WO2020037942A1 - 风险预测处理方法、装置、计算机设备和介质 - Google Patents

风险预测处理方法、装置、计算机设备和介质 Download PDF

Info

Publication number
WO2020037942A1
WO2020037942A1 PCT/CN2019/071520 CN2019071520W WO2020037942A1 WO 2020037942 A1 WO2020037942 A1 WO 2020037942A1 CN 2019071520 W CN2019071520 W CN 2019071520W WO 2020037942 A1 WO2020037942 A1 WO 2020037942A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
data
sample
indicators
target
Prior art date
Application number
PCT/CN2019/071520
Other languages
English (en)
French (fr)
Inventor
陈凯帆
叶素兰
李国才
王芊
宋哲
吴雨甜
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2020037942A1 publication Critical patent/WO2020037942A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Definitions

  • the present application relates to a risk prediction processing method, device, computer equipment and medium.
  • Risk prediction refers to the use of multiple information channels and analysis methods to determine early warning indicators based on the financial institution's risk strategy and risk appetite, and use these indicators as a starting point to measure the customer's risk situation in a timely manner.
  • This manual tracking analysis method not only reduces the prediction efficiency, but also makes it difficult to guarantee the accuracy of the prediction.
  • a risk prediction processing method for example, a risk prediction processing method, apparatus, computer device, and medium are provided.
  • a risk prediction processing method includes: obtaining risk data of a target customer, the risk data carrying a customer identification; extracting risk indicators from the risk data; obtaining a risk prediction model, the risk prediction model includes multiple A plurality of risk factors; filtering the extracted multiple risk indicators according to the risk factors; and inputting the risk indicators obtained through the screening into the risk prediction model, and outputting the risk score corresponding to the customer identifier.
  • a risk prediction processing device includes: an index extraction module for acquiring risk data of a target customer, the risk data carrying a customer identification; extracting risk indicators from the risk data; and an index screening module for A risk prediction model is obtained, the risk prediction model includes a plurality of risk factors; a plurality of extracted risk indicators are filtered according to the risk factors; and a risk prediction module is configured to input the selected risk indicators into the risk prediction The model outputs the risk score corresponding to the customer ID.
  • a computer device includes a memory and one or more processors.
  • the memory stores computer-readable instructions.
  • the steps of the risk prediction processing method provided in any embodiment of the present application are implemented.
  • One or more non-volatile computer-readable storage media storing computer-readable instructions, and when the computer-readable instructions are executed by one or more processors, the one or more processors implement one of the embodiments of the present application The steps provided in the risk prediction process.
  • FIG. 1 is an application scenario diagram of a risk prediction processing method according to one or more embodiments.
  • FIG. 2 is a schematic flowchart of a risk prediction processing method according to one or more embodiments.
  • FIG. 3 is a schematic flowchart of steps for constructing a risk prediction model according to one or more embodiments.
  • FIG. 4 is a structural block diagram of a risk prediction processing apparatus according to one or more embodiments.
  • FIG. 5 is a block diagram of a computer device according to one or more embodiments.
  • the risk prediction processing method provided in this application can be applied to the application environment shown in FIG. 1.
  • the terminal 102 and the server 104 communicate through a network.
  • the terminal 102 may be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the server 104 may be implemented by an independent server or a server cluster composed of multiple servers.
  • the user may send a risk prediction request to the server 104 through the terminal 102.
  • the server 104 responds to a risk prediction request or obtains risk data of a target customer according to a preset time and frequency, and extracts a risk index from the risk data.
  • the server 104 constructs a risk prediction model in advance.
  • the risk prediction model includes multiple risk factors.
  • the server 104 filters multiple risk indicators according to the risk factors in the risk prediction model, inputs the risk indicators obtained through the screening into the risk prediction model, and outputs the risk score corresponding to the customer identification.
  • the server 104 may perform customer risk warning based on the risk score.
  • automatic collection and processing of risk data can improve the efficiency of risk prediction; based on the risk prediction model, multiple risk factors can be considered comprehensively, so that the accuracy of risk prediction can be achieved.
  • a risk prediction processing method is provided.
  • the method is applied to the server in FIG. 1 as an example, and includes the following steps:
  • Step 202 Obtain risk data of a target customer, and the risk data carries a customer identification.
  • the target customer can be an enterprise or an individual; it can be an existing customer or a potential customer.
  • Risk data refers to data that can characterize the possibility of default behavior of target customers, such as credit records and financial data.
  • the data types of risk data include, but are not limited to, images, audio, text, and numbers.
  • Step 204 Extract risk indicators from the risk data.
  • the server preprocesses the risk data to obtain multiple risk indicators.
  • Different data types have different preprocessing methods for risk data.
  • digital risk data such as the financial data of target customers, as the main data source for assessing the risk status of target customers, can be directly divided into corresponding risk indicators after a simple split, such as simultaneous decline in asset growth, gross Interest rates fell year-on-year.
  • risk data of image, audio, text and other data types need to be cleaned, refined, quantified or standardized to obtain corresponding risk indicators, such as the target customer's settlement of non-performing loan debits in the past year.
  • Risk indicators can be index indicators, score indicators, or derivative indicators. Derivative indicators can be obtained through logical operations of known risk indicators, such as similarity with default customers and distance from default customers.
  • Step 206 Obtain a risk prediction model, where the risk prediction model includes multiple risk factors.
  • the risk prediction model is a machine learning model based on sample risk data of multiple sample customers.
  • the risk prediction model can be a logistic regression model or a neural network model.
  • the risk prediction model includes multiple risk factors with strong predictive power and low correlation based on the screening of sample risk data.
  • the risk prediction model is used to score the default risk of the target customer based on the risk data of the target customer. Default risk refers to the possibility of default behaviors such as deferred repayment by the target customer and loss of repayment ability before the loan repayment date.
  • Step 208 Screen the extracted multiple risk indicators according to the risk factors.
  • Step 210 Input the risk indicators obtained through the screening into a risk prediction model, and output and obtain a risk score corresponding to the customer identification.
  • the server filters the extracted risk indicators according to the risk factors in the risk prediction model, that is, selects the part of the risk indicators required for risk prediction from the extracted large number of risk indicators.
  • the server inputs the risk index obtained through the screening into the risk prediction model, outputs the probability value of the target customer's default behavior in a specified period in the future, and converts the probability value into a risk score.
  • there are many ways to convert probability values to risk scores such as presetting the corresponding relationships between various probability value intervals and risk scores, or presetting the conversion factors of probability values to risk scores, which are not limited.
  • risk indicators can be extracted from the risk data; based on a preset acquisition of multiple risk factors in the risk prediction model, multiple extracted risk indicators can be filtered; The obtained risk index is input into the risk prediction model, and the risk score corresponding to the customer identifier in the risk data can be output. Because the risk data is automatically collected and processed, the risk prediction efficiency can be improved; based on the risk prediction model, multiple risk factors can be considered comprehensively, so that the risk prediction accuracy can be achieved.
  • the risk data includes basic risk data and associated risk data
  • obtaining the target customer's risk data includes: extracting the target customer's basic risk data in a database; obtaining the basic identification field corresponding to the target customer; The field is sent to the designated Internet platform; the associated risk data returned by the Internet platform according to the basic identification field is determined; and the data source category corresponding to the basic risk data and the associated risk data is determined.
  • Risk data includes basic risk data, such as customer identification, credit data, financial data, and banking supervision data.
  • Basic risk data is in-line data and can be pulled directly from a designated database.
  • credit data can be pulled from a database corresponding to the credit center of a Chinese name bank
  • financial data can be pulled from a database corresponding to a financial website
  • CBRC data can be pulled from the CBRC supervision database.
  • the server In addition to basic risk data, the server also drills down on the associated risk data of target customers, such as legal data, business data, real estate data, industry area data, customs data, and so on. Specifically, the server extracts the basic identification field from the identity information retained by the target customer in the financial institution.
  • the basic identification field may be an identification field of a target customer, and relatives or friends of the target customer (hereinafter referred to as "associated objects").
  • the identification fields include name, ID number, mobile phone number, email account number, financial transaction account number, and common device information. Commonly used device information can be IMEI (International Mobile Equipment Identity), IP address, device fingerprint, operating system version number, serial number, etc.
  • the Internet server can be a communication operator, an Internet wealth management service provider (such as a bank), a capital market market provider (such as Wind, a financial data and analysis tool service provider), a real estate server provider, a customs service provider, a legal service provider, Servers for business processing, such as business service providers.
  • the server generates a data extraction request according to the basic identification field of the target customer, and sends the data extraction request to the Internet server.
  • the Internet server looks up the access file containing the basic identification field, and returns the found access file to the server.
  • the access file records the associated access data of the target customer.
  • the server parses the access file to obtain the associated access data.
  • Associated access data refers to behavior data of target customers based on Internet access behaviors (such as registration behaviors, login behaviors, etc.) that occur on mobile terminals, cars, smart robots, and smart wearable devices.
  • Associated access data includes static access data and dynamic access data. Among them, static access data refers to data entered or used when Internet access occurs, such as mobile phone number, Mac address, IP address, device fingerprint, identity information, transaction account number, login information, retrieval information, and so on.
  • Dynamic access data refers to data generated when Internet access occurs, such as asset management financial records, securities investment records, capital market market transaction records, real estate investment records, customs transportation records, legal proceedings records, and so on.
  • the risk data obtained from different channels have different data source categories.
  • the data source category corresponding to financial data can be "financial”
  • the data source category corresponding to legal data can be "legal”.
  • the risk data of multiple dimensions of the target customer is automatically collected, which not only improves the data collection efficiency, but also expands the data collection range, thereby further improving the accuracy of risk prediction.
  • the method further includes: obtaining an identification field of an associated object having an association relationship with the target customer; obtaining risk data of the associated object according to the identification field; based on the risk data of the associated object and a preset risk prediction model , Calculate the risk score of the associated object; calculate the intimacy of each associated object with the target customer; determine the risk migration rate of the target customer affected by the associated object according to the risk score and intimacy of the associated object, and use the risk migration rate as a risk indicator .
  • the server calculates the risk migration rate of the target customer and uses the risk migration rate as a risk indicator to expand the risk prediction dimension. Specifically, the server uses the risk data of the associated object to calculate the risk score of the associated object in the above manner.
  • the underlying risk data carries a customer identification.
  • the server obtains the corresponding social network graph according to the customer identification.
  • the social network graph includes a target customer node corresponding to the customer identification and multiple associated customer nodes.
  • Social network diagrams are generated based on the customer's social relationship data. Social relationship data may be obtained from a pre-designated social networking site. When the target customer is an individual, the social relationship in the social networking site may be a relationship that is related to each other, such as a friend relationship and mutual attention.
  • Social relationships also include data related to customer actions, such as when customers post or share information that affects friends to comment, like, and forward.
  • the target customer is an enterprise
  • the social relationship can be a subordinate relationship between the enterprises.
  • the social network graph includes target customer nodes, multiple associated object nodes, and edges for connecting the nodes.
  • the server uses a preset calculation formula to calculate the intimacy of each associated client node and the target client node.
  • the intimacy calculation formula can be:
  • Q (v, w) is the intimacy between the associated client node w and the target client node v;
  • N (v) represents the set of neighboring nodes of the target client node v; the common adjacency of the target client node v and the associated client node w
  • the number of nodes is
  • the server calculates the probability of risk migration caused by the associated object to the target customer (hereinafter referred to as "risk migration rate") according to the risk score of each associated object and its intimacy with the target customer.
  • the server uses the risk mobility with the highest median risk mobility corresponding to multiple associated objects as a risk indicator. It is easy to understand that the server may also use the average value of the risk migration rates corresponding to multiple associated objects as a risk indicator, which is not limited.
  • the risk migration rate of the target customer is calculated, and the risk migration rate is taken as a risk index into the risk calculation consideration range, which can expand the risk prediction dimension and further improve the accuracy of risk warning.
  • the method further includes: monitoring public opinion data released by the network platform, splitting the public opinion data into a plurality of short texts; extracting the industry identification in the short text, and associating the industry identification with the corresponding short text; A sentiment analysis model is calculated to calculate the sentiment index corresponding to each short text; determine the impact weights corresponding to multiple short texts; and based on the sentiment index and influence weight of the associated short texts, calculate the sentiment index corresponding to each industry logo Use the public opinion index corresponding to the industry logo of the target customer as a risk indicator.
  • the server calculates the public opinion index of the target customer's corresponding industry, and uses the public opinion index as an associated risk indicator to expand the risk prediction dimension. Specifically, the server crawls public opinion data on a specified network platform.
  • Public opinion data It can be text, voice, video, or picture. If public opinion data is voice, video, or picture, it is first converted to text.
  • the converted opinion data is a long text including multiple split identifiers.
  • the server determines the location of each split identifier as the split location, and splits at each split location of the long text to obtain multiple short texts.
  • Split identifiers can be sentence terminator, such as period, exclamation mark, etc.
  • the server performs word segmentation, synonym replacement, and named entity replacement on short text. According to the pre-stored public opinion factors corresponding to various types of influence objects, the server determines one or more of the replaced word segments as intermediate keywords.
  • Public sentiment factors refer to factors that may affect the customer's emotional attitude in this type of public opinion data.
