WO2020037804A1 - 磁场控制电弧机器人智能增材方法 - Google Patents

磁场控制电弧机器人智能增材方法 Download PDF

Info

Publication number
WO2020037804A1
WO2020037804A1 PCT/CN2018/110524 CN2018110524W WO2020037804A1 WO 2020037804 A1 WO2020037804 A1 WO 2020037804A1 CN 2018110524 W CN2018110524 W CN 2018110524W WO 2020037804 A1 WO2020037804 A1 WO 2020037804A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
welding
robot
additive manufacturing
arc
Prior art date
Application number
PCT/CN2018/110524
Other languages
English (en)
French (fr)
Inventor
王克鸿
许雪宗
范霁康
周明
康承飞
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Publication of WO2020037804A1 publication Critical patent/WO2020037804A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters

Definitions

  • the invention relates to the technical field of arc additive manufacturing, in particular to a magnetic field controlled arc robot additive manufacturing forming method.
  • laser additive In the field of additive manufacturing technology, the two most commonly used methods for metal additive manufacturing currently exist are laser additive and arc additive. Each has its own advantages and disadvantages.
  • the main advantage of laser additive is that the molding accuracy is high, and the finished product can be directly put into use; its disadvantages are high cost and low additive efficiency.
  • the main advantages of arc additive are low cost and high droplet deposition efficiency; its disadvantages are that the forming accuracy of the component is not high, and the large thermal input causes large thermal deformation of the thermal component.
  • the process of introducing a magnetic field into the arc additive can improve the molding quality of the arc additive.
  • the plasma in the welding arc has good electrical conductivity, so a magnetic field can be used to control the arc additive process.
  • the methods of magnetic field controlling arc addition include: magnetic field stirring the molten pool to make the element distribution in the molten pool uniform and refine the grains; the magnetic field changes the shape of the arc, and the magnetic field generates Lorentz force on the longitudinally moving charged particles, driving the charged particles to conduct Rotate to expand the lower part of the arc and contract the upper part.
  • the arc shape changes from a conical shape to a bell shape, and the bell face is a closed surface that rotates at a high speed;
  • the magnetic field controls the droplet drop process and improves the accuracy of the droplet drop position;
  • the magnetic field constrains the shape of the molten pool To improve the molding accuracy; improve the molding accuracy; in 2002, the invention patent of CN1369347A was applied by Beijing University of Technology Yin Shuyan and others.
  • MAG molten electrode mixed gas shielded welding
  • An invention patent for aerospace aluminum alloy surface magnetron welding deposition forming method uses an external longitudinal magnetic field to improve the performance of aviation aluminum alloys. Deposit quality, especially its friction and mechanical properties.
  • the present invention provides a magnetic field controlled arc robot additive manufacturing method.
  • S2 Perform a single-pass welding process parameter test to determine the welding process parameters, the excitation current, the magnetic field frequency, and the distance from the excitation coil to the workpiece;
  • S4 Start the welding robot, pre-supply gas for 1 s, turn on the excitation power, move the welding gun to the starting point according to the set program, and start the arc.
  • the welding robot moves according to the preset trajectory, by applying a longitudinal magnetic field at the end of the welding gun, and The molten welding wire is piled up at the specified position, and the control system controls the wire feeding mechanism to convey the welding wire into the melting area at the specified speed;
  • step S5 Raise the welding torch one layer height in the height direction, and then perform the next layer fusion deposition according to step S4;
  • step S6 Repeat step S5 to complete the deposition and stacking of the workpiece, stop the welding torch, and simultaneously perform the arc extinguishing and the wire feeding of the wire feeding mechanism;
  • step S7 After completing step S6, the protective gas will stop supplying gas after a delay of 1s, turn off the current in the excitation coil, and move the welding gun to a safe position, and then complete the magnetic field controlled arc robot additive manufacturing.
  • the first layer stacked by the magnetic field controlled arc robot additive manufacturing method is performed on a corresponding substrate.
  • the surface of the deposited metal is cooled with an air gun, and before the cooling to 100 ° C-200 ° C, the next layer is stacked.
  • the workbench is installed on the positioner, and the position of the test piece can be adjusted more effectively during the adding process.
  • the adjustment range of the exciting current is between 0.5-10A, and the magnetic field frequency is between 5-30Hz.
  • the strength of the magnetic field and the frequency of the magnetic field change can be adjusted according to the requirements of the structure and size of the workpiece to achieve the purpose of mentioning the precision and quality of the molding.
