WO2020036185A1 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
WO2020036185A1
WO2020036185A1 PCT/JP2019/031901 JP2019031901W WO2020036185A1 WO 2020036185 A1 WO2020036185 A1 WO 2020036185A1 JP 2019031901 W JP2019031901 W JP 2019031901W WO 2020036185 A1 WO2020036185 A1 WO 2020036185A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
dust collecting
dust
dust collection
Prior art date
Application number
PCT/JP2019/031901
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 富松
加藤 雅也
上田 泰稔
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019082947A external-priority patent/JP7106491B2/en
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Priority to CN201980053522.9A priority Critical patent/CN112566727B/en
Publication of WO2020036185A1 publication Critical patent/WO2020036185A1/en
Priority to PH12021550311A priority patent/PH12021550311A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically

Definitions

  • the present invention relates to an electric precipitator.
  • an electric dust collecting device including a plate-shaped dust collecting electrode arranged in parallel along a gas flow and a discharge electrode having a corona discharge portion arranged in the center thereof.
  • the shape of the corona discharge part of the discharge electrode has a protruding shape to cause the concentration of the electric field to secure corona discharge, and a structure that causes the discharge electrode body to generate a uniform electric field concentration, for example, a square wire
  • most industrial electric precipitators have a structure with a protruding corona discharge section in order to ensure stable corona discharge even if the electrodes are contaminated. Assume the structure.
  • the dust in the gas flow is charged by applying a high DC voltage between the precipitating electrode and the discharge electrode and performing a stable corona discharge at the corona discharge portion of the discharge electrode.
  • the conventional dust collection theory explains that the charged dust is collected by the dust collecting electrode by the action of Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collecting electrode.
  • the electric precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and a dust collecting electrode having a closed space for collecting dust therein.
  • trapped dust is hardly re-scattered by confining dust in a closed space via the through hole.
  • the electric dust collector of Patent Document 3 includes a dust collecting electrode including a ground electrode having an aperture ratio of 65% to 85%, and a dust collecting filter layer for collecting gas. According to Patent Document 3, by providing such a dust collecting electrode, an ion wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , To collect dust efficiently.
  • ion wind is positively used, but the purpose of this case is to collect dust mainly in the dust filter layer.
  • the dust collection efficiency ⁇ in the electric dust collector can be calculated by the following well-known Dist equation (Equation (1)).
  • w is a dust collecting index (moving speed of particulate matter)
  • f is a dust collecting area per unit gas amount.
  • 1 ⁇ exp ( ⁇ w ⁇ f) (1)
  • the moving speed w of the dust is determined to be determined by the relationship between the Coulomb force and the viscous resistance of the gas.
  • the premise of the performance design is that the dust concentration distribution is always uniform in the cross section of the dust collection space between the discharge electrode and the collection electrode perpendicular to the gas flow of the electric precipitator.
  • the ion wind is considered as one of the factors that cause the turbulence of the gas to make the dust concentration uniform.
  • Ion wind is generated by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, the ion wind is generated by positive ions at a positive voltage.
  • a negative voltage is applied will be described in order to consider an industrial dust collector as a base, but the same applies to a case where the voltage is positive.
  • the ion wind generated at the discharge electrode flows across the gas flow toward the precipitating electrode.
  • the ion wind that reaches the dust collection electrode reverses its flow at the dust collection electrode and changes its flow direction. This causes a spiral turbulence between the electrodes.
  • the flow from the discharge electrode to the dust collection electrode has the effect of carrying dust to the vicinity of the dust collection electrode.
  • the dust carried to the vicinity of the dust collection pole is finally collected by Coulomb force.
  • the ion wind reversed at the dust collection electrode moves dust in a direction away from the collection electrode, which is a collecting body, and thus has an effect of obstructing dust collection. Therefore, it is effective to provide an opening in the dust collecting electrode and prevent the ion wind from reversing.
  • Patent Document 3 describes an electric dust collector that also considers the effect of ion wind.
  • the structure is such that the ion wind is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust at a location not affected by the main gas. It was complicated, and it was difficult to separate and collect the adhered dust by the dry method.
  • the corona discharge generated from the corona discharge portion protruding from the main body of the discharge electrode causes the ion wind to flow along with the corona current toward the dust collection electrode side, but the collector on the opposite side of the discharge electrode where the corona discharge portion is not provided. Since no corona discharge occurs between the dust electrode and the dust electrode, the ion wind cannot be used.
  • the amount of electric charge in the dust collection space due to corona current and charged dust is smaller than that in the corona discharge section, so that the electric field strength rises near the dust collection electrode. It is smaller than the part side, and the dust collecting action by Coulomb force is weak. For this reason, the present inventors paid attention to the active use of the dust collection electrode on the opposite side of the corona discharge part.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an electric precipitator capable of effectively collecting dust even at a dust collection electrode on the opposite side of a corona discharge unit.
  • the electrostatic precipitator has a discharge electrode having a main body portion and a corona discharge portion for corona discharge protruding from the main body portion, and a discharge-side dust collection electrode located on the corona discharge portion side.
  • An opposite-side dust collecting electrode located on the opposite side of the discharge-side dust collecting electrode with respect to the discharge electrode, wherein the center of the main body of the discharging electrode is configured to have the discharge-side dust collecting electrode and the opposite-side collecting electrode. It is located farther from the discharge-side dust collection electrode than the center position between the dust electrode and the dust collection electrode.
  • the discharge electrode has a corona discharge portion protruding only toward one of the dust collection electrodes on the discharge side.
  • corona discharge can be caused to flow from the corona discharge section toward only the discharge-side dust collection electrode, and ionic wind can flow.
  • This method eliminates the interference of ion wind between the discharge electrode and the discharge electrode opposite to each other with the dust collection electrode in between, as compared with the method in which the normal discharge electrode has corona discharge parts on both sides and the ion wind flows on both sides. There are benefits that can be.
  • the opposite side of the discharge-side dust collecting electrode with respect to the discharge-side dust collecting electrode that is, the opposite side of the dust collecting electrode located on the opposite side of the corona discharge portion does not face the corona discharge portion, so that corona discharge hardly occurs.
  • the center of the main body of the discharge electrode is located in a direction away from the discharge side dust collection electrode than the center position between the discharge side dust collection electrode and the opposite side dust collection electrode, the main body of the discharge electrode is The dust collection electrode on the opposite side will come closer. This makes it possible to increase the electric field intensity between the main body of the discharge electrode and the opposite side dust collecting electrode, and also to increase the dust collecting efficiency of the opposite side electrode by improving the Coulomb force.
  • the center of the main body of the discharge electrode is located 10 mm or more away from the opposite-side dust collection electrode.
  • the dust collecting electrode include a discrete dust collecting electrode in which a plurality of rigid members are arranged at predetermined intervals.
  • a member having rigidity for example, a member having a pipe-shaped main body may be used.
  • a flat plate dust collecting electrode having a plate-like body having a plurality of through holes is exemplified.
  • a punching metal or a wire mesh is used as the flat-plate dust collecting electrode.
  • the distance between the center of the main body of the discharge electrode and the discharge-side dust collecting electrode is D1
  • the distance between the center of the main body of the discharge electrode and Assuming that the distance to the opposite side dust collecting electrode is D2
  • the relation is 1.1 ⁇ D1 / D2 ⁇ 2.0.
  • the electric field strength between the main body of the discharge electrode and the opposite dust collection electrode is increased, and the electric field strength is increased by the corona discharge unit and the discharge side dust collection. It can approach the electric field strength between the poles.
  • the dust collection performance is improved, and unlike the case where D1 / D2> 2.0, generation of spark discharge can be prevented.
  • the discharge side dust collecting electrode and the opposite side dust collecting electrode are respectively arranged along one direction, and the D1 is a main body of the discharge electrode.
  • D2 is the distance between the center and the arrangement position of the discharge-side dust collection electrode, and D2 is the distance between the center of the main body of the discharge electrode and the arrangement position of the opposite-side dust collection electrode.
  • the discharge-side dust collecting electrode and the opposite-side dust collecting electrode are arranged along one direction, respectively.
  • D1 is a center of the main body of the discharge electrode and a discharge side in a direction perpendicular to the arrangement direction of the discharge-side dust collecting electrodes.
  • D2 is the distance between the arrangement position of the dust collection electrodes, and D2 is the distance between the center of the main body of the discharge electrode and the arrangement position of the opposite dust collection electrodes in a direction perpendicular to the arrangement direction of the opposite collection electrodes. Is the distance.
  • the electric field strength between the discharge electrode and the discharge-side dust collection electrode, and the electric field strength between the discharge electrode and the opposite-side dust collection electrode are equivalent.
  • the center of the main body of the discharge electrode is set to the both collection electrodes.
  • the electric field strength between the discharge electrode and the opposite electrode can be increased as compared with the case where the electric field is located at the center between the discharge electrodes.
  • the tip of the corona discharge unit is located on the opposite side of the dust collecting electrode from the center position between the discharge side dust collecting electrode and the opposite side dust collecting electrode. It is located on the extreme side.
  • the dust collecting efficiency can be increased by improving the Coulomb force in the opposite electrode as well. Can be collected more effectively.
  • FIG. 1 is a perspective view showing an electric precipitator according to an embodiment of the present invention. It is the top view which looked at the electric precipitator of Drawing 1 from the upper part. It is the front view which looked at the electric precipitator of Drawing 1 from the gas flow direction. It is the top view which showed the positional relationship between the dust collection electrode and the discharge electrode. It is a cross-sectional view of the height position corresponding to the protrusion part of a discharge electrode. It is the figure which showed the electric field strength between the discharge side discharge electrode and the dust collection electrode in the case of no offset. It is the figure which showed the electric field intensity between the opposite discharge electrode and the dust collection electrode in the case of no offset.
  • FIG. 1 is a plan view showing an electric precipitator according to one embodiment of the present invention.
  • the electric dust collector 1 is used in, for example, a thermal power plant using coal or the like as a fuel, and collects dust (particulate matter) in combustion exhaust gas guided from a boiler.
  • the electric precipitator 1 is installed in a building, an underground space, or the like, and collects fine particulate matter (for example, PM2.5 or the like) to form a space. Purify the air inside.
  • the electric dust collecting apparatus 1 includes a plurality of conductive dust collecting electrodes 4 made of, for example, metal.
  • the dust collecting electrodes 4 are formed as hollow cylindrical pipes having a circular cross section and arranged at predetermined intervals in an x direction (gas flow G direction) orthogonal to the longitudinal z direction. Have been.
  • a plurality of rows of the dust collecting electrodes 4 arranged in the x direction are provided in parallel at predetermined intervals in the y direction orthogonal to the z direction and the x direction.
  • Discharge electrodes 5 are arranged in the xz plane between each row of the dust collection electrodes 4.
  • FIG. 1 the position of the mounting frame 5c of the discharge electrode 5 is shown.
  • the discharge electrode 5 is located on one dust collection electrode 4 side (the right side in the y direction in FIG. 1) from the center position CL between the dust collection electrodes 4 arranged in the y direction orthogonal to the gas flow G direction. Offset.
  • the dust collection electrode 4 is grounded.
  • the discharge electrode 5 is connected to a power source having a negative polarity (not shown).
  • the power supply connected to the discharge electrode 5 may have a positive polarity.
  • the discharge electrode 5 includes a main body 5b fixed to the mounting frame 5c, and a plurality of barbed protrusions (corona discharge parts) 5a protruding from the main body 5b. .
