WO2020037583A1 - 样本分析仪节能方法、样本分析仪、系统和存储介质 - Google Patents

样本分析仪节能方法、样本分析仪、系统和存储介质 Download PDF

Info

Publication number
WO2020037583A1
WO2020037583A1 PCT/CN2018/101876 CN2018101876W WO2020037583A1 WO 2020037583 A1 WO2020037583 A1 WO 2020037583A1 CN 2018101876 W CN2018101876 W CN 2018101876W WO 2020037583 A1 WO2020037583 A1 WO 2020037583A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
function
sample analyzer
analyzer
saving mode
Prior art date
Application number
PCT/CN2018/101876
Other languages
English (en)
French (fr)
Inventor
肖云
莫观允
余金龙
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/101876 priority Critical patent/WO2020037583A1/zh
Priority to CN201880094910.7A priority patent/CN112534271A/zh
Publication of WO2020037583A1 publication Critical patent/WO2020037583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the invention relates to the field of medical treatment and testing, and relates to, but is not limited to, a sample analyzer energy-saving method, a sample analyzer, a system, and a storage medium.
  • An embodiment of the present invention provides a sample analyzer energy saving method, which is applied to a sample analysis pipeline.
  • the method includes:
  • the sample analyzer If the sample analyzer is in a power saving mode, the sample analyzer loads a first function during a startup process;
  • the sample analyzer If the sample analyzer is in a non-energy-saving mode, the sample analyzer loads a first function and a second function during a startup process;
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the display screen of the sample analyzer When the display screen of the sample analyzer is turned on, it can respond to or execute operation instructions for instrument maintenance or troubleshooting.
  • the method further includes:
  • An embodiment of the present invention provides a sample analyzer, which is applied to a sample analysis pipeline.
  • the sample analyzer includes a controller for:
  • sample analyzer If the sample analyzer is in a non-energy-saving mode, controlling the sample analyzer to load a first function and a second function during a startup process;
  • the first function is related to pipeline sample scheduling
  • the second function is related to sample analysis
  • the sample analyzer further includes a unloading station for receiving sample racks transmitted from other sample analyzers in the pipeline.
  • the controller includes a first function control unit and a second function control unit.
  • the first function control unit is used to formulate a pipeline sample scheduling strategy; and the second function control unit is used to control the sample analysis.
  • the instrument analyzes or processes the sample.
  • the sample analyzer includes a transmission channel, which is a part of the pipeline transmission channel.
  • the sample analyzer further includes a display for outputting an option of whether to enable the energy saving mode.
  • An embodiment of the present invention provides a sample analysis system, and the system includes:
  • the first sample analyzer includes a controller for:
  • the first sample analyzer is in a power saving mode, controlling the sample analyzer to load a first function during a startup process
  • the first sample analyzer is in a non-energy-saving mode, controlling the sample analyzer to load a first function and a second function during a startup process;
  • the first function is related to pipeline sample scheduling
  • the second function is related to sample analysis.
  • the pipeline sample scheduling includes sample transmission between the first sample analyzer and the second sample analyzer.
  • the sample analysis system further includes a unloading station for receiving a sample rack measured by a second sample analyzer.
  • the first sample analyzer is a chip pusher
  • the first function is a sample scheduling function
  • the second function is a chip push function
  • the controller includes a first function control unit and a second function control unit.
  • the first function control unit is used to formulate a pipeline sample scheduling strategy; and the second function control unit is used to control the sample analysis.
  • the instrument analyzes or processes the sample.
  • An embodiment of the present invention provides a storage medium, and a program is stored in the storage medium, and when the program is executed by a processor, implements the steps of the energy saving method of the sample analyzer described above.
  • Embodiments of the present invention provide a sample analyzer energy-saving method, a sample analyzer, a system, and a storage medium, wherein it is determined whether the sample analyzer is in an energy-saving mode; if the sample analyzer is in an energy-saving mode, the sample analyzer is starting During the process, the first function is loaded; if the sample analyzer is in a non-energy-saving mode, the sample analyzer loads the first function and the second function during the startup process; wherein the first function and the pipeline sample Scheduling is related, and the second function is related to sample analysis.
  • the sample analyzer does not need to be loaded with a function that is used infrequently when it is started, so that fast startup and shutdown can be achieved. Some functions of the sample analyzer no longer consume reagents, while maintaining the normal operation of the assembly line.
  • FIG. 1A is a schematic diagram of a sample analysis process using a sample analysis system in the related art
  • FIG. 1B is a schematic diagram of a composition structure of a sample analysis system in the related art
  • FIG. 2 is a schematic flowchart of an energy saving method of a sample analyzer according to an embodiment of the present invention
  • FIG. 3A is a schematic flowchart of another implementation of the energy saving method of the sample analyzer according to the embodiment of the present invention.
  • FIG. 3B is a schematic flowchart of the sample analyzer in an energy-saving mode according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a work flow of a tablet pusher in the related art
  • FIG. 5 is a schematic diagram of a work flow of a chip pusher using a sample analyzer energy saving method according to an embodiment of the present invention
  • 6A is a schematic diagram of a composition of a sample analysis system according to an embodiment of the present invention.
  • 6B is a schematic diagram of another composition of the sample analysis system according to the present invention.
  • FIG. 7 is a schematic diagram of a sample analyzer according to an embodiment of the present invention.
  • FIG. 1A is a schematic diagram of a sample analysis process using a sample analysis system in the related art.
  • the sample analysis system includes at least: a sample rack 101, a test tube 102, a loading table 103, a sample analyzer 104, and an unloading table 105 Among them, test tube 1, test tube 2, ..., test tube n are placed in the sample rack 101, the user places the sample rack 101 with n test tubes 102 on the loading table 103, and the pipeline sequentially transfers the sample rack to the sample analyzer 104, As shown in FIG. 1, the test tube 2 is sequentially transported from the sample analyzer 1 to the sample analyzer n, and finally unloaded on the unloading table 105.
  • the assembly line is considered to be a set of automated inspection equipment, which may include at least a loading station, a testing equipment, and an unloading station.
  • FIG. 1B is a schematic structural diagram of the composition of a sample analysis system in the related art.
  • the pusher 11 has not only the function of preparing a blood smear, but also the function of a test tube rack unloading table (ie, a transport function).
  • the pipeline scheduler 15 of the sample analysis system is deployed on the main control board 12 of the pusher, and the unloader and the unloader 13 of the pusher are connected to the main control board 12. If the pipeline is to work normally, the slide machine 11 must be on, so that the slide machine 11 can transfer the sample rack to other sample analyzers 14.
  • the start-up process of the pusher will perform a large number of film-related mechanisms and initialization of the fluid path, and the self-test operation not only takes a long time to start up, but also consumes reagents.
  • the pusher will also advance and retreat.
  • the dormant operation also consumes reagents, which will not only affect the speed of switching on and off, but also not environmentally friendly.
  • FIG. 2 is A schematic diagram of the implementation process of the energy saving method of the sample analyzer according to the embodiment of the present invention, as shown in FIG. 2, the method includes the following steps:
  • step S201 it is determined whether the sample analyzer is in a power saving mode.
  • the sample analyzer has two working modes, an energy-saving working mode and a non-energy-saving working mode.
  • the sample analyzer may be any kind of blood analyzer or in vitro diagnostic product, such as a tablet pusher, a C reactive protein (CRP) detector, a glycation analyzer, a blood analyzer, or a radiographer, etc.
  • the sample can be tested by some sample analyzers, or the sample can be tested by all sample analyzers.