  • the present invention has significant advantages:
  • the magnetic field controlled arc robot additive manufacturing method of the present invention utilizes an external longitudinal magnetic field to change the shape of an arc, and improves the accuracy of additive molding.
  • the magnetic field controlled arc robot additive manufacturing method of the present invention uses an external longitudinal magnetic field to stir the molten pool to play a role of homogenizing elements and refining grains.
  • the magnetic field controlled arc robot additive manufacturing method of the present invention uses an external longitudinal magnetic field to change the droplet transfer mode, and improves the control precision of the droplet drop position.
  • the magnetic field controlled arc robot additive manufacturing method of the present invention uses an external longitudinal magnetic field to constrain the shape of the molten pool, and improves the forming accuracy when stacking at difficult positions such as angles and edges.
  • FIG. 1 is a schematic diagram of a magnetic field controlled arc robot additive manufacturing method equipment system.
  • FIG. 2 is a partially enlarged view of the welding torch end and the exciting coil.
  • FIG. 3 is a physical diagram of an additive sample of Example 1 obtained by using a magnetic field controlled arc robot additive manufacturing method and equipment.
  • Fig. 4 is a physical drawing of an additive sample of Example 2 obtained by using a magnetic field controlled arc robot additive manufacturing method and equipment.
  • FIG. 5 is a physical drawing of an additive sample of Example 3 obtained by using a magnetic field controlled arc robot additive manufacturing method and equipment.
  • FIG. 6 is a physical diagram of an additive sample of Example 4 obtained by using a magnetic field controlled arc robot additive manufacturing method and equipment.
  • 1 protective gas cylinder
  • 2 wire feeder
  • 3 welding power source
  • 4 computer
  • 5 welding robot
  • 6 CCD camera
  • 7 welding parameter collector
  • 8 excitation coil and fixed bracket
  • 9 Excitation power supply
  • 10 Workbench and positioner
  • 11 Additive components
  • 12 Welding robot control cabinet.
  • the invention provides a magnetic field controlled arc robot additive manufacturing method, which is manufactured by using a magnetic field controlled arc robot system as shown in FIG. 1.
  • the magnetic field controlled arc robot equipment includes a protective gas cylinder, a wire feeder, a welding power source, a computer, a welding robot, CCD camera, welding parameter collector, excitation coil, excitation current, table and positioner, welding robot control cabinet.
  • Welding wire is the material of additive manufacturing, and its composition can be adjusted according to the performance requirements of the additive structure.
  • the wire feeder is placed on the welding power source and connected to the welding robot, which can control the wire feeding speed.
  • the protective gas and the wire feeding mechanism are fixed at the nozzle of the robot body at the same position to protect the molten droplets from being oxidized.
  • the protective gas used in this patent is argon.
  • the excitation coil is external to the welding gun and is coaxial with the welding gun.
  • the excitation power source is an alternating excitation power source, and its structure is shown in FIG. 2.
  • the robot control cabinet is connected to the welding robot and controls the operation of the welding robot.
  • the CCD camera is connected to the computer to monitor the droplet transition in real time.
  • the welding parameter collector is connected to the welding circuit and connected to the computer to monitor the welding parameter changes in real time.
  • the worktable is connected to the positioner, and the control system can adjust its attitude according to the shape of the additive structure to achieve the optimal deposition additive position.
  • the external longitudinal magnetic field can change the droplet transfer mode and improve the droplet deposition position.
  • the external longitudinal magnetic field can constrain the shape of the molten pool and improve the molding accuracy in difficult-to-add-in locations such as angles and edges; the magnetic field has a stirring effect on the molten pool, can uniformize the element composition in the molten pool, and refine the grains of the structure .
  • S3 Adjust the distance between the exciting coil and the workpiece.
  • the distance between the exciting coil and the workpiece is set to 20mm;
  • S4 Adjust the excitation current.
  • the excitation current is set to 1A.
  • the magnetic field frequency is set to 10 Hz.
  • the 3D solid part model diagram is sliced and imported into the control system, and the control system generates a welding robot walking trajectory based on the sliced layer calculation; complete the setting of each parameter.
  • the wire feed speed is 7.2mm / min; the welding speed is 11mm / s; the excitation current is 1A, the magnetic field frequency is 10Hz, the distance between the excitation coil and the workpiece surface is 20mm; the shielding gas flow rate is 20L / min;
