WO2020036084A1 - 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置 - Google Patents

低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置 Download PDF

Info

Publication number
WO2020036084A1
WO2020036084A1 PCT/JP2019/030584 JP2019030584W WO2020036084A1 WO 2020036084 A1 WO2020036084 A1 WO 2020036084A1 JP 2019030584 W JP2019030584 W JP 2019030584W WO 2020036084 A1 WO2020036084 A1 WO 2020036084A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
temperature fluid
temperature
fluid
heat exchanger
Prior art date
Application number
PCT/JP2019/030584
Other languages
English (en)
French (fr)
Inventor
玲央奈 郷田
貴紀 貝川
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019124108A external-priority patent/JP7237755B2/ja
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to CN201980050719.7A priority Critical patent/CN112543854B/zh
Priority to KR1020217007072A priority patent/KR20210046012A/ko
Publication of WO2020036084A1 publication Critical patent/WO2020036084A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to a low-temperature fluid pumping unit, a low-temperature fluid pumping method, and an apparatus including a low-temperature fluid pumping unit.
  • a low-temperature fluid such as nitrogen gas is pumped using a pumping unit such as a vacuum pump.
  • the present invention relates to a low-temperature fluid pumping unit to be pumped, a low-temperature fluid pumping method, and an apparatus including the low-temperature fluid pumping unit.
  • a cooling system using a cooling refrigerant is applied to various devices.
  • a superconducting member such as a superconducting cable, a superconducting transformer, a superconducting motor, a superconducting current limiter, and a superconducting power storage
  • the superconducting member is maintained at an extremely low temperature by cooling using the cooling system.
  • the cooling system is used to cool the raw material gas and the like also in a separation device that cryogenically separates the carbon monoxide from the raw material gas containing carbon monoxide.
  • a liquid refrigerant circulating cooling system is disclosed as a system for cooling a superconducting cable (Patent Document 1).
  • a cooling liquid refrigerant circulation path for circulating cooling liquid nitrogen which is a cooling liquid refrigerant
  • a heat exchange unit for cooling the cooling liquid nitrogen flowing through the cooling liquid refrigerant circulation path are provided.
  • the superconducting cable is cooled by heat absorption with supercooled cooling liquid nitrogen, and the cooled liquid nitrogen after heat absorption is exchanged with a heat exchange unit to radiate heat and re-cooled.
  • circulation cooling for cooling the superconducting cable again is employed.
  • the heat exchange unit exchanges heat with the liquid nitrogen for heat exchange whose temperature has been reduced under reduced pressure to maintain the supercooled state of the liquid nitrogen for cooling.
  • examples of the depressurizing pump used for depressurizing include a vacuum pump and the like.
  • the temperature of the fluid that can be suctioned by the vacuum pump is generally in the range of room temperature to about ⁇ 20 ° C. Therefore, when the temperature of the liquid nitrogen for heat exchange is lower than this temperature range, it is necessary to heat the liquid nitrogen for heat exchange to near normal temperature in order to make the vacuum pump suck the liquid nitrogen. Is provided.
  • the liquid nitrogen for heat exchange is discharged by a pump for decompression, and is used only for extracting cold heat by heat exchange with the liquid nitrogen for cooling. Reuse of liquid nitrogen for heat exchange is not considered.
  • the discharge temperature increases due to the compression heat generated when the liquid nitrogen for heat exchange is compressed.
  • the discharge temperature may rise to 100 ° C. or higher depending on the operation state of the vacuum pump (for example, constant operation). Therefore, when it is desired to effectively use the liquid nitrogen for heat exchange discharged from the vacuum pump for any purpose, it is necessary to cool the liquid nitrogen for heat exchange after the discharge.
  • a heater is provided on the upstream side of the vacuum pump to raise the suction temperature, and the downstream side of the heater is provided. It is necessary to provide a cooler on the side to lower the discharge temperature.
  • a system for cooling a raw material gas or the like by providing a cooling device for circulating nitrogen gas in a cryogenic separation device for carbon monoxide.
  • a cooling device is used to cool the raw material gas to separate carbon monoxide. More specifically, the nitrogen gas is cooled while circulating in a cooling device, and the raw material gas is cooled by heat exchange with the cooled nitrogen gas.
  • the present invention has been made in view of the above problems, and an object of the present invention is to recover and utilize cold heat of a low-temperature fluid before suction into a vacuum pump and warm heat of a low-temperature fluid after discharge from the vacuum pump. Accordingly, it is an object of the present invention to provide a low-temperature fluid pumping unit, a low-temperature fluid pumping method, and a device including a low-temperature fluid pumping unit that do not require a heater or a cooler, which are conventionally required.
  • the low-temperature fluid pumping unit according to the present invention is a low-temperature fluid pumping unit that pumps a low-temperature fluid, the low-temperature fluid supply path supplying the low-temperature fluid, and the low-temperature fluid supply path.
  • a heat exchanger that is provided in the fluid supply path, and that heats the low-temperature fluid, and that is provided downstream of the heat exchanger in the low-temperature fluid supply path, and that is heated by the heat exchanger.
  • the low-temperature fluid flowing through the low-temperature fluid supply path can be heated by heat exchange before being sucked into the pumping unit.
  • a delivery path through which the pumping unit discharges (pressurizes) the heated low-temperature fluid is connected to the heat exchanger. Therefore, the heated low-temperature fluid discharged from the pumping unit can be used in the heat exchanger for heat exchange with the low-temperature fluid supplied from the low-temperature fluid supply path.
  • the pumping unit is a vacuum pump
  • the low-temperature fluid discharged from the vacuum pump is heated by compression heat generated when the low-temperature fluid is compressed by the vacuum pump. Therefore, the low-temperature fluid discharged from the pumping section can be heated to a higher temperature than that after the heating by the heat exchanger.
  • a branch path branched from the delivery path is connected between the heat exchanger and the pumping section in the low-temperature fluid supply path, whereby the low-temperature fluid supply path, the delivery path, and the branch are connected.
  • a circulation path configured to supply a circulating fluid for circulating the circulation path to at least one of the low-temperature fluid supply path, the delivery path, and the branch path. It is preferable that the fluid supply passage for use is connected.
  • the temperature of the low-temperature fluid discharged from the pumping unit (that is, the discharge temperature) may be low. Therefore, in the initial stage of operation, heat exchange in the heat exchanger using the heated low-temperature fluid discharged from the pumping unit is sufficient for heating the low-temperature fluid supplied from the low-temperature fluid supply path. There are times when it is not.
  • the discharge temperature of the circulation fluid in the pumping unit is reduced by circulating the circulation fluid through the low-pressure fluid supply path, the delivery path, and the circulation path including the branch path. Can be kept high enough.
  • the heat exchanger to exchange heat with the sufficiently heated circulation fluid immediately after the start of the supply of the low-temperature fluid.
  • the temperature of the low-temperature fluid can be adjusted to a temperature range in which the pumping unit can suck in, and the installation of a heater is not required.
  • the temperature of the low-temperature fluid heated by the heat exchanger may fall below the temperature range in which the pumping unit can suck. That is, when the flow rate of the low-temperature fluid supplied from the low-temperature fluid supply path is larger than the flow rate of the heated low-temperature fluid discharged from the pumping unit, heat exchange in the heat exchanger becomes insufficient, Heating may be insufficient.
  • the pumping unit can suck a mixed fluid of a low-temperature fluid and a circulating fluid heated to a certain temperature or higher, which has a temperature in a temperature range that can be sucked by the pumping unit. it can.
  • the flow rate of the supplied low-temperature fluid fluctuates (increases)
  • a bypass supply path that branches from the low-temperature fluid supply path on the upstream side of the heat exchanger and joins the low-temperature fluid supply path on the downstream side of the heat exchanger is provided, or Another low-temperature fluid supply path for supplying another low-temperature fluid is connected between the heat exchanger and the pumping section in the low-temperature fluid supply path, and the low-temperature fluid is heated by the heat exchanger. It is preferable that the low-temperature fluid or the other low-temperature fluid supplied from the bypass supply path or another low-temperature fluid supply path be combined with the fluid and supplied to the pumping unit.
  • the temperature of the low-temperature fluid heated by the heat exchanger may exceed the temperature range in which the pumping unit can suck. That is, when the flow rate of the low-temperature fluid supplied from the low-temperature fluid supply passage is smaller than the flow rate of the heated low-temperature fluid discharged from the pumping unit, the heat exchange in the heat exchanger becomes excessive and is supplied. The temperature of the low-temperature fluid may exceed the temperature range in which the pumping unit can suck.
  • a bypass supply path capable of bypassing the heat exchanger is provided in the low-temperature fluid supply path.
  • another low-temperature fluid supply path for supplying another low-temperature fluid is provided between the heat exchanger and the pumping section in the low-temperature fluid supply path.
  • a mixed fluid of the low-temperature fluid heated by the heat exchanger and the low-temperature fluid supplied through the bypass supply path without being heated by the heat exchanger A mixed fluid of the low-temperature fluid heated by the vessel and another low-temperature fluid supplied from another low-temperature fluid supply path without being heated by the heat exchanger can be sucked.
  • a method for pumping a low-temperature fluid is a method for pumping a low-temperature fluid using a low-pressure fluid pumping unit, wherein the low-temperature fluid pumping unit includes a low-temperature fluid supply unit that supplies the low-temperature fluid.
  • a fluid supply path a heat exchanger provided in the low-temperature fluid supply path, and for heating the low-temperature fluid, and a heat exchanger provided downstream of the heat exchanger in the low-temperature fluid supply path;
  • a pumping section for pumping the low-temperature fluid heated by a vessel, and a delivery path for delivering the low-temperature fluid pumped from the pumping section via the heat exchanger, wherein the low-temperature fluid
  • the low-temperature fluid supplied by the supply path is heated using the heat exchanger, and the heated low-temperature fluid is pumped from the delivery path using the pumping unit.
  • the pumping unit Front in the vessel Warming of the cryogenic fluid, by heat exchange with the cryogenic fluid after warming flowing through the delivery path, the pumping unit is made so as to reach the inhalable temperature range of the low temperature fluid.
  • the heat exchanger since the heat exchanger is provided in the low-temperature fluid supply path, the low-temperature fluid flowing through the low-temperature fluid supply path can be heated by heat exchange before being sucked into the pumping unit. it can.
  • a delivery path through which the pumping section discharges (pressurizes) the heated low-temperature fluid is connected to the heat exchanger. Therefore, the heated low-temperature fluid discharged from the pumping unit can be used in the heat exchanger for heat exchange with the low-temperature fluid supplied from the low-temperature fluid supply path.
  • the pumping unit is a vacuum pump
  • the low-temperature fluid discharged from the vacuum pump is heated by compression heat generated when the low-temperature fluid is compressed by the vacuum pump. Therefore, the low-temperature fluid discharged from the pumping unit may have a higher temperature than that after the heating by the heat exchanger.
  • a branch path branched from the delivery path is connected between the heat exchanger and the pumping section in the low-temperature fluid supply path, whereby the low-temperature fluid supply path, A circulation path composed of a delivery path and the branch path is formed, and further, at least one of the low-temperature fluid supply path, the delivery path and the branch path is provided with a supply of a circulation fluid for circulating the circulation path.
  • a circulating fluid supply path for connecting the cryogenic fluid supply path from the circulating fluid supply path to the cryogenic fluid supply path, the delivery path, and the branch path before starting the supply of the cryogenic fluid from the cryogenic fluid supply path.
  • the circulating fluid is supplied to at least any one of the circulating fluids, and the circulating fluid supplied from the circulating fluid supply path is circulated through the circulating path. Said low When the fluid is supplied, the heat is exchanged with the circulating fluid in the heat exchanger with respect to the low-temperature fluid, and the process is performed until the pumping unit reaches a temperature range in which the low-temperature fluid can be sucked. Is preferred.
  • the temperature (discharge temperature) of the low-temperature fluid discharged from the pumping unit may be low. Therefore, in the initial stage of operation, heat exchange in the heat exchanger using the heated low-temperature fluid discharged from the pumping unit is sufficient for heating the low-temperature fluid supplied from the low-temperature fluid supply path. There are times when it is not.
  • the discharge temperature of the circulation fluid in the pumping unit is reduced by circulating the circulation fluid through the low-pressure fluid supply path, the delivery path, and the circulation path including the branch path. Can be kept high enough.
  • the heat exchanger to exchange heat with the sufficiently heated circulation fluid immediately after the start of the supply of the low-temperature fluid.
  • the temperature of the low-temperature fluid can be adjusted to a temperature range in which the pumping unit can suck, and the heating of the low-temperature fluid before suction into the pumping unit becomes unnecessary.
  • a bypass supply path is provided which branches from the low-temperature fluid supply path on the upstream side of the heat exchanger and joins the low-temperature fluid supply path on the downstream side of the heat exchanger.
  • another low-temperature fluid supply path for supplying another low-temperature fluid is connected between the heat exchanger and the pumping section in the low-temperature fluid supply path, and is heated by the heat exchanger.