  • the sample analyzer is a pusher, it includes a film making function.
  • the pusher also has a test tube rack unloading table function (that is, a transfer function), and when the assembly line is working normally, users may not use the pusher mechanism for a long time.
  • step S202 if the sample analyzer is in the energy-saving mode, only the first function is loaded or turned on during the startup of the sample analyzer.
  • the sample analyzer activates the first function in the energy saving mode and does not activate the second function.
  • the first function is a function related to pipeline sample scheduling, such as a sample scheduling or transmission function. That is, in order to ensure the normal operation of the sample analysis pipeline, the sample analyzer only loads the necessary transmission function (ie, the first function).
  • Step S203 If the sample analyzer is in a non-energy-saving mode, the sample analyzer loads a first function and a second function during a startup process.
  • the frequency of use of the second function is less than the frequency of use of the first function.
  • the second function is related to sample analysis. That is, if the sample analyzer is started in a non-energy-saving mode, the transmission function of the sample analyzer and the related functions of the sample analysis are turned on. Taking the pusher as an example, when the first function and the second function are loaded and enabled, both the pipeline sample scheduling function and the sample push and production functions can be performed.
  • unused functions in the sample analyzer are not initialized, which can not only ensure the normal operation of the assembly line, but also save reagents, which is more economical and applicable.
  • FIG. 3A is a schematic flowchart of another method for saving energy of a sample analyzer according to an embodiment of the present invention. As shown in FIG.
  • step S301 if the sample analyzer is in a power saving mode, the sample analyzer loads a first function during a startup process.
  • the second function is not activated. That is, when the sample analyzer is started, only the commonly used first function is loaded at the same time, and the second function that is not commonly used is temporarily not loaded. Obviously, if the user wants to turn on the second function, the user can also manually turn on the second function. .
  • the film production function of the slide machine may not be used by the user for a long time, but the slide machine also has a test tube rack unloading table function, so in order to ensure the normal operation of the entire pipeline, the slide machine must be turned on.
  • step S302 the sample racks tested by other sample analyzers on the sample analysis pipeline are dispatched to the unloading station of the sample analyzer.
  • the step S302 may also be to schedule the sample racks in the sample analysis pipeline according to a preset scheduling policy.
  • the sample analyzer does not enable the second function that is not commonly used, but in order to ensure that the second function can be used normally when the second function is required to be used, it is necessary to remind the user to perform liquid circuit maintenance on the second function at intervals.
  • the sample analyzer is a pusher, and only the test tube rack unloading table function of the pusher is turned on, but if the pusher does not perform the liquid packing operation before entering the energy saving mode, and the pusher works in the energy saving mode for a long time , Can be performed automatically or prompt the user to perform liquid circuit maintenance operations to avoid liquid circuit crystallization and affect the performance of the instrument after switching to normal working mode.
  • step S303 if the sample analyzer has not been packed in a liquid path, and the time in which the sample analyzer is in the energy-saving state is greater than a first time threshold, the sample analyzer sends a first prompt message.
  • the sample analyzer if the sample analyzer is in the energy-saving mode for a long time, and its second function is in the unused state for a long time, each time the machine is turned on or off and goes to sleep, the liquid circuit initialization or liquid circuit cleaning will not be performed, which may affect the Instrument performance, such as the liquid crystal of the instrument caused by the liquid circuit cleaning for a long time, and the analyzer returns to the normal working mode (non-energy-saving mode), even if the liquid circuit initialization or liquid circuit cleaning is not performed, the performance of the instrument is not cleaned. It is lowered or malfunctions. Therefore, if the initialization of the liquid circuit or the cleaning of the liquid circuit is not performed for more than a preset time, a prompt message can be output to remind the user to perform liquid circuit maintenance and cleaning.
  • the sample analyzer has been packed before the sample analyzer enters the energy-saving mode, and the liquid circuit is in an empty and clean state, there is no need to initialize the liquid circuit or clean the liquid circuit. If it is recognized that the sample analyzer has been packed in the liquid circuit, it is not necessary to issue a prompt message, and the sample analyzer continues to be kept in an energy-saving state.
  • Step S304 the sample analyzer receives the inputted maintenance instruction, and performs liquid path maintenance on the sample analyzer.
  • the startup instruction is an instruction input in response to the first prompt information.
  • the sample analyzer detects that the second function has not been activated for longer than the first time threshold, it sends a prompt message to the user, reminding the user that the second function has not been initialized for a long time, and a fluid path maintenance is required, and then the user manually Turn on the second function for liquid circuit maintenance.
  • the steps S303 and 304 may also be implemented in the following ways:
  • the sample analyzer When it is detected that the time when the sample analyzer is in the energy-saving state is greater than the first time threshold, the sample analyzer is fluid-maintained.
  • the second function when the sample analyzer detects that the second function has not been activated for a time greater than the first time threshold, the second function is automatically initialized to perform liquid path maintenance to prevent liquid path crystallization and affect normal use of the second function.
  • the user in order to ensure that the user has the right to know the operation of the device and to prevent the user from using the device normally, the user should be informed first when maintenance of the liquid circuit is needed.
  • step S305 an option to turn off the backlight is provided.
  • step S306 if the backlight is selected to be turned off, and the time when the sample analyzer does not receive the operation instruction is greater than the second time threshold, the display screen of the sample analyzer is turned off.
  • an option “Turn off the backlight” is provided. If the user selects "Turn off the backlight” "Option 33", after the instrument is turned on, if there is no operation within the second time threshold, the display brightness is reduced or the display is turned off (for example, if no operation is performed within 30 seconds, the backlight is turned off) to save energy.
  • step S307 when the input first operation is received, the display screen is turned on.
  • the first operation may be a user clicking on a screen or clicking a specific button, for example, when the backlight is turned off, the user clicks on the screen, and the screen is turned on.
  • the display screen of the sample analyzer When the display screen of the sample analyzer is turned on, it can respond to or execute operation instructions for instrument maintenance or troubleshooting.
  • the second function in order to ensure that the unused functions can still be used normally, when it is detected that the second function has not been activated for a long time, the second function is initialized and the necessary liquid is performed. Circuit maintenance to avoid the crystallization of the liquid circuit from affecting the normal use of the second function.
  • the display interface of the sample analyzer is provided to the user with energy-saving mode and non-energy-saving mode options for the user to select the required working mode.
  • the method can be performed by the following steps:
  • the first step is to provide the option to enable or disable the energy saving mode.
  • the energy-saving mode of the sample analyzer is turned on or off according to the received selection instruction.
  • a second prompt message is issued; wherein the second prompt information is used to prompt the user to choose whether to enter the energy-saving mode.
  • the sample analyzer is used in two working modes, namely energy-saving mode and non-energy-saving mode; when the user uses it, the user is provided with energy-saving mode options and non-energy-saving mode options on the interface of the sample analyzer, and manually enters the energy-saving mode. Or, if it is detected that the second function is not used for a long time, the user is reminded to choose whether to enter the energy saving mode.