  • the server stores the public opinion analysis model in advance.
  • Public opinion analysis models can be obtained by training machine learning classification models.
  • the server converts multiple intermediate keywords into corresponding word vectors based on the word2vec model, inputs the word vectors into the public opinion analysis model corresponding to the type of the affected object, and calculates the sentiment index corresponding to the public opinion data.
  • Each public opinion data has corresponding profile information, such as release time, release media, release author, etc.
  • the server calculates the influence weight of each public opinion data.
  • the influence weight can be the cumulative sum of time weight, media weight and author weight. It is easy to understand that multiple short texts obtained by splitting the same public opinion data have the same weight of influence.
  • the server extracts the industry identifier in short text through a dictionary tree (trie) algorithm.
  • Industry identification refers to keywords that can characterize industry attributes, such as finance and insurance.
  • the intermediate keywords extracted by the server in some short texts include the industry identification.
  • the server can extract the same or different industry identifiers in different short texts.
  • the server associates the industry identification with the corresponding short text. It is easy to understand that the same industry logo may be associated with multiple short texts from multiple opinion data.
  • the server calculates the public opinion index corresponding to the corresponding industry according to the short text sentiment index corresponding to the industry identifier and the corresponding influence weight. For example, the public opinion index corresponding to each industry identifier may be a weighted sum of the sentiment indexes of all short texts associated with the industry identifier.
  • the influence weight of different public opinion data on different industries is calculated by combining the influence weight of public opinion data, that is, the public opinion index, which can improve the accuracy of public opinion analysis; calculate the public opinion index of the target customer's corresponding industry, and use the public opinion index as a risk index into the risk
  • the scope of calculation and consideration can expand the dimension of risk prediction, thereby improving the accuracy of risk early warning.
  • the steps of constructing the risk prediction model further include:
  • Step 302 Obtain sample risk data of multiple sample customers and a risk score corresponding to each sample customer; the sample risk data includes a data source category.
  • Step 304 Preprocess the sample risk data to obtain multiple sample risk indicators.
  • the server obtains the sample risk data of multiple sample customers from different data sources in the above manner, and labels each sample customer according to the sample risk data, that is, determines the risk score corresponding to the sample customer.
  • the server pre-processes the sample risk data in the above manner to obtain multiple sample risk indicators corresponding to each sample client. According to the data source corresponding to the corresponding sample risk data, each sample risk indicator has a corresponding data source category.
  • Step 306 According to the risk score, statistically obtain the predictive power parameter of each sample risk index.
  • the server obtains the predictive power parameter of each sample risk indicator according to the statistical analysis of the risk score.
  • the predictive power refers to the contribution rate of the sample risk index to the judgment of the target customer's default behavior.
  • the server differentiates the sample clients into "good samples” and "bad samples” based on the risk score.
  • the server delimits multiple sample risk values corresponding to each sample risk indicator into different sample risk intervals, performs a single variable analysis on each sample risk indicator, and counts the good sample probability and bad sample probability corresponding to different sample risk indicator intervals. It is easy to understand that the sum of good sample probability and bad sample probability corresponding to the same sample risk indicator interval is 1.
  • the predictive force factor parameters of the corresponding risk index interval are obtained.
  • the server sums the predictive force parameters corresponding to the multiple sample risk indicator intervals of the sample risk indicator to obtain the predictive force parameters corresponding to the sample risk indicator.
  • Step 308 Calculate correlation parameters between multiple sample risk indicators.
  • the server calculates correlation parameters between any two sample risk indicators.
  • the correlation parameter can be a Pearson correlation coefficient, a distance correlation coefficient, and the like.
  • step 310 a variety of sample risk indicators are screened according to the predictive power parameter, the correlation parameter, and the data source category to obtain a target risk indicator.
  • the server marks the two sample risk indicators as target risk indicators for retention, respectively. If the correlation parameter of the two sample risk indicators exceeds the threshold, the server identifies whether there are other sample risk indicators for the data source category corresponding to the sample risk indicators with low predictive power parameters. If yes, the server retains the sample risk indicator with the high predictive power parameter among the two sample risk indicators, and marks the sample risk indicator with the high predictive power parameter as the target risk indicator. Otherwise, the server retains both sample risk indicators to cover as many data source categories as possible.
  • Step 312 Establish a risk prediction model based on multiple target risk indicators.
  • the server treats multiple target risk indicators as a risk factor, sets the operational relationship between the risk factors, and builds a risk prediction model.
  • a variety of sample risk indicators are selected, and a risk prediction model is constructed by using sample risk indicators with strong predictive power, weak correlation, and involving multiple data source categories, which can improve the accuracy of risk prediction.
  • establishing a risk prediction model based on multiple target risk indicators includes: obtaining initial models corresponding to different data source categories; combining target risk indicators corresponding to each data source category to obtain each data source Multiple indicator sets corresponding to categories; initial models are trained based on different indicator sets to obtain intermediate models corresponding to each indicator set, and the prediction accuracy of multiple intermediate models is calculated; the intermediate model with the highest prediction accuracy is marked as corresponding data Target model corresponding to source category; build risk prediction model based on multiple target models.
  • the number of target risk indicators in the indicator set is not limited, and it can be one or more.
  • the number of target risk indicators in different indicator sets can be different.
  • the server trains the initial model based on different sets of indicators. Specifically, the server obtains an initial model corresponding to each of the multiple data source categories.
  • the initial model can be a linear regression model. Taking one of the data source categories as an example, the server adds the corresponding multiple indicator sets to the initial model respectively, and obtains an intermediate model corresponding to each initial model.
  • the server obtains parameter values that can characterize the accuracy of the intermediate model, such as AUC (Area UnderCurve, area under the ROC curve), by generating a receiver operating curve (receiver operating characteristic curve) or confusion matrix. Value, precision rate, etc.
  • the server selects the intermediate model with the highest accuracy as the target model corresponding to the data source category.
  • the server uses a stepwise regression method to select target risk indicators one by one from a plurality of target risk indicators corresponding to the data source category and add them to the initial model.
  • the accuracy of the initial model added with the new target risk indicator is calculated in the above manner.
  • the accuracy of the initial model is less than the threshold, it means that the newly added target risk indicator is not applicable, and the server removes the newly added target risk indicator.
  • the server retains the newly added target risk indicator.
  • establishing a risk prediction model based on multiple target models includes: obtaining preset weights corresponding to different data source categories; and establishing a risk prediction model based on multiple target models and corresponding preset weights.
  • the server builds a risk prediction model based on the logistic regression algorithm, and the target model and preset weights corresponding to each data source category.
  • the server groups customers into groups, and by setting preset weight combinations corresponding to different industries, it is possible to construct different risk prediction models for customers in different industries.
  • the method further includes: generating a first warning prompt corresponding to the customer identifier according to the risk score; obtaining a plurality of regular expressions, using the regular expression to perform risk prediction on the risk data, and obtaining a second corresponding to the customer identifier; Early warning prompt; comparing the warning level of the first warning prompt and the second warning prompt; sending the first warning warning or the second warning warning with a high warning level to the monitoring terminal.
  • the server performs risk early warning based on two sets of early warning push systems.
  • the risk prediction model is to quantify big data for risk prediction, which is suitable for quantitative analysis of target customers.
  • it also sets up a rule engine that does not need to quantify big data.
  • the rules engine includes multiple risk concerns.
  • the rule engine only needs to extract the required data from a large amount of risk data according to the risk concerns, and compare the extracted data with corresponding rules to obtain the risk score, which is suitable for qualitative analysis of target customers.
  • the server pushes the higher one from the output of the two sets of early warning push systems to reduce the false negative rate.
  • steps in the flowcharts of FIG. 2 and FIG. 3 are sequentially displayed according to the directions of the arrows, these steps are not necessarily performed sequentially in the order indicated by the arrows. Unless explicitly stated in this document, the execution of these steps is not strictly limited, and these steps can be performed in other orders. Moreover, at least a part of the steps in FIG. 2 and FIG. 3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily performed at the same time, but may be performed at different times. These sub-steps or The execution order of the phases is not necessarily performed sequentially, but may be performed in turn or alternately with other steps or at least a part of the sub-steps or phases of other steps.
  • a risk prediction processing device which includes: an indicator extraction module 402, an indicator screening module 404, and a risk prediction module 406, wherein:
  • the indicator extraction module 402 is configured to obtain risk data of a target customer, where the risk data carries a customer identification; extract risk indicators from the risk data;
  • An index screening module 404 is used to obtain a risk prediction model, where the risk prediction model includes multiple risk factors; and filtering the extracted multiple risk indicators according to the risk factors;
  • the risk prediction module 406 is configured to input the risk indicators obtained through the screening into a risk prediction model, and output and obtain a risk score corresponding to the customer identifier.
  • the risk data includes basic risk data and associated risk data
  • the indicator extraction module 402 is further configured to extract the basic risk data of the target customer in the database; obtain the basic identification field corresponding to the target customer; and send the basic identification field To the designated Internet platform; receive the associated risk data returned by the Internet platform according to the basic identification field; determine the data source categories corresponding to the basic risk data and the associated risk data respectively.
  • the device further includes a model building module 408, configured to obtain sample risk data of multiple sample customers and the risk score corresponding to each sample customer; the sample risk data includes the data source category; Pre-processing to obtain a variety of sample risk indicators; according to the risk score, statistical analysis to obtain the predictive power parameters of each sample risk indicator; calculating the correlation parameters between multiple sample risk indicators; according to the predictive power parameters, correlation parameters and data Based on the source category, a variety of sample risk indicators are selected to obtain the target risk indicator; a risk prediction model is established based on the multiple target risk indicators.
  • a model building module 408 configured to obtain sample risk data of multiple sample customers and the risk score corresponding to each sample customer; the sample risk data includes the data source category; Pre-processing to obtain a variety of sample risk indicators; according to the risk score, statistical analysis to obtain the predictive power parameters of each sample risk indicator; calculating the correlation parameters between multiple sample risk indicators; according to the predictive power parameters, correlation parameters and data Based on the source category, a variety of sample risk indicators are selected to obtain the target risk indicator;
  • the model building module 408 is further configured to obtain initial models corresponding to different data source categories, and combine target risk indicators corresponding to each data source category to obtain multiple indicators corresponding to each data source category. Set; training the initial model based on different indicator sets to obtain intermediate models corresponding to each indicator set, and calculating the prediction accuracy rate of multiple intermediate models; marking the intermediate model with the highest prediction accuracy rate as the target model corresponding to the corresponding data source category ; Establish a risk prediction model based on multiple objective models.
  • the model construction module 408 is further configured to obtain preset weights corresponding to different data source categories; and establish a risk prediction model based on multiple target models and corresponding preset weights.
  • the device further includes a risk early warning module 410 for generating a first warning prompt corresponding to the customer identifier according to the risk score; obtaining a plurality of regular expressions, and using the regular expressions to perform risk prediction on the risk data, A second warning alert corresponding to the customer identification is obtained; the warning level of the first warning alert and the second warning alert are compared; and the first warning alert or the second warning alert with a high warning level is sent to the monitoring terminal.
  • a risk early warning module 410 for generating a first warning prompt corresponding to the customer identifier according to the risk score; obtaining a plurality of regular expressions, and using the regular expressions to perform risk prediction on the risk data, A second warning alert corresponding to the customer identification is obtained; the warning level of the first warning alert and the second warning alert are compared; and the first warning alert or the second warning alert with a high warning level is sent to the monitoring terminal.
  • Each module in the above-mentioned risk prediction processing device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor calls and performs the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 5.
  • the computer device includes a processor, a memory, a network interface, and a database connected through a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile computer-readable storage medium and an internal memory.
  • the non-volatile computer-readable storage medium stores an operating system, computer-readable instructions, and a database.
  • the internal memory provides an environment for operating systems and computer-readable instructions in a non-volatile computer-readable storage medium.
  • the computer equipment database is used to store risk data and risk prediction models.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer-readable instructions are executed by a processor to implement a risk prediction processing method.
  • FIG. 5 is only a block diagram of a part of the structure related to the solution of the application, and does not constitute a limitation on the computer equipment to which the solution of the application is applied.
  • the specific computer equipment may be Include more or fewer parts than shown in the figure, or combine certain parts, or have a different arrangement of parts.
  • One or more non-volatile computer-readable storage media storing computer-readable instructions, and when the computer-readable instructions are executed by one or more processors, the one or more processors implement one of the embodiments of the present application The steps provided in the risk prediction process.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), dual data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM dual data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Technology Law (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于大数据分析的风险预测处理方法,包括:获取目标客户的风险数据,所述风险数据携带有客户标识;在所述风险数据中提取风险指标;获取风险预测模型,所述风险预测模型包括多个风险因子;根据所述风险因子对提取到的多个风险指标进行筛选;将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。