  • the low-temperature fluid or the other low-temperature fluid supplied from the bypass supply path or another low-temperature fluid supply path is used. It is preferable that the low-temperature fluid heated by the heat exchanger is combined with the low-temperature fluid to form a mixed fluid, and the temperature of the mixed fluid is supplied to the pumping unit within a temperature range in which the pumping unit can suck.
  • the temperature of the low-temperature fluid heated by the heat exchanger may exceed the temperature range in which the pumping unit can suck. That is, when the flow rate of the low-temperature fluid supplied from the low-temperature fluid supply passage is smaller than the flow rate of the heated low-temperature fluid discharged from the pumping unit, the heat exchange in the heat exchanger becomes excessive and is supplied. The temperature of the low-temperature fluid may exceed the temperature range in which the pumping unit can suck.
  • the low-temperature fluid is re-merged with the low-temperature fluid heat-exchanged by the heat exchanger and supplied to the pumping unit.
  • another low-temperature fluid is combined with the low-temperature fluid that has undergone heat exchange in the heat exchanger and supplied to the pumping unit. Accordingly, in the above configuration, even when the flow rate of the supplied low-temperature fluid fluctuates (decreases), the temperature of the low-temperature fluid sucked into the pumping unit exceeds the temperature range in which the pumping unit can suck. It is possible to adjust so that there is no.
  • the fluid supplied from the circulation-fluid supply path is used. Combining the circulating fluid with the low-temperature fluid heated by the heat exchanger to form a mixed fluid, and supplying the temperature of the mixed fluid to the pumping unit within a temperature range in which the pumping unit can draw in the fluid. Is preferred.
  • the temperature of the low-temperature fluid heated by the heat exchanger may fall below the temperature range in which the pumping unit can suck. That is, when the flow rate of the low-temperature fluid supplied from the low-temperature fluid supply path is larger than the flow rate of the heated low-temperature fluid discharged from the pumping unit, heat exchange in the heat exchanger becomes insufficient, Heating may be insufficient.
  • the circulating fluid preliminarily heated to a certain temperature or more is combined with the low-temperature fluid to form a mixed fluid, so that the temperature can be set to a temperature in a temperature range in which the pumping unit can suck.
  • the temperature of the low-temperature fluid sucked into the pumping unit falls below the temperature range in which the pumping unit can suck. It is possible to adjust so that there is no.
  • the device of the present invention is characterized by comprising the low-temperature fluid pumping unit in order to solve the above problems.
  • a nitrogen gas supercooling device capable of satisfactorily pumping nitrogen gas even if a heater or a cooler is omitted.
  • a configuration can be employed in which nitrogen gas as a refrigerant can be pumped without a heater or a cooler.
  • the present invention has the following effects by the means described above.
  • heat exchange between the cold heat of the low-temperature fluid before suction into the pumping unit such as the vacuum pump and the warm heat of the low-temperature fluid after discharge from the vacuum pump is performed using the heat exchanger.
  • the temperature of the low-temperature fluid sucked into the pumping section can reach the temperature range in which the suction can be performed.
  • a low-temperature fluid pressure-feeding unit, a low-temperature fluid pressure-feeding method, and an apparatus equipped with the low-pressure fluid pressure-feeding unit, which can omit the heater and the cooler on the upstream side of the pumping unit, which are conventionally required. Can be provided.
  • FIG. 2 is a schematic system diagram illustrating a pumping unit according to Embodiment 1 of the present invention. It is a schematic system diagram showing the flow state of the low temperature fluid in the low temperature fluid pumping method using the said pumping unit. It is a schematic system diagram showing the pumping unit concerning Embodiment 2 of this invention. It is a schematic system diagram showing the flow state of the circulation fluid in the low-pressure fluid pumping method using the pumping unit. It is a schematic system diagram showing the flow state of the low temperature fluid in the low temperature fluid pumping method using the said pumping unit. It is a schematic system diagram showing the pumping unit which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a schematic system diagram illustrating a pumping unit according to the first embodiment. It should be noted that parts unnecessary for the description are omitted, and there are some parts that are enlarged or reduced for ease of description.
  • the pumping unit 1 of the present embodiment includes a low-temperature fluid supply path 11 that supplies a low-temperature fluid, a heat exchanger 12 that heats the low-temperature fluid, and a pumping unit 13 that pumps the low-temperature fluid. And a delivery path 14 for delivering the low-temperature fluid discharged from the pumping unit 13.
  • pressure feeding means sending out a low-temperature fluid while applying a predetermined pressure.
  • the low-temperature fluid supply path 11 is a supply path for supplying a low-temperature fluid to the heat exchanger 12 and the pumping unit 13.
  • An on-off valve 15 is provided in the low-temperature fluid supply path 11. By controlling the opening and closing of the on-off valve 15, the supply of the low-temperature fluid to the heat exchanger 12 and the pumping unit 13 and the stop thereof are performed.
  • the heat exchanger 12 is for heating the low-temperature fluid flowing through the low-temperature fluid supply path 11, and is connected to the low-temperature fluid supply path 11.
  • the heat exchanger 12 is provided downstream of the on-off valve 15 in the low-temperature fluid supply path 11.
  • the type of the heat exchanger 12 is not particularly limited, and a known one can be appropriately used.
  • the pressure feeding unit 13 sucks in the low-temperature fluid, compresses it, and sends it out to the delivery path 14.
  • the pumping section 13 is connected to the low-temperature fluid supply path 11.
  • the pressure feeding unit 13 is not particularly limited, and for example, a known vacuum pump or the like can be used. Specifically, for example, a gas transfer type vacuum pump such as a capacity transfer type vacuum pump and a momentum transfer type vacuum pump, and a gas storage type vacuum pump are exemplified.
  • the delivery path 14 allows the low-temperature fluid discharged from the pumping unit 13 to be delivered to an arbitrary subsequent process via the heat exchanger 12.
  • the delivery path 14 passes through the heat exchanger 12, heat exchange between the low-temperature fluid flowing through the low-temperature fluid supply path 11 and the low-temperature fluid discharged from the pumping unit 13 is enabled.
  • the type of the low-temperature fluid is not particularly limited, and examples thereof include natural gas, methane gas, nitrogen gas, oxygen gas, argon gas, carbon monoxide gas, carbon dioxide gas, helium gas, and hydrogen gas.
  • FIG. 2 is a schematic system diagram showing the flow state of the low-temperature fluid in the low-temperature fluid pumping method using the pumping unit 1.
  • the pumping of the low-temperature fluid is performed in the pumping unit 1 as follows. First, as shown in FIG. 2, the on-off valve 15 is opened, and the low-temperature fluid is supplied to the heat exchanger 12 through the low-temperature fluid supply path 11. Further, the heated low-temperature fluid discharged from the pressure feeding unit 13 is supplied to the heat exchanger 12 via the delivery path 14 (details will be described later).
  • the supply amount of the low-temperature fluid supplied from the low-temperature fluid supply path 11 is not particularly limited, and can be appropriately set as needed. However, the supply amount of the low-temperature fluid is preferably constant over time.
  • the temperature of the low-temperature fluid supplied from the low-temperature fluid supply passage 11 (that is, the temperature T1 of the low-temperature fluid at the time of supply shown in FIG. 1) is not particularly limited, and can be appropriately changed according to the type and use of the low-temperature fluid. It is.
  • the temperature T1 of the low-temperature fluid at the time of supply is, for example, usually in the range of -196 ° C to -20 ° C when the low-temperature fluid is nitrogen gas.
  • heat exchanger 12 heat exchange is performed between the low-temperature fluid flowing through the low-temperature fluid supply path 11 and the heated low-temperature fluid flowing through the delivery path 14. This makes it possible to raise the low-temperature fluid flowing through the low-temperature fluid supply path 11 to a temperature range in which the pumping unit 13 can suck in. For example, when extremely low-temperature nitrogen gas is directly sucked into the pumping unit 13 as a low-temperature fluid, the temperature of the nitrogen gas may be lower than the temperature range in which the pumping unit 13 can suck. As a result, it may cause a failure of the pumping unit 13. However, by heating the nitrogen gas using the heat exchanger 12, the suction at the pumping unit 13 is enabled without installing a heater.
  • the temperature of the low-temperature fluid heated by the heat exchanger 12 (that is, the temperature T2 shown in FIG. 1) has reached a temperature range in which the pumping unit 13 can suck. Therefore, the low-temperature fluid is sucked into the pumping unit 13 without any trouble.
  • the low-temperature fluid sucked into the pumping unit 13 is compressed when discharged from the pumping unit 13. At this time, heat of compression is generated, so that the discharge temperature of the low-temperature fluid discharged from the pumping unit 13 (the temperature T3 of the low-temperature fluid shown in FIG. 1) is higher than when the heat is heated by the heat exchanger 12. become.
  • the low-temperature fluid discharged from the pressure feeding unit 13 flows through the delivery path 14 while being further heated, and is supplied to the heat exchanger 12.
  • the heated low-temperature fluid supplied to the heat exchanger 12 is used for heat exchange with the low-temperature fluid in order to heat the low-temperature fluid flowing through the low-temperature fluid supply path 11 as described above.
  • the low-temperature fluid discharged from the pumping unit 13 can be cooled, so that it is not necessary to install a cooler downstream of the pumping unit 13.
  • the discharged low-temperature fluid is supplied to a subsequent process connected to the delivery path 14.
  • the heat recovery system that exchanges heat between the low-temperature fluid supplied from the low-temperature fluid supply path 11 and the heated low-temperature fluid discharged from the pumping unit 13 is described. Has functions. Therefore, it is not necessary to install a heater upstream of the pumping unit 13 and a cooler downstream of the pumping unit 13.
  • FIG. 3 is a schematic system diagram illustrating a pumping unit according to Embodiment 2 of the present invention.
  • the components having the same functions as those of the low-temperature fluid pumping unit 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the pumping unit 2 according to the second embodiment further includes, in addition to the configuration of the pumping unit 1 according to the first embodiment, a branch from a delivery path 14 and a low-temperature fluid supply path 11. It further includes a branch path 21 that communicates, and a circulation fluid supply path 22 that supplies a circulation fluid. Further, on the downstream side of the heat exchanger 12 in the delivery path 14, another heat exchanger 16 that enables heat exchange with the atmosphere, hot and cold water, or the like is provided.
  • the branch path 21 branches from the delivery path 14 and communicates with the low-temperature fluid supply path 11 to form a circulation path including the low-temperature fluid supply path 11, the delivery path 14, and the branch path 21. I do.
  • An on-off valve 23 is provided in the branch passage 21. By controlling the opening and closing of the on-off valve 23, the circulation of the low-temperature fluid in the circulation path, the supply of the circulating fluid to the low-temperature fluid supply path 11, and the stop thereof are performed.
  • the circulation fluid supply path 22 supplies a circulation fluid that circulates through the circulation path.
  • the circulation fluid supply passage 22 communicates with the branch passage 21 at an arbitrary position on the upstream side of the on-off valve 23.
  • An on-off valve 24 is provided in the circulation fluid supply path 22. By controlling the opening and closing of the on-off valve 24, the supply of the circulating fluid to the branch passage 21 and the stop thereof are controlled.
  • an on-off valve 25 is provided between the heat exchanger 12 in the low-temperature fluid supply path 11 and a portion where the branch path 21 is connected to the low-temperature fluid supply path 11.
  • the circulating fluid supply passage 22 directly communicates with the branch passage 21, but the present invention is not limited to this.
  • it may be directly connected to at least one of the low-temperature fluid supply path 11 and the branch path 21.
  • the connection position between the two is between the on-off valve 25 and the pressure feeding unit 13. This is because the on-off valve 25 is closed when the circulation fluid is supplied.
  • FIG. 4 is a schematic system diagram showing the flow state of the circulation fluid in the low-temperature fluid pumping method using the pumping unit 2.
  • FIG. 5 is a schematic system diagram showing the flow state of the low-temperature fluid in the low-temperature fluid pumping method using the pumping unit 2.
  • the method for pumping a low-temperature fluid according to the present embodiment is different from the method for pumping a low-temperature fluid according to the first embodiment in that first, before the low-temperature fluid is pumped, the circulation fluid is circulated in a circulation path. Are different. That is, first, the on-off valve 15 and the on-off valve 25 are closed so that the low-temperature fluid is not supplied from the low-temperature fluid supply path 11.
  • the on-off valve 24 in the circulating fluid supply passage 22 is opened, so that the circulating fluid can be supplied from the circulating fluid supply passage 22 to the branch passage 21. Further, the on-off valve 23 in the branch passage 21 is also opened, and the pressure feeding unit 13 is operated.
  • the circulating fluid is initially introduced from the circulating fluid supply channel 22 into the branch channel 21, and then the circulating fluid flows through the low-temperature fluid supply channel 11, the delivery channel 14, and the branch channel 21. Circulates the configured circuit.
  • the circulating fluid is heated by compression heat generated by the compression applied to the circulating fluid.
  • the time for circulating the circulation fluid is not particularly limited. It is sufficient that the heating is performed at least in the pumping unit 13 until the circulating fluid reaches a certain temperature or higher.