  • the sample analyzer is a pusher. If the pusher function of the pusher is not used for a long time, the user is reminded to choose to enter the energy saving mode. When the pusher is turned on, only the scheduling function of the pusher is loaded, and the pusher is not loaded.
  • the push function of the machine saves resources and increases the speed of the machine.
  • the display interface of the pusher is provided to the user to enable the energy-saving mode option 31 and to turn off the energy-saving mode option 32; if the user selects the energy-saving mode option 31 to be pushed, The tablet machine is in the energy-saving mode and does not consume reagents. If the user selects the option 32 for turning off the energy-saving mode, the tablet machine is in a non-energy-saving mode and can perform functions such as sample pushing and require reagent consumption. In this embodiment, when it is detected When the user does not use the push function of the pusher for a long time, the user is prompted with a message to remind the user to select the option 31 for enabling the energy saving mode.
  • FIG. 4 is a schematic diagram of a work flow of a tablet pusher in the related art. As shown in FIG. 4, the work flow includes the following steps:
  • step S401 the user turns on the tablet pusher and turns on the air source.
  • step S402 the tablet pusher initializes the mechanism and liquid path related to the filming function of the tablet pusher and the test tube rack unloading table function-related mechanism.
  • step S403 the user enters the operation interface of the tablet pusher.
  • step S404 the tablet pusher responds to the filming function of the tablet pusher, and responds to user operations such as test tube rack recovery, interface browsing, and troubleshooting.
  • step S405 the tablet pusher reports the detected malfunction of the film production function and the malfunction of the test tube rack unloading table function.
  • step S406 the tablet pusher determines whether the user has a request for a machine.
  • step S407 if the user requests a machine, the process proceeds to step S407; if the user does not request a shutdown, the process returns to step S404.
  • Step S407 The pusher resets both the mechanism related to the function of the push mechanism and the mechanism related to the function of the unloading table.
  • step S408 the tablet pusher performs liquid path cleaning.
  • step S409 the user turns off the air source, and then turns off the tablet pusher.
  • FIG. 5 is a schematic diagram of a work flow of a chip pusher using a sample analyzer energy saving method according to an embodiment of the present invention. As shown in FIG. 5, the work flow includes the following steps:
  • step S501 the user turns on the tablet pusher and turns on the air source.
  • step S502 the chip pusher initializes the function related mechanism of the test tube rack unloading table of the chip pusher.
  • step S503 the user enters the operation interface of the tablet pusher.
  • step S504 the tablet pusher responds to the test tube rack unloading table function of the tablet pusher, and responds to user operations such as test tube rack recovery, interface browsing, and troubleshooting.
  • the display screen is turned off ,Energy saving. With the backlight off, the user taps the screen and the screen lights up.
  • step S505 the tablet pusher reports the detected failure of the test tube rack unloading table function.
  • step S506 the tablet pusher determines whether the user has a request for a machine.
  • step S507 the user turns off the air source, and then turns off the tablet pusher.
  • a sample analyzer energy saving method is provided.
  • the push mechanism is set to the energy saving mode, that is, only the underwater scheduling function is enabled. If the user selects In energy-saving mode, the pusher does not perform unnecessary liquid circuit and mechanism initialization operations when it is turned on, does not poll to check irrelevant states, and does not report faults that are not related to the functions supported in the energy-saving mode. In this way, fast startup and shutdown are achieved, and No reagents are consumed.
  • FIG. 6A is a schematic diagram of a sample analysis system according to an embodiment of the present invention.
  • the sample analysis system 600 includes at least a first sample analyzer 601 and a second sample.
  • An analyzer 602 each sample analyzer has at least a transmission channel 61, and a plurality of the sample analyzers are connected in sequence through a corresponding transmission channel to form a sample analysis pipeline, and each sample analyzer includes at least a first function;
  • the first sample analyzer If the first sample analyzer is in a power saving mode, the first sample analyzer loads a first function during a startup process;
  • the first sample analyzer If the first sample analyzer is in a non-energy-saving mode, the first sample analyzer loads a first function and a second function during a startup process;
  • the first function is related to pipeline sample scheduling
  • the second function is related to sample analysis
  • FIG. 7 is a schematic diagram of the composition of the sample analyzer according to the embodiment of the present invention. As shown in FIG. 7, the first sample analyzer 71 and the second sample analyzer 72 each include a control. 701 for
  • sample analyzer If the sample analyzer is in a power saving mode, controlling the sample analyzer to load a first function during a startup process
  • the first function is related to pipeline sample scheduling
  • the second function is related to sample analysis
  • the first sample analyzer 71 and the second sample analyzer 72 further include an unloading stage 702 for receiving a sample rack transmitted from other sample analyzers in the pipeline.
  • the first sample analyzer 71 and the second sample analyzer 72 are tablet pushers, the first function is a sample scheduling function, and the second function is a pusher. Film function.
  • the controller 701 includes a first function control unit 711 and a second function control unit 712.
  • the first function control unit is configured to formulate a pipeline sample scheduling policy; the second The function control unit is configured to control the sample analyzer to analyze or process the sample.
  • the first sample analyzer 71 and the second sample analyzer 72 further include a display 704 for outputting an option of whether to enable the energy saving mode.
  • the sample analysis system 700 includes a first sample analyzer 71 and a second sample analyzer 72.
  • the first sample analyzer 71 includes a controller. 701 for:
  • the first sample analyzer is in a power saving mode, controlling the sample analyzer to load a first function during a startup process
  • the first sample analyzer is in a non-energy-saving mode, controlling the sample analyzer to load a first function and a second function during a startup process;
  • the first function is related to pipeline sample scheduling
  • the second function is related to sample analysis.
  • the pipeline sample scheduling includes sample transmission between the first sample analyzer 71 and the second sample analyzer 71.
  • the sample analysis system 700 further includes a unloading station for receiving the sample rack measured by the second sample analyzer.
  • the controller includes a first function control unit and a second function control unit.
  • the first function control unit is used to formulate a pipeline sample scheduling strategy; and the second function control unit is used to control the samples.
  • the analyzer analyzes or processes the sample.
  • the sample analysis system 700 includes a central control platform 705 for controlling the first sample analyzer 71 and the second sample analyzer 72.
  • sample analysis system and the sample analysis pipeline or pipeline mentioned in the above embodiments of the present invention may refer to the same object, for example, both refer to including at least one slide machine, one or more blood analyzers, and a CRP Analyzers and other analytical equipment in automated blood analysis lines.
  • the foregoing program may be stored in a computer-readable storage medium.
  • the execution includes Steps of the above method embodiment; and the foregoing storage medium includes: various types of media that can store program codes, such as a mobile storage device, a read-only memory (Read Only Memory, ROM), a magnetic disk, or an optical disc.
  • ROM Read Only Memory
  • the above-mentioned integrated unit of the present invention is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computing device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the methods described in the embodiments of the present invention.
  • the foregoing storage media include: various types of media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种样本分析仪(104)节能方法、样本分析系统和存储介质,节能方法应用于样本分析流水线,包括:判断样本分析仪(104)是否处于节能模式;如果样本分析仪(104)处于节能模式,则样本分析仪(104)在启动的过程中,加载第一功能;如果样本分析仪(104)处于非节能模式,则样本分析仪(104)在启动的过程中,加载第一功能及第二功能;其中,第一功能与流水线样本调度相关,第二功能与样本分析相关。