Description

风险预测处理方法、装置、计算机设备和介质
本申请要求于2018年8月20日提交中国专利局,申请号为2018109484728,申请名称为“风险预测处理方法、装置、计算机设备和介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种风险预测处理方法、装置、计算机设备和介质。
背景技术
为了规避风险,涉及贷款业务的金融机构需要在贷前、贷中甚至贷后不断对客户是否具有违约风险进行监控预测。风险预测是指运用多种信息渠道和分析方法,根据金融机构的风险战略和风险偏好确定预警指标,并以这些指标为出发点及时衡量客户的风险状况。
发明人意识到,传统风险预测手段主要是由风险控制部门人员对客户进行风险跟踪,并基于跟踪过程了解到的客户相关信息人工预测客户的信用风险状况或其他潜在风险。这种人工跟踪分析的方式不仅降低预测效率,使得预测准确性也难以保证。
发明内容
根据本申请公开的各种实施例,提供一种风险预测处理方法、装置、计算机设备和介质。
一种风险预测处理方法,所述方法包括:获取目标客户的风险数据,所述风险数据携带有客户标识;在所述风险数据中提取风险指标;获取风险预测模型,所述风险预测模型包括多个风险因子;根据所述风险因子对提取到的多个风险指标进行筛选;及将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
一种风险预测处理装置,所述装置包括:指标提取模块,用于获取目标客户的风险数据,所述风险数据携带有客户标识;在所述风险数据中提取风险指标;指标筛选模块,用于获取风险预测模型,所述风险预测模型包括多个风险因子;根据所述风险因子对提取到的多个风险指标进行筛选;及风险预测模块,用于将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
一种计算机设备,包括存储器和一个或多个处理器,存储器中存储有计算机可读指令,计算机可读指令被处理器执行时实现本申请任意一个实施例 中提供的风险预测处理方法的步骤。
一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器实现本申请任意一个实施例中提供的风险预测处理方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据一个或多个实施例中风险预测处理方法的应用场景图。
图2为根据一个或多个实施例中风险预测处理方法的流程示意图。
图3为根据一个或多个实施例中风险预测模型构建步骤的流程示意图。
图4为根据一个或多个实施例中风险预测处理装置的结构框图。
图5为根据一个或多个实施例中计算机设备的框图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的风险预测处理方法,可以应用于如图1所示的应用环境中。终端102与服务器104通过网络进行通信。终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。当需要对目标客户进行风险预测时,用户可以通过终端102向服务器104发送风险预测请求。服务器104响应风险预测请求或者按照预设时间频率获取目标客户的风险数据,在风险数据中提取风险指标。服务器104预先构建了风险预测模型。风险预测模型包括多个风险因子。服务器104根据风险预测模型中的风险因子对多个风险指标进行筛选,将筛选得到风险指标输入风险预测模型,输出得到客户标识对应的风险评分。服务器104可以基于风险评分进行客户风险预警。上述风险预测处理过程,自动采集并处理风险数据,可以提高风险预测效率;基于风险预测模型可以综合考虑多种风险因素,从而能够风险预测准确性。
在其中一个实施例中,如图2所示,提供了一种风险预测处理方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤202,获取目标客户的风险数据,风险数据携带有客户标识。
目标客户财务指标的恶化、负面舆情的显著增加、欠税被处罚等,往往反映了其内部较为严重的问题,如管理上的欠缺、经营能力的不足等,在风险不断积聚之后,会导致其走向违约,因此需要对其风险数据及时监控。目标客户可以是企业,也可以是个人;可以是已有客户,也可以是潜在客户。风险数据是指能够表征目标客户发生违约行为可能性的数据,如信用记录、财务数据等。风险数据的数据类型包括但不限于图像、音频、文本和数字。
步骤204,在风险数据中提取风险指标。
服务器对风险数据预处理,得到多个风险指标。不同数据类型的风险数据预处理方式不同。其中,数字类型的风险数据,如目标客户的财务数据,作为评定目标客户风险状况的主要数据来源,可以在经过简单拆分,即可直接到对应的风险指标,如资产增长率同步下降、毛利率同比下降等。但图像、音频、文本等数据类型的风险数据,则需要经过清洗、提炼、量化或标准化处理等,得到分别对应的风险指标,如目标客户近一年已结清不良贷款借据金额等。风险指标可以是指数指标、也可以是分数指标,还可以是衍生指标。其中,衍生指标可以是通过已知风险指标的逻辑运算得到,如与违约客户相似度,与违约客户距离等。
步骤206,获取风险预测模型,风险预测模型包括多个风险因子。
风险预测模型是基于多个样本客户的样本风险数据构建的机器学习模型。风险预测模型可以是逻辑回归模型,也可以是神经网络模型。风险预测模型包括基于样本风险数据筛选得到的预测能力强、相关性小的多个风险因子。风险预测模型用于根据目标客户的风险数据对目标客户的违约风险进行打分。违约风险是指目标客户发生延期还款、在贷款还款日之前失去还款能力等违约行为的可能性。
步骤208,根据风险因子对提取到的多个风险指标进行筛选。
步骤210,将筛选得到的风险指标输入风险预测模型,输出得到客户标识对应的风险评分。
服务器根据风险预测模型中的风险因子,对提取得到的风险指标进行筛选,即从提取到大量风险指标中选取风险预测需要的那部分风险指标。服务器将筛选得到的风险指标输入风险预测模型,输出目标客户在未来指定时段内发生违约行为的概率值,并将概率值转换为风险评分。其中,概率值到风险评分的转化方式可以有多种,如预置多种概率值区间和风险评分的对应关 系,或预置概率值到风险评分的转换因子等,对此不作限制。
本实施例中,通过采集目标客户的风险数据,可以在风险数据中提取风险指标;基于预置的获取风险预测模型中多个风险因子,可以对提取到的多个风险指标进行筛选;将筛选得到的风险指标输入风险预测模型,可以输出得到风险数据中客户标识对应的风险评分。由于自动采集并处理风险数据,可以提高风险预测效率;基于风险预测模型可以综合考虑多种风险因素,从而能够风险预测准确性。
在其中一个实施例中,风险数据包括基础风险数据和关联风险数据;获取目标客户的风险数据,包括:在数据库中提取目标客户的基础风险数据;获取目标客户对应的基础标识字段;将基础标识字段发送至指定的互联网平台;接收互联网平台根据基础标识字段返回的关联风险数据;确定基础风险数据和关联风险数据分别对应的数据源类别。
风险数据包括基础风险数据,如客户标识、信用数据、财务数据及银监数据等。基础风险数据属于行内数据,可以从指定的数据库直接拉取。例如,信用数据可以从中国人名银行征信中心对应的数据库中拉取;财务数据可以在财经网站对应的数据库中拉取;银监数据可以从银监会监管数据库中拉取。
除了基础风险数据,服务器还对目标客户的关联风险数据深入挖掘,如法律数据、工商数据、房地产数据、行业区域数据、海关数据等。具体的,服务器从目标客户在金融机构留存的身份信息中提取基础标识字段。基础标识字段可以是目标客户,以及目标客户的亲属或朋友(以下称“关联对象”)的身份识别字段。身份识别字段包括姓名、身份证号、手机号、邮箱账号、金融交易账号、常用设备信息等。常用设备信息可以是IMEI(International Mobile Equipment Identity,国际移动设备识别码)、IP地址、设备指纹、操作系统版本号、序列号等。
不同互联网服务器上运行了不同互联网平台。目标客户在使用各类设备访问机构内外的互联网平台时,将在相应互联网服务器中留下访问数据。访问数据可以以日志或文件等的形式存储。互联网服务器可以是通讯运营商、互联网理财服务商(如银行)、资本市场行情提供商(如Wind,金融数据和分析工具服务商)、房产服务器提供商、海关服务提供商、法律服务提供商、工商服务提供商等用于业务处理的服务器。服务器根据目标客户的基础标识字段,生成数据提取请求,将数据提取请求发送至互联网服务器。
互联网服务器查找包含基础标识字段的访问文件,将查找到的访问文件返回至服务器。访问文件记录了目标客户的关联访问数据。服务器对访问文件进行解析,得到关联访问数据。关联访问数据是指目标客户基于移动终端、汽车、智能机器人、智能穿戴设备等发生的互联网访问行为(如注册行为、 登录行为等)的行为数据。关联访问数据包括静态访问数据和动态访问数据。其中,静态访问数据是指发生互联网访问行为时录入或用到的数据,如手机号、Mac地址、IP地址、设备指纹、身份信息、交易账号、登录信息、检索信息等。动态访问数据是指发生互联网访问行为时产生的数据,如资产管理理财记录、证券投资记录、资本市场行情交易记录、房产投资记录、海关运输记录、法律诉讼记录等。从不同渠道获取的风险数据具有不同的数据源类别,如财务数据对应的数据源类别可以是“财务”,法律数据对应的数据源类别可以是“法律”等。
本实施例中,自动采集目标客户的多个维度的风险数据,不仅提高数据采集效率,也扩大了数据采集范围,进而可以提高风险预测精度。
在其中一个实施例中,该方法还包括:获取与目标客户存在关联关系的关联对象的标识字段;根据标识字段,获取关联对象的风险数据;基于关联对象的风险数据以及预设的风险预测模型,计算关联对象的风险评分;计算每个关联对象与目标客户的亲密度;根据关联对象的风险评分和亲密度,确定目标客户受到关联对象影响的风险迁移率,将风险迁移率作为一个风险指标。
服务器计算目标客户的风险迁移率,并将风险迁移率作为一个风险指标,以拓展风险预测维度。具体的,服务器利用关联对象的风险数据,按照上述方式计算关联对象的风险评分。基础风险数据携带有客户标识。服务器根据客户标识获取对应的社交网络图。社交网络图包括客户标识对应的目标客户节点和多个关联客户节点。社交网络图是根据客户的社交关系数据生成的。社交关系数据可以是从预先指定的社交网站中爬取得到的。当目标客户为个人时,社交网站中的社交关系可以是好友关系、相互关注等彼此之间互相关联的关系。社交关系还包括客户动作相关联的数据,比如,客户发布或者分享信息影响到好友进行评论、点赞、转发等。当目标客户为企业时,社交关系可以是企业之间的从属关系。社交网络图包括目标客户节点,多个关联对象节点以及用于连接节点的边线。
服务器利用预设计算公式计算每个关联客户节点与目标客户节点的亲密度。亲密度计算公式可以是:
Figure PCTCN2019071520-appb-000001
其中,Q(v,w)为关联客户节点w与目标客户节点v之间的亲密度;N(v)表示目标客户节点v的邻接节点集合;目标客户节点v和关联客户节点w的共同邻接节点数为|N(v)∩N(w)|;目标客户节点v和关联客户节点均不邻接的节点数为|N(v)∪N(w)|。
服务器根据每个关联对象的风险评分及其与目标客户的亲密度,计算该关联对象对目标客户造成风险迁移的概率(以下称“风险迁移率”)。服务器将多个关联对象分别对应的风险迁移率中值最高的风险迁移率作为一个风险指标。容易理解,服务器也可以将多个关联对象分别对应的风险迁移率对应的平均值作为一个风险指标,对此不作限制。
本实施例中,计算目标客户的风险迁移率,并将风险迁移率作为风险指标纳入风险测算考虑范围,可以拓展风险预测维度,进而可以提高风险预警准确性。