  • the temperature equal to or higher than the certain temperature means that when the low-temperature fluid immediately after the start of the supply exchanges heat with the circulation fluid in the heat exchanger 12, the low-temperature fluid after the heat exchange reaches a temperature range in which the low-temperature fluid can be sucked into the pumping unit 13. It means that the temperature is equal to or higher than the temperature at which it is heated to the extent possible.
  • the supply amount of the circulating fluid supplied from the circulating fluid supply passage 22 is not particularly limited, and can be appropriately set as needed.
  • the type of the circulating fluid is not particularly limited, and examples thereof include natural gas, methane gas, nitrogen gas, oxygen gas, argon gas, carbon monoxide gas, carbon dioxide gas, helium gas, and hydrogen gas.
  • the circulation fluid may have the same composition as the low-temperature fluid or may have a different composition.
  • the temperature of the circulation fluid is not particularly limited, but is preferably higher than the low-temperature fluid supplied from the low-temperature fluid supply channel 11. This makes it possible to reduce the time for circulating the circulation fluid.
  • the upper limit of the temperature of the circulating fluid needs to be lower than the upper limit of the temperature range in which the fluid can be sucked into the pumping unit 13.
  • the temperature of the circulating fluid is usually in the range of ⁇ 20 ° C. to 60 ° C., preferably 0 ° C. to 40 ° C.
  • the pressure of the circulation fluid is preferably equal to or higher than the pressure on the suction side of the pumping unit 13. When the pressure of the circulation fluid is lower than the suction side pressure, it becomes difficult to introduce the circulation fluid.
  • the on-off valve 23 of the branch passage 21 and the on-off valve 24 of the circulation fluid supply passage 22 are closed. Further, the on-off valve 15 and the on-off valve 25 of the low-temperature fluid supply path 11 are opened, respectively, to start supplying the low-temperature fluid (see FIG. 5).
  • the low-temperature fluid in the initial stage of the supply start exchanges heat with the heated circulation fluid in the heat exchanger 12. Since the circulating fluid is sufficiently heated by the pumping unit 13, the low-temperature fluid heat-exchanged with the circulating fluid can be sufficiently heated to a temperature range where it can be sucked into the pumping unit 13.
  • the low-temperature fluid supplied from the low-temperature fluid supply path 11 is pressure-fed to the subsequent process by the pressure feeding unit 13 as shown in FIG.
  • the operations of the heat exchanger 12, the pumping unit 13 and the like after the start of the supply of the low-temperature fluid are the same as those described in the first embodiment. Therefore, the detailed description is omitted.
  • the circulating fluid is initially introduced into the circulation path including the low-temperature fluid supply path 11, the delivery path 14, and the branch path 21 before the supply of the low-temperature fluid to the pumping unit 2. And circulate. Then, the circulation of the circulating fluid is performed until the discharge temperature of the circulating fluid discharged from the pumping unit 13 becomes equal to or higher than a predetermined temperature, and thereafter, the supply of the low-temperature fluid is started.
  • the low-temperature fluid pumping method even in the initial state of the operation of the pumping unit 2, the low-temperature fluid is heated in the heat exchanger 12 to a temperature range in which the pumping unit 13 can be sucked. be able to.
  • FIG. 6 is a schematic system diagram illustrating a pumping unit according to Embodiment 3 of the present invention. Note that components having the same functions as those of the low-temperature fluid pumping unit 1 according to the first embodiment and the low-temperature fluid pumping unit 2 according to the second embodiment are denoted by the same reference numerals and are described in detail. Is omitted.
  • the pumping unit 3 according to the third embodiment further includes a low-temperature fluid supply path 11 that bypasses the heat exchanger 12 in addition to the configuration of the pumping unit 2 according to the second embodiment. And a bypass supply path 31 that supplies a low-temperature fluid to the pressure feeding section 13.
  • the bypass supply path 31 branches the low-temperature fluid supply path 11 between the on-off valve 15 and the heat exchanger 12 and then joins the low-temperature fluid supply path 11 between the heat exchanger 12 and the on-off valve 25.
  • the bypass supply path 31 is provided with an on-off valve 32. By controlling the opening and closing of the on-off valve 32, a part of the low-temperature fluid is supplied to the pumping unit 13 without passing through the heat exchanger 12 or is stopped.
  • bypass supply path 31 that bypasses the heat exchanger 12 is provided has been described as an example, but the present invention is not limited to this.
  • another low-temperature fluid supply path (not shown) may be connected and connected between the heat exchanger 12 and the on-off valve 25 in the low-temperature fluid supply path 11.
  • the other low-temperature fluid supplied from the other low-temperature fluid supply path is preferably the same type as the low-temperature fluid supplied from the low-temperature fluid supply path 11.
  • FIG. 7 is a schematic system diagram showing the flow state of the low-temperature fluid in the low-pressure fluid pumping method using the pumping unit 3.
  • FIG. 8 is a schematic system diagram showing a flow state of the low-temperature fluid and the circulation fluid in the low-temperature fluid pumping method using the pumping unit 3.
  • the present embodiment as compared with the low-temperature fluid pumping method of the second embodiment, due to the fluctuation of the flow rate of the low-temperature fluid supplied from the low-temperature fluid supply path 11, immediately before being sucked into the pumping unit 13. The difference is that the fluctuation of the temperature of the low temperature fluid can be suppressed.
  • the on-off valve 15 and the on-off valve 25 are opened, and the low-temperature fluid is supplied from the low-temperature fluid supply path 11 to the pressure feeding unit 13 via the heat exchanger 12 at a constant supply amount (flow rate).
  • the pumping unit 13 pumps the sucked low-temperature fluid, and the pumped low-temperature fluid is sent out to the subsequent process via the heat exchanger 12.
  • the pumping unit 3 when the supply amount of the low-temperature fluid is reduced, the pumping unit 3 is operated as follows. That is, the low-temperature fluid whose supply amount has been reduced exchanges heat with the heated low-temperature fluid in the heat exchanger 12 before the flow rate decreases (that is, the supply amount is relatively large). Therefore, as for the initial low-temperature fluid whose supply amount is reduced, the temperature of the low-temperature fluid (the temperature at T2 shown in FIG. 7) becomes too high as a result of excessive heating in the heat exchanger 12, and 13 may exceed the temperature range that can be inhaled.
  • the on-off valve 32 is opened, a part of the low-temperature fluid to be supplied is caused to flow to the bypass supply path 31, and the heat exchanger 12 is turned off. Make a detour. A part of the low-temperature fluid bypassing the heat exchanger 12 is supplied to the low-temperature fluid supply path 11 again without being heated by the heat exchanger 12. Then, the fluid merges with the low-temperature fluid heated in the heat exchanger 12 and is sent to the pressure feeding unit 13 as a mixed fluid. Accordingly, it is possible to suppress the temperature of the mixed fluid at T2 from exceeding the temperature range in which the mixed fluid can be sucked into the pumping unit 13.
  • the temperature of the low-temperature fluid heated in the heat exchanger 12 becomes a temperature range in which the low-temperature fluid can be sucked into the pumping unit 13. Will not be exceeded. Therefore, when such a state occurs, the on-off valve 32 is closed to stop a part of the low-temperature fluid from bypassing the heat exchanger 12.
  • the low-temperature fluid having the increased supply amount is heated in the heat exchanger 12 before the flow rate is increased (that is, the supply amount is relatively small). It will exchange heat with the fluid. Therefore, as for the initial low-temperature fluid whose supply amount is increased, the heating in the heat exchanger 12 becomes insufficient. As a result, the temperature of the low-temperature fluid (the temperature at T2 shown in FIG. 7) is too low, and 13 may fall below the temperature range in which it can be inhaled.
  • the opening and closing valve 24 of the circulation fluid supply passage 22 and the opening and closing valve 23 of the branch passage 21 are also opened, so that the circulation fluid supply
  • the circulation fluid is supplied from the passage 22 to the branch passage 21.
  • the circulation fluid supplied to the branch passage 21 is supplied to the low-temperature fluid supply passage 11 on the upstream side of the pumping unit 13.
  • the fluid merges with the low-temperature fluid heated in the heat exchanger 12 and is sent to the pressure feeding unit 13 as a mixed fluid.
  • the temperature of the circulating fluid is preferably higher than that of the low-temperature fluid supplied from the low-temperature fluid supply passage 11, and is set in consideration of the temperature of the low-temperature fluid and the temperature range in which it can be sucked into the pumping unit 13.
  • the supply amount of the circulating fluid is also set in consideration of the temperature of the circulating fluid and the low-temperature fluid, the supply amount of the low-temperature fluid, and the temperature range in which the circulating fluid and the low-temperature fluid can be sucked into the pumping unit 13.
  • the circulation fluid according to the third embodiment is preferably of the same type as the low-temperature fluid supplied from the low-temperature fluid supply path 11.
  • the temperature of the low-temperature fluid heated by the heat exchanger 12 becomes The temperature does not fall below the temperature range in which suction into the section 13 is possible. Therefore, when such a state occurs, the on-off valve 24 and the on-off valve 23 are closed, and the supply of the circulating fluid is stopped.
  • the third embodiment even when the temperature of the low-temperature fluid fluctuates as a result of increasing or decreasing the supply amount of the low-temperature fluid supplied from the low-temperature fluid supply path 11, the supply to the pumping unit 13 is suppressed. It is possible to prevent the temperature from deviating from the temperature range in which inhalation is possible.
  • a first heater 41 for heating the low-temperature fluid may be provided between the on-off valve 15 and the heat exchanger 12 in the low-temperature fluid supply path 11.
  • a second heater 42 for heating the low-temperature fluid heated in the heat exchanger 12 may be provided between the heat exchanger 12 and the pumping unit 13 in the low-temperature fluid supply path 11.
  • a first cooler 43 for cooling the low-temperature fluid discharged from the pumping unit 13 may be provided between the pumping unit 13 and the heat exchanger 12 in the delivery path 14. Good. Accordingly, even when the heated low-temperature fluid discharged from the pumping unit 13 exceeds the heat-resistant temperature of the heat exchanger 12, the first cooler 43 cools the low-temperature fluid, so that the heat exchanger 12 Below the heat resistant temperature of
  • a second cooler 44 for cooling the low-temperature fluid after the heat exchange in the heat exchanger 12 is provided between the heat exchanger 12 and the on-off valve 17 in the delivery path 14. You may. Thereby, even when the low-temperature fluid discharged from the pressure feeding unit 13 is not sufficiently cooled by heat exchange in the heat exchanger 12 with the low-temperature fluid flowing through the low-temperature fluid supply path 11, it is cooled by the second cooler 44. As a result, it is possible to prevent adverse effects in subsequent processes.
  • any one of the first heater 41, the second heater 42, the first cooler 43, and the second cooler 44 may be provided in the pumping units 1 to 3, or an arbitrary plurality of them may be combined. May be provided.
  • the on-off valve 17 provided on the delivery path 14 downstream of the second cooler 44 controls the opening and closing of the on-off valve 17 to supply and stop the low-temperature fluid to the subsequent process.
  • the low-pressure fluid pumping unit exemplified in the above description can omit the installation of a heater or a cooler, and for example, pumps the nitrogen gas in a supercooling device using nitrogen gas.
  • a heater or a cooler for example, pumps the nitrogen gas in a supercooling device using nitrogen gas.
  • a separation apparatus for separating cryogenically carbon monoxide from a mixed gas of carbon monoxide and hydrogen using nitrogen gas as a refrigerant it can be suitably used as a unit for pumping the nitrogen gas. .
  • Example 1 Using the configuration of the pumping unit 3 shown in FIG. 6, a simulation regarding the pumping of nitrogen gas was performed. For the simulation, Pro / II manufactured by Schneider Electric, which is a general-purpose process simulation, was used. Peng-Robinson equation of state was used for the physical estimation method.
  • the heat exchange amount was set to 4,619 kcal / hr.
  • Example 2 In Example 2, the temperature (T1) of the nitrogen gas was changed to ⁇ 100 ° C. Except for this, a nitrogen gas pumping simulation was performed in the same manner as in Example 1. Table 1 shows the results.
  • Example 3 Using the configuration of the pumping unit 1 shown in FIG. 1, a simulation regarding the pumping of nitrogen gas was performed. For the simulation, Pro / II manufactured by Schneider Electric, which is a general-purpose process simulation, was used. Peng-Robinson equation of state was used for the physical estimation method.
  • the heat exchange amount was set to 4,619 kcal / hr as in the case of the first embodiment.
  • Example 4 Using the configuration of the pumping unit 2 shown in FIG. 3, a simulation regarding the pumping of nitrogen gas was performed. For the simulation, Pro / II manufactured by Schneider Electric, which is a general-purpose process simulation, was used. Peng-Robinson equation of state was used for physical estimation.
  • the heat exchange amount was set to 4,619 kcal / hr as in the case of the first embodiment.
  • the nitrogen gas which was extremely low at the start of the supply, was heated to ⁇ 20 ° C. when sucked into the vacuum pump. It was shown that it could be done. Further, the temperature of the nitrogen gas discharged from the vacuum pump was 150 ° C. in all cases, but the temperature was reduced to 0 ° C. in the first embodiment by the heat exchange with the nitrogen gas before heating in the heat exchanger. Showed that it could be cooled to 70 ° C.
  • the low temperature immediately before being supplied to the vacuum pump can be obtained without installing a heater upstream of the vacuum pump or installing a cooler downstream of the vacuum pump. It has been confirmed that by exchanging heat with the nitrogen gas discharged from the vacuum pump and the nitrogen gas discharged from the vacuum pump, pressure-feeding can be performed without damaging the vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