Description

样本分析仪节能方法、样本分析仪、系统和存储介质 技术领域
本发明涉及医疗和检测领域,涉及但不限于样本分析仪节能方法、样本分析仪、系统和存储介质。
背景技术
在全自动血液细胞分析仪产品中,基于产品定位,可能出现用户长期不使用推片机制片的情况,但是由于在全自动血液细胞分析仪产品流水线中,推片机同时还承担了试管架卸载台功能,且流水线调度程序部署在推片机主控板上,为了保证流水线能够正常工作,推片机必须处于开机状态。而推片机开启过程会执行大量制片相关的机构和液路初始化,自检操作,不仅开机时间长,还需消耗试剂,开机完成后,推片机还会执行进退休眠操作,同样消耗试剂,影响用户体验,且不经济环保。
发明内容
有鉴于此,本发明实施例期望提供样本分析仪节能方法、样本分析仪、系统和存储介质,样本分析仪在启动时仅加载部分功能,从而实现快速开机和关机,在使用者不需要关闭电源的情况下,使样本分析仪的部分功能不再损耗试剂,同时还能维持流水线的正常运转。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种样本分析仪节能方法,应用于样本分析流水线,所述方法包括:
判断样本分析仪是否处于节能模式;
如果所述样本分析仪处于节能模式,则所述样本分析仪在启动的过程 中,加载第一功能;
如果所述样本分析仪处于非节能模式,则所述样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关。
在上述方案中,所述第二功能的使用频率小于所述第一功能的使用频率。
在上述方案中,所述样本分析仪在节能模式下启动所述第一功能,不启动所述第二功能。
在上述方案中,在所述样本分析仪开启第一功能后,所述方法还包括:
将样本分析流水线上其它样本分析仪测试完的样本架调度至所述样本分析仪的卸载台;或
根据预设的调度策略调度样本分析流水线中的样本架。
在上述方案中,所述方法还包括:
如果所述样本分析仪未进行液路打包,且其处于节能状态的时间大于第一时间阈值时,所述样本分析仪发出第一提示信息;
所述样本分析仪接收输入的维护指令,对所述样本分析仪进行液路维护;其中,所述维护指令为响应所述第一提示信息输入的指令。
在上述方案中,所述方法还包括:
提供关闭背光灯的选项;
如果选择关闭背光灯,且所述样本分析仪未接收到操作指令的时间大于第二时间阈值,关闭所述样本分析仪的显示屏;
当接收到输入的第一操作时,开启所述显示屏;
所述样本分析仪的显示屏开启时能响应或执行仪器维护或故障消除的操作指令。
在上述方案中,所述方法还包括:
提供开启或关闭节能模式的选项;
根据接收到的选择指令,开启或关闭所述样本分析仪的节能模式;或,
当所述检测到所述第二功能未使用状态时间大于第三时间阈值时,发出第二提示信息;其中,所述第二提示信息用于提示用户选择是否进入节能模式。
本发明实施例提供一种样本分析仪,应用于样本分析流水线中,所述样本分析仪包括控制器,用于
判断样本分析仪是否处于节能模式;
如果所述样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
如果所述样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关。
在上述方案中,所述样本分析仪还包括卸载台,用于接收从流水线中其它样本分析仪传输来的样本架。
在上述方案中,所述样本分析仪是推片机,所述第一功能是样本调度功能,所述第二功能是推片功能。
在上述方案中,所述控制器包括第一功能控制单元及第二功能控制单元,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
在上述方案中,所述样本分析仪包括传输通道,该传输通道是流水线传输通道的一部分。
在上述方案中,所述样本分析仪还包括显示器,用于输出是否开启节 能模式的选项。
本发明实施例提供一种样本分析系统,所述系统包括:
第一样本分析仪;
第二样本分析仪;
所述第一样本分析仪包括控制器,用于:
判断第一样本分析仪是否处于节能模式;
如果所述第一样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
如果所述第一样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关,流水线样本调度包括第一样本分析仪及第二样本分析仪之间的样本传输。
在上述方案中,所述样本分析系统所述样本分析系统还包括卸载台,用于接收第二样本分析仪测完的样本架。
在上述方案中,所述第一样本分析仪是推片机,所述第一功能是样本调度功能,所述第二功能是推片功能。
在上述方案中,所述控制器包括第一功能控制单元及第二功能控制单元,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
本发明实施例提供一种存储介质,所述存储介质中存储有程序,所述程序被处理器执行时实现如上所述的样本分析仪节能方法的步骤。
本发明实施例提供样本分析仪节能方法、样本分析仪、系统和存储介质,其中,判断样本分析仪是否处于节能模式;如果所述样本分析仪处于节能模式,则所述样本分析仪在启动的过程中,加载第一功能;如果所述 样本分析仪处于非节能模式,则所述样本分析仪在启动的过程中,加载第一功能及第二功能;其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关;如此,样本分析仪在启动时不需要加载使用频率很小的功能,从而实现快速开机和关机,在使用者不需要关闭电源的情况下,使样本分析仪的部分功能不再损耗试剂,同时还能维持流水线的正常运转。
附图说明
图1A为相关技术中利用样本分析系统进行样本分析的流程示意图;
图1B为相关技术中利用样本分析系统组成结构示意;
图2为本发明实施例样本分析仪节能方法的实现流程示意图;
图3A为本发明实施例样本分析仪节能方法的另一实现流程示意图;
图3B为本发明实施例样本分析仪进入节能模式的实现流程示意图;
图4为相关技术中推片机的工作流程示意图;
图5为本发明实施例采用样本分析仪节能方法的推片机的工作流程示意图;
图6A为本发明实施例样本分析系统的组成示意图;
图6B为本发明实施样本分析系统的又一组成示意图;
图7为本发明实施例样本分析仪的组成示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对发明的具体技术方案做进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
为了更好的理解本发明实施例,这里首先对相关技术中进行样本分析时的流程进行说明。
图1A为相关技术中利用样本分析系统进行样本分析的流程示意图,如图1A所示,所述样本分析系统至少包括:样本架101、试管102、装载台103、样本分析仪104和卸载台105,其中,样本架101中放置有试管1、试管2、…、试管n,用户把放置有n个试管102的样本架101放置在装载台103上,流水线依次传输样本架至样本分析仪104,如图1所示,试管2依次从样本分析仪1运输至样本分析仪n,最终在卸载台105上卸载。这里,所述流水线是认为是一套自动化检验设备,至少可以包括装载台、检测设备和卸载台。
图1B为相关技术中利用样本分析系统组成结构示意图,如图1B所示,推片机11不仅具有制备血涂片的功能,还具有试管架卸载台功能(即运输功能)。样本分析系统的流水线调度程序15部署在推片机主控板12上,推片机卸载台和流水线卸载台13与主控板12相连接。如果想要流水线能够正常工作,推片机11必须处于开机状态,这样推片机11才能将样本架传输到其他样本分析仪14。这样就会存在如下缺陷:推片机开启过程会执行大量制片相关的机构和液路初始化,自检操作,不仅开机时间长,还需消耗试剂,开机完成后,推片机还会执行进退休眠操作,同样消耗试剂,这样不仅会影响开关机速度,还不够经过环保。
