WO2020026369A1 - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
WO2020026369A1
WO2020026369A1 PCT/JP2018/028776 JP2018028776W WO2020026369A1 WO 2020026369 A1 WO2020026369 A1 WO 2020026369A1 JP 2018028776 W JP2018028776 W JP 2018028776W WO 2020026369 A1 WO2020026369 A1 WO 2020026369A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
corona discharge
dust
dust collecting
dust collection
Prior art date
Application number
PCT/JP2018/028776
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 富松
加藤 雅也
崇雄 田中
上田 泰稔
Original Assignee
三菱日立パワーシステムズ環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ環境ソリューション株式会社 filed Critical 三菱日立パワーシステムズ環境ソリューション株式会社
Priority to PL436803A priority Critical patent/PL436803A1/en
Priority to CN201880096148.6A priority patent/CN112512696A/en
Priority to PCT/JP2018/028776 priority patent/WO2020026369A1/en
Priority to RU2021101929A priority patent/RU2765787C1/en
Publication of WO2020026369A1 publication Critical patent/WO2020026369A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/10Plant or installations having external electricity supply dry type characterised by presence of electrodes moving during separating action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically

Definitions

  • the present invention relates to an electric precipitator.
  • an electric dust collecting device including a plate-shaped dust collecting electrode arranged in parallel along a gas flow, and a sharp discharge electrode arranged in the center thereof.
  • a DC high voltage is applied between the dust collecting electrode and the discharge electrode, and a stable corona discharge is applied to the discharge electrode to charge the dust in the gas flow.
  • the conventional dust collection theory explains that the charged dust is collected by the dust collecting electrode by the action of Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collecting electrode.
  • the electric precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and a dust collecting electrode having a closed space for collecting dust therein.
  • trapped dust is hardly re-scattered by confining dust in a closed space via the through hole.
  • the electric dust collector of Patent Document 3 includes a dust collecting electrode including a ground electrode having an aperture ratio of 65% to 85%, and a dust collecting filter layer for collecting gas. According to Patent Document 3, by providing such a dust collecting electrode, an ion wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , To collect dust efficiently.
  • ion wind is positively used, but the purpose of this case is to collect dust mainly in the dust filter layer.
  • the dust collection efficiency ⁇ in the electric dust collector can be calculated by the following well-known Dist equation (Equation (1)).
  • w is a dust collecting index (moving speed of particulate matter)
  • f is a dust collecting area per unit gas amount.
  • 1 ⁇ exp ( ⁇ w ⁇ f) (1)
  • the moving speed w of the dust is determined to be determined by the relationship between the Coulomb force and the viscous resistance of the gas.
  • the dust concentration which is the premise of the performance design, is always uniform in the dust collection space between the discharge electrode and the dust collection electrode, and ionic wind causes gas turbulence, It is considered as one of the factors that make the dust concentration uniform.
  • Ion wind is generated by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, the ion wind is generated by positive ions at a positive voltage.
  • a negative voltage is applied will be described in order to consider an industrial electric dust collector as a base, but the same applies to a case where the voltage is positive.
  • the flow from the discharge electrode to the dust collection electrode has the effect of carrying dust to the vicinity of the dust collection electrode.
  • the dust carried to the vicinity of the dust collection pole is finally collected by Coulomb force.
  • the ion wind reversed at the dust collection electrode moves dust in a direction away from the collection electrode, which is a collecting body, and thus has an effect of obstructing dust collection.
  • Patent Document 3 describes an electric precipitator in consideration of the effect of ion wind.
  • the structure is such that the ion wind is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust at a location not affected by the main gas. It was complicated, and it was difficult to separate and collect the adhered dust by the dry method.
  • the present invention has been made in view of such circumstances, and focuses on ion wind, which has not been considered in conventional electric dust collectors, and suppresses the departure action of ion wind to reduce the dust collection effect. It is another object of the present invention to provide an electric dust collecting device capable of improving dust collecting efficiency.
  • the electric dust collecting apparatus has a plurality of openings, a dust collecting electrode provided along a gas flow direction, and a corona discharge projecting toward the facing dust collecting electrode. And a discharge electrode having a plurality of corona discharge portions and arranged in parallel with the dust collection electrode, wherein an aperture ratio of the dust collection electrode is 10% or more and 70% or less.
  • the dust collecting electrode for example, a flat plate dust collecting electrode in which a single plate-shaped body having a plurality of through holes is provided along the gas flow direction is exemplified.
  • a punching metal is used as the flat plate dust collecting electrode.
  • a discrete dust collecting electrode in which a plurality of members having rigidity are arranged at predetermined intervals in a gas flow direction is exemplified. Examples of the rigid member include a pipe-shaped member.
  • the dust collecting electrode is capable of separating and collecting dust by hammering, similar to a conventional electric dust collecting device.
  • the aperture ratio is less than 10%, the effect of suppressing the separation of the ion wind decreases. If the aperture ratio exceeds 70%, the effective dust collection area decreases, and the dust collection performance decreases. When a flat plate having a plurality of through holes is used as the dust collection electrode, if the aperture ratio is too large, the strength of the dust collection electrode is reduced. By setting the aperture ratio in the above range, the dust collection efficiency is improved while maintaining the strength of the dust collection electrode as compared with a dust collection electrode having no through hole.
  • the discharge electrodes are arranged on both sides of the dust collection electrode, respectively, and the corona discharge portion of one discharge electrode and the corona discharge portion of the other discharge electrode are arranged in a gas flow direction. It is preferable that they are arranged in a staggered manner in the intersecting direction.
  • the dust collecting electrode has a folded plate shape and has a concave portion recessed with respect to the discharge electrode.
  • the strength of the dust collection electrode increases and the dust collection area also increases. Further, a structure in which a later-described concave portion and a corona discharge portion are opposed to each other becomes possible, and the dust collecting property can be further improved.
  • the dust collection electrode has a divided structure including a plurality of recessed members, and the plurality of recessed members are combined by alternately changing the direction of the recessed portions with respect to any of the discharge electrodes. It may be.
  • the corona discharge portion is arranged to face the concave portion.
  • the concave part of the dust collection electrode and the corona discharge part of the discharge electrode By arranging the concave part of the dust collection electrode and the corona discharge part of the discharge electrode to face each other, the ion wind effectively acts on the dust collection electrode side in places where the speed is slower than the main gas flow, so that the dust collection Properties can be further improved.
  • the dust collecting electrode is formed by arranging a plurality of rigid members at predetermined intervals in a gas flow direction.
  • the electric precipitator of this invention compared with the case where the conventional non-porous precipitator is used, it can suppress that an ion wind separates from a precipitator, and can raise dust collection efficiency. .
  • FIG. 2A is a cross-sectional view of the electric precipitator according to the first embodiment
  • FIG. 2B is a cross-sectional view taken along line AA of FIG. It is the elements on larger scale of FIG.1 (b). It is the elements on larger scale which show an example of a dust collection electrode.
  • (A) is a cross-sectional view of a modification of the electrostatic precipitator according to the first embodiment
  • (b) is an AA cut end view of (a)
  • (c) is a BB cut end face of (a).
  • FIG. 3D is a sectional view taken along the line CC in FIG.
  • FIG. 7 is a partially enlarged view of FIG. (A) is a cross-sectional view of the electric precipitator according to the fourth embodiment, and (b) is an FF cut end view of (a). It is a partial cross section of an electric precipitator concerning a 5th embodiment. It is a cross section of an electric precipitator concerning a 6th embodiment. It is a figure explaining the aperture ratio of FIG.
  • FIG. 1A is a cross-sectional view of the electric precipitator according to the present embodiment
  • FIG. 1B is an AA cut end view of FIG. 1A
  • FIG. 2 is a partially enlarged view of FIG.
  • the gas flow G is a horizontal flow, and flows upward from the lower side of the drawing.
  • the electric dust collecting apparatus 1 includes a plurality of dust collecting electrodes 4 (4a, 4b, 4c, 4d) arranged along the gas flow G, and a plurality of discharge electrodes 5 arranged in parallel with the dust collecting electrodes 4. (5a, 5b, 5c) and a power supply (not shown).
  • the combination of the dust collection electrode 4 (4a, 4b, 4c, 4d) and the discharge electrode 5 (5a, 5b, 5c) is arranged in the casing 2.
  • a plurality of shielding plates 3 are installed inside the casing 2.
  • the shielding plate 3 blocks gas from flowing between the casing 2 and the dust collecting electrode (4a or 4d) near the casing 2, and the gas flow G flows between the dust collecting electrode 4 and the discharge electrode 5. And play a role to guide the flow.
  • the dust collection electrode 4 and the discharge electrode 5 extend in a direction intersecting the gas flow G (perpendicular to the paper surface).
  • the electric precipitator 1 shown in FIG. 1 is schematically shown, and the size and the number of the discharge electrodes 5 (5a, 5b, 5c) and the precipitating electrodes 4 (4a, 4b, 4c, 4d) are as follows. , Is not limited to the illustrated example.
  • the dust collecting electrode 4 and the discharge electrode 5 are separated from each other and are electrically insulated.
  • the discharge electrode 5 is also insulated from the casing 2.
  • the dust collecting electrode 4 is grounded, and a power source is connected to the discharge electrode 5 (not shown).
  • the discharge electrode 5 is located at an intermediate position between the adjacent dust collection electrodes 4.
  • the dust collection electrode 4 (4a, 4b, 4c, 4d) is a single plate-shaped member made of a conductive material.
  • the plate surface of the dust collection electrode 4 is disposed substantially parallel to the gas flow G direction.
  • Each of the dust collecting electrodes 4 (4a, 4b, 4c, 4d) has a plurality of through holes 6.
  • the arrangement and shape of the through holes 6 are not limited and can be arbitrarily changed.
  • the shape of the through hole 6 is, for example, a circle, a long circle, or the like.
  • the dust collecting electrode 4 (4a, 4b, 4c, 4d) may be, for example, a metal punching metal, a metal mesh belt, or the like.
  • FIG. 3 shows a partially enlarged view of the mesh belt.
  • the dust collecting pole 4 may be a mesh belt.
  • the aperture ratio of the dust collecting electrode 4 is 10% or more and 70% or less. However, in the case of adopting a hammering method in which dust is removed by hammering the flat dust collecting electrode 4, it is necessary to secure the strength of the flat dust collecting electrode 4, so that the aperture ratio is 35%. It is preferable to set the following. Even when the dust collecting electrode 4 is a flat plate, when dust is removed by a water stream, the flat dust collecting electrode 4 does not need the strength required by the hammering method. 70% or less.
  • the “opening ratio” is the ratio of the opening portion to the total area of each dust collecting electrode 4 when viewed from the front from the discharge electrode 5 side.
  • the discharge electrode 5 (5a, 5b, 5c) is disposed so as to be sandwiched between the dust collecting electrodes 4 (4a, 4b, 4c, 4d).
  • Each of the discharge electrodes 5 (5a, 5b, 5c) has a mounting base material 7 and a plurality of corona discharge portions 8 (8a, 8b).
  • the mounting substrate 7 is a rod-shaped or plate-shaped member made of a conductive material.
  • the mounting base 7 is arranged substantially parallel to the dust collecting electrode 4 facing the mounting base 7.
  • the corona discharge section 8 generates a corona discharge when a voltage is applied to the discharge electrode 5.
  • the corona discharge section 8 is a projection provided on the mounting base 7 so as to project toward the dust collecting electrode 4 facing the corona discharge section 8.
  • the projection is made of a conductive material.
  • the protrusion has a barbed shape with a tapered tip.
  • the corona discharge section 8 includes a first corona discharge section 8a and a second corona discharge section 8b.
  • the first corona discharge portions 8a and the second corona discharge portions 8b are arranged in a staggered manner in a direction T intersecting the gas flow G (a direction perpendicular to the plane of FIG. 1A, that is, a height direction of the discharge electrodes 5).
  • one of the discharge electrodes 5c is on the dust collection electrode 4c side (in FIG. A first corona discharge portion 8a protruding toward the left side is provided, and a second corona discharge portion 8b protruding toward the dust collection electrode 4c side (the right side in the figure) is provided on the other discharge electrode 5b. .
  • the discharge electrode 5b sandwiched between the dust collecting electrodes 4b and 4c has a first corona discharge portion 8a protruding toward one dust collecting electrode 4b and a second corona discharge portion 8b protruding toward the other dust collecting electrode 4c.
  • the first corona discharge portion 8a and the second corona discharge portion 8b facing in different directions are staggered in a direction T intersecting the gas flow G (a direction perpendicular to the paper surface in FIG. 1A, that is, a height direction of the discharge electrode 5). (See FIG. 1B).
  • FIG. 4A is a cross-sectional view of a modified example of the electric dust collector according to the present embodiment
  • FIG. 4B is an AA cut end view of FIG. 4A
  • FIG. 4C is FIG.
  • FIG. 4D is a sectional view taken along line BB of FIG. 4
  • FIG. 4D is a sectional view taken along line CC of FIG. 4A.
  • the plurality of through holes 6 in the dust collecting electrode 4 may be uniformly provided in a range affected by corona discharge generated at the facing discharge electrode 5. Range affected by the corona discharge, and the distance from the projecting tip of the corona discharge portion 8 to the dust collecting electrode and L d, the area having a spread of about 45 degrees on one side from the projecting tip (diameter 2L d) .
  • the electric dust collecting device 1 may be provided with a hammering device (not shown) for separating the particulate matter attached to the dust collecting electrode 4.
  • the hammer has a hammer, and the hammer hammers the dust collecting electrode 4 to peel off and remove the particulate matter attached to the surface by vibration.
  • the method of removing the particulate matter from the dust collecting electrode 4 is not limited to hammering using a hammer.
  • the particulate matter may be removed from the dust collection electrode 4 by a method of spraying a gas to the particulate matter collected by the dust collection electrode 4 or a method of irradiating a sound wave using a sonic horn.
  • the particulate matter may be removed from the dust collecting electrode 4 by washing with a washing liquid performed in a wet type electric dust collector.
  • the operation of the electric precipitator 1 of FIG. 1 will be described.
  • a corona discharge is generated at the tip of the corona discharge unit 8 by applying a voltage to the discharge electrode 5.
  • the particulate matter contained in the gas stream is charged by corona discharge.
  • the collecting principle of the conventional electric dust collector the charged particulate matter is drawn to the dust collecting electrode 4 by the Coulomb force and collected on the dust collecting electrode 4, but actually, it is actually collected. The effect of the ion wind is acting greatly.
  • the first corona discharge portion 8a and the second corona discharge portion 8b are staggered on opposing surfaces, so that ion wind interferes. Thus, the particulate matter can be effectively moved to the vicinity of the dust collection electrode 4.
