JP6752736B2 - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP6752736B2
JP6752736B2 JP2017023154A JP2017023154A JP6752736B2 JP 6752736 B2 JP6752736 B2 JP 6752736B2 JP 2017023154 A JP2017023154 A JP 2017023154A JP 2017023154 A JP2017023154 A JP 2017023154A JP 6752736 B2 JP6752736 B2 JP 6752736B2
Authority
JP
Japan
Prior art keywords
dust collecting
electrode
corona discharge
gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023154A
Other languages
Japanese (ja)
Other versions
JP2018126713A (en
JP2018126713A5 (en
Inventor
一隆 富松
一隆 富松
加藤 雅也
雅也 加藤
崇雄 田中
崇雄 田中
上田 泰稔
泰稔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Environmental Solutions Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Environmental Solutions Ltd filed Critical Mitsubishi Hitachi Power Systems Environmental Solutions Ltd
Priority to JP2017023154A priority Critical patent/JP6752736B2/en
Publication of JP2018126713A publication Critical patent/JP2018126713A/en
Publication of JP2018126713A5 publication Critical patent/JP2018126713A5/ja
Application granted granted Critical
Publication of JP6752736B2 publication Critical patent/JP6752736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/025Combinations of electrostatic separators, e.g. in parallel or in series, stacked separators, dry-wet separator combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/10Plant or installations having external electricity supply dry type characterised by presence of electrodes moving during separating action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/78Cleaning the electrodes by washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/14Details of magnetic or electrostatic separation the gas being moved electro-kinetically

Description

本発明は、電気集塵装置に関するものである。 The present invention relates to an electrostatic precipitator.

従来の電気集塵装置として、ガス流れに沿って平行に配列された平板状の集塵極と、その中央に配列された鋭利な形状を有する放電極とを備えたものが知られている。 As a conventional electrostatic precipitator, a device including a flat plate-shaped dust collecting electrode arranged in parallel along a gas flow and a discharge electrode having a sharp shape arranged in the center thereof is known.

電気集塵装置では、集塵極と放電極との間に直流高電圧を印加し、放電極に安定したコロナ放電を行うことで、ガス流れ中のダストを帯電させる。帯電したダストは放電極と集塵極との間の電界下でダストに作用するクーロン力の働きにより集塵極に捕集されると、従来の集じん理論では説明されている。 In the electrostatic precipitator, a high DC voltage is applied between the dust collecting electrode and the discharge electrode, and a stable corona discharge is performed on the discharge electrode to charge the dust in the gas flow. Conventional dust collection theory explains that charged dust is collected by the Coulomb force acting on the dust under the electric field between the discharge electrode and the dust collection electrode.

ところで、特許文献1,2の電気集塵装置は、ダストを通過させるための複数の貫通孔を備え、内部にダストを捕集するための閉空間を有した集塵極を備えている。特許文献1,2では、該貫通孔を介して閉空間にダストを閉じ込めることで捕集ダストが再飛散しにくくさせている。 By the way, the electrostatic precipitators of Patent Documents 1 and 2 are provided with a plurality of through holes for passing dust, and are provided with a dust collecting electrode having a closed space for collecting dust inside. In Patent Documents 1 and 2, the collected dust is made difficult to re-scatter by confining the dust in a closed space through the through hole.

特許文献3の電気集塵装置は、65%から85%の開口率を有するアース電極と、ガスを捕集する集塵フィルタ層と、を含む集塵極を備えている。このような集塵極を備えることにより、特許文献3では、ガス流れと直交する断面内においてイオン風を発生させ、放電極と集塵極との間を循環するらせん状のガス流れを生成させ、ダストを効率よく捕集するようにしている。特許文献3では、イオン風を積極的に利用するが、本ケースはダストを、主として集じんフィルタ層に捕集させることを目的としている。 The electrostatic precipitator of Patent Document 3 includes a dust collecting electrode including an earth electrode having an aperture ratio of 65% to 85% and a dust collecting filter layer for collecting gas. By providing such a dust collecting electrode, in Patent Document 3, an ionic wind is generated in a cross section orthogonal to the gas flow, and a spiral gas flow circulating between the discharge electrode and the dust collecting electrode is generated. , I try to collect dust efficiently. In Patent Document 3, ionic wind is actively used, but the purpose of this case is to collect dust mainly in the dust collecting filter layer.

特許第5761461号公報Japanese Patent No. 5761461 特許第5705461号公報Japanese Patent No. 5705461 特許第4823691号公報Japanese Patent No. 4823691

電気集塵装置における集塵効率ηは、よく知られた下記のドイチェの数式(式(1))により算出することができる。wは、集塵性指数(粒子状物質の移動速度)、fは、単位ガス量当たりの集塵面積である。
η=1−exp(−w×f)・・・(1)
The dust collection efficiency η in the electrostatic precipitator can be calculated by the following well-known Deutsche's mathematical formula (Equation (1)). w is the dust collection index (movement speed of particulate matter), and f is the dust collection area per unit gas amount.
η = 1-exp (−w × f) ・ ・ ・ (1)

上記式(1)において、ダスト(粒子状物質)の移動速度wは、クーロン力による力と、気体の粘性抵抗の関係で決まるとされている。ドイチェの数式(上記式(1))では、ダストが放電極から電界中を移動するとされおり、イオン風は性能への影響においては直接考慮されていない。しかしながら、その性能設計の前提であるダスト濃度は、常に放電極と集塵極との間の集じん空間内では一様であるという前提条件があり、イオン風はガスの乱れを生じさせて、ダスト濃度を一様とさせる要因の一つとして考えられている。 In the above formula (1), the moving speed w of dust (particulate matter) is determined by the relationship between the force due to Coulomb force and the viscous resistance of gas. According to Deutsche's formula (formula (1) above), dust moves from the release electrode in the electric field, and ion wind is not directly considered in terms of its effect on performance. However, there is a precondition that the dust concentration, which is the premise of the performance design, is always uniform in the dust collection space between the discharge electrode and the dust collection electrode, and the ion wind causes gas turbulence. It is considered as one of the factors that make the dust concentration uniform.