  • the protruding portion 5a is provided so as to protrude toward the tip only on one dust collection electrode 4 side.
  • the projection 5a is arranged so as to be located between the dust collection electrodes 4 in the x direction which is the gas flow G direction. Corona discharge is generated at the protrusion 5a, and ion wind is generated from the tip of the protrusion 5a toward the opposing dust collection electrode 4 side.
  • the center C1 of the main body 5b of the discharge electrode 5 is offset from the center position CL between the dust collection electrodes 4. Specifically, the center C1 of the main body 5b of the discharge electrode 5 is in a direction away from the dust collecting electrode 4 to which the protrusion 5a faces (hereinafter, this dust collecting electrode 4 is referred to as a "discharge-side dust collecting electrode 4a"). In addition, the position is shifted from the center position CL so as to approach the dust collecting electrode 4 on the opposite side of the protrusion 5a (hereinafter, this dust collecting electrode 4 is referred to as “opposite side dust collecting electrode 4b”).
  • the distance D1 in the y direction between the center C1 of the main body 5b and the arrangement position passing through the center C2 of the discharge-side dust collecting electrode 4a is the center of the center C1 of the main body 5b and the center of the opposite side dust collecting electrode 4b. It is larger than the distance D2 as viewed in the y direction between the array position passing through C3 (D1> D2). Since the discharge electrode 5 and the dust collection electrode 4 are alternately arranged in the y direction, the projection 5a side of one dust collection electrode 4 becomes the discharge side dust collection electrode 4a, and the opposite side of the projection 5a is formed. It becomes the dust collecting electrode 4b on the opposite side.
  • Distance D1 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position passing through the center C2 of the discharge-side dust collecting electrode 4a. That is, D1 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position (center axis) of the discharge-side dust collection electrode 4a in the direction (y direction) perpendicular to the arrangement direction of the discharge-side dust collection electrode 4a. Is the distance between them.
  • Distance D2 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position passing through the center C3 of the opposite side dust collecting electrode 4b. That is, D2 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position (center axis) of the opposite dust collection electrode 4b in the direction (y direction) perpendicular to the arrangement direction of the opposite dust collection electrode 4b. Is the distance between them.
  • the tip of the protrusion 5a is located at the center. It is arranged to be located on the opposite side of the dust collecting electrode 4b from the position CL.
  • the projection 5a in one direction and arranging it between the dust collection electrodes 4 in the x direction, the ion wind from the projection 5a to the discharge-side dust collection electrode 4a is directed in substantially the same direction. In addition, interference of ion wind can be avoided.
  • FIG. 3 is a front view of FIG. 1 viewed from the gas flow G direction. As shown in the figure, the protrusions 5a are provided at predetermined intervals in the height direction.
  • FIG. 4A shows a positional relationship between the dust collection electrode 4 and the discharge electrode 5 in a plan view.
  • the interval between the dust collecting electrodes 4 arranged in the x direction which is the gas flow G direction is Pc, and the interval between the discharge electrodes 5 arranged in the x direction is Pd.
  • the interval between the dust collecting electrodes 4 arranged in the y direction is 2D.
  • the diameter of the dust collecting electrode 4 is Dc.
  • the offset position of the discharge electrode 5, that is, the position where the center of the main body 5b of the discharge electrode 5 is shifted from the center position CL in the y direction is such that the ratio of the distance D1 and the distance D2 is 1.1 ⁇ D1 / It is preferable to set D2 ⁇ 2.0. More preferably, the lower limit of D1 / D2 is set to 1.2.
  • the distance between the tip of the protruding portion 5a of the discharge electrode 5 and the side surface of the nearest discharge-side dust collecting electrode 4a is L1, The distance from the side surface is L2.
  • the curve drawn between the discharge electrode 5 and the dust collection electrode 4 shown in FIG. 4A is a line of electric force.
  • FIG. 4B shows an enlarged cross section at a height position corresponding to the protrusion 5 a of the discharge electrode 5.
  • the main body 5b of the discharge electrode 5 has a circular cross section, and its diameter is Dd.
  • the length of the protrusion from which the protrusion 5a protrudes from the main body 5b is Lb.
  • L1 and L2 can be expressed as in the following equations.
  • L1 ((D1-Dd / 2-Lb) 2 + (Pd / 2) 2 ) 0.5 -Dc / 2
  • L2 (D2 2 + (Pd / 2) 2 ) 0.5 ⁇ Dc / 2 ⁇ Dd / 2
  • an offset amount Le in which the center of the main body 5b of the discharge electrode 5 is shifted from the center position CL in the y direction is represented by the following equation.
  • Le (D1-D2) / 2 4A and 4B show an example of a cross section at the position of the barb-shaped protrusion 5a, but the portion occupied by the protrusion 5a is actually a part of the discharge electrode 5, and The portion between the two protrusions 5a occupies most of the discharge electrode 5. Therefore, L1 and L2 may be evaluated ignoring the length Lb of the protrusion 5a.
  • 2D which is the distance between the dust collecting electrodes 4 arranged in the y direction, is, for example, 300 mm or more and 500 mm or less for general industrial use. However, other dimensions may be used for other applications.
  • the electric field intensity E1max near the discharge-side dust collecting electrode 4a becomes negative with the negative ions existing in the space and the charged ions. It rises with the space charge of the dust.
  • the electric field intensity (Ecr) at the limit of the spark discharge near the discharge-side dust collecting electrode 4a is the condition of the maximum applicable electric field intensity (E1max ⁇ Ecr).
  • 6A and 6B show the electric field intensity distribution between the discharge electrode 5 and the dust collection electrode 4 when the discharge electrode 5 is offset from the center position CL, which corresponds to the present embodiment.
  • 6A corresponds to FIG. 5A
  • FIG. 6B corresponds to FIG. 5B.
  • E1max being equal to or less than the spark discharge limit electric field intensity Ecr.
  • Vn the spark discharge limit electric field intensity
  • Ecr the spark discharge limit electric field intensity
  • the offset amount Le is adjusted so that the electric field intensity E1max of the discharge-side dust collecting electrode 4a is equal to the electric field intensity E2max of the opposite-side dust collecting electrode 4b.
  • the example of the electric field strength shown in FIGS. 5A to 6B is an example in which the pipe-shaped dust collecting electrodes 4 are arranged at intervals, and the shortest distances at L1 and L2 are described as a base.
  • the electrode of the dust collecting electrode 4 there is a mesh-shaped electrode or the like.
  • the distances D1 and D2 are collectively described. In this case, even if the electrode is in the form of a pipe, even if it is evaluated not by L1 and L2 but by D1 and D2, it can be considered that they are almost equivalent in a practical range, and there is no problem.
  • the range in which the electric field intensities of both are equal is, for example, 1.5 ⁇ ⁇ ⁇ D1 / D2 ⁇ ⁇ ⁇ 1.8.
  • the optimum range of D1 / D2 varies depending on the operating conditions of the electric dust collector 1 and the conditions of the dust collecting electrode 4 or the discharge electrode 5.
  • the lower limit of the ratio D1 / D2 of the distance D1 and the distance D2 is, for example, 1.1, and more preferably 1.2. As shown in FIG. 10, it has been found that the relationship between the offset amount and the dust collection performance changes depending on the flow velocity of the gas flow G. When the gas flow G is relatively fast, if D1 / D2 is 1.1 or more, the dust collection performance is improved. When the gas flow G is relatively slow, the dust collection performance is improved when D1 / D2 is 1.2 or more. In this range, when the gas flow G is relatively fast, the dust collection performance is definitely improved. .
  • the maximum offset amount is set in a range where E2max does not greatly exceed E1max.
  • FIG. 11 shows an electric precipitator 1 for general industry, in which the corona discharge side (the side having the projecting portion 5a on the main body 5b of the discharge electrode 5, that is, the barb on the discharge wire) when D1 / D2 is changed. And the opposite side of the electric field side (the side where the main body 5b of the discharge electrode 5 does not have the protrusion 5a, that is, the side without the barb).
  • the example which analyzed and compared the electric field intensity near 4b is shown.
  • the current and voltage as operating conditions of the electrostatic precipitator 1 were both increased. In FIG. 11, the current and the voltage increase from the left graph to the right graph.
  • the spark electric field intensity (This largely depends on the gas composition and the operating temperature conditions, but is usually set to 8 kV / cm to 12 kV / cm.) Is not preferred. More specifically, it is desirable that D1 / D2 ⁇ 2.0.
  • the upper limit of D1 / D2 is preferably set to 2.0.
  • the operation of the electric precipitator 1 of the present embodiment will be described.
  • the electrostatic precipitator 1 by applying a negative voltage from the power supply to the discharge electrode 5, corona discharge is generated at the tip of the projection 5a.
  • the dust contained in the gas flow G is charged by corona discharge.
  • the collecting principle of the conventional electric dust collector the charged dust is attracted to the dust collecting electrode 4 grounded by Coulomb force and collected on the dust collecting electrode 4. Is greatly influenced by ion wind.
  • the dust collecting electrodes 4 in the form of circular pipes at intervals in the x direction, which is the direction of the predetermined gas flow G, one of the ion winds flowing from the protrusions 5a toward the discharge-side dust collecting electrodes 4a is reduced.
  • the part is allowed to come off to the back side of the dust collecting electrode 4. This can suppress the flow of the ion wind that is reversed at the dust collection electrode 4 and moves away from the dust collection electrode 4, thereby improving the collection efficiency.
  • a part of the ion wind including dust and flowing toward the dust collection electrode 4 passes between the dust collection electrodes 4. Since the ion winds are directed in one direction, they do not interfere with each other.
  • the discharge electrode 5 is offset from the center position CL between the opposite side of the projection 5 a and the opposite side of the dust collection electrode 4 b, so that Can be increased as compared with the case where there is no offset.
  • dust is collected effectively by the Coulomb force on the opposite side of the dust collection electrode 4b opposite to the protrusion 5a. That is, it is possible to efficiently collect the uncollected dust that has circulated to the opposite side of the dust collecting electrode 4b due to the ion wind.
  • the dust collected by the dust collecting electrode 4 is separated and collected by hammering.
  • a method in which the dust collecting electrode is moved to scrape off dust with a brush, or a wet cleaning may be employed.
  • the following operation and effect can be obtained. Since the center of the main body 5b of the discharge electrode 5 is located farther from the discharge-side dust collecting electrode 4a than the center position CL between the discharge-side dust collecting electrode 4a and the opposite side dust-collecting electrode 4b, the discharge electrode 5 and the opposite side of the dust collecting electrode 4b come closer. Thereby, the electric field intensity between the main body 5b of the discharge electrode 5 and the opposite dust collecting electrode 4b can be increased, and the dust collecting efficiency by the Coulomb force can also be increased in the opposite dust collecting electrode 4b.
  • the configuration of the discharge electrode 5 is such that the projection 5a is provided on the main body 5b having a circular cross section.
  • the cross section is rectangular. It is good also as a structure which provided the projection part 5a in the square rod 5b 'made.
  • a flat plate may be formed by punching, and the protrusion 5a and the main body 5b ′′ may be integrally formed.
  • a plate-like dust collecting electrode 4 ' such as a punching metal having a large number of holes formed in a flat plate may be used.
  • a flat plate such as a punching metal having a large number of holes may be formed into a folded plate-shaped dust collecting electrode 4 ′′ which is alternately and regularly folded in the gas flow G direction.
  • the projection 5a of the discharge electrode 5 is offset according to the unevenness of the opposing bent plate.
  • the dust collecting electrode 4 may be a woven wire mesh (for example, a rock crimp woven wire mesh) in which metal wires are crossed in the vertical and horizontal directions. Since the woven wire mesh has a constant aperture ratio and no edges on the surface, the electric field intensity in the vicinity of the dust collection electrode 4 can be uniformly increased.
  • the wire mesh is not limited to a woven wire mesh, but may be a wire mesh having a circular cross-section, such as a welded wire mesh, arranged in the vertical and horizontal directions.
  • the electrostatic precipitator 1 When the electrostatic precipitator 1 is used as an air purifier for air purification, the time that particles stay in the device is short, and the particle concentration is low. On the other hand, the electrostatic precipitator 1 used in a thermal power plant has a large scale, a long period of staying particles, and a high particle concentration, unlike the case where it is used for air purification. In the electrostatic precipitator 1 for air purification, when low-concentration particles are passed for a short residence time, the particles are transferred to the dust collection electrode 4 by the effect of gas circulation generated by the ion wind from the projection 5a of the discharge electrode 5. Can't collect.
  • a gas blocking plate 6 may be provided on the upstream side of the gas flow G between the opposite side dust collecting electrode 4b and the discharge electrode 5. Since the gas flow G is hindered by the gas blocking plate 6, the flow rate of the gas flow flowing between the opposite side dust collecting electrode 4b and the discharge electrode 5 is reduced, and the residence time of the particles passing through the dust collecting electrode 4 is increased. , The collection performance can be improved.