  • the corona discharge unit 8 In the discharge electrode 5 on one surface side of the dust collecting electrode 4, the corona discharge unit 8 generates ion wind toward the dust collecting electrode 4, but at a position opposite to the other surface side of the dust collecting electrode 4. No ion wind is generated, and a Coulomb force generated by the electric field (E) exerts a force for moving dust to the dust collection electrode (see FIG. 2). Therefore, the particulate matter that has passed through the through-hole 6 due to the ionic wind stays near the back surface of the dust collecting electrode 4 due to the electric field (E) and is collected by the dust collecting electrode 4 due to Coulomb force. The particulate matter not collected here flows along the main gas flow and is efficiently collected in the next stage.
  • FIG. 5A is a cross-sectional view of the electric precipitator 10 according to the present embodiment
  • FIG. 5B is a cross-sectional end view taken along line DD of FIG. 5A.
  • the electric precipitator 10 is arranged in parallel with the plurality of precipitating poles 14 (14a, 14b, 14c, 14d) arranged along the gas flow G and the precipitating poles 14 (14a, 14b, 14c, 14d).
  • the combination of the dust collection electrode 14 (14a, 14b, 14c, 14d) and the discharge electrode 5 (5a, 5b, 5c) is arranged in the casing 2.
  • the dust collection electrodes 14 are plate-like members made of conductive materials. Each of the dust collection electrodes 14 has a folded plate shape having the valleys 11.
  • the valley 11 has a structure in which valleys or ridges are alternately repeated in the gas flow direction. The valleys are concave with respect to the facing discharge electrode 5, and the peaks protrude with respect to the discharge electrode. In FIG. 5, a connecting portion between the valley and the peak is referred to as an inclined portion 12.
  • the mountain valley portion 11 can be formed by rolling a plate-shaped member.
  • Each of the dust collecting electrodes 14 (14a, 14b, 14c, 14d) has a plurality of through holes 16.
  • Each dust collecting electrode (14a, 14b, 14c, 14d) is, for example, a metal punching metal.
  • the through-hole 16 may be provided in a range that is not restricted by the structure, for example, in a linear portion of the inclined portion 12.
  • the aperture ratio of the dust collection electrode 14 is 10% or more and 70% or less.
  • the through-hole 16 is provided only in the flat portion of the valley portion 11, and is not provided in the inclined portion 12.
  • the dust collecting poles 14 (14a, 14b, 14c, 14d) have their longitudinal axes arranged substantially parallel to the gas flow direction.
  • the peaks or valleys of the peaks and valleys 11 are preferably arranged so as to face the corona discharge unit 8 provided on the discharge electrode 5.
  • the dust collecting electrode 14 is formed in a folded plate shape, ionic wind flowing from the discharge electrode 5 toward the dust collecting electrode 14 can be guided toward the through hole 16. Thereby, the passage of the ion wind through the through hole 16 can be promoted, the reversal at the dust collecting electrode can be suppressed, and the dust collecting efficiency can be improved.
  • the valley portion of the dust collection electrode 14 and the corona discharge portion 8 of the discharge electrode 5 are arranged to face each other, the ion wind is effectively directed to the dust collection electrode 14 side in the valley portion where the velocity is lower than the flow of the main gas. And the dust collecting property can be further improved.
  • FIG. 6A is a cross-sectional view of the electric precipitator 20 according to the present embodiment
  • FIG. 6B is an EE cut end view of FIG. 6A
  • FIG. 7 is a partially enlarged view of FIG.
  • the electric dust collecting device 20 includes a plurality of dust collecting electrodes 14 (14a, 14b, 14c, 14d) arranged along the gas flow G, and a plurality of discharge electrodes arranged in parallel with each dust collecting electrode 14. 25 (25a, 25b, 25c) and a power supply (not shown).
  • the discharge electrodes 25 each have a mounting base material 27 and a plurality of corona discharge portions 28 (28a or 28b).
  • the mounting base 27 is the same as in the first and second embodiments.
  • the corona discharge unit 28 generates a corona discharge when a voltage is applied to the discharge electrode 25.
  • the corona discharge portion 28 is a projection provided on the mounting base 27 so as to project toward the dust collecting electrode 14 facing the corona discharge portion 28.
  • the projection is made of a conductive material.
  • the protrusion has a barbed shape with a tapered tip.
  • the plurality of corona discharge units 28 include a first corona discharge unit 28a and a second corona discharge unit 28b.
  • any one of the first corona discharge portion 28a and the second corona discharge portion 28b is provided on an arbitrary mounting base material 27.
  • the first corona discharge portion 28a and the second corona discharge portion 28b have different height positions when disposed on both sides of the dust collection electrode 14. That is, as shown in FIG. 6B, the height positions of the corona discharge portions 28 facing each other across the dust collection electrode 14 are different. Otherwise, the first corona discharge unit 28a and the second corona discharge unit 28b are the same.
  • the “height position” is a direction T crossing the gas flow G in the plane of the plate-shaped member.
  • the first corona discharge section 28a and the second corona discharge section 28b are staggered in a direction intersecting the gas flow G (see FIGS. 6B and 7).
  • the height of the corona discharge portions 28 that face each other with the dust collection electrode 14 interposed therebetween is changed so as to be staggered in the direction that intersects the gas flow G. It is possible to prevent the ion wind from interfering between the corona discharge units 28 sandwiching the 14.
  • FIG. 8A is a cross-sectional view of the electric precipitator 30 according to the present embodiment
  • FIG. 8B is a sectional view taken along the line FF of FIG. 8A.
  • the electric precipitator 30 includes a plurality of precipitating poles 14 (14a, 14b, 14c, 14d) arranged along the gas flow G, and a plurality of discharge electrodes arranged in parallel with each precipitating pole 14. 35 (35a, 35b, 35c) and a power supply (not shown).
  • the discharge electrodes 35 (35a, 35b, 35c) each have a mounting base material 37 and a plurality of corona discharge portions 38 (38a or 38b).
  • the mounting base 37 is the same as in the first and second embodiments.
  • the corona discharge unit 38 generates a corona discharge when a voltage is applied to the discharge electrode 35.
  • the corona discharge part 38 is a projection provided on the mounting base 37 so as to project toward the dust collecting electrode 14 facing the corona discharge part 38.
  • the projection is made of a conductive material.
  • the protrusion has a barbed shape with a tapered tip.
  • the plurality of corona discharge units 38 include a first corona discharge unit 38a and a second corona discharge unit 38b. In the present embodiment, only one of the first corona discharge part 38a and the second corona discharge part 38b is disposed on the arbitrary mounting base material 37 at the point where the corona discharge part is disposed.
  • the first corona discharge portion 38a and the second corona discharge portion 38b have different height positions when disposed on both sides of the dust collection electrode 14. That is, as shown in FIG. 8B, the height positions of the corona discharge portions 28 that face each other across the dust collection electrode 14 are different. Otherwise, the first corona discharge unit 28a and the second corona discharge unit 28b are the same.
  • the “height position” is a position in the direction T intersecting the gas flow G in the plane of the plate-shaped member. In addition, it is not limited to FIG. 8, and the first corona discharge portion 38a and the second corona discharge portion 38b may be at the same height position.
  • the first corona discharge section 38a and the second corona discharge section 38b are staggered in the gas flow direction.
  • a second corona discharge portion 38b protruding toward the dust collection electrode 14a and a second corona discharge portion 38b protruding toward the dust collection electrode 14b are installed on the mounting base 37 in a staggered arrangement. ing.
  • the corona discharge portion 38 is selectively directed toward the concave portion of the dust collection electrode 14. Can be placed. Thereby, dust collection efficiency can be further improved.
  • the electric dust collector according to the present embodiment has the same configuration as the fourth embodiment except that the configuration of the dust collection electrode is different.
  • FIG. 9 is a partial cross-sectional view of the electric precipitator according to the present embodiment.
  • the dust collecting electrode 44 (44a, 44b) of the present embodiment is composed of a plurality of concave members 41.
  • the concave member 41 is a single plate-shaped member made of a conductive material.
  • Each of the plurality of concave members 41 is a separate and independent member.
  • the plurality of concave members 41 are arranged such that the direction of the concave surface is alternately changed with respect to an arbitrary discharge electrode (for example, discharge electrode 35a).
  • Each of the plurality of concave members 41 extends in a direction intersecting the gas flow G (perpendicular to the paper surface), and is fixed to a casing (not shown in FIG. 9) at both ends in the longitudinal direction.
  • the dust collection electrode 44 has a structure in which valleys (recesses) and ridges are alternately repeated in the gas flow direction.
  • the adjacent concave members may be in close contact with each other, or may be arranged at intervals. When they are arranged at intervals, a spacer may be provided between the concave members 41. Adjacent concave members need not intersect as shown in FIG.
  • the recess 41 has a plurality of through holes 46.
  • the through hole 46 is provided so that the opening ratio of the dust collection electrode 14 is 10% or more and 70% or less.
  • the “opening ratio” is a ratio of the opening portion to the total area of the dust collection electrode 4 when viewed from the front from the discharge electrode 5 side.
  • the space between the concave members is not included in the aperture ratio.
  • the height difference between the inside and outside of the adjacent concave material is H
  • the distance between the adjacent dust collection electrode and the discharge electrode is L 2
  • the shortest distance between the dust collection electrode and the discharge electrode is L f
  • the tip of the projection of the corona discharge unit the distance between and dust collecting electrode L d, and the corona discharge unit and the first corona discharge portion pitch and the second corona discharge unit pitch / P 1 the distance between the corona discharge unit arranged in the gas flow direction.
  • the plurality of through holes 46 in the dust collecting electrode 44 may be uniformly provided in a range affected by corona discharge generated at the discharge electrode 35 facing the dust collecting electrode 44.
  • the dust collecting electrode by forming the dust collecting electrode in a divided structure, it becomes easy to manufacture a folded plate-shaped dust collecting electrode.
  • the electric dust collecting apparatus has the same configuration as the above-described embodiments except that the configuration of the dust collecting electrode is different.
  • the dust collecting electrodes 64 (64a, 64b) of the electric dust collecting apparatus 60 have a plurality of pipe members 64a1, 64b1 arranged at predetermined intervals in the flow direction of the gas flow G. It is a discrete dust collection electrode.
  • Each of the pipe members 64a1 and 64b1 is made of rigid metal.
  • Each of the pipe members 64a1 and 64b1 is disposed such that the axis is orthogonal to the gas flow G.
  • a corona discharge electrode 68 is provided between each of the dust collecting electrodes 64a and 64b.
  • Each corona discharge electrode 68 is provided with a first corona discharge section 68a and a second corona discharge section 68b.
  • the first corona discharge section 68a discharges toward one side (upward in FIG. 10) orthogonal to the gas flow G, and the second corona discharge section 68b faces the other side (downward in FIG. 10) orthogonal to the gas flow G.
  • the corona discharge portions 68a and 68b are arranged so as to be located between the adjacent pipe members 64a1 and 64b1 in the gas flow G direction. Further, the corona discharge portions 68a and 68b are provided so as to face in opposite directions at the same position in the gas flow G direction.
  • the aperture ratio of the dust collecting electrodes 64a and 64b is 10% or more and 70% or less.
  • the aperture ratio is determined as shown in FIG. That is, the aperture ratio is a ratio of the dust collecting electrodes 64a and 64b viewed from the corona discharge electrode 68, and is represented by (Pd) / P ⁇ 100 [%].
  • P is the pitch of the pipe members 64a1 and 64b1 in the gas flow G direction
  • d is the outer diameter of the pipe members 64a1 and 64b1.
  • the present embodiment as compared with the case of using punched metal as in the first embodiment, it is possible to maintain a rigidity equal to or higher than a predetermined value even when the aperture ratio is increased.
  • FIG. 12 shows a modification in which the arrangement of the corona discharge portions 68a and 68b is different from that in FIG.
  • the first corona discharge portions 64a1 and the second corona discharge portions 64b1 may be provided alternately in the gas flow G direction.
  • the first corona discharge portions 6a1 are provided continuously (three in FIG. 13) over a predetermined section, and thereafter, the second corona discharge portions 68b are provided continuously. It may be provided. By doing so, it is possible to suppress the interference of the ion wind due to the influence of the adjacent corona discharge portions 68a and 68b, and to reduce the ion wind in a direction crossing the gas flow G over the plurality of dust collection electrodes 64a and 64b. Can flow.
  • the outer shape of the cross section of the pipe members 64a1 and 64b1 used for the dust collecting electrodes 64a and 64b is not limited to a circular shape.
  • it may be a rectangle with a rounded corner, as shown in FIG. 14 (b), or a substantially U-shaped concave shape as shown in FIG. 14 (c). That is, the pipe members 64a1 and 64b1 only need to have a cross section having a quadratic coefficient of a predetermined value or more so as to secure rigidity.
  • the electric precipitator having the configuration of the first embodiment was operated under the following conditions to collect dust on the precipitating electrode. That is, a punching metal is used as the dust collecting electrode.
  • Electrode interval (distance between dust collection electrodes): 300 mm Voltage: 35-50kV Current density: 0.3 to 0.8 mA / m 2 SCA (electrode area / gas amount): 5 to 30 sec / m Dust concentration: 2-3 g / m 3 N Dust used: fly ash (average diameter 10 ⁇ m)
  • Fig. 15 shows the relationship between the aperture ratio and the collection efficiency.
  • the horizontal axis represents the aperture ratio (%) of the dust collection electrode
  • the vertical axis represents the standard value of the dust collection area ratio.
  • the dust collection area ratio indicates the dust collection area when the same dust collection performance is exhibited when the dust collection performance when the aperture ratio is 0% is 1. Therefore, the smaller the dust collection area ratio, the higher the collection efficiency.
  • Curve C1 shows the dust collection area ratio when the gas flow rate is relatively large, that is, when the gas flow rate is 1 m / s or more.
  • the aperture ratio is 10% or more
  • the dust collection area ratio is reduced by about 20%, and the effect of providing the aperture is produced.
  • the dust collection area ratio is lowest around 20%, and then gradually increases when it exceeds 30%. This is because, when the dust collection electrode is a flat plate such as a punching metal, the effect of gas flow on the surface of the dust collection electrode is greater than that of the ion wind, so even if the aperture ratio is increased, the advantage of the ion wind is lost. It is thought to be. In this case, the upper limit of the aperture ratio is determined from the strength of the dust collection electrode.
  • the intensity ratio is a ratio to the intensity when the aperture ratio is 0%.
  • the aperture ratio becomes 35%, the intensity ratio becomes 0.5, and the intensity becomes half.
  • the aperture ratio is preferably set to 35%. Therefore, when a flat dust collecting electrode is used and hammering is performed, the aperture ratio is preferably 10% or more and 35% or less (application range I).
  • the dust area ratio shows a low value. That is, as shown by the curve C2, the dust collection area ratio shows a low value up to an aperture ratio of 70%. If the aperture ratio exceeds 70%, the absolute value of the dust collection area becomes smaller, so that the dust collection area ratio increases. Therefore, in the case where a flat dust collecting electrode is used, hammering is not performed, and the gas flow rate is relatively small, the aperture ratio is preferably 10% or more and 70% or less (application range II).
  • the corona current is increased, the ion wind is proportional to approximately 1/2 power of the corona current. Therefore, 1 m / s is only a guideline in relation to the above main gas velocity, and is not limited to this. is not.
  • FIG. 16 shows a dust collection area ratio when a discrete dust collection electrode using the pipe members 64a1 and 64b1 (see FIG. 10) as in the sixth embodiment.
  • the aperture ratio is 10% or more and 70% or less
  • the dust collection area ratio becomes 0.8 or less. Therefore, the aperture ratio is preferably 10% or more and 70% or less (application range III).