在其中一个实施例中,该方法还包括:监测网络平台发布的舆情数据,将舆情数据拆分为多个短文本;在短文本中提取行业标识,将行业标识与相应短文本关联;利用预设的舆情分析模型计算每个短文本对应的情感指数;确定多个短文本分别对应的影响力权重;根据相关联的短文本的情感指数和影响力权重,计算每种行业标识对应的舆情指数,将目标客户对应行业标识的舆情指数作为一个风险指标。
服务器计算目标客户对应行业的舆情指数,并将舆情指数作为一个关联风险指标,以拓展风险预测维度。具体的,服务器在指定网络平台爬取舆情数据。舆情数据。可以是文本、语音、视频或图片等。若舆情数据为语音、视频或图片,则将其先转换为文本。转换后的舆情数据为包括多个拆分标识符的长文本。服务器将每个拆分标识符所在位置确定为拆分位置,在长文本的每个拆分位置进行拆分,得到多个短文本。拆分标识符可以语句结束符,如句号、感叹号等。服务器对短文本进行分词、同义替换和命名实体替换处理。根据预先存储的多种影响对象类型分别对应的舆情因子,服务器将替换后的一个或多个分词确定为中间关键词。舆情因子是指该类舆情数据中可能影响客户情感态度的因素。
服务器预先存储了舆情分析模型。舆情分析模型可以对机器学习分类模型训练得到的。服务器基于word2vec模型将多个中间关键词分别转化为对应的词向量,将词向量输入相应影响对象类型对应的舆情分析模型,计算得到舆情数据对应的情感指数。
每个舆情数据具有对应的简介信息,如发布时间、发布媒体、发布作者等。服务器基于舆情数据的简介信息,计算每个舆情数据的影响力权重。例如,影响力权重可以是时间权重、媒体权重与作者权重等的累加和。容易理解,同一舆情数据拆分得到的多个短文本对应的影响力权重相同。
服务器通过字典树(trie)算法在短文本中提取行业标识。行业标识是指能够表征行业属性的关键词,如金融、保险等。换言之,服务器在某些短文本中提取到的中间关键词包括行业标识。服务器在不同短文本中可以提取 到相同或不同的行业标识。服务器将行业标识与相应短文本进行关联。容易理解,同一行业标识可能与来自多个舆情数据的多个短文本关联。服务器根据行业标识对应的短文本的情感指数以及对应影响力权重,计算相应行业对应的、舆情指数。例如,每个行业标识对应的舆情指数可以是与该行业标识关联的全部短文本的情感指数的加权和。
本实施例中,结合舆情数据的影响力权重计算不同舆情数据对不同行业影响,即舆情指数,可以提高舆情分析准确性;计算目标客户对应行业的舆情指数,并将舆情指数作为风险指标纳入风险测算考虑范围,可以拓展风险预测维度,进而可以提高风险预警准确性。
在其中一个实施例中,如图3所示,获取风险预测模型之前,还包括风险预测模型构建的步骤,具体包括:
步骤302,获取多个样本客户的样本风险数据及每个样本客户对应的风险评分;样本风险数据包括数据源类别。
步骤304,对样本风险数据进行预处理,得到多种样本风险指标。
服务器按照上述方式从不同数据源获取多个样本客户的样本风险数据,并根据样本风险数据对每个样本客户进行类别标注,即确定样本客户对应的风险评分。服务器按照上述方式对样本风险数据进行预处理,得到每个样本客户对应的多个样本风险指标。根据相应样本风险数据对应的数据源,每个样本风险指标具有对应的数据源类别。
步骤306,根据风险评分,统计分析得到每种样本风险指标的预测力参数。
服务器根据风险评分统计分析得到每种样本风险指标的预测力参数。预测力是指样本风险指标对于判断目标客户发生违约行为的贡献率。具体的,服务器基于风险评分将样本客户区分为“好样本”和“坏样本”。服务器将每种样本风险指标对应的多种样本风险值划定不同的样本风险区间,针对每种样本风险指标进行单一变量分析,统计不同样本风险指标区间对应的好样本概率和坏样本概率。容易理解,同一样本风险指标区间对应的好样本概率与坏样本概率的和值为1。通过将好样本概率与坏样本概率进行差值运算和对数运算,并将差值运算结果与对数运算结果进行乘积运算,得到相应风险指标区间的预测力子参数。服务器将样本风险指标对应多个样本风险指标区间的预测力子参数进行求和运算,即可得到该样本风险指标对应的预测力参数。
步骤308,计算多种样本风险指标之间的相关性参数。
服务器计算任意两个样本风险指标之间的相关性参数。相关性参数可以是皮尔逊相关系数,距离相关性系数等。
步骤310,根据预测力参数、相关性参数及数据源类别,对多种样本风险指标进行筛选,得到目标风险指标。
若两个样本风险指标的相关性参数超过阈值,服务器将两个样本风险指标分别标记为目标风险指标进行保留。若两个样本风险指标的相关性参数超过阈值,服务器识别预测力参数低的样本风险指标对应的数据源类别是否有其他样本风险指标被保留。若是,服务器保留两个样本风险指标中预测力参数高的样本风险指标,即将预测力参数高的样本风险指标标记为目标风险指标。否则,服务器将两个样本风险指标均保留,以涉及尽可能多的数据源类别。
步骤312,基于多个目标风险指标建立风险预测模型。
服务器将多个目标风险指标分别作为一个风险因子,设置风险因子之间的运算关系,构建得到风险预测模型。
本实施例中,对多种样本风险指标进行筛选,采用预测力强、相关性弱、且涉及多种数据源类别的样本风险指标构建风险预测模型,可以提高风险预测精度。
在其中一个实施例中,基于多个目标风险指标建立风险预测模型,包括:获取不同数据源类别分别对应的初始模型;对每种数据源类别对应的目标风险指标进行组合,得到每种数据源类别对应的多种指标集合;基于不同指标集合对初始模型进行训练,得到每种指标集合对应的中间模型,计算多种中间模型的预测准确率;将预测准确率最高的中间模型标记为相应数据源类别对应的目标模型;基于多个目标模型建立风险预测模型。
指标集合中目标风险指标的数量不限,可以是一个,也可以是多个。不同指标集合中目标风险指标的数量可以不相同。服务器基于不同指标集合对初始模型进行训练。具体的,服务器获取多个数据源类别分别对应的初始模型。初始模型可以是线性回归模型。以其中一个数据源类别为例,服务器将对应的多种指标集合分别加入初始模型,得到每个初始模型对应的中间模型。服务器通过生成中间模型的ROC曲线(receiver operating characteristic curve,受试者工作特征曲线)或混淆矩阵等,得到能够表征中间模型准确率的参数值,如AUC(Area Under Curve,ROC曲线下的面积)值、精确率率等。服务器筛选准确率最高的中间模型作为该数据源类别对应的目标模型。
在另一个实施例中,服务器通过逐步回归方法,从数据源类别对应的多个目标风险指标中逐一选取目标风险指标加入初始模型。服务器每加入一个目标风险指标,按照上述方式计算加入了新的目标风险指标的初始模型的准确率。当初始模型的准确率小于阈值时,表示新加入的目标风险指标不适用,服务器将该新加入的目标风险指标剔除。当初始模型的准确率大于或等于阈 值时,服务器将该新加入的目标风险指标保留。
本实施例中,不断尝试看哪种指标集合得到的预测结果更准确,采用预测结果最准确的指标集合训练得到的目标模型构建风险预测模型,可以提高风险预测模型准确性。
在其中一个实施例中,基于多个目标模型建立风险预测模型,包括:获取不同数据源类别对应的预设权重;基于多个目标模型及分别对应的预设权重,建立风险预测模型。
不同数据源类别具有不同的预设权重。服务器基于逻辑回归算法,以及每种数据源类别对应的目标模型和预设权重,构建风险预测模型。在另一个实施例中,服务器对客户进行群体划分,通过设置不同行业对应的预设权重组合,实现针对不同行业的客户分别构建不同的风险预测模型。
在其中一个实施例中,方法还包括:根据风险评分,生成客户标识对应的第一预警提示;获取多种规则表达式,利用规则表达式对风险数据进行风险预测,得到客户标识对应的第二预警提示;比较第一预警提示和第二预警提示的预警等级;将预警等级高的第一预警提示或第二预警提示发送至监控终端。
服务器基于两套预警推送体系进行风险预警。具体的,风险预测模型是通过将大数据量化进行风险预测,适用于对目标客户进行定量分析。除了采用上述风险预测模型对目标客户进行风险预测,还另外设定无需对大数据量化的规则引擎。规则引擎包括多个风险关注点。规则引擎只需要根据风险关注点,从大量的风险数据中提取需要的部分数据,将提取的数据与相应规则进行对比,即可得到风险评分,适用于对目标客户进行定性分析。服务器从两套预警推送体系的输出中取高者进行推送,减少漏报率。
本实施例中,面对不同客户具有不同属性特征的事实,采用两套预警推送体系对目标客户分别进行定量和定性分析,避免采用不适用的单一预警推送体系造成风险漏报的概率,进而提高风险预警精度。
应该理解的是,虽然图2和图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2和图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一个实施例中,如图4所示,提供了一种风险预测处理装置,包括:指标提取模块402、指标筛选模块404和风险预测模块406,其中:
指标提取模块402,用于获取目标客户的风险数据,风险数据携带有客户标识;在风险数据中提取风险指标;
指标筛选模块404,用于获取风险预测模型,风险预测模型包括多个风险因子;根据风险因子对提取到的多个风险指标进行筛选;
风险预测模块406,用于将筛选得到的风险指标输入风险预测模型,输出得到客户标识对应的风险评分。
在其中一个实施例中,风险数据包括基础风险数据和关联风险数据;指标提取模块402还用于在数据库中提取目标客户的基础风险数据;获取目标客户对应的基础标识字段;将基础标识字段发送至指定的互联网平台;接收互联网平台根据基础标识字段返回的关联风险数据;确定基础风险数据和关联风险数据分别对应的数据源类别。
在其中一个实施例中,该装置还包括模型构建模块408,用于获取多个样本客户的样本风险数据及每个样本客户对应的风险评分;样本风险数据包括数据源类别;对样本风险数据进行预处理,得到多种样本风险指标;根据风险评分,统计分析得到每种样本风险指标的预测力参数;计算多种样本风险指标之间的相关性参数;根据预测力参数、相关性参数及数据源类别,对多种样本风险指标进行筛选,得到目标风险指标;基于多个目标风险指标建立风险预测模型。
在其中一个实施例中,模型构建模块408还用于获取不同数据源类别分别对应的初始模型;对每种数据源类别对应的目标风险指标进行组合,得到每种数据源类别对应的多种指标集合;基于不同指标集合对初始模型进行训练,得到每种指标集合对应的中间模型,计算多种中间模型的预测准确率;将预测准确率最高的中间模型标记为相应数据源类别对应的目标模型;基于多个目标模型建立风险预测模型。
在其中一个实施例中,模型构建模块408还用于获取不同数据源类别对应的预设权重;基于多个目标模型及分别对应的预设权重,建立风险预测模型。
在其中一个实施例中,该装置还包括风险预警模块410,用于根据风险评分,生成客户标识对应的第一预警提示;获取多种规则表达式,利用规则表达式对风险数据进行风险预测,得到客户标识对应的第二预警提示;比较第一预警提示和第二预警提示的预警等级;将预警等级高的第一预警提示或第二预警提示发送至监控终端。