Abstract

Provided is an electric dust collector that can effectively collect dust even at a dust collecting electrode on the side opposite to a corona discharge unit. The invention comprises: a discharge electrode (5) that has a main unit (5b) and a projection (5a) for corona discharge projecting from the main unit (5b); a discharge side dust collecting electrode (4a) that is located on the projection (5a) side; and an opposite side dust collecting electrode (4b) that is located on the side opposite to the discharge side dust collecting electrode (4a) with the discharge electrode (5) therebetween; wherein the center (C1) of the main unit (5b) of the discharge electrode (5) is located further from the discharge side dust collecting electrode (4a) than the central position (CL) between the discharge side dust collecting electrode (4a) and the opposite side dust collecting electrode (4b).

Description

電気集塵装置Electric dust collector
 本発明は、電気集塵装置に関するものである。 The present invention relates to an electric precipitator.
 従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列されたコロナ放電部を有する放電極とを備えたものが知られている。放電極のコロナ放電部の形状には、突起形状を持たせて電界の集中を生じさせることでコロナ放電を確保する方式と、放電極本体を一様な電界集中を生じさせる構造、例えば角線や細いピアノ線などがあるが、一般産業用の電気集塵装置では、電極が汚れても安定したコロナ放電を確保するため、突起状のコロナ放電部を有した構造が主流であり、以降この構造を前提とする。 As a conventional electric dust collecting device, there is known an electric dust collecting device including a plate-shaped dust collecting electrode arranged in parallel along a gas flow and a discharge electrode having a corona discharge portion arranged in the center thereof. The shape of the corona discharge part of the discharge electrode has a protruding shape to cause the concentration of the electric field to secure corona discharge, and a structure that causes the discharge electrode body to generate a uniform electric field concentration, for example, a square wire However, most industrial electric precipitators have a structure with a protruding corona discharge section in order to ensure stable corona discharge even if the electrodes are contaminated. Assume the structure.
 電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極のコロナ放電部で安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると、従来の集じん理論では説明されている。 In the electrostatic precipitator, the dust in the gas flow is charged by applying a high DC voltage between the precipitating electrode and the discharge electrode and performing a stable corona discharge at the corona discharge portion of the discharge electrode. The conventional dust collection theory explains that the charged dust is collected by the dust collecting electrode by the action of Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collecting electrode.
 ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、該貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。 電 気 By the way, the electric precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and a dust collecting electrode having a closed space for collecting dust therein. In Patent Documents 1 and 2, trapped dust is hardly re-scattered by confining dust in a closed space via the through hole.
 特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、本ケースはダストを、主として集じんフィルタ層に捕集させることを目的としている。 電 気 The electric dust collector of Patent Document 3 includes a dust collecting electrode including a ground electrode having an aperture ratio of 65% to 85%, and a dust collecting filter layer for collecting gas. According to Patent Document 3, by providing such a dust collecting electrode, an ion wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , To collect dust efficiently. In Patent Literature 3, ion wind is positively used, but the purpose of this case is to collect dust mainly in the dust filter layer.
特許第5761461号公報Japanese Patent No. 5761461 特許第5705461号公報Japanese Patent No. 5705461 特許第4823691号公報Japanese Patent No. 4823691
 電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの数式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
  η=1-exp(-w×f)・・・(1)
The dust collection efficiency η in the electric dust collector can be calculated by the following well-known Deutsche equation (Equation (1)). w is a dust collecting index (moving speed of particulate matter), and f is a dust collecting area per unit gas amount.
η = 1−exp (−w × f) (1)
 上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの数式(上記式(1))では、ダストが放電極から電界中を移動するとされており、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度の分布は、常に電気集塵装置のガス流れに直交した放電極と集塵極との間の集じん空間の断面内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。 式 In the above equation (1), the moving speed w of the dust (particulate matter) is determined to be determined by the relationship between the Coulomb force and the viscous resistance of the gas. In Deutsche's formula (formula (1)), it is assumed that dust moves in the electric field from the discharge electrode, and the ion wind is not directly considered in affecting the performance. However, the premise of the performance design is that the dust concentration distribution is always uniform in the cross section of the dust collection space between the discharge electrode and the collection electrode perpendicular to the gas flow of the electric precipitator. The ion wind is considered as one of the factors that cause the turbulence of the gas to make the dust concentration uniform.
 イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、本明細書では、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。 Ion wind is generated by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, the ion wind is generated by positive ions at a positive voltage. Hereinafter, in the present specification, a case in which a negative voltage is applied will be described in order to consider an industrial dust collector as a base, but the same applies to a case where the voltage is positive.
 ガス流れに沿って電極群が配置されている電気集塵装置では、放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。 で は In the electric precipitator in which the electrode group is arranged along the gas flow, the ion wind generated at the discharge electrode flows across the gas flow toward the precipitating electrode. The ion wind that reaches the dust collection electrode reverses its flow at the dust collection electrode and changes its flow direction. This causes a spiral turbulence between the electrodes.
 乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。 の う ち Of the turbulent flow, the flow from the discharge electrode to the dust collection electrode has the effect of carrying dust to the vicinity of the dust collection electrode. The dust carried to the vicinity of the dust collection pole is finally collected by Coulomb force.
 しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。そのため、集塵極に開口部を設け、イオン風の反転を防ぐ手段が有効である。 イ オ ン However, the ion wind reversed at the dust collection electrode moves dust in a direction away from the collection electrode, which is a collecting body, and thus has an effect of obstructing dust collection. Therefore, it is effective to provide an opening in the dust collecting electrode and prevent the ion wind from reversing.
 特許文献3には、イオン風の効果も考慮した電気集塵装置が記載されている。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない箇所での集じんをすることを目的としていて、構造も複雑であること、及び、乾式では付着ダストの剥離回収が困難であった。 Patent Document 3 describes an electric dust collector that also considers the effect of ion wind. However, in this case, the structure is such that the ion wind is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust at a location not affected by the main gas. It was complicated, and it was difficult to separate and collect the adhered dust by the dry method.
 また、放電極の本体部から突出するコロナ放電部から発生するコロナ放電によってコロナ電流とともにイオン風が集塵極側に向かって流れるが、放電極においてコロナ放電部が設けられていない反対側の集塵極との間ではコロナ放電が発生しないのでイオン風を利用することができない。また、コロナ放電部が設けられていない反対側では、コロナ電流や帯電ダストによる集塵空間での電荷量がコロナ放電部に比べて少ないため、集塵極近傍での電界強度の持ち上がりがコロナ放電部側に比べて小さく、クーロン力による集塵作用も弱くなる。このため、本発明者等は、コロナ放電部の反対側の集塵極の積極的な利用に着目した。 In addition, the corona discharge generated from the corona discharge portion protruding from the main body of the discharge electrode causes the ion wind to flow along with the corona current toward the dust collection electrode side, but the collector on the opposite side of the discharge electrode where the corona discharge portion is not provided. Since no corona discharge occurs between the dust electrode and the dust electrode, the ion wind cannot be used. On the other side, where the corona discharge section is not provided, the amount of electric charge in the dust collection space due to corona current and charged dust is smaller than that in the corona discharge section, so that the electric field strength rises near the dust collection electrode. It is smaller than the part side, and the dust collecting action by Coulomb force is weak. For this reason, the present inventors paid attention to the active use of the dust collection electrode on the opposite side of the corona discharge part.
 本発明は、このような事情に鑑みてなされたものであって、コロナ放電部の反対側の集塵極であっても有効に集塵することができる電気集塵装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an electric precipitator capable of effectively collecting dust even at a dust collection electrode on the opposite side of a corona discharge unit. And
 本発明の一態様に係る電気集塵装置は、本体部と該本体部から突出するコロナ放電用のコロナ放電部とを有する放電極と、前記コロナ放電部側に位置する放電側集塵極と、前記放電極を挟んで前記放電側集塵極の反対側に位置する反対側集塵極と、備え、前記放電極の前記本体部の中心は、前記放電側集塵極と前記反対側集塵極との間の中央位置よりも前記放電側集塵極から遠ざかる方向に位置されている。 The electrostatic precipitator according to one aspect of the present invention has a discharge electrode having a main body portion and a corona discharge portion for corona discharge protruding from the main body portion, and a discharge-side dust collection electrode located on the corona discharge portion side. An opposite-side dust collecting electrode located on the opposite side of the discharge-side dust collecting electrode with respect to the discharge electrode, wherein the center of the main body of the discharging electrode is configured to have the discharge-side dust collecting electrode and the opposite-side collecting electrode. It is located farther from the discharge-side dust collection electrode than the center position between the dust electrode and the dust collection electrode.
 放電極は、集塵極のうちの一方の放電側集塵極にのみ向かって突出するコロナ放電部を有している。これにより、コロナ放電部から放電側集塵極のみに向かってコロナ放電させてイオン風を流すことができる。この方式は、通常の放電極ではコロナ放電部を両側に有することで両サイドにイオン風を流す方式に比べ、集塵極を挟んで相対する放電極との間でのイオン風の干渉をなくすことができるメリットがある。
 しかしながら放電極を挟んで放電側集塵極の反対側、すなわちコロナ放電部の反対側に位置する反対側集塵極は、コロナ放電部に対向していないのでコロナ放電はほとんど生じない。しかし、放電極の本体部の中心が放電側集塵極と反対側集塵極との間の中央位置よりも放電側集塵極から遠ざかる方向に位置されているので、放電極の本体部と反対側集塵極とが近づくことになる。これにより、放電極の本体部と反対側集塵極との間の電界強度を増加させることができ、反対側電極においてもクーロン力の向上による集塵効率を高めることができる。
 放電極の本体部の中心は、例えば、放電側集塵極と反対側集塵極との間の距離が300mm以上500mm以下とされている場合、反対側集塵極側に10mm以上離れて位置されていることが好ましい。
 集塵極としては、例えば、複数の剛性を有する部材を所定間隔で並べた離散形集塵極が挙げられる。剛性を有する部材としては、例えば本体部がパイプ形状とされた部材が挙げられる。また、他の形式の集塵極としては、例えば、複数の貫通孔を有する板状体とされた平板集塵極が挙げられる。平板集塵極としては、例えばパンチングメタルや金網が用いられる。