真空ポンプへの吸入前の低温流体が有する冷熱と、当該真空ポンプからの吐出後の低温流体が有する温熱とを回収利用することにより、従来必要であった加熱器や冷却器を不要とする低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置を提供する。低温流体を圧送する低温流体の圧送ユニット1は、低温流体を供給する低温流体供給路11と、低温流体供給路11に設けられ、かつ、低温流体を加温する熱交換器12と、低温流体供給路11における熱交換器12の下流側に設けられ、かつ、当該熱交換器12により加温された低温流体を圧送する圧送部13と、圧送部13から圧送される低温流体を、熱交換器12を介して送出する送出路14とを備え、熱交換器12における低温流体の加温は、送出路14を流れる加温後の低温流体との熱交換により、圧送部13が低温流体の吸入可能な温度域に到達するように行う。

Description

低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置
 本発明は、低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置に関し、より詳細には、窒素ガス等の低温流体を、真空ポンプ等の圧送部を用いて圧送させる低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置に関する。
 一般に、冷却冷媒を用いた冷却システムは、様々な装置に応用されている。例えば、超電導ケーブル、超電導変圧器、超電導モーター、超電導限流器及び超電導電力貯蔵器等の超電導部材では、超電導特性を維持するために極低温状態を維持する必要がある。そこで、超電導部材は、前記冷却システムを用いて冷却することにより極低温状態を維持している。また、例えば、一酸化炭素を含む原料ガスから当該一酸化炭素を深冷分離する分離装置においても、原料ガス等を冷却するために、前記冷却システムが用いられる。
 前者については、超電導ケーブルを冷却するためのシステムとして、液冷媒循環冷却システムが開示されている(特許文献1)。このシステムでは、冷却用液冷媒である冷却用液体窒素を循環させる冷却用液冷媒循環路と、この冷却用液冷媒循環路を流れる冷却用液体窒素を冷却するための熱交換ユニットとが設けられている。また、冷却用液冷媒循環路では、超電導ケーブルを過冷却状態の冷却用液体窒素で吸熱により冷却し、吸熱後の冷却用液体窒素を熱交換ユニットで熱交換して放熱し、再び過冷却状態にした後、再度超電導ケーブルを冷却する循環冷却が採用されている。そして、熱交換ユニットは、冷却用液体窒素の過冷却状態を維持するために行われる熱交換を、減圧下で温度を低下させた熱交換用液体窒素との間で行っている。
 ここで、減圧に使用される減圧用ポンプとしては、例えば真空ポンプ等が挙げられる。しかし、真空ポンプが吸入可能な流体の温度は、一般的に常温~-20℃程度の範囲である。従って、熱交換用液体窒素の温度がこの温度範囲よりも低い場合には、当該熱交換用液体窒素を真空ポンプに吸入させるために常温付近まで加温する必要があり、特許文献1ではヒーターが設けられている。尚、熱交換用液体窒素は減圧用ポンプにより排出されており、冷却用液体窒素との熱交換により冷熱を取り出すだけのために利用されている。熱交換用液体窒素の再利用は考慮されていない。
 一方、真空ポンプにより吸収した熱交換用液体窒素を吐出する際には、当該熱交換用液体窒素を圧縮する際に生じる圧縮熱に起因して、その吐出温度が高くなる。例えば、吸入温度が常温付近であっても、真空ポンプの運転状況(例えば、常時運転等)によって、吐出温度が100℃以上にまで上昇することがある。従って、真空ポンプから吐出される熱交換用液体窒素を任意の目的で有効利用したい場合には、吐出後の熱交換用液体窒素の冷却が必要となる。その結果、図10に示すように、真空ポンプを用いて低温の熱交換用液体窒素を圧送したい場合には、当該真空ポンプの上流側に加熱器を設けて吸入温度を上昇させると共に、その下流側に冷却器を設けて吐出温度を低下させる必要がある。
 また、後者については、一酸化炭素の深冷分離装置において、窒素ガスを循環させる冷却装置を並設することで、原料ガス等の冷却を行うシステムが挙げられる。このシステムでは、冷却装置は、原料ガスを冷却して一酸化炭素を分離するために用いられる。より具体的には、冷却装置で窒素ガスを循環させながら冷却し、この冷却した窒素ガスとの熱交換により原料ガスの冷却を行う。しかし、窒素ガスを循環させるためには真空ポンプを設ける必要があり、この真空ポンプに対しては、超電導部材における冷却システムの場合と同様、図10に示すような加熱器や冷却器が必要になる。
特開2008-27780号公報
 本発明は前記問題点に鑑みなされたものであり、その目的は、真空ポンプへの吸入前の低温流体が有する冷熱と、当該真空ポンプからの吐出後の低温流体が有する温熱とを回収利用することにより、従来必要であった加熱器や冷却器を不要とする低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置を提供することにある。
 前記従来の課題は、以下に述べる発明により解決される。
 即ち、本発明に係る低温流体の圧送ユニットは、前記の課題を解決する為に、低温流体を圧送する低温流体の圧送ユニットであって、前記低温流体を供給する低温流体供給路と、前記低温流体供給路に設けられ、かつ、前記低温流体を加温する熱交換器と、前記低温流体供給路における前記熱交換器の下流側に設けられ、かつ、当該熱交換器により加温された前記低温流体を圧送する圧送部と、前記圧送部から圧送される前記低温流体を、前記熱交換器を介して送出する送出路とを少なくとも備え、前記熱交換器における前記低温流体の加温は、前記送出路を流れる加温後の低温流体との熱交換により、前記圧送部が前記低温流体の吸入可能な温度域に到達するように行われる。
 前記の構成によれば、低温流体供給路に熱交換器を設けることで、当該低温流体供給路を流れる低温流体が圧送部に吸入される前に、熱交換で加温することができる。これにより、低温流体の温度が極めて低温の場合であっても、圧送部に吸入される前に、吸入可能な温度域内に調節することができる。ここで、圧送部が加温後の低温流体を吐出(圧送)するための送出路は、熱交換器に接続させている。そのため、圧送部から吐出された加温後の低温流体は、熱交換器において、低温流体供給路から供給される低温流体との熱交換に利用することができる。
 すなわち、前記の構成によれば、圧送部を用いて低温流体を圧送する際に、当該圧送部から吐出された加温後の低温流体との熱交換により、圧送部に吸入される前の低温流体を加温するため、低温流体を加熱するための加熱器を圧送部の上流側に設置するのを省略することができる。また、圧送部から吐出される加温後の低温流体も、当該圧送部に供給される加温前の低温流体との熱交換に利用されるため、圧送部の下流側に冷却器を設置するのを省略することができる。尚、例えば、圧送部が真空ポンプである場合、真空ポンプから吐出される低温流体は、当該真空ポンプで低温流体を圧縮する際に生じる圧縮熱によって加温される。そのため、圧送部から吐出される低温流体は、熱交換器による加温後のものよりもさらに高温にすることができる。
 前記構成において、前記低温流体供給路における前記熱交換器と前記圧送部との間には、前記送出路から分岐した分岐路が接続され、これにより前記低温流体供給路、前記送出路及び前記分岐路で構成される循環路が形成されており、さらに、前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかには、前記循環路を循環させる循環用流体の供給のための循環用流体供給路が接続されていることが好ましい。
 圧送ユニットの稼働の初期段階においては、圧送部から吐出される低温流体の温度(すなわち、吐出温度)が低い場合がある。そのため、稼働の初期段階においては、低温流体供給路から供給される低温流体の加温のために、圧送部から吐出された加温後の低温流体を用いた熱交換器での熱交換が十分でないときがある。しかし前記の構成であると、低温流体の供給前に、低温流体供給路、送出路及び分岐路からなる循環路に循環用流体を循環させることで、圧送部での循環用流体の吐出温度を十分に高くしておくことができる。これにより、低温流体の供給開始直後から、十分に加温された循環用流体との熱交換が熱交換器で可能になる。その結果、低温流体の供給開始直後でも、低温流体の温度を圧送部が吸入可能な温度域内に調整することができ、加熱器の設置を不要にする。
 また、低温流体供給路から供給される低温流体の流量が変動(増大)した場合、熱交換器により加温された低温流体の温度が、圧送部の吸入可能な温度域を下回ることがある。すなわち、低温流体供給路から供給される低温流体の流量が、圧送部から吐出された加温後の低温流体の流量と比べて多い場合、熱交換器での熱交換が不十分となり、低温流体の加温が不十分な場合がある。しかし、前記の構成であると、予め一定温度以上に加温された循環用流体を、循環用流体供給路から低温流体供給及び/又は分岐路に供給することが可能になる。これにより、圧送部には、低温流体と、一定温度以上に加温された循環用流体との混合流体であって、当該圧送部が吸入可能な温度域の温度を有するものを吸入させることができる。その結果、供給される低温流体の流量が変動(増大)する場合にも、圧入部に吸入させる流体の温度が、当該圧入部の吸入可能な温度域を下回らない様に調整することが可能になる。
 また前記構成において、前記熱交換器の上流側で前記低温流体供給路から分岐し、かつ、当該熱交換器の下流側で当該低温流体供給路に合流する迂回供給路が設けられ、又は、前記低温流体供給路における前記熱交換器と前記圧送部との間で、他の低温流体を供給するための他の低温流体供給路が接続されており、前記熱交換器により加温される前記低温流体に、前記迂回供給路又は他の低温流体供給路から供給される前記低温流体又は前記他の低温流体を合流させて前記圧送部に供給するのが好ましい。
 低温流体供給路から供給される低温流体の流量が変動(減少)した場合、熱交換器により加温された低温流体の温度が、圧送部の吸入可能な温度域を超えることがある。すなわち、低温流体供給路から供給される低温流体の流量が、圧送部から吐出された加温後の低温流体の流量と比べて少ない場合、熱交換器での熱交換が過度となり、供給される低温流体の温度が圧送部の吸入可能な温度域を超えることがある。しかし前記の構成に於いては、低温流体供給路に、熱交換器を迂回することが可能な迂回供給路が設けられる。又は、低温流体供給路における熱交換器と圧送部との間に、他の低温流体を供給するための他の低温流体供給路が設けられる。これにより、圧送部には、熱交換器により加温された低温流体と、熱交換器により加温されることなく迂回供給路を経由して供給される低温流体との混合流体、又は熱交換器により加温された低温流体と、熱交換器により加温されることなく他の低温流体供給路から供給される他の低温流体との混合流体を吸入させることができる。その結果、供給される低温流体の流量が変動(減少)する場合にも、圧送部に吸入させる低温流体の温度が、当該圧送部の吸入可能な温度域を超えない様に調整することが可能になる。