关于风险预测处理装置的具体限定可以参见上文中对于风险预测处理方法的限定,在此不再赘述。上述风险预测处理装置中的各个模块可全部或部 分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在其中一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性计算机可读存储介质、内存储器。该非易失性计算机可读存储介质存储有操作系统、计算机可读指令和数据库。该内存储器为非易失性计算机可读存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储风险数据和风险预测模型。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机可读指令被处理器执行时以实现一种风险预测处理方法。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器实现本申请任意一个实施例中提供的风险预测处理方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种风险预测处理方法,所述方法包括:
    获取目标客户的风险数据,所述风险数据携带有客户标识;
    在所述风险数据中提取风险指标;
    获取风险预测模型,所述风险预测模型包括多个风险因子;
    根据所述风险因子对提取到的多个风险指标进行筛选;及
    将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
  2. 根据权利要求1所述的方法,其特征在于,所述风险数据包括基础风险数据和关联风险数据;所述获取目标客户的风险数据,包括:
    在数据库中提取所述目标客户的基础风险数据;
    获取所述目标客户对应的基础标识字段;
    将所述基础标识字段发送至指定的互联网平台;
    接收所述互联网平台根据所述基础标识字段返回的关联风险数据;及
    确定所述基础风险数据和所述关联风险数据分别对应的数据源类别。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取风险预测模型之前,所述方法还包括:
    获取多个样本客户的样本风险数据及每个所述样本客户对应的风险评分;所述样本风险数据包括数据源类别;
    对所述样本风险数据进行预处理,得到多种样本风险指标;
    根据所述风险评分,统计分析得到每种所述样本风险指标的预测力参数;
    计算多种所述样本风险指标之间的相关性参数;
    根据所述预测力参数、相关性参数及数据源类别,对多种所述样本风险指标进行筛选,得到目标风险指标;及
    基于多个目标风险指标建立所述风险预测模型。
  4. 根据权利要求3所述的方法,其特征在于,所述基于多个目标风险指标建立所述风险预测模型,包括:
    获取不同所述数据源类别分别对应的初始模型;
    对每种所述数据源类别对应的目标风险指标进行组合,得到每种数据源类别对应的多种指标集合;
    基于不同指标集合对所述初始模型进行训练,得到每种所述指标集合对应的中间模型,计算多种所述中间模型的预测准确率;
    将预测准确率最高的中间模型标记为相应数据源类别对应的目标模型;及
    基于多个目标模型建立所述风险预测模型。
  5. 根据权利要求4所述的方法,所述基于多个所述目标模型建立所述风险预测模型,包括:
    获取不同数据源类别对应的预设权重;
    基于多个所述目标模型及分别对应的预设权重,建立所述风险预测模型。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述风险评分,生成所述客户标识对应的第一预警提示;
    获取多种规则表达式,利用所述规则表达式对所述风险数据进行风险预测,得到所述客户标识对应的第二预警提示;
    比较所述第一预警提示和所述第二预警提示的预警等级;及
    将预警等级高的第一预警提示或第二预警提示发送至监控终端。
  7. 一种风险预测处理装置,所述装置包括:
    指标提取模块,用于获取目标客户的风险数据,所述风险数据携带有客户标识;在所述风险数据中提取风险指标;
    指标筛选模块,用于获取风险预测模型,所述风险预测模型包括多个风险因子;根据所述风险因子对提取到的多个风险指标进行筛选;及
    风险预测模块,用于将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括模型构建模块,用于获取多个样本客户的样本风险数据及每个所述样本客户对应的风险评分;所述样本风险数据包括数据源类别;对所述样本风险数据进行预处理,得到多种样本风险指标;根据所述风险评分,统计分析得到每种所述样本风险指标的预测力参数;计算多种所述样本风险指标之间的相关性参数;根据所述预测力参数、相关性参数及数据源类别,对多种所述样本风险指标进行筛选,得到目标风险指标;及基于多个目标风险指标建立所述风险预测模型。
  9. 一种计算机设备,包括存储器及一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:
    获取目标客户的风险数据,所述风险数据携带有客户标识;
    在所述风险数据中提取风险指标;
    获取风险预测模型,所述风险预测模型包括多个风险因子;
    根据所述风险因子对提取到的多个风险指标进行筛选;及
    将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
  10. 根据权利要求9所述的计算机设备,其特征在于,所述风险数据包 括基础风险数据和关联风险数据;所述处理器执行所述计算机可读指令时还执行以下步骤:
    在数据库中提取所述目标客户的基础风险数据;
    获取所述目标客户对应的基础标识字段;
    将所述基础标识字段发送至指定的互联网平台;
    接收所述互联网平台根据所述基础标识字段返回的关联风险数据;及
    确定所述基础风险数据和所述关联风险数据分别对应的数据源类别。
  11. 根据权利要求9或10所述的计算机设备,其特征在于,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取多个样本客户的样本风险数据及每个所述样本客户对应的风险评分;所述样本风险数据包括数据源类别;
    对所述样本风险数据进行预处理,得到多种样本风险指标;
    根据所述风险评分,统计分析得到每种所述样本风险指标的预测力参数;
    计算多种所述样本风险指标之间的相关性参数;
    根据所述预测力参数、相关性参数及数据源类别,对多种所述样本风险指标进行筛选,得到目标风险指标;及
    基于多个目标风险指标建立所述风险预测模型。
  12. 根据权利要求11所述的计算机设备,其特征在于,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取不同所述数据源类别分别对应的初始模型;
    对每种所述数据源类别对应的目标风险指标进行组合,得到每种数据源类别对应的多种指标集合;
    基于不同指标集合对所述初始模型进行训练,得到每种所述指标集合对应的中间模型,计算多种所述中间模型的预测准确率;
    将预测准确率最高的中间模型标记为相应数据源类别对应的目标模型;及
    基于多个目标模型建立所述风险预测模型。
  13. 根据权利要求12所述的计算机设备,其特征在于,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取不同数据源类别对应的预设权重;
    基于多个所述目标模型及分别对应的预设权重,建立所述风险预测模型。
  14. 根据权利要求9所述的计算机设备,其特征在于,所述处理器执行所述计算机可读指令时还执行以下步骤:
    根据所述风险评分,生成所述客户标识对应的第一预警提示;
    获取多种规则表达式,利用所述规则表达式对所述风险数据进行风险预 测,得到所述客户标识对应的第二预警提示;
    比较所述第一预警提示和所述第二预警提示的预警等级;及
    将预警等级高的第一预警提示或第二预警提示发送至监控终端。
  15. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:
    获取目标客户的风险数据,所述风险数据携带有客户标识;
    在所述风险数据中提取风险指标;
    获取风险预测模型,所述风险预测模型包括多个风险因子;
    根据所述风险因子对提取到的多个风险指标进行筛选;及
    将筛选得到的风险指标输入所述风险预测模型,输出得到所述客户标识对应的风险评分。
  16. 根据权利要求15所述的存储介质,其特征在于,所述风险数据包括基础风险数据和关联风险数据;所述计算机可读指令被所述处理器执行时还执行以下步骤:
    在数据库中提取所述目标客户的基础风险数据;
    获取所述目标客户对应的基础标识字段;
    将所述基础标识字段发送至指定的互联网平台;
    接收所述互联网平台根据所述基础标识字段返回的关联风险数据;及
    确定所述基础风险数据和所述关联风险数据分别对应的数据源类别。
  17. 根据权利要求15或16所述的存储介质,其特征在于,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    获取多个样本客户的样本风险数据及每个所述样本客户对应的风险评分;所述样本风险数据包括数据源类别;
    对所述样本风险数据进行预处理,得到多种样本风险指标;
    根据所述风险评分,统计分析得到每种所述样本风险指标的预测力参数;
    计算多种所述样本风险指标之间的相关性参数;
    根据所述预测力参数、相关性参数及数据源类别,对多种所述样本风险指标进行筛选,得到目标风险指标;及
    基于多个目标风险指标建立所述风险预测模型。
  18. 根据权利要求17所述的存储介质,其特征在于,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    获取不同所述数据源类别分别对应的初始模型;
    对每种所述数据源类别对应的目标风险指标进行组合,得到每种数据源类别对应的多种指标集合;
    基于不同指标集合对所述初始模型进行训练,得到每种所述指标集合对应的中间模型,计算多种所述中间模型的预测准确率;
    将预测准确率最高的中间模型标记为相应数据源类别对应的目标模型;及
    基于多个目标模型建立所述风险预测模型。
  19. 根据权利要求18所述的存储介质,其特征在于,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    获取不同数据源类别对应的预设权重;
    基于多个所述目标模型及分别对应的预设权重,建立所述风险预测模型。
  20. 根据权利要求15所述的存储介质,其特征在于,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    根据所述风险评分,生成所述客户标识对应的第一预警提示;
    获取多种规则表达式,利用所述规则表达式对所述风险数据进行风险预测,得到所述客户标识对应的第二预警提示;
    比较所述第一预警提示和所述第二预警提示的预警等级;及
    将预警等级高的第一预警提示或第二预警提示发送至监控终端。
PCT/CN2019/071520 2018-08-20 2019-01-14 风险预测处理方法、装置、计算机设备和介质 WO2020037942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810948472.8 2018-08-20
CN201810948472.8A CN109165840B (zh) 2018-08-20 2018-08-20 风险预测处理方法、装置、计算机设备和介质