The discharge electrode has a corona discharge portion protruding only toward one of the dust collection electrodes on the discharge side. Thereby, corona discharge can be caused to flow from the corona discharge section toward only the discharge-side dust collection electrode, and ionic wind can flow. This method eliminates the interference of ion wind between the discharge electrode and the discharge electrode opposite to each other with the dust collection electrode in between, as compared with the method in which the normal discharge electrode has corona discharge parts on both sides and the ion wind flows on both sides. There are benefits that can be.
However, the opposite side of the discharge-side dust collecting electrode with respect to the discharge-side dust collecting electrode, that is, the opposite side of the dust collecting electrode located on the opposite side of the corona discharge portion does not face the corona discharge portion, so that corona discharge hardly occurs. However, since the center of the main body of the discharge electrode is located in a direction away from the discharge side dust collection electrode than the center position between the discharge side dust collection electrode and the opposite side dust collection electrode, the main body of the discharge electrode is The dust collection electrode on the opposite side will come closer. This makes it possible to increase the electric field intensity between the main body of the discharge electrode and the opposite side dust collecting electrode, and also to increase the dust collecting efficiency of the opposite side electrode by improving the Coulomb force.
For example, when the distance between the discharge-side dust collection electrode and the opposite-side dust collection electrode is 300 mm or more and 500 mm or less, the center of the main body of the discharge electrode is located 10 mm or more away from the opposite-side dust collection electrode. It is preferred that
Examples of the dust collecting electrode include a discrete dust collecting electrode in which a plurality of rigid members are arranged at predetermined intervals. As a member having rigidity, for example, a member having a pipe-shaped main body may be used. Further, as another type of dust collecting electrode, for example, a flat plate dust collecting electrode having a plate-like body having a plurality of through holes is exemplified. As the flat-plate dust collecting electrode, for example, a punching metal or a wire mesh is used.
 さらに、本発明の一態様に係る電気集塵装置では、前記放電極の前記本体部の中心と前記放電側集塵極との間の距離をD1、前記放電極の前記本体部の中心と前記反対側集塵極との間の距離をD2とした場合、1.1 ≦ D1/D2 ≦ 2.0とされている。 Further, in the electric dust collecting apparatus according to one aspect of the present invention, the distance between the center of the main body of the discharge electrode and the discharge-side dust collecting electrode is D1, and the distance between the center of the main body of the discharge electrode and Assuming that the distance to the opposite side dust collecting electrode is D2, the relation is 1.1 ≦ D1 / D2 ≦ 2.0.
 1.1 ≦ D1/D2 ≦ 2.0とすることにより、放電極の本体部と反対側集塵極との間の電界強度を増加させつつ、当該電界強度をコロナ放電部と放電側集塵極との間の電界強度に近づけることができる。1.1 > D1/D2とする場合と比べて、集塵性能が向上し、D1/D2 > 2.0とする場合と異なり、火花放電の発生を防止できる。 By setting 1.1 ≦ D1 / D2 ≦ 2.0, the electric field strength between the main body of the discharge electrode and the opposite dust collection electrode is increased, and the electric field strength is increased by the corona discharge unit and the discharge side dust collection. It can approach the electric field strength between the poles. As compared with the case where 1.1 と> と す る D1 / D2, the dust collection performance is improved, and unlike the case where D1 / D2> 2.0, generation of spark discharge can be prevented.
 更に、本発明の一態様に係る電気集塵装置では、前記放電側集塵極と前記反対側集塵極は、それぞれ一方向に沿って配列され、前記D1は、前記放電極の本体部の中心と前記放電側集塵極の配列位置との間の距離であり、前記D2は、前記放電極の本体部の中心と前記反対側集塵極の配列位置との間の距離である。 Further, in the electric dust collecting apparatus according to one aspect of the present invention, the discharge side dust collecting electrode and the opposite side dust collecting electrode are respectively arranged along one direction, and the D1 is a main body of the discharge electrode. D2 is the distance between the center and the arrangement position of the discharge-side dust collection electrode, and D2 is the distance between the center of the main body of the discharge electrode and the arrangement position of the opposite-side dust collection electrode.
 放電側集塵極と反対側集塵極がそれぞれ一方向に沿って配列されており、D1は、放電側集塵極の配列方向に対して垂直方向において放電極の本体部の中心と放電側集塵極の配列位置との間の距離であり、D2は、反対側集塵極の配列方向に対して垂直方向において放電極の本体部の中心と反対側集塵極の配列位置との間の距離である。 The discharge-side dust collecting electrode and the opposite-side dust collecting electrode are arranged along one direction, respectively. D1 is a center of the main body of the discharge electrode and a discharge side in a direction perpendicular to the arrangement direction of the discharge-side dust collecting electrodes. D2 is the distance between the arrangement position of the dust collection electrodes, and D2 is the distance between the center of the main body of the discharge electrode and the arrangement position of the opposite dust collection electrodes in a direction perpendicular to the arrangement direction of the opposite collection electrodes. Is the distance.
 さらに、本発明の一態様に係る電気集塵装置では、前記放電極と前記放電側集塵極との間の電界強度と、前記放電極と前記反対側集塵極との間の電界強度とが同等とされている。 Further, in the electric dust collector according to one aspect of the present invention, the electric field strength between the discharge electrode and the discharge-side dust collection electrode, and the electric field strength between the discharge electrode and the opposite-side dust collection electrode. Are equivalent.
 放電極と放電側集塵極との間の電界強度と、放電極と反対側集塵極との間の電界強度とが同等とすることで、放電極の本体部の中心を両集塵極間の中央に位置させる場合に比べて、放電極と反対側電極との間の電界強度を増加させることができる。 By making the electric field strength between the discharge electrode and the discharge-side dust collection electrode equal to the electric field strength between the discharge electrode and the opposite-side dust collection electrode, the center of the main body of the discharge electrode is set to the both collection electrodes. The electric field strength between the discharge electrode and the opposite electrode can be increased as compared with the case where the electric field is located at the center between the discharge electrodes.
 さらに、本発明の一態様に係る電気集塵装置では、前記コロナ放電部の先端は、前記放電側集塵極と前記反対側集塵極との間の前記中央位置よりも前記反対側集塵極側に位置している。 Further, in the electric dust collecting apparatus according to one aspect of the present invention, the tip of the corona discharge unit is located on the opposite side of the dust collecting electrode from the center position between the discharge side dust collecting electrode and the opposite side dust collecting electrode. It is located on the extreme side.
 コロナ放電部の先端を、両集塵極間の中央位置よりも反対側集塵極側に位置させることで、コロナ放電部と放電側集塵極との間の電界強度を低下させつつも、放電極の本体部との反対側電極との間の電界強度を増加させることができる。 By lowering the electric field strength between the corona discharge part and the discharge-side dust collection electrode by positioning the tip of the corona discharge part on the opposite side of the dust collection electrode from the center position between the two dust collection electrodes, The electric field strength between the main body of the discharge electrode and the opposite electrode can be increased.
 放電極の本体部と反対側集塵極との間の電界強度を増加させることで、反対側電極においてもクーロン力の向上により集塵効率を高めることができ、反対側集塵極であってもさらに有効に集塵することができる。 By increasing the electric field intensity between the main body of the discharge electrode and the opposite dust collecting electrode, the dust collecting efficiency can be increased by improving the Coulomb force in the opposite electrode as well. Can be collected more effectively.
本発明の一実施形態に係る電気集塵装置を示した斜視図である。FIG. 1 is a perspective view showing an electric precipitator according to an embodiment of the present invention. 図1の電気集塵装置を上方から見た平面図である。It is the top view which looked at the electric precipitator of Drawing 1 from the upper part. 図1の電気集塵装置をガス流れ方向から見た正面図である。It is the front view which looked at the electric precipitator of Drawing 1 from the gas flow direction. 集塵極と放電極との位置関係を示した平面図である。It is the top view which showed the positional relationship between the dust collection electrode and the discharge electrode. 放電極の突起部に相当する高さ位置の横断面図である。It is a cross-sectional view of the height position corresponding to the protrusion part of a discharge electrode. オフセット無し場合の放電側放電極と集塵極間の電界強度を示した図である。It is the figure which showed the electric field strength between the discharge side discharge electrode and the dust collection electrode in the case of no offset. オフセット無し場合の反対側放電極と集塵極間の電界強度を示した図である。It is the figure which showed the electric field intensity between the opposite discharge electrode and the dust collection electrode in the case of no offset. オフセット有り場合の放電側放電極と集塵極間の電界強度を示した図である。It is the figure which showed the electric field intensity between the discharge side discharge electrode and the dust collection electrode in the case of having an offset. オフセット有り場合の反対側放電極と集塵極間の電界強度を示した図である。It is the figure which showed the electric field intensity between the opposite discharge electrode and the dust collection electrode in the case of having an offset. 放電極の変形例を示した正面図である。It is the front view which showed the modification of the discharge electrode. 放電極の他の変形例を示した正面図である。It is the front view which showed the other modification of the discharge electrode. 集塵極の変形例を示した平面図である。It is the top view which showed the modification of a dust collection electrode. 集塵極の変形例を示した正面図である。It is the front view which showed the modification of a dust collection electrode. 集塵極の他の変形例を示した平面図である。It is the top view which showed the other modification of a dust collection electrode. 集塵極の他の変形例を示した正面図である。It is the front view which showed the other modification of a dust collection electrode. 集塵性能指数比とオフセット比の関係を示すグラフである。It is a graph which shows the relationship between a dust collection performance index ratio and an offset ratio. 集塵極近傍の電界強度とオフセット比の関係を示すグラフである。It is a graph which shows the relationship between the electric field intensity near a dust collection electrode, and offset ratio. 本発明の一実施形態に係る電気集塵装置を示した平面図である。FIG. 1 is a plan view showing an electric precipitator according to one embodiment of the present invention.
 以下に、本発明に係る電気集塵装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the electric precipitator according to the present invention will be described with reference to the drawings.