イオン風は、電極間に負の電圧を印加した際に、放電極でコロナ放電によりマイナスイオンが発生し、その結果、生じるものであり、正の電圧の場合にはプラスのイオンにより生じる。以下、産業用の電気集塵装置をベースに考えるため、負の電圧を印加するケースについて記載するが、正であっても同様である。 When a negative voltage is applied between the electrodes, the ionic wind generates negative ions due to corona discharge at the discharge electrode, and as a result, it is generated, and in the case of a positive voltage, it is generated by positive ions. Hereinafter, a case where a negative voltage is applied will be described in order to consider an industrial electrostatic precipitator as a base, but the same applies even if it is positive.

放電極で生じたイオン風は、集塵極に向けて、ガス流れを横切るよう流れる。集塵極に達したイオン風は、集塵極で反転して流れ方向を変える。これにより、電極間にらせん状の乱流が生じる。 The ionic wind generated at the discharge electrode flows across the gas flow toward the dust collecting electrode. The ionic wind that has reached the dust collecting electrode reverses at the dust collecting electrode and changes the flow direction. This creates a spiral turbulence between the electrodes.

乱流のうち、放電極から集塵極へと向かう流れは、ダストを集塵極近傍まで運ぶ作用がある。集塵極近傍まで運ばれたダストは、最終的にはクーロン力により捕集される。 Of the turbulent flow, the flow from the discharge electrode to the dust collecting electrode has the effect of carrying dust to the vicinity of the dust collecting electrode. The dust carried to the vicinity of the dust collection electrode is finally collected by Coulomb force.

しかしながら、集塵極で反転したイオン風は、収集体である集塵極から離れる方向へとダストを移動させるため、集塵を阻害するような作用もある。 However, the ionic wind inverted at the dust collecting electrode moves the dust away from the dust collecting electrode, which is a collector, and therefore has an action of inhibiting dust collection.

特許文献3には、イオン風の効果も考慮した電気集塵装置が記載されている。しかしながら、このケースでは、開口部を有する集塵極の背後にあるフィルタ層にイオン風を送り込む構造であり、主ガスの影響を受けない箇所での集じんをすることを目的としていて、構造も複雑であること、及び、乾式では付着ダストの剥離回収が困難であった。 Patent Document 3 describes an electrostatic precipitator in consideration of the effect of ionic wind. However, in this case, the structure is such that ion air is sent to the filter layer behind the dust collecting electrode having an opening, and the purpose is to collect dust in a place that is not affected by the main gas. It was complicated, and it was difficult to remove and recover the adhered dust by the dry method.

本発明は、このような事情に鑑みてなされたものであって、従来の電気集塵装置では考慮されていなかったイオン風に着目し、集塵効果を低減するイオン風の離反作用を抑制し、集塵効率を高めることのできる電気集塵装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and pays attention to the ionic wind which has not been considered in the conventional electrostatic precipitator, and suppresses the alienation action of the ionic wind which reduces the dust collecting effect. It is an object of the present invention to provide an electrostatic precipitator capable of increasing the dust collection efficiency.

上記課題を解決するために、本発明にかかる電気集塵装置は以下の手段を採用する。
すなわち、本発明の一態様にかかる電気集塵装置は、ガスが流入するガス入口部と、前記ガスが外部へと排出されるガス出口部と、を有するケーシングと、複数の開口が形成され、前記ケーシング内において前記ガス入口部から前記ガス出口部に向かって流れる前記ガスのガス流れ方向に沿って平行に設けられた集塵極と、前記集塵極に対して並列に配置された放電極とを備え、複数の前記集塵極と複数の前記放電極とが前記ガス流れ方向に対して直交する方向に交互に並べられ、前記放電極は、対面する前記集塵極のうちの一方のみの該集塵極に向かって突出するコロナ放電用のコロナ放電部を前記ガス流れ方向に複数連続して有する。
In order to solve the above problems, the electrostatic precipitator according to the present invention employs the following means.
That is, in the electrostatic precipitator according to one aspect of the present invention, a casing having a gas inlet portion into which gas flows in and a gas outlet portion in which the gas is discharged to the outside is formed, and a plurality of openings are formed. A dust collecting electrode provided parallel to the gas flow direction of the gas flowing from the gas inlet portion to the gas outlet portion in the casing, and a discharge electrode arranged in parallel with the dust collecting electrode. The plurality of the dust collecting electrodes and the plurality of the discharging electrodes are alternately arranged in a direction orthogonal to the gas flow direction, and the discharging electrodes are only one of the facing dust collecting electrodes. A plurality of corona discharge portions for corona discharge projecting toward the dust collecting electrode are continuously provided in the gas flow direction.