 本発明の低温流体の圧送方法は、前記課題を解決するために、低温流体の圧送ユニットを用いた低温流体の圧送方法であって、前記低温流体の圧送ユニットは、前記低温流体を供給する低温流体供給路と、前記低温流体供給路に設けられ、かつ、前記低温流体を加温する熱交換器と、前記低温流体供給路における前記熱交換器の下流側に設けられ、かつ、当該熱交換器により加温された前記低温流体を圧送する圧送部と、前記圧送部から圧送される前記低温流体を、前記熱交換器を介して送出する送出路とを少なくとも備えるものであり、前記低温流体供給路により供給される前記低温流体を、前記熱交換器を用いて加温し、加温された前記低温流体を、前記圧送部を用いて前記送出路より圧送させるものであり、前記熱交換器における前記低温流体の加温は、前記送出路を流れる加温後の低温流体との熱交換により、前記圧送部が前記低温流体の吸入可能な温度域に到達するように行われる。
 前記の構成によれば、低温流体供給路には熱交換器が設けられているので、当該低温流体供給路を流れる低温流体が圧送部に吸入される前に、熱交換で加温することができる。これにより、低温流体の温度が極めて低温の場合であっても、圧送部に吸入される前に、吸入可能な温度域内に調節することができる。ここで、圧送部が加温後の低温流体を吐出(圧送)するための送出路は、熱交換器に接続されている。そのため、圧送部から吐出された加温後の低温流体は、熱交換器において、低温流体供給路から供給される低温流体との熱交換に利用することができる。
 すなわち、前記の構成によれば、圧送部を用いて低温流体を圧送する際に、当該圧送部から吐出された加温後の低温流体との熱交換により、圧送部に吸入される前の低温流体を加温する。そのため、前記の構成に於いては、圧送部の上流側で、吸入前の低温流体を加温することを省略することができる。また、圧送部から吐出される加温後の低温流体も、当該圧送部に供給される加温前の低温流体との熱交換に利用される。そのため、前記の構成に於いては、圧送部の下流側で、吐出後の加温された低温流体を冷却することも省略することができる。尚、例えば、圧送部が真空ポンプである場合、真空ポンプから吐出される低温流体は、当該真空ポンプで低温流体を圧縮する際に生じる圧縮熱によって加温される。そのため、圧送部から吐出される低温流体は、熱交換器による加温後のものよりもさらに高温になる場合がある。
 前記の構成に於いて、前記低温流体供給路における前記熱交換器と前記圧送部との間には、前記送出路から分岐した分岐路が接続されており、これにより前記低温流体供給路、前記送出路及び前記分岐路で構成される循環路が形成され、さらに、前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかには、前記循環路を循環させる循環用流体の供給のための循環用流体供給路が接続されており、前記低温流体供給路からの前記低温流体の供給開始前に、前記循環用流体供給路から前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかに前記循環用流体を供給し、前記循環用流体供給路から供給された循環用流体を前記循環路に循環させるものであり、前記循環用流体の循環は、前記低温流体供給路から前記低温流体を供給した場合に、当該低温流体に対し、前記熱交換器での循環用流体との熱交換により、前記圧送部が前記低温流体の吸入を可能にする温度域に到達するまで行われることが好ましい。
 圧送ユニットの稼働の初期段階においては、圧送部から吐出される低温流体の温度(吐出温度)が低い場合がある。そのため、稼働の初期段階においては、低温流体供給路から供給される低温流体の加温のために、圧送部から吐出される加温後の低温流体を用いた熱交換器での熱交換が十分でないときがある。しかし前記の構成であると、低温流体の供給前に、低温流体供給路、送出路及び分岐路からなる循環路に循環用流体を循環させることで、圧送部での循環用流体の吐出温度を十分に高くしておくことができる。これにより、低温流体の供給開始直後から、十分に加温された循環用流体との熱交換が熱交換器で可能になる。その結果、低温流体の供給開始直後でも、低温流体の温度を圧送部が吸入可能な温度域内に調整することができ、圧送部への吸入前の低温流体に対して、その加熱を不要にする。
 さらに前記の構成に於いては、前記熱交換器の上流側で前記低温流体供給路から分岐し、かつ、当該熱交換器の下流側で当該低温流体供給路に合流する迂回供給路が設けられ、又は、前記低温流体供給路における前記熱交換器と前記圧送部との間に、他の低温流体を供給するための他の低温流体供給路が接続されており、前記熱交換器により加温される前記低温流体の温度が、前記圧送部の吸入可能な温度域を越える場合に、前記迂回供給路又は他の低温流体供給路から供給される前記低温流体又は前記他の低温流体を、当該熱交換器により加温された前記低温流体に合流させて混合流体とし、前記混合流体の温度を、前記圧送部が吸入可能な温度域内にして前記圧送部に供給することが好ましい。
 低温流体供給路から供給される低温流体の流量が変動(減少)した場合、熱交換器により加温された低温流体の温度が、圧送部の吸入可能な温度域を超えることがある。すなわち、低温流体供給路から供給される低温流体の流量が、圧送部から吐出された加温後の低温流体の流量と比べて少ない場合、熱交換器での熱交換が過度となり、供給される低温流体の温度が圧送部の吸入可能な温度域を超えることがある。しかし前記の構成に於いては、供給される低温流体の一部について熱交換器を迂回させた後、熱交換器で熱交換された低温流体と再び合流させて圧送部に供給する。又は、熱交換器で熱交換された低温流体に、他の低温流体を合流させて圧送部に供給する。これにより、前記の構成に於いては、供給される低温流体の流量が変動(減少)する場合にも、圧送部に吸入させる低温流体の温度が、当該圧送部の吸入可能な温度域を超えない様に調整することが可能になる。
 また前記の構成に於いては、前記熱交換器により加温される前記低温流体の温度が、前記圧送部の吸入可能な温度域を下回る場合に、前記循環用流体供給路から供給される前記循環用流体を、前記熱交換器により加温された前記低温流体に合流させて混合流体とし、前記混合流体の温度を、前記圧送部が吸入可能な温度域内にして前記圧送部に供給することが好ましい。
 例えば、低温流体供給路から供給される低温流体の流量が変動(増大)した場合、熱交換器により加温された低温流体の温度が、圧送部の吸入可能な温度域を下回ることがある。すなわち、低温流体供給路から供給される低温流体の流量が、圧送部から吐出された加温後の低温流体の流量と比べて多い場合、熱交換器での熱交換が不十分となり、低温流体の加温が不十分になることがある。しかし、前記の構成であると、予め一定温度以上に加温された循環用流体を低温流体と合流させて混合流体とすることで、圧送部が吸入可能な温度域の温度にすることができる。これにより、前記の構成に於いては、供給される低温流体の流量が変動(増大)する場合にも、圧送部に吸入させる低温流体の温度が、当該圧送部の吸入可能な温度域を下回らない様に調整することが可能になる。
 本発明の装置は、前記の課題を解決する為に、前記低温流体の圧送ユニットを備えることを特徴とする。
 前記の構成によれば、例えば、加熱器や冷却器を省略しても、窒素ガスを良好に圧送することが可能な窒素ガスの過冷却装置を提供することができる。また、一酸化炭素を含む原料ガスから一酸化炭素を深冷分離する分離装置においては、冷媒としての窒素ガスを加熱器や冷却器なしに圧送可能な構成とすることができる。
 本発明は、前記に説明した手段により、以下に述べるような効果を奏する。
 本発明によれば、真空ポンプ等の圧送部への吸入前の低温流体が有する冷熱と、当該真空ポンプからの吐出後の低温流体が有する温熱とを、熱交換器を用いて熱交換することにより、圧送部に吸入させる低温流体の温度を吸入可能な温度域にまで到達させることが可能になる。その結果、従来必要であった、圧送部の上流側の加熱器や下流側の冷却器を省略することが可能な低温流体の圧送ユニット、低温流体の圧送方法、及び当該圧送ユニットを備えた装置を提供することができる。
本発明の実施の形態1に係る圧送ユニットを表す概略系統図である。 前記圧送ユニットを用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。 本発明の実施の形態2に係る圧送ユニットを表す概略系統図である。 前記圧送ユニットを用いた低温流体の圧送方法における循環用流体の流動状態を表す概略系統図である。 前記圧送ユニットを用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。 本発明の実施の形態3に係る圧送ユニットを表す概略系統図である。 前記圧送ユニットを用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。 前記圧送ユニットを用いた低温流体の圧送方法における低温流体及び循環用流体の流動状態を表す概略系統図である。 本発明の他の実施の形態に係る圧送ユニットを表す概略系統図である。 真空ポンプを用いて低温流体を送出する従来の圧送ユニットを表す説明図である。
 (実施の形態1)
 <低温流体の圧送ユニット>
 本実施の形態1に係る低温流体の圧送ユニット(以下、「圧送ユニット」という。)について、図1を参照しながら以下に説明する。図1は、実施の形態1に係る圧送ユニットを表す概略系統図である。尚、説明に不要な部分は省略し、また説明を容易にする為に拡大または縮小等して図示した部分がある。
 図1に示すように、本実施の形態の圧送ユニット1は、低温流体を供給する低温流体供給路11と、低温流体を加温する熱交換器12と、低温流体を圧送する圧送部13と、圧送部13から吐出される低温流体を送出する送出路14とを少なくとも備える。尚、本明細書において「圧送」とは、所定の圧力を作用させながら低温流体を送り出すことを意味する。
 低温流体供給路11は、低温流体を熱交換器12及び圧送部13に供給するための供給路である。低温流体供給路11には、開閉弁15が設けられている。この開閉弁15を開閉制御することにより、熱交換器12及び圧送部13への低温流体の供給とその停止を行う。
 熱交換器12は、低温流体供給路11を流れる低温流体を加温するためのものであり、当該低温流体供給路11に接続されている。熱交換器12は、低温流体供給路11における開閉弁15の下流側に設けられる。熱交換器12の種類としては特に限定されず、公知のものを適宜採用することができる。
 圧送部13は、低温流体を吸入し圧縮を加えて送出路14に送出する。圧送部13は、低温流体供給路11に接続されている。圧送部13としては特に限定されず、例えば、公知の真空ポンプ等を用いることができる。具体的には、例えば、容量移送式真空ポンプ、運動量輸送式真空ポンプ等の気体輸送式真空ポンプや、気体ため込み式真空ポンプが挙げられる。
 送出路14は熱交換器12を経由して、圧送部13から吐出される低温流体を、任意の後段プロセスに送出させる。送出路14が熱交換器12を経由することで、低温流体供給路11を流れる低温流体と、圧送部13から吐出された低温流体との熱交換を可能にしている。
 低温流体の種類としては特に限定されず、例えば、天然ガス、メタンガス、窒素ガス、酸素ガス、アルゴンガス、一酸化炭素ガス、二酸化炭素ガス、ヘリウムガス、水素ガス等が挙げられる。
