WO2020035911A1 - 空調装置、制御装置、空調方法及びプログラム - Google Patents

空調装置、制御装置、空調方法及びプログラム Download PDF

Info

Publication number
WO2020035911A1
WO2020035911A1 PCT/JP2018/030329 JP2018030329W WO2020035911A1 WO 2020035911 A1 WO2020035911 A1 WO 2020035911A1 JP 2018030329 W JP2018030329 W JP 2018030329W WO 2020035911 A1 WO2020035911 A1 WO 2020035911A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
mode
unit
sensible heat
Prior art date
Application number
PCT/JP2018/030329
Other languages
English (en)
French (fr)
Inventor
怜司 森岡
恵美 竹田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019525915A priority Critical patent/JP6701449B1/ja
Priority to PCT/JP2018/030329 priority patent/WO2020035911A1/ja
Publication of WO2020035911A1 publication Critical patent/WO2020035911A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present invention relates to an air conditioner, a control device, an air conditioning method, and a program.
  • Patent Literature 1 discloses an air conditioner that corrects a set temperature according to a calendar and an outside air temperature, and changes an operation mode of heating, dehumidification, and cooling according to a difference between the set temperature and the indoor temperature.
  • Patent Literature 2 discloses an air conditioner that switches between a first dehumidifying operation and a second dehumidifying operation in accordance with a difference between the humidity of an air-conditioned space and a target humidity.
  • the present invention has been made to solve the above-described problems, and has as its object to provide an air conditioner and the like that can improve comfort in an air-conditioned space.
  • an air conditioner comprises: Air-conditioning means for air-conditioning the air-conditioned space; Acquiring means for acquiring the temperature of the air-conditioned space; The operation mode is switched between a first mode and a second mode depending on whether the index value based on the temperature acquired by the acquisition means is greater than a threshold value, and the air conditioning means is provided with the air conditioning space.
  • Air-conditioning control means for air-conditioning the Correction means for correcting the threshold value according to the temperature acquired by the acquisition means.
  • the air conditioning space is air-conditioned by switching the operation mode between the first mode and the second mode depending on whether the index value based on the temperature of the air-conditioned space is larger than a threshold value.
  • the threshold is corrected according to the temperature of the space. Therefore, comfort in the air-conditioned space can be improved.
  • FIG. 2 is a block diagram illustrating a hardware configuration of an outdoor unit control unit according to the first embodiment.
  • Flow chart showing a flow of a control process in a blowing mode executed by the air conditioner according to Embodiment 1.
  • FIG. 3 is a block diagram showing a functional configuration of an outdoor unit control unit according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a relationship between a heat load and an operation mode according to the first embodiment.
  • FIG. 9 is a diagram showing a first example of a notification screen of a driving mode according to the first embodiment.
  • FIG. 10 is a diagram showing a second example of a notification screen of a driving mode according to the first embodiment.
  • FIG. 10 is a diagram illustrating a third example of a notification screen of the operation mode according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of history information according to the fourth embodiment.
  • (A) to (c) are approximation straight lines indicating the relationship between the temperature difference between the room temperature and the outside air temperature and the air conditioning capacity, approximation straight lines for each heat insulation performance, and approximation straight lines for each internal heating value in the fourth embodiment.
  • FIG. 15 is a diagram showing a relationship between a temperature difference between room temperature and outside air temperature and first and second sensible heat threshold values in the fifth embodiment. The figure which shows the whole structure of the air conditioning system which concerns on the modification of this invention.
  • the steps of writing a program that performs the operation of the embodiment of the present invention are processes performed in chronological order according to the described order, but are not necessarily performed in chronological order, but are executed in parallel or individually. May be included.
  • Embodiments of the present invention may be implemented alone or in combination. In any case, the advantageous effects described below can be obtained. Various specific settings and flags described in the embodiments are merely examples, and the present invention is not particularly limited to these.
  • a system refers to an entire device including a plurality of devices or an entire function including a plurality of functions.
  • FIG. 1 shows an air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner 1 is a facility that air-conditions an indoor space 71 that is an air-conditioned space.
  • Air conditioning refers to adjusting the temperature, humidity, cleanliness, airflow, and the like of air in an air-conditioned space, and specifically includes heating, cooling, dehumidifying, humidifying, and air cleaning.
  • the air conditioner 1 is installed in a house 3.
  • the house 3 is a so-called general detached house building as an example.
  • the air conditioner 1 is a heat pump type air conditioner using, for example, CO 2 (carbon dioxide), HFC (hydrofluorocarbon), or the like as a refrigerant.
  • the air conditioner 1 is equipped with a vapor compression refrigeration cycle, and operates by receiving electric power from a not-shown commercial power supply, power generation equipment, power storage equipment, and the like.
  • the air conditioner 1 includes an outdoor unit 11 provided outside the house 3, an indoor unit 13 provided inside the house 3, and a remote controller 55 operated by a user.
  • the outdoor unit 11 and the indoor unit 13 are connected via a refrigerant pipe 61 through which a refrigerant flows, and a communication line 63 through which various signals are transferred.
  • the air conditioner 1 cools the indoor space 71 by blowing out conditioned air, for example, cool air from the indoor unit 13, and heats the indoor space 71 by blowing out hot air.
  • the outdoor unit 11 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an expansion valve 24, an outdoor blower 31, and an outdoor unit control unit 51.
  • the indoor unit 13 includes an indoor heat exchanger 25, indoor blowers 33a and 33b, and an indoor unit control unit 53.
  • the refrigerant pipe 61 annularly connects the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the expansion valve 24, and the indoor heat exchanger 25. Thus, a refrigeration cycle is configured.
  • the compressor 21 compresses the refrigerant and circulates through the refrigerant pipe 61. More specifically, the compressor 21 compresses a low-temperature and low-pressure refrigerant and discharges the high-pressure and high-temperature refrigerant to the four-way valve 22.
  • the compressor 21 includes an inverter circuit that can change the operation capacity according to the drive frequency.
  • the operating capacity is the amount by which the compressor 21 sends out the refrigerant per unit.
  • the compressor 21 changes the operating capacity according to an instruction from the outdoor unit control unit 51.
  • the four-way valve 22 is installed on the discharge side of the compressor 21.
  • the four-way valve 22 switches the flowing direction of the refrigerant in the refrigerant pipe 61 according to whether the operation of the air conditioner 1 is a cooling or dehumidifying operation or a heating operation.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant flowing through the refrigerant pipe 61 and air in an outdoor space 72 (external space) outside the air-conditioned space.
  • the outdoor blower 31 is provided beside the outdoor heat exchanger 23 and sends the air in the outdoor space 72 to the outdoor heat exchanger 23.
  • the outdoor blower 31 sucks air in the outdoor space 72, and the sucked air is supplied to the outdoor heat exchanger 23 and exchanges heat with cold / hot heat supplied by the refrigerant flowing through the refrigerant pipe 61. It is blown out to the space 72.
  • the expansion valve 24 is provided between the outdoor heat exchanger 23 and the indoor heat exchanger 25, and decompresses and expands the refrigerant flowing through the refrigerant pipe 61.
  • the expansion valve 24 is an electronic expansion valve whose opening can be variably controlled. The expansion valve 24 changes the opening in accordance with an instruction from the outdoor unit control unit 51 to adjust the pressure of the refrigerant.
  • the indoor heat exchanger 25 exchanges heat between the refrigerant flowing through the refrigerant pipe 61 and the air in the indoor space 71.
  • the indoor blowers 33a and 33b are provided beside the indoor heat exchanger 25, and send the air in the indoor space 71 to the indoor heat exchanger 25.
  • the indoor blowers 33a and 33b suck the air in the indoor space 71, and the sucked air is supplied to the indoor heat exchanger 25 and exchanged heat with cold and hot heat supplied from the refrigerant flowing through the refrigerant pipe 61. Thereafter, the air is blown out into the indoor space 71.
  • the air that has undergone heat exchange in the indoor heat exchanger 25 is supplied to the indoor space 71 as conditioned air. Thereby, the indoor space 71 is air-conditioned.
  • the indoor heat exchanger 25 includes two heat exchangers 25a and 25b and an expansion valve 26.
  • the first heat exchanger 25a is installed upstream of the refrigerant in a refrigeration cycle during cooling, and performs heat exchange between the air blown by the indoor blower 33a, which is the first blower, and the refrigerant.
  • the second heat exchanger 25b is installed downstream of the refrigerant in a refrigeration cycle during cooling, and exchanges heat between the air blown by the indoor blower 33b, which is the second blower, and the refrigerant.
  • the expansion valve 26 is provided between the two heat exchangers 25a and 25b, and adjusts the pressure of the refrigerant flowing between the two heat exchangers 25a and 25b.
  • the indoor unit 13 further includes a temperature sensor 41, a humidity sensor 42, and an infrared sensor 43.
  • the temperature sensor 41 is a sensor such as a resistance temperature detector, a thermistor, or a thermocouple, and detects the room temperature Ti, which is the air temperature of the indoor space 71.
  • the humidity sensor 42 is a sensor of an electric resistance type, a capacitance type, or the like, and detects the indoor humidity RHi, which is the air humidity of the indoor space 71.
  • the temperature sensor 41 and the humidity sensor 42 are provided at the suction port of the second heat exchanger 25b in the indoor heat exchanger 25, and are provided for the air sucked into the second heat exchanger 25b by the second indoor blower 33b. Detect temperature and humidity.
  • the temperature sensor 41 and the humidity sensor 42 can accurately detect the temperature and humidity of the air in the indoor space 71 by being installed at the air suction port of the second indoor blower 33b.
  • the infrared sensor 43 is a pyroelectric sensor, a thermopile sensor, or the like, and detects infrared rays emitted from a detection target.
  • the infrared sensor 43 is installed in the vicinity of the window 75 which is a place where sunlight is received in the indoor space 71, and detects a window temperature Tw which is a surface temperature of the window 75 by detecting infrared rays emitted from the window 75. I do. Since the window 75 is illuminated by sunlight when the sun is out during the day, its surface temperature can be used as an indicator of the amount of solar radiation.
  • the infrared sensor 43 also functions as a so-called human sensor, and can identify the presence and position of the target by detecting infrared rays emitted from the target such as a person or an object existing in the indoor space 71. .
  • the air conditioner 1 includes an outside air temperature sensor that detects outside air temperature, an outside air humidity sensor that detects outside air humidity, and an evaporation temperature sensor that detects the evaporation temperature of the refrigerant flowing through the refrigerant pipe 61.
  • the outside air temperature sensor and the outside air humidity sensor are installed in the outdoor space 72, respectively, and detect the outside air temperature To which is the air temperature of the outdoor space 72 and the outside air humidity RHo which is the air humidity of the outdoor space 72.
  • the humidity sensor 42 and the outside air humidity sensor are described below assuming that humidity is detected in units of relative humidity, but may be detected in units of absolute humidity.
  • the relative humidity and the absolute humidity can be appropriately converted using the air temperature at that time.
  • the evaporating temperature sensor is installed in the refrigerant pipe 61 upstream of the indoor heat exchanger 25 during cooling and dehumidification, for example, and detects the temperature of the refrigerant pipe 61. Thereby, the evaporation temperature sensor detects the evaporation temperature of the refrigerant flowing into the indoor heat exchanger 25. Further, the evaporation temperature sensor may be installed, for example, between the first heat exchanger 25a and the second heat exchanger 25b, and may detect the evaporation temperature of the refrigerant in the indoor heat exchanger 25.
  • the detection result of each sensor is supplied to the indoor unit control unit 53.
  • the indoor unit control unit 53 supplies the supplied detection result to the outdoor unit control unit 51 via the communication line 63.
  • the outdoor unit controller 51 controls the operation of the outdoor unit 11. As shown in FIG. 2, the outdoor unit control unit 51 includes a control unit 101, a storage unit 102, a clock unit 103, and a communication unit 104. These units are connected via a bus.
  • the control unit 101 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the CPU reads out programs and data stored in the ROM, and controls the outdoor unit control unit 51 using the RAM as a work area.
  • the storage unit 102 is a non-volatile semiconductor memory such as a flash memory, an EPROM (Erasable Programmable ROM), and an EEPROM (Electrically Erasable Programmable ROM), and plays a role as a so-called secondary storage device or an auxiliary storage device.
  • the storage unit 102 stores programs and data used by the control unit 101 to perform various processes, and data generated or obtained by the control unit 101 performing various processes.
  • the clock unit 103 is provided with an RTC (Real Clock Clock) and is a clock device that continues clocking even while the power of the air conditioner 1 is off.
  • RTC Real Clock Clock
  • the communication unit 104 is an interface for communicating with the indoor unit control unit 53 and the remote controller 55 via the communication line 63.
  • the communication unit 104 receives the operation information received from the user from the remote controller 55, and transmits notification information for notifying the user to the remote controller 55.
  • the communication unit 104 transmits an operation command for the indoor unit 13 to the indoor unit control unit 53, and receives state information indicating the state of the indoor unit 13 from the indoor unit control unit 53.
  • the indoor unit control unit 53 includes a CPU, a ROM, a RAM, a communication interface, and a readable and writable nonvolatile semiconductor memory.
  • the CPU controls the operation of the indoor unit 13 by executing a control program stored in the ROM while using the RAM as a work memory.
  • the outdoor unit control unit 51 is connected to the indoor unit control unit 53 by a communication line 63 that is a wired, wireless, or other communication medium.
  • the outdoor unit control unit 51 performs a cooperative operation by transmitting and receiving various signals to and from the indoor unit control unit 53 via the communication line 63, and controls the entire air conditioner 1.
  • the outdoor unit control unit 51 functions as a control device that controls the air conditioner 1.
  • the outdoor unit control unit 51 and the indoor unit control unit 53 control the operation of the air conditioner 1 based on the detection result of each sensor and the setting information of the air conditioner 1 set by the user. More specifically, the outdoor unit control unit 51 controls the drive frequency of the compressor 21, the switching of the four-way valve 22, the rotation speed of the outdoor blower 31, and the opening of the expansion valve 24. Further, the indoor unit control unit 53 controls the rotation speed of the indoor blowers 33a and 33b. Note that the outdoor unit control unit 51 may control the rotation speed of the indoor blowers 33a and 33b, or the indoor unit control unit 53 may control the drive frequency of the compressor 21, switching of the four-way valve 22, rotation speed of the outdoor blower 31, Alternatively, the opening degree of the expansion valve 24 may be controlled. As described above, the outdoor unit control unit 51 and the indoor unit control unit 53 output various operation commands to various devices in accordance with the operation commands given to the air conditioner 1.
  • the remote controller 55 is arranged in the indoor space 71.
  • the remote controller 55 transmits and receives various signals to and from the indoor unit control unit 53 included in the indoor unit 13.
  • the remote controller 55 includes a push button, a touch screen, a liquid crystal display, an LED (Light Emitting Diode), and the like, and functions as a command receiving unit that receives various commands from the user and a display unit that displays various information to the user. I do.
  • the user inputs a command to the air conditioner 1 by operating the remote controller 55.
  • the command is, for example, a command for switching between operation and stop, or a command for switching the operation mode, the set temperature, the set humidity, the air volume, the air direction, the timer, and the like.
  • the air conditioner 1 operates according to the input command.
  • an information device such as a smartphone or a tablet may be provided instead of the remote controller 55.
  • the air conditioner 1 has at least operation modes of “(A) cooling”, “(B) heating”, “(C) dehumidification”, “(D) ventilation”, and “(E) automatic”.
  • the indoor space 71 is air-conditioned in any one of the operation modes.
  • the “cooling” operation mode is a mode for cooling the air in the indoor space 71 to lower its temperature.
  • the control unit 101 When the control unit 101 receives the “cooling” operation command, the control unit 101 switches the flow path of the four-way valve 22 so that the refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23, and controls the expansion valves 24 and 26 to appropriate levels. To open. Then, the control unit 101 drives the compressor 21, the outdoor blower 31, and the indoor blowers 33a and 33b.
  • the refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 through the four-way valve 22.
  • the refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with outdoor air sucked from the outdoor space 72 to be condensed and liquefied, and flows into the expansion valve 24.
  • the refrigerant flowing into the expansion valve 24 flows into the indoor heat exchanger 25 after being decompressed by the expansion valve 24.
  • the refrigerant flowing into the indoor heat exchanger 25 exchanges heat with indoor air sucked from the indoor space 71 and evaporates, and then passes through the four-way valve 22 and is sucked into the compressor 21 again. By flowing the refrigerant in this manner, the indoor air sucked from the indoor space 71 is cooled by the indoor heat exchanger 25.
  • the operation mode of “heating” is a mode for heating the air in the indoor space 71 to increase the temperature.
  • the control unit 101 switches the flow path of the four-way valve 22 so that the refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 25, and controls the expansion valves 24 and 26 to an appropriate degree. To open. Then, the control unit 101 drives the compressor 21, the outdoor blower 31, and the indoor blowers 33a and 33b.
  • the refrigerant discharged from the compressor 21 passes through the four-way valve 22 and flows into the indoor heat exchanger 25.
  • the refrigerant that has flowed into the indoor heat exchanger 25 exchanges heat with indoor air sucked from the indoor space 71 to be condensed and liquefied, and flows into the expansion valve 24.
  • the refrigerant that has flowed into the expansion valve 24 flows into the outdoor heat exchanger 23 after being decompressed by the expansion valve 24.
  • the refrigerant flowing into the outdoor heat exchanger 23 exchanges heat with the outdoor air sucked from the outdoor space 72 and evaporates.
  • the refrigerant passes through the four-way valve 22 and is sucked into the compressor 21 again.
  • the refrigerant flows in the direction opposite to the “cooling” and the “dehumidification”, so that the indoor air sucked from the indoor space 71 is heated by the indoor heat exchanger 25.
  • thermo-off temperature and the thermo-on temperature are set in advance to a temperature within a specified range with respect to a set temperature Tm as a target temperature.
  • the control unit 101 maintains the room temperature Ti at the set temperature Tm by repeating the operation and the stop of the compressor 21.
  • (C) Dehumidification Mode The operation mode of “dehumidification” is a mode for lowering the humidity of the indoor space 71.
  • the control unit 101 switches the flow path of the four-way valve 22 so that the refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23, as in “cooling”.
  • the expansion valves 24 and 26 are opened appropriately.
  • the control unit 101 drives the compressor 21, the outdoor blower 31, and the indoor blowers 33a and 33b. Thereby, the refrigerant circulates through the refrigerant pipe 61 in the same direction as the “cooling”.
  • the operation modes of “dehumidification” include “(C1) weak cooling dehumidification”, “(C2) double fan dehumidification”, “(C3) dew point temperature dehumidification”, “(C4) partial cooling dehumidification”, “ (C5) Extended dehumidification "and” (C6) Reheat dehumidification "are classified into six operation modes. These are collectively referred to as a dehumidification mode. In actual products, the dehumidification mode may be described as a part of the cooling mode. However, if the operation mode is such that a relatively low sensible heat ratio SHF is obtained as compared with the cooling mode, the dehumidification mode described below is used. Mode included.
  • Fig. 3 shows the relationship between each operation mode and air conditioning capacity.
  • the air conditioning capacity is an index indicating the strength of air conditioning by the air conditioner 1, and corresponds to the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 25. As the amount of heat exchange between the refrigerant and the air in the indoor heat exchanger 25 increases, the air conditioning capacity of the air conditioner 1 increases.
  • the air conditioning capacity at the time of cooling is called cooling capacity
  • the air conditioning capacity at the time of heating is called heating capacity.
  • the horizontal axis represents the sensible heat capacity
  • the vertical axis represents the latent heat capacity.
  • the sensible heat capability is equivalent to the capability related to the temperature change of air in the air conditioning capability.
  • the latent heat capability corresponds to a capability relating to a change in the state of moisture in the air, that is, a capability relating to dehumidification / humidification.
  • the sum of the sensible heat capacity and the latent heat capacity is called the total heat capacity, and the ratio of the sensible heat capacity to the total heat capacity is called the sensible heat ratio (SHF: Sensible Heat Factor).
  • SHF Sensible Heat Factor
  • the sensible heat capacity when cooling air is positive and the latent heat capacity when dehumidifying air is positive More specifically, in each operation mode of “dehumidification”, the latent heat capacity increases because the dehumidification capacity increases compared to “cooling”, but the sensible heat capacity decreases because the cooling capacity decreases.
  • each operation mode of “dehumidification” will be described in detail.
  • the operation mode of “weak cooling dehumidification” is a dehumidification mode in which the cooling capacity is lower and the dehumidification capacity is higher than “cooling”.
  • the control unit 101 circulates the refrigerant in the same direction as “cooling”. Then, the control unit 101 reduces the rotation speed of the indoor blowers 33a and 33b as compared with the case of "cooling”. In other words, the control unit 101 reduces the amount of air sent to the indoor heat exchanger 25 by the indoor blowers 33a and 33b in "weak cooling dehumidification” as compared with "cooling".
  • the control unit 101 reduces the amount of air blown by the indoor blowers 33a and 33b as compared with “cooling”, thereby lowering the evaporation temperature of the refrigerant.
  • the sensible heat capacity of the indoor heat exchanger 25 decreases, and the latent heat capacity increases. Therefore, the sensible heat ratio decreases.
  • the room temperature Ti is less likely to decrease in "weak cooling dehumidification” than in "cooling”
  • the room humidity RHi is more likely to decrease.
  • Double fan dehumidification mode is a dehumidification mode in which the two indoor blowers 33a and 33b are driven at different rotation speeds to dehumidify the indoor space 71.
  • the control unit 101 circulates the refrigerant in the same direction as “cooling”. Then, the control unit 101 sets the rotation speed of the first indoor blower 33a to be smaller than the rotation speed of the second indoor blower 33b.
  • the control unit 101 drives the two indoor blowers 33a and 33b together at a specified rotation speed W0 in “weak cooling dehumidification”, whereas in “double fan dehumidification”, the temperature sensor 41 is used. Then, the first indoor blower 33a far from the humidity sensor 42 is driven at a first rotation speed W1 smaller than a predetermined rotation speed W0. On the other hand, in the “double fan dehumidification”, the control unit 101 drives the second indoor blower 33b close to the temperature sensor 41 and the humidity sensor 42 at the second rotation speed W2 higher than the first rotation speed W1. .
  • the second rotation speed W2 is set to a rotation speed approximately equal to the prescribed rotation speed W0.
  • control unit 101 determines the sum of the amount of air blown by the first indoor blower 33a and the second indoor blower 33b in “double fan dehumidification” by the first indoor blower 33a in “low cooling dehumidification” and the second air blower. Of the amount of air blown by the indoor blower 33b.
  • the amount of air blown by the indoor blowers 33a and 33b is lower than "low cooling dehumidification”. Decrease the sum. Thereby, the evaporation temperature of the refrigerant in the indoor heat exchanger 25 decreases, and the latent heat capacity increases. On the other hand, the sensible heat ratio decreases because the sensible heat capacity decreases. As a result, the room temperature Ti is less likely to decrease and the room humidity RHi is more likely to decrease in “double fan dehumidification” than in “weak cooling dehumidification”.
  • the difference between the rotation speeds of the two indoor blowers 33 a and 33 b is used to accurately detect the temperature and humidity of the indoor space 71 and send the air to the indoor heat exchanger 25.
  • the air volume can be reduced. Therefore, the indoor space 71 can be dehumidified with a dehumidifying ability higher than “weak cooling dehumidification”.
  • (C3) Dew point temperature dehumidification mode is a dehumidification mode in which the evaporation temperature of the refrigerant is made lower than the dew point temperature of air in order to increase the dehumidification capacity.
  • the control unit 101 circulates the refrigerant in the same direction as “cooling”. Then, the control unit 101 controls the rotation speed of the compressor 21 to a rotation speed at which the evaporation temperature of the refrigerant detected by the evaporation temperature sensor becomes lower than the dew point temperature of the air.
  • the control unit 101 controls the rotation speed of the compressor 21 according to the temperature difference ⁇ T between the room temperature Ti and the set temperature Tm.
  • the number of rotations of the compressor 21 is reduced as the rotation speed decreases.
  • the evaporation temperature of the refrigerant in the indoor heat exchanger 25 eventually increases, and both the sensible heat capacity and the latent heat capacity decrease. Therefore, although the room temperature Ti is stabilized at the set temperature Tm, there is a possibility that the room humidity RHi does not decrease and the comfort is reduced.
  • the control unit 101 sets the evaporation temperature to be lower than the dew point temperature according to the difference between the evaporation temperature of the refrigerant in the indoor heat exchanger 25 and the dew point temperature of the air drawn into the indoor heat exchanger 25.
  • the rotation speed of the compressor 21 is controlled so that the pressure also decreases. Thereby, the latent heat capacity can be maintained so as not to decrease.
  • the room humidity RHi is more likely to decrease in “dew point temperature dehumidification” than in “weak cooling dehumidification”.
  • (C4) Partial cooling dehumidification mode The operation mode of “partial cooling dehumidification” is to lower the evaporation temperature of the refrigerant at the inlet side of the indoor heat exchanger 25 below the dew point temperature of the air and at the outlet side of the indoor heat exchanger 25. Is a dehumidification mode in which the degree of superheat of the refrigerant is increased.
  • the control unit 101 circulates the refrigerant in the same direction as that of “cooling”.
  • control unit 101 controls the opening degree of the expansion valve 24 to an opening degree at which the evaporation temperature of the refrigerant at the inflow port where the refrigerant flows into the indoor heat exchanger 25 is lower than the dew point temperature of the air.
  • the control unit 101 sets the opening degree of the expansion valve 24 to the extent that the refrigerant becomes a saturated gas at the outlet of the refrigerant in the indoor heat exchanger 25, that is, The superheat degree near the outlet of the refrigerant in the indoor heat exchanger 25 is controlled to be close to zero. Thereby, the total heat capacity of the air conditioner 1 is efficiently output.
  • the control unit 101 sets the opening degree of the expansion valve 24 to the air suction temperature of the refrigerant near the inlet of the refrigerant of the indoor heat exchanger 25. Is controlled so as to be lower than the dew point temperature.
  • the control unit 101 narrows the opening degree of the expansion valve 24 in “partial cooling dehumidification” more than “cooling” and “weak cooling dehumidification”.
  • the evaporation temperature of the refrigerant near the inlet of the indoor heat exchanger 25 decreases, and most of the refrigerant evaporates near the inlet of the indoor heat exchanger 25, so that the degree of superheat near the outlet of the indoor heat exchanger 25 decreases. growing.
  • the air can be dehumidified at a low temperature on the inlet side of the indoor heat exchanger 25, and the air is not excessively cooled on the outlet side.
  • the "partial cooling dehumidification” is less likely to reduce the room temperature Ti and the room humidity RHi is more likely to be reduced than the "weak cooling dehumidification” and the "dew point temperature dehumidification”.
  • (C5) Extended dehumidification mode The operation mode of “extended dehumidification” is two or three of “(C2) double fan dehumidification”, “(C3) dew point temperature dehumidification” and “(C4) partial cooling dehumidification”. It is a mode that combines the two. By combining two or three of these three operation modes, the sensible heat capacity and the latent heat capacity can be continuously and widely adjusted. Therefore, it is possible to provide comfortable air-conditioning with little fluctuation in room temperature and humidity under various weather conditions, building conditions, and living conditions. In addition, "extended dehumidification” saves energy more than "reheat dehumidification” described below.
  • (C6) Reheat dehumidification mode is a dehumidification mode in which the humidity of the indoor space 71 is reduced while the temperature of the indoor space 71 is suppressed.
  • the control unit 101 circulates the refrigerant in the same direction as “cooling”. Then, the control unit 101 appropriately closes the expansion valve 26 between the two heat exchangers 25a and 25b in the indoor heat exchanger 25.
  • the first heat exchanger 25a located upstream of the expansion valve 26 functions as a condenser for condensing the refrigerant, and is supplied by the second indoor blower 33b. Warm the air.
  • the second heat exchanger 25b located downstream of the expansion valve 26 functions as an evaporator that evaporates the refrigerant, and reduces the humidity of the air supplied by the second indoor blower 33b. Since the humidity is reduced while the air is warmed, the room temperature Ti is less likely to decrease in the "reheat dehumidification" than in other dehumidification modes, and the room humidity RHi is more likely to decrease.
  • the blower mode is a mode in which the compressor 21 is stopped and air is blown by the indoor blowers 33a and 33b. If the outside air temperature To is lower than the room temperature Ti during the cooling period, there is no need to cool down. Therefore, by setting the air blowing mode, the indoor space 71 can be agitated without consuming much power. Even if the compressor 21 is not moving, a cool feeling can be obtained by hitting the wind. If the compressor 21 is stopped without stopping the air blowing by the indoor blowers 33a and 33b, for example, it is assumed that the thermo-off for stopping the compressor 21 to prevent excessive cooling is also a part of the blowing mode. explain. In the following, the “hybrid mode”, which is a mode combining cooling and air blowing, will be described as an example of the “air blowing mode”.
  • step S11 determines whether or not the room temperature Ti has dropped below the thermo-off temperature.
  • the control unit 101 keeps the compressor 21 running.
  • step S11; YES the control unit 101 stops the operation of the compressor 21 (step S12).
  • step S13 the control unit 101 increases the rotation speed of the indoor blowers 33a, 33b from the rotation speed immediately before the stop of the operation of the compressor 21 (Step S13).
  • the control unit 101 reduces the number of rotations of the indoor blowers 33a and 33b, or controls the indoor blowers 33a and 33b. , The rotation speed of the indoor blowers 33a and 33b is not increased.
  • the control unit 101 increases the rotation speed of the indoor blowers 33a and 33b. Thereby, a moderate cooling feeling can be obtained without the occupants of the indoor space 71 suddenly feeling the heat.
  • the control unit 101 adjusts the rotation speed of the indoor blowers 33a and 33b according to the change in the room temperature Ti (Step S14). For example, when the room temperature Ti increases while the compressor 21 is stopped, the control unit 101 gradually increases the rotation speed of the indoor blowers 33a and 33b. Thereby, the perceived temperature in the indoor space 71 is reduced.
  • the control unit 101 adjusts the wind direction of the indoor blowers 33a and 33b (Step S15). More specifically, although not shown, the indoor unit 13 has a left and right wind direction plate that can change the wind direction of the airflow blown from the indoor unit 13 to the left and right, and a vertical wind direction that can change the wind direction up and down. A plate.
  • the control unit 101 swings at least one of the left and right wind direction boards and the vertical wind direction boards to swing the direction of the air blow by the indoor blowers 33a and 33b. Thereby, the entire interior space 71 is air-conditioned without bias.
  • step S15 when the infrared sensor 43 detects an object such as a person or an object existing in the indoor space 71, the control unit 101 controls the rotation of the left and right wind direction boards and the up and down wind direction boards to thereby control the indoor blower 33a. , 33b are directed to the detected target position. Thereby, the cooling sensation can be enhanced and the comfort can be improved.
  • the control unit 101 determines whether or not the room temperature Ti has risen to the thermo-on temperature or higher (step S16). When the room temperature Ti is lower than the thermo-on temperature (step S16; NO), the control unit 101 keeps the compressor 21 stopped. On the other hand, when the room temperature Ti rises to the thermo-on temperature or higher (Step S16; YES), the control unit 101 determines that the comfort cannot be maintained unless the cooling mode is set, and starts the operation of the compressor 21 (Step S17). . Then, when starting the operation of the compressor 21, the control unit 101 reduces the rotation speed of the indoor blowers 33a, 33b from the rotation speed immediately before the start of the operation of the compressor 21 (step S18).
  • the thermo-on temperature is set to, for example, the set temperature Tm or a temperature obtained by adding a decrease in the sensible temperature due to the blowing of the indoor blowers 33a and 33b to the set temperature Tm.
  • the control unit 101 increases the rotation speed of the indoor blowers 33a and 33b. Do not reduce the speed.
  • the control unit 101 decreases the rotation speed of the indoor blowers 33a and 33b. Accordingly, a proper cooling feeling can be obtained without the occupants of the indoor space 71 suddenly feeling cold.
  • the control unit 101 adjusts the rotation speed of the indoor blowers 33a, 33b according to the change in the room temperature Ti (Step S19). For example, when the room temperature Ti decreases during the operation of the compressor 21, the control unit 101 gradually decreases the rotation speed of the indoor blowers 33a and 33b. Thereby, the sensible temperature in the indoor space 71 is increased.
  • control unit 101 After that, the control unit 101 returns the processing to step S11 and repeats the processing from step S11 to step S19.
  • control unit 101 may gradually change the rotation speed of the indoor blowers 33a, 33b without abruptly changing the rotation speed to a target rotation speed. .
  • the control unit 101 increases or decreases the rotation speed of the indoor blowers 33a and 33b when switching between the operation and the stop of the compressor 21. Since the amount of air blown by the indoor blowers 33a and 33b increases while the compressor 21 is stopped, the user's sensible temperature is reduced by the airflow, so that comfort is ensured even when the compressor 21 stops operating. Thus, it is possible to suppress a situation in which the user lowers the set temperature while the compressor 21 is stopped, thereby increasing power consumption. As a result, the operation time of the compressor 21 can be reduced, and both comfort and energy saving can be achieved.
  • the operation mode of “blowing” is suitable when the temperature and humidity of the outdoor space 72 are not high and air conditioning can be performed by either a cooling fan or a fan, as in early summer or late summer. Further, since there is no need to separately install a fan, the design of the indoor space 71 is improved.
  • (E) Automatic mode The operation mode of “automatic” includes “(A) cooling”, “(C1) weak cooling dehumidification”, “(C2) double fan dehumidification”, “(C3) dew point temperature dehumidification”, “ This is a mode in which the operation mode is automatically switched among (C4) partial cooling dehumidification, "(C5) extended dehumidification”, “(C6) reheat dehumidification", and "(D) ventilation”.
  • the user can change the operation mode to "(E) automatic mode” by pressing a single button on the user interface.
  • the notation of “(E) automatic mode” in the user interface may be a comprehensive name such as “automatic”, “automatic”, “AI” or the like.
  • the air conditioner 1 air-conditions the indoor space 71 in the “(E) automatic” operation mode will be described.
  • the air conditioner 1 functionally includes an acquisition unit 510, an estimation unit 520, a determination unit 530, an air conditioning control unit 540, and a notification unit 550.
  • Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the ROM or the storage unit 102.
  • the CPU executes a program stored in the ROM or the storage unit 102, thereby realizing each function illustrated in FIG.
  • the acquisition unit 510 acquires load information on the heat load of the indoor space 71.
  • the heat load is the amount of heat required for the air conditioner 1 to change and maintain the environment such as the temperature and humidity of the indoor space 71 to the target environment.
  • the acquisition unit 510 acquires, as load information, information such as temperature and humidity detected by each sensor including the temperature sensor 41, the humidity sensor 42, and the infrared sensor 43.
  • the acquisition unit 510 acquires the room temperature Ti detected by the temperature sensor 41 from the temperature sensor 41, acquires the room humidity RHi detected by the humidity sensor 42 from the humidity sensor 42, and acquires the room humidity RHi by the infrared sensor 43.
  • the detected window temperature Tw and the position information of the target in the indoor space 71 are acquired from the infrared sensor 43.
  • the acquisition unit 510 acquires the outside air temperature To and the outside air humidity RHo detected by the outside air temperature sensor and the outside air humidity sensor, and the evaporation temperature of the refrigerant detected by the evaporation temperature sensor from these sensors.
  • Each sensor transmits the detected information to the outdoor unit controller 51 periodically at a predetermined cycle.
  • the acquisition unit 510 may transmit a request to each sensor as needed, and each sensor may transmit the detected information in a manner responding to the request. In this way, the acquisition unit 510 acquires information such as temperature and humidity detected by each sensor via the indoor unit control unit 53 and the communication line 63.
  • the acquisition unit 510 is realized by the control unit 101 cooperating with the communication unit 104.
  • the acquisition unit 510 functions as an acquisition unit.
  • the estimation unit 520 estimates the heat load of the indoor space 71 based on the information such as the temperature and the humidity acquired by the acquisition unit 510.
  • the heat load includes a sensible heat load caused by sensible heat and a latent heat load caused by latent heat.
  • the sensible heat load is classified into an unsteady sensible heat load Ps represented by the following equation (2) and a steady sensible heat load Qs represented by the following equation (3).
  • the sum of the unsteady sensible heat load Ps and the steady sensible heat load Qs is a sensible heat capacity for the air conditioner 1 to change and maintain the room temperature Ti to the set temperature Tm as represented by the following equation (4).
  • the sensible heat capacity is the heat capacity related to the sensible heat of the wall, floor, furniture and the like of the indoor space 71.
  • is a coefficient indicating the heat insulation performance of the indoor space 71
  • is a coefficient indicating the ease of insolation
  • Qn is present in the indoor space 71.
  • the amount of heat generated by lighting, home appliances, people, etc. are set in advance to appropriate values and stored in the storage unit 102.
  • the unsteady sensible heat load Ps is determined by the temperature difference ⁇ T between the room temperature Ti and the set temperature Tm, as shown in the above equation (2).