为解决以上处理流程中存在的缺陷,本发明实施例提供一种样本分析仪节能方法,应用于样本分析系统(又可称之为样本分析流水线),包括至少两个样本分析仪,图2为本发明实施例样本分析仪节能方法的实现流程示意图,如图2所示,所述方法包括以下步骤:
步骤S201,判断样本分析仪是否处于节能模式。
这里,所述样本分析仪具有两种工作模式,节能工作模式和非节能工作模式。所述样本分析仪可以是任一种血液分析仪或体外诊断产品,比如推片机、C反应蛋白(C reactive protein,CRP)检测仪、糖化分析仪、血 液分析仪、或阅片机等,在流水线中,每种类型的样本分析仪的数量可以有一台或多台。通过样本分析系统对样本进行检测时,可由部分样本分析仪对一样本进行部分检测项目的检测,也可由全部样本分析仪对一样本进行全部检测项目的检测。如果所述样本分析仪为推片机,其包括制片功能。在流水线中,推片机还具有试管架卸载台功能(即传输功能),而且在流水线正常工作时,会出现用户长期不使用推片机制片的情况。
步骤S202,如果所述样本分析仪处于节能模式,则所述样本分析仪在启动的过程中,仅加载或开启第一功能。
这里,所述样本分析仪在节能模式下启动所述第一功能,不启动所述第二功能。第一功能是与流水线样本调度相关的功能,比如,样本调度或传输功能。也就是说,为了保证样本分析流水线的正常工作,样本分析仪仅加载必须要用的传输功能(即第一功能)。
步骤S203,如果所述样本分析仪处于非节能模式,则所述样本分析仪在启动的过程中,加载第一功能及第二功能。
这里,所述第二功能的使用频率小于所述第一功能的使用频率。所述第二功能与样本分析相关。也就是说,如果以非节能的模式启动样本分析仪,那么就将样本分析仪的传输功能和样本分析的相关功能都开启。以推片机为例,当第一功能及第二功能加载并启用后,既可以执行流水线样本调度功能,也可以执行样本推片、制片功能。
在本实施例提供的一种样本分析仪节能方法中,对样本分析仪中的不常用的功能不进行初始化,不仅能够保证流水线的正常工作还能够节约试剂,更加的经济适用。
本发明实施例提供一种样本分析仪节能方法,图3A为本发明实施例样本分析仪节能方法的另一实现流程示意图,如图3A所示,所述方法包括以下步骤:
步骤S301,如果所述样本分析仪处于节能模式,则所述样本分析仪在启动的过程中,加载第一功能。
这里,所述样本分析仪启动所述第一功能时,不启动所述第二功能。也就是说,在样本分析仪启动时,仅同时加载常用的第一功能,对于不常用的第二功能暂不加载;显然,如果用户希望开启第二功能,也可以由用户手动开启第二功能。比如,在样本分析流水线中,推片机的制片功能可能会长时间都不被用户使用,但是推片机还具有试管架卸载台功能,所以为了保证整个流水线的正常工作,必须要开启推片机,这种情况下,在本实施例中,在开启推片机时,仅对推片机的卸载台功能进行初始化,并不同时开启推片机的制片功能,如此,在保证了流水线正常工作的条件下,还能够节约试剂,提高了开机关机速度。
步骤S302,将样本分析流水线上其它样本分析仪测试完的样本架调度至所述样本分析仪的卸载台。
这里,所述步骤S302还可以是根据预设的调度策略调度样本分析流水线中的样本架。所述样本分析仪没有开启不常用的第二功能,但是为了保证在需要使用第二功能时,第二功能能够正常使用,所以需要每间隔一段时间提醒用户对第二功能进行一次液路维护;比如,样本分析仪是推片机,仅开启了推片机的试管架卸载台功能,但是如果进入节能模式前推片机没有执行液路打包操作,且推片机在节能模式下长时间工作,可以自动执行或者提示用户执行液路维护操作,避免液路结晶,影响切换到普通工作模式后的仪器性能。
步骤S303,如果所述样本分析仪未进行液路打包,且其处于节能状态的时间大于第一时间阈值时,所述样本分析仪发出第一提示信息。
在本发明实施例中,如果样本分析仪长期处于节能模式,其第二功能长期处于未使用状态,每次开关机或进退休眠时,都不会进行液路初始化 或液路清洗,可能会影响仪器性能,例如长时间未进行液路清洗造成仪器液路结晶,分析仪恢复到正常工作模式(非节能模式)时,即使再进行液路初始化或液路清洗仍不能清洗干净,导致仪器的性能下降或出现故障,因此,超过预设的时间没有执行液路初始化或液路清洗,可以输出提示信息,提醒用户进行液路维护和清洗。
此外,如果样本分析仪进入节能模式之前,已经进行了液路打包,液路处于排空和洁净的状态,则可以无需进行液路初始化或液路清洗。如果识别到该样本分析仪已经进行了液路打包,也可以无需发出提示信息,样本分析仪继续保持在节能状态下。
步骤S304,所述样本分析仪接收输入的维护指令,对所述样本分析仪进行液路维护。
这里,所述启动指令为响应所述第一提示信息输入的指令。当样本分析仪检测到第二功能未启动的时间大于第一时间阈值时,向用户发出提示信息,提示用户第二功能已经很长时间没有进行初始化了,需要进行一次液路维护,然后用户手动开启第二功能,进行液路维护。
所述步骤S303和步骤304可还可以通过以下方式实现:
当检测到所述样本分析仪处于节能状态的的时间大于第一时间阈值时,对所述样本分析仪进行液路维护。
这里,当样本分析仪检测到第二功能未启动的时间大于第一时间阈值时,自动对第二功能进行初始化,以进行液路维护,避免液路结晶,影响第二功能的正常使用。但是通常情况下,为了保证用户对于设备运行情况的知情权,以避免用户正常使用设备,所以在需要对液路进行维护时,先告知用户。
步骤S305,提供关闭背光灯的选项。
步骤S306,如果选择关闭背光灯,且所述样本分析仪未接收到操作指 令的时间大于第二时间阈值,关闭所述样本分析仪的显示屏。
这里,如图3B所示,如果用户选择的是将样本分析仪设置为节能模式(即仅开启部分功能的工作模式),则提供“关闭背光灯”选项33,如果用户勾选“关闭背光灯”选项33,则仪器开机后,如果在第二时间阈值内没有操作,即降低显示屏亮度或者关闭显示屏(比如,30秒内没有任何操作,即关闭背光灯),以节约能源。
步骤S307,当接收到输入的第一操作时,开启所述显示屏。
这里,所述第一操作可以是用户点击屏幕或者点击特定按钮等,比如,在背光关闭的情况下,用户点击屏幕,屏幕亮起。所述样本分析仪的显示屏开启时能响应或执行仪器维护或故障消除的操作指令。
在本实施例提供的一种样本分析仪节能方法中,为了保证不常用的功能仍然能够正常使用,在检测到第二功能长时间未被启动时,对第二功能进行初始化,进行必要的液路维护,从而避免液路结晶影响第二功能的正常使用。
在其他实施例中,在样本分析仪的显示界面上为用户提供节能模式及非节能模式选项,以供用户选择需要的工作模式,所述方法可以通过以下步骤:
第一步,提供开启或关闭节能模式的选项。
第二步,根据接收到的选择指令,开启或关闭所述样本分析仪的节能模式。
或,
当检测到所述第二功能处于未使用状态的时间大于第二时间阈值时,发出第二提示信息;其中,所述第二提示信息用于提示用户选择是否进入节能模式。
这里,样本分析仪用于两种工作模式,即节能模式和非节能模式;当 用户使用时,在样本分析仪的界面上为用户提供节能模式选项和非节能模式选项,通过人工选择进入节能模式;或者,如果检测到第二功能长时间不用,即提醒用户选择是否进入节能模式。比如,样本分析仪为推片机,如果推片机的推片功能长时间不用,即提醒用户选择进入节能模式,在开启推片机时,仅加载推片机的调度功能,不加载推片机的推片功能,从而节约资源,提高开关机速度。如图3B所示,如果样本分析仪为推片机,在推片机的显示界面上为用户提供开启节能模式选项31及关闭节能模式选项32;如果用户选择了开启节能模式选项31,那么推片机启用节能模式,不消耗试剂;如果用户选择了关闭节能模式选项32,那么推片机处于非节能模式,可以进行样本推片等功能,需要消耗试剂;在本实施例中,当检测到用户长时间不用推片机的推片功能时,给用户发出提示信息,提醒用户选择开启节能模式选项31。