<低温流体の圧送方法>
 次に、圧送ユニット1を用いた低温流体の圧送方法について、図2を参照しながら以下に説明する。図2は、圧送ユニット1を用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。
 低温流体の圧送は、圧送ユニット1において以下の様に行われる。
先ず、図2に示すように、開閉弁15を開いた状態にし、低温流体供給路11を通じて熱交換器12に対し低温流体を供給する。また、熱交換器12には、圧送部13から吐出された加温後の低温流体が送出路14を介して供給されている(詳細については、後述する。)。
 低温流体供給路11から供給される低温流体の供給量は特に限定されず、適宜必要に応じて設定することができる。但し、低温流体の供給量は、経時的に一定であることが好ましい。
 また、低温流体供給路11から供給される低温流体の温度(すなわち、図1に示す供給時の低温流体の温度T1)は特に限定されず、低温流体の種類や用途等に応じて適宜変更可能である。供給時の低温流体の温度T1は、例えば、低温流体が窒素ガスである場合、通常は、-196℃~-20℃の範囲である。
 熱交換器12では、低温流体供給路11を流れる低温流体と、送出路14を流れる加温後の低温流体との間で熱交換が行われる。これにより、低温流体供給路11を流れる低温流体を、圧送部13が吸入可能な温度域にまで上昇させることが可能になる。例えば、低温流体として極めて低温の窒素ガスを圧送部13に直接吸入させた場合には、窒素ガスの温度が当該圧送部13の吸入可能な温度域を下回ることがある。その結果、圧送部13の故障の原因になり得る。しかし、熱交換器12を用いて窒素ガスを加温することにより、加熱器を設置することなく圧送部13での吸入を可能にする。
 熱交換器12で加温された低温流体の温度(すなわち、図1に示す温度T2)は、その温度が圧送部13の吸入可能な温度域に到達している。そのため、当該低温流体は、支障なく圧送部13に吸入される。圧送部13に吸入された低温流体は、当該圧送部13から吐出される際に圧縮される。その際、圧縮熱が発生し、これにより圧送部13から吐出される低温流体の吐出温度(図1に示す低温流体の温度T3)は、熱交換器12で加温されたときよりもさらに高温になる。
 圧送部13から吐出された低温流体は、さらに加温された状態で送出路14を流れ、熱交換器12に供給される。熱交換器12に供給された加温後の低温流体は、前述の通り、低温流体供給路11を流れる低温流体を加温するために、当該低温流体との間の熱交換に用いられる。これにより、圧送部13から吐出される低温流体を冷却することができるため、圧送部13の下流側で冷却器を設置するのを不要にする。
 さらに、吐出された低温流体は、送出路14に接続されている後段プロセスに供給される。
 以上の通り、本実施の形態1においては、低温流体供給路11から供給される低温流体と、圧送部13から吐出された加温後の低温流体との間で熱交換を行う熱回収システムの機能を備えている。そのため、圧送部13の上流側での加熱器や、圧送部13の下流側での冷却器の設置を不要にすることができる。
 (実施の形態2)
 <低温流体の圧送ユニット>
 本実施の形態2に係る低温流体の圧送ユニットについて、図3を参照しながら以下に説明する。図3は、本発明の実施の形態2に係る圧送ユニットを表す概略系統図である。尚、前記実施の形態1に係る低温流体の圧送ユニット1と同様の機能を有する構成要素については、同一の符号を付して詳細な説明を省略する。
 図3に示すように、本実施の形態2に係る圧送ユニット2は、前記実施の形態1に係る圧送ユニット1の構成に加えて、さらに送出路14から分岐し、かつ低温流体供給路11に連通する分岐路21と、循環用流体を供給する循環用流体供給路22とをさらに備える。また、送出路14における熱交換器12の下流側に、大気や温冷水等との熱交換を可能にする他の熱交換器16を備える。
 分岐路21は、前述の通り、送出路14から分岐して低温流体供給路11に連通することにより、低温流体供給路11と、送出路14と、分岐路21で構成される循環路を形成する。また、分岐路21には開閉弁23が設けられている。この開閉弁23を開閉制御することにより、低温流体の循環路での循環や低温流体供給路11への循環用流体の供給、及びそれらの停止を行う。
 循環用流体供給路22は、循環路を循環させる循環用流体を供給する。循環用流体供給路22は、分岐路21における開閉弁23の上流側の任意の位置で連通している。また、循環用流体供給路22には開閉弁24が設けられている。この開閉弁24を開閉制御することにより、分岐路21への循環用流体の供給とその停止を制御する。
 また、低温流体供給路11における熱交換器12と、分岐路21が当該低温流体供給路11に接続する部分との間には、開閉弁25が設けられている。開閉弁25を開閉制御することにより、圧送部13への循環用流体の供給とその停止を制御する。
 尚、本実施の形態では、循環用流体供給路22は分岐路21に直接連通しているが、本発明はこれに限定されるものではない。例えば、低温流体供給路11及び分岐路21の少なくとも何れかに直接連通させてもよい。但し、循環用流体供給路22を低温流体供給路11に直接連通させる場合、両者を接続させる位置は、開閉弁25と圧送部13の間であることが好ましい。開閉弁25は、循環用流体が供給される際、閉じた状態にあるからである。
 <低温流体の圧送方法>
 次に、圧送ユニット2を用いた低温流体の圧送方法について、図4及び図5を参照しながら以下に説明する。図4は、圧送ユニット2を用いた低温流体の圧送方法における循環用流体の流動状態を表す概略系統図である。図5は、圧送ユニット2を用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。
 本実施の形態の低温流体の圧送方法は、実施の形態1の低温流体の圧送方法と比較して、先ず、低温流体の圧送を行う前に、循環用流体の循環路での循環を行う点が異なる。すなわち、先ず、開閉弁15及び開閉弁25を閉じた状態にし、低温流体供給路11から低温流体が供給されないようにする。
 次に、循環用流体供給路22における開閉弁24を開き、循環用流体が循環用流体供給路22から分岐路21に供給可能な状態にする。また、分岐路21における開閉弁23も開き、圧送部13を稼働させる。これにより、図4に示すように、循環用流体供給路22から循環用流体が分岐路21に初期導入され、次いで、当該循環用流体は低温流体供給路11、送出路14及び分岐路21で構成される循環路を循環する。循環用流体は、循環路を循環する過程で、圧送部13から吐出される毎に、当該循環用流体に加えられる圧縮に起因した圧縮熱により、加温が行われる。
 ここで、循環用流体を循環させる時間は、特に限定されない。少なくとも、圧送部13において、循環用流体が一定の温度以上になるまで加温が行われればよい。一定の温度以上とは、供給開始直後の低温流体が、循環用流体と熱交換器12で熱交換したときに、熱交換後の低温流体が、圧送部13への吸入可能な温度域に到達できる程度にまで加温される温度以上であることを意味する。
 循環用流体供給路22から供給される循環用流体の供給量は特に限定されず、適宜必要に応じて設定することができる。
 また、循環用流体の種類としては特に限定されず、例えば、天然ガス、メタンガス、窒素ガス、酸素ガス、アルゴンガス、一酸化炭素ガス、二酸化炭素ガス、ヘリウムガス、水素ガス等が挙げられる。循環用流体は低温流体と組成が同一であってもよく、異なっていてもよい。
 循環用流体の温度は特に限定されないが、低温流体供給路11から供給される低温流体よりも高い方が好ましい。これにより、循環用流体を循環させる時間の短縮が可能になる。但し、循環用流体の温度の上限は、圧送部13への吸入可能な温度域の上限以下であることが必要である。循環用流体の温度は、通常は-20℃~60℃の範囲内であり、好ましくは0℃~40℃である。
 循環用流体の圧力は、圧送部13の吸込側圧力以上であることが好ましい。循環用流体の圧力が吸込側圧力を下回ると、循環用流体の導入が困難になる。
 循環用流体の加温が十分に行われた後は、分岐路21の開閉弁23及び循環用流体供給路22の開閉弁24を閉じる。また、低温流体供給路11の開閉弁15及び開閉弁25をそれぞれ開き、低温流体の供給を開始する(図5参照)。
 ここで、供給開始の初期段階にある低温流体は、熱交換器12において、加温された循環用流体との間で熱交換が行われる。循環用流体は圧送部13により十分に加温された状態にあるため、これと熱交換された低温流体は、圧送部13への吸入可能な温度域にまで十分に加温させることができる。
 その後、低温流体供給路11から供給される低温流体は、図5に示すように、圧送部13により後段プロセスに圧送される。尚、低温流体の供給開始後の、熱交換器12及び圧送部13等の動作については、実施の形態1で説明したのと同様である。従って、その詳細な説明は省略する。
 以上の通り、本実施の形態2においては、低温流体の圧送ユニット2への供給を行う前に、低温流体供給路11、送出路14及び分岐路21からなる循環路に循環用流体を初期導入して循環させる。そして、循環用流体の循環は、圧送部13から吐出される循環用流体の吐出温度が所定の温度以上となるまで行い、その後に低温流体の供給を開始する。このような低温流体の圧送方法であると、圧送ユニット2の稼働の初期状態においても、熱交換器12での低温流体の加温を、圧送部13の吸入可能な温度域にまで確実に行うことができる。
 (実施の形態3)
 <低温流体の圧送ユニット>
 本実施の形態3に係る低温流体の圧送ユニットについて、図6を参照しながら以下に説明する。図6は、本発明の実施の形態3に係る圧送ユニットを表す概略系統図である。尚、前記実施の形態1に係る低温流体の圧送ユニット1及び前記実施の形態2に係る低温流体の圧送ユニット2と同様の機能を有する構成要素については、同一の符号を付して詳細な説明を省略する。
 図6に示すように、本実施の形態3に係る圧送ユニット3は、前記実施の形態2に係る圧送ユニット2の構成に加えて、さらに低温流体供給路11に、熱交換器12を迂回して圧送部13に低温流体を供給する迂回供給路31を備える。
 迂回供給路31は、開閉弁15と熱交換器12との間で低温流体供給路11を分岐した後、当該熱交換器12と開閉弁25の間で低温流体供給路11に合流する。また、迂回供給路31には開閉弁32が設けられている。この開閉弁32を開閉制御することにより、低温流体の一部を、熱交換器12を経由しないで圧送部13に供給し、又はその停止を行う。
 尚、本実施の形態では、熱交換器12を迂回する迂回供給路31を備えた態様を例にして説明したが、本発明はこれに限定されるものではい。例えば、迂回供給路31に代えて、他の低温流体供給路(図示しない)が低温流体供給路11における熱交換器12と開閉弁25との間で連通して接続されるようにしてもよい。この場合、他の低温流体供給路から供給される他の低温流体は、低温流体供給路11から供給される低温流体と同種であることが好ましい。
 <低温流体の圧送方法>
 次に、圧送ユニット3を用いた低温流体の圧送方法について、図7及び図8を参照しながら以下に説明する。図7は、圧送ユニット3を用いた低温流体の圧送方法における低温流体の流動状態を表す概略系統図である。図8は、圧送ユニット3を用いた低温流体の圧送方法における低温流体及び循環用流体の流動状態を表す概略系統図である。