  • the unsteady sensible heat load Ps corresponds to the amount of heat for changing the room temperature Ti to the set temperature Tm, and is the first sensible heat load that becomes dominant when the room temperature Ti is apart from the set temperature Tm.
  • the steady sensible heat load Qs is a difference between the outside air temperature To and the room temperature Ti, and a window temperature Tw and a room temperature which are parameters depending on the amount of solar radiation in the outdoor space 72. It is determined by the difference from Ti and the internal heating value Qn.
  • the steady sensible heat load Qs is a sensible heat load mainly caused by a difference between the environment of the indoor space 71 and the environment of the outdoor space 72, and maintains the room temperature Ti at the set temperature Tm when the room temperature Ti is equal to the set temperature Tm. Therefore, it corresponds to the amount of heat that is constantly required.
  • the steady sensible heat load Qs is a second sensible heat load that becomes dominant when the room temperature Ti is close to the set temperature Tm.
  • the latent heat load is classified into an unsteady latent heat load Pl represented by the following equation (5) and a steady latent heat load Ql represented by the following equation (6).
  • the sum of the unsteady latent heat load Pl and the steady latent heat load Ql is a latent heat for the air conditioner 1 to change and maintain the humidity RHi of the indoor space 71 to the set humidity RHm, as represented by the following equation (7).
  • Unsteady latent heat load Pl latent heat capacity / unit time x (room absolute humidity-target absolute humidity) ... (5)
  • Steady latent heat load Ql ⁇ '(outdoor absolute humidity-indoor absolute humidity) + internal evaporation ... (6)
  • Latent heat capacity unsteady latent heat load P1 + steady latent heat load Q1 (7)
  • the latent heat capacity is a heat capacity related to latent heat of the wall, floor, furniture and the like of the indoor space 71.
  • ⁇ ′ is a coefficient indicating the easiness of the flow of moisture from the outdoor space 72 to the indoor space 71. That is, the first term of the above equation (6) represents the amount of moisture entering the indoor space 71 from the outdoor space 72 by ventilation.
  • the internal evaporation amount is the amount of water evaporated in the indoor space 71 due to the human body, cooking, and the like.
  • the unsteady latent heat load Pl is determined by the difference between the indoor absolute humidity and the target absolute humidity as shown in the above equation (5).
  • the target absolute humidity is an absolute humidity when the room temperature Ti is equal to the set temperature Tm and the room humidity RHi, which is the relative humidity of the indoor space 71, is equal to the set humidity RHm, which is the target humidity. That is, the unsteady latent heat load Pl corresponds to the amount of heat for changing the room humidity RHi to the set humidity RHm when the room temperature Ti is equal to the set temperature Tm.
  • the unsteady latent heat load Pl is a first latent heat load that becomes dominant when the room absolute humidity is apart from the target absolute humidity.
  • the steady latent heat load Ql is determined by the difference between the outdoor absolute humidity and the indoor absolute humidity and the internal evaporation as shown in the above equation (6).
  • the steady latent heat load Ql is a latent heat load mainly caused by a difference between the environment of the indoor space 71 and the environment of the outdoor space 72, and maintains the room humidity RHi at the set humidity RHm when the room absolute humidity is equal to the target absolute humidity. Heat equivalent to the amount of heat required.
  • the steady latent heat load Ql is a second latent heat load that becomes dominant when the room absolute humidity is close to the target absolute humidity.
  • the estimating unit 520 determines the unsteady sensible heat load Ps, the steady sensible heat load Qs, the sensible heat capacity, the unsteady heat from the values of the temperature, humidity, and the like acquired by the acquiring unit 510 according to the above equations (2) to (7).
  • the latent heat load Pl, the steady latent heat load Ql, and the latent heat capacity are calculated. Thereby, the estimation unit 520 estimates the heat load of the indoor space 71.
  • the estimating unit 520 is realized by the control unit 101 cooperating with the storage unit 102.
  • the estimating unit 520 functions as an estimating unit.
  • the determination unit 530 determines the air conditioning operation mode based on the heat load estimated by the estimation unit 520.
  • FIG. 6 shows the relationship between the heat load and the operation mode. As shown in FIG. 6, when the air conditioner 1 air-conditions the indoor space 71 in the “(E) automatic” operation mode, the air conditioner 1 is controlled according to the magnitude of the steady sensible heat load Qs and the magnitude of the steady latent heat load Ql.
  • the operation mode to be executed by the first device is defined.
  • the determination unit 530 determines the operation mode according to the steady sensible heat load Qs and the steady latent heat load Ql estimated by the estimation unit 520.
  • the determination unit 530 determines the operation mode so that the mode of cooling, dehumidification, and ventilation can be automatically switched at an appropriate timing.
  • the determination unit 530 determines the magnitude relationship between the steady latent heat load Ql estimated by the estimation unit 520 and the latent heat thresholds Ql1 and Ql2.
  • the case where the steady latent heat load Ql is larger than the first latent heat threshold value Ql1 corresponds to a case where a "high humidity condition" in which the outside air humidity RHo is relatively high, such as a rainy or cloudy day, is satisfied.
  • the steady latent heat load Ql is smaller than the second latent heat threshold value Ql2, this corresponds to a case where a "low humidity condition" where the outside air humidity RHo is relatively low, such as a dry day, is satisfied. I do.
  • the determination unit 530 secondly determines the magnitude relationship between the steady sensible heat load Qs and the sensible heat thresholds Qs1 to Qs3. Is determined.
  • the three sensible heat threshold values Qs1 to Qs3 are set in advance so that Qs1> Qs2> Qs3.
  • determination unit 530 determines that the operation mode to be executed by air conditioner 1 is the second dehumidification mode.
  • the second dehumidification mode is “(C2) double fan dehumidification”, “(C3) dew point temperature dehumidification”, “(C4) partial cooling dehumidification”, or “(C5) extended dehumidification”.
  • the determination unit 530 further lowers the cooling capacity than in the high humidity condition 2 and further increases the dehumidification capacity.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(C2) double fan dehumidification”. Is determined.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is "(C3 ) Dew point temperature dehumidification ”is determined.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is "(C4 ) Partial cooling dehumidification ”. In the vicinity of the boundary between these three operation modes, the determination unit 530 determines that the air conditioner 1 should execute “(C5) extended dehumidification” that combines at least two of these three operation modes. The mode is determined. As described above, in the high humidity condition 3, the operation mode is continuously switched according to the steady sensible heat load Qs and the steady latent heat load Ql.
  • the determination unit 530 secondly determines the magnitude relationship between the steady sensible heat load Qs and the fourth sensible heat threshold Qs4. Is determined.
  • the fourth sensible heat threshold value Qs4 is set to 0 kW or a value obtained by adding a value obtained by converting a decrease in the perceived temperature obtained in the air blowing mode into a calorific value and adding it to 0 kW.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(D) blow” in order to reduce power consumption.
  • the determination unit 530 determines the operation mode of the air conditioning based on the steady sensible heat load Qs and the steady latent heat load Ql estimated by the estimation unit 520.
  • the latent heat thresholds Q11 and Q12 and the sensible heat thresholds Qs1 to Qs4 are set to appropriate values in advance, and are stored in the storage unit 102.
  • the determination unit 530 is realized by the control unit 101 cooperating with the storage unit 102.
  • the determination unit 530 functions as a determination unit.
  • the first latent heat threshold Q11 is set to a value equal to or greater than 0 kW and larger than the second latent heat threshold Q12.
  • the first latent heat threshold value Q11 is slightly larger than the second latent heat threshold value Q12.
  • the first latent heat threshold value Q11 may be set to 0 kW when energy saving can be obtained even in the dehumidification mode.
  • the second latent heat threshold value Q12 may be a value larger than 0 kW by an amount obtained by converting the decrease in the perceived temperature obtained in the air blowing mode into humidity, or may be 0 kW. Further, both the first latent heat threshold value Q11 and the second latent heat threshold value Q12 may be set to 0 kW.
  • the air-conditioning control unit 540 controls the air-conditioning unit 110 to cause the air-conditioning unit 110 to air-condition the indoor space 71.
  • the air conditioner 110 includes the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the expansion valve 24, and the outdoor blower 31 in the outdoor unit 11, and the indoor heat exchanger 25 and the indoor blowers 33a, 33b in the indoor unit 13. And functions as an air conditioner for air conditioning the indoor space 71.
  • the air-conditioning control unit 540 communicates with the indoor unit control unit 53 via the communication unit 104 and cooperates with the indoor unit control unit 53 to cause the air-conditioning unit 110 to air-condition the indoor space 71. More specifically, the air-conditioning control unit 540 switches the flow path of the four-way valve 22 according to the instructed operation mode, adjusts the opening of the expansion valve 24, and controls the compressor 21, the outdoor blower 31, and the indoor blower 33a. , 33b.
  • the air-conditioning control unit 540 sets “(A) cooling”, “(B) heating”, “(C1) weak cooling dehumidification”, “(C2) double fan dehumidification”, “ (C3) Dew point temperature dehumidification “,” (C4) Partial cooling dehumidification “,” (C5) Extended dehumidification “,” (C6) Reheat dehumidification “or” (D) Ventilation ".
  • the air-conditioning control unit 540 is realized by the control unit 101 cooperating with the communication unit 104.
  • the air conditioning controller 540 functions as an air conditioning controller.
  • the air conditioning control unit 540 causes the air conditioning unit 110 to air-condition the indoor space 71 in the operation mode determined by the determination unit 530. More specifically, if any one of the high humidity conditions 1, 2, and 3 and the low humidity conditions 1 and 2 is satisfied, the air conditioning control unit 540 determines “(A) Cooling ",” (C1) weak cooling dehumidification “,” (C2) double fan dehumidification “,” (C3) dew point temperature dehumidification “,” (C4) partial cooling dehumidification ",” (C5) extended dehumidification “or” (D ) In the operation mode of “blowing”, the air-conditioning unit 110 air-conditions the indoor space 71. When the high humidity condition 4 is satisfied, the air conditioning control unit 540 stops the operation of the compressor 21.
  • the air conditioning control unit 540 starts a new operation mode from the current operation mode. Is switched to the operation mode determined as described above, and the indoor space 71 is air-conditioned.
  • the air conditioning control unit 540 determines that the steady sensible heat load Qs is smaller than the first sensible heat threshold Qs1 when the air conditioning unit 110 is performing air conditioning in the cooling mode when the high humidity condition is satisfied. Then, the operation mode is switched to the first dehumidification mode. Further, when the steady sensible heat load Qs is smaller than the second sensible heat threshold Qs2 while the air conditioner 110 is performing air conditioning in the first dehumidification mode, the air conditioning controller 540 switches the operation mode to the second dehumidification mode. When the steady sensible heat load Qs becomes smaller than the third sensible heat threshold Qs3 while the air conditioner 110 is performing air conditioning in the second dehumidification mode, the compressor 21 is stopped. Conversely, when the steady sensible heat load Qs becomes larger than each of the sensible heat thresholds Qs1 to Qs3, the air-conditioning control unit 540 switches the operation mode in the opposite manner.
  • the air conditioning control unit 540 switches the operation mode when the steady sensible heat load Qs becomes smaller than the fourth sensible heat threshold Qs4 while the air conditioning unit 110 is performing air conditioning in the cooling mode. Switch to ventilation mode. Conversely, if the steady sensible heat load Qs becomes larger than the fourth sensible heat threshold Qs4 while the air conditioning unit 110 is performing air conditioning in the air blowing mode, the air conditioning control unit 540 switches the operation mode to the cooling mode.
  • the air conditioning control unit 540 switches the operation mode when the steady latent heat load Ql becomes larger than the first latent heat threshold Ql1 while the air conditioning unit 110 is performing air conditioning in the air blowing mode. Is switched to one of the high humidity conditions 1 to 4 according to the steady sensible heat load Qs. Conversely, when the high humidity condition is satisfied, if the steady latent heat load Ql is smaller than the second latent heat threshold Q12 and the steady sensible heat load Qs is smaller than the fourth sensible heat threshold Qs4, the operation mode To the air blow mode.
  • FIGS. 7 (a) to 7 (f) and FIGS. 8 (g) to 8 (j) show, as a first example, changes in various parameters on a cloudy day where high humidity conditions are satisfied.
  • the amount of solar radiation varies depending on the amount of clouds, but increases approximately from 6:00 to 12:00 and decreases from 12:00 to 18:00.
  • the window temperature Tw changes in the same manner as the increase or decrease in the amount of solar radiation.
  • the outside air humidity RHo shown in FIG. 7C changes relatively high under high humidity conditions. Furthermore, assuming that it does not rain and the absolute humidity of the outside air hardly changes, the outside air humidity RHo decreases as the outside temperature To increases during the daytime.
  • FIG. 7D shows a change in the steady sensible heat load Qs when the room temperature Ti is constant at the set temperature Tm.
  • the steady sensible heat load Qs is estimated by the estimating unit 520 according to the above equation (3).
  • the steady sensible heat load Qs gradually increases from 6:00 with an increase in the amount of solar radiation and the outside temperature To, reaches a peak around noon, and then gradually decreases.
  • FIG. 7 (e) shows the steady latent heat load Ql when the room temperature Ti and the room humidity RHi are constant.
  • the steady latent heat load Ql is estimated by the estimating unit 520 according to the above equation (6).
  • the steady latent heat load Ql is constant as shown in FIG.
  • FIGS. 7 (f) and 8 (g) to 8 (j) show the operation mode, the sensible heat capacity, the latent heat capacity, and the room temperature Ti when the air conditioning in the “automatic” mode by the air conditioner 1 starts at 16:00. And changes in the room humidity RHi.
  • the determination unit 530 determines the operation mode based on the steady sensible heat load Qs shown in FIG. 7D and the steady latent heat load Ql shown in FIG.
  • the air conditioning control unit 540 performs air conditioning in the air conditioning mode determined by the determination unit 530.
  • the air-conditioning control unit 540 starts air-conditioning in the “cooling” operation mode as shown in FIG. Thereafter, when the outside temperature To decreases after a lapse of time, the steady sensible heat load Qs decreases. For example, when the steady sensible heat load Qs is lower than the first sensible heat threshold Qs1 at 17:00, the air conditioning control unit 540 switches the operation mode from “cooling” to the first dehumidification mode “weak cooling dehumidification”.
  • the air conditioning control unit 540 switches from “weak cooling dehumidification” to “double fan dehumidification” in the second dehumidification mode. Switch the operation mode to "dew point temperature dehumidification”, “partial cooling dehumidification” or “extended dehumidification”.
  • the sensible heat capacity shown in FIG. 8 (g) increases when air conditioning starts in the “cooling” mode at 16:00 because the room temperature Ti shown in FIG. 8 (i) is higher than the set temperature Tm. Thereafter, the sensible heat capacity decreases as the room temperature Ti approaches the set temperature Tm, and is controlled by the air conditioning control unit 540 so that the room temperature Ti is stabilized at the set temperature Tm. After the room temperature Ti is stabilized at the set temperature Tm, the outside air temperature To decreases at night, so that the steady sensible heat load Qs shown in FIG. 7D gradually decreases. Accordingly, the sensible heat capacity shown in FIG. 8 (g) is substantially equal to the steady sensible heat load Qs, and as a result, as shown in FIG. 8 (i), the room temperature Ti is stable at about the same as the set temperature Tm. .
  • the latent heat capacity shown in FIG. 8 (h) varies depending on how the sensible heat capacity is controlled so that the room temperature Ti becomes the set temperature Tm in the “cooling” mode.
  • the room humidity RHi shown in FIG. 8 (j) decreases.
  • the latent heat capacity decreases as the sensible heat capacity decreases, as shown by the dashed line in FIG. Therefore, the amount of dehumidification decreases, and the room humidity RHi starts to increase as shown by the dashed line in FIG. 8 (j).
  • the air conditioning control unit 540 sequentially switches from the “cooling” mode to the “weak cooling dehumidification” mode, and from the “weak cooling dehumidification” mode to the “extended dehumidification” mode. Switch. By switching the operation mode in this manner, the latent heat capacity changes at about the same level as the steady-state latent heat load Ql. Therefore, as shown by the solid line in FIG. .
  • FIGS. 9A to 9F and FIGS. 10G to 10J show, as a second example, changes in various parameters on a clear day where low humidity conditions are satisfied.
  • the amount of solar radiation increases depending on the amount of clouds, but increases approximately from 6:00 to 12:00 and decreases from 12:00 to 18:00.
  • the window temperature Tw changes in the same manner as the increase or decrease in the amount of solar radiation. Since the outside air temperature To shown in FIG. 9B is warmed by insolation, it changes later than the amount of insolation and reaches a peak at about 13:00.
  • the outside air humidity RHo shown in FIG. 9C is relatively lower under low humidity conditions than under the high humidity conditions shown in FIG. 7C.
  • FIG. 9D shows a change in the steady sensible heat load Qs when the room temperature Ti is constant at the set temperature Tm. As shown in FIG. 9D, the steady sensible heat load Qs gradually increases from 6:00 with the rise in the amount of solar radiation and the outside temperature To, reaches a peak around noon, and thereafter gradually decreases.
  • FIG. 9 (e) shows the steady latent heat load Ql when the room temperature Ti and the room humidity RHi are constant.
  • the steady latent heat load Ql is constant as shown in FIG. 9 (e). Further, under the low humidity condition, the steady latent heat load Ql is smaller than under the high humidity condition shown in FIG.
  • FIGS. 9 (f) and 10 (g) to 10 (j) show the operation mode, sensible heat capacity, latent heat capacity, and room temperature Ti when air conditioning in the "automatic" mode by the air conditioner 1 starts at 16:00. And changes in the room humidity RHi.
  • the air-conditioning control unit 540 starts air-conditioning in the “cooling” operation mode as shown in FIG. Thereafter, when the outside temperature To decreases after a lapse of time, the steady sensible heat load Qs decreases. For example, when the steady sensible heat load Qs falls below the fourth sensible heat threshold Qs4 at 17:00, the air conditioning control unit 540 switches the operation mode from “cooling” to “blowing”.
  • the sensible heat capacity shown in FIG. 10 (g) increases at 16:00 when air conditioning starts in the “cooling” mode because the room temperature Ti shown in FIG. 10 (i) is higher than the set temperature Tm. Thereafter, the sensible heat capacity decreases as the room temperature Ti approaches the set temperature Tm, and is controlled by the air conditioning control unit 540 so that the room temperature Ti is stabilized at the set temperature Tm. After the room temperature Ti has stabilized at the set temperature Tm, the outside air temperature To decreases at night, so that the steady sensible heat load Qs shown in FIG. 9D gradually decreases. Accordingly, the sensible heat capacity shown in FIG. 10 (g) becomes almost equal to the steady sensible heat load Qs, and as a result, the room temperature Ti is kept at the set temperature Tm as shown in FIG. 10 (i).
  • the latent heat capacity shown in FIG. 10 (h) varies depending on the sensible heat capacity in the “cooling” mode so that the room temperature Ti becomes the set temperature Tm.
  • the room humidity RHi shown in FIG. When the operation is performed in the “cooling” mode, the latent heat capacity decreases with a decrease in the sensible heat capacity. However, under low humidity conditions, the indoor humidity RHi tends to decrease, so that even if the latent heat capacity is small, the effect on comfort is small. Therefore, the air-conditioning control unit 540 switches the operation mode from “cooling” to “blowing” according to the decrease in the sensible heat capacity.
  • FIG. 9 shows a transition in which the change under the high humidity condition shown in FIG. 8 and the change under the low humidity condition shown in FIGS. 9 and 10 coexist.
  • the air conditioning control unit 540 sets the operation mode to “double fan dehumidification”, “dew point temperature dehumidification”, “partial dehumidification”. Switch to "cooling dehumidification” or “extended dehumidification”. Conversely, if the outside air humidity RHo is reduced during dehumidification in “double fan dehumidification”, “dew point temperature dehumidification”, “partial cooling dehumidification” or “extended dehumidification” under high humidity conditions, the air conditioning control unit 540 switches the operation mode to “blowing”. Accordingly, in a high-humidity condition, the operation mode is switched to the “dehumidification” operation mode to enhance the comfort of the indoor space 71 and to ensure the comfort of the indoor space 71 without dehumidification. To reduce power consumption.
  • the notification unit 550 notifies the user of the first notification information regarding the environment of the indoor space 71 and the second notification information regarding the control of the air conditioning unit 110 by the air conditioning control unit 540 by display or voice.
  • the notification unit 550 displays, for example, the notification screens illustrated in FIGS. 11 to 13 on the display unit 130 of the remote controller 55, the smartphone, the tablet, or the like when the air conditioning control unit 540 switches the air conditioning operation mode.
  • the notification unit 550 is realized by the control unit 101 cooperating with the communication unit 104.
  • the notification unit 550 functions as a notification unit.
  • the notification unit 550 notifies the tendency information 131 indicating the tendency of the temperature or humidity of the indoor space 71 as the first notification information, and sets the operation mode as the second notification information.
  • the operation mode information 132 shown is notified.
  • the trend information 131 is first image information indicating whether the room temperature Ti or the room humidity RHi acquired by the acquisition unit 510 is increasing, decreasing, or maintaining.
  • the notification unit 550 displays an upward arrow together with a picture of a water drop representing humidity as the trend information 131.
  • the notification unit 550 includes, as the trend information 131, a horizontal arrow together with a picture of a water drop and a picture of a thermometer indicating the temperature. Is displayed.
  • the notification unit 550 displays an upward arrow together with the picture of the thermometer as the trend information 131.
  • Such a tendency of the room temperature Ti or the room humidity RHi indicates whether the room temperature Ti or the room humidity RHi is rising or falling, or the fluctuation range is within the range of the error in the latest period of the predetermined length. It is determined by whether or not it is within.
  • the notification unit 550 When the operation mode is switched by the air-conditioning control unit 540, the notification unit 550 notifies the tendency information 131 of information indicating the tendency of the room temperature Ti or the room humidity RHi immediately before the operation mode is switched. By notifying the information immediately before the operation mode is switched, the user can recognize the reason why the operation mode was switched, for example, when the operation mode was switched from the cooling mode to the dehumidification mode. There is an effect that is easy to do.
  • the notification unit 550 notifies the trend information 131 of information indicating the current tendency of the room temperature Ti or the room humidity RHi.
  • the user can grasp future trends in temperature and humidity.
  • the operation mode information 132 is second image information indicating which operation mode has been switched from which mode when the air conditioning controller 540 has switched the operation mode.
  • the notification unit 550 includes, as the operation mode information 132, the first mode that is the operation mode before the switching, and the operation mode after the switching. Information indicating both the second mode, which is the operation mode, is notified.
  • the notification unit 550 sets the dehumidification mode, which is the operation mode after switching, as the operation mode information 132 in the operation mode before switching.
  • the display is enlarged so that it stands out as compared with a certain cooling mode.
  • the notification unit 550 sets the ventilation mode, which is the operation mode after the switching, to the operation mode before the switching as the operation mode information 132.
  • the display is enlarged so as to be conspicuous as compared with the cooling mode which is the mode.
  • the notification unit 550 is not limited to notifying both the operation modes before and after the switching as the operation mode information 132, but may also notify only the operation mode after the switching for simplicity. However, by notifying both of the operation modes before and after the switching, the user can easily recognize that the operation mode has been automatically switched.
  • the notification unit 550 notifies the determination information 133 indicating the determination content of the driving mode as the first notification information, in addition to the tendency information 131 and the operation mode information 132, and includes, as the second notification information, The control information 134 indicating the control content of the air conditioning control unit 540 is notified.
  • the determination information 133 is first character information indicating the determination content of the operation mode determined by the determination unit 530.
  • the determination unit 530 determines whether the criterion for switching the operation mode is satisfied based on the room temperature Ti, the indoor humidity RHi, the steady sensible heat load Qs, the steady latent heat load Ql, and the like acquired by the acquisition unit 510. , And an operation mode to be switched is determined.
  • the determination information 133 is information on the operation mode determined by the determination unit 530.
  • the control information 134 is second character information indicating control contents when air conditioning is performed by the air conditioning control unit 540 and when the operation mode is switched.
  • the notification unit 550 displays character information such as “Temperature is likely to reach the target, but humidity is still high” as the determination information 133, and the control information 134 indicates “ Switched to dehumidification mode. "
  • the notification unit 550 displays, as the determination information 133, character information such as “Estimate that neither temperature nor humidity will rise even if the air flow is changed”, and as the control information 134, The character information "Switched to blast.” Is displayed. Further, as shown in FIG.
  • the notification unit 550 displays, as the determination information 133, character information such as “It is likely to be hot due to outside air and solar radiation”, and as the control information 134, “Easy to heat the heating earlier. Is displayed. Such notification allows the user to grasp the contents of the control performed automatically. Further, for example, when the operation mode is switched from the cooling mode to the dehumidification mode, the user can easily recognize the reason why the operation mode is switched.
  • the notifying unit 550 links these pieces of character information and displays them in one sentence. Thereby, the determination information 133 and the control information 134 can be easily read by the user and more easily recognized. Also, the display space can be saved.
  • the notification unit 550 displays the trend information 131 and the operation mode information 132 at the upper part of the screen, and displays the determination information 133 and the control information 134 at the lower part of the screen, as shown in FIGS.
  • the notification unit 550 displays the trend information 131 and the operation mode information 132 at the upper part of the screen, and displays the determination information 133 and the control information 134 at the lower part of the screen, as shown in FIGS.
  • the function of the notification unit 550 allows the user to easily recognize the current air conditioning status. That is, in the automatic mode, the user can easily enjoy each of the cooling mode, the dehumidifying mode, and the air blowing mode without operating the user.
  • the automatic mode is convenient, but it is difficult to grasp the contents of the control, so that the user may not be able to obtain a sense of security or a sense of reliability, or may feel uncomfortable.
  • AI Artificial Intelligence
  • the function of the notification unit 550 allows the user to easily recognize the current state of the air conditioning, so that the user can use the air conditioning in the automatic mode more conveniently and safely.
  • the control unit 101 When the operation in the automatic mode is commanded, the control unit 101 functions as the acquisition unit 510, and detects sensors such as the room temperature Ti, the outside temperature To, the window temperature Tw, the room humidity RHi, and the outside air humidity RHo detected by each sensor. Information is acquired (step S101). And the control part 101 functions as the estimation part 520, and estimates the heat load of the indoor space 71 (step S102). More specifically, the control unit 101 calculates the unsteady sensible heat load Ps, the steady sensible heat load Qs, the sensible heat capacity, and the unsteady latent heat load Pl from the acquired sensor information according to the above equations (2) to (7). , Steady latent heat load Ql, and latent heat capacity are calculated.
  • the control unit 101 When the heat load is estimated, the control unit 101 functions as the determination unit 530, and determines an air-conditioning operation mode based on the estimated heat load (Step S103). Then, the control unit 101 functions as the air conditioning control unit 540, and performs air conditioning in the determined operation mode (Step S104). More specifically, the control unit 101 compares the magnitude relationship between the steady sensible heat load Qs and the sensible heat threshold values Qs1 to Qs4, and the magnitude relationship between the steady latent heat load Q1 and the latent heat threshold values Q11 and Q12. Then, the control unit 101 selects an operation mode to be executed by the air conditioner 1 from the plurality of operation modes based on the determination criteria shown in FIG. Air conditioning.
  • control unit 101 reports operation mode switching information or information relating to the operation mode being executed as necessary, for example, as shown in FIG. 11 or FIG. 12 (step S105).
  • control unit 101 functions as the notification unit 550 and displays the notification screens illustrated in FIGS. 11 to 13 on the display unit 130. Thereafter, the control unit 101 returns the process to step S101. Then, while the operation in the automatic mode is instructed, the control unit 101 repeats the processing from step S101 to step S105.
  • the air conditioner 1 requires the steady sensible heat load Qs required for maintaining the room temperature Ti at the set temperature Tm and the air conditioner 1 for maintaining the room humidity RHi at the set humidity RHm.
  • the operating mode is switched according to the steady-state latent heat load Ql, and the indoor space 71 is air-conditioned.
  • the temperature difference ⁇ T between the room temperature Ti and the set temperature Tm, or the temperature difference ⁇ RH between the room humidity RHi and the set humidity RHm compared with the case where the operation mode is switched only in accordance with the unsteady heat load caused by the humidity difference ⁇ RH.
  • the operation mode can be switched by predicting changes in the room temperature Ti and the room humidity RHi. Therefore, a decrease in comfort due to excessive cooling of the interior space 71 is suppressed, leading to an improvement in comfort. Further, an increase in power consumption can be suppressed.
  • the air conditioner 1 switches the operation mode according to the steady sensible heat load Qs and the steady latent heat load Ql to determine whether the temperature and humidity increase after the switching of the operation mode. Can be estimated before switching. Therefore, it is possible to prevent the operation mode from being frequently switched, and as a result, it is possible to accurately switch the three operation modes of the cooling mode, the dehumidification mode, and the ventilation mode without pressing the button and selecting the mode.
  • the air conditioner 1 according to Embodiment 1 has operation modes of “double fan dehumidification”, “dew point temperature dehumidification”, and “partial cooling dehumidification” that can dehumidify with a latent heat capacity higher than “weak cooling dehumidification”.
  • the air conditioner 1 according to Embodiment 1 switches the plurality of dehumidification modes in accordance with the steady sensible heat load Qs to dehumidify the interior space 71 in the “automatic” operation mode.
  • the sensible heat capacity related to the temperature control and the latent heat capacity related to the humidity control can be continuously output, so that when the operation mode is switched according to various conditions such as weather conditions, building conditions, and living conditions.
  • Comfortable air conditioning can be provided with little fluctuation in temperature and humidity. Further, under conditions where the sensible heat capacity or the latent heat capacity of a plurality of operation modes overlap, power consumption can be reduced by selecting a more energy-saving operation mode.
  • the air conditioner 1 according to Embodiment 1 has an operation mode of “blowing” in which cooling and blowing are combined.
  • the air conditioner 1 according to the first embodiment changes the operation mode to “blast”. Switching to air-condition the interior space 71. As a result, it is possible to enhance the energy saving performance while ensuring the comfort of the indoor space 71.
  • Embodiment 2 Next, a second embodiment of the present invention will be described.
  • the determination unit 530 determines the air conditioning operation mode to be executed by the air conditioner 1 according to the steady sensible heat load Qs and the steady latent heat load Ql.
  • determination unit 530 sets the operation mode in accordance with temperature difference ⁇ T between room temperature Ti and set temperature Tm, and humidity difference ⁇ RH between room humidity RHi and set humidity RHm. judge.
  • the estimation unit 520 calculates a temperature difference ⁇ T between the room temperature Ti and the set temperature Tm based on the room temperature Ti acquired by the acquisition unit 510. Further, the estimation unit 520 calculates a humidity difference ⁇ RH between the room humidity RHi and the set humidity RHm based on the room humidity RHi acquired by the acquisition unit 510.
  • the temperature difference ⁇ T is an index of the unsteady sensible heat load Ps, as shown in the above equation (2).
  • the humidity difference ⁇ RH uses the difference between the outdoor absolute humidity and the indoor absolute humidity in the above equation (5), but can be said to be an index of the unsteady latent heat load Pl approximately.
  • Fig. 15 shows the relationship between temperature, humidity and operation mode.
  • the air conditioner 1 air-conditions the indoor space 71 in the “(E) automatic” operation mode
  • the determination unit 530 determines the operation mode according to the temperature difference ⁇ T and the humidity difference ⁇ RH calculated by the estimation unit 520.
  • the operation mode determination process by the determination unit 530 in the second embodiment is performed by replacing the unsteady sensible heat load Qs in the first embodiment with a temperature difference ⁇ T and replacing the steady latent heat load Ql with a humidity difference ⁇ RH. It can be described in the same manner as in the first embodiment.
  • the determination unit 530 determines the magnitude relationship between the humidity difference ⁇ RH calculated by the estimation unit 520 and the humidity thresholds ⁇ RH1 and ⁇ RH2.
  • the case where the humidity difference ⁇ RH is larger than the first humidity threshold ⁇ RH1 corresponds to the case where the high humidity condition is satisfied.
  • a case where the humidity difference ⁇ RH is smaller than the second humidity threshold ⁇ RH2 corresponds to a case where the low humidity condition is satisfied.
  • the determination unit 530 determines the magnitude relationship between the temperature difference ⁇ T and the first to third temperature thresholds ⁇ T1 to ⁇ T3.
  • determination unit 530 determines that the operation mode to be executed by air conditioner 1 is “(A) cooling”.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(C1) weak cooling dehumidification”. Is determined.
  • the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(C2) double fan dehumidification”. , “(C3) Dew point temperature dehumidification” or “(C4) Partial cooling dehumidification”.
  • the determination unit 530 determines that the compressor 21 should be stopped.
  • the determination unit 530 determines the magnitude relationship between the temperature difference ⁇ T and the fourth temperature threshold ⁇ T4. When the temperature difference ⁇ T is larger than the fourth temperature threshold ⁇ T4, the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(A) cooling”. When the temperature difference ⁇ T is smaller than the fourth temperature threshold ⁇ T4, the determination unit 530 determines that the operation mode to be executed by the air conditioner 1 is “(D) ventilation”.
  • the fourth temperature threshold value ⁇ T4 is set to 0 ° C. or a value obtained by adding 0 ° C. to about 1 to 2 ° C. which is a decrease in the perceived temperature obtained in the air blowing mode.
  • the air-conditioning control unit 540 causes the air-conditioning unit 110 to air-condition the indoor space 71 in the operation mode determined by the determination unit 530, as in the first embodiment.
  • the determination unit 530 newly determines an operation mode different from the current operation mode in accordance with the load information such as the temperature and the humidity acquired by the acquisition unit 510
  • the air conditioning control unit 540 starts a new operation mode from the current operation mode. Is switched to the operation mode determined as described above, and the indoor space 71 is air-conditioned.
  • the air-conditioning control unit 540 operates when the temperature difference ⁇ T becomes smaller than the first temperature threshold ⁇ T1 while the air-conditioning unit 110 is performing air conditioning in the cooling mode. The mode is switched to the first dehumidification mode. Further, the air conditioning control unit 540 switches the operation mode to the second dehumidification mode when the temperature difference ⁇ T becomes smaller than the second temperature threshold ⁇ T2 while the air conditioning unit 110 is performing air conditioning in the first dehumidification mode, If the temperature difference ⁇ T becomes smaller than the third temperature threshold ⁇ T3 while the air conditioner 110 is performing air conditioning in the second dehumidification mode, the compressor 21 is stopped. Conversely, when the temperature difference ⁇ T is larger than each of the temperature thresholds ⁇ T1 to ⁇ T3, the air-conditioning control unit 540 switches the operation mode in the opposite manner.
  • the air conditioning control unit 540 switches the operation mode to the blow mode when the temperature difference ⁇ T becomes smaller than the fourth temperature threshold ⁇ T4 while the air conditioning unit 110 is performing air conditioning in the cooling mode. Switch. Conversely, if the temperature difference ⁇ T becomes larger than the fourth temperature threshold ⁇ T4 while the air conditioner 110 is performing air conditioning in the air blowing mode, the air conditioning controller 540 switches the operation mode to the cooling mode.
  • the air conditioning control unit 540 switches the operation mode to the current operation mode.
  • the mode is switched to one of the high humidity conditions 1 to 4 according to the steady sensible heat load Qs.
  • the high humidity condition is satisfied, if the humidity difference ⁇ RH is smaller than the second humidity threshold ⁇ RH2 and the temperature difference ⁇ T is smaller than the fourth temperature threshold ⁇ T4, the operation mode is set to the blow mode. Switch.
  • the air conditioner 1 according to Embodiment 2 switches the operation mode according to the temperature difference ⁇ T between the room temperature Ti and the set temperature Tm, and the humidity difference ⁇ RH between the room humidity RHi and the set humidity RHm.
  • the air conditioner 1 according to Embodiment 2 determines whether to switch from the cooling mode to the dehumidification mode or to change to the ventilation mode by adding the determination of the humidity difference ⁇ RH in addition to the determination of the temperature difference ⁇ T. Can be determined.
  • the air conditioner 1 according to Embodiment 2 By switching the operation mode according to both the temperature difference ⁇ T and the humidity difference ⁇ RH, it is possible to suppress such humidity stagnation.
  • the temperature difference ⁇ T and the humidity difference ⁇ RH it is not necessary to acquire information on the outside air temperature To, the window temperature Tw, and the outside air humidity RHo in order to determine and switch the operation mode. Therefore, it is possible to air-condition the indoor space 71 by switching the operation mode with a simpler configuration.
  • the operation mode is determined according to the temperature difference ⁇ T and the humidity difference ⁇ RH. Thus, air conditioning in which the operation mode is appropriately switched becomes possible.