集塵極に複数の開口を設けることで、放電極から集塵極へ向けて流れるイオン風の一部が集塵極の裏側へ抜けることを許容する。これにより、イオン風が集塵極で反転されて離反する流れを抑制できる。
放電極は、対面する集塵極のうちの一方のみの集塵極に向かって突出するコロナ放電用のコロナ放電部をガス流れ方向に複数連続して有している。これにより、ガス流れ方向に連続する複数のコロナ放電部から一方のみに向かってイオン風を流すことができるので、ガス流れ方向に隣り合うコロナ放電部からのイオン風の干渉を可及的に減少させて集塵効率を高めることができる。
集塵極としては、複数の剛性を有する部材を所定間隔でガスの流通方向に並べた離散形集塵極が挙げられる。剛性を有する部材としては、例えばパイプ形状の部材が挙げられる。また、他の形式の集塵極としては、例えば、複数の貫通孔を有する一枚の板状体をガスの流通方向に沿って設けた平板集塵極が挙げられる。平板集塵極としては、例えばパンチングメタルが用いられる。
By providing a plurality of openings in the dust collecting electrode, it is allowed that a part of the ion wind flowing from the discharge electrode toward the dust collecting electrode escapes to the back side of the dust collecting electrode. As a result, it is possible to suppress the flow in which the ionic wind is reversed at the dust collecting electrode and separated.
The discharge electrode has a plurality of corona discharge portions for corona discharge projecting toward the dust collection electrode of only one of the facing dust collection electrodes in succession in the gas flow direction. As a result, ion wind can flow from a plurality of corona discharge portions continuous in the gas flow direction toward only one of them, so that interference of ion wind from adjacent corona discharge portions in the gas flow direction can be reduced as much as possible. The dust collection efficiency can be improved.
Examples of the dust collecting electrode include a discrete dust collecting electrode in which a plurality of rigid members are arranged at predetermined intervals in the gas flow direction. Examples of the rigid member include a pipe-shaped member. Further, as another type of dust collecting electrode, for example, a flat plate dust collecting electrode in which one plate-shaped body having a plurality of through holes is provided along the gas flow direction can be mentioned. As the flat plate dust collecting electrode, for example, punching metal is used.

さらに、本発明の一態様にかかる電気集塵装置では、複数の前記集塵極と複数の前記放電極とが前記ガス流れ方向に対して直交する方向に交互に並べられ、前記ガス流れ方向の所定領域では、各前記放電極の前記コロナ放電部の全てが、同じ一方向に向かって突出する。 Further, in the electrostatic precipitator according to one aspect of the present invention, the plurality of dust collecting electrodes and the plurality of the discharging electrodes are alternately arranged in a direction orthogonal to the gas flow direction, and the gas flow direction. In the predetermined region, all of the corona discharge portions of each of the discharge electrodes project in the same direction.

複数の集塵極と複数の放電極とがガス流れ方向に対して直交する方向に交互に並べられている場合に、ガス流れ方向の所定領域では、全てのコロナ放電部が同じ方向に向かって突出する。これにより、所定領域の全体で、イオン風が複数の集塵極を跨いで一様な方向に向かうことになり、イオン風の干渉が抑制され、集塵効率を高めることができる。 When a plurality of dust collecting electrodes and a plurality of discharging electrodes are alternately arranged in a direction orthogonal to the gas flow direction, all the corona discharge portions are directed in the same direction in a predetermined region of the gas flow direction. Protrude. As a result, the ionic wind is directed in a uniform direction across the plurality of dust collecting electrodes in the entire predetermined region, the interference of the ionic wind is suppressed, and the dust collecting efficiency can be improved.

さらに、本発明の一態様にかかる電気集塵装置は、前記所定領域の下流の下流領域では、各前記放電極の前記コロナ放電部の全てが、前記一方向とは反対の他方向に向かって突出する。 Further, in the electrostatic precipitator according to one aspect of the present invention, in the downstream region downstream of the predetermined region, all of the corona discharge portions of the discharge electrodes are directed in the other direction opposite to the one direction. Protrude.

所定領域の下流の下流領域では、全てのコロナ放電部が所定領域のコロナ放電部とは反対の他方向に向かって突出する。これにより、所定領域で一方向に偏ったイオン風を、下流領域で他方向に向きを変えることによって更に集塵効率を高めることができる。 In the downstream region downstream of the predetermined region, all the corona discharge portions project in the opposite direction to the corona discharge portion in the predetermined region. As a result, the dust collection efficiency can be further improved by changing the direction of the ion wind biased in one direction in the predetermined region to the other direction in the downstream region.

本発明の電気集塵装置によれば、イオン風が集塵極から離反するのを抑制し、集塵効率を高めることができる。 According to the electrostatic precipitator of the present invention, it is possible to suppress the ion wind from separating from the dust collecting electrode and improve the dust collecting efficiency.

本発明の一実施形態に係る電気集塵装置を示した横断面図である。It is sectional drawing which showed the electrostatic precipitator which concerns on one Embodiment of this invention. 図1のA−A矢視を示した部分拡大図である。It is a partially enlarged view which showed the arrow view of AA of FIG. コロナ放電部の配置の変形例を示した横断面図である。It is sectional drawing which showed the modification of the arrangement of the corona discharge part. コロナ放電部の配置の他の変形例を示した横断面図である。It is sectional drawing which showed the other modification of the arrangement of the corona discharge part. 集塵極のパイプ部材の横断面の外形状の変形例を示した横断面図である。It is a cross-sectional view which showed the deformation example of the outer shape of the cross section of the pipe member of a dust collecting electrode. チャンネル部材を用いた電気集塵装置を示した横断面図である。It is sectional drawing which showed the electrostatic precipitator using the channel member. 平板形の集塵極を用いた電気集塵装置を示した横断面図である。It is sectional drawing which showed the electrostatic precipitator using the flat plate type dust collecting electrode. メッシュベルトを示した部分拡大図である。It is a partially enlarged view which showed the mesh belt.

以下に、本発明に係る電気集塵装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the electrostatic precipitator according to the present invention will be described with reference to the drawings.