本发明实施例提供一种样本分析仪节能方法,图4为相关技术中推片机的工作流程示意图,如图4所示,所述工作流程包括以下步骤:
步骤S401,用户开启推片机,并打开气源。
步骤S402,推片机对推片机的制片功能相关的机构和液路以及试管架卸载台功能相关机构进行初始化。
步骤S403,用户进入推片机的操作界面。
步骤S404,推片机响应推片机的制片功能,并响应试管架回收、界面浏览、故障消除等用户操作。
步骤S405,推片机将检测到的制片功能的故障和试管架卸载台功能的故障进行上报。
步骤S406,推片机判断用户是否有关机请求。
这里,如果用户有关机请求,则进入步骤S407;如果用户没有关机请求,则返回步骤S404。
步骤S407,推片机对推片机制片功能相关的机构和卸载台功能相关的机构均进行复位。
步骤S408,推片机进行液路清洗。
步骤S409,用户关闭气源,进而关闭推片机。
图5为本发明实施例采用样本分析仪节能方法的推片机的工作流程示意图,如图5所示,所述工作流程包括以下步骤:
步骤S501,用户开启推片机,并打开气源。
步骤S502,推片机对推片机试管架卸载台功能相关机构进行初始化。
步骤S503,用户进入推片机的操作界面。
步骤S504,推片机响应推片机的试管架卸载台功能,并响应试管架回收、界面浏览、故障消除等用户操作。
这里,如图3B所示,如果用户已经选择了推片机的开启节能模式选项31,且用户选择了“关闭背光灯”选项33,则仪器开机后,如果30S内没有操作,即关闭显示屏,节约能源。在背光关闭的情况下,用户点击屏幕,屏幕亮起。
步骤S505,推片机将检测到的试管架卸载台功能的故障进行上报。
步骤S506,推片机判断用户是否有关机请求。
这里,如果用户有关机请求,则进入步骤S507;如果用户没有关机请求,则返回步骤S504。
步骤S507,用户关闭气源,进而关闭推片机。
在本实施例中,为了适应客户端长期不使用推片机制片的场景,提供一种样本分析仪节能方法,将推片机设置为节能模式,即仅开启流水下调度功能,如果用户选择了节能模式,则推片机开机时不执行非必须的液路和机构初始化操作,不轮询检查无关状态,不上报与节能模式下所支持功能无关的故障,如此,实现快速开机和关机,且不消耗试剂。
在本实施例中,如果识别到用户长期不使用推片机的制片、血液分析功能,可以主动提示用户设置节能模式,并提供操作指引,不一定需要用户主动设置是否选用节能模式。而且如果推片机进入节能模式前没有执行液路打包操作,且推片机在节能模式下长时间工作,可以自动执行或者提示用户执行液路维护操作(时间需要根据设备的实际情况由液路工程师确认),避免液路结晶,影响切换到普通工作模式后的仪器性能。如此,实现快速开机和关机,开关机过程和待机均不消耗试剂;该开机模式下可以设置无操作超过一定时长时屏幕关闭,点击触摸屏点亮屏幕,节约能源。
本发明实施例提供一种样本分析系统,图6A为本发明实施例样本分析系统的组成示意图,如图6A所示,所述样本分析系统600至少包括第一样本分析仪601和第二样本分析仪602,每一样本分析仪均至少传输通道61,多个所述样本分析仪通过对应的传输通道依次连接形成样本分析流水线,每一样本分析仪均至少包括第一功能;
判断所述第一样本分析仪是否处于节能模式;
如果所述第一样本分析仪处于节能模式,则所述第一样本分析仪在启动的过程中,加载第一功能;
如果所述第一样本分析仪处于非节能模式,则所述第一样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关
在其他实施例中,如图6B所示,所述样本分析系统600中的每一所述样本分析仪还包括控制器62,所述控制器用于控制样本分析仪对应的传输通道。
在其他实施例中,如图6B所示,所述样本分析系统还包括中控平台603,多个所述样本分析仪内的所述控制器与所述中控平台通讯连接。
本发明实施例提供一种样本分析仪,图7为本发明实施例样本分析仪的组成示意图,如图7所示,所述第一样本分析仪71和第二样本分析仪72均包括控制器701,用于
判断样本分析仪是否处于节能模式;
如果所述样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
如果所述样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关。
在其他实施例中,如图7所示,所述第一样本分析仪71和第二样本分析仪72还包括卸载台702,用于接收从流水线中其它样本分析仪传输来的样本架。
在其他实施例中,如图7所示,所述第一样本分析仪71和第二样本分析仪72为推片机,所述第一功能是样本调度功能,所述第二功能是推片功能。
在其他实施例中,如图7所示,所述控制器701包括第一功能控制单元711及第二功能控制单元712,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
在其他实施例中,如图7所示,所述第一样本分析仪71和第二样本分析仪72包括传输通道703,该传输通道是流水线传输通道的一部分
在其他实施例中,如图7所示,所述第一样本分析仪71和第二样本分析仪72还包括显示器704,用于输出是否开启节能模式的选项。
本发明实施例提供一种样本分析系统,如图7所示,样本分析系统700 包括,第一样本分析仪71和第二样本分析仪72,所述第一样本分析仪71包括控制器701,用于:
判断第一样本分析仪是否处于节能模式;
如果所述第一样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
如果所述第一样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关,流水线样本调度包括第一样本分析仪71及第二样本分析仪71之间的样本传输。
在其他实施例中,所述样本分析系统700还包括卸载台,用于接收第二样本分析仪测完的样本架。
在其他实施例中,所述控制器包括第一功能控制单元及第二功能控制单元,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
在其他实施例中,所述样本分析系统700包括中控平台705,用于控制第一样本分析仪71和第二样本分析仪72。
需要说明的是,如果以软件功能模块的形式实现上述的样本分析仪节能方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的 介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例再提供一种计算机存储介质,所述计算机存储介质上存储有计算机可执行指令,所述该计算机可执行指令被处理器执行时实现上述实施例提供的样本分析仪节能方法的步骤。
以上样本分析系统和计算机存储介质实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本发明样本分析系统和计算机存储介质实施例中未披露的技术细节,请参照本发明方法实施例的描述而理解。
本发明上述实施例中提到的样本分析系统和样本分析流水线或流水线可以指代相同的对象,例如,都是指包括至少一台推片机、一台或多台血液分析仪、一台CRP分析仪等分析设备的自动化血液分析流水线。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算设备(可以是个人计算机、 服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例中的样本分析仪节能方法,应用于样本分析系统,包括至少两个样本分析仪,包括:在启动的过程中,至少一个样本分析仪加载第一功能,所述第一功能包括使用频率大于预设的频率阈值的功能,且所述第一功能中至少包括传输功能;所述至少一个样本分析仪利用所述传输功能将样本架传输至所述样本分析系统中其他样本分析仪中,所述样本架上放置有样本的样本容器。