  • step S8 Raise the welding gun in the Z-axis direction by 2mm, wait for 30s to cool, and perform the next fusion deposition according to step S7;
  • step S9 Repeat step S8 to complete the deposition and stacking of the workpiece. Stop the welding torch while performing arc extinguishing and stopping the wire feeding of the wire feeding mechanism;
  • step S10 After the completion of step S9, the protective gas stops supplying gas after a delay of 1 second, the current in the excitation coil is turned off, and the welding gun is moved to a safe position, and then the magnetic field controlled arc robot additive manufacturing is completed.
  • S2 Determine the welding process parameters.
  • the wire feed speed is set to 7mm / min and the welding speed is set to 10mm / s;
  • S3 Adjust the distance between the excitation coil and the workpiece.
  • the distance between the excitation coil and the workpiece is set to 15mm;
  • S5 Adjust the magnetic field frequency.
  • the magnetic field frequency is set to 15Hz.
  • the 3D solid part model diagram is sliced and imported into the control system, and the control system generates a welding robot walking trajectory based on the sliced layer calculation; complete the setting of each parameter.
  • the wire feeding speed is 7mm / min, the welding speed is 10mm / s;
  • the excitation current is 1.5A, the magnetic field frequency is 15Hz, the distance between the excitation coil and the workpiece surface is 15mm;
  • the shielding gas flow rate is 20L / min;
  • step S9 Repeat step S8 to complete the deposition and stacking of the workpiece. Stop the welding torch while performing arc extinguishing and stopping the wire feeding of the wire feeding mechanism;
  • step S10 After the completion of step S9, the protective gas stops supplying gas after a delay of 1 second, the current in the excitation coil is turned off, and the welding gun is moved to a safe position, and then the magnetic field controlled arc robot additive manufacturing is completed.
  • S2 Determine the welding process parameters.
  • the wire feed speed is set to 7.5mm / min and the welding speed is set to 12mm / s;
  • S3 Adjust the distance between the excitation coil and the workpiece.
  • the distance between the excitation coil and the workpiece is set to 25mm;
  • S4 Adjust the exciting current.
  • the exciting current is set to 2.5A;
  • the magnetic field frequency is set to 20 Hz.
  • the 3D solid part model diagram is sliced and imported into the control system, and the control system generates a welding robot walking trajectory based on the sliced layer calculation; complete the setting of each parameter.
  • the wire feed speed is 7.5mm / min; the welding speed is 12mm / s; the excitation current is 2.5A; the magnetic field frequency is 20Hz; the distance between the excitation coil and the workpiece surface is 25mm; the shielding gas flow rate is 20L / min;
  • step S8 The welding torch is moved from the safe position to the arcing point of the previous layer and raised 2mm in the Z axis direction, and then the next layer is fused and stacked according to step S3;
  • step S9 Repeat step S8 to complete the deposition and stacking of the workpiece. Stop the welding torch while performing arc extinguishing and stopping the wire feeding of the wire feeding mechanism;
  • step S10 After the completion of step S9, the protective gas stops supplying gas after a delay of 1 second, the current in the excitation coil is turned off, and the welding gun is moved to a safe position, and then the magnetic field controlled arc robot additive manufacturing is completed.
  • S3 Adjust the distance between the excitation coil and the workpiece.
  • the distance between the excitation coil and the workpiece is set to 15mm;
  • S4 Adjust the exciting current.
  • the exciting current is set to 2A.
  • the magnetic field frequency is set to 25 Hz.
  • the 3D solid part model diagram is sliced and imported into the control system, and the control system generates a welding robot walking trajectory based on the sliced layer calculation; complete the setting of each parameter.
  • the wire feeding speed is 7.2mm / min; the welding speed is 11mm / s; the exciting current is 2A; the magnetic field frequency is 25Hz; the distance between the exciting coil and the workpiece surface is 15mm; the shielding gas flow rate is 20L / min;
  • step S8 Raise the welding torch 2mm in the Z-axis direction, and the arc starting point is shifted outward by 0.5mm in the X-axis and Y-axis directions, respectively.
  • the next layer is fused and deposited according to step S7.
  • the rectangular track of the next layer is 1mm longer and wider than the previous layer;
  • step S9 Repeat step S8 to complete the deposition and stacking of the workpiece. Stop the welding torch while performing arc extinguishing and stopping the wire feeding of the wire feeding mechanism;
  • step S10 After the completion of step S9, the protective gas stops supplying gas after a delay of 1 second, the current in the excitation coil is turned off, and the welding gun is moved to a safe position, and then the magnetic field controlled arc robot additive manufacturing is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