図1には、本実施形態に係る電気集塵装置の横断面図が示されている。図1において、ガス流れGは、水平流であり、紙面左側から右側に向けて流れる。 FIG. 1 shows a cross-sectional view of the electrostatic precipitator according to the present embodiment. In FIG. 1, the gas flow G is a horizontal flow and flows from the left side to the right side of the paper.

電気集塵装置1は、ケーシング2内に、ガス流れGに沿って配列された複数の集塵極4と、集塵極4に対して並列に配置された複数の放電極5と、電源(不図示)と、を備えている。
ケーシング2は、ガス入口部2aと本体部2bとガス出口部2cとを備えている。ガス入口部2aから流入したガスは、本体部2bへと導かれて集塵された後に、ガス出口部2cから外部へと排出される。
The electrostatic precipitator 1 includes a plurality of dust collecting poles 4 arranged along the gas flow G in the casing 2, a plurality of discharging electrodes 5 arranged in parallel with the dust collecting pole 4, and a power source ( (Not shown) and.
The casing 2 includes a gas inlet portion 2a, a main body portion 2b, and a gas outlet portion 2c. The gas flowing in from the gas inlet portion 2a is guided to the main body portion 2b to collect dust, and then is discharged to the outside from the gas outlet portion 2c.

ケーシング2の本体部2bに設けられた集塵極4と放電極5とは、ガス流れGに直交する方向に交互に並べられている。なお、図1に示した電気集塵装置1は概略的に示したものであり、放電極5および集塵極4のサイズおよび設置数は、図示の例に限定されない。 The dust collecting electrodes 4 and the discharging electrodes 5 provided on the main body 2b of the casing 2 are alternately arranged in a direction orthogonal to the gas flow G. The electrostatic precipitator 1 shown in FIG. 1 is schematically shown, and the sizes and the number of installations of the discharge electrode 5 and the dust collection electrode 4 are not limited to the illustrated example.

集塵極4と放電極5とは、互いに離隔され、電気的に絶縁されている。放電極5はケーシング2とも絶縁されている。集塵極4は接地され、放電極5には電源が接続されている(図示せず)。放電極5は、隣り合う集塵極4の中間位置にある。 The dust collecting electrode 4 and the discharging electrode 5 are separated from each other and electrically insulated from each other. The release electrode 5 is also insulated from the casing 2. The dust collecting electrode 4 is grounded, and a power supply is connected to the discharge electrode 5 (not shown). The discharge electrode 5 is located at an intermediate position between adjacent dust collecting electrodes 4.

集塵極4は、複数のパイプ部材4aが所定間隔を有してガス流れGの流通方向に並べられた離散式集塵極とされている。各パイプ部材4aは、剛性を有する金属性とされている。各パイプ部材4aは、軸線がガス流れGに対して直交するように上下方向(紙面垂直方向)に向けて配置されている。ガス流れG方向に並んだ各パイプ部材4a同士を共通の枠体を用いてそれぞれを固定することで、各集塵極4が独立した構成となっている。 The dust collecting pole 4 is a discrete dust collecting pole in which a plurality of pipe members 4a are arranged at predetermined intervals in the flow direction of the gas flow G. Each pipe member 4a is made of a rigid metal. Each pipe member 4a is arranged in the vertical direction (vertical direction on the paper surface) so that the axis line is orthogonal to the gas flow G. By fixing each of the pipe members 4a arranged in the gas flow G direction using a common frame, each dust collecting electrode 4 has an independent configuration.

放電極5は、集塵極4に挟まれるよう配置されている。放電極5は、それぞれ取付基材7と、複数のコロナ放電部8とを有している。取付基材7は、導電性を有する材質からなる棒状または板状の部材である。取付基材7は、対面する集塵極4に対して略平行に配置されている。 The discharge electrode 5 is arranged so as to be sandwiched between the dust collecting electrodes 4. Each of the release electrodes 5 has a mounting base material 7 and a plurality of corona discharge portions 8. The mounting base material 7 is a rod-shaped or plate-shaped member made of a conductive material. The mounting base material 7 is arranged substantially parallel to the facing dust collecting poles 4.

コロナ放電部8は、放電極5に電圧が印加されることによって、コロナ放電を発生させるものである。コロナ放電部8は、対面する集塵極4に向かって突出するように取付基材7に固定された突起とされ、先端が先細のトゲ状となっている。コロナ放電部8は、図2に示すように、ガス流れGに直交する方向すなわち高さ方向に複数配置されている。各コロナ放電部8は、ガス流れG方向において、隣り合うパイプ部材4aの中央に位置するように配置されている。ただし、コロナ放電部8のガス流れG方向における位置は限定されるものではない。 The corona discharge unit 8 generates a corona discharge by applying a voltage to the discharge electrode 5. The corona discharge portion 8 is a protrusion fixed to the mounting base material 7 so as to protrude toward the facing dust collecting electrode 4, and has a tapered tip. As shown in FIG. 2, a plurality of corona discharge units 8 are arranged in a direction orthogonal to the gas flow G, that is, in a height direction. Each corona discharge unit 8 is arranged so as to be located at the center of adjacent pipe members 4a in the gas flow G direction. However, the position of the corona discharge unit 8 in the gas flow G direction is not limited.