 電気集塵装置1は、例えば石炭等を燃料とする火力発電プラントに用いられ、ボイラから導かれた燃焼排ガス中のダスト(粒子状物質)を回収する。また、電気集塵装置1は、火力発電プラント用とは各構成要素のサイズが異なるが、建築物や地下空間等に設置され、微小粒子状物質(例えばPM2.5など)を回収し、空間内の空気を浄化する。 The electric dust collector 1 is used in, for example, a thermal power plant using coal or the like as a fuel, and collects dust (particulate matter) in combustion exhaust gas guided from a boiler. In addition, although the size of each component is different from that for the thermal power plant, the electric precipitator 1 is installed in a building, an underground space, or the like, and collects fine particulate matter (for example, PM2.5 or the like) to form a space. Purify the air inside.
 電気集塵装置1は、例えば金属製等の導電性とされた複数の集塵極4を備えている。集塵極4は、円形の横断面を有する中空の柱状とされた円形パイプとされており、長手方向であるz方向に直交するx方向(ガス流れG方向)に所定の間隔をあけて配列されている。x方向に配列された集塵極4の列は、z方向及びx方向に直交するy方向に所定間隔をあけて平行に複数列設けられている。集塵極4の各列の間に、x-z面内に放電極5が配置されている。図1では、放電極5の取付枠5cの位置が示されている。放電極5は、図1から分かるように、ガス流れG方向に直交するy方向に並ぶ集塵極4間の中央位置CLから一方の集塵極4側(図1ではy方向の右側)にオフセットされている。 The electric dust collecting apparatus 1 includes a plurality of conductive dust collecting electrodes 4 made of, for example, metal. The dust collecting electrodes 4 are formed as hollow cylindrical pipes having a circular cross section and arranged at predetermined intervals in an x direction (gas flow G direction) orthogonal to the longitudinal z direction. Have been. A plurality of rows of the dust collecting electrodes 4 arranged in the x direction are provided in parallel at predetermined intervals in the y direction orthogonal to the z direction and the x direction. Discharge electrodes 5 are arranged in the xz plane between each row of the dust collection electrodes 4. In FIG. 1, the position of the mounting frame 5c of the discharge electrode 5 is shown. As can be seen from FIG. 1, the discharge electrode 5 is located on one dust collection electrode 4 side (the right side in the y direction in FIG. 1) from the center position CL between the dust collection electrodes 4 arranged in the y direction orthogonal to the gas flow G direction. Offset.
 集塵極4は接地されている。放電極5は、図示しない負の極性を有する電源に接続されている。なお、放電極5に接続する電源は正の極性を有していても良い。 塵 The dust collection electrode 4 is grounded. The discharge electrode 5 is connected to a power source having a negative polarity (not shown). The power supply connected to the discharge electrode 5 may have a positive polarity.
 図2に示すように、放電極5は、取付枠5cに固定された本体部5bと、本体部5bから突出するトゲ状とされた複数の突起部(コロナ放電部)5aとを備えている。突起部5aは、一方の集塵極4側のみに先端を向けて突出するように設けられている。突起部5aは、ガス流れG方向であるx方向において、集塵極4の間に位置するように配置されている。突起部5aにおいてコロナ放電が発生し、突起部5aの先端から対向する集塵極4側に向けてイオン風が発生する。 As shown in FIG. 2, the discharge electrode 5 includes a main body 5b fixed to the mounting frame 5c, and a plurality of barbed protrusions (corona discharge parts) 5a protruding from the main body 5b. . The protruding portion 5a is provided so as to protrude toward the tip only on one dust collection electrode 4 side. The projection 5a is arranged so as to be located between the dust collection electrodes 4 in the x direction which is the gas flow G direction. Corona discharge is generated at the protrusion 5a, and ion wind is generated from the tip of the protrusion 5a toward the opposing dust collection electrode 4 side.
 図2に示されているように、放電極5の本体部5bの中心C1は、集塵極4間の中央位置CLからオフセットされている。具体的には、放電極5の本体部5bの中心C1は、突起部5aが対向する集塵極4(以下、この集塵極4を「放電側集塵極4a」という。)から遠ざかる方向に、かつ、突起部5aの反対側の集塵極4(以下、この集塵極4を「反対側集塵極4b」という。)に近づくように中央位置CLから位置がずらされている。したがって、本体部5bの中心C1と放電側集塵極4aの中心C2を通る配列位置との間のy方向に見た距離D1は、本体部5bの中心C1と反対側集塵極4bの中心C3を通る配列位置との間のy方向に見た距離D2よりも大きい(D1>D2)。なお、放電極5と集塵極4とがy方向に交互に配置されているので、1つの集塵極4のうち、突起部5a側が放電側集塵極4aとなり、突起部5aの反対側が反対側集塵極4bとなる。 中心 As shown in FIG. 2, the center C1 of the main body 5b of the discharge electrode 5 is offset from the center position CL between the dust collection electrodes 4. Specifically, the center C1 of the main body 5b of the discharge electrode 5 is in a direction away from the dust collecting electrode 4 to which the protrusion 5a faces (hereinafter, this dust collecting electrode 4 is referred to as a "discharge-side dust collecting electrode 4a"). In addition, the position is shifted from the center position CL so as to approach the dust collecting electrode 4 on the opposite side of the protrusion 5a (hereinafter, this dust collecting electrode 4 is referred to as “opposite side dust collecting electrode 4b”). Therefore, the distance D1 in the y direction between the center C1 of the main body 5b and the arrangement position passing through the center C2 of the discharge-side dust collecting electrode 4a is the center of the center C1 of the main body 5b and the center of the opposite side dust collecting electrode 4b. It is larger than the distance D2 as viewed in the y direction between the array position passing through C3 (D1> D2). Since the discharge electrode 5 and the dust collection electrode 4 are alternately arranged in the y direction, the projection 5a side of one dust collection electrode 4 becomes the discharge side dust collection electrode 4a, and the opposite side of the projection 5a is formed. It becomes the dust collecting electrode 4b on the opposite side.
 距離D1は、放電極5の本体部5bの中心C1と放電側集塵極4aの中心C2を通る配列位置との間の距離である。すなわち、D1は、放電側集塵極4aの配列方向に対して垂直方向(y方向)において放電極5の本体部5bの中心C1と放電側集塵極4aの配列位置(中心軸線)との間の距離である。 Distance D1 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position passing through the center C2 of the discharge-side dust collecting electrode 4a. That is, D1 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position (center axis) of the discharge-side dust collection electrode 4a in the direction (y direction) perpendicular to the arrangement direction of the discharge-side dust collection electrode 4a. Is the distance between them.
 距離D2は、放電極5の本体部5bの中心C1と反対側集塵極4bの中心C3を通る配列位置との間の距離である。すなわち、D2は、反対側集塵極4bの配列方向に対して垂直方向(y方向)において放電極5の本体部5bの中心C1と反対側集塵極4bの配列位置(中心軸線)との間の距離である。 Distance D2 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position passing through the center C3 of the opposite side dust collecting electrode 4b. That is, D2 is the distance between the center C1 of the main body 5b of the discharge electrode 5 and the arrangement position (center axis) of the opposite dust collection electrode 4b in the direction (y direction) perpendicular to the arrangement direction of the opposite dust collection electrode 4b. Is the distance between them.
 突起部5aの先端は、例えば放電極5の本体部5bの中心から放電部先端までの距離、すなわちDd/2+Lb(図4B参照)が30mm未満、好ましくは20mm程度とされた場合には、中央位置CLよりも反対側集塵極4b側に位置するように配置されている。 When the distance from the center of the main body 5b of the discharge electrode 5 to the front end of the discharge portion, that is, Dd / 2 + Lb (see FIG. 4B) is less than 30 mm, preferably about 20 mm, the tip of the protrusion 5a is located at the center. It is arranged to be located on the opposite side of the dust collecting electrode 4b from the position CL.
 上記のように、突起部5aを一方向に向け、かつx方向において集塵極4の間に配置することで、突起部5aから放電側集塵極4aに向かうイオン風が略同じ方向を向かい、イオン風の干渉を避けることができるようになっている。 As described above, by arranging the projection 5a in one direction and arranging it between the dust collection electrodes 4 in the x direction, the ion wind from the projection 5a to the discharge-side dust collection electrode 4a is directed in substantially the same direction. In addition, interference of ion wind can be avoided.
 図3には、図1をガス流れG方向から見た正面図が示されている。同図に示されているように、突起部5aは、高さ方向において、所定間隔を空けて設けられている。 FIG. 3 is a front view of FIG. 1 viewed from the gas flow G direction. As shown in the figure, the protrusions 5a are provided at predetermined intervals in the height direction.
 図4Aには、集塵極4と放電極5とを平面視したときの位置関係が示されている。
 ガス流れG方向であるx方向に並ぶ集塵極4の間隔はPc、x方向に並ぶ放電極5の間隔はPdとされる。また、y方向に並ぶ集塵極4の間隔は2Dとされる。集塵極4の直径はDcとされる。
FIG. 4A shows a positional relationship between the dust collection electrode 4 and the discharge electrode 5 in a plan view.
The interval between the dust collecting electrodes 4 arranged in the x direction which is the gas flow G direction is Pc, and the interval between the discharge electrodes 5 arranged in the x direction is Pd. The interval between the dust collecting electrodes 4 arranged in the y direction is 2D. The diameter of the dust collecting electrode 4 is Dc.
 本実施形態において、放電極5のオフセット位置、すなわち、放電極5の本体部5bの中心が中央位置CLからy方向にずれる位置は、距離D1及び距離D2の比が、1.1 ≦ D1/D2 ≦ 2.0の範囲に設定されることが望ましい。D1/D2の下限は、1.2とされると更によい。 In the present embodiment, the offset position of the discharge electrode 5, that is, the position where the center of the main body 5b of the discharge electrode 5 is shifted from the center position CL in the y direction is such that the ratio of the distance D1 and the distance D2 is 1.1 ≦ D1 / It is preferable to set D2 ≦ 2.0. More preferably, the lower limit of D1 / D2 is set to 1.2.
 放電極5の突起部5aの先端と最も近い放電側集塵極4aの側面との距離はL1、放電極5の突起部5aの反対側の本体部5bと最も近い反対側集塵極4bの側面との距離はL2とされる。
 なお、図4Aにおいて示される放電極5と集塵極4との間に描かれた曲線は電気力線である。
The distance between the tip of the protruding portion 5a of the discharge electrode 5 and the side surface of the nearest discharge-side dust collecting electrode 4a is L1, The distance from the side surface is L2.
In addition, the curve drawn between the discharge electrode 5 and the dust collection electrode 4 shown in FIG. 4A is a line of electric force.
 図4Bには、放電極5の突起部5aに相当する高さ位置における横断面が拡大して示されている。同図に示すように、放電極5の本体部5bは円形断面を有しており、その直径はDdとされる。突起部5aが本体部5bから突出する突起長さはLbとされる。 FIG. 4B shows an enlarged cross section at a height position corresponding to the protrusion 5 a of the discharge electrode 5. As shown in the figure, the main body 5b of the discharge electrode 5 has a circular cross section, and its diameter is Dd. The length of the protrusion from which the protrusion 5a protrudes from the main body 5b is Lb.
 図4A及び図4Bに示した諸元を用いると、L1及びL2は下式のように表すことができる。
  L1=((D1-Dd/2-Lb)+(Pd/2)0.5-Dc/2
  L2=(D2+(Pd/2)0.5-Dc/2-Dd/2
 そして、放電極5の本体部5bの中心が中央位置CLからy方向にずれるオフセット量Leは、下式によって表される。
  Le=(D1-D2)/2
 なお、図4A及び図4Bでは、トゲ状の突起部5aの位置での断面での例を示したが、実際には突起部5aが占める部分は放電極5の一部であり、隣り合う二つの突起部5a間の部分が放電極5の大部分を占める。そのため、突起部5aの長さLbは無視してL1、L2を評価しても構わない。
Using the specifications shown in FIGS. 4A and 4B, L1 and L2 can be expressed as in the following equations.
L1 = ((D1-Dd / 2-Lb) 2 + (Pd / 2) 2 ) 0.5 -Dc / 2
L2 = (D2 2 + (Pd / 2) 2 ) 0.5 −Dc / 2−Dd / 2
Then, an offset amount Le in which the center of the main body 5b of the discharge electrode 5 is shifted from the center position CL in the y direction is represented by the following equation.
Le = (D1-D2) / 2
4A and 4B show an example of a cross section at the position of the barb-shaped protrusion 5a, but the portion occupied by the protrusion 5a is actually a part of the discharge electrode 5, and The portion between the two protrusions 5a occupies most of the discharge electrode 5. Therefore, L1 and L2 may be evaluated ignoring the length Lb of the protrusion 5a.
 y方向に並ぶ集塵極4間の距離である2Dは、たとえば一般産業用では300mm以上500mm以下とされている。ただし他の用途では、それ以外の寸法とすることもできる。 2D, which is the distance between the dust collecting electrodes 4 arranged in the y direction, is, for example, 300 mm or more and 500 mm or less for general industrial use. However, other dimensions may be used for other applications.