一种磁场控制电弧机器人智能增材方法,该方法为:接通励磁电源(9),焊枪按设置好的程序移至起弧点进行起弧,焊接机器人(5)按预设轨迹进行移动,通过在焊枪端部施加纵向磁场,并将熔化的焊丝在指定位置堆积,同时控制系统控制送丝机构按照指定的速度输送焊丝进入熔融区域;将焊枪在高度方向上抬高一个层高,进行下一层的熔融堆积;完成工件的沉积堆叠,该方法利用外置纵向磁场改变电弧形态、控制熔滴下落过程、约束熔池形状,提高成型精度;同时外加纵向磁场对于熔池有搅拌作用,可以使得熔池元素均匀化、细化晶粒,提高增材构件的成型精度与质量。

Description

[根据细则26改正21.12.2018] 磁场控制电弧机器人智能增材方法 技术领域
本发明涉及电弧增材制造技术领域,尤其涉及一种磁场控制式电弧机器人增材制造成形方法。
背景技术
在增材制造技术领域,目前存在的金属增材制造方法,最常用的两种方法是激光增材与电弧增材。两者各有各自的优缺点。激光增材主要优点是成型精度高,所得成品可以直接投入使用;其缺点是升本高、增材效率较低。电弧增材主要优点是成本低,熔滴沉积效率高;其缺点是构件成型精度不高,热输入大导致热构件热变形大。
随着材料电磁过程的不断发展,将磁场引入电弧增材的过程可以提高电弧增材的成型质量。焊接电弧中的等离子体有良好的导电性,因此可以采用磁场控制电弧增材过程。磁场控制电弧增材的方式包括:磁场搅拌熔池,使得熔池内元素分布均匀化,细化晶粒;磁场改变电弧形态,磁场作用对纵向运动的带电粒子产生洛仑兹力,驱使带电粒子进行旋转,使电弧下部扩张、上部收缩。当磁感应强度达到一定值时,电弧形状由圆锥形变为钟罩形,其钟罩面为一个高速旋转的封闭曲面;磁场控制熔滴下落过程,提高熔滴下落位置的精度;磁场约束熔池形状,提高成型精度;提高成型精度;2002年由北京工业大学殷树言等人申请的公告号为CN1369347A的发明专利磁控高熔敷率熔化极混合气体保护焊接(MAG)方法及专用设备中采用磁场控制焊接电弧,有效的提高了熔覆效率。2012年由中国人民解放军装甲兵工程学院朱胜等人申请的申请号为201210514916.X的发明专利一种航空铝合金表面磁控焊接熔敷成型的制备方法中采用外加纵向磁场来改善航空铝合金得熔敷质量,尤其是其摩擦性能与力学 性能。
发明内容
为了解决电弧增材成型精度的问题,本发明提供一种磁场控制式电弧机器人增材制造方法。
实现本发明目的,提供技术方案如下
具体步骤如下:
S1:清理基板表面,除去表面杂物以及氧化物,打开保护气瓶,为电弧增材做好准备;
S2:进行单道焊接工艺参数试验,确定各焊接工艺参数以及励磁电流、磁场频率以及励磁线圈距工件的距离;
S3:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;
S4:启动焊接机器人,预送气1s,接通励磁电源,焊枪按设置好的程序移至起弧点进行起弧,焊接机器人按预设轨迹进行移动,通过在焊枪端部施加纵向磁场,并将熔化的焊丝在指定位置堆积,同时控制系统控制送丝机构按照指定的速度输送焊丝进入熔融区域;
S5:将焊枪在高度方向上抬高一个层高,然后按照步骤S4进行下一层的熔融堆积;
S6:重复步骤S5,完成工件的沉积堆叠,停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
S7:在完成S6步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。
进一步的,磁场控制式电弧机器人增材制造方法堆积的第一层在相应的基 板上进行。
进一步的,在每层堆积完成后,用气枪对沉积金属表面进行冷却,冷却至100℃-200℃之前时,在进行下一层的堆积。
进一步的,工作台安装在变位机上,在增材过程中能更有效的调节试件的位置。
进一步的,励磁电流的调节范围在0.5-10A之间,磁场频率在5-30Hz之间。
进一步的,磁场强度以及磁场变化频率可以根据工件结构和尺寸的要求进行调节,达到提到成型精度与质量的目的。
本发明相对于现有技术,具有显著优点:
1、本发明的磁场控制电弧机器人增材制造方法利用外置纵向磁场改变电弧形态,提高增材成型精度。
2、本发明的磁场控制电弧机器人增材制造方法利用外置纵向磁场搅拌熔池,起到均匀化元素,细化晶粒的作用。
3、本发明的磁场控制式电弧机器人增材制造方法利用外置纵向磁场改变熔滴过渡方式,提高熔滴下落位置的控制精度。
4、本发明的磁场控制式电弧机器人增材制造方法利用外置纵向磁场约束熔池形状,提高在夹角、边缘等难增材的位置进行堆积时的成形精度。
附图说明
图1为磁场控制式电弧机器人增材制造方法设备系统的示意图。
图2为焊枪端部与励磁线圈的局部放大图。
图3为利用磁场控制式电弧机器人增材制造方法设备所得实例1的增材样件实物图。
图4为利用磁场控制式电弧机器人增材制造方法设备所得实例2的增材样 件实物图。
图5为利用磁场控制式电弧机器人增材制造方法设备所得实例3的增材样件实物图。
图6为利用磁场控制式电弧机器人增材制造方法设备所得实例4的增材样件实物图。
其中,1:保护气瓶、2:送丝机、3:焊接电源、4:计算机、5:焊接机器人、6:CCD相机、7:焊接参数采集器、8:励磁线圈及固定托架、9:励磁电源、10:工作台及变位机、11:增材构件、12:焊接机器人控制柜。
具体实施方式
下面结合附图及实施例对本发明做进一步说明
本发明提供一种磁场控制电弧机器人增材制造方法,利用如图1所示磁场控制电弧机器人系统进行制造,磁场控制电弧机器人设备包括保护气瓶、送丝机、焊接电源、电脑、焊接机器人、CCD相机、焊接参数采集器、励磁线圈、励磁电流、工作台及变位机、焊接机器人控制柜。焊丝即增材制造的材料,其成分可以根据增材结构件的性能要求进行调整。
送丝机放置在焊接电源上面与焊接机器人相连,可以控制送丝速度。保护气和送丝机构一起固定在机器人本体的喷嘴处,处于相同位置,保护熔滴不被氧化,本专利所采用的保护气为氩气。励磁线圈至于焊枪外部,与焊枪同轴,励磁电源为交变励磁电源,其结构如图2所示。机器人控制柜与焊接机器人相连,控制焊接机器人运作。CCD相机与电脑相连,实时监视熔滴过渡,焊接参数采集器接入焊接回路并于电脑相连,实时监控焊接参数变化。工作台与变位机相连,控制系统可以根据增材结构件的形状对其姿态进行调整,达到最佳沉积增材位置。
通过磁场控制电弧机器人智能增材方法,可以改变电弧的特性,提高单道沉积焊缝的宽高比,提高电弧增材成型精度;外置纵向磁场可以改变熔滴过渡方式,提高熔滴沉积位置的控制精度;外置纵向磁场可以约束熔池形状,提高在夹角、边缘等难增材的位置的成型精度;磁场对于熔池有搅拌作用,可以均匀熔池内元素成分,细化组织晶粒。