図1に示すように、ケーシング2内は、ガス流れG方向に上流領域S1と下流領域S2とが分けられて形成されている。すなわち、上流領域S1と下流領域S2との間には、集塵極4及び放電極5が設けられていない領域が形成されている。
上流領域S1の集塵極4及び放電極5と、下流領域S2の集塵極4及び放電極5は、対応する集塵極4及び放電極5同士がガス流れG方向において同じ直線上に配置されている。なお、本発明は、このように同じ直線上に各集塵極4及び各放電極5が配置されていることに限定されるものではなく、上流領域S1の集塵極4及び放電極5に対して、下流領域S2の集塵極4及び放電極5がガス流れG方向に直交する方向にずれて配置されていても良い。
As shown in FIG. 1, the inside of the casing 2 is formed by separating the upstream region S1 and the downstream region S2 in the gas flow G direction. That is, a region in which the dust collecting electrode 4 and the discharging electrode 5 are not provided is formed between the upstream region S1 and the downstream region S2.
The dust collecting electrode 4 and the discharging electrode 5 in the upstream region S1 and the dust collecting electrode 4 and the discharging electrode 5 in the downstream region S2 are arranged on the same straight line in the gas flow G direction. Has been done. The present invention is not limited to the fact that the dust collecting poles 4 and the discharging electrodes 5 are arranged on the same straight line as described above, and the dust collecting poles 4 and the discharging electrodes 5 in the upstream region S1 are included. On the other hand, the dust collecting electrode 4 and the discharging electrode 5 in the downstream region S2 may be arranged so as to be offset in a direction orthogonal to the gas flow G direction.

上流領域S1のコロナ放電部8の全ては、同じ方向すなわち紙面において上方向に向けて取り付けられている。一方、下流領域S2のコロナ放電部8の全ては、上流領域S1とは反対の方向すなわち紙面においてした方向に向けて取り付けられている。 All of the corona discharge portions 8 in the upstream region S1 are attached in the same direction, that is, facing upward on the paper surface. On the other hand, all of the corona discharge portions 8 in the downstream region S2 are attached in the direction opposite to the upstream region S1, that is, in the direction on the paper surface.

上流領域S1のコロナ放電部8が向けられた方向の上流側角部には、遮蔽板3aがケーシング2に対して固定されている。また、下流領域S2のコロナ放電部8が向けられた方向の上流側角部には、遮蔽板3bがケーシング2に対して固定されている。
遮蔽板3a,3bは、ケーシング2と、ケーシング2に隣接した集塵極4との間にガスが流れ込むのを遮り、他の集塵極4と放電極5との間へと流れるよう導く。
なお、遮断板3a,3bの役割は、あくまでも補助的な役割であり、その取り付け方法やサイズについては特に限定されず、また、遮蔽板3a,3bを省略しても良い。
A shielding plate 3a is fixed to the casing 2 at the upstream corner portion in the direction in which the corona discharge portion 8 of the upstream region S1 is directed. Further, a shielding plate 3b is fixed to the casing 2 at the upstream corner portion in the direction in which the corona discharge portion 8 of the downstream region S2 is directed.
The shielding plates 3a and 3b block the gas from flowing between the casing 2 and the dust collecting electrode 4 adjacent to the casing 2, and guide the gas to flow between the other dust collecting electrode 4 and the discharge electrode 5.
The roles of the shielding plates 3a and 3b are only auxiliary roles, and the mounting method and size thereof are not particularly limited, and the shielding plates 3a and 3b may be omitted.

電気集塵装置1には、図示しないが、集塵極4に付着した粒子状物質を剥離するための槌打装置が設けられている。槌打装置はハンマを有しており、ハンマが集塵極4を槌打することで、表面に付着した粒子状物質を振動によって剥離除去する。
なお、粒子状物質の集塵極4からの除去方法は、槌打装置を用いた槌打に限定されない。例えば、集塵極4に捕集された粒子状物質に対しガスを吹き付ける方法、又は、ソニック・ホーンを用いて音波を照射する方法によって、粒子状物質を集塵極4から除去してもよい。また、湿式の電気集塵装置で行われている洗浄液による洗浄によって、集塵極4から粒子状物質を除去してもよい。
Although not shown, the electrostatic precipitator 1 is provided with a hammering device for peeling off particulate matter adhering to the dust collecting electrode 4. The hammering device has a hammer, and when the hammer strikes the dust collecting electrode 4, the particulate matter adhering to the surface is peeled off and removed by vibration.
The method for removing the particulate matter from the dust collecting electrode 4 is not limited to hammering using a hammering device. For example, the particulate matter may be removed from the dust collecting electrode 4 by blowing a gas onto the particulate matter collected in the dust collecting electrode 4 or by irradiating a sound wave with a sonic horn. .. Further, the particulate matter may be removed from the dust collecting electrode 4 by cleaning with a cleaning liquid performed by a wet electrostatic precipitator.

次に、本実施形態の電気集塵装置1の動作を説明する。
電気集塵装置1では、放電極5に電圧を印加することで、コロナ放電部8の先端でコロナ放電が発生する。ガス流に含まれる粒子状物質は、コロナ放電により帯電される。従来の電気集塵装置の捕集原理では、帯電された粒子状物質は、クーロン力により集塵極4に引き寄せられ、集塵極4上に捕集されるとされてきたが、実際にはイオン風の影響が大きく作用している。
Next, the operation of the electrostatic precipitator 1 of the present embodiment will be described.
In the electrostatic precipitator 1, by applying a voltage to the discharge electrode 5, a corona discharge is generated at the tip of the corona discharge unit 8. The particulate matter contained in the gas stream is charged by the corona discharge. According to the collection principle of the conventional electrostatic precipitator, the charged particulate matter is attracted to the dust collection electrode 4 by the Coulomb force and is collected on the dust collection electrode 4. The influence of ion wind has a large effect.