 本実施の形態においては、実施の形態2の低温流体の圧送方法と比較して、低温流体供給路11から供給される低温流体の流量の変動に起因して、圧送部13に吸入される直前の低温流体の温度が変動するのを抑制できる点が異なる。
 すなわち、先ず、開閉弁15及び開閉弁25を開き、低温流体を一定の供給量(流量)で、低温流体供給路11から熱交換器12を経由して圧送部13に供給する。圧送部13は吸入した低温流体を圧送し、圧送された低温流体は熱交換器12を経由して後段プロセスに送り出される。
 ここで、低温流体の供給量を減少させた場合には、圧送ユニット3を次の様に動作させる。すなわち、供給量が減少した低温流体は、熱交換器12で、流量が減少する前の(すなわち、供給量が比較的多い)、加温された低温流体と熱交換を行うことになる。そのため、供給量を減少させた初期の低温流体については、熱交換器12での加温が過度になる結果、低温流体の温度(図7に示すT2での温度)が高くなり過ぎ、圧送部13への吸入可能な温度域を超えることがある。
 従って、低温流体の供給量を減少させた場合には、図7に示すように、開閉弁32を開き、供給する低温流体の一部を迂回供給路31に流動させて、熱交換器12を迂回させる。熱交換器12を迂回した一部の低温流体は、当該熱交換器12で加温されることなく、低温流体供給路11に再び供給される。そして、熱交換器12で加温された低温流体と合流し、混合流体となって圧送部13に送られる。これにより、混合流体のT2における温度が、圧送部13への吸入可能な温度域を超えるのを抑制することができる。
 その後、圧送部13から吐出される低温流体の流量が、低温流体の供給量と同等になると、熱交換器12で加温される低温流体の温度は、圧送部13への吸入可能な温度域を超えることもなくなる。従って、そのような状態になったときは、開閉弁32を閉じ、低温流体の一部が熱交換器12を迂回するのを停止させる。
 一方、低温流体の供給量を増大させた場合、供給量が増大した低温流体は、熱交換器12で、流量が増大する前の(すなわち、供給量が比較的少ない)、加温された低温流体と熱交換を行うことになる。そのため、供給量を増大させた初期の低温流体については、熱交換器12での加温が不十分になる結果、低温流体の温度(図7に示すT2での温度)が低すぎ、圧送部13への吸入可能な温度域を下回ることがある。
 従って、低温流体の供給量を増大させた場合には、図8に示すように、循環用流体供給路22の開閉弁24を開くと共に、分岐路21の開閉弁23も開き、循環用流体供給路22から分岐路21に循環用流体を供給する。分岐路21に供給された循環用流体は、低温流体供給路11における圧送部13の上流側に供給される。そして、熱交換器12で加温された低温流体と合流し、混合流体となって圧送部13に送られる。これにより、混合流体のT2における温度が、圧送部13への吸入可能な温度域を下回るのを抑制することができる。
 ここで、循環用流体の温度は、低温流体供給路11から供給される低温流体よりも高い方が好ましく、低温流体の温度や圧送部13への吸入可能な温度域を考慮して設定される。また、循環用流体の供給量も、当該循環用流体や低温流体の温度、低温流体の供給量、及び圧送部13への吸入可能な温度域を考慮して設定される。
 本実施の形態3に係る循環用流体は、低温流体供給路11から供給される低温流体と同種であることが好ましい。
 その後、圧送部13から吐出される低温流体の流量が、低温流体供給路11から供給される低温流体の供給量と同等になると、熱交換器12で加温される低温流体の温度は、圧送部13への吸入可能な温度域を下回ることもなくなる。従って、そのような状態になったときは、開閉弁24及び開閉弁23を閉じ、循環用流体が供給されるのを停止する。
 以上の通り、本実施の形態3においては、低温流体供給路11から供給する低温流体の供給量を増大又は減少させた結果、当該低温流体の温度が変動する場合にも、圧送部13への吸入可能な温度域を逸脱するのを抑制することができる。
 (その他の事項)
 以上の説明に於いては、本発明の好適な実施態様について説明した。しかし、本発明はこれらの実施態様に限定されるものではなく、その他の形態でも実施可能である。
 例えば、図9に示すように、低温流体供給路11における開閉弁15と熱交換器12との間に、低温流体を加熱するための第1加熱器41を設けてもよい。あるいは、低温流体供給路11における熱交換器12と圧送部13との間に、熱交換器12での加温後の低温流体を加熱するための第2加熱器42を設けてもよい。これにより、熱交換器12での低温流体の加温が不十分な場合にも、圧送部13への吸入直前の低温流体の温度を、当該圧送部13への吸入可能な温度域まで上昇させることが可能になる。
 また、図9に示すように、送出路14における圧送部13と熱交換器12との間に、圧送部13からの吐出後の低温流体を冷却するための第1冷却器43を設けてもよい。これにより、圧送部13から吐出された加温後の低温流体が、熱交換器12の耐熱温度を超える場合にも、第1冷却器43が当該低温流体を冷却することにより、熱交換器12の耐熱温度以下に低減することができる。
 さらに、図9に示すように、送出路14における熱交換器12と開閉弁17との間に、熱交換器12での熱交換後の低温流体を冷却するための第2冷却器44を設けてもよい。これにより、圧送部13からの吐出後の低温流体が、低温流体供給路11を流れる低温流体との熱交換器12での熱交換で十分に冷却されない場合でも、第2冷却器44により冷却される結果、後段プロセスで悪影響を及ぼすのを防止することができる。
 ここで、第1加熱器41、第2加熱器42、第1冷却器43及び第2冷却器44は、何れか1つを圧送ユニット1~3に設けてもよく、又は任意の複数を組み合わせて設けてもよい。尚、送出路14における第2冷却器44の下流側に設けられている開閉弁17は、これを開閉制御することにより、後段プロセスへの低温流体の供給とその停止を行う。
 以上の説明で例示した低温流体の圧送ユニットは、前述の通り、加熱器や冷却器の設置を省略することができるので、例えば、窒素ガスを用いた過冷却装置において、当該窒素ガスを圧送するためのユニットとして好適に用いることができる。また、一酸化炭素と水素の混合ガスから、冷媒としての窒素ガスを用いて、一酸化炭素を深冷分離する分離装置において、当該窒素ガスを圧送するためのユニットとしても好適に用いることができる。
 (実施例1)
 図6に示す圧送ユニット3の構成を用いて、窒素ガスの圧送に関するシミュレーションを行った。シミュレーションには、汎用的なプロセスシミュレーションであるシュナイダーエレクトリック社製のPro/IIを用いた。物理推算法にはPeng-Robinson状態方程式を用いた。
 <シミュレーション条件>
 シミュレーション条件は下記の通りとした。
 低温流体:窒素ガス
 低温流体供給路11から供給される窒素ガスの温度(T1):-170℃
 低温流体供給路11を流れる窒素ガスの流量:100Nm/hr
 また、熱交換器12の性能に関し、熱交換量を4,619kcal/hrとした。
 以上の条件下で、窒素ガスの圧送シミュレーションを行い、窒素ガスの供給開始から一定時間経過した後の圧送ユニット3における各流路での温度及び圧力を算出した。結果を表1に示す。
 (実施例2)
 本実施例2においては、窒素ガスの温度(T1)を-100℃に変更した。それ以外は実施例1と同様にして、窒素ガスの圧送シミュレーションを行った。結果を表1に示す。
 (実施例3)
 図1に示す圧送ユニット1の構成を用いて、窒素ガスの圧送に関するシミュレーションを行った。シミュレーションには、汎用的なプロセスシミュレーションであるシュナイダーエレクトリック社製のPro/IIを用いた。物理推算法にはPeng-Robinson状態方程式を用いた。
 <シミュレーション条件>
 シミュレーション条件は下記の通りとした。
 低温流体:窒素ガス
 低温流体供給路11から供給される窒素ガスの温度(T1):-170℃
 低温流体供給路11を流れる窒素ガスの流量:100Nm/hr
 また、熱交換器12の性能については、実施例1の場合と同様、熱交換量を4,619kcal/hrとした。
 以上の条件下で、窒素ガスの圧送シミュレーションを行い、窒素ガスの供給開始から一定時間経過した後の圧送ユニット1における各流路での温度及び圧力を算出した。結果を表1に示す。
 (実施例4)
 図3に示す圧送ユニット2の構成を用いて、窒素ガスの圧送に関するシミュレーションを行った。シミュレーションには、汎用的なプロセスシミュレーションであるシュナイダーエレクトリック社製のPro/IIを用いた。物理推算法にはPeng-Robinson状態方程式を用いた。
 <シミュレーション条件>
 シミュレーション条件は下記の通りとした。
 低温流体:窒素ガス
 低温流体供給路11から供給される窒素ガスの温度(T1):-190℃
 低温流体供給路11を流れる窒素ガスの流量:100Nm/hr
 また、熱交換器12の性能については、実施例1の場合と同様、熱交換量を4,619kcal/hrとした。
 以上の条件下で、窒素ガスの圧送シミュレーションを行い、窒素ガスの供給開始から一定時間経過した後の圧送ユニット2における各流路での温度及び圧力を算出した。結果を表1に示す。
 (結果)
 実施例1及び2のシミュレーション結果から、本実施例の圧送ユニット3であると、供給開始には極めて低温であった窒素ガスを、真空ポンプに吸入される際にはそれぞれ-20℃に加温できることが示された。また、真空ポンプから吐出される窒素ガスの温度は何れも150℃であったが、熱交換器での加温前の窒素ガスとの熱交換により、実施例1では0℃に、実施例2では70℃に冷却できることが示された。すなわち、実施例1及び2の結果から、真空ポンプの上流側で加熱器を設置しなくとも、また当該真空ポンプの下流側で冷却器を設置しなくとも、真空ポンプに供給される直前の低温の窒素ガスと、真空ポンプから吐出される窒素ガスとを熱交換させることにより、真空ポンプを損なうことなく圧送できることが確認された。
 また、実施例3及び4のシミュレーション結果から、本実施例の圧送ユニット1及び2であると、供給開始には極めて低温であった窒素ガスを、真空ポンプに吸入される際にはそれぞれ0℃に加温できることが示された。また、真空ポンプから吐出される窒素ガスの温度は何れも150℃であったが、熱交換器での加温前の窒素ガスとの熱交換により、実施例3では-20℃に、実施例4では-40℃に冷却できることが示された。すなわち、実施例3及び4の結果から、真空ポンプの上流側で加熱器を設置しなくとも、また当該真空ポンプの下流側で冷却器を設置しなくとも、真空ポンプに供給される直前の低温の窒素ガスと、真空ポンプから吐出される窒素ガスとを熱交換させることにより、真空ポンプを損なうことなく圧送できることが確認された。
Figure JPOXMLDOC01-appb-T000001
1~3 低温流体の圧送ユニット
11 低温流体供給路
12 熱交換器
13 圧送部
14 送出路
15、17、23~25、32 開閉弁
16 他の熱交換器
21 分岐路
22 循環用流体供給路
31 迂回供給路
41 第1加熱器
42 第2加熱器
43 第1冷却器
44 第2冷却器 