Publications (1)

Publication Number Publication Date
WO2020037942A1 true WO2020037942A1 (zh) 2020-02-27

Family

ID=64896169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071520 WO2020037942A1 (zh) 2018-08-20 2019-01-14 风险预测处理方法、装置、计算机设备和介质

Country Status (2)

Country Link
CN (1) CN109165840B (zh)
WO (1) WO2020037942A1 (zh)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383100A (zh) * 2020-03-25 2020-07-07 中国建设银行股份有限公司 基于风险模型的全生命周期管控方法和装置
CN111415247A (zh) * 2020-04-25 2020-07-14 中信银行股份有限公司 贷后信用风险评价方法、装置、存储介质及电子设备
CN111445157A (zh) * 2020-03-31 2020-07-24 深圳前海微众银行股份有限公司 业务数据的管理方法、装置、设备及存储介质
CN111445324A (zh) * 2020-03-26 2020-07-24 宁波全致金融科技有限公司 一种物流行业小额贷款风控方法、模型及装置
CN111612290A (zh) * 2020-03-31 2020-09-01 深圳奇迹智慧网络有限公司 安保方案生成方法、装置、计算机设备和存储介质
CN111639706A (zh) * 2020-05-29 2020-09-08 深圳壹账通智能科技有限公司 基于图像集的个人风险画像生成方法及相关设备
CN111640515A (zh) * 2020-05-26 2020-09-08 深圳市通用互联科技有限责任公司 区域的疫情风险确定方法、装置、计算机设备和存储介质
CN111666684A (zh) * 2020-06-05 2020-09-15 中国石化销售股份有限公司华南分公司 输送管道的环焊缝风险预估方法、装置及可读存储介质
CN111695824A (zh) * 2020-06-16 2020-09-22 深圳前海微众银行股份有限公司 风险尾端客户分析方法、装置、设备及计算机存储介质
CN111709661A (zh) * 2020-06-23 2020-09-25 中国平安财产保险股份有限公司 业务数据的风险处理方法、装置、设备及存储介质
CN111709828A (zh) * 2020-06-12 2020-09-25 中国建设银行股份有限公司 一种资源处理方法、装置、设备及系统
CN111950889A (zh) * 2020-08-10 2020-11-17 中国平安人寿保险股份有限公司 一种客户风险评估方法、装置、可读存储介质及终端设备
CN111967801A (zh) * 2020-09-23 2020-11-20 中国建设银行股份有限公司 交易风险的预测方法及装置
CN111984787A (zh) * 2020-08-17 2020-11-24 深圳新闻网传媒股份有限公司 一种基于互联网数据的舆情热点获取方法及系统
CN112053245A (zh) * 2020-09-03 2020-12-08 中国银行股份有限公司 信息评估方法及系统
CN112149951A (zh) * 2020-08-11 2020-12-29 招联消费金融有限公司 风险控制方法、装置、计算机设备和存储介质
CN112365116A (zh) * 2020-09-02 2021-02-12 税安科技(杭州)有限公司 一种数据风险分析方法及相关装置
CN112446617A (zh) * 2020-11-27 2021-03-05 平安普惠企业管理有限公司 风险评估方法、装置、计算机设备及可读存储介质
CN112529303A (zh) * 2020-12-15 2021-03-19 建信金融科技有限责任公司 基于模糊决策的风险预测方法、装置、设备和存储介质
CN112529716A (zh) * 2020-12-07 2021-03-19 平安科技(深圳)有限公司 额度预测方法、设备及计算机可读存储介质
CN112581260A (zh) * 2020-12-16 2021-03-30 中国建设银行股份有限公司 监测区域金融风险的方法、装置和系统
CN112668748A (zh) * 2020-09-16 2021-04-16 华控清交信息科技(北京)有限公司 一种预测方法、装置和电子设备
CN112686679A (zh) * 2020-12-31 2021-04-20 天津工业大学 一种客户关联关系智能分析系统及方法
CN112712270A (zh) * 2020-12-31 2021-04-27 深圳前海微众银行股份有限公司 信息处理方法、装置、设备及存储介质
CN112734560A (zh) * 2020-12-31 2021-04-30 深圳前海微众银行股份有限公司 变量构造方法、装置、设备及计算机可读存储介质
CN112749895A (zh) * 2021-01-12 2021-05-04 深圳前海微众银行股份有限公司 客群指标管理方法、装置、设备及存储介质
CN112767129A (zh) * 2021-01-22 2021-05-07 建信金融科技有限责任公司 模型训练方法、风险预测方法及装置
CN112836750A (zh) * 2021-02-03 2021-05-25 中国工商银行股份有限公司 一种系统资源分配方法、装置及设备
CN113010509A (zh) * 2021-04-06 2021-06-22 新奥数能科技有限公司 统计特定时间段中使用数据的方法、装置和电子设备
CN113011986A (zh) * 2021-02-19 2021-06-22 建信金融科技有限责任公司 一种保险计算的抽象方法及系统
CN113034046A (zh) * 2021-04-21 2021-06-25 中国建设银行股份有限公司 一种数据风险计量方法、装置、电子设备及存储介质
CN113095834A (zh) * 2021-04-12 2021-07-09 中国工商银行股份有限公司 风险交易识别方法、装置及系统
CN113112346A (zh) * 2021-04-30 2021-07-13 平安普惠企业管理有限公司 用户分类方法、装置、电子设备及存储介质
CN113191137A (zh) * 2021-05-27 2021-07-30 中国工商银行股份有限公司 一种操作风险获取方法、系统、电子设备及存储介质
CN113256328A (zh) * 2021-05-18 2021-08-13 深圳索信达数据技术有限公司 预测目标客户的方法、装置、计算机设备及存储介质
CN113256008A (zh) * 2021-05-31 2021-08-13 国家电网有限公司大数据中心 一种欠费风险等级确定方法、装置、设备和存储介质
CN113298373A (zh) * 2021-05-20 2021-08-24 中国建设银行股份有限公司 一种金融风险评估方法、装置、存储介质和设备
CN113326375A (zh) * 2021-05-26 2021-08-31 北京沃东天骏信息技术有限公司 舆情处理的方法、装置、电子设备和存储介质
CN113485910A (zh) * 2021-06-07 2021-10-08 广发银行股份有限公司 一种测试风险预警方法、系统、设备及存储介质
CN113592623A (zh) * 2021-07-20 2021-11-02 浙江惠瀜网络科技有限公司 车贷贷前风险评估体系的构建方法和风险评估方法
CN113592161A (zh) * 2021-07-14 2021-11-02 北京淇瑀信息科技有限公司 基于催收标签的接入设备鉴别方法、装置和计算机设备
CN113610356A (zh) * 2021-07-16 2021-11-05 如东信息技术服务(上海)有限公司 一种机场核心风险预测方法及系统
CN113626717A (zh) * 2021-09-16 2021-11-09 平安国际智慧城市科技股份有限公司 一种舆情监测的方法、装置、电子设备和存储介质
CN113628029A (zh) * 2021-08-11 2021-11-09 中国工商银行股份有限公司 基于数据分析的银行客户风控方法及装置
CN113657547A (zh) * 2021-08-31 2021-11-16 平安医疗健康管理股份有限公司 基于自然语言处理模型的舆情监测方法及其相关设备
CN113723759A (zh) * 2021-07-30 2021-11-30 北京淇瑀信息科技有限公司 基于设备意向度和设备风险度为设备提供互联网服务的方法及装置
CN113742401A (zh) * 2020-05-27 2021-12-03 阿里巴巴集团控股有限公司 数据展示方法、装置、设备和存储介质
CN113762343A (zh) * 2021-08-04 2021-12-07 德邦证券股份有限公司 处理舆情信息和训练分类模型的方法、装置以及存储介质
CN113792935A (zh) * 2021-09-27 2021-12-14 武汉众邦银行股份有限公司 小微企业信贷违约概率预测方法、装置、设备及存储介质
CN113986843A (zh) * 2021-11-02 2022-01-28 青岛海尔工业智能研究院有限公司 数据风险预警处理方法、装置及电子设备
CN114022207A (zh) * 2021-11-08 2022-02-08 广东电网有限责任公司广州供电局 一种电网营销风险管控方法及装置
CN114417698A (zh) * 2021-12-10 2022-04-29 东北大学 一种轨道交通沿线外部环境的风险监测系统及评估方法
CN114429308A (zh) * 2022-02-08 2022-05-03 河南鑫安利安全科技股份有限公司 一种基于大数据的企业安全风险评估方法及系统
CN114647555A (zh) * 2022-05-13 2022-06-21 太平金融科技服务(上海)有限公司 基于多业务系统的数据预警方法、装置、设备和介质
CN114740774A (zh) * 2022-04-07 2022-07-12 青岛沃柏斯智能实验科技有限公司 一种通风柜安全操作的行为分析控制系统
CN114840835A (zh) * 2022-05-07 2022-08-02 中国银行股份有限公司 一种客户身份审核方法及系统
CN115346665A (zh) * 2022-10-19 2022-11-15 南昌大学第二附属医院 视网膜病变发病风险预测模型的构建方法、系统及设备
CN115361308A (zh) * 2022-08-19 2022-11-18 一汽解放汽车有限公司 一种工控网络数据风险确定方法、装置、设备及存储介质
CN115460059A (zh) * 2022-07-28 2022-12-09 浪潮通信信息系统有限公司 风险预警方法及装置
CN115471056A (zh) * 2022-08-31 2022-12-13 鼎翰文化股份有限公司 数据传输方法及数据传输系统
CN115632845A (zh) * 2022-10-12 2023-01-20 南京联创数字科技有限公司 一种基于风险评分卡的景区算法应用风险评估方法
CN115795185A (zh) * 2023-01-28 2023-03-14 北京白龙马云行科技有限公司 风险行程筛查方法、装置、计算机设备和存储介质
CN115827989A (zh) * 2023-02-16 2023-03-21 杭州金诚信息安全科技有限公司 大数据环境下网络舆情人工智能预警系统及方法
CN115835463A (zh) * 2022-11-29 2023-03-21 普杰软件(南京)有限公司 一种智能照明控制系统
CN116127522A (zh) * 2023-04-17 2023-05-16 北京盛科沃科技发展有限公司 一种基于多源数据采集的安全风险分析方法及系统
CN116308758A (zh) * 2023-03-20 2023-06-23 深圳征信服务有限公司 一种基于大数据的金融风险分析方法及系统
CN116386879A (zh) * 2023-06-07 2023-07-04 中国医学科学院阜外医院 一种风险等级的预测装置及计算机存储介质
CN116777621A (zh) * 2023-06-25 2023-09-19 陕西西煤云商信息科技有限公司 一种贸易业务风险防控方法及其防控系统
CN117078026A (zh) * 2023-10-17 2023-11-17 杭银消费金融股份有限公司 一种基于数据血缘的风控指标管理方法及系统
CN117094184A (zh) * 2023-10-19 2023-11-21 上海数字治理研究院有限公司 基于内网平台的风险预测模型的建模方法、系统及介质
CN117240527A (zh) * 2023-09-06 2023-12-15 深圳市常行科技有限公司 一种网络安全风险防范系统及方法
CN117422312A (zh) * 2023-12-18 2024-01-19 福建实达集团股份有限公司 一种企业经营风险的评估方法、介质及装置
CN117575329A (zh) * 2023-12-13 2024-02-20 广州智能科技发展有限公司 一种基于炸响指数的安全生产风险监测方法、存储介质及设备
CN118012491A (zh) * 2024-02-06 2024-05-10 深度(山东)数字科技集团有限公司 一种基于大数据指标规则模型的商业汇票风控方法
CN118096392A (zh) * 2024-04-22 2024-05-28 珠海凤泽信息科技有限公司 经济风险智能识别方法以及系统
CN118114405A (zh) * 2024-04-25 2024-05-31 昆山润阳机械有限公司 用于零件生产流程的智能检测方法及系统
CN118428742A (zh) * 2024-07-02 2024-08-02 杭州市公安局高新技术产业开发区分局、杭州市公安局滨江区分局 迁入企业的风险预警方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109165840B (zh) * 2018-08-20 2022-06-21 平安科技(深圳)有限公司 风险预测处理方法、装置、计算机设备和介质
CN109783385B (zh) * 2019-01-14 2022-05-24 中国银行股份有限公司 一种产品测试方法和装置
CN109918892B (zh) * 2019-02-13 2023-11-21 平安科技(深圳)有限公司 验证码生成方法、装置及存储介质、计算机设备
CN109886487A (zh) * 2019-02-20 2019-06-14 云南电网有限责任公司信息中心 一种基于电力设备画像电网监测预警的方法
CN110109750B (zh) * 2019-04-03 2023-08-18 平安科技(深圳)有限公司 虚拟资源获取方法、装置、计算机设备和存储介质
CN110163242B (zh) * 2019-04-03 2023-04-07 蚂蚁金服(杭州)网络技术有限公司 风险识别方法、装置及服务器
CN110119980A (zh) * 2019-04-23 2019-08-13 北京淇瑀信息科技有限公司 一种用于信贷的反欺诈方法、装置、系统和记录介质
CN110297727A (zh) * 2019-06-06 2019-10-01 深圳中兴飞贷金融科技有限公司 贷款数据备份方法及系统
CN110363390A (zh) * 2019-06-18 2019-10-22 中国平安人寿保险股份有限公司 基于大数据的风险预测方法、系统、设备及存储介质
CN110442712B (zh) * 2019-07-05 2023-08-22 创新先进技术有限公司 风险的确定方法、装置、服务器和文本审理系统
CN110490720A (zh) * 2019-07-08 2019-11-22 深圳壹账通智能科技有限公司 财务数据分析预警方法、装置、计算机设备和存储介质
CN110428091B (zh) * 2019-07-10 2022-12-27 平安科技(深圳)有限公司 基于数据分析的风险识别方法及相关设备
CN110493190B (zh) * 2019-07-15 2022-07-08 平安科技(深圳)有限公司 数据信息的处理方法、装置、计算机设备和存储介质
CN110399302A (zh) * 2019-07-26 2019-11-01 中国工商银行股份有限公司 软件测试项目的风险识别方法、装置、电子设备和介质
CN110956275B (zh) * 2019-11-27 2021-04-02 支付宝(杭州)信息技术有限公司 风险预测和风险预测模型的训练方法、装置及电子设备
CN111160662A (zh) * 2019-12-31 2020-05-15 咪咕文化科技有限公司 一种风险预测方法、电子设备及存储介质
CN111275541A (zh) * 2020-01-14 2020-06-12 中信百信银行股份有限公司 基于多维度信息的借款人质量评价方法、系统、电子设备及计算机可读存储介质
CN111126720B (zh) * 2020-02-28 2024-09-24 深圳前海微众银行股份有限公司 养殖场风险预测方法、装置、设备及存储介质
CN113780604A (zh) * 2020-05-22 2021-12-10 杭州衡泰软件有限公司 一种复合企业信用预警系统及方法
CN111667356A (zh) * 2020-05-29 2020-09-15 北京睿知图远科技有限公司 一种多维度大数据智能筛查风险系统
CN111652525B (zh) * 2020-06-16 2024-05-03 深圳前海微众银行股份有限公司 风险尾端客户分析方法、装置、设备及计算机存储介质
CN111724069A (zh) * 2020-06-22 2020-09-29 百度在线网络技术(北京)有限公司 用于处理数据的方法、装置、设备及存储介质
CN111861698B (zh) * 2020-07-02 2021-07-16 北京睿知图远科技有限公司 一种基于贷款多头数据的贷前审批预警方法及系统
CN111815433A (zh) * 2020-07-09 2020-10-23 北京云从科技有限公司 一种贷中风险评估方法、装置、机器可读介质及设备
CN111967767A (zh) * 2020-08-18 2020-11-20 支付宝(杭州)信息技术有限公司 一种业务风险识别方法、装置、设备及介质
CN112633635A (zh) * 2020-11-29 2021-04-09 龙马智芯(珠海横琴)科技有限公司 参展商风险评估方法、装置、服务器以及可读存储介质
CN112529321B (zh) * 2020-12-18 2023-09-05 平安银行股份有限公司 基于用户数据的风险预测方法、装置及计算机设备
CN112949825A (zh) * 2021-02-09 2021-06-11 中国工商银行股份有限公司 一种资源调整方法、装置及设备
US20240055131A1 (en) * 2021-04-29 2024-02-15 Boe Technology Group Co., Ltd. Mrthod, device for disease prediction, electronic device and computer-readable storage medium
CN113159933A (zh) * 2021-05-20 2021-07-23 中国工商银行股份有限公司 一种风险控制方法、系统、设备及介质
CN113256181A (zh) * 2021-07-13 2021-08-13 平安科技(深圳)有限公司 风险因子预测方法、装置、设备及介质
CN114187104A (zh) * 2021-12-18 2022-03-15 中国工商银行股份有限公司 交易风险检测方法、装置、计算机设备和存储介质
CN114742402A (zh) * 2022-04-08 2022-07-12 联合资信评估股份有限公司 信息监控方法、装置、设备和介质
CN115713399B (zh) * 2022-09-28 2023-10-20 睿智合创(北京)科技有限公司 一种结合第三方数据源的用户信用评估系统
CN115760368A (zh) * 2022-11-24 2023-03-07 中电金信软件有限公司 一种信贷业务审批方法、装置及电子设备
CN116720728A (zh) * 2023-04-26 2023-09-08 广州地铁设计研究院股份有限公司 风险评估方法、电子设备及存储介质
CN116629620B (zh) * 2023-07-26 2024-02-02 太平金融科技服务(上海)有限公司深圳分公司 一种风险等级确定方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952155A (zh) * 2017-03-08 2017-07-14 深圳前海纵腾金融科技服务有限公司 一种基于信用评分的催收方法及装置
CN108182634A (zh) * 2018-01-31 2018-06-19 国信优易数据有限公司 一种借贷预测模型的训练方法、借贷预测方法和装置
CN109165840A (zh) * 2018-08-20 2019-01-08 平安科技(深圳)有限公司 风险预测处理方法、装置、计算机设备和介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306013B2 (en) * 2015-07-15 2019-05-28 Sap Se Churn risk scoring using call network analysis
CN106503873A (zh) * 2016-11-30 2017-03-15 腾云天宇科技(北京)有限公司 一种预测用户守约概率的方法、装置和计算设备
CN107730154A (zh) * 2017-11-23 2018-02-23 安趣盈(上海)投资咨询有限公司 基于多机器学习模型并行的风控模型应用方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952155A (zh) * 2017-03-08 2017-07-14 深圳前海纵腾金融科技服务有限公司 一种基于信用评分的催收方法及装置
CN108182634A (zh) * 2018-01-31 2018-06-19 国信优易数据有限公司 一种借贷预测模型的训练方法、借贷预测方法和装置
CN109165840A (zh) * 2018-08-20 2019-01-08 平安科技(深圳)有限公司 风险预测处理方法、装置、计算机设备和介质