实施例1
以型号为ER130S-G高强钢焊丝,其直径为1.2mm;6mm厚的304不锈钢基板堆积直壁为例。其具体步骤为:
S1:清理304不锈钢基板表面,除去表面杂物以及氧化物,打开保护气瓶,为电弧增材做好准备;
S2:确定焊接工艺参数。本实例中送丝速度设定为7.2mm/min,焊接速度设定为11mm/s;
S3:调节励磁线圈距工件的距离,本实例中励磁线圈距工件的距离设定为20mm;
S4:调节励磁电流大小,本实例中励磁电流设定为1A;
S5:调节磁场频率,本实例中磁场频率设定为10Hz;
S6:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;完成各个参数的设置。其中送丝速度为7.2mm/min;焊接速度为11mm/s;励磁电流为1A,磁场频率为10Hz,励磁线圈距工件表面的距离为20mm;保护气体流量20L/min;
S7:启动焊接机器人,预送气,接通励磁电源,焊枪按设置好的程序移至起弧点进行起弧,焊接机器人按预设轨迹在X轴方向沿直线运动,完成一道焊接后在焊缝末端息弧;
S8:将焊枪在Z轴方向抬高2mm,等待30s冷却后按照步骤S7进行下一道的熔融堆积;
S9:重复步骤S8,完成工件的沉积堆叠。停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
S10:在完成S9步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。
实施例2
以型号为ER130S-G高强钢焊丝,其直径为1.2mm;6mm厚的304不锈钢基板堆积直壁为例。其具体步骤为:
S1:清理304不锈钢基板表面,除去表面杂物以及氧化物,打开保护气瓶,为电弧增材做好准备;
S2:确定焊接工艺参数。本实例中送丝速度设定为7mm/min,焊接速度设定为10mm/s;
S3:调节励磁线圈距工件的距离,本实例中励磁线圈距工件的距离设定为15mm;
S4:调节励磁电流大小,本实例中励磁电流设定为1.5A;
S5:调节磁场频率,本实例中磁场频率设定为15Hz;
S6:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;完成各个参数的设置。其中送丝速度为7mm/min,焊接速度为10mm/s;励磁电流为1.5A,磁场频率为15Hz,励磁线圈距工件表面的距离为15mm;保护气体流量20L/min;
S7:启动焊接机器人,预送气,接通励磁电源,焊枪按设置好的程序移至起弧点进行起弧,焊接机器人按预设轨迹在X轴方向沿直线运动,完成一道焊 接后在焊缝末端息弧;
S8:将焊枪在Y轴方向平移7mm,等待30s冷却后按照步骤S7进行下一道的熔融堆积;
S9:重复步骤S8,完成工件的沉积堆叠。停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
S10:在完成S9步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。
实施例3
以型号为ER130S-G高强钢焊丝,其直径为1.2mm;6mm厚的304不锈钢基板堆积块体为例,其具体步骤为:
S1:清理304不锈钢基板表面,除去表面杂物以及氧化物,打开保护气瓶,为电弧增材做好准备;
S2:确定焊接工艺参数。本实例中送丝速度设定为7.5mm/min,焊接速度设定为12mm/s;
S3:调节励磁线圈距工件的距离,本实例中励磁线圈距工件的距离设定为25mm;
S4:调节励磁电流大小,本实例中励磁电流设定为2.5A;
S5:调节磁场频率,本实例中磁场频率设定为20Hz;
S6:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;完成各个参数的设置。其中送丝速度为7.5mm/min;焊接速度为12mm/s,励磁电流为2.5A,磁场频率为20Hz,励磁线圈距工件表面的距离为25mm;保护气体流量20L/min;
S7:启动焊接机器人,预送气,接通励磁电源,焊枪按设置好的程序移至 起弧点进行起弧,焊接机器人按预设轨迹在X轴方向沿直线运动,完成一道焊接后在焊缝末端息弧;焊枪在Y轴偏移7mm,等待30s冷却后起弧进行下一道焊缝的堆积重复上述步骤,完成第一层堆积。焊枪抬到安全位置,用气枪加速冷却沉积金属层,使其表面温度达100-200℃;
S8:焊枪由安全位置移至上一层起弧点并在Z轴方向抬高2mm,然后按照步骤S3进行下一层的熔融堆积;
S9:重复步骤S8,完成工件的沉积堆叠。停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
S10:在完成S9步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。
实施例4
以型号为ER130S-G高强钢焊丝,其直径为1.2mm;6mm厚的304不锈钢基板堆积直壁为例。其具体步骤为:
S1:清理304不锈钢基板表面,除去表面杂物以及氧化物,打开保护气瓶,为电弧增材做好准备;
S2:确定焊接工艺参数。本实例中送丝速度设定为7.2mm/min,焊接速度设定为11mm/s;
S3:调节励磁线圈距工件的距离,本实例中励磁线圈距工件的距离设定为15mm;
S4:调节励磁电流大小,本实例中励磁电流设定为2A;
S5:调节磁场频率,本实例中磁场频率设定为25Hz;
S6:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;完成各个参数的设置。其中送丝速 度为7.2mm/min;焊接速度为11mm/s;励磁电流为2A,磁场频率为25Hz,励磁线圈距工件表面的距离为15mm;保护气体流量20L/min;
S7:启动焊接机器人,预送气,接通励磁电源,焊枪按设置好的程序移至起弧点进行起弧,焊接机器人按预设轨迹在基板上按矩形轨迹运动,完成一层焊接后在焊缝末端息弧;
S8:将焊枪在Z轴方向抬高2mm,起弧点沿X轴、Y轴方向分别向外平移0.5mm。等待60s冷却后按照步骤S7进行下一层的熔融堆积。下一层的矩形轨迹长、宽比上一层大1mm;
S9:重复步骤S8,完成工件的沉积堆叠。停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
S10:在完成S9步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。