  • the determination unit 530 performs the determination process based on the steady sensible heat load Qs and the steady latent heat load Ql illustrated in FIG. 6 and the determination process based on the temperature difference ⁇ T and the humidity difference ⁇ RH illustrated in FIG. 15 under an AND condition or an OR condition. They may be combined.
  • the air-conditioning control unit 540 switches the operation mode between the cooling mode and the dehumidification mode and between the cooling mode and the ventilation mode according to both the temperature difference ⁇ T and the steady sensible heat load Qs.
  • the operation mode is switched between the dehumidification mode and the ventilation mode according to both the humidity difference ⁇ RH and the steady latent heat load Ql.
  • the determination unit 530 determines the sensible heat capacity which is the sum of the unsteady sensible heat load Ps and the steady sensible heat load Qs, or the latent heat capacity which is the sum of the unsteady latent heat load Pl and the steady sensible heat load Ql.
  • the operation mode may be determined. By switching the operation mode by appropriately combining the determination process based on the temperature difference ⁇ T and the humidity difference ⁇ RH with the determination process based on the steady sensible heat load Qs and the steady latent heat load Ql, frequent switching of the operation mode, fluctuation of the room temperature Ti, and The fluctuation of the indoor humidity RHi can be suppressed. Therefore, both comfort and energy saving can be achieved.
  • the estimation unit 520 estimates the steady sensible heat load Qs and the steady latent heat load Ql based on the current temperature, humidity, and the like acquired by the acquisition unit 510.
  • the estimating unit 520 determines the steady sensible heat load Qs and the steady latent heat load Ql based on the change tendency in a period of a predetermined length before the present time. Estimate the heat load after a specified time from the current time.
  • the estimation unit 520 calculates the estimated sensible heat load Qs' according to the following equation (8).
  • the estimating unit 520 calculates the estimated latent heat load Ql 'according to the following equation (9).
  • Estimated sensible heat load Qs' steady sensible heat load Qs + predicted variation ⁇ Qs (8)
  • Estimated latent heat load Ql ′ steady latent heat load Ql + predicted variation ⁇ Ql (9)
  • the predicted fluctuation amount ⁇ Qs is the fluctuation amount of the steady sensible heat load Qs at the latest predetermined time. For example, when the current time is 18:00, the estimation unit 520 estimates that the steady sensible heat load Qs will continue to decrease in the future because the steady sensible heat load Qs has been continuously reduced for a long time. I do. When the environment of the outdoor space 72 changes in the same manner immediately after the specified time from the present time as described above, the change in the steady sensible heat load Qs in the immediately preceding period is extended to read the steady sensible heat load Qs in advance. Is possible.
  • the estimation unit 520 estimates the predicted fluctuation amount ⁇ Qs by calculating a difference between the current steady sensible heat load Qs and the steady sensible heat load Qs before a predetermined time from the current time. For example, when the steady sensible heat load Qs has increased by 10% in one hour before the current time, the estimation unit 520 estimates that the predicted variation ⁇ Qs one hour after the current time is also 10%. Then, the estimation unit 520 calculates the estimated sensible heat load Qs' by adding the predicted fluctuation amount? Qs to the current steady sensible heat load Qs. The same applies to the estimated latent heat load Ql 'shown in the above equation (9).
  • the determination unit 530 replaces the steady sensible heat load Qs and the steady latent heat load Ql in the first embodiment with the estimated sensible heat load Qs ′ and the estimated latent heat load Ql ′ estimated by the estimation unit 520 after a specified time from the current time.
  • the operation mode is determined according to.
  • the air-conditioning control unit 540 air-conditions the interior space 71 in the operation mode determined by the determination unit 530.
  • the air conditioner 1 according to Embodiment 3 estimates a future value from the latest change tendency for each of the steady sensible heat load Qs and the steady latent heat load Ql, and changes the operation mode according to the estimated value. Switch. This makes it possible to more accurately predict the state of the thermal load in the indoor space 71 while suppressing the influence of sensor information variation in a short time, as compared to using only the current sensor information.
  • the estimated sensible heat load Qs' By calculating the estimated sensible heat load Qs', after the operation mode is switched from the cooling mode to the dehumidification mode, whether the temperature can be maintained even in the dehumidification mode in which the maximum sensible heat capacity is reduced as compared with the cooling mode, or Whether the maximum sensible heat capacity is insufficient and the temperature rises can be determined proactively before switching. Further, after the operation mode is switched from the cooling mode to the air blowing mode, it is possible to proactively determine whether the temperature can be maintained or the temperature rises even in the air blowing mode before the switching.
  • the estimated latent heat load Ql ' it is determined in advance if the operation mode cannot be switched from the cooling mode or the air blowing mode to the dehumidifying mode due to insufficient latent heat capacity and humidity rise before switching. be able to. Further, after the operation mode is switched from the cooling mode to the air blowing mode, it is possible to determine whether the humidity can be maintained or the humidity increases even in the air blowing mode by reading ahead before the switching.
  • the heat load for maintaining the room temperature Ti and the room humidity RHi before approaching the set temperature Tm and before approaching the set temperature Tm is obtained. Desired.
  • the obtained heat load With the sensible heat capacity and the latent heat capacity that can be exhibited in the current operation mode, it can be determined whether or not the operation mode should be switched.
  • the room temperature Ti and the room humidity RHi can be accurately maintained at the set temperature Tm and the set humidity RHm, which leads to improvement in comfort.
  • FIG. 16 shows a functional configuration of an outdoor unit control unit 51a provided in an air conditioner 1 according to Embodiment 4. Note that the outdoor unit control unit 51a has the same hardware configuration as that of the first embodiment, and thus the description is omitted.
  • the outdoor unit control unit 51a functionally includes an acquisition unit 510, an estimation unit 520, a determination unit 530, an air conditioning control unit 540, a notification unit 550, an information update unit 560, A learning unit 570.
  • the functions of the acquisition unit 510, the estimation unit 520, the determination unit 530, the air-conditioning control unit 540, and the notification unit 550 are the same as those in the first embodiment, and a description thereof will not be repeated.
  • the information updating unit 560 updates the history information 150 stored in the storage unit 102 with the detection information of each sensor acquired by the acquiring unit 510.
  • the history information 150 is information indicating histories such as room temperature Ti, window temperature Tw, outside air temperature To, and air-conditioning capacity.
  • FIG. 17 shows a specific example of the history information 150.
  • the history information 150 includes a sensor including the room temperature Ti detected by the temperature sensor 41, the window temperature Tw detected by the infrared sensor 43, and the outside air temperature To detected by the outside air temperature sensor. Are detected in chronological order. Further, the history information 150 stores values indicating the air conditioning capacity controlled by the air conditioning control unit 540 in chronological order. The history information 150 stores the operation modes controlled by the air-conditioning control unit 540 in chronological order.
  • the information updating unit 560 associates the information newly detected by each sensor with the air conditioning capability and stores the information in the history information 150 at predetermined time intervals. Thereby, the information updating unit 560 updates the history information 150.
  • the information updating unit 560 is realized by the control unit 101 cooperating with the storage unit 102.
  • the information updating unit 560 functions as an information updating unit.
  • the learning unit 570 learns the thermal characteristics of the indoor space 71.
  • the thermal characteristics of the indoor space 71 are properties relating to the heat of the indoor space 71, and specifically include the heat insulation performance of the indoor space 71, the ease with which sunlight enters the indoor space 71, and the like.
  • the learning unit 570 learns the thermal characteristics of the indoor space 71 based on the past room temperature Ti, window temperature Tw, outside air temperature To, and air conditioning capacity recorded in the history information 150.
  • the learning unit 570 is realized by the control unit 101.
  • the learning unit 570 functions as a learning unit.
  • the learning function of the learning unit 570 will be described in more detail.
  • the steady sensible heat load Qs which is the amount of heat required for the air conditioner 1 to maintain the room temperature Ti at the set temperature Tm, depends on features of the house 3 such as wall thickness and window size.
  • the steady sensible heat load Qs includes a once-through load, a ventilation load, an internal calorific value, and a solar radiation load.
  • the once-through load is a heat load transmitted through the outer skin according to the temperature difference ⁇ Tio between the outside air temperature To and the room temperature Ti.
  • the outer skin is a wall that separates the indoor space 71 from the outdoor space 72.
  • the ventilation load is a heat load due to ventilation or inflow of draft air.
  • the ventilation load is proportional to the temperature difference ⁇ Tio.
  • the internal calorific value Qn is a heat load caused by lighting, home appliances, and people existing in the interior space 71.
  • the insolation load includes a first insolation load that is a heat load that transmits the window glass and heats the room, and a second insolation load that is a heat load that heats the outer skin and is transmitted from the outer skin into the interior space 71. Divided.
  • the learning unit 570 learns the thermal characteristics of the indoor space 71 based on the load information on the heat load of the indoor space 71 acquired by the acquiring unit 510. Specifically, the learning unit 570 learns the relationship among the steady sensible heat load Qs, the room temperature Ti, the outside air temperature To, and the window temperature Tw as the thermal characteristics of the indoor space 71, and uses the above equation (3). Are estimated at ⁇ , ⁇ and Qn.
  • the estimating unit 520 estimates the steady sensible heat load Qs according to the above equation (3) using the values of ⁇ , ⁇ , and Qn learned by the learning unit 570. For easy understanding, it is assumed that the room temperature Ti matches the set temperature Tm, and the steady sensible heat load Qs matches the air conditioning capacity of the air conditioner 1.
  • is a coefficient indicating the heat insulation performance of the house 3, and ⁇ is related to a once-through load and a ventilation load, which are heat loads required in proportion to the temperature difference ⁇ Tio between the outside air temperature To and the room temperature Ti. It is a proportional coefficient.
  • can be theoretically estimated by the following equation (10) using the average skin heat transfer rate UA and the surface area A of the skin.
  • the unit of ⁇ is W (watt) / K (Kelvin)
  • the unit of the average skin heat transfer coefficient UA is W / (m 2 ⁇ K)
  • the unit of the surface area A of the shell is m 2 .
  • 1.000 is a coefficient corresponding to the once-through load
  • 0.034 is a coefficient corresponding to the second solar load.
  • the coefficient ⁇ indicating the ease with which solar radiation enters the indoor space 71 is a proportional coefficient relating to the first solar radiation load, which is a heat load required in proportion to the amount of solar radiation.
  • the value of ⁇ depends on the size of the window 75, the type of glass forming the window 75, and the like.
  • the learning unit 570 refers to the history information 150 stored in the storage unit 102 and analyzes the relationship among the room temperature Ti, the window temperature Tw, the outside air temperature To, and the air conditioning capacity. Then, the learning unit 570 estimates ⁇ , ⁇ , and Qn based on the result of the analysis.
  • the learning unit 570 learns the coefficient ⁇ based on the relationship between the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature To represented by the following equation (11) and the air conditioning capacity.
  • Qs ⁇ (To ⁇ Ti) + Qn (11)
  • FIG. 19A shows the relationship between the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature To and the air conditioning capacity.
  • FIG. 19 (a) shows the actual value of the temperature difference ⁇ Tio and the air conditioner on a coordinate plane having a horizontal axis which is a coordinate axis representing the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature To and a vertical axis which is a coordinate axis representing the air conditioning capacity.
  • An example of a case where a plurality of data points corresponding to the performance value of the ability are plotted is shown.
  • the learning unit 570 obtains an approximate straight line L0 indicating the relationship between the temperature difference ⁇ Tio and the air conditioning capacity by applying an appropriate regression technique such as the least squares method to the plurality of data points plotted on the coordinate plane. From the correspondence between the approximate straight line L0 and the equation (11), the slope of the approximate straight line L0 corresponds to the coefficient ⁇ indicating the heat insulation performance, and the intercept of the approximate straight line L0 corresponds to the internal heat generation Qn.
  • FIG. 19B shows a state in which the slope of the approximate straight line differs depending on the heat insulation performance of the house 3.
  • the slope of the approximate straight line L11 obtained for the house 3 having poor heat insulating performance is larger than the slope of the approximate straight line L12 obtained for the house 3 having good heat insulating performance. Therefore, the learning unit 570 acquires the heat insulation performance of the indoor space 71 from the inclination of the approximate straight line.
  • FIG. 19C shows a state in which the intercept of the approximate straight line differs according to the internal heat generation amount Qn.
  • the intercept of the approximate straight line L21 obtained for the house 3 having a large internal heat value Qn is larger than the intercept of the approximate straight line L22 obtained for the house 3 having a small internal heat value Qn. Therefore, the learning unit 570 acquires the internal heating value Qn of the indoor space 71 from the intercept of the approximate straight line.
  • the learning unit 570 refers to the history information 150 stored in the storage unit 102 and, based on the relationship between the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature To and the air-conditioning capacity, calculates the coefficient indicating the heat insulation performance. ⁇ and the internal heating value Qn are determined.
  • the learning unit 570 considers that the required air conditioning capacity is the same and considers the same temperature difference ⁇ Tio to be the same. Plot as a data point on the coordinate plane. In such a configuration, since it is not necessary to determine the thermal characteristic equation for each of the outside air temperature To and the room temperature Ti, the accuracy and speed of learning can be improved.
  • the change in the thermal characteristics of the indoor space 71 occurs, for example, when the use of the electric carpet in winter increases the internal calorific value Qn, or the partition between rooms reduces the flow-through load.
  • the learning unit 570 learns the coefficient ⁇ based on the data of the room temperature Ti, the window temperature Tw, and the air conditioning capacity acquired when the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature To is the same.
  • the learning unit 570 can estimate the relationship between the temperature difference ⁇ Tiw between the room temperature Ti and the window temperature Tw and the air conditioning capacity based on the term ⁇ (Tw ⁇ Ti) in the above equation (11). Specifically, the actual value of the temperature difference ⁇ Tiw and the air-conditioning capacity are plotted on a coordinate plane having a horizontal axis which is a coordinate axis representing the temperature difference ⁇ Tiw between the room temperature Ti and the window temperature Tw and a vertical axis which is a coordinate axis representing the air-conditioning capacity. When a plurality of data points corresponding to the actual values are plotted, the relationship between the temperature difference ⁇ Tiw and the air-conditioning capacity can be represented by a first-order approximation expression, as in FIG.
  • the learning unit 570 obtains an approximate straight line indicating the relationship between the temperature difference ⁇ Tiw and the air conditioning capacity by applying an appropriate regression technique such as the least squares method to the plurality of data points plotted on the coordinate plane. Then, the learning unit 570 learns a coefficient ⁇ indicating the ease with which solar radiation enters the indoor space 71 from the inclination of the approximate straight line.
  • the learning unit 570 learns the heat insulation performance based on the room temperature Ti, the outside air temperature To, and the air-conditioning capacity when the amount of solar radiation is equal to or less than the threshold. More specifically, a plurality of data points plotted on a coordinate plane having a horizontal axis which is a coordinate axis representing the temperature difference ⁇ Tio and a vertical axis which is a coordinate axis representing the air-conditioning capacity, when the amount of solar radiation is equal to or less than the threshold value Limited to acquired data points.
  • the learning unit 570 Before plotting the data points corresponding to the temperature difference ⁇ Tio and the air-conditioning capacity on the coordinate plane, the learning unit 570 sets the temperature difference ⁇ Tio and the air-conditioning capacity data corresponding to the plotted data points to have a predetermined solar radiation amount. It is determined whether or not the data is acquired when the value is equal to or smaller than the threshold value. If the learning unit 570 determines that the data of the temperature difference ⁇ Tio and the air conditioning capacity corresponding to the data point to be plotted are obtained when the amount of solar radiation is equal to or less than the threshold value, the learning unit 570 plots the data point on the coordinate plane.
  • the learning unit 570 determines that the data of the temperature difference ⁇ Tio and the air conditioning capacity corresponding to the data point to be plotted are obtained when the amount of solar radiation is larger than the threshold value, the learning unit 570 does not plot the data point on the coordinate plane.
  • the learning unit 570 plots, on the coordinate plane, the data points acquired when the amount of solar radiation is equal to or less than the threshold value among the plurality of data points corresponding to the temperature difference ⁇ Tio and the air conditioning capacity. For example, the learning unit 570 determines that the amount of solar radiation is equal to or lower than the threshold value when the window temperature Tw is lower than the room temperature Ti, and determines that the amount of solar radiation is higher than the threshold value when the window temperature Tw is higher than the room temperature Ti.
  • the learning unit 570 only needs to be able to acquire the slope and intercept of the approximate straight line from the data of the temperature difference ⁇ Tio and the air-conditioning capacity, and of course, does not need to actually plot the data points on any coordinate plane. It is.
  • the learning unit 570 may learn the heat insulation performance based on the room temperature Ti, the outside air temperature To, and the air-conditioning capacity when the change amount of the room temperature Ti is equal to or less than the reference value.
  • the learning unit 570 may also learn the ease of insolation based on the room temperature Ti, the window temperature Tw, and the air-conditioning capacity when the amount of change in the room temperature Ti is equal to or less than the reference value.
  • the learning unit 570 may limit the plurality of data points plotted on the coordinate plane to the data points acquired when the amount of change in the room temperature Ti in the specified time is equal to or less than the reference value.
  • the learning unit 570 can obtain an approximate straight line using the data acquired when the room temperature Ti is stable. Therefore, it is possible to accurately obtain the heat insulation performance or the ease of entering solar radiation represented by the slope of the approximate straight line, and the internal heat generation amount Qn represented by the intercept.
  • the learning unit 570 calculates the air conditioning capacity for the sensible heat by, for example, the ⁇ -NTU (Number of Transfer Unit) method.
  • the total heat capacity, sensible heat capacity and latent heat capacity are represented by the following equations (12) to (14).
  • Total heat capacity enthalpy efficiency, air density, air volume, (suction air enthalpy of indoor unit 13-saturated air enthalpy of piping temperature of indoor heat exchanger 25) ...
  • Sensible heat capacity temperature efficiency, air density, specific heat of air, air volume, (suction air temperature of indoor unit 13-piping temperature of indoor heat exchanger 25) ...
  • Latent heat capacity Total heat capacity-Sensible heat capacity ... (14)
  • the learning unit 570 actually learns based on the history information 150
  • the data points are not necessarily uniformly plotted on the coordinate plane.
  • the data points are unevenly distributed in a region where the temperature difference ⁇ Tio is large, specifically, in a region where the temperature difference ⁇ Tio is between T3 and T4.
  • all plotted data points are represented by black circles.
  • an approximate straight line is obtained using all data points, the slope and intercept of the approximate straight line may not be accurately obtained due to the strong influence of a region having many data points.
  • the house 3 shows an example in which the slope of the approximate straight line L31 obtained using all the data points is small and the intercept thereof is large. That is, in this case, the house 3 is considered to have good heat insulation performance and a large internal calorific value Qn, and the error increases.
  • the learning unit 570 obtains an approximate straight line by using representative data points represented by white circles instead of all data points represented by black circles.
  • FIG. 20 shows an example in which the area of the temperature difference ⁇ Tio is classified into a plurality of sections with a predetermined temperature width, and one representative data point is obtained for each classified temperature width.
  • the representative data point is, for example, a data point representing an average value of all data points belonging to one section. The average value is obtained for each of the temperature difference ⁇ Tio and the air conditioning capacity.
  • the learning unit 570 averages the actual value of the temperature difference ⁇ and the actual value of the air-conditioning capacity in one of the plurality of sections on the coordinate plane to include the result in the one section. Are integrated into one representative data point. Then, the learning unit 570 obtains an approximate straight line from the representative data points after integration.
  • the slope of the approximate straight line L32 obtained using the representative data points is larger than the slope of the approximate straight line L31 obtained using all the data points.
  • the intercept of the approximate straight line L32 is smaller than the intercept of the approximate straight line L31.
  • the air conditioner 1 according to Embodiment 4 learns the thermal characteristics of the indoor space 71, and estimates the steady sensible heat load Qs based on the learning result. Thereby, the steady sensible heat load Qs for maintaining the room temperature Ti at the set temperature Tm can be accurately estimated. For example, if the room temperature Ti is 27 ° C., air conditioning is generally performed in the cooling mode. Becomes too high to evaporate sufficiently. In such a case, switching to the dehumidification mode enhances comfort. Since the air conditioner 1 according to Embodiment 4 estimates the thermal characteristics of the indoor space 71 by learning, the room temperature fluctuation is small when switching between various operation modes under various weather conditions, building conditions, and living conditions, and the air conditioner 1 is comfortable. Air conditioning can be provided.
  • the sensible heat threshold values Qs1 to Qs4 or the temperature threshold values ⁇ T1 to ⁇ T4 are fixed to predetermined values.
  • the air conditioner 1 corrects the first and second sensible heat thresholds Qs1 and Qs2 according to the situation.
  • FIG. 21 shows a functional configuration of an outdoor unit control unit 51b provided in an air conditioner 1 according to Embodiment 5. Note that the outdoor unit control unit 51b has the same hardware configuration as that of the first embodiment, and a description thereof will be omitted.
  • the outdoor unit control unit 51b functionally includes an acquisition unit 510, an estimation unit 520, a determination unit 530, an air conditioning control unit 540, a notification unit 550, an information update unit 560, A learning unit 570.
  • the functions of the acquisition unit 510, the estimation unit 520, the determination unit 530, the air conditioning control unit 540, and the notification unit 550 are the same as those in the first embodiment.
  • the acquisition unit 510 acquires load information such as the room temperature Ti, the outside air temperature To, and the window temperature Tw.
  • the air-conditioning control unit 540 switches the operation mode in accordance with the steady sensible heat load Qs, which is an index value based on the room temperature Ti, the outside air temperature To, the window temperature Tw, and the like acquired by the acquisition unit 510. 71 is air-conditioned. More specifically, if the steady-state sensible heat load Qs becomes smaller than the threshold while the air-conditioning unit 110 is air-conditioning the indoor space 71 in the first mode, the air-conditioning control unit 540 sets the operation mode to the first mode. The mode is switched to the second mode in which the maximum sensible heat capacity of the air conditioner 110 is lower than that.
  • the first mode and the second mode correspond to the cooling mode and the first dehumidification mode, respectively, when the threshold value is the first sensible heat threshold value Qs1, and the threshold value is the second sensible heat threshold value Qs2.
  • the case corresponds to the first dehumidification mode and the second dehumidification mode, respectively.
  • the correction unit 580 corrects the first and second sensible heat threshold values Qs1 and Qs2 according to the room temperature Ti acquired by the acquisition unit 510. More specifically, the correction unit 580 corrects the first and second sensible heat thresholds Qs1 and Qs2 according to the change in the room temperature Ti after the operation mode is switched by the air conditioning control unit 540.
  • the correction unit 580 is realized by the control unit 101.
  • the correction unit 580 functions as a correction unit.
  • the correction unit 580 reduces the first sensible heat threshold value Qs1 so that the sensible heat capacity in the first dehumidification mode does not fall below the sensible heat load.
  • the correction unit 580 decreases the second sensible heat threshold Qs2.
  • the correction unit 580 increases the first sensible heat threshold value Qs1, and widens the cover range in the first dehumidification mode.
  • the correction unit 580 sets the second observation mode. Increase the thermal threshold Qs2.
  • the initial value of the first sensible heat threshold value Qs1 is set to, for example, the maximum sensible heat capacity Qs1max that can be exhibited by the air conditioner 110 in the first dehumidification mode.
  • the initial value of the second sensible heat threshold value Qs2 is set to, for example, the maximum sensible heat capacity Qs2max that can be exhibited by the air conditioner 110 in the second dehumidification mode.
  • the reason why the maximum sensible heat capacity is set to the initial value of the threshold value is that the air conditioner 110 can exhibit the sensible heat capacity necessary to maintain the room temperature Ti after the operation mode is switched. is there.
  • the correction unit 580 corrects the maximum sensible heat capacity in the decreasing direction by decreasing the sensible heat thresholds Qs1 and Qs2.
  • the correction unit 580 increases the sensible heat thresholds Qs1 and Qs2 to increase the maximum sensible heat. Correct thermal capacity in increasing direction.
  • the correction unit 580 determines whether the room temperature Ti has increased or the room temperature Ti has been increased despite the increase in the outside air temperature To. If the temperature has not risen, the first sensible heat threshold value Qs1 is corrected according to the difference between the sensible heat capacity of the air conditioner 110 and the first sensible heat threshold value Qs1. When the room temperature Ti increases in the first dehumidification mode after switching, there is a high possibility that the sensible heat capacity is smaller than the first sensible heat threshold Qs1. In this case, the correction unit 580 decreases the first sensible heat threshold Qs1 more as the difference between the sensible heat capacity and the first sensible heat threshold Qs1 is larger.
  • the correction unit 580 increases the first sensible heat threshold Qs1 more as the difference between the sensible heat capacity and the first sensible heat threshold Qs1 is larger.
  • the correction unit 580 corrects the first sensible heat threshold Qs1 according to the number of times the difference between the sensible heat capacity and the first sensible heat threshold Qs1 has occurred.
  • the number of times of occurrence of the shift means that the sensible heat capacity and the first temperature when the room temperature Ti increases after the operation mode is switched, or when the room temperature Ti does not increase despite the increase in the outside temperature To. This is the number of times the maximum value of the degree of deviation from the sensible heat threshold value Qs1 has become larger than a predetermined value.
  • the correction unit 580 stores the number of times the shift has occurred in the storage unit 102, and corrects the first sensible heat threshold Qs1 more as the number of times the shift occurs increases.
  • the correction unit 580 corrects the first sensible heat threshold value Qs1 according to the degree of deviation between the sensible heat capacity and the first sensible heat threshold value Qs1 and the number of times the deviation has occurred. The same applies to the second sensible heat threshold value Qs2.
  • the air conditioning control unit 540 sets the corrected first sensible heat threshold value Qs1 or the second sensible heat threshold value Qs2. To control air conditioning. More specifically, the air conditioning control unit 540 switches the operation mode depending on whether the room temperature Ti is greater than the corrected first sensible heat threshold Qs1 or the second sensible heat threshold Qs2, and The room 110 is made to air-condition the indoor space 71.
  • the learning unit 570 includes the temperature difference ⁇ Tio between the room temperature Ti and the outside air temperature T Cincinnati acquired by the acquisition unit 510, and the first and second sensible heat thresholds Qs1 corrected by the correction unit 580. , Qs2. More specifically, when the correction unit 580 corrects the first sensible heat threshold value Qs1 or the second sensible heat threshold value Qs2, the information updating unit 560 determines the corrected sensible heat threshold values Qs1 and Qs2 at that time. It is stored in the history information 150 in association with the temperature difference ⁇ Ti Cincinnati.
  • the history information 150 stores the correspondence between the first and second sensible heat thresholds Qs1 and Qs2 after being corrected by the correction unit 580 and the temperature difference ⁇ Tio at that time as past history.
  • the learning section 570 refers to the history information 150 and learns the relationship between the temperature difference ⁇ Tio and the first and second sensible heat thresholds Qs1 and Qs2.
  • the history information 150 stores the maximum frequency and the first and second sensible heat thresholds Qs1 and Qs2 in association with each other instead of the temperature difference ⁇ Tio. You may.
  • FIG. 22 shows an example in which the first sensible heat threshold Qs1 is plotted for each temperature difference ⁇ Tio.
  • a black circle represents an initial value of the first sensible heat threshold value Qs1
  • a white circle represents a first sensible heat threshold value Qs1 corrected from the initial value by the correction unit 580.
  • the learning unit 570 uses a method such as the least squares method for such a plot, and indicates the correspondence between the first sensible heat threshold value Qs1 and the temperature difference ⁇ Tio by a correlation line indicated by a broken line in FIG. 22, for example. Approximate. At this time, the learning unit 570 uses a linear expression as a correlation line to simplify the calculation.
  • the learning unit 570 updates the plot in association with the temperature difference ⁇ Tio at that time. Then, the learning unit 570 updates the learning result by approximating the updated plot with a new correlation line. In this way, the learning unit 570 learns the correspondence between the first sensible heat threshold Qs1 corrected by the correction unit 580 and the temperature difference ⁇ Tio. The learning unit 570 also learns the correspondence between the second sensible heat threshold Qs2 and the temperature difference ⁇ Tio, similarly to the first sensible heat threshold Qs1.
  • the correction unit 580 determines the temperature difference ⁇ Tio between the newly acquired room temperature Ti and the outside air temperature To and the relationship learned by the learning unit 570.
  • Sensible heat threshold values Qs1 and Qs2 are corrected based on
  • the air-conditioning control unit 540 switches the air-conditioning operation mode using the sensible heat thresholds Qs1 and Qs2 corrected by the correction unit 580.
  • the correspondence between the temperature difference ⁇ Ti Cincinnati and the sensible heat thresholds Qs1 and Qs2 is learned, and the sensible heat thresholds Qs1 and Qs2 are corrected in accordance with the current temperature difference ⁇ Tio, so that the sensible heat thresholds Qs1 and Qs2 can be adjusted with higher accuracy depending on the situation
  • the sensible heat threshold values Qs1 and Qs2 can be corrected.
  • the second dehumidification mode is the reheat dehumidification mode
  • the sensible heat threshold tends to fluctuate greatly when the temperature difference ⁇ Tiée changes as compared with the other dehumidification modes, which is more effective.
  • the air-conditioning control unit 540 may switch the operation mode according to the temperature difference ⁇ T between the room temperature Ti and the set temperature Tm.
  • the correction unit 580 corrects the first and second temperature thresholds ⁇ T1 and ⁇ T2 instead of correcting the first and second sensible heat thresholds Qs1 and Qs2.
  • the first sensible heat threshold value Qs1 when transitioning from the cooling mode to the first dehumidification mode is set to be smaller by about 1 ⁇ to 2 ⁇ than the first sensible heat threshold value Qs1 when returning from the first dehumidification mode to the cooling mode. May be.
  • the air conditioner 1 performs “weak cooling dehumidification”, “double fan dehumidification”, “dew point temperature dehumidification”, “partial cooling dehumidification”, “extended dehumidification”, “reheat dehumidification”, and “ventilation”.
  • the indoor space 71 was air-conditioned.
  • the air conditioner 1 may not have the function of air conditioning in any of these operation modes.
  • the indoor unit 13 does not need to include the two heat exchangers 25a and 25b and the expansion valve 26, and the air and refrigerant in the indoor space 71 What is necessary is just to have one indoor heat exchanger which performs heat exchange between them.
  • the indoor unit 13 does not have to include the two indoor blowers 33a and 33b, and one indoor blower that blows air to the indoor heat exchanger 25 is provided. I just need to have it.
  • the first dehumidification mode is “weak cooling dehumidification”
  • the second dehumidification mode is “double fan dehumidification”, “dew point temperature dehumidification”, “partial cooling dehumidification” or “extended dehumidification”. It was explained as. However, if the first dehumidification mode has a higher maximum sensible heat capacity than the second dehumidification mode, the first dehumidification mode and the second dehumidification mode may be any operation mode.
  • the first dehumidification mode is “weak cooling dehumidification”, “double fan dehumidification”, “dew point temperature dehumidification”, “partial cooling dehumidification” or “extended dehumidification”, and the second dehumidification mode is “reheat dehumidification”. ". Further, the controllable dehumidification mode may be only one of the first dehumidification mode and the second dehumidification mode.
  • the automatic mode may include a heating mode.
  • the heating mode and the cooling mode can be switched based on the outside air temperature To or the set temperature Tm.
  • the air-conditioning control unit 540 switches to the heating mode if the outside air temperature To or the set temperature Tm is lower than a predetermined value, and switches to the cooling mode if it is higher than a predetermined value.
  • the acquisition unit 510 acquires the window temperature Tw detected by the infrared sensor 43 as an index indicating the amount of solar radiation.
  • the acquisition unit 510 may acquire any index as an index indicating the amount of solar radiation, not limited to the window temperature Tw, as long as the information directly or indirectly indicates the amount of solar radiation.
  • the acquisition unit 510 acquires the illuminance of the indoor space 71 detected by the illuminance sensor, or the image of the indoor space 71 taken by the camera, and estimates the amount of solar radiation to be inserted into the indoor space 71 from the illuminance or the image. Is also good.
  • the acquiring unit 510 may acquire information on the amount of power generated by the photovoltaic power generation facility via an external communication network, or acquire information indicating weather data including information on the amount of solar radiation via an external communication network. You may get it.
  • the outdoor unit control unit 51 has the functions of the respective units shown in FIG. 5, FIG. 16, or FIG. 21, and functions as a control device that controls the air conditioner 1.
  • some or all of these functions may be provided in the indoor unit control unit 53, or may be provided in a device external to the air conditioner 1.
  • the control device 100 connected to the air conditioner 1 via the communication network N May be provided with the functions of the respective units shown in FIG.
  • the communication network N is a home network conforming to ECHONET Lite
  • the control device 100 may be a controller of a Home Energy Management System (HEMS) that manages power in the house 3.
  • the communication network N may be a wide area network such as the Internet
  • the control device 100 may be a server that controls the air conditioner 1 from outside the house 3.
  • the air conditioning system S may include a plurality of air conditioners 1 as objects to be controlled by the control device 100.
  • the number of air conditioners 1 is not limited.
  • the control target of the control device 100 may be any device having a refrigeration cycle, such as the air conditioner 1, and its detailed configuration is not limited.
  • the house 3 is described as an example where the air conditioner 1 is installed.
  • the target on which the air conditioner 1 is installed may be an apartment house, an office building, a facility, a factory, or the like.
  • the air-conditioned space is not limited to the room in the house 3 and may be any space as long as it is a space to be air-conditioned by the air conditioner 1.
  • the air conditioner 1 is not limited to including one outdoor unit 11 and one indoor unit 13, and may include one outdoor unit 11 and a plurality of indoor units 13, The indoor unit 13 for cooling and the indoor unit 13 for heating may be able to operate in a mixed manner among a plurality of indoor units 13.
  • the user operates the remote controller 55 to input the numerical values of the set temperature Tm and the set humidity RHm.
  • the corresponding set temperature Tm or set humidity RHm may be determined by the user specifying the cooling / dehumidifying strength / medium / weak with the remote controller 55.
  • a user interface other than the remote controller 55 may be used to receive a user's input, or notification information from the notification unit 550 may be output.
  • control unit 101 functions as each unit illustrated in FIG. 5, FIG. 16, or FIG. 21 by the CPU executing the program stored in the ROM or the storage unit 102.
  • the control unit 101 may be dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • each unit may be realized by dedicated hardware, and the other part may be realized by software or firmware.
  • the control unit 101 can realize each of the above-described functions by hardware, software, firmware, or a combination thereof.
  • the computer can function as the air conditioner 1 or the control device 100 according to the present invention. It is also possible.
  • the distribution method of such a program is arbitrary.
  • a computer-readable recording medium such as a CD-ROM (Compact Disk ROM), a DVD (Digital Versatile Disk), an MO (Magneto Optical Disk), or a memory card.
  • the program may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
  • the present invention is applicable to an air conditioner.
  • 1 air conditioner, 3 house, 11 outdoor unit, 13 indoor unit, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24, 26 expansion valve, 25 indoor heat exchanger, 25a, 25b heat exchanger, 31 outdoor Blower, 33a, 33b indoor blower, 41 temperature sensor, 42 humidity sensor, 43 infrared sensor, 51, 51a, 51b outdoor unit control unit, 53 indoor unit control unit, 55 remote controller, 61 refrigerant line, 63 communication line, 71 indoor Space, 72 outdoor space, 75 window, 100 control device, 101 control unit, 102 storage unit, 103 clock unit, 104 communication unit, 110 air conditioning unit, 130 display unit, 131 tendency information, 132 operation mode information, 133 judgment information, 134 control information, 150 history information, 510 acquisition unit, 520 estimation unit, 30 judging unit, 540 air conditioning control unit, 550 notification unit, 560 information update unit, 570 learning unit 580 correction unit, N communications network, S air-conditioning system

