JP2018126713A - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP2018126713A
JP2018126713A JP2017023154A JP2017023154A JP2018126713A JP 2018126713 A JP2018126713 A JP 2018126713A JP 2017023154 A JP2017023154 A JP 2017023154A JP 2017023154 A JP2017023154 A JP 2017023154A JP 2018126713 A JP2018126713 A JP 2018126713A
Authority
JP
Japan
Prior art keywords
dust collecting
electrode
gas flow
dust
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023154A
Other languages
Japanese (ja)
Other versions
JP2018126713A5 (en
JP6752736B2 (en
Inventor
一隆 富松
Kazutaka Tomimatsu
一隆 富松
加藤 雅也
Masaya Kato
雅也 加藤
崇雄 田中
Takao Tanaka
崇雄 田中
上田 泰稔
Yasutoshi Ueda
泰稔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Environmental Solutions Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Environmental Solutions Ltd filed Critical Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority to JP2017023154A priority Critical patent/JP6752736B2/en
Publication of JP2018126713A publication Critical patent/JP2018126713A/en
Publication of JP2018126713A5 publication Critical patent/JP2018126713A5/ja
Application granted granted Critical
Publication of JP6752736B2 publication Critical patent/JP6752736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/025Combinations of electrostatic separators, e.g. in parallel or in series, stacked separators or dry-wet separator combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/10Plant or installations having external electricity supply dry type characterised by presence of electrodes moving during separating action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/78Cleaning the electrodes by washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic precipitator which suppresses action of reducing dust collection effect by ion wind, and can improve dust collection efficiency.SOLUTION: An electrostatic precipitator 1 includes dust collecting electrodes 4 which have a plurality of openings and are arranged along a gas flow G direction, and discharge electrodes 5 arranged parallel to the dust collecting electrodes 4. The discharge electrode 5 has a plurality of corona discharge parts 8 for corona discharge which are arranged continuously in the gas flow direction and protrude to only the one dust collecting electrode 4 out of the opposite dust collecting electrodes 4. The plurality of dust collecting electrodes 4 and the plurality of discharge electrodes 5 are arranged alternately in a direction orthogonal to the gas flow G direction. All of the corona discharge parts 8 protrude in a same direction in an upstream area S1 and a downstream area S2 of the gas flow G direction.SELECTED DRAWING: Figure 1

Description

本発明は、電気集塵装置に関するものである。   The present invention relates to an electric dust collector.

従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列された鋭利な形状を有する放電極とを備えたものが知られている。   2. Description of the Related Art As a conventional electrostatic precipitator, one having a flat plate-shaped dust collecting electrode arranged in parallel along a gas flow and a discharge electrode having a sharp shape arranged in the center thereof is known.

電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極に安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると、従来の集じん理論では説明されている。   In the electric dust collector, a high DC voltage is applied between the dust collecting electrode and the discharge electrode, and stable corona discharge is performed on the discharge electrode to charge the dust in the gas flow. It is explained in the conventional dust collection theory that charged dust is collected on the dust collecting electrode by the action of Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collecting electrode.

ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、該貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。   Incidentally, the electric dust collectors of Patent Documents 1 and 2 include a plurality of through holes for allowing dust to pass therethrough and a dust collecting electrode having a closed space for collecting dust inside. In Patent Documents 1 and 2, trapped dust is hardly re-scattered by confining dust in a closed space through the through hole.

特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、本ケースはダストを、主として集じんフィルタ層に捕集させることを目的としている。   The electric dust collector of Patent Document 3 includes a dust collecting electrode including a ground electrode having an aperture ratio of 65% to 85% and a dust collecting filter layer that collects gas. By providing such a dust collecting electrode, in Patent Document 3, an ion wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , Dust is collected efficiently. In Patent Document 3, ion wind is used positively, but this case is intended to collect dust mainly in the dust collection filter layer.

特許第5761461号公報Japanese Patent No. 5761461 特許第5705461号公報Japanese Patent No. 5705461 特許第4823691号公報Japanese Patent No. 4823691

電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの数式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
η=1−exp(−w×f)・・・(1)
The dust collection efficiency η in the electric dust collector can be calculated by the well-known Deutsche formula (Formula (1)) below. w is a dust collection index (a moving speed of the particulate matter), and f is a dust collection area per unit gas amount.
η = 1−exp (−w × f) (1)

上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの数式(上記式(1))では、ダストが放電極から電界中を移動するとされおり、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度は、常に放電極と集塵極との間の集じん空間内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。   In the above formula (1), the moving speed w of dust (particulate matter) is determined by the relationship between the force due to the Coulomb force and the viscous resistance of the gas. In Deutsche's formula (the above formula (1)), dust is assumed to move in the electric field from the discharge electrode, and the ionic wind is not directly considered in the influence on the performance. However, there is a precondition that the dust concentration, which is the premise of the performance design, is always uniform in the dust collection space between the discharge electrode and the collection electrode, and the ion wind causes gas turbulence, It is considered as one of the factors that make the dust concentration uniform.

イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。   The ion wind is generated as a result of negative ions generated by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and is generated by positive ions in the case of a positive voltage. Hereinafter, a case where a negative voltage is applied will be described in order to consider an industrial electrostatic precipitator as a base, but the same applies to positive cases.