Abstract

The purpose of the present invention is to provide an electrostatic precipitator in which it is possible to enhance the collection efficiency by suppressing effects in the ionic wind that reduce the collection effectiveness of the device. This electrostatic precipitator 1 comprises plate-shaped collecting electrodes 4 (4a, 4b, 4c, 4b) which have a plurality of through-holes 6 and are arranged along the direction of gas flow, and discharging electrodes (5a, 5b, 5c) which have a plurality of corona discharge parts 8 (8a, 8b) for corona discharge respectively protruding toward the collecting electrode 4 (4a, 4b) opposite thereto and which are arranged parallel to the collecting electrodes 4 (4a, 4b, 4c, 4b), wherein the open area ratio of the collecting electrodes 4 (4a, 4b, 4c, 4b) is 10% to 70%.

Description

電気集塵装置Electric dust collector
 本発明は、電気集塵装置に関するものである。 The present invention relates to an electric precipitator.
 従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列された鋭利な形状を有する放電極とを備えたものが知られている。 As a conventional electric dust collecting device, there is known an electric dust collecting device including a plate-shaped dust collecting electrode arranged in parallel along a gas flow, and a sharp discharge electrode arranged in the center thereof.
 電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極に安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると、従来の集じん理論では説明されている。 (4) In the electric dust collector, a DC high voltage is applied between the dust collecting electrode and the discharge electrode, and a stable corona discharge is applied to the discharge electrode to charge the dust in the gas flow. The conventional dust collection theory explains that the charged dust is collected by the dust collecting electrode by the action of Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collecting electrode.
 ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、該貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。 電 気 By the way, the electric precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and a dust collecting electrode having a closed space for collecting dust therein. In Patent Documents 1 and 2, trapped dust is hardly re-scattered by confining dust in a closed space via the through hole.
 特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、本ケースはダストを、主として集じんフィルタ層に捕集させることを目的としている。 電 気 The electric dust collector of Patent Document 3 includes a dust collecting electrode including a ground electrode having an aperture ratio of 65% to 85%, and a dust collecting filter layer for collecting gas. According to Patent Document 3, by providing such a dust collecting electrode, an ion wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , To collect dust efficiently. In Patent Literature 3, ion wind is positively used, but the purpose of this case is to collect dust mainly in the dust filter layer.
特許第5761461号公報Japanese Patent No. 5761461 特許第5705461号公報Japanese Patent No. 5705461 特許第4823691号公報Japanese Patent No. 4823691
 電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの数式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
  η=1-exp(-w×f)・・・(1)
The dust collection efficiency η in the electric dust collector can be calculated by the following well-known Deutsche equation (Equation (1)). w is a dust collecting index (moving speed of particulate matter), and f is a dust collecting area per unit gas amount.
η = 1−exp (−w × f) (1)
 上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの数式(上記式(1))では、ダストが放電極から電界中を移動するとされおり、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度は、常に放電極と集塵極との間の集じん空間内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。 式 In the above equation (1), the moving speed w of the dust (particulate matter) is determined to be determined by the relationship between the Coulomb force and the viscous resistance of the gas. According to Deutsche's formula (the above formula (1)), dust moves from the discharge electrode into the electric field, and the ion wind is not directly considered in the influence on the performance. However, there is a prerequisite that the dust concentration, which is the premise of the performance design, is always uniform in the dust collection space between the discharge electrode and the dust collection electrode, and ionic wind causes gas turbulence, It is considered as one of the factors that make the dust concentration uniform.
 イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。 Ion wind is generated by corona discharge at the discharge electrode when a negative voltage is applied between the electrodes, and as a result, the ion wind is generated by positive ions at a positive voltage. Hereinafter, a case where a negative voltage is applied will be described in order to consider an industrial electric dust collector as a base, but the same applies to a case where the voltage is positive.
 放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。 イ オ ン Ion wind generated at the discharge electrode flows across the gas flow toward the dust collection electrode. The ion wind that reaches the dust collection electrode reverses its flow at the dust collection electrode and changes its flow direction. This causes a spiral turbulence between the electrodes.
 乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。 の う ち Of the turbulent flow, the flow from the discharge electrode to the dust collection electrode has the effect of carrying dust to the vicinity of the dust collection electrode. The dust carried to the vicinity of the dust collection pole is finally collected by Coulomb force.
 しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。 イ オ ン However, the ion wind reversed at the dust collection electrode moves dust in a direction away from the collection electrode, which is a collecting body, and thus has an effect of obstructing dust collection.
 尚、唯一特許文献3には、イオン風の効果も考慮した電気集塵装置を記載している。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない箇所での集じんをすることを目的としていて、構造も複雑であること、及び、乾式では付着ダストの剥離回収が困難であった。 唯一 In addition, only Patent Document 3 describes an electric precipitator in consideration of the effect of ion wind. However, in this case, the structure is such that the ion wind is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust at a location not affected by the main gas. It was complicated, and it was difficult to separate and collect the adhered dust by the dry method.
 本発明は、このような事情に鑑みてなされたものであって、従来の電気集塵装置では考慮されていなかったイオン風に着目し、集塵効果を低減するイオン風の離反作用を抑制し、集塵効率を高めることのできる電気集塵装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and focuses on ion wind, which has not been considered in conventional electric dust collectors, and suppresses the departure action of ion wind to reduce the dust collection effect. It is another object of the present invention to provide an electric dust collecting device capable of improving dust collecting efficiency.
 本発明の一態様に係る電気集塵装置は、複数の開口が形成され、ガスの流通方向に沿って設けられた集塵極と、対面する前記集塵極に向いて突出したコロナ放電用のコロナ放電部を複数有し、前記集塵極に対して並列に配置された放電極と、を備え、前記集塵極の開口率が、10%以上70%以下である。 The electric dust collecting apparatus according to one aspect of the present invention has a plurality of openings, a dust collecting electrode provided along a gas flow direction, and a corona discharge projecting toward the facing dust collecting electrode. And a discharge electrode having a plurality of corona discharge portions and arranged in parallel with the dust collection electrode, wherein an aperture ratio of the dust collection electrode is 10% or more and 70% or less.
 集塵極に複数の開口部を設けることで、放電極から集塵極へ向けて流れるイオン風の一部が集塵極の裏側へ抜けることを許容する。これにより、イオン風が集塵極で反転されて離反する流れを抑制できる。
 集塵極としては、例えば、複数の貫通孔を有する一枚の板状体をガスの流通方向に沿って設けた平板集塵極が挙げられる。平板集塵極としては、例えばパンチングメタルが用いられる。また、他の形式の集塵極としては、複数の剛性を有する部材を所定間隔でガスの流通方向に並べた離散形集塵極が挙げられる。剛性を有する部材としては、例えばパイプ形状の部材が挙げられる。
 集塵極は、従来の電気集塵装置と同様の、槌打によるダストの剥離回収が可能である。
By providing a plurality of openings in the dust collecting electrode, a part of the ion wind flowing from the discharge electrode toward the dust collecting electrode is allowed to escape to the back side of the dust collecting electrode. Thereby, it is possible to suppress the flow in which the ion wind is reversed at the dust collection electrode and moves away.
As the dust collecting electrode, for example, a flat plate dust collecting electrode in which a single plate-shaped body having a plurality of through holes is provided along the gas flow direction is exemplified. For example, a punching metal is used as the flat plate dust collecting electrode. Further, as another type of dust collecting electrode, a discrete dust collecting electrode in which a plurality of members having rigidity are arranged at predetermined intervals in a gas flow direction is exemplified. Examples of the rigid member include a pipe-shaped member.
The dust collecting electrode is capable of separating and collecting dust by hammering, similar to a conventional electric dust collecting device.
 開口率が10%未満となるとイオン風の離反抑制効果が低くなる。開口率が70%を超えると有効な集塵面積が少なくなり集塵性を低下させる。また、集塵極として複数の貫通孔が形成された平板を用いた場合には、開口率が大きすぎると集塵極の強度が低下する。開口率を上記範囲とすることで、集塵極の強度を維持しつつ、貫通孔を設けていない集塵極と比較して集塵効率が向上する。 と When the aperture ratio is less than 10%, the effect of suppressing the separation of the ion wind decreases. If the aperture ratio exceeds 70%, the effective dust collection area decreases, and the dust collection performance decreases. When a flat plate having a plurality of through holes is used as the dust collection electrode, if the aperture ratio is too large, the strength of the dust collection electrode is reduced. By setting the aperture ratio in the above range, the dust collection efficiency is improved while maintaining the strength of the dust collection electrode as compared with a dust collection electrode having no through hole.
 上記発明の一態様において、前記放電極が、前記集塵極の両側にそれぞれ配置され、一方の放電極の前記コロナ放電部と、他方の放電極の前記コロナ放電部とが、ガス流れ方向に交差する方向において千鳥配置されていることが好ましい。 In one aspect of the invention, the discharge electrodes are arranged on both sides of the dust collection electrode, respectively, and the corona discharge portion of one discharge electrode and the corona discharge portion of the other discharge electrode are arranged in a gas flow direction. It is preferable that they are arranged in a staggered manner in the intersecting direction.
 コロナ放電部を千鳥配置させることで、集塵極を挟んで一方の側のコロナ放電部ではイオン風が生じ、他方の側の対向する位置の放電極では電界のみが作用する。これにより、貫通孔を通過したイオン風と共にすり抜けたダストを集塵極近傍で捕集することができる。 By arranging the corona discharge portions in a staggered manner, ion wind is generated in the corona discharge portion on one side of the dust collection electrode, and only the electric field acts on the discharge electrode in the opposite position on the other side. As a result, dust that has passed through along with the ion wind that has passed through the through-hole can be collected near the dust collection electrode.
 上記発明の一態様において、前記集塵極が折板形状であり、前記放電極に対して凹んだ凹部を有していることが好ましい。 に お い て In one embodiment of the present invention, it is preferable that the dust collecting electrode has a folded plate shape and has a concave portion recessed with respect to the discharge electrode.
 折板形状とすることで、集塵極の強度が上がり、集塵面積も増える。また、後述の凹部とコロナ放電部を対峙させる構造が可能となり、集塵性をさらに向上させることができる。 By adopting a folded plate shape, the strength of the dust collection electrode increases and the dust collection area also increases. Further, a structure in which a later-described concave portion and a corona discharge portion are opposed to each other becomes possible, and the dust collecting property can be further improved.
 上記発明の一態様において、前記集塵極が、複数の凹部材で構成された分割構造であり、複数の前記凹部材は、任意の前記放電極に対して凹部の向きを交互に替えて組み合せられていてもよい。 In one embodiment of the present invention, the dust collection electrode has a divided structure including a plurality of recessed members, and the plurality of recessed members are combined by alternately changing the direction of the recessed portions with respect to any of the discharge electrodes. It may be.
 集塵極を分割構造とすることで、集塵極の製造が容易となる。 (4) By forming the dust collecting electrode in a divided structure, it becomes easy to manufacture the dust collecting electrode.
 上記発明の一態様において、前記コロナ放電部が、前記凹部と対向配置されていることが好ましい。 に お い て In one embodiment of the present invention, it is preferable that the corona discharge portion is arranged to face the concave portion.
 集塵極の凹部と、放電極のコロナ放電部を対向配置することで、主ガスの流れに比べて速度の遅い場所で、イオン風を有効に集塵極側に作用させることで、集塵性をより向上させることができる。 By arranging the concave part of the dust collection electrode and the corona discharge part of the discharge electrode to face each other, the ion wind effectively acts on the dust collection electrode side in places where the speed is slower than the main gas flow, so that the dust collection Properties can be further improved.
 上記発明の一態様において、前記集塵極が、複数の剛性を有する部材を所定間隔でガスの流通方向に並べられて形成されていることが好ましい。 In one embodiment of the present invention, it is preferable that the dust collecting electrode is formed by arranging a plurality of rigid members at predetermined intervals in a gas flow direction.
 複数の剛性を有する部材を所定間隔でガスの流通方向に並べて形成した離散形集塵極とすることで、開口率を大きくしても所定値以上の剛性が維持できる集塵極を得ることができる。 By forming a plurality of members having rigidity as discrete dust collecting electrodes formed by arranging the members at predetermined intervals in the gas flow direction, it is possible to obtain a dust collecting electrode capable of maintaining rigidity of a predetermined value or more even when the aperture ratio is increased. it can.
 本発明の電気集塵装置によれば、従来の孔のない集塵極を用いた場合と比較して、イオン風が集塵極から離反するのを抑制し、集塵効率を高めることができる。 ADVANTAGE OF THE INVENTION According to the electric precipitator of this invention, compared with the case where the conventional non-porous precipitator is used, it can suppress that an ion wind separates from a precipitator, and can raise dust collection efficiency. .
(a)は第1実施形態に係る電気集塵装置の横断面図、(b)は(a)のA-A切断断面図である。2A is a cross-sectional view of the electric precipitator according to the first embodiment, and FIG. 2B is a cross-sectional view taken along line AA of FIG. 図1(b)の部分拡大図である。It is the elements on larger scale of FIG.1 (b). 集塵極の一例を示す部分拡大図である。It is the elements on larger scale which show an example of a dust collection electrode. (a)は第1実施形態に係る変形例の電気集塵装置の横断面図、(b)は(a)のA-A切断端面図、(c)は(a)のB-B切断端面図、(d)は(a)のC-C切断端面図である。(A) is a cross-sectional view of a modification of the electrostatic precipitator according to the first embodiment, (b) is an AA cut end view of (a), and (c) is a BB cut end face of (a). FIG. 3D is a sectional view taken along the line CC in FIG. (a)は第2実施形態に係る電気集塵装置の横断面図、(b)は(a)のD-D切断端面図である。(A) is a cross-sectional view of the electric precipitator according to the second embodiment, and (b) is a cross-sectional end view taken along line DD of (a). (a)は第3実施形態に係る電気集塵装置の横断面図、(b)は(a)のE-E切断端面図である。(A) is a cross-sectional view of the electric precipitator according to the third embodiment, and (b) is an EE cut end view of (a). 図6の(b)の部分拡大図である。FIG. 7 is a partially enlarged view of FIG. (a)は第4実施形態に係る電気集塵装置の横断面図、(b)は(a)のF-F切断端面図である。(A) is a cross-sectional view of the electric precipitator according to the fourth embodiment, and (b) is an FF cut end view of (a). 第5実施形態に係る電気集塵装置の部分横断面図である。It is a partial cross section of an electric precipitator concerning a 5th embodiment. 第6実施形態に係る電気集塵装置の横断面図である。It is a cross section of an electric precipitator concerning a 6th embodiment. 図10の開口率を説明する図である。It is a figure explaining the aperture ratio of FIG. 図10の変形例を示す横断面図である。It is a cross-sectional view which shows the modification of FIG. 図10のその他の変形例を示す横断面図である。It is a cross-sectional view which shows the other modification of FIG. 図10のパイプ部材の変形例を示す横断面図である。It is a cross-sectional view which shows the modification of the pipe member of FIG. 第1実施形態の集塵面積比を開口率に対して示したグラフである。It is the graph which showed the dust collection area ratio of 1st Embodiment with respect to the aperture ratio. 第6実施形態の集塵面積比を開口率に対して示したグラフである。It is the graph which showed the dust collection area ratio of 6th Embodiment with respect to the aperture ratio.