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調装置において、空調部(110)は、空調空間を空調する。取得部(510)は、空調空間の温度を取得する。空調制御部(540)は、取得部(510)により取得された温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、空調部(110)に空調空間を空調させる。補正部(580)は、取得部(510)により取得された温度に応じて、閾値を補正する。

Description

空調装置、制御装置、空調方法及びプログラム
 本発明は、空調装置、制御装置、空調方法及びプログラムに関する。
 空調の運転モードを自動的に切り替える技術が知られている。例えば、特許文献1は、暦及び外気温に応じて設定温度を補正しつつ、設定温度と室内温度との差に応じて暖房、除湿及び冷房の運転モードを変更する空気調和機を開示している。また、特許文献2は、空調空間の湿度と目標湿度との差に応じて第1除湿運転と第2除湿運転とを切り替える空気調和装置を開示している。
特許第5194696号公報 特許第5799932号公報
 上記のような運転モードが自動的に切り替えられる空調において、運転モードを適切なタイミングで切り替えることにより、空調空間における快適性をより向上させることが求められている。
 本発明は、上記のような問題点を解決するためになされたものであり、空調空間における快適性を向上させることが可能な空調装置等を提供することを目的とする。
 上記目的を達成するため、本発明に係る空調装置は、
 空調空間を空調する空調手段と、
 前記空調空間の温度を取得する取得手段と、
 前記取得手段により取得された前記温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、前記空調手段に前記空調空間を空調させる空調制御手段と、
 前記取得手段により取得された前記温度に応じて、前記閾値を補正する補正手段と、を備える。
 本発明によれば、空調空間の温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて空調空間を空調し、空調空間の温度に応じて閾値を補正する。従って、空調空間における快適性を向上させることができる。
本発明の実施の形態1に係る空調装置の構成を示す図 実施の形態1における室外機制御部のハードウェア構成を示すブロック図 実施の形態1に係る空調装置により実行される空調能力と運転モードとの関係を示す図 実施の形態1に係る空調装置により実行される送風モードでの制御処理の流れを示すフローチャート 実施の形態1における室外機制御部の機能的な構成を示すブロック図 実施の形態1における熱負荷と運転モードとの関係を示す図 実施の形態1において、高湿条件での(a)日射量、(b)外気温To、(c)外気湿度RHo、(d)定常顕熱負荷Qs、(e)定常潜熱負荷Ql、及び、(f)運転モードの変化を示す図 実施の形態1において、高湿条件での(g)顕熱能力、(h)潜熱能力、(i)室温Ti、及び、(j)室内湿度RHiの変化を示す図 実施の形態1において、低湿条件での(a)日射量、(b)外気温To、(c)外気湿度RHo、(d)定常顕熱負荷Qs、(e)定常潜熱負荷Ql、及び、(f)運転モードの変化を示す図 実施の形態1において、低湿条件での(g)顕熱能力、(h)潜熱能力、(i)室温Ti、及び、(j)室内湿度RHiの変化を示す図 実施の形態1における運転モードの報知画面の第1の例を示す図 実施の形態1における運転モードの報知画面の第2の例を示す図 実施の形態1における運転モードの報知画面の第3の例を示す図 実施の形態1に係る空調装置により実行される自動モードでの制御処理の流れを示すフローチャート 本発明の実施の形態2における温度と湿度と運転モードとの関係を示す図 本発明の実施の形態4における室外機制御部の機能的な構成を示すブロック図 実施の形態4における履歴情報の一例を示す図 実施の形態4における室内空間の熱移動の概要を示す図 (a)~(c)は、それぞれ、実施の形態4において、室温と外気温との温度差と空調能力との関係を示す近似直線、断熱性能毎の近似直線、内部発熱量毎の近似直線を示す図 実施の形態4において、代表データ点を用いて近似直線を求める方法の説明図 本発明の実施の形態5における室外機制御部の機能的な構成を示すブロック図 実施の形態5において室温と外気温との温度差と第1、第2の顕熱閾値との関係を示す図 本発明の変形例に係る空調システムの全体構成を示す図
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一又は相当部分には同一符号を付す。
 明細書に表されている構成要素の形態は、あくまで例示であって、これらの記載に限定されるものではない。また、本発明は、実施の形態及び図面で限定されるものではない。本発明の要旨を変更しない範囲で実施の形態及び図面に変更を加えることができるのはもちろんである。
 本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでも良い。
 本発明の実施の形態は、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。また、実施の形態で説明する各種具体的な設定及びフラグは一例を示すだけであり、特にこれらに限定しない。
 本発明の実施の形態において、システムとは、複数の装置で構成される装置全体又は複数の機能で構成される機能全体を表す。
 (実施の形態1)
 <空調装置1の構成>
 図1に、本発明の実施の形態1に係る空調装置1を示す。空調装置1は、空調空間である室内空間71を空調する設備である。空調とは、空調空間の空気の温度、湿度、清浄度、気流等を調整することであって、具体的には、暖房、冷房、除湿、加湿、空気清浄等である。
 図1に示すように、空調装置1は、家屋3に設置される。家屋3は、一例として、いわゆる一般的な戸建て住宅の建物である。空調装置1は、例えばCO(二酸化炭素)、HFC(ハイドロフルオロカーボン)等を冷媒として用いたヒートポンプ式の空調設備である。空調装置1は、蒸気圧縮式の冷凍サイクルを搭載しており、図示しない商用電源、発電設備、蓄電設備等から電力を得て動作する。
 図1に示すように、空調装置1は、家屋3の外側に設けられる室外機11と、家屋3の内側に設けられる室内機13と、ユーザによって操作されるリモートコントローラ55と、を備える。室外機11と室内機13とは、冷媒が流れる冷媒配管61と、各種信号が転送される通信線63と、を介して接続されている。空調装置1は、室内機13から空調空気、例えば、冷風を吹き出すことで室内空間71を冷房し、温風を吹き出すことで室内空間71を暖房する。
 室外機11は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、室外送風機31と、室外機制御部51と、を備える。室内機13は、室内熱交換器25と、室内送風機33a,33bと、室内機制御部53と、を備える。冷媒配管61は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、室内熱交換器25と、を環状に接続している。これにより、冷凍サイクルが構成されている。
 圧縮機21は、冷媒を圧縮して冷媒配管61を循環させる。具体的に説明すると、圧縮機21は、低温且つ低圧の冷媒を圧縮し、高圧及び高温となった冷媒を四方弁22に吐出する。圧縮機21は、駆動周波数に応じて運転容量を変化させることができるインバータ回路を備える。運転容量とは、圧縮機21が単位当たりに冷媒を送り出す量である。圧縮機21は、室外機制御部51からの指示に従って運転容量を変更する。
 四方弁22は、圧縮機21の吐出側に設置されている。四方弁22は、空調装置1の運転が冷房又は除湿運転であるか暖房運転であるかに応じて、冷媒配管61中の冷媒の流れる方向を切り替える。
 室外熱交換器23は、冷媒配管61を流れる冷媒と、空調空間の外部である室外空間72(外部空間)の空気と、の間で熱交換を行う。室外送風機31は、室外熱交換器23の傍に設けられており、室外空間72の空気を室外熱交換器23に送る。室外送風機31は室外空間72の空気を吸い込み、吸い込まれた空気は、室外熱交換器23に供給され、冷媒配管61を流れる冷媒により供給される冷温熱との間で熱交換された後、室外空間72に吹き出される。
 膨張弁24は、室外熱交換器23と室内熱交換器25との間に設置されており、冷媒配管61を流れる冷媒を減圧して膨張させる。膨張弁24は、その開度が可変に制御可能な電子式膨張弁である。膨張弁24は、室外機制御部51からの指示に従って開度を変更して、冷媒の圧力を調整する。
 室内熱交換器25は、冷媒配管61を流れる冷媒と、室内空間71の空気と、の間で熱交換を行う。室内送風機33a,33bは、それぞれ室内熱交換器25の傍に設けられており、室内空間71の空気を室内熱交換器25に送る。室内送風機33a,33bは、室内空間71の空気を吸い込み、吸い込まれた空気は、室内熱交換器25に供給され、冷媒配管61を流れる冷媒より供給される冷温熱との間で熱交換された後、室内空間71に吹き出される。室内熱交換器25で熱交換された空気は、空調空気として室内空間71に供給される。これにより、室内空間71が空調される。
 室内熱交換器25は、2つの熱交換器25a,25bと、膨張弁26と、を備える。第1の熱交換器25aは、冷房時の冷凍サイクルにおいて冷媒の上流側に設置されており、第1の送風機である室内送風機33aにより送風される空気と冷媒との間で熱交換を行う。第2の熱交換器25bは、冷房時の冷凍サイクルにおいて冷媒の下流側に設置されており、第2の送風機である室内送風機33bにより送風される空気と冷媒との間で熱交換を行う。膨張弁26は、2つの熱交換器25a,25bの間に設置されており、2つの熱交換器25a,25bの間を流れる冷媒の圧力を調整する。
 室内機13は、温度センサ41と、湿度センサ42と、赤外線センサ43と、を更に備えている。温度センサ41は、測温抵抗体、サーミスタ、熱電対等のセンサであり、室内空間71の空気温度である室温Tiを検知する。湿度センサ42は、電気抵抗式、静電容量式等のセンサであり、室内空間71の空気湿度である室内湿度RHiを検知する。
 温度センサ41及び湿度センサ42は、室内熱交換器25における第2の熱交換器25bの吸い込み口に設置されており、第2の室内送風機33bにより第2の熱交換器25bに吸い込まれる空気の温度及び湿度を検知する。第2の室内送風機33bによる空気の吸い込み口に設置されていることで、温度センサ41及び湿度センサ42は、室内空間71内の空気の温度及び湿度を精度良く検知することができる。
 赤外線センサ43は、焦電型、サーモパイル型等のセンサであり、被検知体から放射される赤外線を検知する。赤外線センサ43は、室内空間71における日射を受ける場所である窓75の付近に設置されており、窓75から放射される赤外線を検知することで、窓75の表面温度である窓温度Twを検知する。窓75は、日中太陽が出ている時に日光に照らされるため、その表面温度は、日射量の指標として用いることができる。
 また、赤外線センサ43は、いわゆる人感センサとしても機能し、室内空間71に存在する人、物等の対象から放射される赤外線を検知することにより、対象の存在及び位置を特定することができる。
 また、空調装置1は、図示を省略するが、外気温度を検知する外気温度センサと、外気湿度を検知する外気湿度センサと、冷媒配管61を流れる冷媒の蒸発温度を検知する蒸発温度センサと、を更に備える。外気温度センサ及び外気湿度センサは、それぞれ室外空間72に設置されており、室外空間72の空気温度である外気温To、及び、室外空間72の空気湿度である外気湿度RHoを検知する。
 なお、湿度センサ42及び外気湿度センサは、相対湿度の単位で湿度を検知するとして以下では説明するが、絶対湿度の単位で検知しても良い。相対湿度と絶対湿度とは、その時の空気温度を用いて適宜換算可能である。
 蒸発温度センサは、例えば冷房及び除湿時に室内熱交換器25の上流側となる冷媒配管61に設置されており、冷媒配管61の温度を検知する。これにより、蒸発温度センサは、室内熱交換器25に流入する冷媒の蒸発温度を検知する。また、蒸発温度センサは、例えば第1の熱交換器25aと第2の熱交換器25bとの間に設置されており、室内熱交換器25における冷媒の蒸発温度を検知しても良い。
 各センサによる検知結果は、室内機制御部53に供給される。室内機制御部53は、供給された検知結果を、通信線63を介して、室外機制御部51に供給する。
 室外機制御部51は、室外機11の動作を制御する。図2に示すように、室外機制御部51は、制御部101と、記憶部102と、計時部103と、通信部104と、を備える。これら各部はバスを介して接続されている。
 制御部101は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等ともいう。制御部101において、CPUは、ROMに格納されたプログラム及びデータを読み出し、RAMをワークエリアとして用いて、室外機制御部51を統括制御する。
 記憶部102は、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリであって、いわゆる二次記憶装置又は補助記憶装置としての役割を担う。記憶部102は、制御部101が各種処理を行うために使用するプログラム及びデータ、並びに、制御部101が各種処理を行うことにより生成又は取得するデータを記憶する。
 計時部103は、RTC(Real Time Clock)を備えており、空調装置1の電源がオフの間も計時を継続する計時デバイスである。
 通信部104は、通信線63を介して室内機制御部53及びリモートコントローラ55と通信するためのインタフェースである。通信部104は、ユーザから受け付けられた操作情報を、リモートコントローラ55から受信し、ユーザに報知するための報知情報をリモートコントローラ55に送信する。また、通信部104は、室内機13の運転指令を室内機制御部53に送信し、室内機13の状態を示す状態情報を室内機制御部53から受信する。
 室内機制御部53は、いずれも図示しないが、CPU、ROM、RAM、通信インタフェース、及び、読み書き可能な不揮発性の半導体メモリを備える。室内機制御部53において、CPUがRAMをワークメモリとして用いながらROMに格納された制御プログラムを実行することにより、室内機13の動作を制御する。
 室外機制御部51は、有線、無線又は他の通信媒体である通信線63によって室内機制御部53と接続されている。室外機制御部51は、室内機制御部53と通信線63を介して各種信号を授受することにより協調動作し、空調装置1全体を制御する。このように、室外機制御部51は、空調装置1を制御する制御装置として機能する。
 室外機制御部51及び室内機制御部53は、各センサの検知結果と、ユーザによって設定された空調装置1の設定情報と、に基づいて、空調装置1の運転を制御する。具体的に説明すると、室外機制御部51は、圧縮機21の駆動周波数、四方弁22の切り替え、室外送風機31の回転数、及び膨張弁24の開度を制御する。また、室内機制御部53は、室内送風機33a,33bの回転数を制御する。なお、室外機制御部51が室内送風機33a,33bの回転数を制御しても良いし、室内機制御部53が圧縮機21の駆動周波数、四方弁22の切り替え、室外送風機31の回転数、又は膨張弁24の開度を制御しても良い。このように、室外機制御部51及び室内機制御部53は、空調装置1に与えられた運転指令に応じて各種装置に各種動作指令を出力する。
 室内空間71にはリモートコントローラ55が配置されている。リモートコントローラ55は、室内機13が備えている室内機制御部53と各種信号を送受信する。リモートコントローラ55は、押圧ボタン、タッチスクリーン、液晶ディスプレイ、LED(Light Emitting Diode)等を備えており、ユーザからの各種指令を受け付ける指令受付部、及び、各種情報をユーザに表示する表示部として機能する。ユーザは、リモートコントローラ55を操作することで、空調装置1に指令を入力する。指令は、例えば、運転と停止との切替指令、又は、運転モード、設定温度、設定湿度、風量、風向、タイマー等の切替指令である。空調装置1は、入力された指令に従って運転する。なお、このようなユーザインタフェースとして、スマートフォン、タブレット等の情報機器がリモートコントローラ55の代わりに備えられていても良い。
 <運転モード>
 空調装置1は、少なくとも「(A)冷房」、「(B)暖房」、「(C)除湿」、「(D)送風」及び「(E)自動」の運転モードを有しており、これらのうちのいずれかの運転モードで室内空間71を空調する。
 (A)冷房モード
 「冷房」の運転モードは、室内空間71の空気を冷却してその温度を下げるためのモードである。制御部101は、「冷房」の運転指令を受信すると、圧縮機21から吐出された冷媒が室外熱交換器23に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。
 圧縮機21が駆動すると、圧縮機21から吐出された冷媒は、四方弁22を通過して室外熱交換器23へと流入する。室外熱交換器23に流入した冷媒は、室外空間72から吸い込まれた室外空気と熱交換して凝縮液化し、膨張弁24へと流入する。膨張弁24に流入した冷媒は、膨張弁24で減圧された後、室内熱交換器25へと流入する。室内熱交換器25に流入した冷媒は、室内空間71から吸い込まれた室内空気と熱交換して蒸発した後、四方弁22を通過して、再び圧縮機21に吸入される。このようにして冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で冷却される。
 (B)暖房モード
 「暖房」の運転モードは、室内空間71の空気を温めてその温度を上げるためのモードである。制御部101は、「暖房」の運転指令を受信すると、圧縮機21から吐出された冷媒が室内熱交換器25に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。
 圧縮機21が駆動すると、圧縮機21から吐出された冷媒は、四方弁22を通過して室内熱交換器25へと流入する。室内熱交換器25に流入した冷媒は、室内空間71から吸い込まれた室内空気と熱交換して凝縮液化し、膨張弁24へと流入する。膨張弁24に流入した冷媒は、膨張弁24で減圧された後、室外熱交換器23へと流入する。室外熱交換器23に流入した冷媒は、室外空間72から吸い込まれた室外空気と熱交換して蒸発した後、四方弁22を通過して、再び圧縮機21に吸入される。このようにして「冷房」及び「除湿」とは逆向きに冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で加熱される。
 <圧縮機の運転と停止>
 冷房モードにおいて、制御部101は、圧縮機21の運転中に室温Tiがサーモオフ温度まで低下すると、冷えすぎを防止するために、圧縮機21の運転を停止する。そして、圧縮機21の停止中に室温Tiがサーモオン温度まで上昇すると、温まりすぎを防止するために、圧縮機21の運転を再開する。同様に、暖房モードにおいて、制御部101は、圧縮機21の運転中に室温Tiがサーモオフ温度まで上昇すると、温まりすぎを防止するために、圧縮機21の運転を停止する。そして、制御部101は、圧縮機21の停止中に室温Tiがサーモオン温度まで低下すると、冷えすぎを防止するために、圧縮機21の運転を再開する。サーモオフ温度及びサーモオン温度は、目標温度である設定温度Tmに対して規定の範囲内の温度に予め設定される。このように、制御部101は、圧縮機21の運転と停止とを繰り返すことにより、室温Tiを設定温度Tmに維持する。
 (C)除湿モード
 「除湿」の運転モードは、室内空間71の湿度を下げるためのモードである。制御部101は、「除湿」の運転指令を受信すると、「冷房」と同様に、圧縮機21から吐出された冷媒が室外熱交換器23に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。これにより、冷媒は、冷媒配管61を「冷房」と同様の向きに循環する。
 より詳細には、「除湿」の運転モードは、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」及び「(C6)再熱除湿」の6つの運転モードに分けられる。これらを総称して除湿モードと扱う。なお、実製品においては、除湿モードを冷房モードの一部と説明する場合もあるが、冷房モードに比べて相対的に低い顕熱比SHFが得られる運転モードであれば、以下で説明する除湿モードに含まれる。
 図3に、各運転モードと空調能力との関係を示す。ここで、空調能力とは、空調装置1による空調の強さを示す指標であって、室内熱交換器25における冷媒と室内空気との熱交換量に相当する。室内熱交換器25における冷媒と空気との熱交換量が大きいほど、空調装置1の空調能力は上昇する。冷房時の空調能力を冷房能力と呼び、暖房時の空調能力を暖房能力と呼ぶ。
 図3において、横軸は顕熱能力を表し、縦軸は潜熱能力を表す。顕熱能力は、空調能力のうちの空気の温度変化に関わる能力に相当する。これに対して、潜熱能力は、空気中の水分の状態変化に関わる能力、すなわち除加湿に関わる能力に相当する。顕熱能力と潜熱能力の合計を全熱能力と呼び、全熱能力に対する顕熱能力の比率を顕熱比(SHF:Sensible Heat Factor)と呼ぶ。顕熱比は、下記(1)式により表される。
 顕熱比(SHF)=顕熱能力/全熱能力 …(1)
 以下では、空気を冷却する際の顕熱能力を正とし、空気を除湿する際の潜熱能力を正として説明する。具体的に説明すると、「除湿」の各運転モードでは、「冷房」に比べて除湿能力が上昇するため潜熱能力は上昇するが、冷房能力が低下するため顕熱能力は低下する。以下、「除湿」の各運転モードについて詳述する。
 (C1)弱冷房除湿モード
 「弱冷房除湿」の運転モードは、「冷房」よりも冷房能力が低く、且つ、除湿能力が高い除湿モードである。制御部101は、「弱冷房除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、室内送風機33a,33bの回転数を「冷房」の場合よりも減少させる。言い換えると、制御部101は、「弱冷房除湿」では「冷房」よりも、室内送風機33a,33bにより室内熱交換器25に送られる送風量を少なくする。
 一般的に、室内送風機33a,33bの送風量が大きいほうが室内熱交換器25における冷媒の蒸発温度が高く、冷凍サイクルは高効率となる。そのため、空調装置1は、「冷房」では、騒音とならない程度に大きい送風量で運転することで省エネにつながる。これに対して、「弱冷房除湿」では、制御部101は、「冷房」よりも室内送風機33a,33bの送風量を減少させることで、冷媒の蒸発温度を低下させる。これにより、室内熱交換器25の顕熱能力は低下し、潜熱能力は上昇する。よって、顕熱比は減少する。その結果、「冷房」よりも「弱冷房除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
 (C2)ダブルファン除湿モード
 「ダブルファン除湿」の運転モードは、2つの室内送風機33a,33bを異なる回転数で駆動させて室内空間71を除湿する除湿モードである。制御部101は、「ダブルファン除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、第1の室内送風機33aの回転数を、第2の室内送風機33bの回転数よりも小さくする。
 具体的に説明すると、制御部101は、「弱冷房除湿」では、2つの室内送風機33a,33bを共に規定の回転数W0で駆動させるのに対して、「ダブルファン除湿」では、温度センサ41及び湿度センサ42から遠い第1の室内送風機33aを、規定の回転数W0よりも小さい第1の回転数W1で駆動させる。一方で、制御部101は、「ダブルファン除湿」では、温度センサ41及び湿度センサ42から近い第2の室内送風機33bを、第1の回転数W1よりも大きい第2の回転数W2で駆動させる。第2の回転数W2は、規定の回転数W0に比べて同程度の回転数に設定される。これにより、制御部101は、「ダブルファン除湿」における第1の室内送風機33aと第2の室内送風機33bとによる送風量の和を、「弱冷房除湿」における第1の室内送風機33aと第2の室内送風機33bとによる送風量の和よりも、低下させる。
 温度センサ41及び湿度センサ42から近い第2の室内送風機33bの回転数を減少させると、吸い込み空気の量が減少するため、吸い込み空気の温度を精度良く取得することが難しくなり、空調空間の空調を適切に制御することが難しくなる。しかしながら、「ダブルファン除湿」では、第2の室内送風機33bの回転数を「弱冷房除湿」と同程度に保つことで、第2の室内送風機33bにより室内熱交換器25に送られる空気の温度及び湿度を精度良く検知することができる。
 一方で、温度センサ41及び湿度センサ42から遠い第1の室内送風機33aの回転数を「弱冷房除湿」よりも低下させることで、「弱冷房除湿」よりも室内送風機33a,33bによる送風量の和を低下させる。これにより、室内熱交換器25における冷媒の蒸発温度が低下し、潜熱能力が増加する。一方で、顕熱能力は減少するため、顕熱比は減少する。その結果、「弱冷房除湿」よりも「ダブルファン除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
 このように、「ダブルファン除湿」では、2つの室内送風機33a,33bの回転数に差をつけることで、室内空間71の温度及び湿度を精度良く検知しつつ、室内熱交換器25への送風量を低下させることができる。そのため、「弱冷房除湿」よりも高い除湿能力で、室内空間71を除湿することができる。
 (C3)露点温度除湿モード
 「露点温度除湿」の運転モードは、除湿能力を高めるために、冷媒の蒸発温度を空気の露点温度よりも低下させる除湿モードである。制御部101は、「露点温度除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、圧縮機21の回転数を、蒸発温度センサにより検知された冷媒の蒸発温度が空気の露点温度よりも低くなる回転数に制御する。
 「冷房」、「弱冷房除湿」及び「ダブルファン除湿」では、制御部101は、室温Tiと設定温度Tmとの温度差ΔTに応じて圧縮機21の回転数を制御するため、室温Tiが低下するほど圧縮機21の回転数を減少させる。圧縮機21の回転数が減少すると、室内熱交換器25における冷媒の蒸発温度が成り行きで上昇し、顕熱能力と潜熱能力との両方が減少する。そのため、室温Tiは設定温度Tmで安定するものの、室内湿度RHiが低下せずに快適性を低下させるおそれがある。
 そこで、「露点温度除湿」では、制御部101は、室内熱交換器25における冷媒の蒸発温度と室内熱交換器25に吸い込まれる空気の露点温度との差に応じて、蒸発温度が露点温度よりも低下するように、圧縮機21の回転数を制御する。これにより、潜熱能力を低下しないように維持することができる。「弱冷房除湿」よりも「露点温度除湿」の方が、室内湿度RHiが低下しやすくなる。
 (C4)部分冷却除湿モード
 「部分冷却除湿」の運転モードは、室内熱交換器25の入口側で冷媒の蒸発温度を空気の露点温度よりも低下させ、且つ、室内熱交換器25の出口側で冷媒の過熱度を大きくする除湿モードである。制御部101は、「部分冷却除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、膨張弁24の開度を、室内熱交換器25に冷媒が流入する流入口における冷媒の蒸発温度が空気の露点温度よりも低くなる開度に制御する。
 「冷房」、「弱冷房除湿」及び「ダブルファン除湿」では、制御部101は、膨張弁24の開度を、室内熱交換器25における冷媒の出口において冷媒が飽和ガスになる程度に、つまり室内熱交換器25における冷媒の出口付近における過熱度がゼロに近くなるように制御する。これにより、空調装置1の全熱能力が効率良く出力されるようになる。これに対して、「部分冷却除湿」では、制御部101は、膨張弁24の開度を、室内熱交換器25の冷媒の入口付近で冷媒の蒸発温度が室内熱交換器25に吸い込まれる空気の露点温度よりも低くなるように制御する。
 具体的に説明すると、制御部101は、「部分冷却除湿」では「冷房」及び「弱冷房除湿」よりも膨張弁24の開度を絞る。これにより、室内熱交換器25の入口付近における冷媒の蒸発温度が低下し、室内熱交換器25の入口付近で冷媒の多くが蒸発するため、室内熱交換器25の出口付近での過熱度が大きくなる。その結果、室内熱交換器25の入口側では低温で空気を除湿可能となり、出口側では空気を冷やし過ぎないようになる。「弱冷房除湿」及び「露点温度除湿」よりも「部分冷却除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
 (C5)拡張除湿モード
 「拡張除湿」の運転モードは、上述した「(C2)ダブルファン除湿」、「(C3)露点温度除湿」及び「(C4)部分冷却除湿」のうちの2つ又は3つを組み合わせたモードである。これら3つの運転モードのうちの2つ又は3つを組み合わせることで、顕熱能力と潜熱能力を連続的に幅広く調整することができる。そのため、様々な気象条件、建物条件及び生活条件において、室温と湿度の変動が少ない快適な空調を提供できる。また、「拡張除湿」では、下記「再熱除湿」よりも省エネとなる。
 (C6)再熱除湿モード
 「再熱除湿」の運転モードは、室内空間71の温度の低下を抑えつつ湿度を低下させる除湿モードである。制御部101は、「再熱除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、室内熱交換器25における2つの熱交換器25a,25bの間の膨張弁26を適度に閉じる。
 膨張弁26の開度を絞ることにより、膨張弁26よりも上流側に位置する第1の熱交換器25aは、冷媒を凝縮させる凝縮器として機能し、第2の室内送風機33bにより供給される空気を温める。一方で、膨張弁26よりも下流側に位置する第2の熱交換器25bは、冷媒を蒸発させる蒸発器として機能し、第2の室内送風機33bにより供給される空気の湿度を低下させる。空気を温めつつ湿度を低下させるため、他の除湿モードよりも「再熱除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
 (D)送風モード
 「送風モード」の運転モードについて説明する。送風モードは、圧縮機21を停止させて、室内送風機33a,33bによる送風で空調するモードである。冷房時期において外気温Toが室温Tiよりも下がっていれば冷やす必要がないため、送風モードにすることで電力を大きく消費することなく室内空間71を攪拌することができる。圧縮機21が動いていなくても、風にあたることで涼感を得ることもできる。なお、室内送風機33a,33bによる送風を停止させずに圧縮機21を停止させる状態であれば、例えば、冷えすぎを防止するため圧縮機21を停止するサーモオフ時も送風モードの一部であるとして説明する。以下では、「送風モード」として、冷房と送風とを組み合わせたモードである「ハイブリッドモード」を例にとって説明する。
 具体的に図4を参照して、送風モードでの処理の流れについて説明する。第1に、圧縮機21が運転している状態において、制御部101は、室温Tiがサーモオフ温度以下に低下したか否かを判定する(ステップS11)。室温Tiがサーモオン温度よりも高い場合(ステップS11;NO)、制御部101は、圧縮機21を運転させたまま維持する。一方、室温Tiがサーモオフ温度以下に低下した場合(ステップS11;YES)、制御部101は、圧縮機21の運転を停止する(ステップS12)。そして、制御部101は、圧縮機21の運転を停止する際に、室内送風機33a,33bの回転数を、圧縮機21が運転を停止する直前の回転数よりも増加させる(ステップS13)。
 具体的に説明すると、「送風」以外の運転モードでは、圧縮機21が運転を停止する際に、制御部101は、室内送風機33a,33bの回転数を減少させるか、或いは室内送風機33a,33bの駆動を停止させるため、室内送風機33a,33bの回転数を増加させない。これに対して、「送風」モードでは、圧縮機21が運転を停止する際に、制御部101は、室内送風機33a,33bの回転数を増加させる。これにより、室内空間71の在室者が急に暑さを感じることなく適度な冷涼感が得られるようになる。