コロナ放電が発生すると、コロナ放電部8近くでマイナスイオンが発生し、そのマイナスイオンが電界によって集塵極4に向けて移動し、イオン風が生じる。集塵極4に向かって流れるイオン風は、ガス流に含まれる粒子状物質を集塵極4の近傍まで移動させるよう作用する。これにより、粒子径が小さく帯電しにくい粒子状物質をクーロン力が作用する領域内まで運べるため、捕集効率が向上する。 When a corona discharge is generated, negative ions are generated near the corona discharge portion 8, and the negative ions move toward the dust collecting electrode 4 by the electric field, and an ion wind is generated. The ionic wind flowing toward the dust collecting electrode 4 acts to move the particulate matter contained in the gas stream to the vicinity of the dust collecting electrode 4. As a result, the particulate matter having a small particle size and being hard to be charged can be carried into the region where the Coulomb force acts, so that the collection efficiency is improved.

粒子状物質を含んで集塵極4に向かって流れるイオン風の一部は、集塵極4のパイプ部材4aの間を通り抜ける。
上流領域S1では、コロナ放電部8の全てが一方向(図1において上方向)に向けられているので、イオン風は一方向に向けられ、ガス流れは、上流領域S1全体で、矢印で示すように図1において斜め上方を向く。
これに対して、下流領域S2では、コロナ放電部8の全てが反対方向(図1において下方向)に向けられているので、イオン風は反対方向に向けられ、ガス流れは、下流領域S2全体で、矢印で示すように図1において斜め下方を向く。
A part of the ionic wind containing the particulate matter and flowing toward the dust collecting electrode 4 passes between the pipe members 4a of the dust collecting electrode 4.
In the upstream region S1, all of the corona discharge portions 8 are directed in one direction (upward in FIG. 1), so that the ion wind is directed in one direction and the gas flow is indicated by an arrow in the entire upstream region S1. As shown in FIG. 1, it faces diagonally upward.
On the other hand, in the downstream region S2, since all of the corona discharge portions 8 are directed in the opposite direction (downward in FIG. 1), the ion wind is directed in the opposite direction, and the gas flow is the entire downstream region S2. Then, as shown by the arrow, it faces diagonally downward in FIG.

本実施形態によれば、以下の作用効果を奏する。
集塵極4のパイプ部材4aの間に複数の開口を設けることで、放電極5から集塵極4へ向けて流れるイオン風の一部が集塵極4の裏側へ抜けることを許容する。これにより、イオン風が集塵極4で反転されて離反する流れを抑制できる。
放電極5は、対面する集塵極4のうちの一方のみの集塵極4に向かって突出するコロナ放電部8をガス流れG方向に複数連続して有することとした。これにより、ガス流れG方向に連続する複数のコロナ放電部8から一方のみに向かってイオン風を流すことができるので、ガス流れ方向に隣り合うコロナ放電部8からのイオン風の干渉を可及的に減少させて集塵効率を高めることができる。
According to this embodiment, the following effects are exhibited.
By providing a plurality of openings between the pipe members 4a of the dust collecting electrode 4, a part of the ion wind flowing from the discharge electrode 5 toward the dust collecting electrode 4 is allowed to escape to the back side of the dust collecting electrode 4. As a result, it is possible to suppress the flow in which the ion wind is reversed at the dust collecting electrode 4 and separated.
The discharge electrode 5 is provided with a plurality of corona discharge portions 8 projecting toward the dust collection electrode 4 of only one of the facing dust collection electrodes 4 continuously in the gas flow G direction. As a result, ion air can flow from a plurality of corona discharge units 8 continuous in the gas flow G direction toward only one of them, so that ion wind interference from adjacent corona discharge units 8 in the gas flow direction is possible. The dust collection efficiency can be improved by reducing the amount.

複数の集塵極4と複数の放電極5とがガス流れG方向に対して直交する方向に交互に並べられた構成とし、ガス流れG方向の上流領域S1及び下流領域S2のそれぞれでは、全てのコロナ放電部8が同じ方向に向かって突出するようにした。これにより、各領域S1,S2の全体で、イオン風が複数の集塵極4を跨いで一様な方向に向かうことになり、イオン風の干渉が抑制され、集塵効率を高めることができる。 A plurality of dust collecting electrodes 4 and a plurality of discharging electrodes 5 are arranged alternately in a direction orthogonal to the gas flow G direction, and all of the upstream region S1 and the downstream region S2 in the gas flow G direction are arranged. The corona discharge portion 8 of the above is projected in the same direction. As a result, the ion wind is directed in a uniform direction across the plurality of dust collecting poles 4 in the entire regions S1 and S2, the interference of the ion wind is suppressed, and the dust collecting efficiency can be improved. ..

上流領域S1の下流の下流領域S2では、全てのコロナ放電部8が上流領域S1のコロナ放電部8とは反対方向に向かって突出するようにした。これにより、上流領域S1で一方向に偏ったイオン風を、下流領域S2で他方向に向きを変えることによって更に集塵効率を高めることができる。 In the downstream region S2 downstream of the upstream region S1, all the corona discharge portions 8 project in the direction opposite to the corona discharge portion 8 in the upstream region S1. As a result, the dust collection efficiency can be further improved by changing the direction of the ion wind biased in one direction in the upstream region S1 to the other direction in the downstream region S2.