放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。   The ion wind generated at the discharge electrode flows across the gas flow toward the dust collection electrode. The ion wind that reaches the dust collecting electrode is reversed at the dust collecting electrode to change the flow direction. This creates a spiral turbulent flow between the electrodes.

乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。   Of the turbulent flow, the flow from the discharge electrode to the dust collection electrode has an effect of carrying dust to the vicinity of the dust collection electrode. The dust transported to the vicinity of the dust collection pole is finally collected by the Coulomb force.

しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。   However, the ion wind reversed at the dust collection electrode moves the dust in a direction away from the dust collection electrode, which is a collector, and thus has an effect of inhibiting dust collection.

特許文献3には、イオン風の効果も考慮した電気集塵装置が記載されている。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない箇所での集じんをすることを目的としていて、構造も複雑であること、及び、乾式では付着ダストの剥離回収が困難であった。   Patent Document 3 describes an electrostatic precipitator that takes into account the effect of ion wind. However, in this case, the ion wind is sent to the filter layer behind the dust collecting electrode having the opening, and the purpose is to collect dust at a place not affected by the main gas. It is complicated and it is difficult to separate and collect the attached dust by the dry method.

本発明は、このような事情に鑑みてなされたものであって、従来の電気集塵装置では考慮されていなかったイオン風に着目し、集塵効果を低減するイオン風の離反作用を抑制し、集塵効率を高めることのできる電気集塵装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and pays attention to an ionic wind that has not been considered in the conventional electrostatic precipitator, and suppresses the separation action of the ionic wind that reduces the dust collection effect. An object of the present invention is to provide an electric dust collector capable of increasing dust collection efficiency.

上記課題を解決するために、本発明にかかる電気集塵装置は以下の手段を採用する。
すなわち、本発明の一態様にかかる電気集塵装置は、駆動部によって回転駆動され複数の開口が形成され、ガス流れ方向に沿って設けられた集塵極と、前記集塵極に対して並列に配置された放電極と、を備え、前記放電極は、対面する前記集塵極のうちの一方のみの該集塵極に向かって突出するコロナ放電用のコロナ放電部を前記ガス流れ方向に複数連続して有する。
In order to solve the above problems, the electrostatic precipitator according to the present invention employs the following means.
That is, the electrostatic precipitator according to one aspect of the present invention is driven in rotation by the drive unit to form a plurality of openings, and is arranged in parallel with the dust collecting electrode provided along the gas flow direction. The discharge electrode is provided with a corona discharge portion for corona discharge that protrudes toward the dust collection electrode of only one of the dust collection electrodes facing each other in the gas flow direction. It has several continuously.

集塵極に複数の開口を設けることで、放電極から集塵極へ向けて流れるイオン風の一部が集塵極の裏側へ抜けることを許容する。これにより、イオン風が集塵極で反転されて離反する流れを抑制できる。
放電極は、対面する集塵極のうちの一方のみの集塵極に向かって突出するコロナ放電用のコロナ放電部をガス流れ方向に複数連続して有している。これにより、ガス流れ方向に連続する複数のコロナ放電部から一方のみに向かってイオン風を流すことができるので、ガス流れ方向に隣り合うコロナ放電部からのイオン風の干渉を可及的に減少させて集塵効率を高めることができる。
集塵極としては、複数の剛性を有する部材を所定間隔でガスの流通方向に並べた離散形集塵極が挙げられる。剛性を有する部材としては、例えばパイプ形状の部材が挙げられる。また、他の形式の集塵極としては、例えば、複数の貫通孔を有する一枚の板状体をガスの流通方向に沿って設けた平板集塵極が挙げられる。平板集塵極としては、例えばパンチングメタルが用いられる。
By providing a plurality of openings in the dust collecting electrode, a part of the ion wind flowing from the discharge electrode toward the dust collecting electrode is allowed to escape to the back side of the dust collecting electrode. Thereby, the flow which ion wind reverses by a dust collection pole and leaves | separates can be suppressed.
The discharge electrode continuously has a plurality of corona discharge portions for corona discharge that protrude toward only one of the facing dust collection electrodes in the gas flow direction. As a result, ion wind can flow from only one corona discharge part that is continuous in the gas flow direction toward one side, so that interference of ion wind from corona discharge parts adjacent in the gas flow direction is reduced as much as possible. To increase the dust collection efficiency.
Examples of the dust collecting electrode include a discrete dust collecting electrode in which members having a plurality of rigidity are arranged in a gas flow direction at predetermined intervals. Examples of the member having rigidity include a pipe-shaped member. In addition, as another type of dust collecting electrode, for example, a flat plate dust collecting electrode in which a single plate-like body having a plurality of through holes is provided along the gas flow direction can be cited. For example, a punching metal is used as the flat dust collecting electrode.

さらに、本発明の一態様にかかる電気集塵装置では、複数の前記集塵極と複数の前記放電極とが前記ガス流れ方向に対して直交する方向に交互に並べられ、前記ガス流れ方向の所定領域では、各前記放電極の前記コロナ放電部の全てが、同じ一方向に向かって突出する。   Furthermore, in the electric dust collector according to one aspect of the present invention, the plurality of dust collecting electrodes and the plurality of discharge electrodes are alternately arranged in a direction orthogonal to the gas flow direction, In the predetermined region, all of the corona discharge portions of the discharge electrodes protrude in the same direction.