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383100A (zh) * 2020-03-25 2020-07-07 中国建设银行股份有限公司 基于风险模型的全生命周期管控方法和装置
CN111445324A (zh) * 2020-03-26 2020-07-24 宁波全致金融科技有限公司 一种物流行业小额贷款风控方法、模型及装置
CN111445157A (zh) * 2020-03-31 2020-07-24 深圳前海微众银行股份有限公司 业务数据的管理方法、装置、设备及存储介质
CN111612290A (zh) * 2020-03-31 2020-09-01 深圳奇迹智慧网络有限公司 安保方案生成方法、装置、计算机设备和存储介质
CN111612290B (zh) * 2020-03-31 2023-04-07 深圳奇迹智慧网络有限公司 安保方案生成方法、装置、计算机设备和存储介质
CN111415247A (zh) * 2020-04-25 2020-07-14 中信银行股份有限公司 贷后信用风险评价方法、装置、存储介质及电子设备
CN111415247B (zh) * 2020-04-25 2023-07-28 中信银行股份有限公司 贷后信用风险评价方法、装置、存储介质及电子设备
CN111640515A (zh) * 2020-05-26 2020-09-08 深圳市通用互联科技有限责任公司 区域的疫情风险确定方法、装置、计算机设备和存储介质
CN113742401A (zh) * 2020-05-27 2021-12-03 阿里巴巴集团控股有限公司 数据展示方法、装置、设备和存储介质
CN111639706A (zh) * 2020-05-29 2020-09-08 深圳壹账通智能科技有限公司 基于图像集的个人风险画像生成方法及相关设备
CN111666684B (zh) * 2020-06-05 2023-08-29 中国石化销售股份有限公司华南分公司 输送管道的环焊缝风险预估方法、装置及可读存储介质
CN111666684A (zh) * 2020-06-05 2020-09-15 中国石化销售股份有限公司华南分公司 输送管道的环焊缝风险预估方法、装置及可读存储介质
CN111709828A (zh) * 2020-06-12 2020-09-25 中国建设银行股份有限公司 一种资源处理方法、装置、设备及系统
CN111695824B (zh) * 2020-06-16 2024-03-29 深圳前海微众银行股份有限公司 风险尾端客户分析方法、装置、设备及计算机存储介质
CN111695824A (zh) * 2020-06-16 2020-09-22 深圳前海微众银行股份有限公司 风险尾端客户分析方法、装置、设备及计算机存储介质
CN111709661A (zh) * 2020-06-23 2020-09-25 中国平安财产保险股份有限公司 业务数据的风险处理方法、装置、设备及存储介质
CN111709661B (zh) * 2020-06-23 2024-05-07 中国平安财产保险股份有限公司 业务数据的风险处理方法、装置、设备及存储介质
CN111950889A (zh) * 2020-08-10 2020-11-17 中国平安人寿保险股份有限公司 一种客户风险评估方法、装置、可读存储介质及终端设备
CN112149951A (zh) * 2020-08-11 2020-12-29 招联消费金融有限公司 风险控制方法、装置、计算机设备和存储介质
CN111984787A (zh) * 2020-08-17 2020-11-24 深圳新闻网传媒股份有限公司 一种基于互联网数据的舆情热点获取方法及系统
CN112365116A (zh) * 2020-09-02 2021-02-12 税安科技(杭州)有限公司 一种数据风险分析方法及相关装置
CN112053245A (zh) * 2020-09-03 2020-12-08 中国银行股份有限公司 信息评估方法及系统
CN112053245B (zh) * 2020-09-03 2023-09-19 中国银行股份有限公司 信息评估方法及系统
CN112668748A (zh) * 2020-09-16 2021-04-16 华控清交信息科技(北京)有限公司 一种预测方法、装置和电子设备
CN112668748B (zh) * 2020-09-16 2024-05-10 华控清交信息科技(北京)有限公司 一种预测方法、装置和电子设备
CN111967801A (zh) * 2020-09-23 2020-11-20 中国建设银行股份有限公司 交易风险的预测方法及装置
CN112446617A (zh) * 2020-11-27 2021-03-05 平安普惠企业管理有限公司 风险评估方法、装置、计算机设备及可读存储介质
CN112529716A (zh) * 2020-12-07 2021-03-19 平安科技(深圳)有限公司 额度预测方法、设备及计算机可读存储介质
CN112529716B (zh) * 2020-12-07 2023-10-24 平安科技(深圳)有限公司 额度预测方法、设备及计算机可读存储介质
CN112529303A (zh) * 2020-12-15 2021-03-19 建信金融科技有限责任公司 基于模糊决策的风险预测方法、装置、设备和存储介质
CN112581260A (zh) * 2020-12-16 2021-03-30 中国建设银行股份有限公司 监测区域金融风险的方法、装置和系统
CN112734560A (zh) * 2020-12-31 2021-04-30 深圳前海微众银行股份有限公司 变量构造方法、装置、设备及计算机可读存储介质
CN112734560B (zh) * 2020-12-31 2024-05-14 深圳前海微众银行股份有限公司 变量构造方法、装置、设备及计算机可读存储介质
CN112686679A (zh) * 2020-12-31 2021-04-20 天津工业大学 一种客户关联关系智能分析系统及方法
CN112712270A (zh) * 2020-12-31 2021-04-27 深圳前海微众银行股份有限公司 信息处理方法、装置、设备及存储介质
CN112712270B (zh) * 2020-12-31 2024-04-26 深圳前海微众银行股份有限公司 信息处理方法、装置、设备及存储介质
CN112749895B (zh) * 2021-01-12 2024-06-07 深圳前海微众银行股份有限公司 客群指标管理方法、装置、设备及存储介质
CN112749895A (zh) * 2021-01-12 2021-05-04 深圳前海微众银行股份有限公司 客群指标管理方法、装置、设备及存储介质
CN112767129A (zh) * 2021-01-22 2021-05-07 建信金融科技有限责任公司 模型训练方法、风险预测方法及装置
CN112836750A (zh) * 2021-02-03 2021-05-25 中国工商银行股份有限公司 一种系统资源分配方法、装置及设备
CN113011986A (zh) * 2021-02-19 2021-06-22 建信金融科技有限责任公司 一种保险计算的抽象方法及系统
CN113010509A (zh) * 2021-04-06 2021-06-22 新奥数能科技有限公司 统计特定时间段中使用数据的方法、装置和电子设备
CN113095834A (zh) * 2021-04-12 2021-07-09 中国工商银行股份有限公司 风险交易识别方法、装置及系统
CN113034046A (zh) * 2021-04-21 2021-06-25 中国建设银行股份有限公司 一种数据风险计量方法、装置、电子设备及存储介质
CN113112346A (zh) * 2021-04-30 2021-07-13 平安普惠企业管理有限公司 用户分类方法、装置、电子设备及存储介质
CN113256328B (zh) * 2021-05-18 2024-02-23 深圳索信达数据技术有限公司 预测目标客户的方法、装置、计算机设备及存储介质
CN113256328A (zh) * 2021-05-18 2021-08-13 深圳索信达数据技术有限公司 预测目标客户的方法、装置、计算机设备及存储介质
CN113298373A (zh) * 2021-05-20 2021-08-24 中国建设银行股份有限公司 一种金融风险评估方法、装置、存储介质和设备
CN113326375A (zh) * 2021-05-26 2021-08-31 北京沃东天骏信息技术有限公司 舆情处理的方法、装置、电子设备和存储介质
CN113191137A (zh) * 2021-05-27 2021-07-30 中国工商银行股份有限公司 一种操作风险获取方法、系统、电子设备及存储介质
CN113256008A (zh) * 2021-05-31 2021-08-13 国家电网有限公司大数据中心 一种欠费风险等级确定方法、装置、设备和存储介质
CN113485910A (zh) * 2021-06-07 2021-10-08 广发银行股份有限公司 一种测试风险预警方法、系统、设备及存储介质
CN113592161A (zh) * 2021-07-14 2021-11-02 北京淇瑀信息科技有限公司 基于催收标签的接入设备鉴别方法、装置和计算机设备
CN113610356A (zh) * 2021-07-16 2021-11-05 如东信息技术服务(上海)有限公司 一种机场核心风险预测方法及系统
CN113592623A (zh) * 2021-07-20 2021-11-02 浙江惠瀜网络科技有限公司 车贷贷前风险评估体系的构建方法和风险评估方法
CN113723759A (zh) * 2021-07-30 2021-11-30 北京淇瑀信息科技有限公司 基于设备意向度和设备风险度为设备提供互联网服务的方法及装置
CN113723759B (zh) * 2021-07-30 2024-06-04 北京淇瑀信息科技有限公司 基于设备意向度和设备风险度为设备提供互联网服务的方法及装置
CN113762343B (zh) * 2021-08-04 2024-03-15 德邦证券股份有限公司 处理舆情信息和训练分类模型的方法、装置以及存储介质
CN113762343A (zh) * 2021-08-04 2021-12-07 德邦证券股份有限公司 处理舆情信息和训练分类模型的方法、装置以及存储介质
CN113628029A (zh) * 2021-08-11 2021-11-09 中国工商银行股份有限公司 基于数据分析的银行客户风控方法及装置
CN113657547A (zh) * 2021-08-31 2021-11-16 平安医疗健康管理股份有限公司 基于自然语言处理模型的舆情监测方法及其相关设备
CN113657547B (zh) * 2021-08-31 2024-05-14 平安医疗健康管理股份有限公司 基于自然语言处理模型的舆情监测方法及其相关设备
CN113626717A (zh) * 2021-09-16 2021-11-09 平安国际智慧城市科技股份有限公司 一种舆情监测的方法、装置、电子设备和存储介质
CN113792935B (zh) * 2021-09-27 2024-04-05 武汉众邦银行股份有限公司 小微企业信贷违约概率预测方法、装置、设备及存储介质
CN113792935A (zh) * 2021-09-27 2021-12-14 武汉众邦银行股份有限公司 小微企业信贷违约概率预测方法、装置、设备及存储介质
CN113986843A (zh) * 2021-11-02 2022-01-28 青岛海尔工业智能研究院有限公司 数据风险预警处理方法、装置及电子设备
CN114022207A (zh) * 2021-11-08 2022-02-08 广东电网有限责任公司广州供电局 一种电网营销风险管控方法及装置
CN114417698A (zh) * 2021-12-10 2022-04-29 东北大学 一种轨道交通沿线外部环境的风险监测系统及评估方法
CN114429308A (zh) * 2022-02-08 2022-05-03 河南鑫安利安全科技股份有限公司 一种基于大数据的企业安全风险评估方法及系统
CN114740774A (zh) * 2022-04-07 2022-07-12 青岛沃柏斯智能实验科技有限公司 一种通风柜安全操作的行为分析控制系统
CN114840835A (zh) * 2022-05-07 2022-08-02 中国银行股份有限公司 一种客户身份审核方法及系统
CN114647555A (zh) * 2022-05-13 2022-06-21 太平金融科技服务(上海)有限公司 基于多业务系统的数据预警方法、装置、设备和介质
CN114647555B (zh) * 2022-05-13 2022-09-02 太平金融科技服务(上海)有限公司 基于多业务系统的数据预警方法、装置、设备和介质
CN115460059B (zh) * 2022-07-28 2024-03-08 浪潮通信信息系统有限公司 风险预警方法及装置
CN115460059A (zh) * 2022-07-28 2022-12-09 浪潮通信信息系统有限公司 风险预警方法及装置
CN115361308A (zh) * 2022-08-19 2022-11-18 一汽解放汽车有限公司 一种工控网络数据风险确定方法、装置、设备及存储介质
CN115471056B (zh) * 2022-08-31 2023-05-23 鼎翰文化股份有限公司 数据传输方法及数据传输系统
CN115471056A (zh) * 2022-08-31 2022-12-13 鼎翰文化股份有限公司 数据传输方法及数据传输系统
CN115632845B (zh) * 2022-10-12 2023-12-05 南京联创数字科技有限公司 一种基于风险评分卡的景区算法应用风险评估方法
CN115632845A (zh) * 2022-10-12 2023-01-20 南京联创数字科技有限公司 一种基于风险评分卡的景区算法应用风险评估方法
CN115346665A (zh) * 2022-10-19 2022-11-15 南昌大学第二附属医院 视网膜病变发病风险预测模型的构建方法、系统及设备
CN115346665B (zh) * 2022-10-19 2023-03-10 南昌大学第二附属医院 视网膜病变发病风险预测模型的构建方法、系统及设备
CN115835463A (zh) * 2022-11-29 2023-03-21 普杰软件(南京)有限公司 一种智能照明控制系统
CN115835463B (zh) * 2022-11-29 2023-09-08 普杰软件(南京)有限公司 一种智能照明控制系统
CN115795185A (zh) * 2023-01-28 2023-03-14 北京白龙马云行科技有限公司 风险行程筛查方法、装置、计算机设备和存储介质
CN115795185B (zh) * 2023-01-28 2023-07-18 北京白龙马云行科技有限公司 风险行程筛查方法、装置、计算机设备和存储介质
CN115827989A (zh) * 2023-02-16 2023-03-21 杭州金诚信息安全科技有限公司 大数据环境下网络舆情人工智能预警系统及方法
CN115827989B (zh) * 2023-02-16 2023-04-28 杭州金诚信息安全科技有限公司 大数据环境下网络舆情人工智能预警系统及方法
CN116308758A (zh) * 2023-03-20 2023-06-23 深圳征信服务有限公司 一种基于大数据的金融风险分析方法及系统
CN116308758B (zh) * 2023-03-20 2024-01-05 深圳征信服务有限公司 一种基于大数据的金融风险分析方法及系统
CN116127522A (zh) * 2023-04-17 2023-05-16 北京盛科沃科技发展有限公司 一种基于多源数据采集的安全风险分析方法及系统
CN116386879B (zh) * 2023-06-07 2024-04-19 中国医学科学院阜外医院 一种风险等级的预测装置及计算机存储介质
CN116386879A (zh) * 2023-06-07 2023-07-04 中国医学科学院阜外医院 一种风险等级的预测装置及计算机存储介质
CN116777621A (zh) * 2023-06-25 2023-09-19 陕西西煤云商信息科技有限公司 一种贸易业务风险防控方法及其防控系统
CN116777621B (zh) * 2023-06-25 2024-02-06 陕西西煤云商信息科技有限公司 一种贸易业务风险防控方法及其防控系统
CN117240527A (zh) * 2023-09-06 2023-12-15 深圳市常行科技有限公司 一种网络安全风险防范系统及方法
CN117078026B (zh) * 2023-10-17 2024-02-06 杭银消费金融股份有限公司 一种基于数据血缘的风控指标管理方法及系统
CN117078026A (zh) * 2023-10-17 2023-11-17 杭银消费金融股份有限公司 一种基于数据血缘的风控指标管理方法及系统
CN117094184B (zh) * 2023-10-19 2024-01-26 上海数字治理研究院有限公司 基于内网平台的风险预测模型的建模方法、系统及介质
CN117094184A (zh) * 2023-10-19 2023-11-21 上海数字治理研究院有限公司 基于内网平台的风险预测模型的建模方法、系统及介质
CN117575329A (zh) * 2023-12-13 2024-02-20 广州智能科技发展有限公司 一种基于炸响指数的安全生产风险监测方法、存储介质及设备
CN117422312A (zh) * 2023-12-18 2024-01-19 福建实达集团股份有限公司 一种企业经营风险的评估方法、介质及装置
CN117422312B (zh) * 2023-12-18 2024-03-12 福建实达集团股份有限公司 一种企业经营风险的评估方法、介质及装置
CN118012491A (zh) * 2024-02-06 2024-05-10 深度(山东)数字科技集团有限公司 一种基于大数据指标规则模型的商业汇票风控方法
CN118096392A (zh) * 2024-04-22 2024-05-28 珠海凤泽信息科技有限公司 经济风险智能识别方法以及系统
CN118114405A (zh) * 2024-04-25 2024-05-31 昆山润阳机械有限公司 用于零件生产流程的智能检测方法及系统
CN118428742A (zh) * 2024-07-02 2024-08-02 杭州市公安局高新技术产业开发区分局、杭州市公安局滨江区分局 迁入企业的风险预警方法