 更に、制御部101は、圧縮機21の運転を停止した後、室温Tiの変化に応じて室内送風機33a,33bの回転数を調整する(ステップS14)。例えば、圧縮機21の停止中に室温Tiが上昇する場合、制御部101は、室内送風機33a,33bの回転数を徐々に増加させる。これにより、室内空間71における体感温度を低下させる。
 圧縮機21の停止中、制御部101は、室内送風機33a,33bの風向を調整する(ステップS15)。具体的に説明すると、室内機13は、図示を省略するが、室内機13から吹き出される空気流の風向を左右に変更可能とする左右風向板と、風向を上下に変更可能とする上下風向板と、を備える。制御部101は、圧縮機21の停止状態において、左右風向板と上下風向板の少なくともどちらかをスイング動作させて、室内送風機33a,33bによる送風の向きをスイングさせる。これにより、室内空間71の全体を偏りなく空調する。
 また、ステップS15において、制御部101は、赤外線センサ43により室内空間71に存在する人、物等の対象が検知された場合、左右風向板と上下風向板を回動制御して、室内送風機33a,33bによる送風の向きを、検知された対象の位置に向ける。これにより、冷涼感を高めて快適性を向上させることができる。
 第2に、圧縮機21が運転を停止している状態において、制御部101は、室温Tiがサーモオン温度以上に上昇したか否かを判定する(ステップS16)。室温Tiがサーモオン温度よりも低い場合(ステップS16;NO)、制御部101は、圧縮機21を停止したまま維持する。一方、室温Tiがサーモオン温度以上に上昇した場合(ステップS16;YES)、制御部101は、冷房モードでないと快適性が維持できないと判定して、圧縮機21の運転を開始する(ステップS17)。そして、制御部101は、圧縮機21の運転を開始する際に、室内送風機33a,33bの回転数を、圧縮機21が運転を開始する直前の回転数よりも減少させる(ステップS18)。ここで、サーモオン温度は、例えば設定温度Tm、又は室内送風機33a,33bの送風による体感温度の低下分を設定温度Tmに加えた温度に設定される。
 具体的に説明すると、「送風」以外の運転モードでは、圧縮機21が運転を開始する際に、制御部101は、室内送風機33a,33bの回転数を増加させるため、室内送風機33a,33bの回転数を減少させない。これに対して、「送風」モードでは、圧縮機21が運転を開始する際に、制御部101は、室内送風機33a,33bの回転数を減少させる。これにより、室内空間71の在室者が急に寒さを感じることなく適度な冷涼感が得られるようになる。
 更に、制御部101は、圧縮機21の運転を開始した後、室温Tiの変化に応じて室内送風機33a,33bの回転数を調整する(ステップS19)。例えば、圧縮機21の運転中に室温Tiが低下する場合、制御部101は、室内送風機33a,33bの回転数を徐々に減少させる。これにより、室内空間71における体感温度を上昇させる。
 その後、制御部101は、処理をステップ11に戻し、ステップS11からステップS19の処理を繰り返す。なお、制御部101は、室内送風機33a,33bの回転数を増加又は減少させる際、室内送風機33a,33bの回転数を目標とする回転数に急激に変更させず、徐々に変化させても良い。
 このように、「送風」の運転モードでは、制御部101は、圧縮機21の運転と停止との切り替えの際に室内送風機33a,33bの回転数を増減させる。圧縮機21の停止中に室内送風機33a,33bによる送風量が増加することで、気流によってユーザの体感温度を低下させるため、圧縮機21が運転を停止していても快適性が確保される。これにより、圧縮機21の停止中にユーザが設定温度を下げて消費電力の増加を招いてしまうような事態を抑制することができる。その結果、圧縮機21の運転時間を削減することができ、快適性と省エネ性を両立できる。特に、「送風」の運転モードは、初夏又は晩夏のように、室外空間72の温度も湿度も高くなく、冷房と扇風機とのどちらでも空調可能な場合に好適である。また、扇風機を別途設置する必要がないため、室内空間71のデザイン性が向上する。
 (E)自動モード
 「自動」の運転モードは、上述した「(A)冷房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」、「(C6)再熱除湿」及び「(D)送風」のうちから運転モードを自動的に切り替えるモードである。ユーザは、ユーザインタフェースの単一のボタンを押圧することで、運転モードを「(E)自動モード」に変更することができる。ユーザインタフェースにおける「(E)自動モード」の表記は、「自動」、「おまかせ」、「A.I.」等の包括的な名称であっても良い。以下、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合について説明する。
 <空調装置1の機能>
 次に、図5を参照して、空調装置1の機能的な構成について説明する。図5に示すように、空調装置1は、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、を備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部102に格納される。そして、制御部101において、CPUが、ROM又は記憶部102に記憶されたプログラムを実行することによって、図5に示した各機能を実現する。
 取得部510は、室内空間71の熱負荷に関する負荷情報を取得する。熱負荷とは、空調装置1が室内空間71の温度、湿度等の環境を目標となる環境に変化させ、維持するために必要となる熱量である。取得部510は、負荷情報として、温度センサ41、湿度センサ42及び赤外線センサ43を含む各センサにより検知された温度、湿度等の情報を取得する。
 具体的に説明すると、取得部510は、温度センサ41により検知された室温Tiを温度センサ41から取得し、湿度センサ42により検知された室内湿度RHiを湿度センサ42から取得し、赤外線センサ43により検知された窓温度Tw、及び室内空間71に居る対象の位置情報を、赤外線センサ43から取得する。また、取得部510は、外気温度センサ及び外気湿度センサにより検知された外気温To及び外気湿度RHo、及び、蒸発温度センサにより検知された冷媒の蒸発温度を、これら各センサから取得する。
 各センサは、検知された情報を、予め定められた周期で定期的に室外機制御部51に送信する。或いは、取得部510が必要に応じて各センサに要求を送信し、各センサがこの要求に応答する方式で、検知された情報を送信しても良い。このようにして、取得部510は、各センサにより検知された温度、湿度等の情報を、室内機制御部53と通信線63とを介して取得する。取得部510は、制御部101が、通信部104と協働することによって実現される。取得部510は、取得手段として機能する。
 推定部520は、取得部510により取得された温度、湿度等の情報に基づいて、室内空間71の熱負荷を推定する。ここで、熱負荷には、顕熱に起因して生じる顕熱負荷と、潜熱に起因して生じる潜熱負荷と、がある。
 <熱負荷と空調能力との関係及び定義>
 顕熱負荷は、下記(2)式で表される非定常顕熱負荷Psと、下記(3)式で表される定常顕熱負荷Qsと、に分類される。非定常顕熱負荷Psと定常顕熱負荷Qsとの和は、下記(4)式で表されるように、空調装置1が室温Tiを設定温度Tmに変化させ、維持するための顕熱能力に相当する。
 非定常顕熱負荷Ps=顕熱容量/単位時間×(室温Ti-設定温度Tm) …(2)
 定常顕熱負荷Qs=α(外気温To-室温Ti)+β(窓温度Tw-室温Ti)+内部発熱量Qn …(3)
 顕熱能力=非定常顕熱負荷Ps+定常顕熱負荷Qs …(4)
 上記(2)式において、顕熱容量は、室内空間71の壁、床、家具等が有する顕熱に関する熱容量である。また、上記(3)式において、αは、室内空間71の断熱性能を示す係数であり、βは、日射の入りやすさを示す係数であり、内部発熱量Qnは、室内空間71内に存在する照明、家電、人等から生じる熱量である。これらの値は、適宜の値に予め設定されて記憶部102に記憶されている。
 非定常顕熱負荷Psは、上記(2)式に示すように、室温Tiと設定温度Tmとの温度差ΔTにより定められる。非定常顕熱負荷Psは、室温Tiを設定温度Tmまで変化させるための熱量に相当し、室温Tiが設定温度Tmから離れている場合に支配的となる第1の顕熱負荷である。
 これに対して、定常顕熱負荷Qsは、上記(3)式に示すように、外気温Toと室温Tiとの差と、室外空間72の日射量に依存するパラメータである窓温度Twと室温Tiとの差と、内部発熱量Qnと、により定められる。定常顕熱負荷Qsは、主として室内空間71の環境と室外空間72の環境との差により生じる顕熱負荷であって、室温Tiが設定温度Tmに等しい場合に室温Tiを設定温度Tmに維持するために定常的に必要な熱量に相当する。定常顕熱負荷Qsは、室温Tiが設定温度Tmに近い場合に支配的となる第2の顕熱負荷である。
 潜熱負荷は、下記(5)式で表される非定常潜熱負荷Plと、下記(6)式で表される定常潜熱負荷Qlと、に分類される。非定常潜熱負荷Plと定常潜熱負荷Qlとの和は、下記(7)式で表されるように、空調装置1が室内空間71の湿度RHiを設定湿度RHmに変化させ、維持するための潜熱能力に相当する。
 非定常潜熱負荷Pl=潜熱容量/単位時間×(室内絶対湿度-目標絶対湿度) …(5)
 定常潜熱負荷Ql=α’(室外絶対湿度-室内絶対湿度)+内部蒸発量 …(6)
 潜熱能力=非定常潜熱負荷Pl+定常潜熱負荷Ql …(7)
 上記(5)式において、潜熱容量は、室内空間71の壁、床、家具等が有する潜熱に関する熱容量である。また、上記(6)式において、α’は、室外空間72から室内空間71への水分の流入し易さを示す係数である。すなわち、上記(6)式の第1項は、換気によって室外空間72から室内空間71に入る水分の量を表す。内部蒸発量は、人体、調理等により室内空間71で蒸発した水分の量である。これらの値は、予め設定されて記憶部102に記憶されている。
 非定常潜熱負荷Plは、上記(5)式に示すように、室内絶対湿度と目標絶対湿度との差により定められる。目標絶対湿度は、室温Tiが設定温度Tmに等しく、且つ、室内空間71の相対湿度である室内湿度RHiが目標湿度である設定湿度RHmに等しいときの絶対湿度である。すなわち、非定常潜熱負荷Plは、室温Tiが設定温度Tmに等しい場合に室内湿度RHiを設定湿度RHmまで変化させるための熱量に相当する。非定常潜熱負荷Plは、室内絶対湿度が目標絶対湿度から離れている場合に支配的となる第1の潜熱負荷である。
 これに対して、定常潜熱負荷Qlは、上記(6)式に示すように、室外絶対湿度と室内絶対湿度との差と、内部蒸発量と、により定められる。定常潜熱負荷Qlは、主として室内空間71の環境と室外空間72の環境との差により生じる潜熱負荷であって、室内絶対湿度が目標絶対湿度に等しい場合に室内湿度RHiを設定湿度RHmに維持するための熱量に相当する。定常潜熱負荷Qlは、室内絶対湿度が目標絶対湿度に近い場合に支配的となる第2の潜熱負荷である。
 推定部520は、上記(2)~(7)式に従って、取得部510により取得された温度、湿度等の値から、非定常顕熱負荷Ps、定常顕熱負荷Qs、顕熱能力、非定常潜熱負荷Pl、定常潜熱負荷Ql、及び、潜熱能力を計算する。これにより、推定部520は、室内空間71の熱負荷を推定する。推定部520は、制御部101が記憶部102と協働することにより実現される。推定部520は、推定手段として機能する。
 判定部530は、推定部520により推定された熱負荷に基づいて、空調の運転モードを判定する。図6に、熱負荷と運転モードとの関係を示す。図6に示すように、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合、定常顕熱負荷Qsの大きさと定常潜熱負荷Qlの大きさとに応じて、空調装置1が実行すべき運転モードが定められている。判定部530は、推定部520により推定された定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、運転モードを判定する。
 ここで、適切なタイミングで運転モードを切り替えるにはいくつか課題がある。例えば、冷房モードから送風モードに切り替わるのが早すぎると、短時間で温度戻り又は湿度戻りが発生して快適性が低下する。冷房モードから除湿モードに切り替わるのが早すぎると、室温Tiを下げる効率が悪化して消費電力が増大する。一方、冷房モードから送風モードに切り替わるのが遅すぎると、消費電力の増大と冷えすぎを招く。冷房モードから除湿モードに切り替わるのが遅すぎると、冷えすぎと湿度の上昇を招く。判定部530は、このような課題を回避するため、適切なタイミングで冷房と除湿と送風のモードを自動で切り替えることができるように、運転モードを判定する。
 <運転モードの判定例>
 第1に、判定部530は、推定部520により推定された定常潜熱負荷Qlと潜熱閾値Ql1,Ql2との大小関係を判定する。定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きい場合は、例えば雨又は曇りの日のように、外気湿度RHoが相対的に高い「高湿条件」が成立する場合に相当する。これに対して、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さい場合は、例えば乾燥している日のように、外気湿度RHoが相対的に低い「低湿条件」が成立する場合に相当する。
 定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きい場合、すなわち高湿条件が成立する場合、判定部530は、第2に、定常顕熱負荷Qsと顕熱閾値Qs1~Qs3との大小関係を判定する。3つの顕熱閾値Qs1~Qs3は、Qs1>Qs2>Qs3となるように予め値が設定されている。
 (高湿条件1)
 高湿条件において、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも大きい場合は、外気温To又は窓温度Twが相対的に高い場合に相当するため、室温Tiが上昇し易い状況と言える。この場合、室温Tiを設定温度Tmに維持するためには、除湿能力に比べて冷房能力を主に必要とする。そのため、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。
 (高湿条件2)
 高湿条件において、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも小さく、且つ、第2の顕熱閾値Qs2よりも大きい場合、高湿条件1ほどは冷房能力を必要としない。そのため、この場合、判定部530は、空調装置1が実行すべき運転モードが第1の除湿モードである「(A)弱冷房除湿」であると判定する。これにより、判定部530は、高湿条件1よりも冷房能力を低下させる代わりに除湿能力を高める。
 (高湿条件3)
 高湿条件において、定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも小さく、且つ、第3の顕熱閾値Qs3よりも大きい場合、高湿条件2よりも更に冷房能力を必要としない。そのため、この場合、判定部530は、空調装置1が実行すべき運転モードが第2の除湿モードであると判定する。ここで、第2の除湿モードとは、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」又は「(C5)拡張除湿」である。これにより、判定部530は、高湿条件2よりも冷房能力を更に低下させ、且つ、除湿能力を更に高める。
 より詳細に説明すると、高湿条件3の中で、定常潜熱負荷Qlが相対的に低い場合、判定部530は、空調装置1が実行すべき運転モードが「(C2)ダブルファン除湿」であると判定する。高湿条件3の中で、定常潜熱負荷Qlが相対的に高く、且つ、定常顕熱負荷Qsが相対的に高い場合、判定部530は、空調装置1が実行すべき運転モードが「(C3)露点温度除湿」であると判定する。高湿条件3の中で、定常潜熱負荷Qlが相対的に高く、且つ、定常顕熱負荷Qsが相対的に低い場合、判定部530は、空調装置1が実行すべき運転モードが「(C4)部分冷却除湿」であると判定する。なお、これら3つの運転モードのうちの境界付近では、判定部530は、これら3つの運転モードのうちの少なくとも2つを組み合わせた「(C5)拡張除湿」を、空調装置1が実行すべき運転モードとして判定する。このように、高湿条件3では、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、連続的に運転モードが切り替えられる。
 (高湿条件4)
 高湿条件において、定常顕熱負荷Qsが第3の顕熱閾値Qs3よりも小さい場合、室内空間71を冷房すると冷やしすぎになって快適性を低下させる。そのため、この場合、判定部530は、圧縮機21を停止して空調を停止すべきであると判定する。
 定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さい場合、すなわち低湿条件が成立する場合、判定部530は、第2に、定常顕熱負荷Qsと第4の顕熱閾値Qs4との大小関係を判定する。第4の顕熱閾値Qs4は、0kW、又は、送風モードで得られる体感温度の低下分を熱量に換算した値を0kWに加算した値に設定される。
 (低湿条件1)
 低湿条件において、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きい場合は、室温Tiが上昇し易い状況に相当する。この場合、室温Tiを設定温度Tmに維持するためには、除湿能力に比べて冷房能力を主に必要とする。そのため、判定部530は、高湿条件1と同様に、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。
 (低湿条件2)
 低湿条件において、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さい場合、低湿条件1ほどは冷房能力を必要とせず、また大きな除湿能力も必要としない。この場合、判定部530は、消費電力を抑えるため、空調装置1が実行すべき運転モードが「(D)送風」であると判定する。
 このように、判定部530は、推定部520により推定された定常顕熱負荷Qs及び定常潜熱負荷Qlに基づいて、空調の運転モードを判定する。潜熱閾値Ql1,Ql2及び顕熱閾値Qs1~Qs4は、適宜の値に予め設定されており、記憶部102に記憶されている。判定部530は、制御部101が記憶部102と協働することにより実現される。判定部530は、判定手段として機能する。
 なお、第1の潜熱閾値Ql1は、0kW以上であって、且つ、第2の潜熱閾値Ql2よりも大きい値に設定する。これにより、湿度が高い時には除湿モードを使用してしっかり湿度を低下させつつ、比較的湿度が低い時は冷房モードを活用することで省エネ性を高めることができる。また、運転モードが頻繁に切り替えられることを防ぐ観点からも、第1の潜熱閾値Ql1は第2の潜熱閾値Ql2よりも少し大きい方が好ましい。但し、簡便化のため、除湿モードでも省エネ性が得られる場合には、第1の潜熱閾値Ql1を0kWとしてもよい。第2の潜熱閾値Ql2は、送風モードにより得られる体感温度の低下分を湿度に換算した分だけ0kWよりも大きな値であっても良いが、0kWとしてもよい。また、第1の潜熱閾値Ql1と第2の潜熱閾値Ql2とを共に0kWとしてもよい。
 図5に戻って、空調制御部540は、空調部110を制御して、空調部110に室内空間71を空調させる。空調部110は、室外機11における圧縮機21、四方弁22、室外熱交換器23、膨張弁24及び室外送風機31と、室内機13における室内熱交換器25及び室内送風機33a,33bと、を有し、室内空間71を空調する空調手段として機能する。
 空調制御部540は、通信部104を介して室内機制御部53と通信し、室内機制御部53と協働することによって、空調部110に室内空間71を空調させる。具体的に説明すると、空調制御部540は、指示された運転モードに応じて四方弁22の流路を切り替え、膨張弁24の開度を調整し、圧縮機21、室外送風機31及び室内送風機33a,33bを駆動させる。これにより、空調制御部540は、上記<運転モード>で説明した「(A)冷房」、「(B)暖房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」、「(C6)再熱除湿」又は「(D)送風」の処理を実行する。空調制御部540は、制御部101が通信部104と協働することによって実現される。空調制御部540は、空調制御手段として機能する。
 「(E)自動」の運転モードが指示されている場合、空調制御部540は、判定部530により判定された運転モードで、空調部110に室内空間71を空調させる。具体的に説明すると、空調制御部540は、上述した高湿条件1,2,3と低湿条件1,2とのうちのいずれかが成立した場合、成立した条件に応じて、「(A)冷房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」又は「(D)送風」の運転モードで空調部110に室内空間71を空調させる。高湿条件4が成立した場合、空調制御部540は、圧縮機21の運転を停止させる。
 また、空調制御部540は、取得部510により取得された温度、湿度等の負荷情報に応じて判定部530が現在の運転モードとは異なる運転モードを新たに判定すると、現在の運転モードから新たに判定された運転モードに切り替えて、室内空間71を空調する。
 具体的に説明すると、空調制御部540は、高湿条件が成立する場合において、空調部110が冷房モードで空調している際に定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも小さくなると、運転モードを第1の除湿モードに切り替える。更に、空調制御部540は、空調部110が第1の除湿モードで空調している際に定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも小さくなると、運転モードを第2の除湿モードに切り替え、空調部110が第2の除湿モードで空調している際に定常顕熱負荷Qsが第3の顕熱閾値Qs3よりも小さくなると、圧縮機21を停止させる。逆に、定常顕熱負荷Qsが各顕熱閾値Qs1~Qs3よりも大きくなると、空調制御部540は、運転モードを上記とは逆に切り替える。
 一方、空調制御部540は、低湿条件が成立する場合において、空調部110が冷房モードで空調している際に定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さくなると、運転モードを送風モードに切り替える。逆に、空調部110が送風モードで空調している際に定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きくなると、空調制御部540は、運転モードを冷房モードに切り替える。
 また、空調制御部540は、低湿条件が成立する場合において、空調部110が送風モードで空調している際に定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きくなると、運転モードを、その時の定常顕熱負荷Qsに応じて高湿条件1~4のいずれかのモードに切り替える。逆に、高湿条件が成立する場合において、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さくなり、且つ、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さい場合、運転モードを送風モードに切り替える。
 以下、高湿条件が成立する場合と低湿条件が成立する場合とを例にとって、空調制御部540が運転モードを切り替えながら室内空間71を空調する処理について説明する。
 <高湿条件>
 図7(a)~(f)及び図8(g)~(j)に、第1の例として、高湿条件が成立する曇りの日における各種パラメータの変化を示す。図7(a)に示すように、日射量は、雲の量によって異なるが、おおよそ6時から12時にかけて増加し、12時から18時にかけて減少する。窓温度Twは、図示しないが、日射量の増減と同様に変化する。図7(b)に示す外気温Toは、日射により温められるため、日射量よりも遅れて変化し、13時頃にピークに達する。図7(c)に示す外気湿度RHoは、高湿条件の下では相対的に高く推移する。更に、雨が降らず、外気の絶対湿度がほとんど変化しないと仮定した場合、外気湿度RHoは、外気温Toが高い昼間の時間ほど低下する。
 図7(d)に、室温Tiが設定温度Tmで一定である場合における定常顕熱負荷Qsの変化を示す。室温Tiが設定温度Tmで一定である場合、定常顕熱負荷Qsは、上記(3)式に従って推定部520により推定される。図7(d)に示すように、定常顕熱負荷Qsは、日射量及び外気温Toの上昇に伴って6時から徐々に増加し、昼頃にピークを迎え、その後徐々に低下する。
 図7(e)に、室温Ti及び室内湿度RHiが一定である場合における定常潜熱負荷Qlを示す。定常潜熱負荷Qlは、上記(6)式に従って推定部520により推定される。室外絶対湿度と換気量が一定であり、内部蒸発量も一定である場合、図7(e)に示すように、定常潜熱負荷Qlは一定となる。
 図7(f)及び図8(g)~図8(j)に、それぞれ空調装置1による「自動」モードでの空調が16時に開始した場合における運転モード、顕熱能力、潜熱能力、室温Ti及び室内湿度RHiの変化を示す。判定部530は、図7(d)に示した定常顕熱負荷Qsと図7(e)に示した定常潜熱負荷Qlとに基づいて運転モードを判定する。空調制御部540は、判定部530により判定された空調モードで、空調を実行する。
 具体的に説明すると、16時の空調開始時において、定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きく、且つ、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも大きい。そのため、空調制御部540は、図7(f)に示すように「冷房」の運転モードで空調を開始する。その後、時間が経過して外気温Toが低下すると、定常顕熱負荷Qsは減少する。例えば17時において定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも低下すると、空調制御部540は、「冷房」から第1の除湿モードである「弱冷房除湿」に運転モードを切り替える。更に、例えば23時において定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも低下すると、空調制御部540は、「弱冷房除湿」から第2の除湿モードである「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」に運転モードを切り替える。
 図8(g)に示す顕熱能力は、16時に「冷房」モードで空調が開始した時点では、図8(i)に示す室温Tiが設定温度Tmよりも高いため、大きくなる。その後、顕熱能力は、室温Tiが設定温度Tmに近づくほど小さくなり、室温Tiが設定温度Tmで安定するように空調制御部540により制御される。室温Tiが設定温度Tmで安定した後、夜間は外気温Toが低下するため、図7(d)に示す定常顕熱負荷Qsは緩やかに減少する。それに伴い、図8(g)に示す顕熱能力は、定常顕熱負荷Qsと同程度になり、その結果として図8(i)に示すように室温Tiは設定温度Tmと同程度で安定する。
 図8(h)に示す潜熱能力は、「冷房」モードでは室温Tiが設定温度Tmになるように顕熱能力が制御されるため、成り行きで変化する。空調の開始からしばらくは、顕熱能力が大きいことに伴って潜熱能力も大きく推移するため、図8(j)に示す室内湿度RHiは低下する。しかしながら、「冷房」モードのままで運転した場合、潜熱能力は、図8(h)において一点鎖線で示すように顕熱能力の減少に伴って減少する。そのため、除湿量が減少し、室内湿度RHiは、図8(j)において一点鎖線で示すように増加に転じる。
 このように室内湿度RHiが増加することを回避するため、空調制御部540は、「冷房」モードから「弱冷房除湿」モードに、また「弱冷房除湿」モードから「拡張除湿」モードに、順次切り替える。このように運転モードを切り替えることで、潜熱能力が定常潜熱負荷Qlと同程度で推移するため、図8(j)において実線で示すように、室内湿度RHiは設定湿度RHmと同程度で安定する。
 <低湿条件>
 図9(a)~(f)及び図10(g)~(j)に、第2の例として、低湿条件が成立する晴天の日における各種パラメータの変化を示す。図9(a)に示すように、日射量は、雲の量によって異なるが、おおよそ6時から12時にかけて増加し、12時から18時にかけて減少する。窓温度Twは、図示しないが、日射量の増減と同様に変化する。図9(b)に示す外気温Toは、日射により温められるため、日射量よりも遅れて変化し、13時頃にピークに達する。図9(c)に示す外気湿度RHoは、低湿条件の下では、図7(c)に示した高湿条件の下に比べて、相対的に低く推移する。
 図9(d)に、室温Tiが設定温度Tmで一定である場合における定常顕熱負荷Qsの変化を示す。図9(d)に示すように、定常顕熱負荷Qsは、日射量及び外気温Toの上昇に伴って6時から徐々に増加し、昼頃にピークを迎え、その後徐々に低下する。
 図9(e)に、室温Ti及び室内湿度RHiが一定である場合における定常潜熱負荷Qlを示す。室外絶対湿度と換気量とが一定であり、内部蒸発量も一定である場合、図9(e)に示すように、定常潜熱負荷Qlは一定となる。また、低湿条件の下では、図7(e)に示した高湿条件の下に比べて、定常潜熱負荷Qlは小さくなる。
 図9(f)及び図10(g)~図10(j)に、それぞれ空調装置1による「自動」モードでの空調が16時に開始した場合における運転モード、顕熱能力、潜熱能力、室温Ti及び室内湿度RHiの変化を示す。
 16時の空調開始時において、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さく、且つ、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きい。そのため、空調制御部540は、図9(f)に示すように「冷房」の運転モードで空調を開始する。その後、時間が経過して外気温Toが低下すると、定常顕熱負荷Qsは減少する。例えば17時において定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも低下すると、空調制御部540は、「冷房」から「送風」に運転モードを切り替える。
 図10(g)に示す顕熱能力は、16時に「冷房」モードで空調が開始した時点では、図10(i)に示す室温Tiが設定温度Tmよりも高いため、大きくなる。その後、顕熱能力は、室温Tiが設定温度Tmに近づくほど小さくなり、室温Tiが設定温度Tmで安定するように空調制御部540により制御される。室温Tiが設定温度Tmで安定した後、夜間は外気温Toが低下するため、図9(d)に示す定常顕熱負荷Qsは緩やかに減少する。それに伴い、図10(g)に示す顕熱能力は、定常顕熱負荷Qsと同程度になり、その結果として図10(i)に示すように室温Tiは設定温度Tmに保たれる。
 図10(h)に示す潜熱能力は、「冷房」モードでは室温Tiが設定温度Tmになるように顕熱能力が制御されるため、成り行きで変化する。空調の開始からしばらくは、顕熱能力が大きいことに伴って潜熱能力も大きく推移するため、図10(j)に示す室内湿度RHiは低下する。「冷房」モードのままで運転した場合、顕熱能力の減少に伴って潜熱能力も減少する。しかしながら、低湿条件では、室内湿度RHiは低下しやすい状況であるため、潜熱能力が小さくても快適性への影響は小さい。そのため、空調制御部540は、顕熱能力の低下に応じて、運転モードを「冷房」から「送風」に切り替える。