 以下に、本発明に係る電気集塵装置および集塵方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the electric dust collecting apparatus and the dust collecting method according to the present invention will be described with reference to the drawings.
〔第1実施形態〕
 図1の(a)は本実施形態に係る電気集塵装置の横断面図、(b)は図1(a)のA-A切断端面図である。図2は、図1(b)の部分拡大図である。図1(a)において、ガス流Gは、水平流であり、紙面下側から上側に向けて流れる。
[First Embodiment]
FIG. 1A is a cross-sectional view of the electric precipitator according to the present embodiment, and FIG. 1B is an AA cut end view of FIG. 1A. FIG. 2 is a partially enlarged view of FIG. In FIG. 1A, the gas flow G is a horizontal flow, and flows upward from the lower side of the drawing.
 電気集塵装置1は、ガス流れGに沿って配列された複数の集塵極4(4a,4b,4c、4d)と、集塵極4に対して並列に配置された複数の放電極5(5a,5b,5c)と、電源(不図示)と、を備えている。集塵極4(4a,4b,4c、4d)と放電極5(5a,5b,5c)の組合せはケーシング2内に配置されている。 The electric dust collecting apparatus 1 includes a plurality of dust collecting electrodes 4 (4a, 4b, 4c, 4d) arranged along the gas flow G, and a plurality of discharge electrodes 5 arranged in parallel with the dust collecting electrodes 4. (5a, 5b, 5c) and a power supply (not shown). The combination of the dust collection electrode 4 (4a, 4b, 4c, 4d) and the discharge electrode 5 (5a, 5b, 5c) is arranged in the casing 2.
 ケーシング2の内側には、複数の遮蔽板3が設置されている。遮蔽板3は、ケーシング2と、該ケーシング2近傍にある集塵極(4aまたは4d)との間にガスが流れ込むのを遮り、ガス流Gが集塵極4と放電極5との間へと流れるよう導く役割を果たす。 A plurality of shielding plates 3 are installed inside the casing 2. The shielding plate 3 blocks gas from flowing between the casing 2 and the dust collecting electrode (4a or 4d) near the casing 2, and the gas flow G flows between the dust collecting electrode 4 and the discharge electrode 5. And play a role to guide the flow.
 集塵極4および放電極5は、それぞれガス流れGに交差する方向(紙面垂直方向)に延在している。図1に示した電気集塵装置1は概略的に示したものであり、放電極5(5a,5b,5c)および集塵極4(4a,4b,4c、4d)のサイズおよび設置数は、図示の例に限定されない。 塵 The dust collection electrode 4 and the discharge electrode 5 extend in a direction intersecting the gas flow G (perpendicular to the paper surface). The electric precipitator 1 shown in FIG. 1 is schematically shown, and the size and the number of the discharge electrodes 5 (5a, 5b, 5c) and the precipitating electrodes 4 (4a, 4b, 4c, 4d) are as follows. , Is not limited to the illustrated example.
 集塵極4と放電極5とは、互いに離隔され、電気的に絶縁されている。放電極5はケーシング2とも絶縁されている。集塵極4は接地され、放電極5には電源が接続されている(不図示)。放電極5は、隣り合う集塵極4の中間位置にある。 塵 The dust collecting electrode 4 and the discharge electrode 5 are separated from each other and are electrically insulated. The discharge electrode 5 is also insulated from the casing 2. The dust collecting electrode 4 is grounded, and a power source is connected to the discharge electrode 5 (not shown). The discharge electrode 5 is located at an intermediate position between the adjacent dust collection electrodes 4.
 集塵極4(4a,4b,4c、4d)は、導電性を有する材質からなる一枚の板状の部材である。集塵極4の板面は、ガス流れG方向に対し略平行に配置されている。 The dust collection electrode 4 (4a, 4b, 4c, 4d) is a single plate-shaped member made of a conductive material. The plate surface of the dust collection electrode 4 is disposed substantially parallel to the gas flow G direction.
 集塵極4(4a,4b,4c、4d)は、それぞれ複数の貫通孔6を備えている。貫通孔6の配置、形状は限定されるものではなく任意に変更可能である。貫通孔6の形状は、例えば、丸、長丸などである。 塵 Each of the dust collecting electrodes 4 (4a, 4b, 4c, 4d) has a plurality of through holes 6. The arrangement and shape of the through holes 6 are not limited and can be arbitrarily changed. The shape of the through hole 6 is, for example, a circle, a long circle, or the like.
 集塵極4(4a,4b,4c、4d)は、例えば金属製のパンチングメタル、金属製のメッシュベルトなどであってよい。図3にメッシュベルトの部分拡大図を示す。回転部材(回転駆動ローラ)を用いて集塵極を移動させる方式の電気集塵装置に適用する場合には、集塵極4はメッシュベルトとしてもよい。集塵極を一枚のメッシュベルト状の構造にすることで、無端ベルト方式と組合せ、ブラシによるダストの剥離回収が可能となる。 The dust collecting electrode 4 (4a, 4b, 4c, 4d) may be, for example, a metal punching metal, a metal mesh belt, or the like. FIG. 3 shows a partially enlarged view of the mesh belt. In a case where the present invention is applied to an electric dust collecting apparatus of a type in which a dust collecting pole is moved by using a rotating member (rotary driving roller), the dust collecting pole 4 may be a mesh belt. By forming the dust collecting electrode in the form of a single mesh belt, the dust can be separated and collected by a brush in combination with the endless belt system.
 集塵極4の開口率は、10%以上70%以下である。ただし、平板とされた集塵極4を槌打によってダスト除去する槌打方式を採用する場合には、平板とされた集塵極4の強度を確保する必要があるので、開口率は35%以下とすることが好ましい。平板とされた集塵極4であっても水流によってダストを除去する場合には、平板とされた集塵極4には槌打方式で要求されるほどの強度は必要ないので、開口率は70%以下とされる。「開口率」は、放電極5側から正面視したときの各集塵極4の総面積に対して開口部分が占める割合である。 開口 The aperture ratio of the dust collecting electrode 4 is 10% or more and 70% or less. However, in the case of adopting a hammering method in which dust is removed by hammering the flat dust collecting electrode 4, it is necessary to secure the strength of the flat dust collecting electrode 4, so that the aperture ratio is 35%. It is preferable to set the following. Even when the dust collecting electrode 4 is a flat plate, when dust is removed by a water stream, the flat dust collecting electrode 4 does not need the strength required by the hammering method. 70% or less. The “opening ratio” is the ratio of the opening portion to the total area of each dust collecting electrode 4 when viewed from the front from the discharge electrode 5 side.
 放電極5(5a,5b,5c)は、集塵極4(4a,4b,4c、4d)に挟まれるよう配置されている。放電極5(5a,5b,5c)は、それぞれ取付基材7と、複数のコロナ放電部8(8a,8b)とを有している。取付基材7は、導電性を有する材質からなる棒状または板状の部材である。取付基材7は、対面する集塵極4に対して略平行に配置されている。 The discharge electrode 5 (5a, 5b, 5c) is disposed so as to be sandwiched between the dust collecting electrodes 4 (4a, 4b, 4c, 4d). Each of the discharge electrodes 5 (5a, 5b, 5c) has a mounting base material 7 and a plurality of corona discharge portions 8 (8a, 8b). The mounting substrate 7 is a rod-shaped or plate-shaped member made of a conductive material. The mounting base 7 is arranged substantially parallel to the dust collecting electrode 4 facing the mounting base 7.
 コロナ放電部8は、放電極5に電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部8は、対面する集塵極4に向いて突出するよう取付基材7に設置された突起である。該突起は、導電性の材質からなる。該突起は、先端が先細のトゲ状となっている。 The corona discharge section 8 generates a corona discharge when a voltage is applied to the discharge electrode 5. The corona discharge section 8 is a projection provided on the mounting base 7 so as to project toward the dust collecting electrode 4 facing the corona discharge section 8. The projection is made of a conductive material. The protrusion has a barbed shape with a tapered tip.
 コロナ放電部8には、第1コロナ放電部8aおよび第2コロナ放電部8bがある。第1コロナ放電部8aと第2コロナ放電部8bとは、ガス流れGに交差する方向T(図1(a)の紙面垂直方向すなわち放電極5の高さ方向)において千鳥配置されている。 The corona discharge section 8 includes a first corona discharge section 8a and a second corona discharge section 8b. The first corona discharge portions 8a and the second corona discharge portions 8b are arranged in a staggered manner in a direction T intersecting the gas flow G (a direction perpendicular to the plane of FIG. 1A, that is, a height direction of the discharge electrodes 5).
 例えば、図2に示すように、集塵極4cを挟んで両側に配置された対になる放電極5(5b、5c)では、一方の放電極5cに該集塵極4c側(同図において左側)を向いて突出した第1コロナ放電部8aが設置され、他方の放電極5bに該集塵極4c側(同図において右側)を向いて突出した第2コロナ放電部8bが設置される。 For example, as shown in FIG. 2, in a pair of discharge electrodes 5 (5b, 5c) arranged on both sides of the dust collection electrode 4c, one of the discharge electrodes 5c is on the dust collection electrode 4c side (in FIG. A first corona discharge portion 8a protruding toward the left side is provided, and a second corona discharge portion 8b protruding toward the dust collection electrode 4c side (the right side in the figure) is provided on the other discharge electrode 5b. .
 集塵極4b,4cに挟まれた放電極5bは、一方の集塵極4bに向いて突出した第1コロナ放電部8aと他方の集塵極4cに向いて突出した第2コロナ放電部8bとが取付基材7に設置される。異なる方向を向いた第1コロナ放電部8aおよび第2コロナ放電部8bは、ガス流れGに交差する方向T(図1(a)において紙面垂直方向すなわち放電極5の高さ方向)において千鳥配置されている(図1(b)参照)。 The discharge electrode 5b sandwiched between the dust collecting electrodes 4b and 4c has a first corona discharge portion 8a protruding toward one dust collecting electrode 4b and a second corona discharge portion 8b protruding toward the other dust collecting electrode 4c. Are installed on the mounting base 7. The first corona discharge portion 8a and the second corona discharge portion 8b facing in different directions are staggered in a direction T intersecting the gas flow G (a direction perpendicular to the paper surface in FIG. 1A, that is, a height direction of the discharge electrode 5). (See FIG. 1B).
 なお、図1の例に限らず、図4のように第1コロナ放電部8aと第2コロナ放電部8bとは、ガス流れG方向(図4の紙面下から上方向)において千鳥配置されてもよい。図4の(a)は本実施形態に係る変形例の電気集塵装置の横断面図、(b)は図4(a)のA-A切断端面図、(c)は図4(a)のB-B切断端面図、(d)は図4(a)のC-C切断端面図である。 In addition, the first corona discharge portion 8a and the second corona discharge portion 8b are not limited to the example of FIG. 1 but are staggered in the gas flow G direction (from the bottom to the top in FIG. 4). Is also good. FIG. 4A is a cross-sectional view of a modified example of the electric dust collector according to the present embodiment, FIG. 4B is an AA cut end view of FIG. 4A, and FIG. 4C is FIG. FIG. 4D is a sectional view taken along line BB of FIG. 4, and FIG. 4D is a sectional view taken along line CC of FIG. 4A.
 集塵極4において複数の貫通孔6は、対面する放電極5で発生したコロナ放電の影響を受ける範囲に一様に設けられるとよい。コロナ放電の影響を受ける範囲は、コロナ放電部8の突起先端から集塵極までの距離をLとすると、突起先端から片側で略45度の広がりを有するエリアとなる(直径が2L)。 The plurality of through holes 6 in the dust collecting electrode 4 may be uniformly provided in a range affected by corona discharge generated at the facing discharge electrode 5. Range affected by the corona discharge, and the distance from the projecting tip of the corona discharge portion 8 to the dust collecting electrode and L d, the area having a spread of about 45 degrees on one side from the projecting tip (diameter 2L d) .
 電気集塵装置1には、集塵極4に付着した粒子状物質を剥離する槌打装置(不図示)が設けられてもよい。槌打装置はハンマを有しており、ハンマが集塵極4を槌打することで、表面に付着した粒子状物質を振動によって剥離除去する。
 なお、粒子状物質の集塵極4からの除去方法は、槌打装置を用いた槌打に限定されない。例えば、集塵極4に捕集された粒子状物質に対しガスを吹き付ける方法、又は、ソニック・ホーンを用いて音波を照射する方法によって、粒子状物質を集塵極4から除去してもよい。また、湿式の電気集塵装置で行われている洗浄液による洗浄によって、集塵極4から粒子状物質を除去してもよい。
The electric dust collecting device 1 may be provided with a hammering device (not shown) for separating the particulate matter attached to the dust collecting electrode 4. The hammer has a hammer, and the hammer hammers the dust collecting electrode 4 to peel off and remove the particulate matter attached to the surface by vibration.
The method of removing the particulate matter from the dust collecting electrode 4 is not limited to hammering using a hammer. For example, the particulate matter may be removed from the dust collection electrode 4 by a method of spraying a gas to the particulate matter collected by the dust collection electrode 4 or a method of irradiating a sound wave using a sonic horn. . Further, the particulate matter may be removed from the dust collecting electrode 4 by washing with a washing liquid performed in a wet type electric dust collector.
 次に、図1の電気集塵装置1の動作を説明する。
 電気集塵装置1では、放電極5に電圧を印加することで、コロナ放電部8の先端でコロナ放電が発生する。ガス流に含まれる粒子状物質は、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電された粒子状物質は、クーロン力により集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
Next, the operation of the electric precipitator 1 of FIG. 1 will be described.
In the electrostatic precipitator 1, a corona discharge is generated at the tip of the corona discharge unit 8 by applying a voltage to the discharge electrode 5. The particulate matter contained in the gas stream is charged by corona discharge. According to the collecting principle of the conventional electric dust collector, the charged particulate matter is drawn to the dust collecting electrode 4 by the Coulomb force and collected on the dust collecting electrode 4, but actually, it is actually collected. The effect of the ion wind is acting greatly.
 コロナ放電が発生すると、コロナ放電部8近くでマイナスイオンが発生し、そのマイナスイオンが電界(E)によって集塵極4に向けて移動し、イオン風が生じる。集塵極4に向かって流れるイオン風は、ガス流に含まれる粒子状物質を集塵極4の近傍まで移動させるよう作用する。これにより、粒子径が小さく帯電しにくい粒子状物質をクーロン力が作用する領域内まで運べるため、捕集効率が向上する。 (4) When corona discharge occurs, negative ions are generated near the corona discharge portion 8, and the negative ions move toward the dust collection electrode 4 by the electric field (E), and ion wind is generated. The ion wind flowing toward the dust collection electrode 4 acts to move the particulate matter contained in the gas flow to the vicinity of the dust collection electrode 4. Thereby, the particulate matter having a small particle diameter and being hardly charged can be carried into the region where the Coulomb force acts, so that the collection efficiency is improved.
 粒子状物質を含んで集塵極4に向かって流れるイオン風の一部は、図2の細矢印で示すように、集塵極4の貫通孔6を通り抜ける。イオン風の一部通過を許容することで、集塵極4でのイオン風の反転が抑制され、乱流の発生を低減できる。これにより、集塵極4近傍からの粒子状物質の離反を防ぎ、集塵極4に捕集された粒子状物質の再飛散も低減できる。 (2) A part of the ion wind including the particulate matter and flowing toward the dust collection electrode 4 passes through the through hole 6 of the dust collection electrode 4 as shown by a thin arrow in FIG. By allowing a part of the ion wind to pass, the reversal of the ion wind at the dust collection electrode 4 is suppressed, and the occurrence of turbulence can be reduced. Thereby, the separation of the particulate matter from the vicinity of the dust collection electrode 4 can be prevented, and the re-scattering of the particulate matter collected by the dust collection electrode 4 can be reduced.
 集塵極4を挟んで両側に配置された一対の放電極5において、対向する面で第1コロナ放電部8aと第2コロナ放電部8bとを千鳥配置することで、イオン風が干渉することなく効果的に粒子状物質を集塵極4の近傍まで移動させられる。 In the pair of discharge electrodes 5 arranged on both sides of the dust collecting electrode 4, the first corona discharge portion 8a and the second corona discharge portion 8b are staggered on opposing surfaces, so that ion wind interferes. Thus, the particulate matter can be effectively moved to the vicinity of the dust collection electrode 4.