複数の集塵極と複数の放電極とがガス流れ方向に対して直交する方向に交互に並べられている場合に、ガス流れ方向の所定領域では、全てのコロナ放電部が同じ方向に向かって突出する。これにより、所定領域の全体で、イオン風が複数の集塵極を跨いで一様な方向に向かうことになり、イオン風の干渉が抑制され、集塵効率を高めることができる。   When a plurality of dust collecting electrodes and a plurality of discharge electrodes are alternately arranged in a direction orthogonal to the gas flow direction, all corona discharge parts are directed in the same direction in a predetermined region in the gas flow direction. Protruding. Thereby, in the whole predetermined area | region, an ionic wind will go to a uniform direction across a some dust collecting electrode, interference of an ionic wind will be suppressed, and dust collection efficiency can be improved.

さらに、本発明の一態様にかかる電気集塵装置は、前記所定領域の下流の下流領域では、各前記放電極の前記コロナ放電部の全てが、前記一方向とは反対の他方向に向かって突出する。   Furthermore, in the electrostatic precipitator according to one aspect of the present invention, in the downstream region downstream of the predetermined region, all of the corona discharge portions of the discharge electrodes are directed in the other direction opposite to the one direction. Protruding.

所定領域の下流の下流領域では、全てのコロナ放電部が所定領域のコロナ放電部とは反対の他方向に向かって突出する。これにより、所定領域で一方向に偏ったイオン風を、下流領域で他方向に向きを変えることによって更に集塵効率を高めることができる。   In the downstream region downstream of the predetermined region, all the corona discharge portions protrude in the other direction opposite to the corona discharge portion in the predetermined region. Thereby, the dust collection efficiency can be further increased by changing the direction of the ion wind biased in one direction in the predetermined region in the other direction in the downstream region.

本発明の電気集塵装置によれば、イオン風が集塵極から離反するのを抑制し、集塵効率を高めることができる。   According to the electric dust collector of the present invention, the ion wind can be prevented from separating from the dust collecting electrode, and the dust collecting efficiency can be increased.

本発明の一実施形態に係る電気集塵装置を示した横断面図である。It is the cross-sectional view which showed the electric dust collector which concerns on one Embodiment of this invention. 図1のA−A矢視を示した部分拡大図である。It is the elements on larger scale which showed the AA arrow of FIG. コロナ放電部の配置の変形例を示した横断面図である。It is the cross-sectional view which showed the modification of arrangement | positioning of a corona discharge part. コロナ放電部の配置の他の変形例を示した横断面図である。It is the cross-sectional view which showed the other modification of arrangement | positioning of a corona discharge part. 集塵極のパイプ部材の横断面の外形状の変形例を示した横断面図である。It is the cross-sectional view which showed the modification of the outer shape of the cross section of the pipe member of a dust collecting electrode. チャンネル部材を用いた電気集塵装置を示した横断面図である。It is the cross-sectional view which showed the electric dust collector using a channel member. 平板形の集塵極を用いた電気集塵装置を示した横断面図である。It is the cross-sectional view which showed the electric dust collector using a flat type dust collecting electrode. メッシュベルトを示した部分拡大図である。It is the elements on larger scale which showed the mesh belt.

以下に、本発明に係る電気集塵装置の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of an electrostatic precipitator according to the present invention will be described with reference to the drawings.

図1には、本実施形態に係る電気集塵装置の横断面図が示されている。図1において、ガス流れGは、水平流であり、紙面左側から右側に向けて流れる。   FIG. 1 shows a cross-sectional view of the electrostatic precipitator according to the present embodiment. In FIG. 1, the gas flow G is a horizontal flow and flows from the left side to the right side.

電気集塵装置1は、ケーシング2内に、ガス流れGに沿って配列された複数の集塵極4と、集塵極4に対して並列に配置された複数の放電極5と、電源(不図示)と、を備えている。
ケーシング2は、ガス入口部2aと本体部2bとガス出口部2cとを備えている。ガス入口部2aから流入したガスは、本体部2bへと導かれて集塵された後に、ガス出口部2cから外部へと排出される。
The electric dust collector 1 includes a plurality of dust collecting electrodes 4 arranged along the gas flow G in the casing 2, a plurality of discharge electrodes 5 arranged in parallel to the dust collecting electrode 4, and a power source ( (Not shown).
The casing 2 includes a gas inlet 2a, a main body 2b, and a gas outlet 2c. The gas flowing in from the gas inlet 2a is guided to the main body 2b and collected, and then discharged from the gas outlet 2c to the outside.

ケーシング2の本体部2bに設けられた集塵極4と放電極5とは、ガス流れGに直交する方向に交互に並べられている。なお、図1に示した電気集塵装置1は概略的に示したものであり、放電極5および集塵極4のサイズおよび設置数は、図示の例に限定されない。   The dust collecting electrodes 4 and the discharge electrodes 5 provided on the main body 2 b of the casing 2 are alternately arranged in a direction orthogonal to the gas flow G. The electric dust collector 1 shown in FIG. 1 is schematically shown, and the sizes and the number of the discharge electrodes 5 and the dust collecting electrodes 4 are not limited to the illustrated example.