 定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さいことを条件に「冷房」から「送風」に切り替えられるため、「送風」に切り替えられた後に顕熱能力が不足したとしても、室温Tiが設定温度Tmよりも大きく上昇するという事態は起こりにくい。また、低湿条件であるため、「送風」に切り替えた後に、室内熱交換器25に付着している水分が送風で再蒸発する等により室内湿度RHiが上昇するという事態も起こりにくい。そのため、「送風」に切り替えることで、快適性と省エネ性とを両立できる。
 なお、図示は省略するが、急に雨が降って外気湿度RHoが変化した場合のように、1日のうちで高湿条件と低湿条件とが切り替わった場合、各種のパラメータは、図7及び図8に示した高湿条件における変化と、図9及び図10に示した低湿条件における変化と、が混在した推移を示す。
 例えば、低湿条件において「送風」で空調中に外気湿度RHoが上昇して高湿条件が成立した場合、空調制御部540は、運転モードを「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」に切り替える。逆に、高湿条件において「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」で除湿中に外気湿度RHoが低下して低湿条件が成立した場合、空調制御部540は、運転モードを「送風」に切り替える。これにより、高湿条件では「除湿」の運転モードに切り替えて室内空間71の快適性を高めつつ、除湿をせずとも室内空間71の快適性を確保できる場合には、「送風」の運転モードに切り替えて消費電力を抑えることが可能になる。
 <報知機能>
 報知部550は、室内空間71の環境に関する第1の報知情報と、空調制御部540による空調部110の制御に関する第2の報知情報とを、表示又は音声によりユーザに報知する。報知部550は、空調制御部540により空調の運転モードが切り替えられた際に、例えば図11から図13に示す報知画面を、リモートコントローラ55、スマートフォン、タブレット等の表示部130に表示する。報知部550は、制御部101が通信部104と協働することにより実現される。報知部550は、報知手段として機能する。
 図11から図13に示すように、報知部550は、第1の報知情報として、室内空間71の温度又は湿度の傾向を示す傾向情報131を報知し、第2の報知情報として、運転モードを示す運転モード情報132を報知する。傾向情報131は、取得部510により取得された室温Ti又は室内湿度RHiが上昇傾向にあるか、下降傾向にあるか、維持傾向にあるかを示す第1の画像情報である。
 例えば図11に示すように、室内湿度RHiが上昇傾向にある場合、報知部550は、傾向情報131として、湿度を表す水滴の絵と共に上向きの矢印を表示する。一方で、図12に示すように、室温Tiと室内湿度RHiとが共に維持傾向にある場合、報知部550は、傾向情報131として、水滴の絵及び温度を表す温度計の絵と共に横向きの矢印を表示する。また、図13に示すように、室温Tiが上昇傾向にある場合、報知部550は、傾向情報131として、温度計の絵と共に上向きの矢印を表示する。このような室温Ti又は室内湿度RHiの傾向は、直近の予め定められた長さの期間において、室温Ti又は室内湿度RHiが上昇しているか、下降しているか、或いは変動幅が誤差の範囲内に収まっているかにより判定される。
 報知部550は、空調制御部540により運転モードが切り替えられた場合、傾向情報131として、運転モードが切り替えられる直前の室温Ti又は室内湿度RHiの傾向を示す情報を報知する。運転モードが切え替られた時の直前の情報を報知することにより、例えば運転モードが冷房モードから除湿モードに切り替えられた場合など、なぜ運転モードが切り替えられたのかの理由を、ユーザが認識しやすい効果がある。
 一方で、報知部550は、ユーザから要求を受け付けた場合、傾向情報131として、現在の室温Ti又は室内湿度RHiの傾向を示す情報を報知する。ユーザから要求を受け付けた場合に現在の情報を報知することにより、ユーザが温度と湿度の今後の傾向を把握することができる。
 運転モード情報132は、空調制御部540により運転モードが切り替えられた場合に、運転モードがどのモードからどのモードに切り替えられたかを示す第2の画像情報である。報知部550は、空調制御部540により運転モードが第1のモードから第2のモードに切り替えられた際、運転モード情報132として、切り替え前の運転モードである第1のモードと、切り替え後の運転モードである第2のモードと、の双方を示す情報を報知する。
 例えば図11に示すように、運転モードが冷房モードから除湿モードに切り替えられた場合、報知部550は、運転モード情報132として、切り替え後の運転モードである除湿モードを、切り替え前の運転モードである冷房モードに比べて目立つように大きく表示する。同様に、図12に示すように、運転モードが冷房モードから送風モードに切り替えられた場合、報知部550は、運転モード情報132として、切り替え後の運転モードである送風モードを、切り替え前の運転モードである冷房モードに比べて目立つように大きく表示する。
 なお、報知部550は、運転モード情報132として、切り替え前後の運転モードの双方を報知することに限らず、簡便化のために、切り替え後の運転モードのみを報知しても良い。但し、切り替え前後の運転モードを双方共に報知することで、ユーザは、運転モードが自動で切り替えられたことを認識し易くなる。
 このように、傾向情報131及び運転モード情報132を表示することで、ユーザが現在の空調の状況を容易に認識することができる。このとき、絵と文字とを交えた画像をフルドット方式の表示部130を介して鮮明に表示し、また傾向情報131と運転モード情報132とを隣接して表示することにより、運転モードの切り替えとその理由とをユーザがより認識しやすくなる。
 更に、報知部550は、このような傾向情報131及び運転モード情報132に加えて、第1の報知情報として、運転モードの判定内容を示す判定情報133を報知し、第2の報知情報として、空調制御部540による制御内容を示す制御情報134を報知する。判定情報133は、判定部530により判定された運転モードの判定内容を示す第1の文字情報である。上述したように、判定部530は、取得部510により取得された室温Ti、室内湿度RHi、定常顕熱負荷Qs、定常潜熱負荷Ql等に基づいて、運転モードを切り替える基準が満たされたか否か、及び、切り替えるべき運転モードを判定する。判定情報133は、このような判定部530により判定された運転モードの情報である。一方、制御情報134は、空調制御部540により空調が実行された時、及び、運転モードが切り替えられた時の制御内容を示す第2の文字情報である。
 例えば図11に示すように、報知部550は、判定情報133として、「温度は目標に到達しそうですが、まだ湿度が高そうです。」との文字情報を表示し、制御情報134として、「除湿モードに切り替えました。」との文字情報を表示する。或いは、図12に示すように、報知部550は、判定情報133として、「送風に変えても、温度も湿度も上がらないと予測し、」との文字情報を表示し、制御情報134として、「送風に切り替えました。」との文字情報を表示する。更に、図13に示すように、報知部550は、判定情報133として、「外気・日射で暑くなりそうです。」との文字情報を表示し、制御情報134として、「早めに暖房をゆるめました。」との文字情報を表示する。このような報知により、ユーザは自動で行われた制御内容を把握することができる。また、例えば、冷房モードから除湿モードに切り替えられた場合、なぜ運転モードが切り替えられたのかの理由をユーザが認識しやすくなる。
 報知部550は、これらの文字情報を連結させて1つの文で表示する。これにより、判定情報133と制御情報134とをユーザが読みやすくなり、より認識しやすくなる。また、表示スペースを節約することができる。
 また、報知部550は、図11から図13に示すように、画面上部に傾向情報131と運転モード情報132とを表示し、画面下部に判定情報133と制御情報134とを表示する。このように各情報を同時に表示することにより、ユーザの認識性が更に向上する。なお、画面内における各情報の配置はこれに限らない。
 このような報知部550の機能により、現在の空調の状況をユーザが容易に認識することができる。すなわち、自動モードでは、ユーザは自身で操作することなく、冷房モードと除湿モードと送風モードとのそれぞれを簡単に享受することができる。一方で、自動モードは便利であるが、制御内容を把握しにくいため、ユーザの安心感又は信頼感を得ることができなかったり、違和感を抱いたりする可能性がある。特に、近年のAI(Artificial Intelligence)機能の普及により自動化が進む一方で、ユーザの内容認識及びユーザと機械との対話の質の向上が望まれている。実施の形態1では、報知部550の機能により、現在の空調の状況をユーザが容易に認識することができるため、ユーザが自動モードでの空調をより便利に安心して使用することができる。
 次に、図14に示すフローチャートを参照して、空調装置1により実行される自動モードでの制御処理の流れについて説明する。
 自動モードでの運転が指令された場合、制御部101は、取得部510として機能し、各センサにより検知された室温Ti、外気温To、窓温度Tw、室内湿度RHi、外気湿度RHo等のセンサ情報を取得する(ステップS101)。そして、制御部101は、推定部520として機能し、室内空間71の熱負荷を推定する(ステップS102)。具体的に説明すると、制御部101は、上記(2)~(7)式に従って、取得されたセンサ情報から非定常顕熱負荷Ps、定常顕熱負荷Qs、顕熱能力、非定常潜熱負荷Pl、定常潜熱負荷Ql、及び、潜熱能力を計算する。
 熱負荷を推定すると、制御部101は、判定部530として機能し、推定した熱負荷に基づいて、空調の運転モードを判定する(ステップS103)。そして、制御部101は、空調制御部540として機能し、判定した運転モードで空調する(ステップS104)。具体的に説明すると、制御部101は、定常顕熱負荷Qsと顕熱閾値Qs1~Qs4との大小関係、及び、定常潜熱負荷Qlと潜熱閾値Ql1,Ql2との大小関係を比較する。そして、制御部101は、図6に示した判定基準に基づいて、複数の運転モードの中から空調装置1が実行すべき運転モードを選択し、選択した運転モードで空調部110に室内空間71を空調させる。
 更に、制御部101は、必要に応じて、例えば図11又は図12に示したように、運転モードの切り替え情報、又は、実行中の運転モードに関する情報を報知する(ステップS105)。例えば、制御部101は、報知部550として機能して、図11から図13に示した報知画面を表示部130に表示する。その後、制御部101は、処理をステップS101に戻す。そして、制御部101は、自動モードでの運転が指令されている間、ステップS101からステップS105の処理を繰り返す。
 以上説明したように、実施の形態1に係る空調装置1は、室温Tiを設定温度Tmに維持するために必要な定常顕熱負荷Qsと、室内湿度RHiを設定湿度RHmに維持するために必要な定常潜熱負荷Qlと、に応じて運転モードを切り替えて、室内空間71を空調する。これにより、室温Tiと設定温度Tmとの温度差ΔT、又は、室内湿度RHiと設定湿度RHmとの湿度差ΔRHにより生じる非定常的な熱負荷のみに応じて運転モードを切り替える場合に比べて、室温Ti及び室内湿度RHiの変化を予測して運転モードを切り替えることが可能になる。そのため、室内空間71の冷やし過ぎによる快適性の低下が抑制され、快適性の向上につながる。また、消費電力の増大を抑制することができる。
 室温Tiと設定温度Tmとの温度差ΔTの判定だけでは、冷房モードから除湿モードに切り替え後で、必要な顕熱負荷が除湿モードでまかなえる顕熱負荷では不足する場合には、温度戻りによる不快な温度変動が発生し、再度冷房モードに戻さなくてはいけない。複数の除湿モード内で顕熱能力がより高い第1の除湿モードから顕熱能力がより低い第2の除湿モードに切り替える場合、及び、冷房モードから送風モードに切り替える場合についても同様である。また、湿度差ΔRHの判定だけを用いて運転モードを送風モードに切り替える場合も同様に、現在の湿度が低くても定常潜熱負荷Qlが残っていれば、湿度戻りが発生してしまう。実施の形態1に係る空調装置1は、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて運転モードを切り替えることで、運転モードの切り替え後に温度及び湿度が上昇するか否かを、運転モードの切り替え前に推定することができる。そのため、運転モードが頻繁に切り替えられることを抑制することができ、その結果、冷房モード、除湿モード及び送風モードの3つの運転モードをユーザがボタンを押して選ぶことなく精度よく切り替えることができる。
 また、実施の形態1に係る空調装置1は、「弱冷房除湿」よりも高い潜熱能力で除湿可能な「ダブルファン除湿」、「露点温度除湿」及び「部分冷却除湿」の運転モードを備える。そして、実施の形態1に係る空調装置1は、「自動」の運転モードにおいて、定常顕熱負荷Qsに応じてこれらの複数の除湿モードを切り替えて室内空間71を除湿する。これにより、温度制御に関わる顕熱能力と湿度制御に関わる潜熱能力とを連続的に出力できるため、気象条件、建物条件、生活条件等の様々な状況に応じて、運転モードの切り替えの際に温度及び湿度の変動が少なく、快適な空調を提供できる。また、複数の運転モードの顕熱能力又は潜熱能力が重なる条件においては、より省エネの運転モードを選択することで、消費電力を削減できる。
 また、実施の形態1に係る空調装置1は、冷房と送風とを組み合わせた「送風」の運転モードを備える。そして、実施の形態1に係る空調装置1は、「自動」の運転モードにおいて、低湿条件が成立し、且つ、定常顕熱負荷Qsが相対的に小さい場合には、運転モードを「送風」に切り替えて室内空間71を空調する。その結果、室内空間71の快適性を確保しつつ、省エネ性を高めることができる。
 (実施の形態2)
 次に、本発明の実施の形態2について説明する。実施の形態1では、判定部530は、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、空調装置1が実行すべき空調の運転モードを判定した。これに対して、実施の形態2では、判定部530は、室温Tiと設定温度Tmとの温度差ΔTと、室内湿度RHiと設定湿度RHmとの湿度差ΔRHと、に応じて、運転モードを判定する。
 実施の形態2において、推定部520は、取得部510により取得された室温Tiに基づいて、室温Tiと設定温度Tmとの温度差ΔTを計算する。また、推定部520は、取得部510により取得された室内湿度RHiに基づいて、室内湿度RHiと設定湿度RHmとの湿度差ΔRHを計算する。温度差ΔTは、上記(2)式で示されるように、非定常顕熱負荷Psの指標である。また、湿度差ΔRHは、上記(5)式では室外絶対湿度と室内絶対湿度との差を用いているが、近似的には非定常潜熱負荷Plの指標と言える。
 図15に、温度と湿度と運転モードとの関係を示す。図15に示すように、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合、温度差ΔTと湿度差ΔRHとに応じて、空調装置1が実行すべき運転モードが定められている。判定部530は、推定部520により計算された温度差ΔTと湿度差ΔRHとに応じて、運転モードを判定する。
 実施の形態2における判定部530による運転モードの判定処理は、実施の形態1における非定常顕熱負荷Qsを温度差ΔTに置き換え、且つ、定常潜熱負荷Qlを湿度差ΔRHに置き換えることにより、実施の形態1と同様に説明することができる。
 具体的に説明すると、第1に、判定部530は、推定部520により計算された湿度差ΔRHと湿度閾値ΔRH1,ΔRH2との大小関係を判定する。湿度差ΔRHが第1の湿度閾値ΔRH1よりも大きい場合は、高湿条件が成立する場合に相当する。これに対して、湿度差ΔRHが第2の湿度閾値ΔRH2よりも小さい場合は、低湿条件が成立する場合に相当する。
 高湿条件が成立する場合、判定部530は、温度差ΔTと第1から第3の温度閾値ΔT1~ΔT3との大小関係を判定する。温度差ΔTが第1の温度閾値ΔT1よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。温度差ΔTが第1の温度閾値ΔT1よりも小さく、且つ、第2の温度閾値ΔT2よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(C1)弱冷房除湿」であると判定する。温度差ΔTが第2の温度閾値ΔT2よりも小さく、且つ、第3の温度閾値ΔT3よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(C2)ダブルファン除湿」、「(C3)露点温度除湿」又は「(C4)部分冷却除湿」であると判定する。温度差ΔTが第3の温度閾値ΔT3よりも小さい場合、判定部530は、圧縮機21を停止すべきであると判定する。
 低湿条件が成立する場合、判定部530は、温度差ΔTと第4の温度閾値ΔT4との大小関係を判定する。温度差ΔTが第4の温度閾値ΔT4よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。温度差ΔTが第4の温度閾値ΔT4よりも小さい場合、判定部530は、空調装置1が実行すべき運転モードが「(D)送風」であると判定する。第4の温度閾値ΔT4は、0℃、又は、送風モードで得られる体感温度の低下分である約1~2℃を0℃に加算した値に設定される。
 空調制御部540は、実施の形態1と同様に、判定部530により判定された運転モードで、空調部110に室内空間71を空調させる。また、空調制御部540は、取得部510により取得された温度、湿度等の負荷情報に応じて判定部530が現在の運転モードとは異なる運転モードを新たに判定すると、現在の運転モードから新たに判定された運転モードに切り替えて、室内空間71を空調する。
 具体的に説明すると、空調制御部540は、高湿条件が成立する場合において、空調部110が冷房モードで空調している際に温度差ΔTが第1の温度閾値ΔT1よりも小さくなると、運転モードを第1の除湿モードに切り替える。更に、空調制御部540は、空調部110が第1の除湿モードで空調している際に温度差ΔTが第2の温度閾値ΔT2よりも小さくなると、運転モードを第2の除湿モードに切り替え、空調部110が第2の除湿モードで空調している際に温度差ΔTが第3の温度閾値ΔT3よりも小さくなると、圧縮機21を停止させる。逆に、温度差ΔTが各温度閾値ΔT1~ΔT3よりも大きくなると、空調制御部540は、運転モードを上記とは逆に切り替える。
 一方、空調制御部540は、低湿条件が成立する場合において、空調部110が冷房モードで空調している際に温度差ΔTが第4の温度閾値ΔT4よりも小さくなると、運転モードを送風モードに切り替える。逆に、空調部110が送風モードで空調している際に温度差ΔTが第4の温度閾値ΔT4よりも大きくなると、空調制御部540は、運転モードを冷房モードに切り替える。
 また、空調制御部540は、低湿条件が成立する場合において、空調部110が送風モードで空調している際に湿度差ΔRHが第1の湿度閾値ΔRH1よりも大きくなると、運転モードを、その時の定常顕熱負荷Qsに応じて高湿条件1~4のいずれかのモードに切り替える。逆に、高湿条件が成立する場合において、湿度差ΔRHが第2の湿度閾値ΔRH2よりも小さくなり、且つ、温度差ΔTが第4の温度閾値ΔT4よりも小さい場合、運転モードを送風モードに切り替える。
 このように、実施の形態2に係る空調装置1は、室温Tiと設定温度Tmとの温度差ΔTと、室内湿度RHiと設定湿度RHmとの湿度差ΔRHと、に応じて運転モードを切り替える。温度差ΔTの判定だけでは、冷房モードと除湿モードとの間での切り替えの判定は可能だが、冷房モードから除湿モードにするか、それとも送風モードにするかを判定することができない。これに対して、実施の形態2に係る空調装置1は、温度差ΔTの判定に加えて、湿度差ΔRHの判定を加えることで、冷房モードから除湿モードにするか、それとも送風モードにするかを判定することができる。これにより、冷房モードによって温度が低下した後に、湿度が高いにもかかわらず送風モードに切り替えることで快適性を低下させることを抑制することができ、また湿度が低いもかかわらず除湿モードにすることで不要な電力を消費することを抑制することができる。その結果、室温Tiと室内湿度RHiとの両方の快適性を手軽に得ることができる。
 また、近年の建物の断熱性能及び換気性能の向上により、室温Tiはすぐに低下するが室内湿度RHiが低下しにくいという湿度篭もりが発生しやすいが、実施の形態2に係る空調装置1は、温度差ΔTと湿度差ΔRHとの両方に応じて運転モードを切り替えることにより、このような湿度篭もりを抑制することができる。
 また、温度差ΔT及び湿度差ΔRHを用いることで、運転モードの判定及び切り替えのために外気温To、窓温度Tw及び外気湿度RHoの情報を取得する必要がない。そのため、より簡易な構成で運転モードを切り替えて室内空間71を空調することができる。特に、定常顕熱負荷Qs及び定常潜熱負荷Qlに比べて非定常顕熱負荷Ps及び非定常潜熱負荷Plが支配的になる場合、温度差ΔT及び湿度差ΔRHに応じて運転モードを判定することで、適切に運転モードを切り替えた空調が可能となる。
 なお、判定部530は、図6に示した定常顕熱負荷Qs及び定常潜熱負荷Qlによる判定処理と図15に示した温度差ΔT及び湿度差ΔRHによる判定処理とを、AND条件又はOR条件で組み合わせても良い。この場合、空調制御部540は、温度差ΔTと定常顕熱負荷Qsとの両方に応じて、冷房モードと除湿モードとの間、及び、冷房モードと送風モードとの間で運転モードを切り替え、湿度差ΔRHと定常潜熱負荷Qlとの両方に応じて、除湿モードと送風モードとの間で運転モードを切り替える。或いは、判定部530は、非定常顕熱負荷Psと定常顕熱負荷Qsの和である顕熱能力、又は、非定常潜熱負荷Plと定常顕熱負荷Qlの和である潜熱能力に応じて、運転モードを判定しても良い。温度差ΔT及び湿度差ΔRHによる判定処理と定常顕熱負荷Qs及び定常潜熱負荷Qlによる判定処理とを適度に組み合わせて運転モードを切り替えることで、運転モードの頻繁な切替、室温Tiの変動、及び室内湿度RHiの変動を抑制することができる。そのため、快適性と省エネ性の両立が可能となる。
 (実施の形態3)
 次に、本発明の実施の形態3について説明する。実施の形態1では、推定部520は、取得部510により取得された現時点における温度、湿度等に基づいて、定常顕熱負荷Qs及び定常潜熱負荷Qlを推定した。これに対して、実施の形態3では、推定部520は、定常顕熱負荷Qsと定常潜熱負荷Qlとのそれぞれについて、現時点よりも前の予め定められた長さの期間における変化傾向に基づいて、現時点から規定時間後における熱負荷を推定する。
 具体的に説明すると、推定部520は、室温Tiが設定温度Tmに近づいた後において、下記(8)式に従って、推定顕熱負荷Qs’を計算する。また、推定部520は、室内湿度RHiが設定湿度RHmに近づいた後において、下記(9)式に従って、推定潜熱負荷Ql’を計算する。
 推定顕熱負荷Qs’=定常顕熱負荷Qs+予測変動量ΔQs …(8)
 推定潜熱負荷Ql’=定常潜熱負荷Ql+予測変動量ΔQl …(9)
 上記(8)式において、予測変動量ΔQsは、直近の予め定められた時間における定常顕熱負荷Qsの変動量である。例えば現在時刻が18時である場合、推定部520は、定常顕熱負荷Qsが長時間にわたり継続して低下していることから、今後も定常顕熱負荷Qsの低下傾向が維持されると推定する。このように室外空間72の環境が現時点から規定時間後も直前と同様に変化する場合、直前の期間における定常顕熱負荷Qsの変化傾向を延長することにより、定常顕熱負荷Qsを先読みすることが可能である。
 具体的に、推定部520は、予測変動量ΔQsを、現時点の定常顕熱負荷Qsと、現時点から予め定められた時間前の定常顕熱負荷Qsと、の差分を計算することにより推定する。例えば、現時点より前の1時間において定常顕熱負荷Qsが10%増えた場合、推定部520は、現時点から1時間後の予測変動量ΔQsも10%であると推定する。そして、推定部520は、予測変動量ΔQsを現在の定常顕熱負荷Qsに加算することにより、推定顕熱負荷Qs’を計算する。上記(9)式に示される推定潜熱負荷Ql’についても同様である。
 判定部530は、実施の形態1における定常顕熱負荷Qs及び定常潜熱負荷Qlに代えて、推定部520により推定された、現時点から規定時間後における推定顕熱負荷Qs’及び推定潜熱負荷Ql’に応じて、運転モードを判定する。空調制御部540は、判定部530により判定された運転モードで、室内空間71を空調する。
 このように、実施の形態3に係る空調装置1は、定常顕熱負荷Qs及び定常潜熱負荷Qlのそれぞれについて、直近の変化傾向から将来の値を推定し、推定した値に応じて運転モードを切り替える。これにより、現時点のセンサ情報のみを用いるよりも、短時間におけるセンサ情報のばらつきの影響を抑えつつ、室内空間71における熱負荷の先の状況をより精度良く予測することができる。
 推定顕熱負荷Qs’を求めることで、運転モードが冷房モードから除湿モードに切り替えられた後に、冷房モードに比べて最大顕熱能力が下がった除湿モードであっても温度を維持できるか、それとも最大顕熱能力が不足して温度が上昇してしまうのかを、切り替え前から先回りして判定することができる。また、運転モードが冷房モードから送風モードに切り替えられた後に、送風モードであっても温度を維持できるか、それとも温度が上昇してしまうのかを、切り替え前から先回りして判定することができる。
 推定潜熱負荷Ql’を求めることで、運転モードが冷房モード又は送風モードから除湿モードに切り替えられないと、潜熱能力が不足して湿度が上昇してしまうのかを、切り替え前から先回りして判定することができる。また、運転モードが冷房モードから送風モードに切り替えられた後に、送風モードであっても湿度を維持できるか、それとも湿度が上昇してしまうのかを、切り替え前から先読みして判定することができる。
 このように推定顕熱負荷Qs’と推定潜熱負荷Ql’をと求めることによって、設定温度Tmに近づく前から、設定温度Tmに近づいた後に室温Tiと室内湿度RHiを維持するための熱負荷が求められる。求めた熱負荷を現在の運転モードで発揮できる顕熱能力と潜熱能力と比較することで、運転モードを切り替えるべきか否かを判定することができる。その結果、室温Ti及び室内湿度RHiを設定温度Tm及び設定湿度RHmにより精度良く維持することができ、快適性の向上につながる。
 (実施の形態4)
 次に、本発明の実施の形態4について説明する。実施の形態1では、推定部520が上記(3)式に従って定常顕熱負荷Qsを計算する際に、断熱性能を示すα、日射の入りやすさを示すβ、及び、内部発熱量Qnは既知であった。これに対して、実施の形態4に係る空調装置1は、各センサにより検知された過去の情報に基づいて、α、β、Qnの値を学習する。
 図16に、実施の形態4に係る空調装置1に備えられた室外機制御部51aの機能的な構成を示す。なお、室外機制御部51aは、実施の形態1と同様のハードウェア構成を備えているため、説明を省略する。
 図16に示すように、室外機制御部51aは、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、情報更新部560と、学習部570と、を備える。取得部510、推定部520、判定部530、空調制御部540及び報知部550の機能については、実施の形態1と同様であるため、説明を省略する。
 情報更新部560は、取得部510によって取得された各センサの検知情報によって、記憶部102に記憶された履歴情報150を更新する。履歴情報150は、室温Ti、窓温度Tw、外気温To、空調能力等の履歴を示す情報である。
 図17に、履歴情報150の具体例を示す。図17に示すように、履歴情報150は、温度センサ41によって検知された室温Tiと、赤外線センサ43によって検知された窓温度Twと、外気温度センサによって検知された外気温Toと、を含むセンサによって検知された情報を時系列順に格納している。また、履歴情報150は、空調制御部540によって制御された空調能力を示す値を時系列順に格納している。また、履歴情報150は、空調制御部540によって制御された運転モードを時系列順に格納している。
 情報更新部560は、予め定められた時間毎に、各センサによって新たに検知された情報と空調能力とを対応付けて履歴情報150に格納する。これにより、情報更新部560は、履歴情報150を更新していく。情報更新部560は、制御部101が記憶部102と協働することによって実現される。情報更新部560は、情報更新手段として機能する。
 学習部570は、室内空間71の熱特性を学習する。室内空間71の熱特性とは、室内空間71の熱に関する性質であって、具体的には、室内空間71の断熱性能、室内空間71への日射の入りやすさ等である。学習部570は、履歴情報150に記録された過去の室温Ti、窓温度Tw、外気温To及び空調能力に基づいて、室内空間71の熱特性を学習する。学習部570は、制御部101によって実現される。学習部570は、学習手段として機能する。
 <学習機能>
 以下、学習部570の学習機能についてより詳細に説明する。図18に示すように、室内空間71と室外空間72との間では、家屋3の壁、窓、隙間、換気設備等を介して熱が移動する。そのため、空調装置1が室温Tiを設定温度Tmに維持するために必要な熱量である定常顕熱負荷Qsは、壁の厚さ、窓の大きさ等の家屋3の特徴に依存する。
 より詳細には、定常顕熱負荷Qsには、貫流負荷と換気負荷と内部発熱量と日射負荷とがある。貫流負荷は、外気温Toと室温Tiとの温度差ΔTioに応じて外皮を伝わる熱負荷である。なお、外皮は、室内空間71を室外空間72から隔離する壁である。換気負荷は、換気又は隙間風の空気流入による熱負荷である。換気負荷は、温度差ΔTioに比例する。内部発熱量Qnは、室内空間71内に存在する、照明、家電、及び、人による熱負荷である。日射負荷は、窓ガラスを透過して室内を加熱する熱負荷である第1の日射負荷と、外皮を加熱して外皮から室内空間71内に伝わる熱負荷である第2の日射負荷と、に分けられる。
 学習部570は、取得部510により取得された室内空間71の熱負荷に関する負荷情報に基づいて、室内空間71の熱特性を学習する。具体的には、学習部570は、室内空間71の熱特性として、定常顕熱負荷Qsと、室温Tiと、外気温Toと、窓温度Twと、の関係を学習し、上記(3)式におけるα、β及びQnの値を見積もる。推定部520は、学習部570により学習されたα、β及びQnの値を用いて、上記(3)式により定常顕熱負荷Qsを推定する。なお、理解を容易にするため、室温Tiは設定温度Tmと一致し、定常顕熱負荷Qsは空調装置1の空調能力に一致すると仮定する。
 上記(3)式において、αは、家屋3の断熱性能を示す係数αは、外気温Toと室温Tiとの温度差ΔTioに比例して必要となる熱負荷である貫流負荷と換気負荷に関わる比例係数である。ただし、第2の日射負荷も、外皮を伝わる熱負荷であるため、貫流負荷と同様に扱うことが好適である。そこで、学習部570は、外気温Toの上昇分ΔToを第2の日射負荷に対応するパラメータと見なし、外気温Toの代わりに見かけ上の外気温To2(=To+ΔTo)を用いて熱負荷Qを見積もる。
 なお、αは、換気負荷を考慮しない場合、理論上、外皮平均熱貫流率UAと外皮の表面積Aとを用いて、以下の(10)式により見積もられる。(10)式において、αの単位はW(ワット)/K(ケルビン)であり、外皮平均熱貫流率UAの単位はW/(m・K)であり、外皮の表面積Aの単位はmである。また、1.000は、貫流負荷に対応する係数であり、0.034は、第2の日射負荷に対応する係数である。ただし、外皮平均熱貫流率UA及び外皮の表面積Aに関する情報を取得できないことが多く、また、換気負荷の影響により以下の(10)式によりαを正確に求めることができないことも多い。そこで、本実施の形態では、学習部570は、上記(3)式を用いて、各種の値の実績値からαの値を求める。
 α=U×A×(1.000+0.034) …(10)
 上記(3)式において、室内空間71への日射の入りやすさを示す係数βは、日射量に比例して必要となる熱負荷である第1の日射負荷に関わる比例係数である。βの値は、窓75の大きさ、窓75を構成するガラスの種類等に依存する。
 学習部570は、記憶部102に記憶された履歴情報150を参照して、室温Ti、窓温度Tw、外気温To及び空調能力の関係を分析する。そして、学習部570は、分析の結果に基づいて、α、β及びQnを見積もる。
 第1に、室内空間71の断熱性能を示す係数αを学習する方法について説明する。学習部570は、日射量が十分に少ない場合に取得された室温Ti、外気温To及び空調能力のデータに基づいて、係数αを学習する。具体的に説明すると、日射量が十分に少ない場合には、第1日射負荷及び第2日射負荷が貫流負荷及び換気負荷に比べて無視できる。この場合、上記(3)式において、β=0であると近似でき、更にΔTo=0、すなわちTo=To2であると近似できる。そのため、上記(3)式は、下記(11)式に近似できる。学習部570は、下記(11)式によって表される室温Tiと外気温Toとの温度差ΔTioと空調能力との関係に基づいて、係数αを学習する。
 Qs=α(To-Ti)+Qn …(11)
 図19(a)に、室温Tiと外気温Toとの温度差ΔTioと空調能力との関係を示す。図19(a)は、室温Tiと外気温Toとの温度差ΔTioを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面に、温度差ΔTioの実績値と空調能力の実績値とに対応する複数のデータ点をプロットした場合の一例を示している。貫流負荷及び換気負荷は温度差ΔTioに比例するため、温度差ΔTioと空調能力との関係は一次近似式で表すことができる。学習部570は、座標平面にプロットされた複数のデータ点に対して最小二乗法等の適宜の回帰手法を適用することにより、温度差ΔTioと空調能力との関係を示す近似直線L0を求める。近似直線L0と式(11)との対応から、近似直線L0の傾きは断熱性能を示す係数αに対応し、近似直線L0の切片は内部発熱量Qnに対応する。
 ここで、家屋3の外皮に使用される断熱材の性能が良いほど、また、外皮の面積が小さいほど、貫流負荷は小さくなる。また、室内空間71と室外空間72とを仕切る外皮の隙間が小さい程、換気負荷は小さくなる。そのため、貫流負荷が小さいほど、また、換気負荷が小さいほど、近似直線の傾きが小さくなる。具体的に図19(b)に、家屋3の断熱性能に応じて近似直線の傾きが異なる様子を示す。図19(b)に示すように、断熱性能が悪い家屋3について求められる近似直線L11の傾きは、断熱性能が良い家屋3について求められる近似直線L12の傾きよりも大きくなる。そのため、学習部570は、近似直線の傾きから、室内空間71の断熱性能を取得する。
 また、内部発熱量Qnが小さいほど、近似直線の切片が小さくなる。具体的に図19(c)に、内部発熱量Qnに応じて近似直線の切片が異なる様子を示す。図19(c)に示すように、内部発熱量Qnが大きい家屋3について求められる近似直線L21の切片は、内部発熱量Qnが小さい家屋3について求められる近似直線L22の切片よりも大きくなる。そのため、学習部570は、近似直線の切片から、室内空間71の内部発熱量Qnを取得する。このように、学習部570は、記憶部102に記憶された履歴情報150を参照して、室温Tiと外気温Toとの温度差ΔTioと空調能力との関係に基づいて、断熱性能を示す係数α及び内部発熱量Qnを求める。
 ここで、学習の精度及び速度を向上させるには、履歴情報150を短期間に多数収集する必要がある。そこで、学習部570は、外気温To及び室温Tiが異なる場合であっても温度差ΔTioが同じである場合には、要求される空調能力が同じであるものとみなして、同じ温度差ΔTioのデータ点として座標平面にプロットする。かかる構成では、外気温To又は室温Ti毎に熱特性式を求める必要がないため、学習の精度及び速度を向上させることができる。なお、空調運転中に履歴情報150の更新と学習とを繰り返すことで、室内空間71の熱特性の変化についても把握することができ、制御の精度を向上させることができる。熱特性の変化は、例えば、冬季に電気カーペットを使用し始めて内部発熱量Qnが増加したり、部屋の間の仕切りをして貫流負荷が減少したりすることにより生じる。
 第2に、室内空間71への日射の入りやすさを示す係数βを学習する方法について説明する。学習部570は、室温Tiと外気温Toとの温度差ΔTioが同一であるときに取得された室温Ti、窓温度Tw及び空調能力のデータに基づいて、係数βを学習する。
 温度差ΔTioが同一である場合には、上記(11)式におけるα(To2-Ti)の項を定数として扱うことができる。この場合、学習部570は、上記(11)式におけるβ(Tw-Ti)の項に基づいて、室温Tiと窓温度Twとの温度差ΔTiwと空調能力との関係を見積もることができる。具体的には、室温Tiと窓温度Twとの温度差ΔTiwを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面に、温度差ΔTiwの実績値と空調能力の実績値とに対応する複数のデータ点をプロットした場合、図19(a)と同様に、温度差ΔTiwと空調能力との関係は一次近似式で表すことができる。
 ここで、室内空間71に日射が入りやすいほど、近似直線の傾きは大きくなり、室内空間71に日射が入りにくいほど、近似直線の傾きは小さくなる。そのため、図19(b)において、「断熱性能が悪い家屋」を「日射が入りやすい家屋」に置き換え、且つ、「断熱性能が良い家屋」を「日射が入りにくい家屋」に置き換えることで、同様に説明可能である。学習部570は、座標平面にプロットされた複数のデータ点に対して最小二乗法等の適宜の回帰手法を適用することにより、温度差ΔTiwと空調能力との関係を示す近似直線を求める。そして、学習部570は、近似直線の傾きから、室内空間71への日射の入りやすさを示す係数βを学習する。
 以下、学習の精度を向上させる方法について説明する。学習部570は、日射量が閾値以下であるときの室温Ti、外気温To及び空調能力に基づいて、断熱性能を学習する。具体的に説明すると、温度差ΔTioを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面にプロットされる複数のデータ点は、日射量が閾値以下であるときに取得されたデータ点に限られる。学習部570は、座標平面に温度差ΔTioと空調能力とに対応するデータ点をプロットする前に、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が予め定められた閾値以下であるときに取得されたデータであるか否かを判別する。そして、学習部570は、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が閾値以下であるときに取得されたと判別した場合、このデータ点を座標平面にプロットする。一方、学習部570は、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が閾値より大きいときに取得されたと判別した場合、このデータ点を座標平面にプロットしない。
 つまり、学習部570は、温度差ΔTioと空調能力とに対応する複数のデータ点のうち、日射量が閾値以下であるときに取得されたデータ点を、座標平面にプロットする。例えば、学習部570は、窓温度Twが室温Tiよりも小さい場合に日射量が閾値以下であると判別し、窓温度Twが室温Tiよりも大きい場合に日射量が閾値より大きいと判別する。
 このように、温度差ΔTioと空調能力との相関関係を学習する場合、日射の影響が小さいときに取得されたデータから温度差ΔTioと空調能力との関係を求めることが好適である。かかる構成によれば、日射負荷の影響によるデータのばらつきが抑制される。そのため、傾きにより表される断熱性能を示す係数αと切片により表される内部発熱量Qnとを精度良く取得することができる。つまり、日射量が閾値以下であるときに取得されたデータを用いる場合、(3)式ではなく(11)式を用いて、容易にαを求めることができる。なお、学習部570は、温度差ΔTioと空調能力とのデータから近似直線の傾き及び切片を取得することができれば良く、実際に、何らかの座標平面にデータ点をプロットしなくてもよいことは勿論である。
 また、学習部570は、室温Tiの変化量が基準値以下であるときの室温Ti、外気温To及び空調能力に基づいて、断熱性能を学習しても良い。また、学習部570は、室温Tiの変化量が基準値以下であるときの室温Ti、窓温度Tw及び空調能力に基づいて、日射の入りやすさを学習しても良い。
 具体的に説明すると、室温Tiが安定していない過渡状態では、発揮される空調能力が安定しないことが一般的である。例えば、空調の起動直後において室温Tiが大きく変化している間は、空調能力の中に部屋の熱容量を処理する分が含まれるため、見かけ上の空調能力は大きくなる。そこで、学習部570は、座標平面にプロットされる複数のデータ点を、規定時間における室温Tiの変化量が基準値以下であるときに取得されたデータ点に限っても良い。これにより、学習部570は、室温Tiが安定しているときに取得されたデータを用いて、近似直線を求めることができる。そのため、近似直線の傾きにより表される断熱性能又は日射の入りやすさと、切片により表される内部発熱量Qnとを、精度良く求めることができる。
 学習部570は、例えばε-NTU(Number of Transfer Unit)法により、顕熱分の空調能力を算出する。全熱能力、顕熱能力及び潜熱能力は、下記(12)~(14)式により表される。
 全熱能力=エンタルピ効率・空気密度・風量・(室内機13の吸込空気エンタルピ-室内熱交換器25の配管温度の飽和空気エンタルピ) …(12)
 顕熱能力=温度効率・空気密度・空気比熱・風量・(室内機13の吸込空気温度-室内熱交換器25の配管温度) …(13)
 潜熱能力=全熱能力-顕熱能力 …(14)
 次に、図20を参照して、学習の精度を向上するためのデータ処理方法について説明する。実際に学習部570が履歴情報150に基づいて学習する場合、データ点が座標平面に均一にプロットされるとは限られない。例えば、図20に示す例では、温度差ΔTioが大きい領域、具体的には、温度差ΔTioがT3からT4までの間の領域に、データ点が偏って分布している。なお、プロットされた全データ点を黒丸で表している。ここで、全データ点を用いて近似直線を求めると、データ点が多数ある領域の影響を強く受け、近似直線の傾き及び切片が正確に求められないことがある。図20には、全データ点を用いて求めた近似直線L31の傾きが小さく、且つ、その切片が大きくなる例が示されている。つまり、この場合、断熱性能が良く、内部発熱量Qnが大きい家屋3とみなされ、誤差が大きくなる。
 そこで、学習部570は、黒丸で表される全データ点ではなく、白丸で表される代表データ点を用いて、近似直線を求めることが好適である。図20には、温度差ΔTioの領域を、予め定められた温度幅で複数の区分に分類し、分類された温度幅毎に1つの代表データ点を求める例が示されている。代表データ点は、例えば、1つの区分に属する全データ点の平均値を表すデータ点である。平均値は、温度差ΔTioと空調能力とのそれぞれについて求められる。言い換えると、学習部570は、座標平面において、複数の区分のうちの1つの区分において温度差Δの実績値と空調能力の実績値とのそれぞれを平均化することにより、この1つの区分に含まれる複数のデータ点を1つの代表データ点に統合する。そして、学習部570は、統合後の代表データ点により近似直線を求める。
 図20の例では、代表データ点を用いて求められた近似直線L32の傾きは、全データ点を用いて求められた近似直線L31の傾きよりも大きい。また、近似直線L32の切片は、近似直線L31の切片よりも小さい。このように区分毎に求められた代表データ点を用いることで、全データ点を用いるよりも精度良く近似直線の傾きと切片とを求めることができる。また、かかる手法によれば、例えば、空調装置1の使い始めの頃のように、データの個数が少なく、或いは条件が偏っている場合においても、精度良く学習することができる。
 このように、実施の形態4に係る空調装置1は、室内空間71の熱特性を学習し、学習結果に基づいて定常顕熱負荷Qsを推定する。これにより、室温Tiを設定温度Tmに維持するための定常顕熱負荷Qsを精度良く推定することができる。例えば、室温Tiが27℃である場合、冷房モードで空調することが一般的だが、断熱性能が高い住宅のように定常顕熱負荷Qsが小さい状況では、冷房モードでは室内熱交換器25における冷媒の蒸発温度が高くなって十分に除湿されなくなる。このような場合には、除湿モードに切り替えた方が快適性が高まる。実施の形態4に係る空調装置1は、室内空間71の熱特性を学習により見積もるため、様々な気象条件、建物条件及び生活条件において、各種の運転モードの切り替えの際に室温変動が少なく、快適な空調を提供することができる。
 (実施の形態5)
 次に、本発明の実施の形態5について説明する。上記実施の形態では、顕熱閾値Qs1~Qs4又は温度閾値ΔT1~ΔT4は、予め定められた値に固定されていた。これに対して、実施の形態5では、空調装置1は、状況に応じて第1、第2の顕熱閾値Qs1,Qs2を補正する。
 図21に、実施の形態5に係る空調装置1に備えられた室外機制御部51bの機能的な構成を示す。なお、室外機制御部51bは、実施の形態1と同様のハードウェア構成を備えているため、説明を省略する。
 図21に示すように、室外機制御部51bは、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、情報更新部560と、学習部570と、を備える。取得部510、推定部520、判定部530、空調制御部540及び報知部550の機能については、実施の形態1と同様である。
 具体的に説明すると、取得部510は、室温Ti、外気温Tо、窓温度Tw等の負荷情報を取得する。空調制御部540は、取得部510により取得された室温Ti、外気温Tо、窓温度Tw等に基づく指標値である定常顕熱負荷Qsに応じて運転モードを切り替えて、空調部110に室内空間71を空調させる。より詳細には、空調制御部540は、空調部110が第1のモードで室内空間71を空調している際に定常顕熱負荷Qsが閾値よりも小さくなると、運転モードを、第1のモードよりも空調部110の最大顕熱能力が低い第2のモードに切り替える。ここで、第1のモードと第2のモードは、閾値が第1の顕熱閾値Qs1である場合にはそれぞれ冷房モードと第1の除湿モードに相当し、閾値が第2の顕熱閾値Qs2である場合にはそれぞれ第1の除湿モードと第2の除湿モードに相当する。
 補正部580は、取得部510により取得された室温Tiに応じて、第1、第2の顕熱閾値Qs1,Qs2を補正する。具体的に説明すると、補正部580は、空調制御部540により運転モードが切り替えられた後における室温Tiの変化に応じて、第1、第2の顕熱閾値Qs1,Qs2を補正する。補正部580は、制御部101により実現される。補正部580は、補正手段として機能する。
 運転モードが冷房モードから第1の除湿モードに切り替えられた後に室温Tiが上昇した場合は、第1の除湿モードでの顕熱能力が顕熱負荷よりも小さいため室温Tiを維持することができない場合に相当する。この場合、補正部580は、第1の顕熱閾値Qs1を減少させて、第1の除湿モードでの顕熱能力が顕熱負荷を下回らないようにする。同様に、運転モードが第1の除湿モードから第2の除湿モードに切り替えられた後に室温Tiが上昇した場合、補正部580は、第2の顕熱閾値Qs2を減少させる。
 これに対して、運転モードが冷房モードから第1の除湿モードに切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合は、第1の除湿モードでの顕熱能力が顕熱負荷よりも大きいため室温Tiの維持に余裕がある場合に相当する。この場合、補正部580は、第1の顕熱閾値Qs1を増加させて、第1の除湿モードでのカバー範囲を広げる。同様に、運転モードが第1の除湿モードから第2の除湿モードに切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合、補正部580は、第2の顕熱閾値Qs2を増加させる。
 ここで、第1の顕熱閾値Qs1の初期値は、例えば、第1の除湿モードで空調部110が発揮することができる最大顕熱能力Qs1maxに設定される。また、第2の顕熱閾値Qs2の初期値は、例えば、第2の除湿モードで空調部110が発揮することができる最大顕熱能力Qs2maxに設定される。このように最大顕熱能力を閾値の初期値に設定するのは、運転モードの切り替え後に空調部110が室温Tiを維持するのに必要な顕熱能力を発揮することができるようにするためである。補正部580は、運転モードが切り替えられた後に室温Tiが上昇した場合、顕熱閾値Qs1,Qs2を減少させることで、最大顕熱能力を減少方向に補正する。これに対して、運転モードが切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合、補正部580は、顕熱閾値Qs1,Qs2を増加させることで、最大顕熱能力を増加方向に補正する。
 より詳細には、補正部580は、運転モードが冷房モードから第1の除湿モードに切り替えられた後において、室温Tiが上昇した場合、又は、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合、空調部110の顕熱能力と第1の顕熱閾値Qs1とのずれに応じて、第1の顕熱閾値Qs1を補正する。切り替え後の第1の除湿モードで室温Tiが上昇した場合は、顕熱能力が第1の顕熱閾値Qs1よりも小さくなっている可能性が高い。この場合、補正部580は、顕熱能力と第1の顕熱閾値Qs1との差が大きいほど、第1の顕熱閾値Qs1をより大きく減少させる。
 これに対して、切り替え後の第1の除湿モードにおいて、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合は、顕熱能力に余裕があるため、顕熱能力が第1の顕熱閾値Qs1よりも大きくなっている可能性が高い。この場合、補正部580は、顕熱能力と第1の顕熱閾値Qs1との差が大きいほど、第1の顕熱閾値Qs1をより大きく増加させる。
 また、補正部580は、顕熱能力と第1の顕熱閾値Qs1とのずれが生じた回数に応じて、第1の顕熱閾値Qs1を補正する。ずれが生じた回数とは、運転モードの切り替え後に、室温Tiが上昇した場合、又は、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合において、顕熱能力と第1の顕熱閾値Qs1とのずれの度合いの最大値が予め規定された値よりも大きくなった回数である。補正部580は、ずれが生じた回数を記憶部102に記憶しておき、ずれが生じた回数が多いほど、第1の顕熱閾値Qs1をより大きく補正する。
 このように、補正部580は、顕熱能力と第1の顕熱閾値Qs1とのずれの度合い及びずれが生じた回数に応じて、第1の顕熱閾値Qs1を補正する。第2の顕熱閾値Qs2についても同様である。補正部580により第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2が補正された後、空調制御部540は、補正後の第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2を用いて空調を制御する。具体的に説明すると、空調制御部540は、室温Tiが補正後の第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2よりも大きいか否かに応じて運転モードを切り替えて、空調部110に室内空間71を空調させる。
 このように顕熱閾値Qs1,Qs2を状況に応じて補正することにより、家屋3の熱特性及びその周囲の環境により適した顕熱閾値Qs1,Qs2を得ることができる。そのため、早すぎるタイミング又は温度戻りが発生するタイミングのように、快適性が低下するタイミングで運転モードが切り替わることを抑制することができる。その結果、適切なタイミングで運転モードを切り替えて室内空間71を空調することができ、快適性を向上させることができる。また適切な運転モードで空調できるため、省エネ性を高めることができる。
 <顕熱閾値の学習>
 更に、実施の形態5において、学習部570は、取得部510により取得された室温Tiと外気温Tоとの温度差ΔTiоと、補正部580により補正された第1、第2の顕熱閾値Qs1,Qs2と、の関係を学習する。具体的に説明すると、情報更新部560は、補正部580により第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2が補正されると、補正後の顕熱閾値Qs1,Qs2を、その時の温度差ΔTiоと対応付けて、履歴情報150に記憶する。履歴情報150は、補正部580により補正された後の第1、第2の顕熱閾値Qs1,Qs2と、その時の温度差ΔTioと、の対応関係を過去の履歴として格納している。学習部570は、履歴情報150を参照して、温度差ΔTiоと第1、第2の顕熱閾値Qs1,Qs2との関係を学習する。なお、環境条件ごとに圧縮機21の最大周波数が異なる場合、履歴情報150は、温度差ΔTioの代わりに、最大周波数と第1、第2の顕熱閾値Qs1,Qs2とを対応付けて格納してもよい。
 図22に、温度差ΔTiоごとに第1の顕熱閾値Qs1をプロットした例を示す。図22において、黒丸は、第1の顕熱閾値Qs1の初期値を表し、白丸は、補正部580により初期値から補正された後の第1の顕熱閾値Qs1を表す。学習部570は、このようなプロットに対して最小二乗法等の手法を用いることにより、第1の顕熱閾値Qs1と温度差ΔTioとの対応関係を、例えば図22において破線で示す相関線で近似する。このとき、学習部570は、相関線として、計算の簡便化のために一次式を用いる。
 学習部570は、補正部580により第1の顕熱閾値Qs1が補正されると、その時の温度差ΔTioと対応付けてプロットを更新する。そして、学習部570は、更新後のプロットを新たな相関線で近似することにより、学習結果を更新する。このようにして、学習部570は、補正部580により補正された後の第1の顕熱閾値Qs1と温度差ΔTioとの対応関係を学習する。また、学習部570は、第2の顕熱閾値Qs2に対しても、第1の顕熱閾値Qs1と同様に、温度差ΔTioとの対応関係を学習する。
 補正部580は、取得部510により室温Tiと外気温Tоとが新たに取得されると、新たに取得された室温Tiと外気温Tоとの温度差ΔTiоと、学習部570により学習された関係と、に基づいて顕熱閾値Qs1,Qs2を補正する。空調制御部540は、補正部580により補正された顕熱閾値Qs1,Qs2を用いて、空調の運転モードを切り替える。このように、温度差ΔTiоと顕熱閾値Qs1,Qs2との対応関係を学習し、現在の温度差ΔTioに応じて顕熱閾値Qs1,Qs2を補正することにより、状況に応じてより高精度に顕熱閾値Qs1,Qs2を補正することができる。特に、第2の除湿モードが再熱除湿モードである場合には、他の除湿モードに比べて温度差ΔTiоが変わると顕熱閾値が大きく変動する傾向にあるため、より効果的である。
 なお、実施の形態2と同様に、空調制御部540は、室温Tiと設定温度Tmとの温度差ΔTに応じて運転モードを切り替えても良い。その場合、補正部580は、第1、第2の顕熱閾値Qs1,Qs2を補正する代わりに、第1、第2の温度閾値ΔT1,ΔT2を補正する。
 冷房モードから第1の除湿モードに遷移する場合の第1の顕熱閾値Qs1を、第1の除湿モードから冷房モードに戻る場合の第1の顕熱閾値Qs1よりも、1γ~2γ程度小さくしても良い。第2から第4の顕熱閾値Qs2~Qs4も同様である。このように運転モードの切り替えにヒステリシスを設けることで、短時間で運転モードが頻繁に切り替わることを抑制することができる。ここで、γの値は、例えば室温Tiを1℃上昇させるのに必要な熱量である。また、γの値を学習により得ても良い。これにより、1~2℃相当といった精密な操作が可能となり、頻繁な切り替えを防止しながらも、適切なタイミングで運転モードの切り替えが可能になる。
 (変形例)
 以上、本発明の実施の形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
 例えば、上記実施の形態では、空調装置1は、「弱冷房除湿」、「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」、「拡張除湿」、「再熱除湿」及び「送風」の各運転モードで室内空間71を空調した。しかしながら、本発明において、空調装置1は、これらの運転モードのうちのいずれかで空調する機能を備えていなくても良い。空調装置1が「再熱除湿」の機能を備えない場合、室内機13は、2つの熱交換器25a,25bと膨張弁26とを備えなくても良く、室内空間71の空気と冷媒との間で熱交換を行う室内熱交換器を1つ備えていれば良い。また、空調装置1が「ダブルファン除湿」の機能を備えない場合、室内機13は、2つの室内送風機33a,33bを備えなくても良く、室内熱交換器25に送風する室内送風機を1つ備えていれば良い。
 上記実施の形態では、第1の除湿モードは「弱冷房除湿」であり、第2の除湿モードは「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」であるとして説明した。しかしながら、第1の除湿モードの方が第2の除湿モードよりも最大顕熱能力が高ければ、第1の除湿モード及び第2の除湿モードがどの運転モードであっても良い。例えば、第1の除湿モードが「弱冷房除湿」、「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」であって、第2の除湿モードが「再熱除湿」であっても良い。また、制御可能な除湿モードが第1の除湿モードと第2の除湿モードとのどちらか一方のみであっても良い。
 自動モードは、暖房モードも含んでいても良い。暖房モードと冷房モードとは外気温To又は設定温度Tmに基づいて切り替え可能である。例えば、空調制御部540は、外気温Tо又は設定温度Tmが予め定められた値より低ければ暖房モードに切り替え、予め定められた値より高ければ冷房モードに切り替える。
 上記実施の形態では、取得部510は、日射量を示す指標として、赤外線センサ43により検知された窓温度Twを取得した。しかしながら、本発明において、取得部510は、日射量を示す指標として、窓温度Twに限らず、日射量を直接的又は間接的に示す情報であればどのような情報を取得しても良い。例えば、取得部510は、照度センサにより検知された室内空間71の照度、又は、カメラによって撮影された室内空間71の画像を取得し、照度又は画像から室内空間71に差し込む日射量を推測しても良い。また、取得部510は、外部の通信ネットワークを介して太陽光発電設備による発電量の情報を取得しても良いし、外部の通信ネットワークを介して日射量の情報を含む気象データを示す情報を取得しても良い。
 上記実施の形態では、室外機制御部51が、図5、図16又は図21に示した各部の機能を備えており、空調装置1を制御する制御装置として機能した。しかしながら、本発明において、これらの各機能のうちの一部又は全部を、室内機制御部53が備えていても良いし、空調装置1の外部の装置が備えていても良い。
 例えば、図23に示すように、空調装置1と制御装置100とを備える空調システムSにおいて、空調装置1と通信ネットワークNを介して接続された制御装置100が、図5、図16又は図21に示した各部の機能を備えていても良い。例えば、通信ネットワークNは、エコーネットライト(ECHONET Lite)に準じた宅内ネットワークであって、制御装置100は、家屋3における電力を管理するHEMS(Home Energy Management System)のコントローラであっても良い。或いは、通信ネットワークNは、インターネット等の広域ネットワークであって、制御装置100は、家屋3の外部から空調装置1を制御するサーバであっても良い。
 制御装置100が上記の各機能を備える場合、空調システムSは、制御装置100による制御対象として複数の空調装置1を備えていても良い。この場合、空調装置1の台数は限定されない。制御装置100の制御対象は、空調装置1のように、冷凍サイクルを備える装置であれば良く、その詳細な構成は限定されない。
 上記実施の形態では、空調装置1が設置される対象として、家屋3を例に挙げて説明した。しかしながら、本発明において、空調装置1が設置される対象は、集合住宅、オフィスビル、施設、工場等であっても良い。空調空間は、家屋3内の部屋であることに限らず、空調装置1の空調対象となる空間であれば、どのような空間であっても良い。空調装置1は、1台の室外機11と1台の室内機13とを備えることに限らず、1台の室外機11と複数台の室内機13とを備えるものであっても良いし、複数台の室内機13の中に冷房する室内機13と暖房する室内機13とを混在させて運転することが可能なものであっても良い。
 上記実施の形態では、ユーザがリモートコントローラ55を操作して設定温度Tm及び設定湿度RHmの数値を入力した。しかしながら、ユーザがリモートコントローラ55で冷房又は除湿の強/中/弱を指定することで、対応する設定温度Tm又は設定湿度RHmが定められても良い。また、リモートコントローラ55以外のユーザインタフェースを用いて、ユーザの入力を受け付けても良いし、報知部550による報知情報を出力しても良い。
 上記実施の形態では、制御部101において、CPUがROM又は記憶部102に記憶されたプログラムを実行することによって、図5、図16又は図21に示した各部として機能した。しかしながら、本発明において、制御部101は、専用のハードウェアであってもよい。専用のハードウェアとは、例えば単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせ等である。制御部101が専用のハードウェアである場合、各部の機能それぞれを個別のハードウェアで実現してもよいし、各部の機能をまとめて単一のハードウェアで実現してもよい。
 また、各部の機能のうち、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現してもよい。このように、制御部101は、ハードウェア、ソフトウェア、ファームウェア、又は、これらの組み合わせによって、上述の各機能を実現することができる。
 本発明に係る制御部101の動作を規定するプログラムを、パーソナルコンピュータ又は情報端末装置等の既存のコンピュータに適用することで、当該コンピュータを、本発明に係る空調装置1又は制御装置100として機能させることも可能である。
 また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、又は、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本発明は、空調装置に適用可能である。
1 空調装置、3 家屋、11 室外機、13 室内機、21 圧縮機、22 四方弁、23 室外熱交換器、24,26 膨張弁、25 室内熱交換器、25a,25b 熱交換器、31 室外送風機、33a,33b 室内送風機、41 温度センサ、42 湿度センサ、43 赤外線センサ、51,51a,51b 室外機制御部、53 室内機制御部、55 リモートコントローラ、61 冷媒配管、63 通信線、71 室内空間、72 室外空間、75 窓、100 制御装置、101 制御部、102 記憶部、103 計時部、104 通信部、110 空調部、130 表示部、131 傾向情報、132 運転モード情報、133 判定情報、134 制御情報、150 履歴情報、510 取得部、520 推定部、530 判定部、540 空調制御部、550 報知部、560 情報更新部、570 学習部、580 補正部、N 通信ネットワーク、S 空調システム

Claims (10)

  1.  空調空間を空調する空調手段と、
     前記空調空間の温度を取得する取得手段と、
     前記取得手段により取得された前記温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、前記空調手段に前記空調空間を空調させる空調制御手段と、
     前記取得手段により取得された前記温度に応じて、前記閾値を補正する補正手段と、を備える、
     空調装置。
  2.  前記第2のモードでの前記空調手段の最大顕熱能力は、前記第1のモードでの前記空調手段の最大顕熱能力よりも低く、
     前記空調制御手段は、前記空調手段が前記第1のモードで空調している際に前記指標値が前記閾値よりも小さくなると、前記運転モードを前記第2のモードに切り替える、
     請求項1に記載の空調装置。
  3.  前記補正手段は、前記空調制御手段により前記運転モードが前記第1のモードから前記第2のモードに切り替えられた後に前記空調空間の温度が上昇した場合、前記閾値を減少させる、
     請求項2に記載の空調装置。
  4.  前記補正手段は、前記空調制御手段により前記運転モードが前記第1のモードから前記第2のモードに切り替えられた後に前記空調空間の外部である外部空間の温度が上昇したにもかかわらず前記空調空間の温度が上昇しなかった場合、前記閾値を増加させる、
     請求項2又は3に記載の空調装置。
  5.  前記指標値は、前記取得手段により取得された前記温度に応じて定められる前記空調空間の顕熱負荷であり、
     前記補正手段は、前記空調制御手段により前記運転モードが前記第1のモードから前記第2のモードに切り替えられた後において、前記空調空間の温度が上昇した場合、又は、前記空調空間の外部である外部空間の温度が上昇したにもかかわらず前記空調空間の温度が上昇しなかった場合、前記空調手段の顕熱能力と前記閾値とのずれに応じて前記閾値を補正する、
     請求項2から4のいずれか1項に記載の空調装置。
  6.  前記補正手段は、前記ずれの度合い又は前記ずれが生じた回数に応じて、前記閾値を補正する、
     請求項5に記載の空調装置。
  7.  前記取得手段は、前記空調空間の外部である外部空間の温度を更に取得し、
     前記取得手段により取得された前記空調空間の温度と前記外部空間の温度との温度差と、前記補正手段により補正された前記閾値と、の関係を学習する学習手段、を更に備え、
     前記補正手段は、前記取得手段により前記空調空間の温度と前記外部空間の温度とが新たに取得されると、新たに取得された前記空調空間の温度と前記外部空間の温度との温度差と、前記学習手段により学習された前記関係と、に基づいて前記閾値を補正する、
     請求項1から6のいずれか1項に記載の空調装置。
  8.  空調空間を空調する空調装置を制御する制御装置であって、
     前記空調空間の温度を取得する取得手段と、
     前記取得手段により取得された前記温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、前記空調装置に前記空調空間を空調させる空調制御手段と、
     前記取得手段により取得された前記温度に応じて、前記閾値を補正する補正手段と、を備える、
     制御装置。
  9.  空調空間の温度を取得し、
     取得した前記温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、前記空調空間を空調し、
     取得した前記温度に応じて、前記閾値を補正する、
     空調方法。
  10.  空調空間を空調する空調装置を制御するコンピュータを、
     前記空調空間の温度を取得する取得手段、
     前記取得手段により取得された前記温度に基づく指標値が閾値よりも大きいか否かに応じて運転モードを第1のモードと第2のモードとの間で切り替えて、前記空調装置に前記空調空間を空調させる空調制御手段、
     前記取得手段により取得された前記温度に応じて、前記閾値を補正する補正手段、として機能させる、
     プログラム。
PCT/JP2018/030329 2018-08-15 2018-08-15 空調装置、制御装置、空調方法及びプログラム WO2020035911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019525915A JP6701449B1 (ja) 2018-08-15 2018-08-15 空調装置、制御装置、空調方法及びプログラム
PCT/JP2018/030329 WO2020035911A1 (ja) 2018-08-15 2018-08-15 空調装置、制御装置、空調方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030329 WO2020035911A1 (ja) 2018-08-15 2018-08-15 空調装置、制御装置、空調方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2020035911A1 true WO2020035911A1 (ja) 2020-02-20

Family

ID=69525279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030329 WO2020035911A1 (ja) 2018-08-15 2018-08-15 空調装置、制御装置、空調方法及びプログラム

Country Status (2)

Country Link
JP (1) JP6701449B1 (ja)
WO (1) WO2020035911A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028611A (zh) * 2021-04-26 2021-06-25 烽火通信科技股份有限公司 一种空调的控制方法
CN114151943A (zh) * 2021-12-06 2022-03-08 珠海格力电器股份有限公司 一种空调的除湿控制方法、装置、存储介质及空调
WO2024021721A1 (zh) * 2022-07-28 2024-02-01 广东美的制冷设备有限公司 多联机空调的控制方法、多联机空调以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449838A (en) * 1987-08-18 1989-02-27 Fujitsu General Ltd Control method of air conditioner
JPH07198186A (ja) * 1993-12-29 1995-08-01 Daikin Ind Ltd 空気調和機の冷暖切替装置
JP2001065951A (ja) * 1999-08-23 2001-03-16 Sanyo Electric Co Ltd 空気調和機の制御装置
JP2002089988A (ja) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp 空気調和機、空気調和機の運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449838A (en) * 1987-08-18 1989-02-27 Fujitsu General Ltd Control method of air conditioner
JPH07198186A (ja) * 1993-12-29 1995-08-01 Daikin Ind Ltd 空気調和機の冷暖切替装置
JP2001065951A (ja) * 1999-08-23 2001-03-16 Sanyo Electric Co Ltd 空気調和機の制御装置
JP2002089988A (ja) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp 空気調和機、空気調和機の運転方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028611A (zh) * 2021-04-26 2021-06-25 烽火通信科技股份有限公司 一种空调的控制方法
CN113028611B (zh) * 2021-04-26 2022-04-29 烽火通信科技股份有限公司 一种空调的控制方法
CN114151943A (zh) * 2021-12-06 2022-03-08 珠海格力电器股份有限公司 一种空调的除湿控制方法、装置、存储介质及空调
WO2024021721A1 (zh) * 2022-07-28 2024-02-01 广东美的制冷设备有限公司 多联机空调的控制方法、多联机空调以及存储介质

Also Published As

Publication number Publication date
JP6701449B1 (ja) 2020-05-27
JPWO2020035911A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
JP7004827B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6832985B2 (ja) 空調装置
JP6790246B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6250076B2 (ja) 空調制御装置、空調制御システム、空調制御方法及びプログラム
WO2020035911A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP2019184154A (ja) 空調装置
JP7050760B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2020035913A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2020035910A1 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP7403669B2 (ja) 換気報知装置および換気報知プログラム
JP2003139371A (ja) 空気調和機
JP7016601B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP7011012B2 (ja) 空調装置
JP7418938B2 (ja) 空調装置
WO2017170491A1 (ja) 制御装置、空調システム、空調方法及びプログラム
JP2020026944A (ja) 空調装置
WO2024116241A1 (ja) 空調装置、空調制御装置、空調システム及び空調制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525915

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930273

Country of ref document: EP

Kind code of ref document: A1