Claims (6)

  1. 一种磁场控制式电弧机器人增材制造方法,其特征在于,包括如下步骤:
    S1:清理基板表面,除去表面杂物以及氧化物,打开保护气瓶;
    S2:进行单道焊接工艺参数试验,确定各焊接工艺参数以及励磁电流、磁场频率以及励磁线圈距工件的距离;
    S3:将三维实体零件模型图切片分层处理后导入控制系统中,控制系统根据切片分层计算生成焊接机器人行走轨迹;
    S4:启动焊接机器人,预送气1s,接通励磁电源,焊枪移至起弧点进行起弧,焊接机器人按预设轨迹进行移动,通过在焊枪端部施加纵向磁场,并将熔化的焊丝在指定位置堆积,同时控制系统控制送丝机构按照指定的速度输送焊丝进入熔融区域;
    S5:将焊枪在高度方向上抬高一个层高,然后按照步骤S4进行下一层的熔融堆积;
    S6:重复步骤S5,完成工件的沉积堆叠,停止焊枪的移动,同时进行熄弧和停止送丝机构的送丝;
    S7:在完成S6步骤后,保护气在延迟1s后停止送气,关闭励磁线圈中的电流,把焊枪移动到的安全位置后,完成磁场控制式电弧机器人增材制造。
  2. 如权利要求1所述的磁场控制式电弧机器人增材制造方法,其特征在于,施加纵向磁场具体操作如下:在焊枪的外围安装励磁线圈,确保励磁线圈与焊枪同轴。
  3. 如权利要求2所述的磁场控制式电弧机器人增材制造方法,其特征在于,励磁线圈通过固定托架安装在焊枪外围,并且可以调节距工件的距离。
  4. 如权利要求2-4所述的磁场控制式电弧机器人增材制造方法,其特征在于,励磁线圈采用直径为2.5mm的漆包线绕制而成。
  5. 如权利要求1所述的磁场控制式电弧机器人增材制造方法,其特征在于,所用焊枪为MIG焊枪,所用的保护气为纯氩气。气体流量为15L/min-25L/min。
  6. 如权利要求1所述的磁场控制式电弧机器人增材制造方法,其特征在于,根据工件结构和尺寸的要求,调节外加磁场大小、磁场频率、励磁线圈距工件的距离。7.如权利要求1所述的磁场控制式电弧机器人增材制造方法,其特征在于,励磁电流调节范围为0.5-10A,磁场频率调节范围为5-30Hz,励磁线圈距工件表面的距离调节范围为15-30mm。
PCT/CN2018/110524 2018-08-20 2018-10-16 磁场控制电弧机器人智能增材方法 WO2020037804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810944993.6A CN109128435A (zh) 2018-08-20 2018-08-20 磁场控制式电弧机器人增材制造方法
CN201810944993.6 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020037804A1 true WO2020037804A1 (zh) 2020-02-27