図3には、コロナ放電部8の向きの変形例が示されている。図1に示した実施形態では、上流領域S1と下流領域S2とでコロナ放電部8の向きを変えていたが、本発明はこれに限定されるものではない。例えば、図3に示されているように、ガス流れG方向における所定区間にわたってコロナ放電部8を一方向(図3において上方向)のみに向けて連続して(図3では3つ連続して)設け、その後、コロナ放電部8を反対方向(図3において下方向)に連続して設けるようにしてもよい。このようなコロナ放電部8の配置としても、隣のコロナ放電部8の影響でイオン風が干渉することを抑えることができるとともに、複数の集塵極4にわたってガス流れGに交差する方向にイオン風を流すことができる。したがって、図4に示した他の変形例のように、連続する2つのコロナ放電部8を交互に反対方向に向けても良い。 FIG. 3 shows a modified example of the orientation of the corona discharge unit 8. In the embodiment shown in FIG. 1, the direction of the corona discharge unit 8 is changed between the upstream region S1 and the downstream region S2, but the present invention is not limited to this. For example, as shown in FIG. 3, the corona discharge unit 8 is continuously directed in only one direction (upward in FIG. 3) over a predetermined section in the gas flow G direction (three consecutive in FIG. 3). ), And then the corona discharge unit 8 may be continuously provided in the opposite direction (downward in FIG. 3). Even with such an arrangement of the corona discharge unit 8, it is possible to suppress the interference of the ion wind due to the influence of the adjacent corona discharge unit 8, and the ions are formed in the direction intersecting the gas flow G over the plurality of dust collecting electrodes 4. The wind can flow. Therefore, as in the other modification shown in FIG. 4, two consecutive corona discharge units 8 may be alternately directed in opposite directions.

図5には、集塵極4のパイプ部材4aの横断面の外形状は、円形状に限定されるものではない。例えば、図5(a)に示すように、角部にRを付けた略正方形としたパイプ部材4bでも良く、図5(b)に示すように、角部にRを付けた長方形としたパイプ部材4cでも良く、図5(c)に示すように、略コの字状の凹形状としたチャンネル部材4dでも良い。すなわち、複数の棒状部材を用いた離散形の集塵極4を採用する場合は、パイプ部材4a,4b,4cやチャンネル部材4dは、剛性を確保できるように所定値以上の断面二次係数とされた横断面を有していれば良い。 In FIG. 5, the outer shape of the cross section of the pipe member 4a of the dust collecting electrode 4 is not limited to the circular shape. For example, as shown in FIG. 5 (a), a substantially square pipe member 4b with R at the corner may be used, or as shown in FIG. 5 (b), a rectangular pipe with R at the corner. The member 4c may be used, or as shown in FIG. 5C, the channel member 4d having a substantially U-shaped concave shape may be used. That is, when a discrete dust collecting electrode 4 using a plurality of rod-shaped members is adopted, the pipe members 4a, 4b, 4c and the channel member 4d have a moment of inertia of area of a predetermined value or more so as to secure rigidity. It suffices to have a cross section.

図6には、図5(c)に示した凹形状のチャンネル部材4dを配置した例が示されている。同図に示されているように、コロナ放電部8はチャンネル部材4dの凸側に向に向くように配置されている。このように配置することで、コロナ放電部8からのイオン風がチャンネル部材4dの背面側に抜けやすくなっている。各コロナ放電部8は、ガス流れG方向において、隣り合うチャンネル部材4dの中央に位置するように配置されている。ただし、コロナ放電部8のガス流れG方向における位置は限定されるものではない。 FIG. 6 shows an example in which the concave channel member 4d shown in FIG. 5C is arranged. As shown in the figure, the corona discharge unit 8 is arranged so as to face the convex side of the channel member 4d. By arranging in this way, the ionic wind from the corona discharge portion 8 can easily escape to the back surface side of the channel member 4d. Each corona discharge unit 8 is arranged so as to be located at the center of adjacent channel members 4d in the gas flow G direction. However, the position of the corona discharge unit 8 in the gas flow G direction is not limited.

図7には、複数の棒状部材を用いた離散形の集塵極4に代えて、パンチングメタル等を用いた平板4eで集塵極4を構成した場合が示されている。平板4eには、一様に略同形状の貫通孔4e1が形成されている。貫通孔4e1の形状は、円形でも良く、長円や多角形であっても良い。このような平板形の集塵極4であっても、上述の実施形態と同様にイオン風をガス流れG方向に直交する方向に流して集塵極4を通過させることができる。 FIG. 7 shows a case where the dust collecting electrode 4 is formed of a flat plate 4e using a punching metal or the like instead of the discrete dust collecting electrode 4 using a plurality of rod-shaped members. Through holes 4e1 having substantially the same shape are uniformly formed in the flat plate 4e. The shape of the through hole 4e1 may be circular, oval or polygonal. Even with such a flat plate-shaped dust collecting electrode 4, the ion wind can be flowed in a direction orthogonal to the gas flow G direction to pass through the dust collecting electrode 4 as in the above-described embodiment.

また、集塵極4として、図8に示すように、メッシュベルトを用いても良い。メッシュベルトは、金属細線を面状に編み込んだ可撓性を有するものである。メッシュベルトを無端状にして複数の回転部材(回転駆動ローラ)に巻回し、メッシュベルトをガス流路とその外側との間で適宜移動させるように構成する。メッシュベルトに付着したダストは、ガス流路の外側にてブラシによって除去される。 Further, as the dust collecting electrode 4, a mesh belt may be used as shown in FIG. The mesh belt has flexibility in which fine metal wires are woven into a plane. The mesh belt is endlessly wound around a plurality of rotating members (rotational drive rollers) so that the mesh belt is appropriately moved between the gas flow path and the outside thereof. Dust adhering to the mesh belt is removed by a brush outside the gas flow path.