集塵極4と放電極5とは、互いに離隔され、電気的に絶縁されている。放電極5はケーシング2とも絶縁されている。集塵極4は接地され、放電極5には電源が接続されている(図示せず)。放電極5は、隣り合う集塵極4の中間位置にある。   The dust collecting electrode 4 and the discharge electrode 5 are separated from each other and electrically insulated. The discharge electrode 5 is also insulated from the casing 2. The dust collecting electrode 4 is grounded, and a power source is connected to the discharge electrode 5 (not shown). The discharge electrode 5 is at an intermediate position between adjacent dust collecting electrodes 4.

集塵極4は、複数のパイプ部材4aが所定間隔を有してガス流れGの流通方向に並べられた離散式集塵極とされている。各パイプ部材4aは、剛性を有する金属性とされている。各パイプ部材4aは、軸線がガス流れGに対して直交するように上下方向(紙面垂直方向)に向けて配置されている。ガス流れG方向に並んだ各パイプ部材4a同士を共通の枠体を用いてそれぞれを固定することで、各集塵極4が独立した構成となっている。   The dust collecting electrode 4 is a discrete dust collecting electrode in which a plurality of pipe members 4a are arranged in the flow direction of the gas flow G with a predetermined interval. Each pipe member 4a is made of metal having rigidity. Each pipe member 4a is arranged in the vertical direction (perpendicular to the paper surface) so that the axis is orthogonal to the gas flow G. By fixing each pipe member 4a arranged in the gas flow G direction to each other using a common frame, each dust collecting electrode 4 has an independent configuration.

放電極5は、集塵極4に挟まれるよう配置されている。放電極5は、それぞれ取付基材7と、複数のコロナ放電部8とを有している。取付基材7は、導電性を有する材質からなる棒状または板状の部材である。取付基材7は、対面する集塵極4に対して略平行に配置されている。   The discharge electrode 5 is disposed so as to be sandwiched between the dust collection electrodes 4. Each discharge electrode 5 has a mounting substrate 7 and a plurality of corona discharge portions 8. The attachment base material 7 is a rod-shaped or plate-shaped member made of a conductive material. The mounting base material 7 is disposed substantially parallel to the dust collecting electrode 4 facing the mounting base material 7.

コロナ放電部8は、放電極5に電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部8は、対面する集塵極4に向かって突出するように取付基材7に固定された突起とされ、先端が先細のトゲ状となっている。コロナ放電部8は、図2に示すように、ガス流れGに直交する方向すなわち高さ方向に複数配置されている。各コロナ放電部8は、ガス流れG方向において、隣り合うパイプ部材4aの中央に位置するように配置されている。ただし、コロナ放電部8のガス流れG方向における位置は限定されるものではない。   The corona discharge part 8 generates a corona discharge when a voltage is applied to the discharge electrode 5. The corona discharge portion 8 is a protrusion fixed to the mounting base 7 so as to protrude toward the dust collecting electrode 4 facing the tip, and has a tapered shape with a tapered tip. As shown in FIG. 2, a plurality of corona discharge portions 8 are arranged in the direction orthogonal to the gas flow G, that is, in the height direction. Each corona discharge part 8 is arranged so as to be located in the center of the adjacent pipe member 4a in the gas flow G direction. However, the position of the corona discharge part 8 in the gas flow G direction is not limited.

図1に示すように、ケーシング2内は、ガス流れG方向に上流領域S1と下流領域S2とが分けられて形成されている。すなわち、上流領域S1と下流領域S2との間には、集塵極4及び放電極5が設けられていない領域が形成されている。
上流領域S1の集塵極4及び放電極5と、下流領域S2の集塵極4及び放電極5は、対応する集塵極4及び放電極5同士がガス流れG方向において同じ直線上に配置されている。なお、本発明は、このように同じ直線上に各集塵極4及び各放電極5が配置されていることに限定されるものではなく、上流領域S1の集塵極4及び放電極5に対して、下流領域S2の集塵極4及び放電極5がガス流れG方向に直交する方向にずれて配置されていても良い。
As shown in FIG. 1, the casing 2 is formed by dividing an upstream region S1 and a downstream region S2 in the gas flow G direction. That is, a region where the dust collection electrode 4 and the discharge electrode 5 are not provided is formed between the upstream region S1 and the downstream region S2.
The dust collection electrode 4 and the discharge electrode 5 in the upstream region S1 and the dust collection electrode 4 and the discharge electrode 5 in the downstream region S2 are arranged on the same straight line in the gas flow G direction. Has been. Note that the present invention is not limited to the dust collecting electrodes 4 and the discharge electrodes 5 being arranged on the same straight line in this way, but the dust collecting electrodes 4 and the discharge electrodes 5 in the upstream region S1. On the other hand, the dust collecting electrode 4 and the discharge electrode 5 in the downstream region S2 may be arranged so as to be shifted in a direction orthogonal to the gas flow G direction.

上流領域S1のコロナ放電部8の全ては、同じ方向すなわち紙面において上方向に向けて取り付けられている。一方、下流領域S2のコロナ放電部8の全ては、上流領域S1とは反対の方向すなわち紙面においてした方向に向けて取り付けられている。   All of the corona discharge portions 8 in the upstream area S1 are attached in the same direction, that is, upward in the paper surface. On the other hand, all of the corona discharge portions 8 in the downstream area S2 are attached in a direction opposite to the upstream area S1, that is, in a direction on the paper surface.

上流領域S1のコロナ放電部8が向けられた方向の上流側角部には、遮蔽板3aがケーシング2に対して固定されている。また、下流領域S2のコロナ放電部8が向けられた方向の上流側角部には、遮蔽板3bがケーシング2に対して固定されている。
遮蔽板3a,3bは、ケーシング2と、ケーシング2に隣接した集塵極4との間にガスが流れ込むのを遮り、他の集塵極4と放電極5との間へと流れるよう導く。
なお、遮断板3a,3bの役割は、あくまでも補助的な役割であり、その取り付け方法やサイズについては特に限定されず、また、遮蔽板3a,3bを省略しても良い。
A shielding plate 3 a is fixed to the casing 2 at an upstream corner in a direction in which the corona discharge portion 8 of the upstream region S1 is directed. Further, a shielding plate 3b is fixed to the casing 2 at an upstream corner portion in the direction in which the corona discharge portion 8 of the downstream region S2 is directed.
The shielding plates 3a and 3b block the gas from flowing between the casing 2 and the dust collecting electrode 4 adjacent to the casing 2, and guide the gas to flow between the other dust collecting electrode 4 and the discharge electrode 5.
The role of the blocking plates 3a and 3b is merely an auxiliary role, and the mounting method and size thereof are not particularly limited, and the shielding plates 3a and 3b may be omitted.

電気集塵装置1には、図示しないが、集塵極4に付着した粒子状物質を剥離するための槌打装置が設けられている。槌打装置はハンマを有しており、ハンマが集塵極4を槌打することで、表面に付着した粒子状物質を振動によって剥離除去する。
なお、粒子状物質の集塵極4からの除去方法は、槌打装置を用いた槌打に限定されない。例えば、集塵極4に捕集された粒子状物質に対しガスを吹き付ける方法、又は、ソニック・ホーンを用いて音波を照射する方法によって、粒子状物質を集塵極4から除去してもよい。また、湿式の電気集塵装置で行われている洗浄液による洗浄によって、集塵極4から粒子状物質を除去してもよい。
Although not shown, the electric dust collector 1 is provided with a striking device for peeling off the particulate matter adhering to the dust collecting electrode 4. The hammering device has a hammer. When the hammer strikes the dust collecting electrode 4, the particulate matter adhering to the surface is removed by vibration.
In addition, the removal method of the particulate matter from the dust collecting electrode 4 is not limited to the beating using the hitting device. For example, the particulate matter may be removed from the dust collecting electrode 4 by a method of blowing gas to the particulate matter collected by the dust collecting electrode 4 or a method of irradiating a sound wave using a sonic horn. . Further, the particulate matter may be removed from the dust collecting electrode 4 by cleaning with a cleaning liquid performed in a wet type electrostatic precipitator.

次に、本実施形態の電気集塵装置1の動作を説明する。
電気集塵装置1では、放電極5に電圧を印加することで、コロナ放電部8の先端でコロナ放電が発生する。ガス流に含まれる粒子状物質は、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電された粒子状物質は、クーロン力により集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
Next, operation | movement of the electrostatic precipitator 1 of this embodiment is demonstrated.
In the electrostatic precipitator 1, corona discharge is generated at the tip of the corona discharge portion 8 by applying a voltage to the discharge electrode 5. Particulate matter contained in the gas stream is charged by corona discharge. According to the collecting principle of the conventional electrostatic precipitator, the charged particulate matter has been drawn to the collecting electrode 4 by the Coulomb force and collected on the collecting electrode 4. The effect of ionic wind is acting greatly.

コロナ放電が発生すると、コロナ放電部8近くでマイナスイオンが発生し、そのマイナスイオンが電界によって集塵極4に向けて移動し、イオン風が生じる。集塵極4に向かって流れるイオン風は、ガス流に含まれる粒子状物質を集塵極4の近傍まで移動させるよう作用する。これにより、粒子径が小さく帯電しにくい粒子状物質をクーロン力が作用する領域内まで運べるため、捕集効率が向上する。   When corona discharge occurs, negative ions are generated near the corona discharge portion 8, and the negative ions move toward the dust collection electrode 4 by an electric field, thereby generating an ion wind. The ionic wind flowing toward the dust collecting electrode 4 acts to move the particulate matter contained in the gas flow to the vicinity of the dust collecting electrode 4. As a result, the particulate matter having a small particle diameter and not easily charged can be carried into the region where the Coulomb force acts, so that the collection efficiency is improved.

粒子状物質を含んで集塵極4に向かって流れるイオン風の一部は、集塵極4のパイプ部材4aの間を通り抜ける。
上流領域S1では、コロナ放電部8の全てが一方向(図1において上方向)に向けられているので、イオン風は一方向に向けられ、ガス流れは、上流領域S1全体で、矢印で示すように図1において斜め上方を向く。
これに対して、下流領域S2では、コロナ放電部8の全てが反対方向(図1において下方向)に向けられているので、イオン風は反対方向に向けられ、ガス流れは、下流領域S2全体で、矢印で示すように図1において斜め下方を向く。
Part of the ion wind containing particulate matter and flowing toward the dust collection electrode 4 passes between the pipe members 4 a of the dust collection electrode 4.
In the upstream region S1, all of the corona discharge portions 8 are directed in one direction (upward in FIG. 1), so that the ion wind is directed in one direction, and the gas flow is indicated by arrows in the entire upstream region S1. In this way, it faces obliquely upward in FIG.
On the other hand, in the downstream region S2, all of the corona discharge portions 8 are directed in the opposite direction (downward in FIG. 1), so that the ion wind is directed in the opposite direction, and the gas flow is the entire downstream region S2. Then, as shown by the arrow, it faces diagonally downward in FIG.

本実施形態によれば、以下の作用効果を奏する。
集塵極4のパイプ部材4aの間に複数の開口を設けることで、放電極5から集塵極4へ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できる。
放電極5は、対面する集塵極4のうちの一方のみの集塵極4に向かって突出するコロナ放電部8をガス流れG方向に複数連続して有することとした。これにより、ガス流れG方向に連続する複数のコロナ放電部8から一方のみに向かってイオン風を流すことができるので、ガス流れ方向に隣り合うコロナ放電部8からのイオン風の干渉を可及的に減少させて集塵効率を高めることができる。
According to this embodiment, there exist the following effects.
By providing a plurality of openings between the pipe members 4 a of the dust collecting electrode 4, a part of the ion wind flowing from the discharge electrode 5 toward the dust collecting electrode 4 is allowed to escape to the back side of the dust collecting electrode 4. Accordingly, it is possible to suppress a flow in which the ionic wind is reversed by the dust collecting electrode 4 and separated.
The discharge electrode 5 has a plurality of corona discharge portions 8 that protrude toward only one of the dust collecting electrodes 4 facing each other in the gas flow G direction. Thereby, since an ion wind can be made to flow only in one direction from the several corona discharge part 8 continuous in the gas flow G direction, interference of the ion wind from the corona discharge part 8 adjacent to a gas flow direction is made possible. The dust collection efficiency can be increased.

複数の集塵極4と複数の放電極5とがガス流れG方向に対して直交する方向に交互に並べられた構成とし、ガス流れG方向の上流領域S1及び下流領域S2のそれぞれでは、全てのコロナ放電部8が同じ方向に向かって突出するようにした。これにより、各領域S1,S2の全体で、イオン風が複数の集塵極4を跨いで一様な方向に向かうことになり、イオン風の干渉が抑制され、集塵効率を高めることができる。   A plurality of dust collecting electrodes 4 and a plurality of discharge electrodes 5 are alternately arranged in a direction orthogonal to the gas flow G direction, and in each of the upstream region S1 and the downstream region S2 in the gas flow G direction, The corona discharge part 8 was made to protrude in the same direction. Thereby, in each area | region S1, S2, the ionic wind will go to a uniform direction across the some dust collection electrode 4, the interference of ionic wind is suppressed, and dust collection efficiency can be improved. .

上流領域S1の下流の下流領域S2では、全てのコロナ放電部8が上流領域S1のコロナ放電部8とは反対方向に向かって突出するようにした。これにより、上流領域S1で一方向に偏ったイオン風を、下流領域S2で他方向に向きを変えることによって更に集塵効率を高めることができる。   In the downstream region S2 downstream of the upstream region S1, all the corona discharge portions 8 protrude in the opposite direction to the corona discharge portion 8 in the upstream region S1. Thus, the dust collection efficiency can be further increased by changing the direction of the ion wind biased in one direction in the upstream region S1 in the other direction in the downstream region S2.

図3には、コロナ放電部8の向きの変形例が示されている。図1に示した実施形態では、上流領域S1と下流領域S2とでコロナ放電部8の向きを変えていたが、本発明はこれに限定されるものではない。例えば、図3に示されているように、ガス流れG方向における所定区間にわたってコロナ放電部8を一方向(図3において上方向)のみに向けて連続して(図3では3つ連続して)設け、その後、コロナ放電部8を反対方向(図3において下方向)に連続して設けるようにしてもよい。このようなコロナ放電部8の配置としても、隣のコロナ放電部8の影響でイオン風が干渉することを抑えることができるとともに、複数の集塵極4にわたってガス流れGに交差する方向にイオン風を流すことができる。したがって、図4に示した他の変形例のように、連続する2つのコロナ放電部8を交互に反対方向に向けても良い。   FIG. 3 shows a modification of the direction of the corona discharge unit 8. In the embodiment shown in FIG. 1, the direction of the corona discharge portion 8 is changed between the upstream region S1 and the downstream region S2, but the present invention is not limited to this. For example, as shown in FIG. 3, the corona discharge part 8 is continuously directed in only one direction (upward in FIG. 3) over a predetermined section in the gas flow direction G (three in FIG. 3 continuously). After that, the corona discharge part 8 may be continuously provided in the opposite direction (downward in FIG. 3). Even with such an arrangement of the corona discharge part 8, it is possible to suppress the interference of the ion wind due to the influence of the adjacent corona discharge part 8, and the ions in the direction intersecting the gas flow G across the plurality of dust collecting electrodes 4. Wind can flow. Therefore, as in another modification shown in FIG. 4, two continuous corona discharge portions 8 may be alternately directed in opposite directions.