 次に、図5A乃至図6Bを用いて、放電極5をオフセットさせた場合の作用効果について説明する。 Next, the operation and effect when the discharge electrode 5 is offset will be described with reference to FIGS. 5A to 6B.
 図5A及び図5Bには、オフセット量Le=0とされたオフセット無しの場合、すなわち放電極5の本体部5bが中央位置CL上に設けられている場合の電界強度分布が示されている。図5Aに示すように、突起部5aと放電側集塵極4aとの間は、コロナ電流が流れるにしたがい、放電側集塵極4a近傍の電界強度E1maxは空間中に存在するマイナスイオンと帯電ダストが有する空間電荷で上昇する。この放電側集塵極4a付近での火花放電限界の電界強度(Ecr)が最大の印加可能な最大電界強度の条件となる(E1max≦Ecr)。 5A and 5B show the electric field intensity distribution when there is no offset with the offset amount Le = 0, that is, when the main body 5b of the discharge electrode 5 is provided at the center position CL. As shown in FIG. 5A, as the corona current flows between the protrusion 5a and the discharge-side dust collecting electrode 4a, the electric field intensity E1max near the discharge-side dust collecting electrode 4a becomes negative with the negative ions existing in the space and the charged ions. It rises with the space charge of the dust. The electric field intensity (Ecr) at the limit of the spark discharge near the discharge-side dust collecting electrode 4a is the condition of the maximum applicable electric field intensity (E1max ≦ Ecr).
 一方、図5Bに示すように、突起部5aの反対側と反対側集塵極4bとの間では、図5Aのような空間電荷による持ち上がりがないため、反対側集塵極4b近傍の電界強度E2maxは、E1maxよりも小さい。
 なお、電界強度を距離L1,L2で積分した面積A1,A2はそれぞれが印加電圧Voに相当するため、等しい値となる。
On the other hand, as shown in FIG. 5B, there is no lifting due to space charge as shown in FIG. 5A between the opposite side of the protrusion 5a and the opposite side dust collecting electrode 4b, so the electric field intensity near the opposite side dust collecting electrode 4b. E2max is smaller than E1max.
Note that the areas A1 and A2 obtained by integrating the electric field strengths with the distances L1 and L2 each have the same value because they correspond to the applied voltage Vo.
 図6A及び図6Bには、本実施形態に相当し、放電極5が中央位置CLからオフセットされた場合の放電極5と集塵極4との間の電界強度分布が示されている。図6Aが図5Aに対応し、図6Bが図5Bに対応する。 6A and 6B show the electric field intensity distribution between the discharge electrode 5 and the dust collection electrode 4 when the discharge electrode 5 is offset from the center position CL, which corresponds to the present embodiment. 6A corresponds to FIG. 5A, and FIG. 6B corresponds to FIG. 5B.
 図6A及び6Bに示されているように、突起部5aと放電側集塵極4aとの間の電界強度は、オフセットによりL1>L2又はD1>D2とされているため、放電側集塵極4a近傍の電界強度E1maxは、オフセット無しの場合と同じ電圧Voであれば、図5Aよりは低下し、E1ave.(=Vo/L1)も小さくなる。一方、オフセットによって図5Bの場合よりもL2が小さくなり、平均電界強度E2ave.が大きくなることで、反対側集塵極4b近傍の電界強度E2maxは増加させることができる。 As shown in FIGS. 6A and 6B, the electric field strength between the protrusion 5a and the discharge-side dust collecting electrode 4a is set to L1> L2 or D1> D2 due to the offset. If the electric field strength E1max near 4a is the same voltage Vo as that without offset, it will be lower than that in FIG. 5A, and E1ave. (= Vo / L1) will also be smaller. On the other hand, the offset makes L2 smaller than in the case of FIG. 5B and increases the average electric field strength E2ave. Thus, the electric field strength E2max near the opposite dust collecting electrode 4b can be increased.
 一般に、E1maxが火花放電限界電界強度Ecr以下での運転となるが、オフセットすることで突起物側の距離が長くなるため、オフセット無しの場合に比べて当初のE1maxと同じ電界強度にするためには、印加線圧Vnそのものを高くすることができ(Vn>Vo)、このため突起物と反対側の最大電界強度E2maxもさらに高くすることができる。このように、オフセットするとともに、印加電圧を高くすることで、電界強度E1maxをオフセット前と同等に維持しつつ、E2maxをE1maxと同じレベルまで高くすることで、集塵極近傍の最も集塵に効果のある場の電界強度を高め、クーロン力による捕集効率を高めることが可能となる。なお、オフセットすることでコロナ放電側の距離は大きくなり、この間を移動するダストの移動距離は大きくなるが、この部分でのダストの移動はイオン風が主体となるため、若干の到達距離の増加や途中の平均電界強度の低下は性能にはマイナスとならず、放電側集塵極4aの裏側の反対側集塵極4bに回り込んだダストの反対側集塵極4b近傍の電界強度E2max の増大で性能を高くすることが可能となる。 Generally, the operation is performed with E1max being equal to or less than the spark discharge limit electric field intensity Ecr. Can increase the applied linear pressure Vn itself (Vn> Vo), so that the maximum electric field strength E2max on the side opposite to the protrusion can be further increased. In this way, by offsetting and increasing the applied voltage, the electric field strength E1max is maintained at the same level as before the offset, while E2max is increased to the same level as E1max, so that the most dust collection near the dust collection pole can be achieved. It is possible to increase the electric field strength of an effective field and increase the collection efficiency by Coulomb force. By offsetting, the distance on the corona discharge side increases, and the moving distance of dust moving between them increases.However, the movement of dust in this part is mainly due to ionic wind, so the distance of arrival slightly increases. The electric field intensity E2max 電 界 near the opposite dust collecting electrode 4b of the dust that has flowed into the opposite dust collecting electrode 4b on the back side of the discharge dust collecting electrode 4a does not become negative in the performance. It is possible to increase the performance by increasing.
 オフセット量Leは、放電側集塵極4aの電界強度E1maxと反対側集塵極4bの電界強度E2maxとが同等となるように調整されることが好ましい。図5A乃至図6Bで示す電界強度の例は、パイプ状の集塵極4を間隔をあけて配置した事例であり、L1,L2での最短距離をベースに記載している。集塵極4の電極例としては、メッシュ状の電極等もあるため、以下はオフセット量を定義するため、集塵極4の中心C2,C3を通過する配列位置と放電極5の中心C1間距離であるD1,D2でまとめて表記する。この場合、パイプ状の電極であっても、L1,L2でなく、D1,D2で評価しても実用上の範囲ではほぼ同等とみなせるため、支障はない。 It is preferable that the offset amount Le is adjusted so that the electric field intensity E1max of the discharge-side dust collecting electrode 4a is equal to the electric field intensity E2max of the opposite-side dust collecting electrode 4b. The example of the electric field strength shown in FIGS. 5A to 6B is an example in which the pipe-shaped dust collecting electrodes 4 are arranged at intervals, and the shortest distances at L1 and L2 are described as a base. As an example of the electrode of the dust collecting electrode 4, there is a mesh-shaped electrode or the like. The distances D1 and D2 are collectively described. In this case, even if the electrode is in the form of a pipe, even if it is evaluated not by L1 and L2 but by D1 and D2, it can be considered that they are almost equivalent in a practical range, and there is no problem.
 両者の電界強度が等しくなる範囲は、例えば、1.5 ≦ D1/D2 ≦ 1.8である。但し、電気集塵装置1の運転条件や集塵極4又は放電極5の条件によって最適なD1/D2の範囲は変動する。 {The range in which the electric field intensities of both are equal is, for example, 1.5} ≦ {D1 / D2} ≦ {1.8. However, the optimum range of D1 / D2 varies depending on the operating conditions of the electric dust collector 1 and the conditions of the dust collecting electrode 4 or the discharge electrode 5.
 距離D1及び距離D2の比D1/D2の下限は、例えば1.1であり、より望ましくは1.2である。図10に示すように、ガス流れGの流速によって、オフセット量と集塵性能の関係が変化するという知見が得られている。ガス流れGが比較的速いときは、D1/D2が1.1以上になると、集塵性能が向上する。ガス流れGが比較的遅いときは、D1/D2が1.2以上になると、集塵性能が向上し、この範囲では、ガス流れGが比較的速いときは、集塵性能が確実に向上する。 下限 The lower limit of the ratio D1 / D2 of the distance D1 and the distance D2 is, for example, 1.1, and more preferably 1.2. As shown in FIG. 10, it has been found that the relationship between the offset amount and the dust collection performance changes depending on the flow velocity of the gas flow G. When the gas flow G is relatively fast, if D1 / D2 is 1.1 or more, the dust collection performance is improved. When the gas flow G is relatively slow, the dust collection performance is improved when D1 / D2 is 1.2 or more. In this range, when the gas flow G is relatively fast, the dust collection performance is definitely improved. .
 ガス流れGの流速が速い条件では、よりクーロン力の影響が大きいため、電界強度の増大に影響を受けて、比較的小さいオフセット量(例えば1.1 ≦ D1/D2)でも集塵性能が向上する。これに対し、流速が遅い条件では、イオン風の影響が大きいことから、電界強度の増大によって集塵性能が向上するには、より大きなオフセット量(例えば1.2 ≦ D1/D2)が必要になる。1.2 ≦ D1/D2であれば、ガス流れGの流速に関わらず、集塵性能を向上させることができる。 Under the condition where the flow velocity of the gas flow G is high, the influence of the Coulomb force is greater, and the dust collection performance is improved even with a relatively small offset amount (for example, 1.1 ≦ D1 / D2) due to the increase in the electric field strength. I do. On the other hand, under the condition where the flow velocity is slow, the influence of the ion wind is large, so that a larger offset amount (for example, 1.2 ≦ D1 / D2) is required to improve the dust collection performance by increasing the electric field strength. Become. If 1.2 ≦ D1 / D2, dust collection performance can be improved regardless of the flow velocity of the gas flow G.
 オフセット量を過大にすると、反対側集塵極近傍の電界強度E2max>E1maxとなり、コロナ放電部と反対側での火花放電限界電界強度が運転上の制約条件となり、コロナ放電側での性能が発揮できなくなるため、好ましくない。よって、最大のオフセット量はE2maxがE1maxを大きく超えない範囲に設定されることが望ましい。 If the offset amount is too large, the electric field intensity E2max> E1max near the dust collection electrode on the opposite side will be reached, and the spark discharge limit electric field intensity on the opposite side of the corona discharge section will be a constraint on operation, and the performance on the corona discharge side will be exhibited. It is not preferable because it becomes impossible. Therefore, it is desirable that the maximum offset amount is set in a range where E2max does not greatly exceed E1max.
 図11には、一般産業用の電気集塵装置1において、D1/D2を変化させた時のコロナ放電側(放電極5の本体部5bに突起部5aを有する側、すなわち、放電線にトゲのある側)の放電側集塵極4a近傍の電界強度と、電界側(放電極5の本体部5bに突起部5aを有さない側、すなわち、トゲのない側)の反対側集塵極4b近傍の電界強度を解析して比較した例を示す。電気集塵装置1の運転条件としての電流電圧をともに上昇させていった。図11において、左のグラフから右のグラフに行くに従い、電流電圧が高くなっている。 FIG. 11 shows an electric precipitator 1 for general industry, in which the corona discharge side (the side having the projecting portion 5a on the main body 5b of the discharge electrode 5, that is, the barb on the discharge wire) when D1 / D2 is changed. And the opposite side of the electric field side (the side where the main body 5b of the discharge electrode 5 does not have the protrusion 5a, that is, the side without the barb). The example which analyzed and compared the electric field intensity near 4b is shown. The current and voltage as operating conditions of the electrostatic precipitator 1 were both increased. In FIG. 11, the current and the voltage increase from the left graph to the right graph.
 いずれの場合も、D1/D2=1の場合には、トゲのある側の放電側集塵極4aのほうがトゲの長さ分距離が近いことに加え、コロナ電流による空間電荷で電界が持ち上がる効果が加算されるため、トゲのある側の放電側集塵極4aのほうの電界強度が高い。そして、電流が増えていくに従い、その持ち上がりの効果が大きくなり、電界強度の値が高くなっていく。 In any case, when D1 / D2 = 1, the discharge-side dust collecting electrode 4a on the side where the barb is located is closer to the barb by the length of the barb, and the electric field is raised by the space charge due to the corona current. Is added, the electric field strength of the discharge-side dust collecting electrode 4a on the side with the thorn is higher. Then, as the current increases, the effect of lifting increases, and the value of the electric field strength increases.
 一方、図11のいずれのグラフの場合もD1/D2が増えていくに従いトゲのない側の反対側集塵極4bの電界強度は一義的に増加していく傾向を示す。理想的にはトゲのある側とトゲのない側の電界強度が一致するポイントが、最もバランスの取れた電界強度配分と考えられる。しかし、実際の運転では、いろいろな条件が複合しているため、最適な条件は変動する。このため、図10のD1/D2を変化させた時の集塵性の向上に関するテスト結果でも、集塵性能の最適ポイントもある程度のばらつきを有している。 On the other hand, in any of the graphs of FIG. 11, as D1 / D2 increases, the electric field intensity of the opposite side of the dust collecting electrode 4b on the side without the thorns tends to uniquely increase. Ideally, the point where the electric field intensity on the side with the barbs and the electric field intensity on the side without the barbs match is considered to be the most balanced electric field intensity distribution. However, in actual operation, various conditions are compounded, and the optimum conditions vary. For this reason, even in the test result regarding the improvement of the dust collection performance when D1 / D2 is changed in FIG. 10, the optimum point of the dust collection performance has some degree of variation.
 また、図11の右側のほうのグラフ、すなわち電流電圧を上昇させた運転では、特にオフセット量の大きなD1/D2が大きな領域では、一般産業用の電気集塵装置1での火花放電電界強度(これは、ガスの組成や運転温度条件によっても大きく異なるが、通常8kV/cm~12kV/cmとされている。)をトゲのない側の反対側集塵極4bのほうが先に超えてしまうため、好ましくない。
 より具体的には、D1/D2 ≦ 2.0とされることが望ましい。
Further, in the graph on the right side of FIG. 11, that is, in the operation in which the current and the voltage are increased, especially in a region where the offset amount D1 / D2 is large, the spark electric field intensity ( This largely depends on the gas composition and the operating temperature conditions, but is usually set to 8 kV / cm to 12 kV / cm.) Is not preferred.
More specifically, it is desirable that D1 / D2 ≦ 2.0.
 D1/D2が2.0を超えると、反対側集塵極4b側の電界強度が、電気集塵装置1の通常運転条件下において、火花放電が発生する領域に到達する、又は、到達する値に近くなる。そのため、電気集塵装置1の運転条件の制約を受けて、安定運転は困難になる。したがって、D1/D2の上限は2.0とされることが望ましい。 When D1 / D2 exceeds 2.0, the electric field strength on the opposite side of the dust collecting electrode 4b reaches or reaches a region where spark discharge occurs under the normal operation conditions of the electric dust collecting device 1. Become closer to Therefore, the stable operation becomes difficult due to the restriction of the operating conditions of the electric precipitator 1. Therefore, the upper limit of D1 / D2 is preferably set to 2.0.
 次に、本実施形態の電気集塵装置1の動作を説明する。
 電気集塵装置1では、放電極5に電源から負電圧を印加することで、突起部5aの先端でコロナ放電が発生する。ガス流れGに含まれるダストは、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電されたダストは、クーロン力により接地された集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
Next, the operation of the electric precipitator 1 of the present embodiment will be described.
In the electrostatic precipitator 1, by applying a negative voltage from the power supply to the discharge electrode 5, corona discharge is generated at the tip of the projection 5a. The dust contained in the gas flow G is charged by corona discharge. According to the collecting principle of the conventional electric dust collector, the charged dust is attracted to the dust collecting electrode 4 grounded by Coulomb force and collected on the dust collecting electrode 4. Is greatly influenced by ion wind.
 コロナ放電が発生すると、突起部5a近くでマイナスイオンが発生し、そのマイナスイオンが電界によって集塵極4に向けて移動し、イオン風が生じる。そのためクーロン力がダストに作用すると同時に、集塵極4に向かって流れるイオン風が、ガス流れGに含まれるダストを放電側集塵極4aの近傍まで移動させるように作用する。そして、放電側集塵極4aの近傍の領域で、電界強度の持ち上がりによってクーロン力を高め、効果的にダストを集塵する。また、円形パイプとされた集塵極4を所定のガス流れG方向であるx方向に間隔をあけて配置することで、突起部5aから放電側集塵極4aへ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できるため、捕集効率が向上する。 (4) When corona discharge occurs, negative ions are generated near the protrusion 5a, and the negative ions move toward the dust collection electrode 4 by an electric field, thereby generating ion wind. Therefore, simultaneously with the Coulomb force acting on the dust, the ionic wind flowing toward the dust collecting electrode 4 acts to move the dust contained in the gas flow G to the vicinity of the discharge-side dust collecting electrode 4a. Then, in the region near the discharge-side dust collecting electrode 4a, the Coulomb force is increased by the increase in the electric field strength, and dust is effectively collected. In addition, by arranging the dust collecting electrodes 4 in the form of circular pipes at intervals in the x direction, which is the direction of the predetermined gas flow G, one of the ion winds flowing from the protrusions 5a toward the discharge-side dust collecting electrodes 4a is reduced. The part is allowed to come off to the back side of the dust collecting electrode 4. This can suppress the flow of the ion wind that is reversed at the dust collection electrode 4 and moves away from the dust collection electrode 4, thereby improving the collection efficiency.
 ダストを含んで集塵極4に向かって流れるイオン風の一部は、集塵極4の間を通り抜ける。イオン風は一方向に向けられるので、互いに干渉することがない。 一部 A part of the ion wind including dust and flowing toward the dust collection electrode 4 passes between the dust collection electrodes 4. Since the ion winds are directed in one direction, they do not interfere with each other.
 一方、突起部5aの反対側の反対側集塵極4bとの間では、図6Bを用いて説明したように、放電極5を中央位置CLからオフセットすることによって、反対側集塵極4b近傍の電界強度E2maxをオフセット無しに比べて増加することができる。これにより、突起部5aの反対側の反対側集塵極4bでもクーロン力によって効果的に集塵が行われる。すなわち、イオン風によって集塵極4の背面である反対側集塵極4bに回り込んだ未捕集ダストを効率的に捕集することができる。 On the other hand, as described with reference to FIG. 6B, the discharge electrode 5 is offset from the center position CL between the opposite side of the projection 5 a and the opposite side of the dust collection electrode 4 b, so that Can be increased as compared with the case where there is no offset. As a result, dust is collected effectively by the Coulomb force on the opposite side of the dust collection electrode 4b opposite to the protrusion 5a. That is, it is possible to efficiently collect the uncollected dust that has circulated to the opposite side of the dust collecting electrode 4b due to the ion wind.
 集塵極4に捕集されたダストは、槌打によって剥離回収される。あるいは、集塵極を移動させてブラシでダストを掻き落とす方式や、湿式洗浄を採用しても良い。 ダ ス ト The dust collected by the dust collecting electrode 4 is separated and collected by hammering. Alternatively, a method in which the dust collecting electrode is moved to scrape off dust with a brush, or a wet cleaning may be employed.
 本実施形態によれば、以下の作用効果を奏する。
 放電極5の本体部5bの中心が放電側集塵極4aと反対側集塵極4bとの間の中央位置CLよりも放電側集塵極4aから遠ざかる方向に位置されているので、放電極5の本体部5bと反対側集塵極4bとが近づくことになる。これにより、放電極5の本体部5bと反対側集塵極4bとの間の電界強度を増加させることができ、反対側集塵極4bにおいてもクーロン力による集塵効率を高めることができる。
According to the present embodiment, the following operation and effect can be obtained.
Since the center of the main body 5b of the discharge electrode 5 is located farther from the discharge-side dust collecting electrode 4a than the center position CL between the discharge-side dust collecting electrode 4a and the opposite side dust-collecting electrode 4b, the discharge electrode 5 and the opposite side of the dust collecting electrode 4b come closer. Thereby, the electric field intensity between the main body 5b of the discharge electrode 5 and the opposite dust collecting electrode 4b can be increased, and the dust collecting efficiency by the Coulomb force can also be increased in the opposite dust collecting electrode 4b.
 なお、上述した実施形態では、放電極5の構成として、円形の横断面を有する本体部5bに対して突起部5aを設けた構成としたが、図7Aに示すように、横断面が矩形とされた角棒5b’に突起部5aを設けた構成としても良い。あるいは、図7Bに示すように、平板を打ち抜いて形成し、突起部5aと本体部5b”とが一体的に構成されているものであっても良い。 In the above-described embodiment, the configuration of the discharge electrode 5 is such that the projection 5a is provided on the main body 5b having a circular cross section. However, as shown in FIG. 7A, the cross section is rectangular. It is good also as a structure which provided the projection part 5a in the square rod 5b 'made. Alternatively, as shown in FIG. 7B, a flat plate may be formed by punching, and the protrusion 5a and the main body 5b ″ may be integrally formed.
 また、図8A及び図8Bに示すように、上述した円形パイプとした集塵極4に代えて、平板に多数の孔を形成したパンチングメタルのような平板状集塵極4’としても良い。あるいは、図9A及び図9Bに示すように、多数の孔を形成したパンチングメタルのような平板をガス流れG方向に交互に規則的に折り返した折れ板状集塵極4”としても良い。この場合、放電極5の突起部5aは、対向する折れ板の凹凸に応じてオフセットされる。 As shown in FIGS. 8A and 8B, instead of the above-described dust collecting electrode 4 having a circular pipe shape, a plate-like dust collecting electrode 4 'such as a punching metal having a large number of holes formed in a flat plate may be used. Alternatively, as shown in FIGS. 9A and 9B, a flat plate such as a punching metal having a large number of holes may be formed into a folded plate-shaped dust collecting electrode 4 ″ which is alternately and regularly folded in the gas flow G direction. In this case, the projection 5a of the discharge electrode 5 is offset according to the unevenness of the opposing bent plate.
 さらに、集塵極4は、金属製線材を縦方向と横方向などに交差させた織金網(例えばロッククリンプ織金網など)でもよい。織金網は、一定の開口率を有しつつ、表面にエッジがないため、集塵極4近傍の電界強度を一様に上昇させることができる。なお、金網は、織金網に限定されず、溶接金網のように断面円形状の線材を縦方向と横方向に並べて接続したものでもよい。 Furthermore, the dust collecting electrode 4 may be a woven wire mesh (for example, a rock crimp woven wire mesh) in which metal wires are crossed in the vertical and horizontal directions. Since the woven wire mesh has a constant aperture ratio and no edges on the surface, the electric field intensity in the vicinity of the dust collection electrode 4 can be uniformly increased. The wire mesh is not limited to a woven wire mesh, but may be a wire mesh having a circular cross-section, such as a welded wire mesh, arranged in the vertical and horizontal directions.
 電気集塵装置1が、空気浄化用に空気清浄機として用いられる場合、粒子が装置内に滞留する時間が短く、粒子濃度も低い。一方、火力発電プラントに用いられる電気集塵装置1は、空気浄化用に用いられる場合と異なり規模が大きく、粒子が滞留する時間が長く、粒子濃度も高い。空気浄化用の電気集塵装置1において、低濃度の粒子を短い滞留時間で通過させると、放電極5の突起部5aからのイオン風によって生じるガス循環による効果で、粒子を集塵極4に捕集できない。 (4) When the electrostatic precipitator 1 is used as an air purifier for air purification, the time that particles stay in the device is short, and the particle concentration is low. On the other hand, the electrostatic precipitator 1 used in a thermal power plant has a large scale, a long period of staying particles, and a high particle concentration, unlike the case where it is used for air purification. In the electrostatic precipitator 1 for air purification, when low-concentration particles are passed for a short residence time, the particles are transferred to the dust collection electrode 4 by the effect of gas circulation generated by the ion wind from the projection 5a of the discharge electrode 5. Can't collect.
 そこで、図12に示すように、反対側集塵極4bと放電極5の間のガス流れGの上流側において、ガス遮断板6が設置されるとよい。ガス遮断板6によってガス流れGが妨げられることにより、反対側集塵極4bと放電極5間に流れるガス流れの流量が低減し、集塵極4を通り抜けた粒子の滞在時間を長くして、捕集性能を高めることができる。 Therefore, as shown in FIG. 12, a gas blocking plate 6 may be provided on the upstream side of the gas flow G between the opposite side dust collecting electrode 4b and the discharge electrode 5. Since the gas flow G is hindered by the gas blocking plate 6, the flow rate of the gas flow flowing between the opposite side dust collecting electrode 4b and the discharge electrode 5 is reduced, and the residence time of the particles passing through the dust collecting electrode 4 is increased. , The collection performance can be improved.
1 電気集塵装置
4 集塵極
4a 放電側集塵極
4b 反対側集塵極
5 放電極
5a 突起部(コロナ放電部)
5b 本体部
5c 取付枠
6 ガス遮断板
C1 (放電極の本体部の)中心
CL 中央位置
 
DESCRIPTION OF SYMBOLS 1 Electric dust collector 4 Dust collection electrode 4a Discharge side dust collection electrode 4b Opposite side dust collection electrode 5 Discharge electrode 5a Projection (corona discharge part)
5b Main body 5c Mounting frame 6 Gas blocking plate C1 Center CL (of main body of discharge electrode) Center position

Claims (5)

  1.  本体部と該本体部から突出するコロナ放電用のコロナ放電部とを有する放電極と、
     前記コロナ放電部側に位置する放電側集塵極と、
     前記放電極を挟んで前記放電側集塵極の反対側に位置する反対側集塵極と、
    を備え、
     前記放電極の前記本体部の中心は、前記放電側集塵極と前記反対側集塵極との間の中央位置よりも前記放電側集塵極から遠ざかる方向に位置されている電気集塵装置。
    A discharge electrode having a main body and a corona discharge portion for corona discharge protruding from the main body,
    A discharge-side dust collecting electrode located on the corona discharge unit side,
    An opposite-side dust collecting electrode located on the opposite side of the discharge-side dust collecting electrode across the discharge electrode,
    With
    An electrostatic precipitator in which the center of the main body of the discharge electrode is located farther from the discharge-side dust collector than a center position between the discharge-side dust collector and the opposite-side dust collector. .
  2.  前記放電極の前記本体部の中心と前記放電側集塵極との間の距離をD1、前記放電極の前記本体部の中心と前記反対側集塵極との間の距離をD2とした場合、
     1.1 ≦ D1/D2 ≦ 2.0
    とされている請求項1に記載の電気集塵装置。
    When the distance between the center of the main body of the discharge electrode and the discharge-side dust collecting electrode is D1, and the distance between the center of the main body of the discharge electrode and the opposite-side dust collecting electrode is D2. ,
    1.1 ≦ D1 / D2 ≦ 2.0
    The electric precipitator according to claim 1, wherein
  3.  前記放電側集塵極と前記反対側集塵極は、それぞれ一方向に沿って配列され、
     前記D1は、前記放電極の本体部の中心と前記放電側集塵極の配列位置との間の距離であり、
     前記D2は、前記放電極の本体部の中心と前記反対側集塵極の配列位置との間の距離である請求項2に記載の電気集塵装置。
    The discharge side dust collection electrode and the opposite side dust collection electrode are respectively arranged along one direction,
    D1 is a distance between the center of the main body of the discharge electrode and the arrangement position of the discharge-side dust collection electrodes,
    The electrostatic precipitator according to claim 2, wherein the D2 is a distance between a center of the main body of the discharge electrode and an arrangement position of the opposite side dust collection electrode.
  4.  前記放電極と前記放電側集塵極との間の電界強度と、前記放電極と前記反対側集塵極との間の電界強度とが同等とされている請求項1から3のいずれかに記載の電気集塵装置。 The electric field intensity between the discharge electrode and the discharge-side dust collection electrode is equal to the electric field intensity between the discharge electrode and the opposite-side dust collection electrode. An electric precipitator according to any one of the preceding claims.
  5.  前記コロナ放電部の先端は、前記放電側集塵極と前記反対側集塵極との間の前記中央位置よりも前記反対側集塵極側に位置している請求項1から4のいずれかに記載の電気集塵装置。 The tip of the corona discharge part is located on the opposite side dust collection electrode side from the center position between the discharge side dust collection electrode and the opposite side dust collection electrode. An electric precipitator according to claim 1.
PCT/JP2019/031901 2018-08-15 2019-08-14 Electric dust collector WO2020036185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980053522.9A CN112566727B (en) 2018-08-15 2019-08-14 Electric dust collector
PH12021550311A PH12021550311A1 (en) 2018-08-15 2021-02-11 Electrostatic precipitator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018152873 2018-08-15
JP2018-152873 2018-08-15
JP2019082947A JP7106491B2 (en) 2018-08-15 2019-04-24 Electrostatic precipitator
JP2019-082947 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020036185A1 true WO2020036185A1 (en) 2020-02-20

Family

ID=69525337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031901 WO2020036185A1 (en) 2018-08-15 2019-08-14 Electric dust collector

Country Status (2)

Country Link
TW (1) TWI742415B (en)
WO (1) WO2020036185A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148775A (en) * 1977-05-30 1978-12-25 Metallgesellschaft Ag Electric dust collector
JPS5584562A (en) * 1978-09-14 1980-06-25 Hitachi Plant Eng & Constr Co Ltd Electric dust collector
JPS56114843U (en) * 1980-01-30 1981-09-03
JPS59150538U (en) * 1983-03-29 1984-10-08 三菱重工業株式会社 Dust collection device
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148775A (en) * 1977-05-30 1978-12-25 Metallgesellschaft Ag Electric dust collector
JPS5584562A (en) * 1978-09-14 1980-06-25 Hitachi Plant Eng & Constr Co Ltd Electric dust collector
JPS56114843U (en) * 1980-01-30 1981-09-03
JPS59150538U (en) * 1983-03-29 1984-10-08 三菱重工業株式会社 Dust collection device
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator

Also Published As

Publication number Publication date
TW202012047A (en) 2020-04-01
TWI742415B (en) 2021-10-11

Similar Documents

Publication Publication Date Title
KR101651034B1 (en) Electric precipitator and air purification system comprising it
FI125997B (en) Electronic particle charging system and gas filtration method
JP6953605B2 (en) Electrostatic precipitator
US20230140445A1 (en) Electrostatic separator
JP2010131515A (en) Electrostatic precipitator
WO2020036185A1 (en) Electric dust collector
US11484890B2 (en) Electrostatic precipitator
JP2018126713A (en) Electrostatic precipitator
CN112512695B (en) Electric dust collector
JP7358216B2 (en) electrostatic precipitator
JP7225019B2 (en) Electrostatic precipitator
JP2607680B2 (en) Electric precipitator and operating method thereof
JP7139120B2 (en) Electrostatic precipitator
KR101180038B1 (en) Electrical precipitator including honey comb filter have multi-helix pin ionizer
WO2020026369A1 (en) Electrostatic precipitator
CN109513528A (en) A kind of electrostatic precipitator
CN218222908U (en) Electrostatic air filter
CN107774453A (en) A kind of collecting plate
JP2009061444A (en) Electrostatic dust collector and charger
JP2007069118A (en) Electric dust collector
JPS6193847A (en) Air purifier
RU2240867C1 (en) Electric filter for purification of gases
RU116371U1 (en) DEVICE FOR CLEANING AIR FROM DISPERSED PARTICLES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850181

Country of ref document: EP

Kind code of ref document: A1