Claims (8)

  1.  低温流体を圧送する低温流体の圧送ユニットであって、
     前記低温流体を供給する低温流体供給路と、
     前記低温流体供給路に設けられ、かつ、前記低温流体を加温する熱交換器と、
     前記低温流体供給路における前記熱交換器の下流側に設けられ、かつ、当該熱交換器により加温された前記低温流体を圧送する圧送部と、
     前記圧送部から圧送される前記低温流体を、前記熱交換器を介して送出する送出路とを少なくとも備え、
     前記熱交換器における前記低温流体の加温は、前記送出路を流れる加温後の低温流体との熱交換により、前記圧送部が前記低温流体の吸入可能な温度域に到達するように行われる低温流体の圧送ユニット。
  2.  前記低温流体供給路における前記熱交換器と前記圧送部との間には、前記送出路から分岐した分岐路が接続され、これにより前記低温流体供給路、前記送出路及び前記分岐路で構成される循環路が形成されており、
     さらに、前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかには、前記循環路を循環させる循環用流体の供給のための循環用流体供給路が接続されている請求項1に記載の低温流体の圧送ユニット。
  3.  前記熱交換器の上流側で前記低温流体供給路から分岐し、かつ、当該熱交換器の下流側で当該低温流体供給路に合流する迂回供給路が設けられ、
     又は、前記低温流体供給路における前記熱交換器と前記圧送部との間で、他の低温流体を供給するための他の低温流体供給路が接続されており、
     前記熱交換器により加温される前記低温流体に、前記迂回供給路又は他の低温流体供給路から供給される前記低温流体又は前記他の低温流体を合流させて前記圧送部に供給する請求項1又は2に記載の低温流体の圧送ユニット。
  4.  低温流体の圧送ユニットを用いた低温流体の圧送方法であって、
     前記低温流体の圧送ユニットは、
     前記低温流体を供給する低温流体供給路と、
     前記低温流体供給路に設けられ、かつ、前記低温流体を加温する熱交換器と、
     前記低温流体供給路における前記熱交換器の下流側に設けられ、かつ、当該熱交換器により加温された前記低温流体を圧送する圧送部と、
     前記圧送部から圧送される前記低温流体を、前記熱交換器を介して送出する送出路とを少なくとも備えるものであり、
     前記低温流体供給路により供給される前記低温流体を、前記熱交換器を用いて加温し、
     加温された前記低温流体を、前記圧送部を用いて前記送出路より圧送させるものであり、
     前記熱交換器における前記低温流体の加温は、前記送出路を流れる加温後の低温流体との熱交換により、前記圧送部が前記低温流体の吸入可能な温度域に到達するように行われる低温流体の圧送方法。
  5.  前記低温流体供給路における前記熱交換器と前記圧送部との間には、前記送出路から分岐した分岐路が接続されており、これにより前記低温流体供給路、前記送出路及び前記分岐路で構成される循環路が形成され、
     さらに、前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかには、前記循環路を循環させる循環用流体の供給のための循環用流体供給路が接続されており、
     前記低温流体供給路からの前記低温流体の供給開始前に、前記循環用流体供給路から前記低温流体供給路、前記送出路及び前記分岐路の少なくとも何れかに前記循環用流体を供給し、
     前記循環用流体供給路から供給された循環用流体を前記循環路に循環させるものであり、
     前記循環用流体の循環は、前記低温流体供給路から前記低温流体を供給した場合に、当該低温流体に対し、前記熱交換器での循環用流体との熱交換により、前記圧送部が前記低温流体の吸入を可能にする温度域に到達するまで行われる請求項4に記載の低温流体の圧送方法。
  6.  前記熱交換器の上流側で前記低温流体供給路から分岐し、かつ、当該熱交換器の下流側で当該低温流体供給路に合流する迂回供給路が設けられ、
     又は、前記低温流体供給路における前記熱交換器と前記圧送部との間に、他の低温流体を供給するための他の低温流体供給路が接続されており、
     前記熱交換器により加温される前記低温流体の温度が、前記圧送部の吸入可能な温度域を越える場合に、前記迂回供給路又は他の低温流体供給路から供給される前記低温流体又は前記他の低温流体を、当該熱交換器により加温された前記低温流体に合流させて混合流体とし、
     前記混合流体の温度を、前記圧送部が吸入可能な温度域内にして前記圧送部に供給する請求項4又は5に記載の低温流体の圧送方法。
  7.  前記熱交換器により加温される前記低温流体の温度が、前記圧送部の吸入可能な温度域を下回る場合に、
     前記循環用流体供給路から供給される前記循環用流体を、前記熱交換器により加温された前記低温流体に合流させて混合流体とし、
     前記混合流体の温度を、前記圧送部が吸入可能な温度域内にして前記圧送部に供給する請求項5に記載の低温流体の圧送方法。
  8.  請求項1~3の何れか1項に記載の低温流体の圧送ユニットを備えた装置。
PCT/JP2019/030584 2018-08-17 2019-08-02 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置 WO2020036084A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980050719.7A CN112543854B (zh) 2018-08-17 2019-08-02 低温流体的加压输送组件、低温流体的加压输送方法及具备低温流体的加压输送组件的装置
KR1020217007072A KR20210046012A (ko) 2018-08-17 2019-08-02 저온 유체의 압송 유닛, 저온 유체의 압송 방법, 및 저온 유체의 압송 유닛을 구비한 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018153611 2018-08-17
JP2018-153611 2018-08-17
JP2019-124108 2019-07-03
JP2019124108A JP7237755B2 (ja) 2018-08-17 2019-07-03 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置

Publications (1)

Publication Number Publication Date
WO2020036084A1 true WO2020036084A1 (ja) 2020-02-20

Family

ID=69524782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030584 WO2020036084A1 (ja) 2018-08-17 2019-08-02 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置

Country Status (1)

Country Link
WO (1) WO2020036084A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421616A (en) * 1977-07-18 1979-02-19 Karoriku G Fuyuuru Aparatebao Transportation method of and facility for utility gas* particularly natural gas
JP2005030318A (ja) * 2003-07-07 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン
JP2005171903A (ja) * 2003-12-11 2005-06-30 Smc Corp 流体回路システム
JP2008075893A (ja) * 2006-09-19 2008-04-03 Hitachi Ltd 極低温冷却システム
JP2018501439A (ja) * 2014-11-10 2018-01-18 ギャズトランスポルト エ テクニギャズ 液化ガスを冷却するための装置および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421616A (en) * 1977-07-18 1979-02-19 Karoriku G Fuyuuru Aparatebao Transportation method of and facility for utility gas* particularly natural gas
JP2005030318A (ja) * 2003-07-07 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン
JP2005171903A (ja) * 2003-12-11 2005-06-30 Smc Corp 流体回路システム
JP2008075893A (ja) * 2006-09-19 2008-04-03 Hitachi Ltd 極低温冷却システム
JP2018501439A (ja) * 2014-11-10 2018-01-18 ギャズトランスポルト エ テクニギャズ 液化ガスを冷却するための装置および方法

Similar Documents

Publication Publication Date Title
US11300322B2 (en) Waste-heat recovery system in oil-cooled gas compressor
US11821657B2 (en) Waste-heat recovery system in oil-cooled gas compressor
WO2006030779A1 (ja) 熱ポンプ、熱ポンプシステム及びランキンサイクル
CN105358920B (zh) 用于使用环境兼容的制冷剂的热泵
US10401070B2 (en) Constant temperature liquid circulation apparatus and temperature adjustment method for constant temperature liquid
US11825630B2 (en) Cooling system
JP2016079894A (ja) 熱回収システム
WO2020036084A1 (ja) 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置
CN107702336B (zh) 热回收系统
JP2007139415A (ja) ヒートポンプ式給湯器
JP7237755B2 (ja) 低温流体の圧送ユニット、低温流体の圧送方法、及び低温流体の圧送ユニットを備えた装置
JP7411929B2 (ja) 冷凍装置
WO2019127009A1 (zh) 空气分离设备中供应后备产品的系统及方法
KR102279906B1 (ko) 가스 압축기 시스템
KR102212854B1 (ko) 조수기 열원 공급용 열매체 순환 시스템 및 그것의 운전 방법
JP6582316B2 (ja) シーリングガス供給装置
TW201805529A (zh) 空氣壓縮系統
CN107269598B (zh) 油冷机
JP2003269813A (ja) ヒートポンプシステム
CN201833566U (zh) 一种冷热一体模温机
JPWO2021053965A5 (ja)
CN105143790B (zh) 用于冷却马达的方法和设备
JP2002213366A (ja) Bog圧縮機の起動時の運転制御方法
JP5228170B2 (ja) 温度制御装置
KR20170051749A (ko) 가스 압축기 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007072

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19850168

Country of ref document: EP

Kind code of ref document: A1