Claims (18)

  1. 一种样本分析仪节能方法,应用于样本分析流水线,其特征在于,所述方法包括:
    判断样本分析仪是否处于节能模式;
    如果所述样本分析仪处于节能模式,则所述样本分析仪在启动的过程中,加载第一功能;
    如果所述样本分析仪处于非节能模式,则所述样本分析仪在启动的过程中,加载第一功能及第二功能;
    其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关。
  2. 根据权利要求1中所述的方法,其特征在于,所述第二功能的使用频率小于所述第一功能的使用频率。
  3. 根据权利要求2中所述的方法,其特征在于,
    所述样本分析仪在节能模式下启动所述第一功能,不启动所述第二功能。
  4. 根据权利要求1中所述的方法,其特征在于,在所述样本分析仪开启第一功能后,所述方法还包括:
    将样本分析流水线上其它样本分析仪测试完的样本架调度至所述样本分析仪的卸载台;或
    根据预设的调度策略调度样本分析流水线中的样本架。
  5. 根据权利要求4中所述的方法,其特征在于,所述方法还包括:
    如果所述样本分析仪未进行液路打包,且其处于节能状态的时间大于第一时间阈值时,所述样本分析仪发出第一提示信息;
    所述样本分析仪接收输入的维护指令,对所述样本分析仪进行液路维护;其中,所述维护指令为响应所述第一提示信息输入的指令。
  6. 根据权利要求1中所述的方法,其特征在于,所述方法还包括:
    提供关闭背光灯的选项;
    如果选择关闭背光灯,且所述样本分析仪未接收到操作指令的时间大于第二时间阈值,关闭所述样本分析仪的显示屏;
    当接收到输入的第一操作时,开启所述显示屏;
    所述样本分析仪的显示屏开启时能响应或执行仪器维护或故障消除的操作指令。
  7. 根据权利要求1中所述的方法,其特征在于,所述方法还包括:
    提供开启或关闭节能模式的选项;
    根据接收到的选择指令,开启或关闭所述样本分析仪的节能模式;或,当所述检测到所述第二功能未使用状态时间大于第三时间阈值时,发出第二提示信息;其中,所述第二提示信息用于提示用户选择是否进入节能模式。
  8. 一种样本分析仪,应用于样本分析流水线中,其特征在于,所述样本分析仪包括控制器,用于
    判断样本分析仪是否处于节能模式;
    如果所述样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
    如果所述样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
    其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关。
  9. 根据权利要求8所述的样本分析仪,其特征在于,所述样本分析仪还包括卸载台,用于接收从流水线中其它样本分析仪传输来的样本架。
  10. 根据权利要求8所述的样本分析仪,其特征在于,所述样本分析 仪是推片机,所述第一功能是样本调度功能,所述第二功能是推片功能。
  11. 根据权利要求8所述的样本分析仪,其特征在于,所述控制器包括第一功能控制单元及第二功能控制单元,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
  12. 根据权利要求8所述的样本分析仪,其特征在于,所述样本分析仪包括传输通道,该传输通道是流水线传输通道的一部分。
  13. 根据权利要求8所述的样本分析仪,其特征在于,所述样本分析仪还包括显示器,用于输出是否开启节能模式的选项。
  14. 一种样本分析系统,其特征在于,包括:
    第一样本分析仪;
    第二样本分析仪;
    所述第一样本分析仪包括控制器,用于:
    判断第一样本分析仪是否处于节能模式;
    如果所述第一样本分析仪处于节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能;
    如果所述第一样本分析仪处于非节能模式,则控制所述样本分析仪在启动的过程中,加载第一功能及第二功能;
    其中,所述第一功能与流水线样本调度相关,所述第二功能与样本分析相关,流水线样本调度包括第一样本分析仪及第二样本分析仪之间的样本传输。
  15. 根据权利要求14所述的样本分析系统,其特征在于,所述样本分析系统还包括卸载台,用于接收第二样本分析仪测完的样本架。
  16. 根据权利要求14所述的样本分析系统,其特征在于,
    所述第一样本分析仪是推片机,所述第一功能是样本调度功能,所述 第二功能是推片功能。
  17. 根据权利要求14所述的样本分析系统,其特征在于,所述控制器包括第一功能控制单元及第二功能控制单元,第一功能控制单元用于制定流水线的样本调度策略;所述第二功能控制单元用于控制所述样本分析仪对样本进行分析或处理。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有程序,所述程序被处理器执行时实现权利要求1至7中任一项所述的方法。
PCT/CN2018/101876 2018-08-23 2018-08-23 样本分析仪节能方法、样本分析仪、系统和存储介质 WO2020037583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/101876 WO2020037583A1 (zh) 2018-08-23 2018-08-23 样本分析仪节能方法、样本分析仪、系统和存储介质
CN201880094910.7A CN112534271A (zh) 2018-08-23 2018-08-23 样本分析仪节能方法、样本分析仪、系统和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101876 WO2020037583A1 (zh) 2018-08-23 2018-08-23 样本分析仪节能方法、样本分析仪、系统和存储介质

Publications (1)

Publication Number Publication Date
WO2020037583A1 true WO2020037583A1 (zh) 2020-02-27

Family

ID=69592125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101876 WO2020037583A1 (zh) 2018-08-23 2018-08-23 样本分析仪节能方法、样本分析仪、系统和存储介质

Country Status (2)

Country Link
CN (1) CN112534271A (zh)
WO (1) WO2020037583A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578072A (zh) * 2022-05-06 2022-06-03 深圳市帝迈生物技术有限公司 样本分析设备的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586255B1 (en) * 1997-07-21 2003-07-01 Quest Diagnostics Incorporated Automated centrifuge loading device
CN103033634A (zh) * 2011-09-30 2013-04-10 希森美康株式会社 检测体处理装置
CN103323608A (zh) * 2012-03-19 2013-09-25 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 包括自动确定液体的被测变量的至少第一分析设备和样品制备系统的测量装置
CN104569450A (zh) * 2013-10-15 2015-04-29 深圳迈瑞生物医疗电子股份有限公司 样本架插入调度方法和样本架装载装置
CN104569462A (zh) * 2013-10-15 2015-04-29 深圳迈瑞生物医疗电子股份有限公司 一种样本容器的搬送装置及方法
CN106596983A (zh) * 2015-10-16 2017-04-26 深圳迈瑞生物医疗电子股份有限公司 基于耗材余量检测的样本测试方法及样本分析仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247935B2 (ja) * 2014-01-07 2017-12-13 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586255B1 (en) * 1997-07-21 2003-07-01 Quest Diagnostics Incorporated Automated centrifuge loading device
CN103033634A (zh) * 2011-09-30 2013-04-10 希森美康株式会社 检测体处理装置
CN103323608A (zh) * 2012-03-19 2013-09-25 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 包括自动确定液体的被测变量的至少第一分析设备和样品制备系统的测量装置
CN104569450A (zh) * 2013-10-15 2015-04-29 深圳迈瑞生物医疗电子股份有限公司 样本架插入调度方法和样本架装载装置
CN104569462A (zh) * 2013-10-15 2015-04-29 深圳迈瑞生物医疗电子股份有限公司 一种样本容器的搬送装置及方法
CN106596983A (zh) * 2015-10-16 2017-04-26 深圳迈瑞生物医疗电子股份有限公司 基于耗材余量检测的样本测试方法及样本分析仪

Also Published As

Publication number Publication date
CN112534271A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
JP6530774B2 (ja) ハードウェア障害回復システム
US10846160B2 (en) System and method for remote system recovery
US10592254B2 (en) Technologies for fast low-power startup of a computing device
CN102314388B (zh) 支持智能型平台管理接口的服务器的测试方法
TWI338835B (en) Method and apparatus for controlling a data processing system during debug
US7370238B2 (en) System, method and software for isolating dual-channel memory during diagnostics
US8538720B2 (en) Cold boot test system and method for electronic devices
US9715267B2 (en) Method for switching operating systems and electronic apparatus
US7581087B2 (en) Method and apparatus for debugging a multicore system
JP6247935B2 (ja) 自動分析装置
CN104575342A (zh) 一体式液晶模组测试装置
WO2016197685A1 (zh) 一种芯片供电控制方法、装置及通信设备
JP6415210B2 (ja) 情報処理装置及び情報処理装置の故障検知方法
WO2020037583A1 (zh) 样本分析仪节能方法、样本分析仪、系统和存储介质
CN114324927A (zh) 一种流水线启动方法、系统、电子设备及介质
CN102262550A (zh) 计算机系统及其开关机方法
CN108490289B (zh) 电子设备测试方法、装置及电子设备
US20040096361A1 (en) Automatic analyzer
CN113866596B (zh) 功耗测试方法、功耗测试设备及存储介质
KR20090037223A (ko) 시스템 종료 후 자기진단 수행시스템 및 방법, 그리고 그를이용한 부팅방법
CN111273567B (zh) 设备开关机控制方法、体外诊断设备、流水线及存储介质
JP2002162400A (ja) 自動分析装置
JP6214360B2 (ja) 待機モードにおける自動分析装置の運転方法
TWI597659B (zh) 開啟顯示器前更新欲顯示內容的處理方法、模塊及其電子裝置
CN102044201A (zh) 行动设备屏幕恒亮显示的装置与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930976

Country of ref document: EP

Kind code of ref document: A1