 集塵極4の一方の面側にある放電極5では、コロナ放電部8が集塵極4に向けてイオン風を生じさせるが、該集塵極4の他方の面側の対向する位置ではイオン風は生じず、電界(E)による生じるクーロン力により、ダストを集塵極へ移動させる力が作用する(図2参照)。よって、イオン風に乗って貫通孔6を通りぬけた粒子状物質は、電界(E)により該集塵極4の裏面近傍に留まり、クーロン力により集塵極4に捕集される。ここで捕集されなかった粒子状物質は、主ガス流に沿って流れ、次ステージで効率よく捕集される。 In the discharge electrode 5 on one surface side of the dust collecting electrode 4, the corona discharge unit 8 generates ion wind toward the dust collecting electrode 4, but at a position opposite to the other surface side of the dust collecting electrode 4. No ion wind is generated, and a Coulomb force generated by the electric field (E) exerts a force for moving dust to the dust collection electrode (see FIG. 2). Therefore, the particulate matter that has passed through the through-hole 6 due to the ionic wind stays near the back surface of the dust collecting electrode 4 due to the electric field (E) and is collected by the dust collecting electrode 4 due to Coulomb force. The particulate matter not collected here flows along the main gas flow and is efficiently collected in the next stage.
〔第2実施形態〕
 本実施形態に係る電気集塵装置は、集塵極の形状が異なる以外は、第1実施形態と同様の構成である。図5(a)は、本実施形態に係る電気集塵装置10の横断面図、(b)は図5(a)のD-D切断端面図である。
[Second embodiment]
The electric dust collector according to the present embodiment has the same configuration as that of the first embodiment except that the shape of the dust collecting electrode is different. FIG. 5A is a cross-sectional view of the electric precipitator 10 according to the present embodiment, and FIG. 5B is a cross-sectional end view taken along line DD of FIG. 5A.
 電気集塵装置10は、ガス流れGに沿って配列された複数の集塵極14(14a,14b,14c,14d)と、集塵極14(14a,14b,14c,14d)に対して並列に配置された複数の放電極5(5a,5b,5c)と、電源(不図示)と、を備えている。集塵極14(14a,14b,14c、14d)と放電極5(5a,5b,5c)の組合せはケーシング2内に配置されている。 The electric precipitator 10 is arranged in parallel with the plurality of precipitating poles 14 (14a, 14b, 14c, 14d) arranged along the gas flow G and the precipitating poles 14 (14a, 14b, 14c, 14d). , A plurality of discharge electrodes 5 (5a, 5b, 5c) and a power supply (not shown). The combination of the dust collection electrode 14 (14a, 14b, 14c, 14d) and the discharge electrode 5 (5a, 5b, 5c) is arranged in the casing 2.
 集塵極14(14a,14b,14c,14d)は、それぞれ導電性を有する材質からなる板状の部材である。各集塵極14は、山谷部11を備えた折板形状となっている。山谷部11は、谷部または山部がガス流れ方向に交互に繰り返される構造となっている。谷部は対面する放電極5に対して凹んでおり、山部は該放電極に対して突き出ている。図5では、谷部と山部とのつなぎ部分を傾斜部12と称す。山谷部11は、板状部材をロールにかけることなどで形成され得る。 The dust collection electrodes 14 (14a, 14b, 14c, 14d) are plate-like members made of conductive materials. Each of the dust collection electrodes 14 has a folded plate shape having the valleys 11. The valley 11 has a structure in which valleys or ridges are alternately repeated in the gas flow direction. The valleys are concave with respect to the facing discharge electrode 5, and the peaks protrude with respect to the discharge electrode. In FIG. 5, a connecting portion between the valley and the peak is referred to as an inclined portion 12. The mountain valley portion 11 can be formed by rolling a plate-shaped member.
 集塵極14(14a,14b,14c,14d)は、それぞれ複数の貫通孔16を備えている。各集塵極(14a,14b,14c,14d)は、例えば金属製のパンチングメタルである。貫通孔16は、構造上の制約を受けない範囲、例えば、傾斜部12の直線部分に設けられていてもよい。 塵 Each of the dust collecting electrodes 14 (14a, 14b, 14c, 14d) has a plurality of through holes 16. Each dust collecting electrode (14a, 14b, 14c, 14d) is, for example, a metal punching metal. The through-hole 16 may be provided in a range that is not restricted by the structure, for example, in a linear portion of the inclined portion 12.
 集塵極14の開口率は、10%以上70%以下である。ただし、平板とされた集塵極4を槌打によってダスト除去する槌打方式を採用する場合には、平板とされた集塵極4の強度を確保する必要があるので、開口率は35%以下とすることが好ましい。平板とされた集塵極4であっても水流によってダストを除去する場合には、平板とされた集塵極4には槌打方式で要求されるほどの強度は必要ないので、開口率は70%以下とされる。
 図5において、貫通孔16は、山谷部11の平面部分のみに設けられており、傾斜部12には設けられていない。
The aperture ratio of the dust collection electrode 14 is 10% or more and 70% or less. However, in the case of adopting a hammering method in which dust is removed by hammering the flat dust collecting electrode 4, it is necessary to secure the strength of the flat dust collecting electrode 4, so that the aperture ratio is 35%. It is preferable to set the following. Even when the dust collecting electrode 4 is a flat plate, when dust is removed by a water stream, the flat dust collecting electrode 4 does not need the strength required by the hammering method. 70% or less.
In FIG. 5, the through-hole 16 is provided only in the flat portion of the valley portion 11, and is not provided in the inclined portion 12.
 山谷部11の深さ(H)、山谷部11における隣り合う山部頂部と谷部頂部との距離(X)、放電極側から正面視したときの傾斜部12の幅(Y)は、例えば、図4の電気集塵装置10では、H=30mm、X=90mm、Y=30mmである。 The depth (H) of the valley and valley 11, the distance (X) between the top of the valley and the top of the valley in the valley 11, and the width (Y) of the inclined portion 12 when viewed from the discharge electrode side in front are, for example, 4, H = 30 mm, X = 90 mm, and Y = 30 mm.
 集塵極14(14a,14b,14c,14d)は、長手軸がガス流れ方向に対して略平行に配置されている。山谷部11の山部または谷部は、放電極5に設置されたコロナ放電部8と向かい合うよう配置されるとよい。 塵 The dust collecting poles 14 (14a, 14b, 14c, 14d) have their longitudinal axes arranged substantially parallel to the gas flow direction. The peaks or valleys of the peaks and valleys 11 are preferably arranged so as to face the corona discharge unit 8 provided on the discharge electrode 5.
 本実施形態によれば、集塵極14を折板形状としたことにより、放電極5から集塵極14に向けて流れるイオン風を貫通孔16の方へと誘導できる。それにより、イオン風の貫通孔16通過を促進し、集塵極での反転を抑制でき、集塵効率を向上させることができる。集塵極14の谷部と、放電極5のコロナ放電部8を対向配置すると、主ガスの流れに比べて速度の遅い場所となる谷部で、イオン風を有効に集塵極14側に作用させ、集塵性をより向上させることができる。 According to the present embodiment, since the dust collecting electrode 14 is formed in a folded plate shape, ionic wind flowing from the discharge electrode 5 toward the dust collecting electrode 14 can be guided toward the through hole 16. Thereby, the passage of the ion wind through the through hole 16 can be promoted, the reversal at the dust collecting electrode can be suppressed, and the dust collecting efficiency can be improved. When the valley portion of the dust collection electrode 14 and the corona discharge portion 8 of the discharge electrode 5 are arranged to face each other, the ion wind is effectively directed to the dust collection electrode 14 side in the valley portion where the velocity is lower than the flow of the main gas. And the dust collecting property can be further improved.
〔第3実施形態〕
 本実施形態に係る電気集塵装置は、放電極のコロナ放電部の配置が異なる以外は、第2実施形態と同様の構成である。図6(a)は、本実施形態に係る電気集塵装置20の横断面図、(b)は図6(a)のE-E切断端面図である。図7は、図6(b)の部分拡大図である。
[Third embodiment]
The electrostatic precipitator according to the present embodiment has the same configuration as the second embodiment except that the arrangement of the corona discharge part of the discharge electrode is different. FIG. 6A is a cross-sectional view of the electric precipitator 20 according to the present embodiment, and FIG. 6B is an EE cut end view of FIG. 6A. FIG. 7 is a partially enlarged view of FIG.
 電気集塵装置20は、ガス流れGに沿って配列された複数の集塵極14(14a,14b,14c,14d)と、各集塵極14に対して並列に配置された複数の放電極25(25a,25b,25c)と、電源(不図示)と、を備えている。 The electric dust collecting device 20 includes a plurality of dust collecting electrodes 14 (14a, 14b, 14c, 14d) arranged along the gas flow G, and a plurality of discharge electrodes arranged in parallel with each dust collecting electrode 14. 25 (25a, 25b, 25c) and a power supply (not shown).
 放電極25(25a,25b,25c)は、それぞれ取付基材27と、複数のコロナ放電部28(28aまたは28b)とを有している。取付基材27は、第1,2実施形態と同様である。コロナ放電部28は、放電極25に電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部28は、対面する集塵極14に向いて突出するよう取付基材27に設置された突起である。該突起は、導電性の材質からなる。該突起は、先端が先細のトゲ状となっている。 The discharge electrodes 25 (25a, 25b, 25c) each have a mounting base material 27 and a plurality of corona discharge portions 28 (28a or 28b). The mounting base 27 is the same as in the first and second embodiments. The corona discharge unit 28 generates a corona discharge when a voltage is applied to the discharge electrode 25. The corona discharge portion 28 is a projection provided on the mounting base 27 so as to project toward the dust collecting electrode 14 facing the corona discharge portion 28. The projection is made of a conductive material. The protrusion has a barbed shape with a tapered tip.
 複数のコロナ放電部28には、第1コロナ放電部28aおよび第2コロナ放電部28bがある。本実施形態では、任意の取付基材27には、第1コロナ放電部28aまたは第2コロナ放電部28bのいずれかのみが設置されている。第1コロナ放電部28aと第2コロナ放電部28bとは、集塵極14の両側に配置されたときの高さ位置が異なる。すなわち、図6(b)に示されているように、集塵極14を挟んで向かい会うコロナ放電部28の高さ位置が異なるようになっている。それ以外は、第1コロナ放電部28aと第2コロナ放電部28bとは同様のものである。「高さ位置」は、板状部材の面内においてガス流れGに交差する方向Tである。 に は The plurality of corona discharge units 28 include a first corona discharge unit 28a and a second corona discharge unit 28b. In the present embodiment, any one of the first corona discharge portion 28a and the second corona discharge portion 28b is provided on an arbitrary mounting base material 27. The first corona discharge portion 28a and the second corona discharge portion 28b have different height positions when disposed on both sides of the dust collection electrode 14. That is, as shown in FIG. 6B, the height positions of the corona discharge portions 28 facing each other across the dust collection electrode 14 are different. Otherwise, the first corona discharge unit 28a and the second corona discharge unit 28b are the same. The “height position” is a direction T crossing the gas flow G in the plane of the plate-shaped member.
 第1コロナ放電部28aと第2コロナ放電部28bとは、ガス流れGに交差する方向において千鳥配置されている(図6(b),図7参照)。このように、本実施形態によれば、集塵極14を挟んで向かい会うコロナ放電部28の高さ位置を異ならせてガス流れGに交差する方向において千鳥配置とすることで、集塵極14を挟んだコロナ放電部28同士でイオン風が干渉することを防ぐことができる。 (4) The first corona discharge section 28a and the second corona discharge section 28b are staggered in a direction intersecting the gas flow G (see FIGS. 6B and 7). As described above, according to the present embodiment, the height of the corona discharge portions 28 that face each other with the dust collection electrode 14 interposed therebetween is changed so as to be staggered in the direction that intersects the gas flow G. It is possible to prevent the ion wind from interfering between the corona discharge units 28 sandwiching the 14.
〔第4実施形態〕
 本実施形態に係る電気集塵装置は、放電極のコロナ放電部の配置が異なる以外は、第3実施形態と同様の構成である。図8(a)は、本実施形態に係る電気集塵装置30の横断面図、(b)は図8(a)のF-F切断端面図である。
[Fourth embodiment]
The electrostatic precipitator according to the present embodiment has the same configuration as the third embodiment except that the arrangement of the corona discharge part of the discharge electrode is different. FIG. 8A is a cross-sectional view of the electric precipitator 30 according to the present embodiment, and FIG. 8B is a sectional view taken along the line FF of FIG. 8A.
 電気集塵装置30は、ガス流れGに沿って配列された複数の集塵極14(14a,14b,14c,14d)と、各集塵極14に並列に対して配置された複数の放電極35(35a,35b,35c)と、電源(不図示)と、を備えている。 The electric precipitator 30 includes a plurality of precipitating poles 14 (14a, 14b, 14c, 14d) arranged along the gas flow G, and a plurality of discharge electrodes arranged in parallel with each precipitating pole 14. 35 (35a, 35b, 35c) and a power supply (not shown).
 放電極35(35a,35b,35c)は、それぞれ取付基材37と、複数のコロナ放電部38(38aまたは38b)とを有している。取付基材37は、第1,2実施形態と同様である。コロナ放電部38は、放電極35に電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部38は、対面する集塵極14に向いて突出するよう取付基材37に設置された突起である。該突起は、導電性の材質からなる。該突起は、先端が先細のトゲ状となっている。 The discharge electrodes 35 (35a, 35b, 35c) each have a mounting base material 37 and a plurality of corona discharge portions 38 (38a or 38b). The mounting base 37 is the same as in the first and second embodiments. The corona discharge unit 38 generates a corona discharge when a voltage is applied to the discharge electrode 35. The corona discharge part 38 is a projection provided on the mounting base 37 so as to project toward the dust collecting electrode 14 facing the corona discharge part 38. The projection is made of a conductive material. The protrusion has a barbed shape with a tapered tip.
 複数のコロナ放電部38には、第1コロナ放電部38aおよび第2コロナ放電部38bがある。本実施形態では、任意の取付基材37には、コロナ放電部を設置するポイントにおいては、第1コロナ放電部38aまたは第2コロナ放電部38bのいずれかのみが設置されている。 に は The plurality of corona discharge units 38 include a first corona discharge unit 38a and a second corona discharge unit 38b. In the present embodiment, only one of the first corona discharge part 38a and the second corona discharge part 38b is disposed on the arbitrary mounting base material 37 at the point where the corona discharge part is disposed.
 図8において、第1コロナ放電部38aと第2コロナ放電部38bとは、集塵極14の両側に配置されたときの高さ位置が異なる。すなわち、図8(b)に示されているように、集塵極14を挟んで向かい会うコロナ放電部28の高さ位置が異なるようになっている。それ以外は、第1コロナ放電部28aと第2コロナ放電部28bとは同様のものである。「高さ位置」は、板状部材の面内においてガス流れGに交差する方向Tの位置である。なお、図8に限定されず、第1コロナ放電部38aと第2コロナ放電部38bとは同じ高さ位置にあってもよい。 In FIG. 8, the first corona discharge portion 38a and the second corona discharge portion 38b have different height positions when disposed on both sides of the dust collection electrode 14. That is, as shown in FIG. 8B, the height positions of the corona discharge portions 28 that face each other across the dust collection electrode 14 are different. Otherwise, the first corona discharge unit 28a and the second corona discharge unit 28b are the same. The “height position” is a position in the direction T intersecting the gas flow G in the plane of the plate-shaped member. In addition, it is not limited to FIG. 8, and the first corona discharge portion 38a and the second corona discharge portion 38b may be at the same height position.
 第1コロナ放電部38aと第2コロナ放電部38bとは、ガス流れ方向において千鳥配置されている。放電極35bでは、集塵極14aを向いて突出した第2コロナ放電部38bと、集塵極14bを向いて突出した第2コロナ放電部38bとが、取付基材37に千鳥配置で設置されている。 The first corona discharge section 38a and the second corona discharge section 38b are staggered in the gas flow direction. In the discharge electrode 35b, a second corona discharge portion 38b protruding toward the dust collection electrode 14a and a second corona discharge portion 38b protruding toward the dust collection electrode 14b are installed on the mounting base 37 in a staggered arrangement. ing.
 コロナ放電部38がガス流れ方向において千鳥配置された放電極35bを、折板形状の集塵極14に対面配置することで、コロナ放電部38を選択的に集塵極14の凹部に向けて配置できる。これにより、より集塵効率を向上させることができる。 By arranging the discharge electrodes 35b in which the corona discharge portions 38 are staggered in the gas flow direction to face the folded plate-shaped dust collection electrode 14, the corona discharge portion 38 is selectively directed toward the concave portion of the dust collection electrode 14. Can be placed. Thereby, dust collection efficiency can be further improved.
〔第5実施形態〕
 本実施形態に係る電気集塵装置は、集塵極の構成が異なる以外は、第4実施形態と同様の構成である。図9は、本実施形態に係る電気集塵装置の部分横断面図である。
[Fifth Embodiment]
The electric dust collector according to the present embodiment has the same configuration as the fourth embodiment except that the configuration of the dust collection electrode is different. FIG. 9 is a partial cross-sectional view of the electric precipitator according to the present embodiment.