図5には、集塵極4のパイプ部材4aの横断面の外形状は、円形状に限定されるものではない。例えば、図5(a)に示すように、角部にRを付けた略正方形としたパイプ部材4bでも良く、図5(b)に示すように、角部にRを付けた長方形としたパイプ部材4cでも良く、図5(c)に示すように、略コの字状の凹形状としたチャンネル部材4dでも良い。すなわち、複数の棒状部材を用いた離散形の集塵極4を採用する場合は、パイプ部材4a,4b,4cやチャンネル部材4dは、剛性を確保できるように所定値以上の断面二次係数とされた横断面を有していれば良い。   In FIG. 5, the outer shape of the cross section of the pipe member 4a of the dust collecting electrode 4 is not limited to a circular shape. For example, as shown in FIG. 5 (a), it may be a pipe member 4b having a substantially square shape with R at its corners, and a rectangular pipe with R at its corners as shown in FIG. 5 (b). The member 4c may be used, and as shown in FIG. 5C, a channel member 4d having a substantially U-shaped concave shape may be used. That is, when the discrete dust collecting electrode 4 using a plurality of rod-shaped members is employed, the pipe members 4a, 4b, 4c and the channel member 4d have a cross-sectional secondary coefficient of a predetermined value or more so as to ensure rigidity. What is necessary is just to have the cross section made.

図6には、図5(c)に示した凹形状のチャンネル部材4dを配置した例が示されている。同図に示されているように、コロナ放電部8はチャンネル部材4dの凸側に向に向くように配置されている。このように配置することで、コロナ放電部8からのイオン風がチャンネル部材4dの背面側に抜けやすくなっている。各コロナ放電部8は、ガス流れG方向において、隣り合うチャンネル部材4dの中央に位置するように配置されている。ただし、コロナ放電部8のガス流れG方向における位置は限定されるものではない。   FIG. 6 shows an example in which the concave channel member 4d shown in FIG. 5C is arranged. As shown in the figure, the corona discharge portion 8 is disposed so as to face the convex side of the channel member 4d. By arranging in this way, the ionic wind from the corona discharge part 8 can easily escape to the back side of the channel member 4d. Each corona discharge part 8 is arranged so as to be located in the center of the adjacent channel member 4d in the gas flow G direction. However, the position of the corona discharge part 8 in the gas flow G direction is not limited.

図7には、複数の棒状部材を用いた離散形の集塵極4に代えて、パンチングメタル等を用いた平板4eで集塵極4を構成した場合が示されている。平板4eには、一様に略同形状の貫通孔4e1が形成されている。貫通孔4e1の形状は、円形でも良く、長円や多角形であっても良い。このような平板形の集塵極4であっても、上述の実施形態と同様にイオン風をガス流れG方向に直交する方向に流して集塵極4を通過させることができる。   FIG. 7 shows a case where the dust collection electrode 4 is formed of a flat plate 4e using a punching metal or the like instead of the discrete dust collection electrode 4 using a plurality of rod-shaped members. The flat plate 4e is uniformly formed with through holes 4e1 having substantially the same shape. The shape of the through hole 4e1 may be circular, oval or polygonal. Even in such a flat dust collecting electrode 4, the ion wind can be passed through the dust collecting electrode 4 in the direction perpendicular to the gas flow G direction as in the above-described embodiment.

また、集塵極4として、図8に示すように、メッシュベルトを用いても良い。メッシュベルトは、金属細線を面状に編み込んだ可撓性を有するものである。メッシュベルトを無端状にして複数の回転部材(回転駆動ローラ)に巻回し、メッシュベルトをガス流路とその外側との間で適宜移動させるように構成する。メッシュベルトに付着したダストは、ガス流路の外側にてブラシによって除去される。   Further, as the dust collecting electrode 4, a mesh belt may be used as shown in FIG. The mesh belt has flexibility in which fine metal wires are knitted into a planar shape. The mesh belt is endlessly wound around a plurality of rotating members (rotational drive rollers), and the mesh belt is appropriately moved between the gas flow path and the outside thereof. Dust adhering to the mesh belt is removed by a brush outside the gas flow path.

1 電気集塵装置
2 ケーシング
2a ガス入口部
2b 本体部
2c ガス出口部
3a,3b 遮蔽板
4 集塵極
4a,4b,4c パイプ部材
4d チャンネル部材
4e 平板
5 放電極
7 取付基材
8 コロナ放電部
G ガス流れ
S1 上流領域(所定領域)
S2 下流領域
DESCRIPTION OF SYMBOLS 1 Electric dust collector 2 Casing 2a Gas inlet part 2b Main-body part 2c Gas outlet part 3a, 3b Shielding board 4 Dust collection electrode 4a, 4b, 4c Pipe member 4d Channel member 4e Flat plate 5 Electrode 7 Attachment base material 8 Corona discharge part G gas flow S1 upstream region (predetermined region)
S2 Downstream area

Claims (3)