Family

ID=64790071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110524 WO2020037804A1 (zh) 2018-08-20 2018-10-16 磁场控制电弧机器人智能增材方法

Country Status (2)

Country Link
CN (1) CN109128435A (zh)
WO (1) WO2020037804A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112475543A (zh) * 2020-11-16 2021-03-12 西南交通大学 Gma增材制造路径拐点成形控制方法
CN114043042A (zh) * 2021-11-10 2022-02-15 首都航天机械有限公司 一种柔性电弧增材制造装备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394536A (zh) * 2019-05-06 2019-11-01 江苏烁石焊接科技有限公司 一种感应熔融金属丝机器人智能增材制造方法
CN110000448B (zh) * 2019-05-14 2021-06-04 集美大学 一种焊接钢板的方法和装置
CN111168194B (zh) * 2020-01-14 2022-06-28 佛山国防科技工业技术成果产业化应用推广中心 基于四极磁场控制电弧增材制造的方法及四极磁场系统
CN111185651B (zh) * 2020-01-16 2022-02-15 南京理工大学 一种可调节式磁场协同电弧增材系统及增材方法
CN111250827A (zh) * 2020-03-17 2020-06-09 沈阳工业大学 一种提高电弧熔丝增材构件表面成形质量的装置及方法
CN111571017A (zh) * 2020-04-30 2020-08-25 南京理工大学 一种双激光束电弧多热源复合增材方法
CN111545870A (zh) * 2020-05-13 2020-08-18 南京航空航天大学 一种功能梯度材料双丝双电弧增材制造系统与方法
CN111545751B (zh) * 2020-05-19 2022-06-21 四川三阳激光增材制造技术有限公司 大型金属合金件的3d粗成型方法及系统
CN111545752B (zh) * 2020-05-19 2022-09-30 江苏天启医疗科技有限公司 大型金属合金薄壁件的3d粗成型方法及系统
CN111843107A (zh) * 2020-06-28 2020-10-30 南京理工大学 一种磁场复合超声振动电弧增材装置及方法
CN112059385A (zh) * 2020-08-14 2020-12-11 湘潭大学 一种磁控等离子弧熔丝增材制造的层高实时控制方法
CN112643175A (zh) * 2020-12-16 2021-04-13 天津大学 镍基合金-低合金高强钢功能梯度材料的制造方法及装置
CN113000861B (zh) * 2021-02-01 2022-03-18 西安交通大学 一种磁约束加工悬垂结构件的增材制造设备和方法
CN113134670B (zh) * 2021-04-27 2022-10-25 哈尔滨工业大学 一种增材加工设备及加工方法
CN113333921A (zh) * 2021-06-01 2021-09-03 南京理工大学 一种带磁场作用的送丝和送粉复合电弧增材tig焊枪装置
CN113798632B (zh) * 2021-09-03 2022-10-14 华中科技大学 一种电弧熔丝增材制造的成形方法
CN113909635A (zh) * 2021-10-20 2022-01-11 上海交通大学 一种外加纵向磁场作用下电弧双丝增材制造的装置和方法
CN113996885B (zh) * 2021-11-26 2022-11-04 西南交通大学 改善厚壁结构件电弧增材制造边缘成形精度的方法
CN114226916B (zh) * 2021-12-14 2023-07-07 沈阳工业大学 一种提高电弧增材构件表面成形精度的装置及方法
CN115415646A (zh) * 2022-09-06 2022-12-02 上海工程技术大学 一种中熵/高熵合金熔敷层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087858A (ja) * 1999-09-22 2001-04-03 Mitsubishi Heavy Ind Ltd 溶接装置
CN105798299A (zh) * 2016-03-29 2016-07-27 上海大学 非接触控制增材制造金属零件凝固组织的方法及磁控金属3d打印装置
CN107066700A (zh) * 2017-03-21 2017-08-18 南京航空航天大学 一种电弧增材制造有限元建模方法
CN108176913A (zh) * 2018-02-01 2018-06-19 三峡大学 电磁场与受迫加工复合辅助的电弧增材制造方法与设备
CN108213649A (zh) * 2017-12-12 2018-06-29 南京理工大学 一种磁场控制式电弧机器人增材成形方法及装置
CN108296602A (zh) * 2018-01-30 2018-07-20 湖北理工学院 一种金属基材功能件及其增材加工制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158156C (zh) * 2002-03-22 2004-07-21 北京工业大学 磁控高熔敷率熔化极混合气体保护焊接(mag)方法及专用设备
CN101347861B (zh) * 2008-08-29 2011-06-08 重庆大学 不锈钢薄壁管环缝接头的焊接方法及装置
CN201295811Y (zh) * 2008-12-04 2009-08-26 重庆大学 电磁复合气体保护堆焊再制造模具的水冷励磁线圈装置
CN103624371A (zh) * 2013-11-29 2014-03-12 天津工业大学 一种提高全位置mag焊电源功率输出的方法
CN104959601B (zh) * 2015-07-03 2017-11-28 华中科技大学 一种梯度零件的电磁柔性复合熔积直接制备成形方法
CN106513941A (zh) * 2016-12-30 2017-03-22 华中科技大学 一种用于熔丝堆焊的熔池搅拌和焊丝预热的集成方法
CN108098113A (zh) * 2017-12-29 2018-06-01 南京理工大学 高频脉冲控制式电弧机器人增材制造方法
CN207723674U (zh) * 2018-01-17 2018-08-14 广东省海洋工程装备技术研究所 一种具有纵向磁场的异种焊接装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087858A (ja) * 1999-09-22 2001-04-03 Mitsubishi Heavy Ind Ltd 溶接装置
CN105798299A (zh) * 2016-03-29 2016-07-27 上海大学 非接触控制增材制造金属零件凝固组织的方法及磁控金属3d打印装置
CN107066700A (zh) * 2017-03-21 2017-08-18 南京航空航天大学 一种电弧增材制造有限元建模方法
CN108213649A (zh) * 2017-12-12 2018-06-29 南京理工大学 一种磁场控制式电弧机器人增材成形方法及装置
CN108296602A (zh) * 2018-01-30 2018-07-20 湖北理工学院 一种金属基材功能件及其增材加工制备方法
CN108176913A (zh) * 2018-02-01 2018-06-19 三峡大学 电磁场与受迫加工复合辅助的电弧增材制造方法与设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112475543A (zh) * 2020-11-16 2021-03-12 西南交通大学 Gma增材制造路径拐点成形控制方法
CN112475543B (zh) * 2020-11-16 2022-02-08 西南交通大学 Gma增材制造路径拐点成形控制方法
CN114043042A (zh) * 2021-11-10 2022-02-15 首都航天机械有限公司 一种柔性电弧增材制造装备