 本実施形態の集塵極44(44a、44b)は、複数の凹部材41で構成されている。凹部材41は、導電性を有する材質からなる一枚の板状の部材である。複数の凹部材41は、それぞれが別個独立した部材である。 塵 The dust collecting electrode 44 (44a, 44b) of the present embodiment is composed of a plurality of concave members 41. The concave member 41 is a single plate-shaped member made of a conductive material. Each of the plurality of concave members 41 is a separate and independent member.
 複数の凹部材41は、任意の放電極(例えば放電極35a)に対して凹面の向きを交互に替えて並べられている。複数の凹部材41は、それぞれガス流れGに交差する方向(紙面垂直方向)に延在しており、長手方向の両端側でケーシング(図9には不図示)に固定されている。これにより集塵極44は、谷部(凹部)と山部がガス流れ方向に交互に繰り返される構造となる。 (4) The plurality of concave members 41 are arranged such that the direction of the concave surface is alternately changed with respect to an arbitrary discharge electrode (for example, discharge electrode 35a). Each of the plurality of concave members 41 extends in a direction intersecting the gas flow G (perpendicular to the paper surface), and is fixed to a casing (not shown in FIG. 9) at both ends in the longitudinal direction. Thus, the dust collection electrode 44 has a structure in which valleys (recesses) and ridges are alternately repeated in the gas flow direction.
 隣り合う凹部材同士は密着していてもよく、間隔をあけて配置されていてもよい。間隔をあけて配置される場合、凹部材41と凹部材41との間にはスペーサーを設置するとよい。隣り合う凹部材同士は、図9のように交差していなくても良い。 凹 部 The adjacent concave members may be in close contact with each other, or may be arranged at intervals. When they are arranged at intervals, a spacer may be provided between the concave members 41. Adjacent concave members need not intersect as shown in FIG.
 凹部材41は、複数の貫通孔46を備えている。貫通孔46は、集塵極14の開口率が、10%以上70%以下となるよう設けられている。ここで「開口率」とは、放電極5側から正面視したときの集塵極4の総面積に対して開口部分が占める割合である。凹部材と凹部材との間にあるスペースは、開口率に含まれない。 The recess 41 has a plurality of through holes 46. The through hole 46 is provided so that the opening ratio of the dust collection electrode 14 is 10% or more and 70% or less. Here, the “opening ratio” is a ratio of the opening portion to the total area of the dust collection electrode 4 when viewed from the front from the discharge electrode 5 side. The space between the concave members is not included in the aperture ratio.
 図9では、隣り合う凹部材の内外高低差をH、隣り合う集塵極と放電極との距離をL、集塵極と放電極との最短距離をL、コロナ放電部の突起先端から集塵極までの距離をL、ガス流れ方向に並ぶコロナ放電部とコロナ放電部との距離を第1コロナ放電部ピッチおよび第2コロナ放電部ピッチ/Pとする。集塵極44において複数の貫通孔46は、対面する放電極35で発生したコロナ放電の影響を受ける範囲に一様に設けられるとよい。コロナ放電の影響を受ける範囲は、コロナ放電部38の突起先端から集塵極44までの距離をLとすると、突起先端から片側に略45度の広がりを有するエリアとなる(直径が2L)。 In FIG. 9, the height difference between the inside and outside of the adjacent concave material is H, the distance between the adjacent dust collection electrode and the discharge electrode is L 2 , the shortest distance between the dust collection electrode and the discharge electrode is L f , the tip of the projection of the corona discharge unit. the distance between and dust collecting electrode L d, and the corona discharge unit and the first corona discharge portion pitch and the second corona discharge unit pitch / P 1 the distance between the corona discharge unit arranged in the gas flow direction. The plurality of through holes 46 in the dust collecting electrode 44 may be uniformly provided in a range affected by corona discharge generated at the discharge electrode 35 facing the dust collecting electrode 44. Range affected by the corona discharge, and the distance from the projecting tip of the corona discharge unit 38 to the dust collection electrode 44 and L d, the area having the spread of approximately 45 degrees to one side from the projecting tip (diameter 2L d ).
 本実施形態によれば、集塵極を分割構造とすることで、折板形状の集塵極を製造しやすくなる。 According to the present embodiment, by forming the dust collecting electrode in a divided structure, it becomes easy to manufacture a folded plate-shaped dust collecting electrode.
〔第6実施形態〕
 本実施形態に係る電気集塵装置は、集塵極の構成が異なる以外は、上述した各実施形態と同様の構成である。
 図10に示されているように、電気集塵装置60の集塵極64(64a、64b)は、複数のパイプ部材64a1、64b1が所定間隔を有してガス流れGの流通方向に並べられた離散式集塵極とされている。各パイプ部材64a1、64b1は、剛性を有する金属性とされている。各パイプ部材64a1、64b1は、軸線がガス流れGに対して直交するように配置されている。ガス流れG方向に並んだ各パイプ部材64a1、64b1同士を共通の枠体を用いてそれぞれを固定することで、各集塵極64b、64bが独立した構成となっている。
[Sixth embodiment]
The electric dust collecting apparatus according to the present embodiment has the same configuration as the above-described embodiments except that the configuration of the dust collecting electrode is different.
As shown in FIG. 10, the dust collecting electrodes 64 (64a, 64b) of the electric dust collecting apparatus 60 have a plurality of pipe members 64a1, 64b1 arranged at predetermined intervals in the flow direction of the gas flow G. It is a discrete dust collection electrode. Each of the pipe members 64a1 and 64b1 is made of rigid metal. Each of the pipe members 64a1 and 64b1 is disposed such that the axis is orthogonal to the gas flow G. By fixing each of the pipe members 64a1 and 64b1 arranged in the gas flow G direction using a common frame, each of the dust collecting electrodes 64b and 64b has an independent configuration.
 各集塵極64a、64bの間には、それぞれ、コロナ放電極68が設けられている。各コロナ放電極68には、第1コロナ放電部68aおよび第2コロナ放電部68bが設けられている。第1コロナ放電部68aは、ガス流れGに直交する一方(図10では上方)に向いて放電し、第2コロナ放電部68bは、ガス流れGに直交する他方(図10では下方)に向いて放電する。各コロナ放電部68a、68bは、ガス流れG方向において、隣り合うパイプ部材64a1、64b1の間に位置するように配置されている。また、各コロナ放電部68a、68bは、ガス流れG方向における同じ位置において互いに逆方向を向くように設けられている。 コ ロ A corona discharge electrode 68 is provided between each of the dust collecting electrodes 64a and 64b. Each corona discharge electrode 68 is provided with a first corona discharge section 68a and a second corona discharge section 68b. The first corona discharge section 68a discharges toward one side (upward in FIG. 10) orthogonal to the gas flow G, and the second corona discharge section 68b faces the other side (downward in FIG. 10) orthogonal to the gas flow G. To discharge. The corona discharge portions 68a and 68b are arranged so as to be located between the adjacent pipe members 64a1 and 64b1 in the gas flow G direction. Further, the corona discharge portions 68a and 68b are provided so as to face in opposite directions at the same position in the gas flow G direction.
 集塵極64a、64bの開口率は、10%以上70%以下である。開口率は、図11のように定められる。すなわち、開口率は、コロナ放電極68から見た集塵極64a、64bの割合であり、(P-d)/P×100[%]で表される。ここで、Pはパイプ部材64a1、64b1のガス流れG方向におけるピッチ、dはパイプ部材64a1、64b1の外径である。 (4) The aperture ratio of the dust collecting electrodes 64a and 64b is 10% or more and 70% or less. The aperture ratio is determined as shown in FIG. That is, the aperture ratio is a ratio of the dust collecting electrodes 64a and 64b viewed from the corona discharge electrode 68, and is represented by (Pd) / P × 100 [%]. Here, P is the pitch of the pipe members 64a1 and 64b1 in the gas flow G direction, and d is the outer diameter of the pipe members 64a1 and 64b1.
 本実施形態によれば、第1実施形態のようにパンチングメタルを用いる場合に比べて、開口率を大きくしても所定値以上の剛性を維持することができる。 According to the present embodiment, as compared with the case of using punched metal as in the first embodiment, it is possible to maintain a rigidity equal to or higher than a predetermined value even when the aperture ratio is increased.
 図12には、図10に対してコロナ放電部68a、68bの配置を異ならせた変形例が示されている。図11に示されているように、ガス流れG方向に第1コロナ放電部64a1と第2コロナ放電部64b1とを交互に設けるようにしても良い。 FIG. 12 shows a modification in which the arrangement of the corona discharge portions 68a and 68b is different from that in FIG. As shown in FIG. 11, the first corona discharge portions 64a1 and the second corona discharge portions 64b1 may be provided alternately in the gas flow G direction.
 また、図13に示されているように、所定区間にわたって第1コロナ放電部6a1のみを連続して(図13では3つ連続して)設け、その後、第2コロナ放電部68bを連続して設けるようにしてもよい。このようにすることで、隣のコロナ放電部68a、68bの影響でイオン風が干渉することを抑えることができるとともに、複数の集塵極64a、64bにわたってガス流れGに交差する方向にイオン風を流すことができる。 Further, as shown in FIG. 13, only the first corona discharge portions 6a1 are provided continuously (three in FIG. 13) over a predetermined section, and thereafter, the second corona discharge portions 68b are provided continuously. It may be provided. By doing so, it is possible to suppress the interference of the ion wind due to the influence of the adjacent corona discharge portions 68a and 68b, and to reduce the ion wind in a direction crossing the gas flow G over the plurality of dust collection electrodes 64a and 64b. Can flow.
 また。集塵極64a,64bに用いられるパイプ部材64a1、64b1の横断面の外形状は、円形状に限定されるものではなく、例えば、図14(a)に示すように、角部にRを付けた略正方形でもよく、図14(b)に示すように、角部にRを付けた長方形でもよく、図14(c)に示すように、略コの字状の凹形状でも良い。すなわち、パイプ部材64a1、64b1は、剛性を確保できるように所定値以上の断面二次係数とされた横断面を有していれば良い。 Also. The outer shape of the cross section of the pipe members 64a1 and 64b1 used for the dust collecting electrodes 64a and 64b is not limited to a circular shape. For example, as shown in FIG. 14 (b), it may be a rectangle with a rounded corner, as shown in FIG. 14 (b), or a substantially U-shaped concave shape as shown in FIG. 14 (c). That is, the pipe members 64a1 and 64b1 only need to have a cross section having a quadratic coefficient of a predetermined value or more so as to secure rigidity.
 次に、集塵極の開口率を設定した根拠を説明する。
 第1実施形態の構成の電気集塵装置を、以下の条件により運転し、集塵極にダストを集塵させた。すなわち、集塵極としてはパンチングメタルを用いている。
Next, the grounds for setting the aperture ratio of the dust collection electrode will be described.
The electric precipitator having the configuration of the first embodiment was operated under the following conditions to collect dust on the precipitating electrode. That is, a punching metal is used as the dust collecting electrode.
(実験条件)
電極間隔(集塵極間距離):300mm
電圧:35~50kV
電流密度:0.3~0.8mA/m
SCA(電極面積/ガス量):5~30sec/m
ダスト濃度:2~3g/m
使用ダスト:フライアッシュ(平均径10μm)
(Experimental conditions)
Electrode interval (distance between dust collection electrodes): 300 mm
Voltage: 35-50kV
Current density: 0.3 to 0.8 mA / m 2
SCA (electrode area / gas amount): 5 to 30 sec / m
Dust concentration: 2-3 g / m 3 N
Dust used: fly ash (average diameter 10 μm)
 図15に、開口率と捕集効率との関係を示す。同図において、横軸は集塵極の開口率(%)、縦軸は集塵面積比の規格値である。集塵面積比は、開口率0%の時の集塵性能を1とした場合に、同じ集塵性能を発揮する場合の集塵面積を示すものである。したがって、集塵面積比は、小さいほど捕集効率が高いことを示す。 Fig. 15 shows the relationship between the aperture ratio and the collection efficiency. In the figure, the horizontal axis represents the aperture ratio (%) of the dust collection electrode, and the vertical axis represents the standard value of the dust collection area ratio. The dust collection area ratio indicates the dust collection area when the same dust collection performance is exhibited when the dust collection performance when the aperture ratio is 0% is 1. Therefore, the smaller the dust collection area ratio, the higher the collection efficiency.
 曲線C1は、ガス流速が比較的大きい場合、すなわちガス流速が1m/s以上の場合の集塵面積比を示している。開口率が10%以上になると、集塵面積比が2割程度低下し、開口を設けた効果が生じる。集塵面積比は20%あたりで最低となり、その後30%を超えると徐々に集塵面積比が上昇する。これは、集塵極がパンチングメタルのような平板の場合は、集塵極表面ではガスの流れの影響がイオン風よりも大きいため、開口率を増大させてもイオン風による利点が失われてしまうためと考えられる。この場合の開口率の上限は、集塵極の強度から定められる。すなわち、曲線C3に示すように、開口率を増大させると平板とされた集塵極の強度比が低下する。ここで、強度比とは、開口率0%のときの強度に対する比である。開口率が35%となると強度比が0.5となり、強度が半分となる。集塵極を槌打する場合を考慮すると、強度比としては0.5が下減と考えられる。したがって、開口率は35%とすることが好ましい。
 よって、平板の集塵極を用い、かつ槌打を行う場合には、開口率は10%以上35%以下(適用範囲I)が好ましい。
Curve C1 shows the dust collection area ratio when the gas flow rate is relatively large, that is, when the gas flow rate is 1 m / s or more. When the aperture ratio is 10% or more, the dust collection area ratio is reduced by about 20%, and the effect of providing the aperture is produced. The dust collection area ratio is lowest around 20%, and then gradually increases when it exceeds 30%. This is because, when the dust collection electrode is a flat plate such as a punching metal, the effect of gas flow on the surface of the dust collection electrode is greater than that of the ion wind, so even if the aperture ratio is increased, the advantage of the ion wind is lost. It is thought to be. In this case, the upper limit of the aperture ratio is determined from the strength of the dust collection electrode. That is, as shown by the curve C3, when the aperture ratio is increased, the intensity ratio of the plate-shaped dust collection electrode decreases. Here, the intensity ratio is a ratio to the intensity when the aperture ratio is 0%. When the aperture ratio becomes 35%, the intensity ratio becomes 0.5, and the intensity becomes half. Considering the case where the dust collecting electrode is hammered, it is considered that the intensity ratio decreases by 0.5. Therefore, the aperture ratio is preferably set to 35%.
Therefore, when a flat dust collecting electrode is used and hammering is performed, the aperture ratio is preferably 10% or more and 35% or less (application range I).
 ただし、集塵極を槌打せずに水流によってダストを取り除く場合には、強度を考慮する必要が無い。そして、ガス流速が1m/s未満とされたガス流速が比較的小さい場合には、集塵極表面におけるガス流れの影響が小さいため、曲線C2に示すように、開口率を増大しても集塵面積比は低い値を示す。すなわち、曲線C2のように、開口率が70%までは集塵面積比は低い値を示す。開口率が70%を超えると、集塵面積の絶対値が小さくなるので、集塵面積比が増大する。
 よって、平板の集塵極を用い、槌打を行わず、かつガス流速が比較的小さい場合には、開口率は10%以上70%以下(適用範囲II)が好ましい。
 なお、コロナ電流を上昇させると、イオン風はコロナ電流の略1/2乗に比例するため、上記の主ガス速度との関係において、1m/sはあくまでも目安であり、これに限定されるわけではない。
However, when dust is removed by a water flow without hammering the dust collection electrode, there is no need to consider the strength. When the gas flow rate is less than 1 m / s and the gas flow rate is relatively small, the influence of the gas flow on the surface of the dust collection electrode is small. The dust area ratio shows a low value. That is, as shown by the curve C2, the dust collection area ratio shows a low value up to an aperture ratio of 70%. If the aperture ratio exceeds 70%, the absolute value of the dust collection area becomes smaller, so that the dust collection area ratio increases.
Therefore, in the case where a flat dust collecting electrode is used, hammering is not performed, and the gas flow rate is relatively small, the aperture ratio is preferably 10% or more and 70% or less (application range II).
When the corona current is increased, the ion wind is proportional to approximately 1/2 power of the corona current. Therefore, 1 m / s is only a guideline in relation to the above main gas velocity, and is not limited to this. is not.
 図16には、第6実施形態のようにパイプ部材64a1、64b1(図10参照)を用いた離散形集塵極を用いた場合の集塵面積比が示されている。同図に示されているように、開口率が10%以上70%以下の場合に集塵面積比が0.8以下となる。したがって、開口率は10%以上70%以下(適用範囲III)が好ましい。 FIG. 16 shows a dust collection area ratio when a discrete dust collection electrode using the pipe members 64a1 and 64b1 (see FIG. 10) as in the sixth embodiment. As shown in the figure, when the aperture ratio is 10% or more and 70% or less, the dust collection area ratio becomes 0.8 or less. Therefore, the aperture ratio is preferably 10% or more and 70% or less (application range III).
1,10,20,30,60 電気集塵装置
2 ケーシング
3 遮蔽板
4,4a,4b,4c,4d,14,14a,14b,14c,14d,44,44a,44b,64a,64b 集塵極
5,5a,5b,5c,25,25a,25b,25c,35,35a,35b,35c,68 放電極
6,16,46 貫通孔
7,27,37 取付基材
8,8a,8b,28,28a,28b,38,38a,38b,68a,68b コロナ放電部
11 山谷部
12 傾斜部
41 凹部
1, 10, 20, 30, 60 Electric precipitator 2 Casing 3 Shielding plates 4, 4a, 4b, 4c, 4d, 14, 14a, 14b, 14c, 14d, 44, 44a, 44b, 64a, 64b 5, 5a, 5b, 5c, 25, 25a, 25b, 25c, 35, 35a, 35b, 35c, 68 Discharge electrodes 6, 16, 46 Through holes 7, 27, 37 Mounting bases 8, 8a, 8b, 28, 28a, 28b, 38, 38a, 38b, 68a, 68b Corona discharge section 11 Mountain valley section 12 Inclined section 41 Concave section