複数の開口が形成され、ガス流れ方向に沿って設けられた集塵極と、
前記集塵極に対して並列に配置された放電極と、
を備え、
前記放電極は、対面する前記集塵極のうちの一方のみの該集塵極に向かって突出するコロナ放電用のコロナ放電部を前記ガス流れ方向に複数連続して有する電気集塵装置。
A plurality of openings, and a dust collecting electrode provided along the gas flow direction;
A discharge electrode arranged in parallel to the dust collection electrode;
With
The electric discharge device, wherein the discharge electrode has a plurality of corona discharge portions for corona discharge that protrude toward only one of the dust collection electrodes facing each other in the gas flow direction.
複数の前記集塵極と複数の前記放電極とが前記ガス流れ方向に対して直交する方向に交互に並べられ、
前記ガス流れ方向の所定領域では、各前記放電極の前記コロナ放電部の全てが、同じ一方向に向かって突出する請求項1に記載の電気集塵装置。
The plurality of dust collecting electrodes and the plurality of discharge electrodes are alternately arranged in a direction perpendicular to the gas flow direction,
2. The electrostatic precipitator according to claim 1, wherein in the predetermined region in the gas flow direction, all of the corona discharge portions of the discharge electrodes protrude in the same direction.
前記所定領域の下流の下流領域では、各前記放電極の前記コロナ放電部の全てが、前記一方向とは反対の他方向に向かって突出する請求項2に記載の電気集塵装置。   3. The electrostatic precipitator according to claim 2, wherein all of the corona discharge portions of the discharge electrodes protrude toward another direction opposite to the one direction in a downstream region downstream of the predetermined region.
JP2017023154A 2017-02-10 2017-02-10 Electrostatic precipitator Active JP6752736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023154A JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023154A JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Publications (3)

Publication Number Publication Date
JP2018126713A true JP2018126713A (en) 2018-08-16
JP2018126713A5 JP2018126713A5 (en) 2020-04-02
JP6752736B2 JP6752736B2 (en) 2020-09-09

Family

ID=63171709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023154A Active JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Country Status (1)

Country Link
JP (1) JP6752736B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026370A1 (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
CN111905929A (en) * 2020-07-20 2020-11-10 河北大学 Wide-ratio resistor and fine dust electrostatic precipitator and distribution method of dust removal electrodes thereof
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
KR20230077503A (en) * 2021-11-25 2023-06-01 주식회사 렘바이러스 Virus removal filter and virus removal device that removes viruses or bacteria that exist in the air and cause disease

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155641A (en) * 1993-12-06 1995-06-20 Sumitomo Heavy Ind Ltd Electrostatic precipitator
JPH07265735A (en) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd Electric precipitator
JPH07299387A (en) * 1994-05-09 1995-11-14 Sumitomo Heavy Ind Ltd Electric dust collector
WO2014123202A1 (en) * 2013-02-07 2014-08-14 三菱重工メカトロシステムズ株式会社 Dust collection apparatus, dust collection system, and dust collection method
JP2016203138A (en) * 2015-04-28 2016-12-08 三菱日立パワーシステムズ環境ソリューション株式会社 Gas purification device, gas turbine power generation system with the same, and gas purification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155641A (en) * 1993-12-06 1995-06-20 Sumitomo Heavy Ind Ltd Electrostatic precipitator
JPH07265735A (en) * 1994-03-31 1995-10-17 Ishikawajima Harima Heavy Ind Co Ltd Electric precipitator
JPH07299387A (en) * 1994-05-09 1995-11-14 Sumitomo Heavy Ind Ltd Electric dust collector
WO2014123202A1 (en) * 2013-02-07 2014-08-14 三菱重工メカトロシステムズ株式会社 Dust collection apparatus, dust collection system, and dust collection method
JP2016203138A (en) * 2015-04-28 2016-12-08 三菱日立パワーシステムズ環境ソリューション株式会社 Gas purification device, gas turbine power generation system with the same, and gas purification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484890B2 (en) 2018-01-15 2022-11-01 Mitsubishi Heavy Industries Power Environmental Solutions, Ltd. Electrostatic precipitator
WO2020026370A1 (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
CN111905929A (en) * 2020-07-20 2020-11-10 河北大学 Wide-ratio resistor and fine dust electrostatic precipitator and distribution method of dust removal electrodes thereof
CN111905929B (en) * 2020-07-20 2022-05-17 河北大学 Wide-ratio resistor and fine dust electrostatic precipitator and distribution method of dust removal electrodes thereof
KR20230077503A (en) * 2021-11-25 2023-06-01 주식회사 렘바이러스 Virus removal filter and virus removal device that removes viruses or bacteria that exist in the air and cause disease
KR102696393B1 (en) * 2021-11-25 2024-08-20 주식회사 렘바이러스 Virus removal filter and virus removal device that removes viruses or bacteria that exist in the air and cause disease

Also Published As

Publication number Publication date
JP6752736B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6862207B2 (en) Electrostatic precipitator and wet electrostatic precipitator
JP6752736B2 (en) Electrostatic precipitator
US20100251889A1 (en) Charging device, air handling device, method for charging, and method for handling air
JP4856139B2 (en) Electric dust collector
JP2002500562A (en) Air cleaner
WO2020026370A1 (en) Electrostatic precipitator
WO2016056254A1 (en) Electric precipitation device
WO2020026369A1 (en) Electrostatic precipitator
JP6953605B2 (en) Electrostatic precipitator
JP7139120B2 (en) Electrostatic precipitator
TWI709436B (en) Electric dust collector
JP7358216B2 (en) electrostatic precipitator
TWI686238B (en) Electric dust collector
JP6684986B2 (en) Electric dust collector
TWI742415B (en) Electric dust collector
JP7225019B2 (en) Electrostatic precipitator
JPS6322860B2 (en)
JPS63171655A (en) Electrostatic precipitator
JPH07265737A (en) Electric precipitator

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350