介质
CN113640667A (zh) * 2021-08-20 2021-11-12 东风汽车集团股份有限公司 一种电机eol下线零点自动校准方法及系统
CN113708700A (zh) * 2021-08-26 2021-11-26 重庆长安新能源汽车科技有限公司 纯电动汽车的电机旋变初始角自学习方法及标定方法
WO2023028783A1 (zh) * 2021-08-30 2023-03-09 宁德时代新能源科技股份有限公司 电机的标定数据更新方法、装置、电子设备和存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286345B (zh) * 2018-08-22 2020-06-12 广州小鹏汽车科技有限公司 一种电动汽车,旋变初始位置的诊断方法和装置
CN111572348B (zh) * 2019-01-30 2021-04-23 北京新能源汽车股份有限公司 一种永磁同步电机故障检测方法、系统及汽车
CN110481537B (zh) * 2019-08-28 2020-12-15 浙江吉利汽车研究院有限公司 一种混合动力汽车的电机零位角自学习的方法及系统
CN111737286B (zh) * 2020-05-25 2023-07-18 清远博依特智能科技有限公司 一种表计复位判断方法、装置及存储介质
CN111551387B (zh) * 2020-05-27 2021-11-12 海信视像科技股份有限公司 一种电视整机抗扭转性测量夹具
CN113419173B (zh) * 2021-07-22 2023-05-12 广州小鹏汽车科技有限公司 一种电机下线检测方法和装置
CN113411015B (zh) * 2021-08-03 2023-10-31 广州小鹏汽车科技有限公司 电机旋变初始角标定方法、系统及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120185213A1 (en) * 2011-01-13 2012-07-19 Mitsubishi Electric Corporation Malfunction detection device for resolver
CN105391363A (zh) * 2015-11-16 2016-03-09 重庆长安汽车股份有限公司 一种旋转变压器初始位置自校正方法及装置
CN106143162A (zh) * 2015-04-03 2016-11-23 比亚迪股份有限公司 电动汽车及其扭矩安全监测控制方法和装置
CN107124130A (zh) * 2017-04-06 2017-09-01 深圳市伟创电气有限公司 一种旋转变压器位置故障信息判断及故障处理方法
CN107819418A (zh) * 2016-09-13 2018-03-20 上海汽车集团股份有限公司 一种旋变初始角度合理性检测方法及装置
CN107834934A (zh) * 2017-12-01 2018-03-23 重庆长安汽车股份有限公司 电动汽车及其旋转变压器初始位置自动校正方法和系统
CN109286345A (zh) * 2018-08-22 2019-01-29 广州小鹏汽车科技有限公司 一种电动汽车,旋变初始位置的诊断方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392418B1 (en) * 1999-09-16 2002-05-21 Delphi Technologies, Inc. Torque current comparison for current reasonableness diagnostics in a permanent magnet electric machine
CN102510254A (zh) * 2011-11-07 2012-06-20 郑州飞机装备有限责任公司 纯电动汽车永磁同步电机转子初始定位方法
JP5949583B2 (ja) * 2013-01-29 2016-07-06 トヨタ自動車株式会社 異常検出装置
CN103532451A (zh) * 2013-10-31 2014-01-22 重庆长安汽车股份有限公司 一种旋转变压器位置信号故障诊断方法
CN107487230B (zh) * 2016-12-06 2020-06-02 宝沃汽车(中国)有限公司 车辆的故障控制方法、电机控制器及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120185213A1 (en) * 2011-01-13 2012-07-19 Mitsubishi Electric Corporation Malfunction detection device for resolver
CN106143162A (zh) * 2015-04-03 2016-11-23 比亚迪股份有限公司 电动汽车及其扭矩安全监测控制方法和装置
CN105391363A (zh) * 2015-11-16 2016-03-09 重庆长安汽车股份有限公司 一种旋转变压器初始位置自校正方法及装置
CN107819418A (zh) * 2016-09-13 2018-03-20 上海汽车集团股份有限公司 一种旋变初始角度合理性检测方法及装置
CN107124130A (zh) * 2017-04-06 2017-09-01 深圳市伟创电气有限公司 一种旋转变压器位置故障信息判断及故障处理方法
CN107834934A (zh) * 2017-12-01 2018-03-23 重庆长安汽车股份有限公司 电动汽车及其旋转变压器初始位置自动校正方法和系统
CN109286345A (zh) * 2018-08-22 2019-01-29 广州小鹏汽车科技有限公司 一种电动汽车,旋变初始位置的诊断方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809580A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937313A (zh) * 2021-02-08 2021-06-11 重庆长安新能源汽车科技有限公司 纯电动车电机转矩控制方法及装置、存储介质
CN113640667A (zh) * 2021-08-20 2021-11-12 东风汽车集团股份有限公司 一种电机eol下线零点自动校准方法及系统
CN113640667B (zh) * 2021-08-20 2023-12-19 东风汽车集团股份有限公司 一种电机eol下线零点自动校准方法及系统
CN113708700A (zh) * 2021-08-26 2021-11-26 重庆长安新能源汽车科技有限公司 纯电动汽车的电机旋变初始角自学习方法及标定方法
CN113708700B (zh) * 2021-08-26 2023-08-01 深蓝汽车科技有限公司 纯电动汽车的电机旋变初始角自学习方法及标定方法
WO2023028783A1 (zh) * 2021-08-30 2023-03-09 宁德时代新能源科技股份有限公司 电机的标定数据更新方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
EP3809580B1 (en) 2023-06-07
EP3809580A4 (en) 2021-10-20
CN109286345B (zh) 2020-06-12
EP3809580C0 (en) 2023-06-07
CN109286345A (zh) 2019-01-29
EP3809580A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2020038107A1 (zh) 一种电动汽车,旋变初始位置的诊断方法和装置
CN109083756B (zh) 一种发动机进气故障检测方法及装置
JP3362537B2 (ja) 電気自動車用駆動モータのフェールセーフ制御
JP5661839B2 (ja) 異常検出診断機能を備える同期電動機の制御システム
JP6194583B2 (ja) モータ制御装置、モータ制御方法、モータシステム、搬送装置及び画像形成装置
JP5892012B2 (ja) 車載電子制御装置
CN108372881B (zh) 用于电动助力转向的故障容错场定向控制
JP5961566B2 (ja) トルクセンサの異常診断装置及び異常診断方法
KR102658164B1 (ko) 기능적 안전성을 구비한 스티어링 각센서
CN108068882B (zh) 控制转向系统的方法
JP7131281B2 (ja) 回転検出装置、操舵システム
EP3159519B1 (en) Variable geometry turbocharger prognostics
US10549773B2 (en) Anti-loss-of-assistance for electric motor
JP2007219991A (ja) 異常負荷検出装置
CN112041819B (zh) 用于监测和识别电驱动系统中的传感器故障的方法
US20140214277A1 (en) Method for operating an electrical power steering mechanism
KR101754441B1 (ko) 전동기의 기동판별 장치
CN107863918B (zh) 马达控制命令的保护方法
CN113574792A (zh) 永磁同步机的控制装置
JP4333661B2 (ja) 電動パワーステアリング装置
JP2014534922A (ja) 電動パワーステアリングシステムを作動させるための方法
JP6167871B2 (ja) エンジン制御装置
JPH10315173A (ja) ロボットの異常検出装置
CN112415379A (zh) 电机故障的诊断方法
CN109874394B (zh) 用于监控电驱动的车辆的电机的方法和监控设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019851693

Country of ref document: EP

Effective date: 20210112

NENP Non-entry into the national phase

Ref country code: DE