Claims (6)

  1.  複数の開口が形成され、ガス流れ方向に沿って設けられた集塵極と、
     対面する前記集塵極に向いて突出したコロナ放電用のコロナ放電部を複数有し、前記集塵極に対して並列に配置された放電極と、
    を備え、
     前記集塵極の開口率が、10%以上70%以下である電気集塵装置。
    A plurality of openings are formed, a dust collecting electrode provided along the gas flow direction,
    A discharge electrode having a plurality of corona discharge portions for corona discharge protruding toward the dust collection electrode facing each other, and a discharge electrode arranged in parallel to the dust collection electrode,
    With
    An electric precipitator, wherein an opening ratio of the precipitating electrode is 10% or more and 70% or less.
  2.  前記放電極が、前記集塵極の両側にそれぞれ配置され、
     一方の前記放電極の前記コロナ放電部と、他方の前記放電極の前記コロナ放電部とが、ガス流れ方向に交差する方向において千鳥配置された請求項1に記載の電気集塵装置。
    The discharge electrodes are respectively arranged on both sides of the dust collection electrode,
    2. The electrostatic precipitator according to claim 1, wherein the corona discharge section of one discharge electrode and the corona discharge section of the other discharge electrode are arranged in a staggered manner in a direction intersecting a gas flow direction. 3.
  3.  前記集塵極が折板形状であり、前記放電極に対して凹んだ凹部を有する請求項1または請求項2に記載の電気集塵装置。 3. The electric dust collector according to claim 1, wherein the dust collecting electrode has a folded plate shape, and has a concave portion recessed with respect to the discharge electrode. 4.
  4.  前記集塵極が、複数の凹部材で構成された分割構造であり、
     複数の前記凹部材は、任意の前記放電極に対して凹部の向きを交互に替えて組み合せられている請求項1または請求項2に記載の電気集塵装置。
    The dust collecting electrode has a divided structure including a plurality of concave materials,
    The electrostatic precipitator according to claim 1 or 2, wherein the plurality of concave members are combined with any of the discharge electrodes by changing the direction of the concave portions alternately.
  5.  前記コロナ放電部が、前記凹部と対向配置されている請求項3または請求項4に記載の電気集塵装置。 The electric dust collector according to claim 3 or 4, wherein the corona discharge section is disposed to face the recess.
  6.  前記集塵極が、複数の剛性を有する部材を所定間隔でガスの流通方向に並べられて形成されている請求項1または請求項2に記載の電気集塵装置。 The electric dust collecting apparatus according to claim 1 or 2, wherein the dust collecting electrode is formed by arranging a plurality of rigid members at predetermined intervals in a gas flow direction.
PCT/JP2018/028776 2018-08-01 2018-08-01 Electrostatic precipitator WO2020026369A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL436803A PL436803A1 (en) 2018-08-01 2018-08-01 Electrostatic precipitator
CN201880096148.6A CN112512696A (en) 2018-08-01 2018-08-01 Electric dust collector
PCT/JP2018/028776 WO2020026369A1 (en) 2018-08-01 2018-08-01 Electrostatic precipitator
RU2021101929A RU2765787C1 (en) 2018-08-01 2018-08-01 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028776 WO2020026369A1 (en) 2018-08-01 2018-08-01 Electrostatic precipitator