Also Published As

Publication number Publication date
CN109128435A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020037804A1 (zh) 磁场控制电弧机器人智能增材方法
US20220266371A1 (en) Method and apparatus for fabrication of articles by molten and semi-molten deposition
Almeida et al. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT)
CN108213649A (zh) 一种磁场控制式电弧机器人增材成形方法及装置
CN106862771A (zh) 一种用于高温合金的激光辅助熔化极电弧增材连接方法
CN114226916B (zh) 一种提高电弧增材构件表面成形精度的装置及方法
CN110238491B (zh) 一种CMT埋弧焊焊接inconel的方法
CN111673219B (zh) 一种厚骨架t型结构激光振荡填丝单面焊双侧成形的焊接方法
CN111843107A (zh) 一种磁场复合超声振动电弧增材装置及方法
US10036083B2 (en) Reaction material pre-placement for reaction metallurgical joining
CN112894102A (zh) 一种三丝等离子弧增材制造装置及方法
CN103433630A (zh) 一种脉动送丝激光-电弧复合点焊方法
CN114713942A (zh) 电弧负压力约束的钨极氩弧增材制造方法
CN111172531B (zh) 倾斜角度下的交变磁场辅助激光再制造装置
CN110732775A (zh) 一种双电弧辅助激光焊接装置及方法
CN110802323A (zh) 一种高熵合金电弧-激光复合增材制造的方法
CN116000457B (zh) 激光同轴诱导多tig电弧多丝快速增材制造方法及制造系统
Robert et al. Effect of temperature on the quality of welding beads deposited with CMT technology
CN111531252A (zh) 改善薄壁件gma增材制造效率与热积累的方法与装置
CN114473152B (zh) 一种双送丝变极性等离子Ni-Nb超合金的制备方法及装置
CA3130599A1 (en) Systems and methods to control a wire electrode at the end of a weld
CN111571017A (zh) 一种双激光束电弧多热源复合增材方法
CN110387518B (zh) 一种激光辅助爆炸喷涂的方法
KR20190039071A (ko) 금속 용접을 위한 유체-냉각식 접촉 팁 조립체
EP3569342A1 (en) Process for the layer-by-layer manufactur of parts in ti6al4v by means of coxial arc welding technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930775

Country of ref document: EP

Kind code of ref document: A1