Also Published As

Publication number Publication date
CN109165840A (zh) 2019-01-08
CN109165840B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2020037942A1 (zh) 风险预测处理方法、装置、计算机设备和介质
CN109272396B (zh) 客户风险预警方法、装置、计算机设备和介质
CN108876600B (zh) 预警信息推送方法、装置、计算机设备和介质
CN109829628B (zh) 基于大数据的风险预警方法、装置和计算机设备
US20220005125A1 (en) Systems and methods for collecting and processing alternative data sources for risk analysis and insurance
CN109829629B (zh) 风险分析报告的生成方法、装置、计算机设备和存储介质
CN109063921B (zh) 客户风险预警的优化处理方法、装置、计算机设备和介质
CN109543925B (zh) 基于机器学习的风险预测方法、装置、计算机设备和存储介质
US8489502B2 (en) Methods and systems for multi-credit reporting agency data modeling
WO2019218699A1 (zh) 欺诈交易判断方法、装置、计算机设备和存储介质
CN109949154B (zh) 客户信息分类方法、装置、计算机设备和存储介质
WO2020073727A1 (zh) 风险预测方法、装置、计算机设备和存储介质
CN112199510A (zh) 一种欺诈概率确定方法、装置、电子设备及存储介质
CN111582757B (zh) 欺诈风险的分析方法、装置、设备及计算机可读存储介质
CN110276587B (zh) 项目审批的方法、装置、计算设备及计算机可读存储介质
CN110675269A (zh) 文本审核方法以及装置
CN107809370B (zh) 用户推荐方法及装置
CN115063035A (zh) 基于神经网络的客户评估方法、系统、设备及存储介质
US20210073247A1 (en) System and method for machine learning architecture for interdependence detection
CN115545799B (zh) 信息技术服务质量评估方法、装置、设备及介质
CN117196630A (zh) 交易风险预测方法、装置、终端设备以及存储介质
CN116757837A (zh) 一种应用于中标贷的信用风控方法及系统
CN109145115B (zh) 产品舆情发现方法、装置、计算机设备和存储介质
CN114417974B (zh) 模型训练方法、信息处理方法、装置、电子设备和介质
CN115293783A (zh) 风险用户识别方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852435

Country of ref document: EP

Kind code of ref document: A1