1 電気集塵装置
2 ケーシング
2a ガス入口部
2b 本体部
2c ガス出口部
3a,3b 遮蔽板
4 集塵極
4a,4b,4c パイプ部材
4d チャンネル部材
4e 平板
5 放電極
7 取付基材
8 コロナ放電部
G ガス流れ
S1 上流領域(所定領域)
S2 下流領域
1 Electrostatic precipitator 2 Casing 2a Gas inlet 2b Main body 2c Gas outlet 3a, 3b Shielding plate 4 Dust collector 4a, 4b, 4c Pipe member 4d Channel member 4e Flat plate 5 Discharge electrode 7 Mounting base material 8 Corona discharge part G gas flow S1 upstream area (predetermined area)
S2 downstream area

Claims (3)

ガスが流入するガス入口部と、前記ガスが外部へと排出されるガス出口部と、を有するケーシングと、
複数の開口が形成され、前記ケーシング内において前記ガス入口部から前記ガス出口部に向かって流れる前記ガスのガス流れ方向に沿って平行に設けられた集塵極と、
前記集塵極に対して並列に配置された放電極と、
を備え、
複数の前記集塵極と複数の前記放電極とが前記ガス流れ方向に対して直交する方向に交互に並べられ、
前記放電極は、対面する前記集塵極のうちの一方のみの該集塵極に向かって突出するコロナ放電用のコロナ放電部を前記ガス流れ方向に複数連続して有する電気集塵装置。
A casing having a gas inlet portion into which the gas flows in and a gas outlet portion in which the gas is discharged to the outside.
A plurality of openings are formed, and a dust collecting electrode provided in parallel along the gas flow direction of the gas flowing from the gas inlet portion to the gas outlet portion in the casing.
A discharge electrode arranged in parallel with the dust collecting electrode and
With
The plurality of dust collecting electrodes and the plurality of discharging electrodes are alternately arranged in a direction orthogonal to the gas flow direction.
The discharge electrode is an electrostatic precipitator having a plurality of corona discharge portions for corona discharge projecting toward the dust collection electrode of only one of the facing dust collection electrodes in the gas flow direction.
記ガス流れ方向の所定領域では、各前記放電極の前記コロナ放電部の全てが、同じ一方向に向かって突出する請求項1に記載の電気集塵装置。 In certain regions of the previous SL gas flow direction, all of the corona discharge unit of each of the discharge electrodes, an electric dust collector of claim 1 projecting toward the same direction. 前記所定領域の下流の下流領域では、各前記放電極の前記コロナ放電部の全てが、前記一方向とは反対の他方向に向かって突出する請求項2に記載の電気集塵装置。 The electrostatic precipitator according to claim 2, wherein in the downstream region downstream of the predetermined region, all of the corona discharge portions of the discharge electrodes project in the other direction opposite to the one direction.
JP2017023154A 2017-02-10 2017-02-10 Electrostatic precipitator Active JP6752736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023154A JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023154A JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Publications (3)

Publication Number Publication Date
JP2018126713A JP2018126713A (en) 2018-08-16
JP2018126713A5 JP2018126713A5 (en) 2020-04-02
JP6752736B2 true JP6752736B2 (en) 2020-09-09

Family

ID=63171709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023154A Active JP6752736B2 (en) 2017-02-10 2017-02-10 Electrostatic precipitator

Country Status (1)

Country Link
JP (1) JP6752736B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109194B2 (en) 2018-01-15 2022-07-29 三菱重工パワー環境ソリューション株式会社 Electrostatic precipitator
WO2020026370A1 (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ環境ソリューション株式会社 Electrostatic precipitator
CN111905929B (en) * 2020-07-20 2022-05-17 河北大学 Wide-ratio resistor and fine dust electrostatic precipitator and distribution method of dust removal electrodes thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872554B2 (en) * 1993-12-06 1999-03-17 住友重機械工業株式会社 Electric dust collector
JP3413535B2 (en) * 1994-03-31 2003-06-03 石川島播磨重工業株式会社 Electric dust collector
JPH07299387A (en) * 1994-05-09 1995-11-14 Sumitomo Heavy Ind Ltd Electric dust collector
JP6367123B2 (en) * 2013-02-07 2018-08-01 三菱日立パワーシステムズ環境ソリューション株式会社 Dust collector, dust collection system and dust collection method
JP2016203138A (en) * 2015-04-28 2016-12-08 三菱日立パワーシステムズ環境ソリューション株式会社 Gas purification device, gas turbine power generation system with the same, and gas purification method

Also Published As

Publication number Publication date
JP2018126713A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US8454734B2 (en) Charging device, air handling device, method for charging, and method for handling air
JP4894739B2 (en) Wet electric dust collector
JP6752736B2 (en) Electrostatic precipitator
JP4856139B2 (en) Electric dust collector
JP2002500562A (en) Air cleaner
JP2018126712A (en) Electrostatic precipitator
JP2009072772A (en) Electric dust-collector
WO2020026370A1 (en) Electrostatic precipitator
TWI693970B (en) Electric dust collector
CN112566727B (en) Electric dust collector
TWI709436B (en) Electric dust collector
WO2020026369A1 (en) Electrostatic precipitator
JP3427165B2 (en) Electric dust collector
KR20120140346A (en) An electric precipitator of rotary type dust collecting plate
TWI686238B (en) Electric dust collector
JP6684986B2 (en) Electric dust collector
JP5098885B2 (en) Charging device and air treatment device
TWI742415B (en) Electric dust collector
JPH07265734A (en) Electric precipitator
JPS6322860B2 (en)
JPH07265736A (en) Electric precipitator
JP2020179328A (en) Electric dust collector
JPH09173899A (en) Electric precipitator
JPH07265737A (en) Electric precipitator
JP2010099551A (en) Charging apparatus and air treatment apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20191205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350