Publications (1)

Publication Number Publication Date
WO2020026369A1 true WO2020026369A1 (en) 2020-02-06

Family

ID=69231486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028776 WO2020026369A1 (en) 2018-08-01 2018-08-01 Electrostatic precipitator

Country Status (4)

Country Link
CN (1) CN112512696A (en)
PL (1) PL436803A1 (en)
RU (1) RU2765787C1 (en)
WO (1) WO2020026369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113146507A (en) * 2021-04-16 2021-07-23 彩虹(合肥)液晶玻璃有限公司 Static electricity eliminating device for processing glass substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725092Y1 (en) * 1968-12-28 1972-08-05
JPS5775161A (en) * 1980-10-28 1982-05-11 Hitachi Plant Eng & Constr Co Ltd Electric precipitator
JPS58107152U (en) * 1981-12-29 1983-07-21 中部電力株式会社 Dust collection electrode of water film electrostatic precipitator
JPS627456A (en) * 1985-07-04 1987-01-14 Takahide Ono Electric dust precipitator
JPS63126569A (en) * 1986-11-14 1988-05-30 Nippon Densetsu Kk Electrostatic precipitator
JP2011161330A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for denitrifying exhaust
JP2011161329A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for treating exhaust discharged from sintering machine
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB950565A (en) * 1961-11-30 1964-02-26 Stork Koninklijke Maschf An electrostatic precipitator
SU423509A1 (en) * 1972-04-03 1974-04-15 В. Г. Ерошенко DEVICE ZONE CHARGING OF TWO-ZONE ELECTROFILTERS
JPS5518271A (en) * 1978-07-27 1980-02-08 Nippon Densetsu Kk Electric dust collector
JPS60145869A (en) * 1984-01-06 1985-08-01 Matsushita Electric Ind Co Ltd Electronic typewriter
JP2001017884A (en) * 1999-07-09 2001-01-23 Mitsubishi Heavy Ind Ltd Electric precipitator
KR20020069864A (en) * 2001-02-28 2002-09-05 한국기계연구원 Structure of a collecting plate for a dust collector
UA44193A (en) * 2001-07-20 2002-01-15 Відкрите Акціонерне Товариство "Дослідно-Експериментальний Механічний Завод" DEPOSITION ELECTRODE OF THE ELECTROFILTER
JP2006068581A (en) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd Electrostatic precipitator and air conditioner or air purifier using the same
RU2005126106A (en) * 2005-08-17 2007-02-27 Оао "Сф Нииогаз" (Ru) ELECTRIC FILTER
RU61595U1 (en) * 2006-07-20 2007-03-10 Михаил Павлович Богданов ELECTROSTATIC FILTER (OPTIONS)
CN101130180B (en) * 2006-08-21 2010-12-22 包文隆 Electric dust collector with ultra- low concentration discharge
RU2371254C1 (en) * 2008-04-09 2009-10-27 Закрытое акционерное общество "Кондор-Эко" Wave electric filter
UA37002U (en) * 2008-06-13 2008-11-10 Общество С Ограниченной Ответственностью "Консорциум "Энергомашинжиниринг" Collecting electrode of precipitator
UA45804U (en) * 2009-06-16 2009-11-25 Владимир Николаевич Молчанов electric separator
CN106140479A (en) * 2016-08-27 2016-11-23 山东神华山大能源环境有限公司 Positive plate and a kind of wet electrical dust precipitator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725092Y1 (en) * 1968-12-28 1972-08-05
JPS5775161A (en) * 1980-10-28 1982-05-11 Hitachi Plant Eng & Constr Co Ltd Electric precipitator
JPS58107152U (en) * 1981-12-29 1983-07-21 中部電力株式会社 Dust collection electrode of water film electrostatic precipitator
JPS627456A (en) * 1985-07-04 1987-01-14 Takahide Ono Electric dust precipitator
JPS63126569A (en) * 1986-11-14 1988-05-30 Nippon Densetsu Kk Electrostatic precipitator
JP2011161330A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for denitrifying exhaust
JP2011161329A (en) * 2010-02-05 2011-08-25 Nippon Steel Corp Apparatus for treating exhaust discharged from sintering machine
JP2018126712A (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113146507A (en) * 2021-04-16 2021-07-23 彩虹(合肥)液晶玻璃有限公司 Static electricity eliminating device for processing glass substrate

Also Published As

Publication number Publication date
PL436803A1 (en) 2021-09-13
RU2765787C1 (en) 2022-02-03
CN112512696A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP6862207B2 (en) Electrostatic precipitator and wet electrostatic precipitator
KR100750510B1 (en) Dust collector
JP2008539067A (en) Electrostatic air cleaner
JP4856139B2 (en) Electric dust collector
WO2020026369A1 (en) Electrostatic precipitator
JP6752736B2 (en) Electrostatic precipitator
KR102466669B1 (en) electrostatic precipitator
US11484890B2 (en) Electrostatic precipitator
JP6953605B2 (en) Electrostatic precipitator
JP7139120B2 (en) Electrostatic precipitator
TWI686238B (en) Electric dust collector
JP2007167812A (en) Air cleaning apparatus
TWI742415B (en) Electric dust collector
JP7358216B2 (en) electrostatic precipitator
JP7225019B2 (en) Electrostatic precipitator
TWI709436B (en) Electric dust collector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P6000140/2021

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP