WO2020034844A1 - 一种处理业务流的方法、通信方法及装置 - Google Patents

一种处理业务流的方法、通信方法及装置 Download PDF

Info

Publication number
WO2020034844A1
WO2020034844A1 PCT/CN2019/098659 CN2019098659W WO2020034844A1 WO 2020034844 A1 WO2020034844 A1 WO 2020034844A1 CN 2019098659 W CN2019098659 W CN 2019098659W WO 2020034844 A1 WO2020034844 A1 WO 2020034844A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
network element
link
terminal
access
Prior art date
Application number
PCT/CN2019/098659
Other languages
English (en)
French (fr)
Inventor
于游洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19850468.0A priority Critical patent/EP3829216A4/en
Publication of WO2020034844A1 publication Critical patent/WO2020034844A1/zh
Priority to US17/172,722 priority patent/US11588741B2/en
Priority to US18/158,037 priority patent/US11888750B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0882Utilisation of link capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/148Migration or transfer of sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, a communication method, and a device for processing a service flow.
  • next generation mobile communication network architecture Next Generation System
  • 5G next generation mobile communication network architecture
  • This 5G network architecture not only supports terminals accessing the core network side (Core Network, through Long Term Evolution (LTE), 5G Radio Access Network (RAN), etc.) defined by the 3GPP standard group.
  • CN supports non-3GPP access technology to access the core network side through non-3GPP conversion function (Interworking Function (N3IWF)) or next generation access gateway (next Generation Packet Data Gateway (ngPDG)).
  • N3IWF Interworking Function
  • ngPDG next generation Packet Data Gateway
  • PDU Packet Data Unit
  • User Equipment User Equipment
  • DN Data Network
  • Multiple access technologies can be supported for a single PDU session.
  • the PDU Session A can support the first access technology, the second access technology, and the first access technology and the second access technology at the same time.
  • the network can configure a traffic distribution policy for the UE to instruct the UE to move service flows between different access technologies.
  • the offloading policy indicates that service flow 1 is transmitted through the first access technology, and subsequent service flow 1 is transmitted through the second access technology.
  • Embodiments of the present invention provide a method, a communication method, and a device for processing a service flow, which are used to solve a problem that a service flow in the prior art cannot achieve an expected effect after moving.
  • an embodiment of the present application provides a method for processing a service flow, including: obtaining, by a terminal, policy information of a service flow, and the policy information includes at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow.
  • the PDU session where the service flow is located supports multiple access technologies; the terminal processes the service flow according to the policy information.
  • the embodiment of the present application provides a method for processing a service flow, acquiring policy information of the service flow through a terminal, and processing the service flow based on the policy information of the service flow. Because the terminal processes the service flow based on at least one of the offload strategy, the offload mode, and the link condition information issued by the network side, this not only enables the processed service flow to be transmitted on the link that satisfies the link condition information, but also This enables the terminal to implement more refined processing of service flows.
  • the method provided in the embodiment of the present application further includes: link detection information sent by the terminal to the core network element to obtain link state information of the link; the terminal receives the chain sent by the core network element Road status information. It is convenient for the terminal to judge whether the link transmitting the service flow satisfies the link condition information according to the link state information sent by the network side, as a reference for judging whether to process the service flow.
  • the terminal processing the service flow according to the policy information includes: the terminal determines that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information; the terminal according to the offload policy And at least one of the offloading modes processes the service flow.
  • the service flow is processed. It can ensure that the service flow is transmitted on the link that meets the requirements after the migration.
  • the terminal processing the service flow includes: the terminal transmitting the service flow on a link corresponding to multiple access technologies; or the terminal transmitting the service flow from the first access technology of the multiple access technologies
  • the corresponding link is migrated to the link corresponding to the second access technology for transmission; or, the terminal migrates the service flow from the multiple access technologies to the first access technology or the second access of the multiple access technologies. Transmission on the link corresponding to the technology; or, the terminal initiates a service flow processing flow.
  • the link detection information includes at least one of a subscribed link state parameter and sending condition information of the subscribed link state parameter. It can make the network side clearly detect which parameters of the link. Thus, the link state information required by the terminal is transmitted.
  • the subscribed link state parameters include one or more of the following: access network signal quality, access network signal strength, access network bandwidth, access network load, backhaul network bandwidth or load, chain Path delay parameters, link packet loss ratio parameters, and link jitter parameters.
  • the link detection information further includes one or more of the following: an access technology indication, a guaranteed bit rate GBR indication, a non-Non-GBR indication, a QFI, and a flow description parameter.
  • the link detection information further includes: sending frequency information of the subscribed link state parameters.
  • sending frequency information By setting the sending frequency information, the network side can periodically report the subscribed link state parameters according to the frequency information.
  • the link condition information includes at least one of condition information related to access and condition information not related to access.
  • condition information related to access includes one or more of the following: access network signal strength threshold, access network signal quality threshold, backhaul bandwidth threshold or load threshold, access network bandwidth threshold, and access Network load threshold; access-independent condition information includes one or more of the following: at least one of a link delay threshold, a link packet loss rate threshold, and a link jitter threshold.
  • obtaining the policy information of the service flow by the terminal includes: obtaining, by the terminal from a non-access stratum NAS transmission message, a distribution mode of the service flow sent by a policy control network element and a method for transmitting the service flow. At least one of link condition information; the terminal acquires at least one of a service flow distribution strategy, a flow distribution mode, and link condition information for transmitting the service flow from a session management response message sent by a session management network element .
  • the terminal processing the service flow according to the policy information includes: the terminal migrating the service flow from a link corresponding to a first access technology of the multiple access technologies to a second connection according to the policy information. Transmission on the link corresponding to the access technology; the terminal determines that the data packet transmission of the service flow sent on the first access technology is over; the terminal sends a first instruction to the user plane function network element, the first instruction is used to indicate that the The data packet transmission of the service flow transmitted on the access technology ends.
  • the method provided in the embodiment of the present application further includes: the terminal sends instruction information to the core network element, and the instruction information is used to instruct the terminal to process the service flow.
  • the offload mode includes one or more of the following: an access technology priority indication, which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology; an optimal link offload indication, which uses The priority is to transmit the service flow through the optimal link; the optimal link is the link whose link status is better than other links; the link load balancing-based offloading instruction is used to indicate transmission according to the link load balancing policy Service flow; indication of access technology and split ratio, which is used to indicate that the service flow is transmitted according to the split ratio corresponding to the access technology; redundant transmission instruction, which indicates that the same data packet in the service flow is transmitted through different access technologies at the same time.
  • an access technology priority indication which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology
  • an optimal link offload indication which uses The priority is to transmit the service flow through the optimal link
  • the optimal link is the link whose link status is better than other links
  • the link load balancing-based offloading instruction is used to
  • the method provided in the embodiment of the present application further includes: receiving, by the terminal, the link state information sent by the network side, or the link state parameter and the access technology indication, the guaranteed bit rate GBR indication, and the non-non-GBR indication , At least one of an identification QFI of the quality of service flow and a flow description parameter.
  • the method provided in the embodiment of the present application further includes: the terminal receiving the link state information sent by the access network device as the recommended bandwidth value of the access network device; or the terminal receiving the session management network element or the user plane network The link state information sent by the element is the recommended bandwidth value of the access network device.
  • the terminal processing the service flow according to the policy information includes: the terminal processing the service flow according to the policy information and an available bandwidth value.
  • a communication method provided in an embodiment of the present application includes: obtaining, by a session management network element, policy information of a service flow, including at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow
  • policy information of a service flow including at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow
  • the PDU session where the service flow is located supports multiple access technologies; the session management network element sends policy information to the terminal.
  • the method provided in the embodiment of the present application further includes: the session management network element receives link detection information sent by the terminal, and the link detection information is used to obtain link state information of a link that transmits a service flow. It is convenient for the network side to obtain which link detection parameters.
  • the method provided in the embodiment of the present application further includes: the session management network element sends link detection information to the user plane network element; the session management network element receives link state information sent by the user plane network element; session management The network element sends link state information to the terminal.
  • the method provided in the embodiment of the present application further includes: a session management network element indicating link state parameters and access technology, a guaranteed bit rate GBR indication, a non-non-GBR indication, and a quality of service flow identifier QFI At least one of the sum flow description parameters is sent to the terminal.
  • the method provided in the embodiment of the present application further includes: the session management network element sends a first indication to the user plane network element, where the first indication is used to indicate a link that needs to send link state information.
  • the first indication includes at least one of an identifier of a quality of service flow QFI, an access technology indication and a tunnel identification, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • the method provided in the embodiment of the present application further includes: the session management network element sends a QFI and notification indication to the access network device, and the QFI and notification indication is used to indicate when the access network device cannot meet the QFI QoS flow
  • the session management network element sends a QFI and notification indication to the access network device
  • the QFI and notification indication is used to indicate when the access network device cannot meet the QFI QoS flow
  • the recommended bandwidth value of the access network device is sent to the session management network element or the user plane network element.
  • the method provided in the embodiment of the present application further includes: the session management network element receives the QFI sent by the access network device and the recommended bandwidth value of the access network device; the session management network element sends the QFI and access to the terminal The recommended bandwidth value of the network device.
  • the method provided in the embodiment of the present application further includes: the session management network element receives a session management request message sent by the terminal, and the session management request message includes an access technology indication that the terminal requests to transmit a service flow.
  • an embodiment of the present application provides a method for processing a service flow, which includes: a session management network element obtains policy information of a service flow, and the policy information includes a distribution policy, a distribution mode, and link condition information for transmitting a service flow In at least one of the packet data unit PDU sessions in which the service flow is located, multiple access technologies are supported; the session management network element sends at least one access technology instruction to the terminal according to the policy information, and the access technology instruction is used to instruct the service flow to be migrated To the link corresponding to the access technology indicated by the access technology indication.
  • the method provided in the embodiment of the present application further includes: the session management network element sends link detection information to the terminal or the user plane network element, and the link detection information is used to obtain link state information of the link; the session The management network element receives the link state information sent by the terminal or the user plane network element.
  • the session management network element sends at least one access technology indication to the terminal according to the policy information, including: the session management network element determines that the link state information of the target link is satisfied or the link state information of the current link If the link condition information is not met, the session management network element sends at least one access technology indication to the terminal according to at least one of the offload strategy and the offload mode.
  • the method provided in the embodiment of the present application further includes: the session management network element generates link detection information according to the policy information.
  • the method provided in the embodiment of the present application further includes: the session management network element sends a first indication to the terminal or the user plane network element to indicate a link that needs to send link state information.
  • the first indication includes at least one of an identifier of a quality of service flow QFI, an access technology indication and a tunnel identification, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • the method provided in the embodiment of the present application further includes: the session management network element receives first indication information sent by the terminal, where the first indication information is used to instruct the core network to process the service flow.
  • the method provided in the embodiment of the present application further includes: the session management network element sends a QFI and notification indication to the access network device, and the QFI and notification indication is used to indicate that when the access network side cannot meet the QFI QoS flow
  • the recommended bandwidth value of the access network device is sent to the session management network element or the user plane network element.
  • the method provided in the embodiment of the present application further includes: the session management network element receives the QFI sent by the access network device and the recommended bandwidth value of the access network device; the session management network element sends the QFI and access to the terminal The recommended bandwidth value of the network device.
  • the session management network element obtaining the policy information of the service flow includes: the session management unit obtains the policy information of the service flow from the policy control network element in the session management process. Or when the session management network element completes the registration at the terminal, it obtains the policy information of the service flow from the policy control network element.
  • an embodiment of the present application provides a method for processing a service flow, which includes: a policy control network element obtains policy information of a service flow, the policy information including a distribution policy, a distribution mode, and link condition information for transmitting a service flow At least one of the packet data unit PDU sessions in which the service flow is located supports multiple access technologies.
  • the policy control network element sends at least one updated access technology indication corresponding to the service flow to the session management network element according to the policy information, and the at least one access technology indication is used to instruct the service flow to be migrated to the access technology indication. On the link corresponding to the indicated access technology.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • the method provided in the embodiment of the present application further includes: the policy control network element sends link detection information to the terminal. Or send link detection information to the session management network element.
  • the method provided in the embodiment of the present application further includes: the policy control network element receives link state information sent by the session management network element.
  • the policy control network element sends at least one updated access technology indication corresponding to the service flow to the session management network element according to the policy information, including: the policy control network element according to the acquired link status of the service flow Information to determine that the link state information of the current link does not satisfy the link condition information, or that the link state information of the target link meets the link condition information, then send at least one updated connection corresponding to the service flow to the session management network element Into technical instructions.
  • the method provided in the embodiment of the present application further includes: after receiving the multiple access session indication sent by the session management network element, the policy control network element sends the policy information of the service flow to the session management network element.
  • the policy control network element receives the indication information sent by the session management network element that the policy control network element processes the service flow.
  • an embodiment of the present application provides a method for processing a service flow, including: obtaining, by a user plane network element, policy information of a service flow, where the policy information includes: a distribution policy, a distribution mode, and link conditions for transmitting a service flow At least one of the messages.
  • the user plane network element processes the service flow according to the policy information.
  • the method provided in the embodiment of the present application further includes: the user plane network element obtains the link detection information from the session management network element.
  • the method provided in the embodiment of the present application further includes: the user plane network element sends to the terminal the link state information obtained by the user plane network element according to the link detection information.
  • the method provided in the embodiment of the present application further includes: the user plane network element receiving link state information of the current link or the target link obtained by the terminal based on the link detection information.
  • the user plane network element processes the service flow according to the policy information, including: the user plane network element determines that the link state information of the current link is not satisfied or the link state information of the target link meets the link condition information , Processing the service flow according to at least one of a shunt strategy and a shunt mode.
  • the user plane network element determines that the link state information of the current link is not satisfied or the link state information of the target link meets the link condition information, and then processes the service according to at least one of the offload strategy and the offload mode.
  • the flow includes: the user plane network element determines an access technology used by the service flow according to at least one of a distribution strategy and a distribution mode. The user plane network element transmits the service flow on the determined access technology.
  • the user plane network element transmits the service flow on a determined access technology, including: the user plane network element transmits the service flow on a link corresponding to multiple access technologies.
  • the user plane network element migrates the service flow from the link corresponding to the first access technology among the multiple access technologies to the link corresponding to the second access technology for transmission.
  • the core network element migrates service flows from multiple access technologies to the first access technology or the second access technology corresponding to the multiple access technologies for transmission.
  • the user plane network element receives instruction information sent by the session management network element, and the instruction information is used to instruct the user plane network element to process a service flow.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • an embodiment of the present application provides a communication method, including: a terminal receiving link detection information sent by a session management network element / user plane function network element, where the link detection information is used to obtain link state information of a link .
  • the PDU session where the service flow is located supports multiple access technologies; the terminal sends link state information to the core network element.
  • the terminal may send the link state information of the current link or the link state information of the target link.
  • the method provided in the embodiment of the present application further includes: the terminal receiving a first indication sent by the session management network element, where the first indication is used to indicate a link that needs to send link state information.
  • the method provided in the embodiment of the present application further includes: receiving, by the terminal, an access technology indication corresponding to a service flow sent by the session management network element, and the access technology indication is used to instruct migration of the service flow to the access technology Indicate the link corresponding to the indicated access technology; the terminal processes the service flow according to the access technology instruction.
  • the method provided in the embodiment of the present application further includes: the terminal receives the recommended bandwidth value of the access network device sent by the access network device; or the terminal receives the access sent by the session management network element or the user plane network element.
  • the recommended bandwidth value of the network device is not limited to the range of the access network device.
  • the method provided in the embodiment of the present application further includes: the terminal processes the service flow based on at least one of a distribution strategy and a distribution mode based on the link state information sent by the user plane function network element.
  • the terminal processes the service flow based on at least one of a distribution strategy and a distribution mode based on the link state information sent by the user plane function network element.
  • the method described in any one of the third aspect to the sixth aspect when the terminal migrates a service flow from one access technology to another access technology, in order to make the user plane network element determine the first connection After the end of the technical service stream transmission, the method described in the seventh aspect or any one of the seventh aspects may be adopted.
  • an embodiment of the present application provides a data packet processing method, including: sending a network element to determine that a service flow needs to be migrated from a link corresponding to a first access technology of a plurality of access technologies to a second access technology Transmission on the corresponding link; the sending network element determines that the data packet transmission of the service flow sent on the link corresponding to the first access technology is over; and the sending network element sends to the receiving network element for indicating that A first indication of the end of data packet transmission of the service flow transmitted on the link corresponding to the incoming technology.
  • the sending network element sending the first indication to the receiving network element includes: the last packet sent by the sending network element on the link corresponding to the first access technology carries the first indication.
  • the last packet is an empty packet or the last data packet of the service flow.
  • the first indication is carried in at least one of a packet data convergence protocol PDCP header and a service data application protocol SDAP header of the last data packet.
  • the sending network element carries the first indication information in a GTP-U data packet header of a data packet.
  • the sending network element sends the first instruction to the receiving network element, including: the sending network element carries the first instruction through a header of the last packet.
  • the header of the last packet includes one or more of the following: IP header, Ethernet header, User Datagram Protocol UDP header, Transmission Control Protocol TCP header, PDCP header, and SDAP header.
  • an embodiment of the present application provides a data packet processing method, including: receiving a link corresponding to a first access technology or / and a second access technology of a plurality of access technologies supported by a network element from a service flow.
  • the corresponding link receives the data packet of the service flow;
  • the receiving network element receives a first instruction sent by the sending network element, and the first instruction is used to indicate that the service flow transmitted on the link corresponding to the first access technology is
  • the method provided in the embodiment of the present application further includes: receiving, by the receiving network element, that a first packet sent on a link corresponding to the first access technology carries the first indication.
  • the last packet is the empty packet or the last packet of the service flow.
  • the receiving network element determines the service flow corresponding to the first indication based on the empty packet or the flow description parameter in the last data packet of the service flow.
  • the receiving network element sorts the data packets of the service flows received through the link corresponding to the first access technology and the link corresponding to the second access technology according to the first instruction, including: the receiving network After receiving the first instruction, the unit processes the data packet of the service flow received through the link corresponding to the second access technology.
  • an embodiment of the present application provides a device for processing a service flow.
  • the device for processing a service flow may implement the first aspect or any one of the possible implementation manners of the first aspect to process a service flow.
  • the method can also achieve the beneficial effects of the first aspect or any possible implementation manner of the first aspect.
  • the device for processing a service flow may be a terminal or a device for processing a service flow that can support the terminal to implement the first aspect or any one of the possible implementation manners of the first aspect. For example, chips used in terminals.
  • the communication device may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • the device for processing a service flow is a terminal or a chip applied to the terminal.
  • the device for processing a service flow includes: an obtaining unit for obtaining policy information of a service flow, and the policy information includes: a shunting policy and a shunting mode And at least one of the link condition information used to transmit the service flow, the PDU session where the service flow is located supports multiple access technologies.
  • a processing unit is configured to process a service flow according to the policy information.
  • the apparatus provided in the embodiment of the present application further includes: a sending unit, configured to send link detection information to the core network element to obtain link state information of the link.
  • the receiving unit is configured to receive link state information sent by a core network element.
  • the apparatus provided in the embodiment of the present application further includes: a determining unit, configured to determine that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information;
  • the processing unit is specifically configured to process a service according to at least one of a shunting strategy and a shunting mode when the determining unit determines that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information. flow.
  • the processing unit has a function for transmitting a service flow on a link corresponding to multiple access technologies; or the processing unit has a function for The link corresponding to the access technology is migrated to the link corresponding to the second access technology for transmission; or, the processing unit has a first one for migrating the service flow from the multiple access technologies to the multiple access technologies. Transmission on the link corresponding to the access technology or the second access technology; or, the processing unit has a processing flow for initiating a service flow.
  • the link detection information includes at least one of a subscribed link state parameter and sending condition information of the subscribed link state parameter.
  • the subscribed link state parameters include one or more of the following: access network signal quality, access network signal strength, access network bandwidth, access network load, backhaul network bandwidth or load, chain Path delay parameters, link packet loss ratio parameters, and link jitter parameters.
  • the link detection information further includes one or more of the following: an access technology indication, a guaranteed bit rate GBR indication, a non-Non-GBR indication, a QFI, and a flow description parameter.
  • the link detection information further includes: sending frequency information of the subscribed link state parameters.
  • the link condition information includes at least one of condition information related to access and condition information not related to access.
  • condition information related to access includes one or more of the following: access network signal strength threshold, access network signal quality threshold, backhaul bandwidth threshold or load threshold, access network bandwidth threshold, and access Network load threshold; access-independent condition information includes one or more of the following: at least one of a link delay threshold, a link packet loss rate threshold, and a link jitter threshold.
  • the obtaining unit is specifically configured to obtain, from a non-access layer NAS transmission message, a distribution mode of the service flow sent by a policy control network element and link condition information used to transmit the service flow. At least one.
  • the obtaining unit has at least one of a shunting strategy, a shunting mode, and link condition information for transmitting the service flow from a session management response message sent by the session management network element.
  • the processing unit is specifically configured to migrate a service flow from a link corresponding to the first access technology of the multiple access technologies to a link corresponding to the second access technology for transmission according to the policy information;
  • a determining unit configured to determine the end of the data packet transmission of the service flow sent on the first access technology;
  • a sending unit configured to determine that, when the determining unit determines that the data packet transmission of the service flow sent on the first access technology is over, Send a first instruction to the user plane function network element, where the first instruction is used to indicate that the data packet transmission of the service flow transmitted on the first access technology is ended.
  • the sending unit is further configured to send instruction information to a core network element, and the instruction information is used to instruct the terminal to process the service flow.
  • the offload mode includes one or more of the following: an access technology priority indication, which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology; an optimal link offload indication, which uses The priority is to transmit the service flow through the optimal link; the optimal link is the link whose link status is better than other links; the link load balancing-based offloading instruction is used to indicate transmission according to the link load balancing policy Service flow; indication of access technology and split ratio, which is used to indicate that the service flow is transmitted according to the split ratio corresponding to the access technology; redundant transmission instruction, which indicates that the same data packet in the service flow is transmitted through different access technologies at the same time.
  • an access technology priority indication which is used to indicate that a service flow is preferentially transmitted through the access technology priority indication associated access technology
  • an optimal link offload indication which uses The priority is to transmit the service flow through the optimal link
  • the optimal link is the link whose link status is better than other links
  • the link load balancing-based offloading instruction is used to
  • the apparatus provided in the embodiment of the present application further includes: a receiving unit, configured to receive link state information or link state parameters and access technology indications, a guaranteed bit rate GBR indication, At least one of a non-GBR indication, an identification QFI of a quality of service flow, and a flow description parameter.
  • a receiving unit configured to receive link state information or link state parameters and access technology indications, a guaranteed bit rate GBR indication, At least one of a non-GBR indication, an identification QFI of a quality of service flow, and a flow description parameter.
  • the receiving unit is further configured to receive the link state information sent by the access network device as a recommended bandwidth value of the access network device; or the receiving unit is further configured to receive a session management network element or a user plane network element.
  • the link state information is the recommended bandwidth value of the access network device.
  • the processing unit is further configured to process the service flow according to the policy information and the available bandwidth value.
  • a device for processing a service flow is also provided in the embodiments of the present application.
  • the device for processing a service flow may be a terminal or a chip applied to the terminal, and the device for processing a service flow.
  • the device side performs message / data receiving and sending steps.
  • the processor is configured to support the device for processing a service flow to perform the steps of performing message / data processing on the device side for processing a service flow described in any one of the first aspect to the first possible implementation manner of the first aspect.
  • an interface circuit and a processor of the apparatus for processing a service flow are coupled to each other.
  • the apparatus for processing a service flow may further include a memory for storing code and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a communication device.
  • the communication device may implement the communication device described in the second aspect or any one of the possible implementation manners of the second aspect, and therefore may also implement the second The beneficial effects in any one of the possible implementation manners of the aspect or the second aspect.
  • the communication device may be a session management network element or a device that can support the session management network element to implement the second aspect or any one of the possible implementation methods of the second aspect. For example, it is applied to a chip in a session management network element.
  • the communication device may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • a communication device includes an acquisition unit for acquiring policy information of a service flow, including at least one of a distribution policy, a distribution mode, and link condition information for transmitting the service flow.
  • a PDU session in which the service flow is located supports multiple Access technology; sending unit, used to send policy information to the terminal.
  • a communication device provided in an embodiment of the present application further includes: a receiving unit, configured to receive link detection information sent by the terminal, where the link detection information is used to obtain a link of a link that transmits a service flow. Road status information.
  • the sending unit is further configured to send link detection information to the user plane network element; the receiving unit is further configured to receive link state information sent by the user plane network element; the sending unit is further configured to link the chain Road status information is sent to the terminal.
  • the sending unit is further configured to use at least one of a link state parameter and an access technology indication, a guaranteed bit rate GBR indication, a non-Non-GBR indication, a quality of service flow identification QFI, and a flow description parameter. Send to the terminal.
  • the sending unit is further configured to send a first instruction to a user plane network element, where the first instruction is used to indicate a link that needs to send link state information.
  • the first indication includes at least one of an identifier of a quality of service flow QFI, an access technology indication and a tunnel identification, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • the sending unit is further configured to send a QFI and notification indication to the access network device.
  • the QFI and notification indication is used to indicate to the session management when the access network device cannot meet the bandwidth requirements of the QFI QoS flow.
  • the network element or user plane network element sends the recommended bandwidth value of the access network device.
  • the receiving unit is further configured to receive the QFI sent by the access network device and the recommended bandwidth value of the access network device; and the sending unit is further configured to send the recommended bandwidth value of the QFI and the access network device to the terminal.
  • the receiving unit is further configured to receive a session management request message sent by the terminal, where the session management request message includes an access technology indication that the terminal requests to transmit a service flow.
  • the embodiment of the present application further provides a communication device.
  • the communication device may be a session management network element or a chip applied to the session management network element.
  • the communication device includes: And an interface circuit, wherein the interface circuit is configured to support the one communication device performing the second aspect to any one of the possible implementation manners of the second aspect to perform message / data reception and Sending steps.
  • the processor is configured to support the one communication device to perform the steps of performing message / data processing on the one communication device side described in any one of the possible implementation manners of the second aspect to the second aspect.
  • the interface circuit and the processor of the communication device are coupled to each other.
  • the communication device may further include a memory for storing codes and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a device for processing a service flow.
  • the device for processing a service flow may implement the third aspect or any one of the possible implementation manners of the third aspect to process a service.
  • the stream method can also achieve the beneficial effects of the third aspect or any one of the possible implementation manners of the third aspect.
  • the apparatus for processing a service flow may be a session management network element, or may be a method for processing a service flow that can support the session management network element to implement the third aspect or any one of the possible implementation manners of the third aspect.
  • Device For example, it is applied to a chip in a session management network element.
  • the apparatus for processing a service flow may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An apparatus for processing a service flow includes: an obtaining unit that obtains policy information of the service flow, the policy information including at least one of a distribution policy, a distribution mode, and link condition information for transmitting the service flow, and a packet in which the service flow is located
  • Data unit PDU sessions support multiple access technologies.
  • the sending unit is configured to send at least one access technology instruction to the terminal according to the policy information, and the access technology instruction is used to instruct the service flow to be migrated to a link corresponding to the access technology indicated by the access technology instruction.
  • the sending unit is further configured to send link detection information to the terminal or user plane network element, and the link detection information is used to obtain link state information of the link; the session management network element receives the terminal or user plane Link state information sent by the network element.
  • the sending unit is specifically configured to determine, in the determining unit, that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information, and according to At least one, sending at least one access technology indication to the terminal.
  • the apparatus provided in the embodiment of the present application further includes: a generating unit, configured to generate link detection information according to the policy information.
  • the sending unit is further configured to send a first indication to a terminal or a user plane network element to indicate a link that needs to send link state information.
  • the first indication includes at least one of an identifier of a quality of service flow QFI, an access technology indication and a tunnel identification, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • the apparatus provided in the embodiment of the present application further includes: a receiving unit, configured to receive first instruction information sent by the terminal, where the first instruction information is used to instruct the core network to process the service flow.
  • the sending unit is further configured to send a QFI and a notification indication to the access network device.
  • the QFI and the notification indication are used to indicate to the session management when the access network cannot meet the bandwidth requirements of the QFI QoS flow.
  • the network element or user plane network element sends the recommended bandwidth value of the access network device.
  • the receiving unit is further configured to receive the QFI and the recommended bandwidth value of the access network device sent by the access network device; the session management network element sends the recommended bandwidth value of the QFI and the access network device to the terminal.
  • the obtaining unit is further configured to obtain the policy information of the service flow from the policy control network element in the session management process. Or the obtaining unit is further configured to obtain the policy information of the service flow from the policy control network element when the terminal completes the registration.
  • a device for processing a service flow is also provided in the embodiments of the present application.
  • the device for processing a service flow may be a session management network element or a chip applied to the session management network element.
  • An apparatus for processing a service flow includes a processor and an interface circuit, where the interface circuit is configured to support the device for processing a service flow to execute any one of the possible implementation manners described in the third aspect to the third aspect. This is a step of receiving / transmitting messages / data on the device side that processes service flows.
  • the processor is configured to support the device for processing a service flow to perform the steps of performing message / data processing on the device side for processing a service flow as described in any one of the possible implementation manners of the second aspect to the second aspect.
  • an interface circuit and a processor of the apparatus for processing a service flow are coupled to each other.
  • the apparatus for processing a service flow may further include a memory for storing code and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a device for processing a service flow.
  • the device for processing a service flow may implement the fourth aspect or any one of the possible implementation manners of the fourth aspect to process a service.
  • the stream method can also achieve the beneficial effects of the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the device for processing a service flow may be a policy control network element, or a method for processing a service flow that can support the policy control network element to implement the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • Device For example, it is applied to a chip in a policy control network element.
  • the apparatus for processing a service flow may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • a method for processing a service flow includes: an obtaining unit for obtaining policy information of the service flow, the policy information including at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow, where the service flow is located
  • the packet data unit PDU session supports multiple access technologies.
  • a sending unit configured to send an updated at least one access technology instruction corresponding to the service flow to the session management network element according to the policy information, and the at least one access technology instruction is used to instruct to migrate the service flow to the access technology Indicates the link corresponding to the indicated access technology.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • the sending unit provided in the embodiment of the present application is further configured to send link detection information to the terminal. Or send link detection information to the session management network element.
  • the receiving unit is further configured to receive link state information sent by the session management network element.
  • the obtaining unit is further configured to determine, based on the obtained link state information of the service flow, that the link state information of the current link does not satisfy the link condition information, or the link state information of the target link satisfies
  • the link condition information is a sending unit, configured to send an updated at least one access technology indication corresponding to the service flow to the session management network element.
  • the sending unit provided in the embodiment of the present application is further configured to send the policy information of the service flow to the session management network element after the multiple access session indication sent by the receiving unit to the session management network element.
  • the receiving unit is further configured to receive instruction information sent by the session management network element that the policy control network element processes the service flow.
  • a device for processing a service flow is also provided in the embodiment of the present application.
  • the device for processing a service flow may be a policy control network element or a chip applied to a policy control network element.
  • An apparatus for processing a service flow includes a processor and an interface circuit, where the interface circuit is configured to support the device for processing a service flow to perform any one of the possible implementation manners of the fourth aspect to the fourth aspect. This is a step of receiving / transmitting messages / data on the device side that processes service flows.
  • the processor is configured to support the device for processing a service flow to perform the steps of performing message / data processing on the device side for processing a service flow as described in any one of the possible implementation manners of the second aspect to the second aspect.
  • an interface circuit and a processor of the apparatus for processing a service flow are coupled to each other.
  • the apparatus for processing a service flow may further include a memory for storing code and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a device for processing a service flow.
  • the device for processing a service flow may implement the fifth aspect or any one of the possible implementation manners of the fifth aspect to process a service.
  • the method of streaming can also achieve the beneficial effects of the fifth aspect or any one of the possible implementation manners of the fifth aspect.
  • the apparatus for processing a service flow may be a user plane network element, or may be a method for processing a service stream that can support the user plane network element to implement the fifth aspect or any one of the possible implementation manners of the fifth aspect.
  • Device For example, it is applied to chips in user plane network elements.
  • the apparatus for processing a service flow may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An embodiment of the present application provides a device for processing a service flow, including: an obtaining unit, configured to obtain policy information of a service flow, where the policy information includes: a shunt policy, a shunt mode, and link condition information for transmitting a service flow; at least one.
  • a processing unit is configured to process a service flow according to the policy information.
  • the obtaining unit is further configured to obtain link detection information from a session management network element.
  • the apparatus provided in the embodiment of the present application further includes: a sending unit, configured to send to the terminal the link state information obtained by the user plane network element according to the link detection information.
  • the apparatus provided in the embodiment of the present application further includes: a receiving unit, configured to receive link state information of the current link or the target link obtained by the terminal based on the link detection information.
  • the processing unit is specifically configured to determine that the link state information of the current link is not satisfied or the link state information of the target link meets the link condition information in the determining unit, and then according to the offload strategy and offload mode, At least one of them handles business flow.
  • the determining unit is further configured to determine an access technology used by the service flow according to at least one of a distribution strategy and a distribution mode.
  • the processing unit is specifically configured to transmit a service flow on a determined access technology.
  • the processing unit is specifically configured to transmit service flows on links corresponding to multiple access technologies.
  • the processing unit is specifically configured to migrate a service flow from a link corresponding to the first access technology of the multiple access technologies to a link corresponding to the second access technology for transmission.
  • the processing unit is specifically configured to migrate service flows from multiple access technologies to transmission on a link corresponding to the first access technology or the second access technology of the multiple access technologies.
  • the receiving unit is configured to receive instruction information sent by the session management network element, and the instruction information is used to instruct the user plane network element to process a service flow.
  • link detection information For specific content of the link detection information, the shunt mode, the link condition information, and the link detection information, reference may be made to the description in the first aspect and various possible implementation manners of the first aspect, and details are not described herein again.
  • a device for processing a service flow is also provided in the embodiments of the present application.
  • the device for processing a service flow may be a user plane network element or a chip applied to the user plane network element.
  • An apparatus for processing a service flow includes a processor and an interface circuit, where the interface circuit is configured to support the device for processing a service flow to execute any one of the possible implementation manners of the third aspect to the fifth aspect. This is a step of receiving / transmitting messages / data on the device side that processes service flows.
  • the processor is configured to support the device for processing a service flow to perform the steps of performing message / data processing on the device side for processing a service flow as described in any one of the possible implementation manners of the fifth aspect to the fifth aspect.
  • an interface circuit and a processor of the apparatus for processing a service flow are coupled to each other.
  • the apparatus for processing a service flow may further include a memory for storing code and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a communication device.
  • the communication may implement the communication method described in the sixth aspect or any one of the possible implementation manners of the sixth aspect, and therefore, the sixth aspect may also be implemented. Or the beneficial effect in any possible implementation manner of the sixth aspect.
  • the communication device may be a device or a device that can support the communication method in the sixth aspect or any one of the possible implementation manners of the seventh aspect. For example, chips used in terminals.
  • the communication device may implement the above method by software, hardware, or by executing corresponding software by hardware.
  • An embodiment of the present application provides a communication device, including: a receiving unit, configured to receive link detection information sent by a session management network element / user plane function network element, where the link detection information is used to obtain link state information of a link .
  • the PDU session where the service flow is located supports multiple access technologies; the sending unit is used to send link state information to the core network element.
  • the terminal may send the link state information of the current link or the link state information of the target link.
  • the receiving unit is configured to receive a first instruction sent by the session management network element, where the first instruction is used to indicate a link that needs to send link state information.
  • the receiving unit receives an access technology instruction corresponding to the service flow sent by the session management network element, and the access technology instruction is used to instruct the service flow to be migrated to the access technology corresponding to the access technology instruction Link
  • the apparatus provided in the embodiment of the present application further includes: a processing unit, configured to process a service flow according to an access technology instruction.
  • the receiving unit receives a recommended bandwidth value of the access network device sent by the access network device. Or the receiving unit receives the recommended bandwidth value of the access network device sent by the session management network element or the user plane network element.
  • the processing unit is specifically configured to process the service flow according to at least one of a shunting strategy and a shunting mode based on the link state information sent by the user plane functional network element.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a terminal or a chip applied in the terminal.
  • the communication device includes a processor and an interface circuit, where The interface circuit is configured to support the communication device to perform the steps of receiving / sending data / data on the communication device side described in any one of the possible implementation manners of the sixth aspect to the sixth aspect.
  • the processor is configured to support the communication device to perform the steps of performing message / data processing on the communication device side described in any one of the possible implementation manners of the sixth aspect to the sixth aspect.
  • the interface circuit and the processor of the communication device are coupled to each other.
  • the communication device may further include a memory for storing codes and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a data packet processing apparatus.
  • the data packet processing apparatus may implement the fifth aspect or a data packet processing method described in any possible implementation manner of the fifth aspect. , So the beneficial effects in the seventh aspect or any one of the possible implementation manners of the seventh aspect can also be achieved.
  • the device for processing a data packet may be a sending network element, or may be a device that can support the sending network element to implement the data processing method in the seventh aspect or any one of the possible implementation manners of the seventh aspect. For example, it is applied to a chip in a transmitting network element.
  • the data packet processing apparatus may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • a data packet processing device includes: a determining unit, configured to determine that a service flow needs to be migrated from a link corresponding to a first access technology of a plurality of access technologies to a link corresponding to a second access technology for transmission; And the end of data packet transmission for determining the service flow sent on the link corresponding to the first access technology; the sending unit is configured to send to the receiving network element to indicate the chain corresponding to the first access technology A first indication of the end of data packet transmission of the service flow transmitted on the road.
  • the sending unit is specifically configured to carry the first indication in a last packet sent on a link corresponding to the first access technology.
  • the last packet is an empty packet or the last data packet of the service flow.
  • the first indication is carried in at least one of a packet data convergence protocol PDCP header and a service data application protocol SDAP header of the last data packet.
  • the sending unit is configured to carry the first indication information in a GTP-U data packet header of a data packet.
  • the sending unit is configured to carry the first indication through a header of the last packet.
  • the header of the last packet includes one or more of the following: IP header, Ethernet header, User Datagram Protocol UDP header, Transmission Control Protocol TCP header, PDCP header, and SDAP header.
  • an embodiment of the present application further provides a data packet processing apparatus.
  • the data packet processing apparatus may be a sending network element or a chip applied to a sending network element.
  • the apparatus includes: a processor and an interface circuit, wherein the interface circuit is configured to support the one kind of data packet processing apparatus to perform the one kind of data packet processing described in any one of the possible implementation manners of the seventh aspect to the seventh aspect. Steps for receiving and sending messages / data on the device side.
  • the processor is configured to support the data packet processing apparatus to perform the steps of performing message / data processing on the data packet processing apparatus side described in any one of the possible implementation manners of the seventh aspect to the seventh aspect.
  • For specific corresponding steps reference may be made to the description in any one of the possible implementation manners of the seventh aspect to the seventh aspect, and details are not described herein again.
  • the interface circuit and the processor of the data packet processing device are coupled to each other.
  • the data packet processing apparatus may further include a memory for storing codes and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a data packet processing device.
  • the data packet processing device may implement the eighth aspect or a data packet processing method described in any possible implementation manner of the eighth aspect. Therefore, the beneficial effects in the eighth aspect or any one of the possible implementation manners of the eighth aspect can also be achieved.
  • the data packet processing apparatus may be a receiving network element, or may be a device that can support the receiving network element to implement the eighth aspect or any one of the eighth possible implementation manners of the eighth aspect. For example, it is applied to a chip in a receiving network element.
  • the data packet processing apparatus may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • a data packet processing device configured to receive a network element from a link corresponding to a first access technology or / and a link corresponding to a second access technology among a plurality of access technologies supported by a service flow.
  • processing A unit configured to sort, according to a first instruction, data packets of service flows received through a link corresponding to the first access technology and a link corresponding to the second access technology.
  • the receiving unit is further configured to receive the first indication carried in a last packet sent on a link corresponding to the first access technology.
  • the last packet is the empty packet or the last packet of the service flow.
  • the determining unit is configured to determine a service flow corresponding to the first indication based on a null description packet or a flow description parameter in the last data packet of the service flow.
  • the processing unit is configured to process a data packet of a service flow received through a link corresponding to the second access technology after receiving the first instruction.
  • an embodiment of the present application further provides a data packet processing apparatus.
  • the data packet processing apparatus may be a receiving network element or a chip applied to a receiving network element.
  • the device includes: a processor and an interface circuit, where the interface circuit is configured to support the one kind of data packet processing device to perform the one kind of data packet processing described in any one of the eighth aspect to the eighth aspect of the possible implementation manners Steps for receiving and sending messages / data on the device side.
  • the processor is configured to support the data packet processing apparatus to perform the steps of performing message / data processing on the side of the data packet processing apparatus described in any one of the eighth aspect to the eighth aspect of the possible implementation manners.
  • the description in any one of the possible implementation manners of the eighth aspect to the eighth aspect and details are not described herein again.
  • the interface circuit and the processor of the data packet processing device are coupled to each other.
  • the data packet processing apparatus may further include a memory for storing codes and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the first aspect or the various possible aspects of the first aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the second aspect or the various possible aspects of the second aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the third aspect or the various possible aspects of the third aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions run on the computer, cause the computer to execute the fourth aspect or the various possible aspects of the fourth aspect A method of processing a business flow as described in the implementation.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer can execute the fifth aspect or the various possibilities of the fifth aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is enabled to implement the sixth aspect or various possibilities of the sixth aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is enabled to implement the seventh aspect or various possibilities of the seventh aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are run on a computer, the computer executes the eighth aspect or various possibilities of the eighth aspect.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to perform a process described in the first aspect or various possible implementation manners of the first aspect. Method of business flow.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to perform the second aspect or a communication described in various possible implementation manners of the second aspect. method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to perform a process described in the third aspect or various possible implementation manners of the third aspect. Method of business flow.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to perform a process described in the fourth aspect or various possible implementation manners of the fourth aspect. Method of business flow.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to perform the processing described in the fifth aspect or various possible implementation manners of the fifth aspect. Method of business flow.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the sixth aspect or a communication method described in various possible implementation manners of the sixth aspect. .
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the data described in the seventh aspect or various possible implementation manners of the seventh aspect. Packet processing method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the data described in the eighth aspect or various possible implementation manners of the eighth aspect. Packet processing method.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the first aspect or the first aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the second aspect or the second aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the third aspect or the third aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the fourth aspect or the fourth aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the fifth aspect or the fifth aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the sixth aspect or the sixth aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement the seventh aspect or the seventh aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor, and the processor is configured to run a computer program or instruction to implement each of the eighth aspect or the eighth aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • the chip provided in the embodiment of the present application further includes a memory for storing a computer program or an instruction.
  • a communication system includes the ninth aspect or a device for processing a service flow provided by various possible implementation manners of the ninth aspect, and the tenth aspect or the tenth aspect
  • a communication device is provided by various possible implementations of aspects.
  • a communication system includes the device for processing service flows provided by the eleventh aspect or various possible implementation manners of the eleventh aspect, and the fourteenth aspect
  • a communication device is provided in any possible design of the fourteenth aspect.
  • the communication system provided in the forty-second aspect further includes a policy control network element and a user plane network element that interact with the device that processes service flows.
  • a communication system includes the twelfth aspect or a device for processing a service flow provided by various possible implementation manners of the twelfth aspect, and the fourteenth aspect
  • a communication device is provided in any possible design of the fourteenth aspect.
  • the communication system provided in the forty-third aspect further includes: a session management network element and a user plane network element that interact with the device that processes service flows.
  • a communication system includes the thirteenth aspect or a device for processing a service flow provided by various possible implementation manners of the thirteenth aspect, and the fourteenth aspect
  • a communication device is provided in any possible design of the fourteenth aspect.
  • the communication system provided in the forty-fourth aspect further includes: a session management network element that interacts with the device that processes service flows.
  • FIG. 1 is a schematic diagram of a multi-access PDU session
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a 5G network architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal accessing a network through multiple access technologies according to an embodiment of the present application
  • 5 to 13 are schematic flowcharts of a method for processing a service flow and a communication method according to an embodiment of the present application
  • FIG. 14 is a schematic flowchart of a data packet processing method according to an embodiment of the present application.
  • 15 is a schematic diagram of a specific embodiment of a terminal processing a service flow according to an embodiment of the present application.
  • 16 is a schematic diagram of a specific embodiment of a session management network element processing a service flow according to an embodiment of the present application
  • 17 is a schematic diagram of a specific embodiment of a policy control network element processing a service flow according to an embodiment of the present application
  • FIG. 18 is a schematic diagram of a specific embodiment of a user plane network element processing a service flow according to an embodiment of the present application
  • FIG. 19 is a first schematic structural diagram of a device for processing a service flow according to an embodiment of the present application.
  • 20 is a second schematic structural diagram of a device for processing a service flow according to an embodiment of the present application.
  • FIG. 21 is a third structural schematic diagram of a device for processing a service flow according to an embodiment of the present application.
  • 22 is a first schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 23 is a second schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 24 is a third schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 25 is a first schematic structural diagram of a data packet transmission device according to an embodiment of the present application.
  • FIG. 26 is a second schematic structural diagram of a data packet transmission device according to an embodiment of the present application.
  • FIG. 27 is a third structural schematic diagram of a data packet transmission device according to an embodiment of the present application.
  • FIG. 28 is a third structural schematic diagram of a data packet transmission device according to an embodiment of the present application.
  • FIG. 29 is a fourth structural schematic diagram of a device for processing a service flow according to an embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions. Those skilled in the art can understand that the words “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” are not necessarily different.
  • FIG. 2 shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes a core network, an access network, and one or more terminals 104.
  • One or more terminals 104 access the core network through the access network.
  • the core network includes the following network elements: a session management network element 101, one or more user plane network elements 102 connected to the session management network element 101 (only one user plane network element is shown in FIG. 2), and a session management network The policy control network element 103 to which the element 101 is connected.
  • the access network may be an access network device using multiple access technologies.
  • the terminal 104 When the terminal 104 accesses the wireless network through different access technologies, the terminal 104 can connect to the core network device through different access network devices.
  • At least one of the one or more terminals 104 has a session with the user plane network element 102, and the session may support multiple access technologies.
  • the session may be accessed through the first access technology or may be accessed through the second access technology.
  • the first access technology in the embodiment of the present application may be an access technology conforming to the 3GPP standard specification, for example, a 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) access technology.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • LTE long-term evolution
  • 2G, 3G, 4G, or 5G systems use access technologies.
  • An access network using 3GPP access technology is called a radio access network (Radio Access Network, RAN).
  • the terminal 104 may use a 3GPP access technology to access a wireless network through an access network device in a 2G, 3G, 4G, or 5G system.
  • the second access technology may be a wireless access technology that is not defined in the 3GPP standard specification, such as a non-3rd Generation Partnership Project (non3GPP) access technology.
  • the non-3GPP access technology may be an untrusted non3GPP access technology or a trusted non3GPP access technology.
  • Non-3GPP access technologies may include: wireless fidelity (Wi-Fi), worldwide interoperability for microwave access (WiMAX), code division multiple access (CDMA), and wireless local area network (CDMA) Wireless Local Area Networks (WLAN), fixed network technology or wired technology.
  • Wi-Fi wireless fidelity
  • WiMAX worldwide interoperability for microwave access
  • CDMA code division multiple access
  • CDMA wireless local area network
  • WLAN Wireless Local Area Networks
  • the terminal 104 may access the network through an air interface technology represented by wireless fidelity (WIFI), where the access network device may be an access point (AP).
  • WIFI wireless fidelity
  • AP access point
  • the terminals may be distributed in a wireless network, and each terminal may be static or mobile.
  • the session management network element 101, the user plane network element 102, and the policy control network element 103 belong to the network elements in the core network element, and may be collectively referred to as the core network element.
  • the core network element is mainly responsible for packet data packet forwarding, QoS control, charging statistics, and so on (for example, the user plane network element). And it is mainly responsible for user registration and authentication, mobility management, and delivery of data packet forwarding policies, QoS control policies, etc. to the user plane function network element (for example, session management network element).
  • the session management network element is responsible for establishing a corresponding session connection (for example, a PDU session) on the network side when the user initiates a service, and provides specific services for the user, especially based on the interface between the session management network element and the user plane network element.
  • the user plane network element issues a packet forwarding policy, a QoS policy, and so on.
  • the network element or entity corresponding to the session management network element 101 may be a session management function (SMF) network element or a user.
  • the surface network element may be a user plane function (UPF) network element.
  • the policy control network element may be (policy control function, PCF).
  • the 5G network may further include: access and mobility management function (AMF) network elements, application function (AF) network elements, and access network equipment (
  • Access Network can also be called Radio Access Network (RAN), Authentication Server Function (AUSF) network element, unified data management (unified data) management (UDM) network element, network slice selection function (NSSF) network element, network capability open function (NEF) network element, network warehouse storage function (NRF) network element, and Data network (DN) and the like are not specifically limited in this embodiment of the present application.
  • AMF access and mobility management function
  • AF application function
  • AN can also be called Radio Access Network (RAN), Authentication Server Function (AUSF) network element, unified data management (unified data) management (UDM) network element, network slice selection function (NSSF) network element, network capability open function (NEF) network element, network warehouse storage function (NRF) network element, and Data network (DN) and the like are not specifically limited in this embodiment of the present application.
  • the terminal communicates with the AMF network element through an N1 interface (referred to as N1).
  • the AMF network element communicates with the SMF network element through the N11 interface (referred to as N11).
  • the SMF network element communicates with one or more UPF network elements through an N4 interface (referred to as N4). Any two UPF network elements in one or more UPF network elements communicate through an N9 interface (referred to as N9 for short).
  • the UPF network element communicates with a data network (DN) through an N6 interface (referred to as N6).
  • the terminal accesses the network through an access network device (for example, a RAN device).
  • the access network device communicates with the AMF network element through an N2 interface (referred to as N2 for short).
  • the SMF network element communicates with the PCF network element through the N7 interface (referred to as N7), and the PCF network element communicates with the AF network element through the N5 interface.
  • the access network device communicates with the UPF network element through an N3 interface (referred to as N3). Any two or more AMF network elements communicate through an N14 interface (referred to as N14 for short).
  • the SMF network element communicates with the UDM network element through the N10 interface (referred to as N10).
  • the AMF network element communicates with the AUSF network element through the N12 interface (referred to as N12).
  • the AUSF network element communicates with the UDM network element through the N13 interface (referred to as N13).
  • the AMF network element communicates with the UDM network element through the N8 interface (referred to as N8).
  • interface names between the various network elements in FIG. 3 are only examples, and the interface names may be other names in specific implementations, which are not specifically limited in this embodiment of the present application.
  • the access network equipment, AF network element, AMF network element, SMF network element, AUSF network element, UDM network element, UPF network element, and PCF network element in FIG. 3 are only a name, and the name is for the device itself Does not constitute a limitation.
  • the network elements corresponding to the access network equipment, AF network element, AMF network element, SMF network element, AUSF network element, UDM network element, UPF network element, and PCF network element may also be Other names are not specifically limited in this embodiment of the present application.
  • the UDM network element may also be replaced with a user home server (HSS), a user subscription database (USD), or a database entity, etc., which will be described collectively here, and will not be described later. .
  • the access network device involved in the embodiment of the present application refers to a device used to access a core network, and may be, for example, a base station, a broadband network service gateway (BNG), an aggregation switch, and a non- 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) access network equipment, etc.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, and the like.
  • the AMF network element involved in the embodiments of the present application may also be responsible for functions such as the registration process during terminal access, location management during terminal movement, and legal monitoring, which are not specifically limited in this embodiment of the present application.
  • the SMF network elements involved in the embodiments of the present application are used for session management, including: session establishment, session modification, session release, and Internet Protocol (IP) address allocation of terminals' networks. And management, UPF network element selection and control, legal monitoring, and other session-related control functions.
  • session management including: session establishment, session modification, session release, and Internet Protocol (IP) address allocation of terminals' networks.
  • IP Internet Protocol
  • UPF network element selection and control legal monitoring, and other session-related control functions.
  • the UPF network elements involved in the embodiments of the present application can also implement a serving gateway (SGW) and a packet data network gateway (packet data). network gateway (PGW).
  • SGW serving gateway
  • PGW packet data network gateway
  • PGW packet data network gateway
  • the UPF network element may also be a software-defined network (SDN) switch, which is not specifically limited in this embodiment of the present application.
  • SDN software-defined network
  • the AUSF network element is an authentication server function and is mainly responsible for authenticating the terminal and determining the legitimacy of the terminal. For example, the terminal performs authentication and authentication based on the user subscription data of the terminal.
  • UDM network elements are unified user data management and are mainly used to store the contract data of the terminal.
  • the UDM network element also includes functions such as authentication and authentication, processing terminal identification information, and contract management, which are not specifically limited in this embodiment of the present application.
  • the PCF network element is a policy control function, and is mainly used to issue service-related policies to the AMF network element or the SMF network element.
  • the AF network element sends application-related requirements to the PCF, so that the PCF network element generates a corresponding policy.
  • DN providing services for terminals, such as providing mobile operator services, Internet services, or third-party services.
  • the PDU session in the embodiment of the present application refers to a data transmission channel between the connected terminal 104 and the DN established by the session management network element.
  • the network elements involved in the data transmission channel include a terminal, an access network device, an SMF network element, a UPF network element selected by the SMF network element for the session, and a DN corresponding to the UPF network element.
  • the data transmission channel includes a plurality of links between two adjacent network elements. For example, it includes the link between the terminal and the access network device, the link between the access network device and the AMF network element, the link between the AMF network element and the SMF network element, the SMF network element, and the UPF network element. Between the UPF network element and the DN corresponding to the UPF network element.
  • a terminal is a device that provides voice and / or data connectivity to a user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal can also be called user equipment (User Equipment), access terminal (Access terminal), user unit (User unit), user station (Mobile), mobile station (Mobile), mobile station (Mobile), remote Station (Remote Station), remote terminal (Remote Terminal), mobile device (Mobile Equipment), user terminal (User Terminal), wireless communication equipment (Wireless Telecom Equipment), user agent (User Agent), user equipment (User Equipment) or User device.
  • the terminal can be a station (Station) in a Wireless Local Area Networks (WLAN), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop) , WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems (such as , A terminal in a fifth generation (Fifth-Generation (5G) communication network) or a terminal in a future evolved Public Land Mobile Network (PLMN) network.
  • 5G can also be called New Radio (NR).
  • NR New Radio
  • the terminal may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • FIG. 4 shows an architecture diagram of a terminal accessing a network using multiple access technologies in an embodiment of the present application.
  • the architecture of the terminal using 3GPP access technology and non-3GPP access technology simultaneously.
  • the terminal can connect to the AMF network element through 3GPP access technology and non-3GPP access technology at the same time.
  • the terminal when a terminal accesses an AMF network element using a non-3GPP access technology, the terminal may access the AMF network element through a non-3GPP interworking function (N3IWF) entity.
  • N3IWF non-3GPP interworking function
  • the terminal selects the same AMF network element.
  • the terminal can select different AMF network elements.
  • the SMF network element is selected by the AMF network element. Different SMF network elements can be selected for different PDU sessions, but the same SMF network element must be selected for the same PDU session.
  • the SMF network element is selecting a UPF network element.
  • a PDU session can have multiple UPF network elements. Therefore, the SMF network element may select multiple UPF network elements to create a tunnel connection for a PDU session.
  • the AUSF network element and the Authentication Repository Function (ARPF) / UDM network element constitute the home public land mobile network (Home Public Land Mobile Network (HPLMN)).
  • HPLMN Home Public Land Mobile Network
  • the terminal accesses the network through different access technologies, it can
  • the visited public land mobile network (VPLMN) with different interviewed places may also have the same visited public land mobile network.
  • Service flow migration includes: corresponding to supporting a multi-access PDU session, the service flow in the multi-access PDU session supports a link corresponding to a first access technology from among multiple access technologies Moving to a link corresponding to the second access technology. Alternatively, the service flow is moved from transmission on a link corresponding to one access technology to splitting on a link corresponding to multiple access technologies. Alternatively, the service flow is simultaneously transmitted from a link corresponding to multiple access technologies and moved to a switch from a link corresponding to one access technology.
  • the core network element in the embodiment of the present application may be any one of a session management element, a policy control element, and a user plane element.
  • FIG. 5 shows a schematic flowchart of interaction between a method for processing a service flow and a communication method according to an embodiment of the present application.
  • the method includes:
  • the session management network element obtains policy information of a service flow, where the policy information includes at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow.
  • the link condition information used to transmit the service flow may include link threshold parameters, for example: link performance thresholds / measurement thresholds.
  • the packet data unit PDU session where the service flow is located supports multiple access technologies.
  • the link may be a transmission channel corresponding to the access technology, or a data transmission channel corresponding to a service flow, or a data transmission channel corresponding to a quality of service flow.
  • the session management network element may obtain the policy information from the policy control network element during the process of the terminal requesting to register to the network with at least one of the multiple access technologies. Or the session management network element may obtain policy information from the policy control network element in the session management process.
  • the session management process may include: a PDU session establishment process or a PDU session update (also referred to as a PDU session modification) process.
  • the policy information of the service flow includes: the flow description parameter and the policy information corresponding to the flow description parameter. Specifically, it can refer to: a shunt strategy corresponding to the flow description parameter and the flow description parameter, a flow description parameter corresponding to the flow description parameter and the flow description parameter, and a link condition information corresponding to the flow description parameter and the flow description parameter for transmitting the service flow At least one of.
  • the flow description parameter is used to determine a service flow.
  • the flow description parameter may include one or more of the following: five-tuple information of the service flow (for example, at least one of a source IP address, a destination IP address, a source port number, a destination port number, and a protocol type).
  • the link condition information includes at least one of condition information related to access and condition information not related to access.
  • condition information related to access includes one or more of the following: access network signal strength threshold, access network signal quality threshold, backhaul bandwidth threshold or load threshold, access network bandwidth threshold, and access Network load threshold;
  • the access-independent condition information includes one or more of the following: a link delay threshold (for example, an uplink delay threshold, a downlink delay threshold, and an uplink / downlink delay threshold (that is, RTT Threshold)), link packet loss rate threshold (e.g., uplink packet loss rate threshold, downlink packet loss rate threshold, and uplink / downlink packet loss rate threshold) and link jitter threshold (e.g., uplink jitter threshold At least one of a downlink jitter threshold and an uplink / downlink jitter threshold).
  • a link delay threshold for example, an uplink delay threshold, a downlink delay threshold, and an uplink / downlink delay threshold (that is, RTT Threshold)
  • link packet loss rate threshold e.g., uplink packet loss rate threshold, downlink packet loss rate threshold, and uplink / downlink packet loss rate threshold
  • link jitter threshold e.g., uplink jitter threshold At least one of a downlink jitter threshold and an
  • the link when the link state information of a link meets the link condition information corresponding to the service flow, the link can be used to transmit the service flow.
  • the link state information of a link does not satisfy the link condition information corresponding to the service flow, the link may not be used to transmit the service flow.
  • the traffic distribution policy may be ATSSS policy / ATSSS policy.
  • the offloading policy may include at least one access technology indication. Through the offloading strategy, at least one access technology for transmitting a service flow can be determined. Such as at least one of 3GPP access technology, and non-3GPP access technology.
  • the shunt mode includes one or more of the following:
  • An access technology priority indication is used to indicate that a priority is given to preferentially transmitting a service flow through a link corresponding to an associated access technology.
  • the access technology priority indication is a 3GPP access technology or a non3GPP access technology.
  • the service flow can be transmitted through the link corresponding to another access technology.
  • An optimal link offloading instruction which is used to indicate that the service flow is preferentially transmitted through an optimal link; the optimal link is a link whose link status is better than other links.
  • the optimal link offloading indication may include: an optimal link indication, a link minimum delay indication, a minimum RTT indication, a link minimum load indication, a link maximum bandwidth indication, and an access signal strongest indication. At least one parameter.
  • the terminal can determine the optimal link through the above parameters.
  • the optimal link may be: the link with the lowest delay, the link with the lowest load, or the link with the strongest access signal strength.
  • An offload instruction based on link load balancing is used to indicate that a service flow is transmitted according to a link load balancing policy.
  • the shunting instructions based on link load balancing include: load balancing instructions.
  • the indication of the access technology and the offload ratio is used to indicate that the service flow is transmitted according to the offload ratio corresponding to the access technology.
  • the terminal transmits a service flow according to the offload ratio corresponding to the access technology.
  • the offload ratio indicates that the offload ratio of the 3GPP access technology is 20%, and the offload ratio of the non-3GPP access technology is 80%, then 20% of the data packets in the service flow are transmitted through the 3GPP access technology. 80% of the data packets in the service flow are transmitted through non-3GPP access technology.
  • the offload ratio is empty or does not include the offload ratio, it indicates that the service flow is offloaded based on link load balancing.
  • a redundant transmission instruction which is used to indicate that the same data packet in the service flow is transmitted through different access technologies at the same time.
  • the session management network element sends policy information to the terminal.
  • An example is that a session management network element sends policy information to a terminal in a session management process.
  • the session management network element sends a PDU session management response message carrying the policy information to the terminal based on the terminal's PDU session management request message.
  • the PDU session management request message may be a PDU session establishment request message or a PDU session update request message.
  • the PDU session management response message may be: a PDU session new acceptance message or a PDU session update success message.
  • the session management network element may send the policy information sent by the policy control network element to the terminal through a non-access stratum (NAS) transmission message.
  • NAS non-access stratum
  • the session management network element may obtain policy information from a policy control network element.
  • the terminal obtains policy information of the service flow.
  • step S103 may be implemented in the following manner: the terminal obtains at least one of a traffic distribution mode of the service flow sent by the policy control network element and link condition information for transmitting the service flow from the non-access stratum NAS transmission message. Alternatively, the terminal acquires at least one of a service flow distribution strategy, a distribution mode, and link condition information for transmitting the service flow from a session management response message sent by the session management network element.
  • the terminal processes the service flow according to the policy information.
  • the embodiment of the present application provides a method for processing a service flow, acquiring policy information of the service flow through a terminal, and processing the service flow based on the policy information of the service flow. Because the terminal processes the service flow based on at least one of the offload strategy, the offload mode, and the link condition information issued by the network side, this not only enables the processed service flow to be transmitted on the link that satisfies the link condition information, but also This enables the terminal to implement more refined processing of service flows.
  • the method provided in the embodiment of the present application further includes:
  • the terminal sends link detection information to the session management network element, where the link detection information is used to obtain link state information of the link.
  • the link detection information includes: link state detection reporting policy (measurement policy / reporting).
  • the terminal may carry link detection information in a PDU session management request message.
  • the link detection information provided in this application includes at least one of a subscribed link state parameter and sending condition information of the subscribed link state parameter.
  • the condition information is used to indicate that when the subscribed link state parameter meets a threshold corresponding to the subscribed link state parameter included in the link condition information, the subscribed link state parameter is reported. For example, if the subscribed link state parameter is the quality of the access network signal, when the detected quality of the access network signal reaches the access network signal quality threshold, the detected quality of the access network signal is reported.
  • the subscribed link state parameters include at least one of an access-related state parameter and an access-unrelated state parameter.
  • the access-related status parameters include one or more of access network signal quality, access network signal strength, access network bandwidth, access network load, backhaul network bandwidth, or load.
  • the access network bandwidth refers to the bandwidth of the RAN device.
  • the access network bandwidth refers to the bandwidth of the access network element, for example, the bandwidth of the N3IWF. Or the bandwidth of a trusted access gateway.
  • the load of the access network is the load of the access point, such as the load of the access point AP in non-3GPP access technology. Or 3GPP access technology, the load of RAN equipment.
  • the access-unrelated state parameter link includes one or more of a delay parameter, a link packet loss rate parameter, and a link jitter parameter.
  • the link detection information further includes service flow information, which is used to determine which service flows correspond to the links to be detected.
  • the link detection information further includes one or more of the following: an access technology indication, a guaranteed bit rate GBR indication, a non-Non-GBR indication, a quality of service flow identification QFI, and a flow description parameter.
  • the access technology indication is used to indicate that the link corresponding to the access technology associated with the access technology indication needs to be subscribed
  • the GBR indication is used to indicate that the link that needs to send link state information is the link where the GBR service flow is located.
  • the non-Non-GBR indication is used to indicate that the link that needs to send link state information is the link where the non-GBR service flow is located.
  • the flow description parameter is used to indicate that the link that needs to send link state information is a link where a service flow determined by the flow description parameter is located.
  • QFI is used to indicate that the link that needs to send link state information is a link corresponding to a quality of service QoS flow associated with the QFI.
  • the link detection information may further include: sending frequency information of the subscribed link state parameters. That is, the time interval for reporting the link status parameter of the subscription, for example, once every 1 second or once every minute.
  • the session management network element obtains link detection information.
  • the session management network element may receive link detection information in a PDU session management request message.
  • the session management network element may also generate link detection information according to the policy information sent by the PCF to the terminal.
  • step S105 may be omitted.
  • the session management network element obtains link state information.
  • step S107 may be implemented in the following manner: the session management network element sends link detection information to the user plane network element.
  • the session management network element receives link state information sent by the user plane network element.
  • the session management network element sends an N4 session message (such as an N4 session establishment / update request message) to the user plane network element, and the N4 session message carries link detection information.
  • the session management network element sends an N4 session update message to the user plane network element when the access network device requests the user plane network element to send a tunnel identifier related to the PDU session, and the N4 session update message carries link detection information.
  • the session management network element further sends a first indication to the user plane network element, where the first indication is used to indicate a link that needs to send link state information.
  • the first indication includes: quality of service flow identifier (Qos identifier), access technology indication and tunnel identification, guaranteed bit rate GBR indication, non-Non-GBR indication, and flow description parameters At least one of.
  • Qos identifier quality of service flow identifier
  • access technology indication and tunnel identification includes: guaranteed bit rate GBR indication, non-Non-GBR indication, and flow description parameters At least one of.
  • the access technology is 3GPP access technology
  • the link detection information is reported as RTT detection. Then, the user plane network element performs RTT detection on the link corresponding to the 3GPP access technology, and sends the detected link state information to the terminal or the session management network element.
  • the first indication is a tunnel identifier
  • the link detection information is reported as RTT detection. Then, the user plane network element performs RTT detection on the link corresponding to the tunnel identifier, and sends the detected link state information to the terminal or the session management network element.
  • the session management network element sends link state information to the terminal.
  • At least one of a link state parameter and an access technology indication, a guaranteed bit rate GBR indication, a non-Non-GBR indication, a quality of service flow identification QFI, and a flow description parameter is sent to the terminal.
  • the terminal receives link state information sent by the session management network element.
  • S104 can be implemented in the following ways:
  • the terminal determines that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information.
  • the target link is a link corresponding to an access technology that will transmit service flows after the migration.
  • the current link is a link corresponding to an access technology that currently transmits a service flow.
  • the current link is a link corresponding to a 3GPP access technology
  • the target link may be a link corresponding to a non-3GPP access technology, or a link corresponding to a non-3GPP access technology and a 3GPP access technology.
  • the current link is a link corresponding to a non-3GPP access technology
  • the target link may be a link corresponding to a 3GPP access technology, or a link corresponding to a non-3GPP access technology and a 3GPP access technology.
  • the current link is a link corresponding to the non-3GPP access technology and the 3GPP access technology
  • the target link may be a link corresponding to the 3GPP access technology or a link corresponding to the non-3GPP access technology.
  • the terminal processes the service flow according to at least one of a shunt strategy and a shunt mode.
  • step S1042 may be implemented in the following manner: The terminal transmits a service flow on a link corresponding to multiple access technologies.
  • the terminal determines that the link status information of the link corresponding to the non-3GPP access technology and the link corresponding to the 3GPP access technology meets the link condition information, it migrates the service flow from the link corresponding to the 3GPP access technology to non- The link corresponding to the 3GPP access technology and the link corresponding to the 3GPP access technology.
  • step S1042 may be implemented in the following manner: The terminal migrates a service flow from a link corresponding to the first access technology among multiple access technologies to a link corresponding to the second access technology for transmission. .
  • the current access technology for transmitting service flows is the 3GPP access technology.
  • the terminal removes the service flow from the chain corresponding to the 3GPP access technology The path is migrated to the link corresponding to the non-3GPP access technology.
  • the terminal determines that the access technology priority indication indicates that the non-3GPP access technology has priority, the terminal migrates the service flow to the link corresponding to the non-3GPP access technology when it determines that the link of the non-3GPP access technology meets the conditions.
  • step S1042 may be implemented in the following manner: The terminal migrates a service flow from multiple access technologies to a link corresponding to a first access technology or a second access technology of the multiple access technologies. transmission.
  • the current access technology for transmitting service flows is 3GPP access technology and non-3GPP access technology.
  • the terminal migrates the service flow from the link corresponding to the 3GPP access technology and the non-3GPP access technology to the link corresponding to the non-3GPP access technology or to the link corresponding to the 3GPP access technology.
  • the terminal switches the service flow from the link corresponding to the 3GPP access technology and the non-3GPP access technology to the link corresponding to the 3GPP access technology.
  • the terminal initiates a service flow processing process.
  • the service flow processing flow initiated by the terminal includes: a PDU session establishment flow or a PDU session update flow.
  • the PDU session establishment process or the PDU session update process carries at least one access technology indication corresponding to the service flow.
  • the at least one access technology indication is used to indicate that the terminal requests the service flow to be transmitted on a link corresponding to the at least one access technology indicated by the at least one access technology indication.
  • the session management network element can send an updated offloading strategy to the terminal, and the updated offloading strategy includes at least one access technology indication corresponding to the service flow.
  • the terminal has a traffic distribution policy 1.
  • the terminal determines that the link state information corresponding to the link is not satisfied.
  • Link condition information the terminal may re-determine the access technology according to at least one of the offload mode and the link condition information.
  • the terminal determines, according to the offload mode, that the link technology information corresponding to the access technology (that is, the access technology indicated by the offload policy) that preferentially transmits service flows does not satisfy the link condition information, and requests the session management network element to re-determine the access.
  • the session management network element may re-send the access technology instruction (that is, update the offloading policy) to the terminal based on the access technology requested by the terminal. After that, the terminal migrates the service flow according to the updated distribution strategy.
  • the method provided in the embodiment of the present application further includes:
  • the terminal sends instruction information to the session management network element, where the instruction information is used to instruct the terminal to process the service flow.
  • the indication information may be UE-initiated.
  • the terminal also sends a multi-access session indication to the session management network element to indicate that the PDU session supports multiple access technologies.
  • the indication information may be carried in the foregoing session management request message.
  • the session management network element receives instruction information sent by the terminal.
  • the session management network element may carry a UE-initiated or send a service flow offload policy to the terminal in the PDU session management response message.
  • the method provided in the embodiment of the present application further includes:
  • the terminal migrates a service flow from a link corresponding to a first access technology of the multiple access technologies to a link corresponding to a second access technology for transmission according to the policy information.
  • the terminal determines that the data packet transmission of the service flow sent on the first access technology ends.
  • the terminal sends a first instruction to the user plane network element, where the first instruction is used to indicate that the data packet transmission of the service flow transmitted on the first access technology is ended.
  • the user plane network element receives the first instruction and sorts data packets on a link corresponding to at least one of the first access technology and the second access technology according to the first instruction.
  • steps S112-S115 reference may be made to the description in the subsequent embodiments, and details are not described herein again.
  • the method provided in the embodiment of the present application further includes:
  • the session management network element sends a QFI and notification indication to the access network device.
  • the notification indication is used to indicate that when the access network device cannot meet the bandwidth requirements of the QFI QoS flow, it sends the session management network element or the user plane network element. Recommended bandwidth value of the access network device.
  • the recommended bandwidth value can also be referred to as the "available bandwidth value", that is, the bandwidth resource that the access network device can provide for the above-mentioned QFI QoS flow. 5Mbps.
  • the QFI and available bandwidth indication indicate that the bandwidth requirement of the QFI QoS flow is 10M, and at this time, the available bandwidth of the access network device is 3M, then the access network device sends the session management network element or the user plane network element The recommended bandwidth value to send is 3M.
  • the session management network element receives the QFI sent by the access network device and the recommended bandwidth value of the access network device.
  • the session management network element sends the recommended bandwidth values of the QFI and the access network device to the terminal.
  • the session management network element may send the recommended bandwidth value of the access network device to the terminal through a NAS transmission message.
  • the terminal receives the link state information sent by the access network device as a recommended bandwidth value of the access network device. Or the terminal receives the link state information sent by the session management network element or the user plane network element as a recommended bandwidth value of the access network device.
  • step S118 may be omitted.
  • step S104 may be specifically implemented in the following manner: The terminal processes the service flow according to the policy information and the recommended bandwidth value.
  • a specific solution for processing a service flow includes: The terminal determines that the bandwidth required by the service flow is greater than the recommended bandwidth value of the access network device, indicating that the current access network device cannot meet the bandwidth requirement of the service flow.
  • the terminal requests the bandwidth required for the service flow from another access technology, and migrates the above service flow to another access technology as a whole. Or the terminal subtracts the recommended bandwidth value of the access network device from the required bandwidth of the service flow to obtain supplementary bandwidth.
  • the terminal requests supplementary bandwidth from another access technology, and migrates the above service flow part to another access technology, so that the access device corresponding to the current access device and the other access technology provides the required bandwidth for the above service flow. .
  • FIG. 10 shows a method for service flow movement initiated by a core network element, and the method includes:
  • a core network element obtains policy information of a service flow, where the policy information includes at least one of a distribution policy, a distribution mode, and link condition information for transmitting a service flow.
  • the packet data unit PDU session support in which the service flow is located supports Multiple access technologies.
  • the core network element is a session management element:
  • the session management network element may obtain at least one of a shunting policy, a shunting mode, and link condition information for transmitting the service flow from a policy control network element during a PDU session management process.
  • the offloading policy may be determined by a policy control network element according to at least one of link state information, a offloading mode, and link condition information for transmitting the service flow.
  • the offload strategy can also be pre-configured locally for the session management NE.
  • the policy control network element only sends an instruction based on optimal link offloading and an instruction based on link load balancing to the session management network element.
  • the session management network element determines the optimal link. That is, the session management network element determines the optimal link as the minimum link delay indication, minimum RTT indication, minimum link load indication, maximum link bandwidth indication, and strongest access signal indication according to the optimal link offloading indication.
  • the at least one parameter indicates the link.
  • the session management network element determines, based on the link load balancing instruction sent by the policy control network element, the offload ratio of the link corresponding to each access technology.
  • the core network element is a policy control network element:
  • the policy control network element obtains at least one of a shunt strategy, a shunt mode, and link condition information for transmitting the service flow from a local configuration.
  • the core network element is a user plane network element:
  • the user plane network element may obtain at least one of a shunt strategy, a shunt mode, and link condition information for transmitting the service flow from the session management network element. Specifically, after obtaining the policy information in the PDU session management process, the session management network element may send the policy information to the user plane network element through an N4 session message.
  • the core network element processes the service flow according to the policy information.
  • the method provided in the embodiment of the present application further includes:
  • the core network element obtains link state information.
  • the method provided in this embodiment of the present application further includes:
  • the core network element sends link detection information to the user plane network element or the terminal.
  • Embodiment 1 The difference from Embodiment 1 is that in Embodiment 1, the link detection information obtained by the session management network element from the terminal is sent by the policy control network element.
  • the link detection information here is generated by the session management network element according to the policy information.
  • the terminal when the session management network element sends the link detection information to the terminal, the terminal already has the link detection information (for example, when registering to the network side, the policy control network element sends the link detection information to the terminal), then The terminal uses the link detection information sent by the session management network element to detect a link state parameter.
  • the core network element sends a first indication to the terminal or user plane network element, where the first indication is used to indicate a link that needs to send link state information.
  • the first indication includes at least one of an identifier of a quality of service flow QFI, an access technology indication and a tunnel identification, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • an identifier of a quality of service flow QFI an access technology indication and a tunnel identification
  • a guaranteed bit rate GBR indication a non-Non-GBR indication
  • a flow description parameter a flow description parameter.
  • the user plane network element or the terminal sends link detection information to the core network element.
  • the user plane network element may send link detection information to the core network network element through an N4 interface message.
  • the terminal may send link detection information to a core network element through a NAS transmission message.
  • the terminal sends the link state information to the user plane network element through a user plane message, and then the user plane network element sends the core plane network element.
  • the corresponding step S203 may be specifically implemented in the following manner:
  • the core network element obtains the link state information sent by the terminal or the user plane network element from the terminal or the user plane network element.
  • step S203 is specifically implemented in the following manner: the policy control network element sends link detection information to the session management network element, and the session management network element sends link detection to the terminal or user plane network element information.
  • the session management network element reports the link state information sent by the terminal or user plane network element to the policy control network element.
  • step S203 is specifically implemented in the following manner: the session management network element sends link detection information to the core network element / terminal, and the terminal sends the link state information to the core network element
  • the core network element sends link state information to the terminal. That is, the user plane network element itself detects the link state information and sends the detected link state information to the terminal. Or the terminal detects link state information by itself and sends the detected link state information to the user plane network element.
  • S202 may be implemented in the following manner: the core network element determines that the link state information does not satisfy the link condition information, and the core network element according to the offload strategy and the At least one of the offloading modes processes the service flow.
  • the core network element determines that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information, and the core network element according to the offload strategy and the offload At least one of the modes processes the service flow.
  • S202 can be specifically implemented by: S2021, sending an access technology instruction corresponding to a service flow to a terminal, and the access technology instruction is used for And instructing to migrate a service flow to a link corresponding to the access technology indication.
  • the core network element may carry an access technology indication corresponding to the service flow in the PDU session management response message to instruct the terminal to migrate the service flow to a link corresponding to the access technology indication.
  • the method provided in the embodiment of the present application further includes: S206.
  • the terminal receives an access technology instruction corresponding to the service flow sent by the core network element, and the access technology instruction is used to instruct the service flow to be migrated to the access technology instruction access instruction indication. Link corresponding to the incoming technology.
  • S207. The terminal processes the service flow according to the access technology instruction. It can be understood that the processes performed by the terminal in S206 and S207 may also be performed by the user plane network element.
  • the terminal migrates the service flow to the link corresponding to the access technology indicated by the access technology instruction according to the access technology instruction.
  • the terminal migrates the service flow to the link corresponding to the access technology indicated by the access technology instruction according to the access technology instruction.
  • S207 reference may be made to the manner in which the terminal processes service flows in the foregoing embodiment, which is not repeatedly described in this embodiment of the present application.
  • S202 may be specifically implemented in the following manner: the core network element sends an updated shunting policy corresponding to the service flow to the session management network element, and the update
  • the subsequent offloading strategy includes at least one access technology indication, and the at least one access technology indication is used to instruct migration of the service flow to a link corresponding to the access technology indication.
  • the policy control network element determines, based on the received link state information and the locally configured offloading mode and link condition information, that the offloading policy configured for the service flow cannot meet the link requirements, and then forwards the request to the session management.
  • the network element sends the updated distribution strategy. For example, if the currently configured offloading strategy is 3GPP access technology transmission service flow, and it is determined that the link state information corresponding to the 3GPP access technology does not satisfy the link condition information according to the link condition information, the updated offloading is sent to the session management network element Policies, such as non-3GPP access technologies.
  • the session management network element initiates the service flow movement by the session management network element, or the session management network element sends the flow management to the terminal, and the terminal initiates the service flow movement.
  • S202 may be specifically implemented in the following manner, and the core network element transmits the service flow on a link corresponding to the multiple access technologies; or The core network element migrates the service flow from the link corresponding to the first access technology of the multiple access technologies to the link corresponding to the second access technology for transmission; or the core network element will Service flows are migrated from the multiple access technologies to transmission on a link corresponding to a first access technology or a second access technology of the multiple access technologies.
  • the method provided in the embodiment of the present application further includes: the terminal sending first instruction information to the core network element, where the first instruction information is used to instruct the core network to process the service flow.
  • the core network element receives the first indication information sent by the terminal.
  • the first indication information may be Network-initiated. Or it is empty.
  • the core network element determines that the network side initiates service flow migration.
  • the method provided in the embodiment of the present application further includes: S208.
  • the core network element sends a QFI and notification indication to the access network device.
  • the QFI and notification indication are used to indicate when When the access network side cannot meet the bandwidth requirement of the QFI QoS flow, the recommended bandwidth value of the access network device is sent to the session management network element or the user plane network element.
  • the method provided in the embodiment of the present application further includes: S209.
  • the core network element receives the QFI sent by the access network device and the recommended bandwidth value of the access network device.
  • S210. The core network element sends the recommended bandwidth values of the QFI and the access network device to the terminal.
  • the terminal receives the recommended bandwidth value of the access network device sent by the access network device; or the terminal receives the recommended bandwidth value of the access network device sent by the session management network element or the user plane network element.
  • a sending network element for example, a terminal or a user plane network element
  • the receiving network element for example, a user plane network element or a terminal
  • a data packet out-of-order problem occurs.
  • the present application also provides a data packet transmission method. The method includes:
  • the sending network element determines that a service flow needs to be migrated from a link corresponding to the first access technology of the multiple access technologies to a link corresponding to the second access technology for transmission.
  • step S301 for the implementation manner of step S301, reference may be made to the description in the foregoing embodiment or other manners, and details are not described herein again.
  • the sending network element determines that the data packet transmission of the service flow sent on the link corresponding to the first access technology ends.
  • the sending network element sends a first indication (for example, an Endmark indication) to the receiving network element, where the first indication is used to indicate that the data packet transmission of the service flow transmitted on the link corresponding to the first access technology ends.
  • a first indication for example, an Endmark indication
  • S303 may be implemented in the following manner: The sending network element carries a first indication in a last packet of the service flow on a link corresponding to the first access technology.
  • the last packet may be an empty packet or the last data packet.
  • the sending network element may include at least at least the Packet Data Convergence Protocol (PDCP) header and the Service Data Application Protocol (SDAP) header.
  • the first indication is carried in one.
  • the sending network element after sending the last data packet, the sending network element generates an empty packet, and carries a first indication in at least one of the PDCP header and the SDAP header of the empty packet.
  • the empty packet in the embodiment of the present application means that the data packet includes information for determining a service flow, and the payload of the data packet is empty.
  • the data packet contains at least one of an IP header, a User Datagram Protocol (UDP) header, a Transmission Control Protocol (TCP) header, and an Ethernet packet header.
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • Ethernet packet header an Ethernet packet header.
  • the terminal determines that the data packet transmission of the service flow on the link corresponding to the first access technology ends, and the terminal carries the first indication in the PDCP header or SDAP header of the last packet.
  • Send to the access network equipment such as 5G RAN, or non 3GPP access network elements.
  • the access network device obtains the first indication carried in the last packet, and passes the first indication through the GPRS tunneling protocol (GPRS Tunneling Protocol, GTP-U) or other protocols (such as the Ethernet protocol, SRv6 protocol, IPv6 Segmentation, Routing) packet header Passed to the UPF network element.
  • GPRS tunneling Protocol GPRS Tunneling Protocol, GTP-U
  • other protocols such as the Ethernet protocol, SRv6 protocol, IPv6 Segmentation, Routing
  • the access network device encapsulates the last packet (empty packet, or the last data packet) in a GTP-U data packet header that carries the first indication and passes it to the UPF network element.
  • the UPF network element determines that this data packet is the last data packet on the link corresponding to the 3GPP access technology based on the first instruction, and determines the service flow based on the information in the last packet.
  • the GTP-U protocol is used as an example of the tunneling protocol between the subsequent access network equipment and the UPF.
  • the UPF network element carries a first indication in the GTP-U data packet header, and sends the GTP-U data packet header to the access network device.
  • the first indication is carried in the PDCP header or SDAP header and sent to the terminal.
  • the UPF network element encapsulates the last packet (empty packet, or the last service data packet) in a GTP-U data packet header containing the first indication and sends it to the access network device.
  • the access network device encapsulates the last packet mentioned above in a PDCP header or SDAP header carrying the first indication and sends it to the terminal.
  • the first indication may be carried in the empty packet for determining the service flow information.
  • the sending network element carries the first indication in an IP header, a UDP header, a TCP header, or an Ethernet header.
  • the option option carries a first indication.
  • Either the ether type is set to a special value as the first indication in the ether header, or the length of the ether header is set to a special value as the end marker indicator.
  • the sending network element may carry the first indication in at least one of a UDP header, a TCP header, and an Ethernet packet header.
  • the terminal determines that the service flow ends on the link corresponding to the first access technology, and the terminal sends the last data packet to the access network device on the link corresponding to the first access technology.
  • At least one of an Ethernet header, a UDP header, and a TCP header of the last data packet carries a first indication.
  • the access network device sends the last data packet to the UPF network element.
  • the UPF parses the last data packet, obtains the flow description information from the header information of the last data packet, and obtains the first indication from the last data packet.
  • the UPF network element determines that the service flow ends on the link corresponding to the first access technology, and the UPF network element carries the first instruction in the Ethernet header, UDP header and At least one of the TCP packet headers.
  • the UPF network element encapsulates the last data packet in the GTP-U data packet header and sends it to the access network device on the link corresponding to the first access technology.
  • the access network device After receiving the GTP-U data packet header, the access network device removes the GTP-U data packet header. Then send the last data packet to the terminal.
  • the terminal parses the last data packet, obtains flow description information from the header information of the last data packet, and obtains a first indication from the last data packet.
  • the access network device determines the service flow targeted by the first indication according to the flow description information.
  • the sending network element when the sending network element is a UPF network element, the sending network element carries the first indication in a GTP-U data packet header of the data packet.
  • the header of the above data packet also includes one or more of the following information for indicating the service flow: the source IP address and / or the destination IP address in the IP header, the source IP address and / or the destination IP address in the Ethernet header, The source port number and / or destination port number in the UDP packet header and the TCP packet header, a virtual local area network (Virtual Local Area Network, VLAN) tag, and the protocol types of the IP packet header, Ethernet packet header, UDP packet header, and TCP packet header.
  • VLAN Virtual Local Area Network
  • the receiving network element receives a data packet of the service flow from a link corresponding to the first access technology or / and a link corresponding to the second access technology from among multiple access technologies supported by the service flow.
  • the receiving network element receives a first instruction sent by the sending network element, where the first instruction is used to indicate that the data packet transmission of the service flow transmitted on the link corresponding to the first access technology ends.
  • the receiving network element receives that the first indication is carried in a last packet sent on the link corresponding to the first access technology.
  • the receiving network element sorts the data packets of the service flow received through the link corresponding to the first access technology and the link corresponding to the second access technology according to the first instruction.
  • the receiving network element determines the service flow corresponding to the first indication based on a null packet or a flow description parameter in the last data packet of the service flow.
  • S306 in the embodiment of the present application may be implemented in the following manner: After receiving the first instruction, the receiving network element processes the data of the service flow received through the link corresponding to the second access technology. package.
  • the terminal migrates a service flow from a link corresponding to the first access technology to a link corresponding to the second access technology
  • the terminal determines that the data packet of the service flow is in the first connection
  • the transmission of the link corresponding to the incoming technology ends, and the terminal sends a first instruction to the UPF network element.
  • the UPF network element receives the data packet of the service flow from the link corresponding to the first access technology and / or the link corresponding to the second access technology.
  • the UPF network element buffers the data packet of the service flow on the link corresponding to the second access technology.
  • the UPF network element first sorts the data packets of the service flows on the link corresponding to the first access technology, and then processes the packets received through the link corresponding to the second access technology.
  • a data packet of the service flow when the terminal migrates a service flow from a link corresponding to the first access technology to a link corresponding to the second access technology.
  • the terminal sorts the data packets of the service flow according to the first instruction sent by the UPF network element.
  • the UPF network element sorts the data packets of the service flow according to the first instruction. , Will not repeat them here.
  • FIG. 15 illustrates a specific embodiment in which a terminal processes service flow migration according to an embodiment of the present application.
  • the method includes:
  • S401 The terminal is registered with the network side.
  • the terminal can access the network side through the 3GPP access technology and complete the registration procedure. Or the terminal accesses the network side through a non3GPP access technology and completes the registration process. Alternatively, the terminal accesses the network side through the non3GPP access technology and the 3GPP access technology and completes the registration process.
  • the PCF network element sends policy information to the AMF network element for the successfully registered terminal, where the policy information includes at least one of a flow description parameter and at least one distribution mode and flow description parameter, and link condition information for transmitting a service flow. .
  • the AMF network element sends policy information to the terminal through a NAS message.
  • the terminal completes the registration in S401 through one of the non3GPP access technology and the 3GPP access technology access, the terminal completes the other access technology through the non3GPP access technology and the 3GPP access technology access. registered. So that the terminal accesses the network side at the same time through non3GPP access technology and 3GPP access technology.
  • the terminal sends a session management request message to the AMF network element.
  • the session management request message carries a PDU session identifier, a UE-initiated indication, and a multi-access session indication.
  • the UE-initiated indication indicates that the service flow migration in the PDU session associated with the PDU session identifier is handled by the terminal.
  • the multi-access session indication indicates that the PDU session supports multiple access technologies, that is, the PDU session is a Multi-Access PDU (MA PDU) session.
  • MA PDU Multi-Access PDU
  • the session management request message may be a PDU session establishment request (PDU session establishment request) message or a PDU session update request message.
  • the session management request message also carries link detection information.
  • the session management request message further carries sending frequency information of the subscribed link state parameters.
  • the AMF network element selects the SMF network element and sends the session management request message to the SMF network element.
  • the SMF network element stores the UE-initiated, so that the terminal can determine to send the policy information to the terminal indicated by the UE-initiated after receiving the policy information sent by the PCF network element.
  • the SMF network element sends a policy request message to the PCF network element, where the policy request message carries a multi-access session indication.
  • the PCF network element sends the policy information related to the multi-access PDU session to the SMF network element based on the multi-access session indication.
  • the policy information here includes at least one of a mapping relationship between a flow description parameter and a distribution policy, a flow description parameter and at least one distribution mode, a flow description parameter, and link condition information.
  • the PCF network element may send policy information to the SMF network element through a policy response message.
  • the offloading policy may be carried in a Policy Control and Charging (PCC) rule and sent to the SMF network element.
  • PCC Policy Control and Charging
  • the SMF network element may also send UE-initiated to the PCF network element, and then the PCF network element stores the UE-initiated.
  • the SMF network element executes S408-S410.
  • the SMF network element sends link detection information to the UPF network element associated with the PDU session.
  • the SMF network element may also send at least one of a QFI, an access technology indication, a tunnel identifier, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter to the UPF network element.
  • QFI is used to indicate that the detected link information is the link where the QFI flow associated with QFI is located.
  • the tunnel identifier is used to indicate that the detected link information is the link corresponding to the tunnel associated with the tunnel identifier.
  • the access technology indication is used to indicate that the detected link information is a link corresponding to the access technology indicated by the access technology indication.
  • the GBR indication is used to indicate that the link that needs to send link state information is the link where the GBR service flow is located.
  • the non-Non-GBR indication is used to indicate that the link that needs to send link state information is the link where the non-GBR service flow is located.
  • the flow description parameter is used to indicate that the link that needs to send link state information is a link where a service flow determined by the flow description parameter is located.
  • the UPF network element sends link state information to the SMF network element according to the link detection information.
  • the UPF network element If the link state information is detected based on at least one of QFI, access technology indication, tunnel identification, guaranteed bit rate GBR indication, non-Non-GBR indication, and flow description parameters, the UPF network element also sends an The terminal sends at least one of a QFI, an access technology indication, a tunnel identifier, a guaranteed bit rate GBR indication, a non-Non-GBR indication, and a flow description parameter.
  • the SMF network element sends link state information to the terminal.
  • step S409 may also be replaced by sending the link state information to the SMF network element, and the SMF sends the link state information to the terminal through a NAS message.
  • the UPF network element sends link state information to the terminal through a user plane message (such as a link message) with the terminal.
  • the SMF network element sends a session management response message to the terminal.
  • the session management response message includes a mapping relationship between the flow description parameter and the offload policy or an instruction for instructing the authorized terminal to perform service flow migration.
  • the session management response message may be a new acceptance message for the PDU session, or an update success message for the PDU session.
  • the flow description parameter and the offload strategy are used to indicate the association between the service flow and an access technology, that is, the service flow is transmitted through one or more access technologies.
  • the SMF network element may send an N1N2 message to the AMF network element.
  • the N1N2 message carries a session management response message.
  • the N1N2 message also carries an indication of QFI and available bandwidth.
  • the AMF network element sends the QFI and available bandwidth indication to the access network device.
  • the AMF network element sends the QFI and available bandwidth indication to the access network device indicated by the access technology indication.
  • the QFI and available bandwidth indication are used to indicate that when the access network side cannot meet the bandwidth requirements of Qos flow corresponding to QFI, the access network device reports the recommended bandwidth of the access network device to the SMF network element or the UPF network element.
  • the AMF network element sends the QFI and available bandwidth indication to the 5G RAN. If the access technology indication is a non-3GPP access technology indication, the AMF network element sends a QFI and available bandwidth indication to a device in the non-3GPP access network.
  • the access network device may allocate a relevant tunnel identifier for the PDU session and send it to the UPF network element through the AMF network element or the SMF network element. If the SMF network element does not perform S408-S410, the SMF network element may send the link detection information to the UPF network element during the process of sending the tunnel identifier to the UPF network element through the N4 session update message.
  • the network elements at the two endpoints of the tunnel each notify the peer's own tunnel identity, so that subsequent data encapsulates the peer's tunnel identity.
  • the access network device detects that the bandwidth of the Qos flow meets the request according to the QFI and the available bandwidth indication.
  • the access network device determines that the bandwidth of Qos flow is not satisfied, it sends a recommended bandwidth value of Qos flow to the AMF network element.
  • the access network device may send a QFI and a recommended bandwidth value to the AMF through a RAN notification message.
  • the AMF network element sends the QFI and the recommended bandwidth value to the terminal through a NAS message.
  • the AMF network element sends the QFI and recommended bandwidth values to the SMF network element, and the SMF network element sends the NAS message to the terminal.
  • the SMF network element sends the QFI and recommended bandwidth values to the UPF network element, and the UPF network element sends the user plane message to the terminal.
  • the terminal obtains link state information.
  • the terminal processes the service flow according to at least one of the link state information and the offload mode and link condition information for transmitting the service flow.
  • the offload mode is 3GPP access technology first.
  • the link condition information includes a 3GPP side channel strength threshold. If the terminal determines that the current signal strength of the 3GPP side is lower than the channel strength threshold of the 3GPP side according to the link state information, the terminal initiates the migration of service flow 1.
  • the migration of service flow 1 initiated by the terminal is specifically: the terminal sends a PDU session update request message, and the PDU session update request message carries a flow description parameter and at least one access technology indication.
  • the PDU session update request message carries the description parameters of service flow 1 and a non-3GPP access technology indication, and is used to indicate that the terminal requests to move service flow 1 to the non3GPP side.
  • the SMF network element saves the policy information, so that the service flow migration initiated by the SMF authorized terminal based on the policy information is allowed. If not allowed, the SMF network element may reject the service flow migration request sent by the terminal. If allowed, the SMF network element may send the offload policy to the terminal based on the service flow migration initiated by the terminal. After receiving the offloading policy issued by the SMF network element based on the PDU session update request message, the terminal migrates the service flow to the link corresponding to the access technology indicated in the offloading policy.
  • the terminal has a shunting policy 1, for example, including a 3GPP access technology instruction.
  • the terminal obtains the updated offloading policy, for example, includes a non3GPP access technology instruction.
  • the terminal when the terminal migrates a service flow from a link corresponding to the first access technology side to a link corresponding to the second access technology, the terminal may further include:
  • the terminal determines that the data packet of the service flow is transmitted on the link corresponding to the first access technology, and the terminal sends a first instruction to the UPF network element, where the first instruction is used to indicate a service transmitted on the first access technology. Streaming packet transmission ends.
  • the UPF network element receives the first instruction.
  • the UPF network element sorts the data packets of the service flows received on the link corresponding to the first access technology and / or the second access technology according to the first instruction.
  • the UPF network element determines that the data packet of the service flow is transmitted over the link corresponding to the first access technology, and the UPF network element sends a first instruction to the terminal.
  • the terminal receives a first instruction.
  • the terminal sorts the data packets of the service flows received on the link corresponding to the first access technology and / or the second access technology according to the first instruction.
  • FIG. 16 shows a flow diagram of a service flow migration initiated by an SMF network element.
  • S501-S504 can refer to S401-S404, the difference is that S502 and S503 are The terminal sends link condition information.
  • S504 a Network-initiated indication is used instead of the UE-initiated indication, where the UE-initiated indication is used to indicate that the core network sends a service flow migration.
  • the terminal and the network side can also negotiate in advance.
  • the network side initiates service flow migration.
  • S505-S507 can refer to S405-S407.
  • the offloading mode here is different from that in S407 in that the PCF network element can only send to the SMF network element: 1), the optimal link offloading indication.
  • the SMF network element determines what is the optimal link, that is, the SMF network element determines which parameters are used to determine the optimal link. 2) An instruction for offloading based on load link balancing.
  • the SMF network element determines the offload ratio of the link corresponding to each access technology according to the current link state.
  • S508-S509 can refer to S408-S409.
  • the difference is that the link detection information in S408 is obtained by the SMF network element from the terminal.
  • the link detection information here is generated by the SMF network element according to the policy information obtained from the PCF network element. of.
  • the SMF network element sends a session management response message to the terminal, where the session management response message includes link detection information.
  • the terminal receives link detection information.
  • the terminal has received the link detection information sent by the PCF network element in S501-S504, the link detection information received in S511 is used to replace the chain sent by the PCF network element received in S501-S504. Road detection information.
  • the terminal sends link state information to the SMF network element based on the link detection information sent by the SMF network element.
  • the terminal may send link state information to the SMF network element through a NAS message.
  • the link state information may also be sent to the UPF network element through a user plane message, so that the UPF network element sends the message to the SMF network element through an N4 interface message.
  • this embodiment further includes: the SMF network element receives the recommended bandwidth of the access network device.
  • the specific process can refer to S411-S414. I won't repeat them here.
  • the SMF network element processes the service flow according to the link state information and at least one of the offload strategy, the offload mode, and the link condition information.
  • the method further includes: a process of processing data packets during the migration of the service flow by the terminal and the UPF network element, and the specific process may refer to the description in S417-S422, which is not repeated here.
  • a process of processing data packets during the migration of the service flow by the terminal and the UPF network element and the specific process may refer to the description in S417-S422, which is not repeated here.
  • FIG. 17 shows a schematic flowchart of a service flow migration initiated by a PCF network element.
  • S601-S607 are the same as S501-S507.
  • S608-S611 can refer to S508-S611. I won't repeat them here.
  • the link detection information is obtained by the SMF network element from the PCF network element.
  • the terminal sends link state information to the PCF network element based on the link detection information sent by the SMF network element.
  • the UE sends the link state information directly or through the UPF network element to the SMF network element, and the SMF network element sends the PCF network element.
  • the link state information obtained by the UPF network element based on the link detection information is also sent to the SMF network element, and the SMF network element is sent to the PCF network element.
  • the PCF network element processes the service flow based on the received link state information and at least one of a locally configured distribution mode, a distribution strategy, and link condition information.
  • the PCF network element determines that the link state information of the target link meets or the link state information of the current link does not satisfy the link condition information, and the PCF network element processes according to at least one of the offload strategy and the offload mode.
  • the business flow is not limited to.
  • the processing of the service flow by a PCF network element according to at least one of the shunt strategy and the shunt mode may refer to: updating of the PCF network element according to at least one of the shunt strategy and the shunt mode.
  • the target link is the link corresponding to the access technology after the service flow migration (for example, the link corresponding to the 3GPP access technology), and the current link is the link corresponding to the access technology before the service flow migration ( non 3GPP access technology).
  • the PCF network element determines that the link corresponding to the 3GPP access technology meets the link condition information, the PCF network element sends an updated offload strategy to the SMF network element.
  • the updated offload strategy includes: 3GPP access technology indication.
  • the SMF network element when the PCF network element sends the updated offloading strategy to the SMF network element, the SMF network element can initiate service flow migration or the terminal can initiate service flow migration.
  • S417-S422 can also be executed, which will not be repeated here.
  • this embodiment further includes: the SMF network element receives the recommended bandwidth of the access network device.
  • the specific process can refer to S411-S414. I won't repeat them here.
  • FIG. 18 is a schematic flowchart of a process of directly sending a service flow to a non-GBR service flow by using a terminal and a UPF network element:
  • S701-S707 can refer to the descriptions in S401-S407 or S501-S507, which will not be repeated here.
  • the SMF network element sends link state detection information, policy information, and the relationship between the QFI or flow description parameter and the offload indication to the UPF network element.
  • the offloading indication is used to indicate that the service flow corresponding to the QFI or the service flow corresponding to the flow description parameter can be migrated by the UPF network element.
  • another implementation manner of the shunt indication is: the access technology indication and the shunt ratio, that is, the SMF network element sends the QFI and access technology indication and the shunt ratio to the UPF network element.
  • the offload ratio When the offload ratio is a specific value, it indicates that the UPF network element moves the service flow based on the offload ratio. When the offload ratio is empty, it means that the UPF network element can move service flows according to any ratio.
  • the UPF network element sends the relationship between the link state detection information, policy information, QFI or flow description parameters and the offloading indication to the terminal.
  • the UPF network element and the terminal shunt report each other's detected link state information based on the link condition information.
  • S711 The terminal processes the service flow according to the link state information and the policy information sent by the UPF network element.
  • the terminal migrates the service flow to the link corresponding to the target access technology. Or, if the terminal determines that the link state information of the link corresponding to the target access technology meets the link condition information, the terminal migrates the service flow to the link corresponding to the target access technology.
  • the UPF network element processes the service flow according to the link state information and the policy information sent by the terminal.
  • the UPF network element determines that the link state information of the link corresponding to the current access technology does not satisfy the link condition information, and the UPF network element migrates the service flow to the link corresponding to the target access technology.
  • the UPF network element determines that the link state information of the link corresponding to the target access technology meets the link condition information, the UPF network element migrates the service flow to the link corresponding to the target access technology.
  • step S712 the terminal determines the link where the service flow is sent to the UPF network element, and the UPF network element determines the link where the service flow is sent to the terminal.
  • each network element for example, a communication device that processes service flows, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit in.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 19 shows a possible structural diagram of a device for processing a service flow involved in the foregoing embodiment.
  • the device for processing a service flow may be a terminal, or Chips used in terminals.
  • the apparatus for processing a service flow includes: an obtaining unit 201 and a processing unit 202.
  • the obtaining unit 201 is configured to support a device for processing a service flow to perform step S103 in the foregoing embodiment.
  • the processing unit 202 is configured to support a device for processing a service flow to perform steps S104, S1042, and S112 in the foregoing embodiment.
  • the apparatus for processing a service flow includes a sending unit 203, a receiving unit 204, and a determining unit 205.
  • the sending unit 203 is configured to support a device for processing a service flow to perform steps S105, S110, and S114 in the foregoing embodiment.
  • the receiving unit 204 is configured to support a device for processing a service flow to perform steps S109 and S119 in the foregoing embodiment.
  • the determining unit 205 is configured to support a device for processing a service flow to perform steps S1041 and S113 in the foregoing embodiment.
  • FIG. 20 shows a schematic diagram of a possible logical structure of a device for processing a service flow involved in the foregoing embodiment.
  • the device for processing a service flow may be the foregoing embodiment.
  • An apparatus for processing a service flow includes a processing module 212 and a communication module 213.
  • the processing module 212 is configured to control and manage an action of a device that processes a service flow.
  • the processing module 212 is configured to perform steps of performing message or data processing on a device side that processes a service flow. A step of processing message or data on a device side for processing a service flow.
  • the processing module 212 is configured to support a device for processing a service flow to execute S104, S1042, and S112 in the foregoing embodiment.
  • the communication module 213 is configured to support a device for processing a service flow to execute S103, S105, S109, S110, S114, and S119 in the foregoing embodiment. And / or other processes for the techniques described herein performed by a device that processes traffic.
  • a device for processing a service flow may further include a storage module 211 for storing program code and data of a device for processing a service flow.
  • the processing module 212 may be a processor or a controller, for example, it may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 213 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 211 may be a memory.
  • a device for processing a service flow involved in this application may be the device shown in FIG. 21.
  • the interface circuit 230, one or more (including two) processors 220, and the memory 240 are connected to each other through a bus 210.
  • the bus 210 may be a PCI bus, an EISA bus, or the like.
  • the bus 210 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 21, but it does not mean that there is only one bus or one type of bus.
  • the memory 240 is configured to store program code and data of a device for processing a service flow.
  • the interface circuit 230 is used for supporting a device that processes a service flow to communicate with other devices (for example, a communication device).
  • the processor is configured to support a device for processing a service flow to execute the program code and data stored in the memory 240, so as to control and manage an action of a device for processing a service flow.
  • the interface circuit 230 supports a device that processes a service flow to execute S103, S105, S109, S110, S114, and S119.
  • the processor 220 is configured to support a device for processing a service flow to execute program codes and data stored in the memory 240 to implement S104, S1042, and S112 provided in the present application.
  • FIG. 22 shows a possible structural schematic diagram of a communication device involved in the foregoing embodiment.
  • the communication device may be a session management network element or applied to a session management network element. Chip.
  • the communication device includes: an obtaining unit 301 and a sending unit 302.
  • the obtaining unit 301 is configured to support the communication device to perform steps S101, S106, and S107 in the foregoing embodiment.
  • the sending unit 302 is configured to support the communication device to perform steps S102, S108, S116, and S118 in the foregoing embodiment.
  • the communication device further includes: a receiving unit 303, configured to support the communication device to perform steps S111 and S117 in the foregoing embodiment.
  • FIG. 23 shows a schematic diagram of a possible logical structure of the communication device involved in the foregoing embodiment, and the communication device may be a session management network element in the foregoing embodiment, or an application Chips for session management network elements.
  • the communication device includes a processing module 312 and a communication module 313.
  • the processing module 312 is configured to control and manage the operation of the communication device, and the communication module 313 is configured to perform steps of performing message or data processing on the communication device side.
  • the communication module 313 is configured to support the communication device to execute S101, S102, S106, S107, S108, S111, S116, S117, and S118 in the above embodiment.
  • the communication device may further include a storage module 311 for storing program code and data of the communication device.
  • the processing module 312 may be a processor or a controller, for example, it may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 313 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 311 may be a memory.
  • the processing module 312 is the processor 320
  • the communication module 313 is the interface circuit 330 or the transceiver
  • the storage module 311 is the memory 340
  • the communication device involved in this application may be the device shown in FIG. 24.
  • the interface circuit 330, one or more (including two) processors 320, and the memory 340 are connected to each other through a bus 310.
  • the bus 310 may be a PCI bus, an EISA bus, or the like.
  • the bus 310 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 24, but it does not mean that there is only one bus or one type of bus.
  • the memory 340 is configured to store program code and data of the communication device.
  • the interface circuit 330 is used to support the communication device to communicate with other devices (for example, terminals), and the processor 320 is used to support the communication device to execute the program code and data stored in the memory 340 to implement message / data control on the communication device side. action.
  • the interface circuit 330 is configured to support the communication device to execute S101, S102, S106, S107, S108, S111, S116, S117, and S118 in the above embodiment. And / or other processes performed by a communication device for the techniques described herein.
  • FIG. 25 shows a possible structural diagram of a data packet transmission device involved in the foregoing embodiment.
  • the data packet transmission device may be a sending network element, or may be applied to The chip in the sending network element.
  • the data packet transmission apparatus includes a determining unit 401 and a sending unit 402.
  • the determining unit 401 is configured to support the data packet transmission device to perform steps S301 and 302 in the foregoing embodiment.
  • the sending unit 302 is configured to support the data packet transmission device to execute step S303 in the foregoing embodiment.
  • FIG. 26 shows a schematic diagram of a possible logical structure of the data packet transmission device involved in the foregoing embodiment, and the data packet transmission device may be a sending network element in the foregoing embodiment. Or it is a chip applied to the sending network element.
  • the data packet transmission device includes a processing module 412 and a communication module 413.
  • the processing module 412 is used to control and manage the action of the data packet transmission device
  • the communication module 413 is used to perform the steps of performing message or data processing on the data packet transmission device side.
  • the communication module 413 is configured to support the data packet transmission device to execute S301, S302, and S303 in the foregoing embodiment.
  • the data packet transmission device may further include a storage module 411 for storing program code and data of the data packet transmission device.
  • the processing module 412 may be a processor or a controller.
  • the processing module 412 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 413 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 411 may be a memory.
  • the processing module 412 is a processor 420
  • the communication module 413 is an interface circuit 430 or a transceiver
  • the storage module 411 is a memory 440
  • the data packet transmission device involved in this application may be the device shown in FIG. 27.
  • the interface circuit 430, one or more (including two) processors 420, and the memory 440 are connected to each other through a bus 410.
  • the bus 410 may be a PCI bus, an EISA bus, or the like.
  • the bus 410 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 27, but it does not mean that there is only one bus or one type of bus.
  • the memory 440 is configured to store program codes and data of the data packet transmission device.
  • the interface circuit 430 is used to support the data packet transmission device to communicate with other equipment (for example, a terminal / user plane network element), and the processor 420 is used to support the data packet transmission device to execute the program code and data stored in the memory 440 to implement the The packet transmission device performs message / data control operations.
  • the interface circuit 330 is configured to support the data packet transmission apparatus to execute S301, S302, and S303 in the foregoing embodiment. And / or other processes performed by the data packet transmission device for the techniques described herein.
  • FIG. 25 shows a possible structural diagram of a data packet transmission device involved in the foregoing embodiment.
  • the data packet transmission device may be a sending network element, or may be applied to The chip in the sending network element.
  • the data packet transmission apparatus includes a determining unit 401 and a sending unit 402.
  • the determining unit 401 is configured to support the data packet transmission device to perform steps S301 and 302 in the foregoing embodiment.
  • the sending unit 302 is configured to support the data packet transmission device to execute step S303 in the foregoing embodiment.
  • FIG. 26 shows a schematic diagram of a possible logical structure of the data packet transmission device involved in the foregoing embodiment, and the data packet transmission device may be a sending network element in the foregoing embodiment. Or it is a chip applied to the sending network element.
  • the data packet transmission device includes a processing module 412 and a communication module 413.
  • the processing module 412 is configured to control and manage the action of the data packet transmission device
  • the communication module 413 is configured to perform steps of performing message or data processing on the data packet transmission device side.
  • the communication module 413 is configured to support the data packet transmission device to execute S301, S302, and S303 in the foregoing embodiment.
  • the data packet transmission device may further include a storage module 411 for storing program code and data of the data packet transmission device.
  • the processing module 412 may be a processor or a controller.
  • the processing module 412 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 413 may be a communication interface, a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 411 may be a memory.
  • the processing module 412 is a processor 420
  • the communication module 413 is an interface circuit 430 or a transceiver
  • the storage module 411 is a memory 440
  • the data packet transmission device involved in this application may be the device shown in FIG. 27.
  • the interface circuit 430, one or more (including two) processors 420, and the memory 440 are connected to each other through a bus 410.
  • the bus 410 may be a PCI bus, an EISA bus, or the like.
  • the bus 410 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 27, but it does not mean that there is only one bus or one type of bus.
  • the memory 440 is configured to store program codes and data of the data packet transmission device.
  • the interface circuit 430 is used to support the data packet transmission device to communicate with other equipment (for example, a terminal / user plane network element), and the processor 420 is used to support the data packet transmission device to execute the program code and data stored in the memory 440 to implement the The packet transmission device performs message / data control operations.
  • the interface circuit 330 is configured to support the data packet transmission apparatus to execute S301, S302, and S303 in the foregoing embodiment. And / or other processes performed by the data packet transmission device for the techniques described herein.
  • FIG. 28 shows a possible structure diagram of another data packet transmission device involved in the foregoing embodiment.
  • the data packet transmission device may be a receiving network element or an application.
  • the data packet transmission device includes a receiving unit 501 and a processing unit 502.
  • the receiving unit 501 is configured to support the data packet transmission device to perform steps S304 and 305 in the foregoing embodiment.
  • the processing unit 502 is configured to support the data packet transmission apparatus to execute step S306 in the foregoing embodiment.
  • the data packet transmission device may adopt a logical structure diagram as shown in FIG. 26.
  • the data packet transmission device may be a receiving network element in the foregoing embodiment, or may be applied to a receiving network element. Chip.
  • the communication module 413 is configured to support the data packet transmission device to execute S304 and 305 in the foregoing embodiment.
  • the processing module 412 is configured to support the data packet transmission device to execute S306 in the foregoing embodiment.
  • the data packet transmission device shown in FIG. 28 may also use the device shown in FIG. 27.
  • the interface circuit 330 is configured to support the data packet transmission device to execute S304 and S305 in the foregoing embodiment.
  • the processor is configured to support the data packet transmission device to execute S306. And / or other processes performed by the data packet transmission device for the techniques described herein.
  • FIG. 29 shows a possible structural diagram of a device for processing a service flow involved in the foregoing embodiment.
  • the device for processing a service flow may be a core network element, or Chips used in core network elements.
  • the apparatus for processing a service flow includes: an obtaining unit 601 and a processing unit 602.
  • the obtaining unit 601 is configured to support a device for processing a service flow to perform steps S201 and S203 in the foregoing embodiment.
  • the processing unit 602 is configured to support a device that processes a service flow to perform step S202 in the foregoing embodiment.
  • the device shown in FIG. 29 is a core network element or a chip applied to the core network element
  • a possible implementation manner is that if the core network element is a user plane network element or a policy
  • the control network element, the user plane network element or the policy control network element includes: an obtaining unit 601 and a processing unit 602.
  • the apparatus for processing a service flow may further include a receiving unit 603 and a sending unit 604.
  • the receiving unit 603 is configured to support a device for processing a service flow to perform step S209 in the foregoing embodiment.
  • the sending unit 604 is configured to support the apparatus for processing a service flow to perform steps S204, S2021, and S210 in the foregoing embodiment.
  • the apparatus for processing a service flow shown in FIG. 29 may also adopt a logical structure shown in FIG. 20.
  • the processing module 212 is configured to support the apparatus for processing a service flow to perform step S202 in the above embodiment.
  • the communication module 213 is configured to support a device that processes a service flow to perform steps S201 and S203 in the foregoing embodiment.
  • the communication module 213 is further configured to support a device that processes a service flow to execute S204, S2021, and S210, S209.
  • the apparatus for processing a service flow shown in FIG. 30 may also adopt a structure shown in FIG. 21.
  • the processor 220 is configured to support the apparatus for processing a service flow to perform step S202 in the above embodiment.
  • the interface circuit 230 is configured to support a device for processing a service flow to perform steps S201 and S203 in the foregoing embodiment.
  • the interface circuit 230 is further configured to support execution of a device that processes service flows, S204, S2021, and S210, S209.
  • the receiving unit and the acquiring unit (or the unit for receiving / acquiring) in the embodiments of the present application are an interface circuit of the device and are used to receive signals from other devices.
  • the receiving unit is an interface circuit that the chip uses to receive signals from other chips or devices.
  • the above sending unit, transmission unit (or unit for sending / transmitting) is an interface circuit of the device, and is used to send signals to other devices.
  • the sending unit is an interface circuit that the chip uses to send signals to other chips or devices.
  • the processing unit and the determining unit in the embodiment of the present application are a processor of the device, and are configured to process a received signal or process a signal of itself.
  • the processing unit, the determining unit is a processor that the chip uses to process signals received by other chips or devices.
  • FIG. 30 is a schematic structural diagram of a chip 150 according to an embodiment of the present invention.
  • the chip 150 includes one or more (including two) processors 1510 and an interface circuit 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provide an operation instruction and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • a corresponding operation is performed by calling an operation instruction stored in the memory 1540 (the operation instruction may be stored in an operating system).
  • a possible implementation manner is: the communication device and the device for determining the communication capability have similar chip structures, and different devices may use different chips to implement their respective functions.
  • the processor 1510 controls operations of the communication device and the device that determines the communication capability.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provide instructions and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the interface circuit 1530, and the memory 1540 are coupled together through a bus system 1520.
  • the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are labeled as the bus system 1520 in FIG. 30.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1510, or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by using an integrated logic circuit of hardware in the processor 1510 or an instruction in the form of software.
  • the processor 1510 may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or an off-the-shelf programmable gate array (FPGA), or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • FPGA off-the-shelf programmable gate array
  • Other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540 and completes the steps of the foregoing method in combination with its hardware.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending the terminal and the session management network element in the embodiments shown in FIG. 5 to FIG. 9.
  • the processor 1510 is configured to execute steps of processing of a terminal and a session management network element in the embodiments shown in FIG. 5 to FIG. 9.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending the terminal / user plane network element and the core network network element in the embodiments shown in FIG. 10 to FIG. 13.
  • the processor 1510 is configured to execute the processing steps of the terminal / user plane network element and the core network element in the embodiments shown in FIG. 10 to FIG. 13.
  • the interface circuit 1530 is configured to perform the receiving and sending steps of the sending network element and the receiving network element in the embodiment shown in FIG. 14.
  • the processor 1510 is configured to execute the processing steps of the sending network element and the receiving network element in the embodiment shown in FIG. 14.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or may be downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • a wired e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like including one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • a computer-readable storage medium stores instructions.
  • the terminal or a chip applied to the terminal executes S103, S104, S1042, S105, S109, S110, S112, S114, and S119. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the session management network element or a chip applied to the session management network element executes S101 in the embodiment. , S102, S106, S107, S108, S111, S116, S117, and S118. And / or other processes performed by the session management network element or a chip applied in the session management network element for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the sending network element or a chip applied to the sending network element executes S301 and S302 in the embodiment. And S303. And / or other processes performed by the transmitting network element or applied to a chip in the transmitting network element for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • the receiving network element or a chip applied to the receiving network element executes S304 and S305 in the embodiment. And S306. And / or other processes performed by the receiving network element or applied to a chip in the receiving network element for the techniques described herein
  • a computer-readable storage medium stores instructions.
  • the core network element or a chip applied to the core network element executes S201 in the embodiment. , S202, S203, S204, S2021, S209, and S210. And / or other processes performed by the core network element or a chip applied in the core network element for the techniques described herein.
  • the foregoing readable storage medium may include: various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product including instructions
  • the computer program product stores instructions.
  • the terminal or a chip applied to the terminal executes S103, S104, S1042, S105, and S109 in the embodiment. , S110, S112, S114, and S119. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • the session management network element or a chip applied to the session management network element executes S101, S102, S106, S107, S108, S111, S116, S117, and S118. And / or other processes performed by the session management network element or a chip applied in the session management network element for the techniques described herein.
  • a computer program product including instructions is provided, and the computer program product stores instructions.
  • the sending network element or a chip applied to the sending network element executes S301, S302, S303. And / or other processes performed by the transmitting network element or applied to a chip in the transmitting network element for the techniques described herein.
  • a computer program product including instructions is provided.
  • the computer program product stores instructions.
  • the receiving network element or a chip applied to the receiving network element executes S304, S305, S306. And / or other processes performed by the receiving network element or applied to a chip in the receiving network element for the techniques described herein.
  • the embodiment of the present application provides a computer program product including instructions.
  • the computer program product stores instructions.
  • the core network element or a chip applied to the core network element executes the embodiment. S201, S202, S203, S204, S2021, S209, and S210.
  • a chip is provided.
  • the chip is used in a terminal.
  • the chip includes one or more (including two) processors and an interface circuit.
  • the interface circuit and the one or more (including two) processors pass The lines are interconnected, and the processor is used to execute instructions to execute S103, S104, S1042, S105, S109, S110, S112, S114, and S119 in the embodiment. And / or other terminal-performed processes for the techniques described herein.
  • a chip is provided.
  • the chip is applied to a session management network element.
  • the chip includes one or more (including two) processors and an interface circuit, and the interface circuit and the one or more (including two) processors
  • the processors are interconnected through lines, and the processors are used to run instructions to execute S101, S102, S106, S107, S108, S111, S116, S117, and S118 in the embodiment. And / or other processes performed by the session management network element for the techniques described herein.
  • a chip is provided.
  • the chip is used in a sending network element, and the chip includes one or more (including two) processors and interface circuits, and the interface circuit and the one or more (including two) processors
  • the processors are interconnected through lines, and the processors are used to run instructions to execute S301, S302, and S303 in the embodiment. And / or other processes performed by the sending network element for the techniques described herein.
  • a chip is provided.
  • the chip is used in a receiving network element.
  • the chip includes one or two or more (including two) processors and interface circuits, and the interface circuit and the one or two or more (including two) processors.
  • the processors are interconnected through lines, and the processors are used to run instructions to execute S304, S305, and S306 in the embodiment. And / or other processes performed by the receiving network element for the techniques described herein.
  • a chip is provided.
  • the chip is used in a core network element.
  • the chip includes one or more processors (including two) and an interface circuit.
  • the interface circuit and the one or two processors (including two) are interconnected through lines, and the processors are used to run instructions to execute S201, S202, S203, S204, S2021, S209, and S210 in the embodiment. And / or other processes performed by the core network elements for the techniques described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (solid state disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种处理业务流的方法、通信方法及装置,涉及通信技术领域。该方案用以解决现有技术中存在的业务流移动后并不能达到预期效果的问题,该方案包括:终端获取业务流的策略信息,所述策略信息包括:分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术;所述终端根据所述策略信息处理所述业务流。

Description

一种处理业务流的方法、通信方法及装置
本申请要求于2018年8月13日提交中国国家知识产权局、申请号为201810918635.8、发明名称为“一种处理业务流的方法、通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种处理业务流的方法、通信方法及装置。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络的领先优势,3GPP标准组制定了下一代移动通信网络架构(Next Generation System),称为第五代(5-Generation,5G)网络架构。该5G网络架构不但支持终端通过3GPP标准组定义的无线技术(如长期演进(Long Term Evolution,LTE),5G无线接入网(Radio Access Network,RAN)等)接入核心网络侧(Core Network,CN)而且支持非(non)-3GPP接入技术通过non-3GPP转换功能(Interworking Function,N3IWF)或下一代接入网关(next Generation Packet Data Gateway,ngPDG)接入核心网侧。
在5G网络中,用户设备(User Equipment,UE)和数据网络(Date Network,DN)之间存在用于提供数据传输通道的分组数据单元(Packet Data Unit,PDU)会话(session)。对于单个PDU会话可以支持多接入技术。如图1所示,PDU Session A可以支持第一接入技术,也可以支持第二接入技术,还可以同时支持第一接入技术和第二接入技术。
当一个PDU会话支持多个接入技术时,网络侧可以通过为UE配置分流策略以指示UE将业务流在不同接入技术之间的移动。如分流策略指示业务流1通过第一接入技术传输,后续业务流1通过第二接入技术传输。但是现有技术的方案无法实现对业务流的精细化处理。
发明内容
本发明实施例提供一种处理业务流的方法、通信方法及装置,用以解决现有技术中存在的业务流移动后并不能达到预期效果的问题。
为了解决上述技术问题,本申请实施例提供如下解决方案:
第一方面,本申请实施例提供一种处理业务流的方法,包括:终端获取业务流的策略信息,策略信息包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的PDU会话支持多种接入技术;终端根据策略信息处理业务流。
本申请实施例提供一种处理业务流的方法,通过终端获取业务流的策略信息,并基于业务流的策略信息处理业务流。由于终端是基于网络侧下发的分流策略、分流模式和链路条件信息中的至少一个处理业务流,这样不仅可以使得处理后的业务流在满足链路条件信息的链路上传输,且可以使得终端对业务流实现更加精细化处理。
一种可能的设计中,本申请实施例提供的方法还包括:终端向核心网网元发送的用于获取链路的链路状态信息的链路检测信息;终端接收核心网网元发送的链路状态信息。便于终端根据网络侧发送的链路状态信息判断传输业务流的链路是否满足链路条件信息,以作为判 断是否处理业务流的参考。
一种可能的设计中,终端根据策略信息处理业务流,包括:终端确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足所述链路条件信息;终端根据分流策略和分流模式中的至少一个处理业务流。在当前链路的链路状态信息不满足链路条件信息或者目标链路的链路状态信息满足链路条件信息时,处理业务流。可以保证迁移后业务流在符合要求的链路上传输。
一种可能的设计中,终端处理业务流,包括:终端将业务流在多种接入技术对应的链路上传输;或者,终端将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;或者,终端将业务流从所述多种接入技术迁移至多种接入技术中的第一接入技术或第二接入技术对应的链路上传输;或者,终端发起业务流处理流程。
一种可能的设计中,链路检测信息包括:订阅的链路状态参数和所述订阅的链路状态参数的发送条件信息中的至少一个。可以使得网络侧明确检测链路的哪些参数。从而发送终端需要的链路状态信息。
一种可能的设计中,订阅的链路状态参数包括以下一项或者多项:接入网信号质量、接入网信号强度、接入网带宽、接入网负载、回程网带宽或负载、链路时延参数、链路丢包率参数和链路抖动参数。
一种可能的设计中,链路检测信息还包括以下一项或者多项:接入技术指示、保证比特率GBR指示、非Non-GBR指示、QFI和流描述参数。
一种可能的设计中,链路检测信息还包括:订阅的链路状态参数的发送频率信息。通过设置发送频率信息,这样可以使得网络侧根据频率信息定期上报订阅的链路状态参数。
一种可能的设计中,链路条件信息包括:与接入相关的条件信息和与接入无关的条件信息中的至少一项。
一种可能的设计中,与接入相关的条件信息包括以下一项或者多项:接入网信号强度阈值、接入网信号质量阈值、回程带宽阈值或负载阈值、接入网带宽阈值和接入网负载阈值;与接入无关的条件信息包括以下一项或者多项:链路时延阈值、链路丢包率阈值和链路抖动阈值中的至少一个。
一种可能的设计中,终端获取业务流的策略信息,包括:终端从非接入层NAS传输消息中获取策略控制网元发送的所述业务流的分流模式和用于传输所述业务流的链路条件信息中的至少一个;终端从会话管理网元发送的会话管理响应消息中获取所述业务流的分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
一种可能的设计中,终端根据所述策略信息处理所述业务流,包括:终端根据策略信息将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;终端确定在第一接入技术上发送的业务流的数据包传输结束;终端向用户面功能网元发送第一指示,该第一指示用于指示在第一接入技术上传输的业务流的数据包传输结束。
一种可能的设计中,本申请实施例提供的方法还包括:终端向核心网网元发送指示信息,指示信息用于指示由终端对业务流进行处理。
一种可能的设计中,分流模式包括以下一项或者多项:接入技术优先指示,用于指示优先通过接入技术优先指示关联的接入技术传输业务流;最优链路分流指示,用于指示优先通过最优链路传输所述业务流;最优链路为链路状态优于其他链路的链路;基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输业务流;接入技术与分流比例指示,用于 指示按照接入技术对应的分流比例传输业务流;冗余传输指示,用于表示业务流中的相同数据包同时通过不同接入技术传输。
一种可能的设计中,本申请实施例提供的方法还包括:终端接收网络侧发送的链路状态信息,或链路状态参数与接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数中的至少一个。
一种可能的设计中,本申请实施例提供的方法还包括:终端接收接入网设备发送的链路状态信息为接入网设备的推荐带宽值;或者终端接收会话管理网元或用户面网元发送的链路状态信息为接入网设备的推荐带宽值。
一种可能的设计中,终端根据策略信息处理所述业务流,包括:终端根据策略信息和可用带宽值处理业务流。
第二方面,本申请实施例提供的一种通信方法,包括:会话管理网元获取业务流的策略信息,包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的PDU会话支持多种接入技术;会话管理网元将策略信息发送给终端。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元接收终端发送的链路检测信息,该链路检测信息用于获取传输业务流的链路的链路状态信息。便于网络侧明确获取哪些链路检测参数。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向用户面网元发送链路检测信息;会话管理网元接收用户面网元发送的链路状态信息;会话管理网元将链路状态信息发送给终端。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元将链路状态参数与接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数中的至少一个发送给终端。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向用户面网元发送第一指示,该第一指示用于指示需要发送链路状态信息的链路。
一种可能的设计中,第一指示包括:服务质量流的标识QFI、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向接入网设备发送QFI与通知指示,QFI与通知指示用于指示当接入网设备无法满足QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元接收接入网设备发送的QFI与接入网设备的推荐带宽值;会话管理网元向终端发送QFI与接入网设备的推荐带宽值。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元接收终端发送的会话管理请求消息,该会话管理请求消息中包括终端请求传输业务流的接入技术指示。
第三方面,本申请实施例提供一种处理业务流的方法,包括:会话管理网元获取业务流的策略信息,该策略信息包括分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的分组数据单元PDU会话支持多种接入技术;会话管理网元根据策略信息,向终端发送至少一个接入技术指示,接入技术指示用于指示将业务流迁移到接入技术指示指示的接入技术对应的链路上。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向终端或者用户面 网元发送链路检测信息,链路检测信息用于获取链路的链路状态信息;会话管理网元接收终端或者用户面网元发送的链路状态信息。
一种可能的设计中,会话管理网元根据策略信息,向终端发送至少一个接入技术指示,包括:会话管理网元确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足链路条件信息,会话管理网元根据分流策略和分流模式中的至少一个,向终端发送至少一个接入技术指示。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元根据策略信息生成链路检测信息。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向终端或者用户面网元发送用于指示需要发送链路状态信息的链路的第一指示。
一种可能的设计中,第一指示包括:服务质量流的标识QFI、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元接收终端发送的第一指示信息,该第一指示信息用于指示由核心网对业务流进行处理。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元向接入网设备发送QFI与通知指示,QFI与通知指示用于指示当接入网侧无法满足QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
一种可能的设计中,本申请实施例提供的方法还包括:会话管理网元接收接入网设备发送的QFI与接入网设备的推荐带宽值;会话管理网元向终端发送QFI与接入网设备的推荐带宽值。
一种可能的设计中,会话管理网元获取业务流的策略信息,包括:会话管理单元在会话管理流程从策略控制网元处获取业务流的策略信息。或者会话管理网元在终端完成注册时,从策略控制网元处获取业务流的策略信息。
第四方面,本申请实施例提供一种处理业务流的方法,包括:策略控制网元获取业务流的策略信息,该策略信息包括分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的分组数据单元PDU会话支持多种接入技术。策略控制网元根据策略信息,向会话管理网元发送业务流对应的更新后的至少一个接入技术指示,至少一个接入技术指示用于指示将所述业务流迁移到所述接入技术指示指示的接入技术对应的链路上。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
一种可能的设计,本申请实施例提供的方法还包括:策略控制网元向终端发送链路检测信息。或者向会话管理网元发送链路检测信息。
一种可能的设计中,本申请实施例提供的方法还包括:策略控制网元接收会话管理网元发送的链路状态信息。
一种可能的设计中,策略控制网元根据策略信息,向会话管理网元发送业务流对应的更新后的至少一个接入技术指示,包括:策略控制网元根据获取的业务流的链路状态信息,确定当前链路的链路状态信息不满足链路条件信息,或者目标链路的链路状态信息满足链路条件信息,则向会话管理网元发送业务流对应的更新后的至少一个接入技术指示。
一种可能的设计中,本申请实施例提供的方法还包括:策略控制网元在接收到会话管理网元发送的多接入会话指示后,向会话管理网元发送业务流的策略信息。
一种可能的设计中,策略控制网元接收会话管理网元发送的由策略控制网元处理业务流的指示信息。
第五方面,本申请实施例提供一种处理业务流的方法,包括:用户面网元获取业务流的策略信息,该策略信息包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个。用户面网元根据策略信息,处理业务流。
一种可能的设计中,本申请实施例提供的方法还包括:用户面网元从会话管理网元处获取链路检测信息。
一种可能的设计,本申请实施例提供的方法还包括:用户面网元向终端发送用户面网元根据链路检测信息获取到的链路状态信息。
一种可能的设计中,本申请实施例提供的方法还包括:用户面网元接收终端基于链路检测信息获取到的当前链路或者目标链路的链路状态信息。
一种可能的设计中,用户面网元根据策略信息,处理业务流,包括:用户面网元确定当前链路的链路状态信息不满足或者目标链路的链路状态信息满足链路条件信息,则根据分流策略和分流模式中的至少一个,处理业务流。
一种可能的设计中,用户面网元确定当前链路的链路状态信息不满足或者目标链路的链路状态信息满足链路条件信息,则根据分流策略和分流模式中的至少一个处理业务流,包括:用户面网元根据分流策略和分流模式中的至少一个,确定业务流所使用的接入技术。用户面网元将业务流在确定的接入技术上传输。
一种可能的设计中,用户面网元将业务流在确定的接入技术上传输,包括:用户面网元将业务流在多种接入技术对应的链路上传输。或者,用户面网元将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输。或者,核心网网元将业务流从多种接入技术迁移至多种接入技术中的第一接入技术或第二接入技术对应的链路上传输。
一种可能的设计中,用户面网元接收会话管理网元发送的指示信息,该指示信息用于指示由用户面网元处理业务流。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
第六方面,本申请实施例提供一种通信方法,包括:终端接收会话管理网元/用户面功能网元发送的链路检测信息,该链路检测信息用于获取链路的链路状态信息。业务流所在的PDU会话支持多个接入技术;终端向核心网网元发送链路状态信息。
示例性的,终端可以发送当前链路的链路状态信息,也可以发送目标链路的链路状态信息。
一种可能的设计中,本申请实施例提供的方法还包括:终端接收会话管理网元发送的第一指示,该第一指示用于指示需要发送链路状态信息的链路。
一种可能的设计中,本申请实施例提供的方法还包括:终端接收会话管理网元发送的业务流对应的接入技术指示,该接入技术指示用于指示将业务流迁移到接入技术指示指示的接入技术对应的链路;终端根据接入技术指示处理业务流。
一种可能的设计中,本申请实施例提供的方法还包括:终端接收接入网设备发送的接入 网设备的推荐带宽值;或者终端接收会话管理网元或用户面网元发送的接入网设备的推荐带宽值。
一种可能的设计中,本申请实施例提供的方法还包括:终端基于用户面功能网元发送的链路状态信息,根据分流策略和分流模式中的至少一个处理业务流。具体的处理方法,可以参考上述实施例中的描述,此处不再赘述。
需要说明的是,上述第三方面至第六方面任一方面所描述的方法中,当终端将业务流从一个接入技术迁移到另一个接入技术,为了使得用户面网元确定第一接入技术上的业务流传输结束,都可以采用第七方面或第七方面的任一种方式所描述的方法。
关于链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
第七方面,本申请实施例提供一种数据包处理方法,包括:发送网元确定需要将业务流从多个接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;发送网元确定在第一接入技术对应的链路上发送的业务流的数据包传输结束;发送网元向接收网元发送的用于指示在所述第一接入技术对应的链路上传输的所述业务流的数据包传输结束的第一指示。
一种可能的设计中,发送网元向接收网元发送第一指示,包括:发送网元在第一接入技术对应的链路上发送的最后一个包中携带所述第一指示。
一种可能的设计中,最后一个包为空包或者为所述业务流的最后一个数据包。
一种可能的设计中,第一指示携带在所述最后一个数据包的分组数据汇聚协议PDCP包头和业务数据应用协议SDAP包头的至少一个中。
一种可能的设计中,发送网元将所述第一指示信息携带在数据包的GTP-U数据包头中。
一种可能的设计中,发送网元向接收网元发送第一指示,包括:发送网元通过最后一个包的包头携带第一指示。
一种可能的设计中,最后一个包的包头包括以下一项或者多项:IP包头、以太包头、用户数据报协议UDP包头、传输控制协议TCP包头、PDCP包头和SDAP包头。
第八方面,本申请实施例提供一种数据包处理方法,包括:接收网元从业务流支持的多个接入技术中的第一接入技术对应的链路或/和第二接入技术对应的链路接收所述业务流的数据包;接收网元接收发送网元发送的第一指示,第一指示用于指示在第一接入技术对应的链路上传输的所述业务流的数据包传输结束;接收网元根据第一指示,将通过第一接入技术对应的链路和所述第二接入技术对应的链路接收的业务流的数据包进行排序。
一种可能的设计中,本申请实施例提供的方法还包括:接收网元接收所述第一接入技术对应的链路上发送的最后一个包中携带所述第一指示。
一种可能的设计中,最后一个包为空包或者为业务流的最后一个数据包.
一种可能的设计中,接收网元基于空包或者业务流的最后一个数据包中的流描述参数确定第一指示对应的业务流。
一种可能的设计中,接收网元根据第一指示,将通过第一接入技术对应的链路和第二接入技术对应的链路接收的业务流的数据包进行排序,包括:接收网元接收到第一指示后再处理通过第二接入技术对应的链路接收的业务流的数据包。
第九方面,本申请实施例提供一种处理业务流的装置,该一种处理业务流的装置可以实现第一方面或第一方面的任意一种可能的实现方式中描述的一种处理业务流的方法,因此也 可以实现第一方面或第一方面任意一种可能的实现方式中的有益效果。该一种处理业务流的装置可以为终端,也可以为可以支持终端实现第一方面或第一方面的任意一种可能的实现方式中的一种处理业务流的装置。例如应用于终端中的芯片。该通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
该一种处理业务流的装置为终端或为应用于终端中的芯片,该一种处理业务流的装置包括:获取单元,用于获取业务流的策略信息,策略信息包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的PDU会话支持多种接入技术。处理单元,用于根据策略信息处理业务流。
一种可能的设计中,本申请实施例提供的装置还包括:发送单元,用于向核心网网元发送的用于获取链路的链路状态信息的链路检测信息。接收单元,用于接收核心网网元发送的链路状态信息。
一种可能的设计中,本申请实施例提供的装置还包括:确定单元,用于确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足所述链路条件信息;处理单元,具体用于在确定单元确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足所述链路条件信息时,根据分流策略和分流模式中的至少一个处理业务流。
一种可能的设计中,处理单元,具有用于将业务流在多种接入技术对应的链路上传输;或者,处理单元,具有用于将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;或者,处理单元,具有用于将业务流从所述多种接入技术迁移至多种接入技术中的第一接入技术或第二接入技术对应的链路上传输;或者,处理单元,具有用于发起业务流处理流程。
一种可能的设计中,链路检测信息包括:订阅的链路状态参数和所述订阅的链路状态参数的发送条件信息中的至少一个。
一种可能的设计中,订阅的链路状态参数包括以下一项或者多项:接入网信号质量、接入网信号强度、接入网带宽、接入网负载、回程网带宽或负载、链路时延参数、链路丢包率参数和链路抖动参数。
一种可能的设计中,链路检测信息还包括以下一项或者多项:接入技术指示、保证比特率GBR指示、非Non-GBR指示、QFI和流描述参数。
一种可能的设计中,链路检测信息还包括:订阅的链路状态参数的发送频率信息。
一种可能的设计中,链路条件信息包括:与接入相关的条件信息和与接入无关的条件信息中的至少一项。
一种可能的设计中,与接入相关的条件信息包括以下一项或者多项:接入网信号强度阈值、接入网信号质量阈值、回程带宽阈值或负载阈值、接入网带宽阈值和接入网负载阈值;与接入无关的条件信息包括以下一项或者多项:链路时延阈值、链路丢包率阈值和链路抖动阈值中的至少一个。
一种可能的设计中,获取单元,具体用于从非接入层NAS传输消息中获取策略控制网元发送的所述业务流的分流模式和用于传输所述业务流的链路条件信息中的至少一个。或者获取单元,具有用于从会话管理网元发送的会话管理响应消息中获取所述业务流的分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
一种可能的设计中,处理单元,具体用于根据策略信息将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;确定单元,用于确定在第一 接入技术上发送的业务流的数据包传输结束;发送单元,用于在确定单元确定在第一接入技术上发送的业务流的数据包传输结束时,向用户面功能网元发送第一指示,该第一指示用于指示在第一接入技术上传输的业务流的数据包传输结束。
一种可能的设计中,发送单元,还用于向核心网网元发送指示信息,指示信息用于指示由终端对业务流进行处理。
一种可能的设计中,分流模式包括以下一项或者多项:接入技术优先指示,用于指示优先通过接入技术优先指示关联的接入技术传输业务流;最优链路分流指示,用于指示优先通过最优链路传输所述业务流;最优链路为链路状态优于其他链路的链路;基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输业务流;接入技术与分流比例指示,用于指示按照接入技术对应的分流比例传输业务流;冗余传输指示,用于表示业务流中的相同数据包同时通过不同接入技术传输。
一种可能的设计中,本申请实施例提供的装置,还包括:接收单元,用于接收网络侧发送的链路状态信息,或链路状态参数与接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数中的至少一个。
一种可能的设计中,接收单元还用于接收接入网设备发送的链路状态信息为接入网设备的推荐带宽值;或者接收单元还用于接收会话管理网元或用户面网元发送的链路状态信息为接入网设备的推荐带宽值。
一种可能的设计中,处理单元,还用于根据策略信息和可用带宽值处理业务流。
一种可能的实现方式,本申请实施例还提供的一种处理业务流的装置,该一种处理业务流的装置可以为终端或者为应用于终端中的芯片,该一种处理业务流的装置包括:处理器和接口电路,其中,接口电路用于支持该一种处理业务流的装置执行第一方面至第一方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种处理业务流的装置执行第一方面至第一方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第一方面至第一方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种处理业务流的装置的接口电路和处理器相互耦合。
可选的,该一种处理业务流的装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十方面,本申请实施例提供一种通信装置,该一种通信装置可以实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信装置,因此也可以实现第二方面或第二方面任意一种可能的实现方式中的有益效果。该一种通信装置可以为会话管理网元,也可以为可以支持会话管理网元实现第二方面或第二方面的任意一种可能的实现方式中的一种通信方法的装置。例如应用于会话管理网元中的芯片。该一种通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种通信装置,包括:获取单元,用于获取业务流的策略信息,包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的PDU会话支持多种接入技术;发送单元,用于将策略信息发送给终端。
一种可能的设计中,本申请实施例提供的一种通信装置还包括:接收单元,用于接收终端发送的链路检测信息,该链路检测信息用于获取传输业务流的链路的链路状态信息。
一种可能的设计中,发送单元,还用于向用户面网元发送链路检测信息;接收单元,还 用于接收用户面网元发送的链路状态信息;发送单元,还用于将链路状态信息发送给终端。
一种可能的设计中,发送单元,还用于将链路状态参数与接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数中的至少一个发送给终端。
一种可能的设计中,发送单元,还用于向用户面网元发送第一指示,该第一指示用于指示需要发送链路状态信息的链路。
一种可能的设计中,第一指示包括:服务质量流的标识QFI、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
一种可能的设计中,发送单元,还用于向接入网设备发送QFI与通知指示,QFI与通知指示用于指示当接入网设备无法满足QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
一种可能的设计中,接收单元,还用于接收接入网设备发送的QFI与接入网设备的推荐带宽值;发送单元,还用于向终端发送QFI与接入网设备的推荐带宽值。
一种可能的设计中,接收单元,还用于接收终端发送的会话管理请求消息,该会话管理请求消息中包括终端请求传输业务流的接入技术指示。
一种可能的实现方式,本申请实施例还提供的一种通信装置,该一种通信装置可以为会话管理网元或者为应用于会话管理网元中的芯片,该一种通信装置包括:处理器和接口电路,其中,接口电路用于支持该一种通信装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种通信装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第二方面至第二方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种通信装置的接口电路和处理器相互耦合。
可选的,该一种通信装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十一方面,本申请实施例提供一种处理业务流的装置,该一种处理业务流的装置可以实现第三方面或第三方面的任意一种可能的实现方式中描述的一种处理业务流的方法,因此也可以实现第三方面或第三方面任意一种可能的实现方式中的有益效果。该一种处理业务流的装置可以为会话管理网元,也可以为可以支持会话管理网元实现第三方面或第三方面的任意一种可能的实现方式中的一种处理业务流的方法的装置。例如应用于会话管理网元中的芯片。该一种处理业务流的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种处理业务流的装置,包括:获取单元,获取业务流的策略信息,该策略信息包括分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的分组数据单元PDU会话支持多种接入技术。发送单元,用于根据策略信息,向终端发送至少一个接入技术指示,接入技术指示用于指示将业务流迁移到接入技术指示指示的接入技术对应的链路上。
一种可能的设计中,发送单元,还用于向终端或者用户面网元发送链路检测信息,链路检测信息用于获取链路的链路状态信息;会话管理网元接收终端或者用户面网元发送的链路状态信息。
一种可能的设计中,发送单元,具体用于在确定单元确定目标链路的链路状态信息满足 或当前链路的链路状态信息不满足链路条件信息,根据分流策略和分流模式中的至少一个,向终端发送至少一个接入技术指示。
一种可能的设计中,本申请实施例提供的装置还包括:生成单元,用于根据策略信息生成链路检测信息。
一种可能的设计中,发送单元,还用于向终端或者用户面网元发送用于指示需要发送链路状态信息的链路的第一指示。
一种可能的设计中,第一指示包括:服务质量流的标识QFI、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
一种可能的设计中,本申请实施例提供的装置,还包括:接收单元,用于接收终端发送的第一指示信息,该第一指示信息用于指示由核心网对业务流进行处理。
一种可能的设计中,发送单元,还用于向接入网设备发送QFI与通知指示,QFI与通知指示用于指示当接入网侧无法满足QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
一种可能的设计中,接收单元,还用于接收接入网设备发送的QFI与接入网设备的推荐带宽值;会话管理网元向终端发送QFI与接入网设备的推荐带宽值。
一种可能的设计中,获取单元,还用于在会话管理流程从策略控制网元处获取业务流的策略信息。或者获取单元,还用于终端完成注册时,从策略控制网元处获取业务流的策略信息。
一种可能的实现方式,本申请实施例还提供的一种处理业务流的装置,该一种处理业务流的装置可以为会话管理网元或者为应用于会话管理网元中的芯片,该一种处理业务流的装置包括:处理器和接口电路,其中,接口电路用于支持该一种处理业务流的装置执行第三方面至第三方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种处理业务流的装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第三方面至第三方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种处理业务流的装置的接口电路和处理器相互耦合。
可选的,该一种处理业务流的装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十二方面,本申请实施例提供一种处理业务流的装置,该一种处理业务流的装置可以实现第四方面或第四方面的任意一种可能的实现方式中描述的一种处理业务流的方法,因此也可以实现第四方面或第四方面任意一种可能的实现方式中的有益效果。该一种处理业务流的装置可以为策略控制网元,也可以为可以支持策略控制网元实现第四方面或第四方面的任意一种可能的实现方式中的一种处理业务流的方法的装置。例如应用于策略控制网元中的芯片。该一种处理业务流的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种处理业务流的方法,包括:获取单元,用于获取业务流的策略信息,该策略信息包括分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,业务流所在的分组 数据单元PDU会话支持多种接入技术。发送单元,用于根据策略信息,向会话管理网元发送业务流对应的更新后的至少一个接入技术指示,至少一个接入技术指示用于指示将所述业务流迁移到所述接入技术指示指示的接入技术对应的链路上。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
一种可能的设计,本申请实施例提供的发送单元,还用于向终端发送链路检测信息。或者向会话管理网元发送链路检测信息。
一种可能的设计中,接收单元,还用于接收会话管理网元发送的链路状态信息。
一种可能的设计中,获取单元,还用于根据获取的业务流的链路状态信息,确定当前链路的链路状态信息不满足链路条件信息,或者目标链路的链路状态信息满足链路条件信息,则发送单元,用于向会话管理网元发送业务流对应的更新后的至少一个接入技术指示。
一种可能的设计中,本申请实施例提供的发送单元,还用于在接收单元到会话管理网元发送的多接入会话指示后,向会话管理网元发送业务流的策略信息。
一种可能的设计中,接收单元,还用于接收会话管理网元发送的由策略控制网元处理业务流的指示信息。
一种可能的实现方式,本申请实施例还提供的一种处理业务流的装置,该一种处理业务流的装置可以为策略控制网元或者为应用于策略控制网元中的芯片,该一种处理业务流的装置包括:处理器和接口电路,其中,接口电路用于支持该一种处理业务流的装置执行第四方面至第四方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种处理业务流的装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第四方面至第四方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种处理业务流的装置的接口电路和处理器相互耦合。
可选的,该一种处理业务流的装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十三方面,本申请实施例提供一种处理业务流的装置,该一种处理业务流的装置可以实现第五方面或第五方面的任意一种可能的实现方式中描述的一种处理业务流的方法,因此也可以实现第五方面或第五方面任意一种可能的实现方式中的有益效果。该一种处理业务流的装置可以为用户面网元,也可以为可以支持用户面网元实现第五方面或第五方面的任意一种可能的实现方式中的一种处理业务流的方法的装置。例如应用于用户面网元中的芯片。该一种处理业务流的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
本申请实施例提供一种处理业务流的装置,包括:获取单元,用于获取业务流的策略信息,该策略信息包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个。处理单元,用于根据策略信息,处理业务流。
一种可能的设计中,获取单元,还用于从会话管理网元处获取链路检测信息。
一种可能的设计,本申请实施例提供的装置还包括:发送单元,用于向终端发送用户面网元根据链路检测信息获取到的链路状态信息。
一种可能的设计中,本申请实施例提供的装置还包括:接收单元,用于接收终端基于链路检测信息获取到的当前链路或者目标链路的链路状态信息。
一种可能的设计中,处理单元,具体用于在确定单元确定当前链路的链路状态信息不满足或者目标链路的链路状态信息满足链路条件信息,则根据分流策略和分流模式中的至少一个,处理业务流。
一种可能的设计中,确定单元,还用于根据分流策略和分流模式中的至少一个,确定业务流所使用的接入技术。处理单元,具体用于将业务流在确定的接入技术上传输。
一种可能的设计中,处理单元,具体用于将业务流在多种接入技术对应的链路上传输。或者,处理单元,具体用于将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输。或者,处理单元,具体用于将业务流从多种接入技术迁移至多种接入技术中的第一接入技术或第二接入技术对应的链路上传输。
一种可能的设计中,接收单元,用于接收会话管理网元发送的指示信息,该指示信息用于指示由用户面网元处理业务流。
关于链路检测信息、分流模式、链路条件信息以及链路检测信息的具体内容可以参考第一方面及第一方面的各种可能的实现方式中的描述,此处不再赘述。
一种可能的实现方式,本申请实施例还提供的一种处理业务流的装置,该一种处理业务流的装置可以为用户面网元或者为应用于用户面网元中的芯片,该一种处理业务流的装置包括:处理器和接口电路,其中,接口电路用于支持该一种处理业务流的装置执行第三方面至第五方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种处理业务流的装置执行第五方面至第五方面的任意一种可能的实现方式中所描述的在该一种处理业务流的装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第五方面至第五方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种处理业务流的装置的接口电路和处理器相互耦合。
可选的,该一种处理业务流的装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十四方面,本申请实施例提供一种通信装置,该一种通信可以实现第六方面或第六方面的任意一种可能的实现方式中描述的一通信方法,因此也可以实现第六方面或第六方面任意一种可能的实现方式中的有益效果。该一种通信装置可以为装置,也可以为可以支持六实现第七方面或第七方面的任意一种可能的实现方式中的通信方法的装置。例如应用于终端中的芯片。该一种通信装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
本申请实施例提供一种通信装置,包括:接收单元,用于接收会话管理网元/用户面功能网元发送的链路检测信息,该链路检测信息用于获取链路的链路状态信息。业务流所在的PDU会话支持多个接入技术;发送单元,用于向核心网网元发送链路状态信息。
示例性的,终端可以发送当前链路的链路状态信息,也可以发送目标链路的链路状态信息。
一种可能的设计中,接收单元,用于接收会话管理网元发送的第一指示,该第一指示用于指示需要发送链路状态信息的链路。
一种可能的设计中,接收单元,接收会话管理网元发送的业务流对应的接入技术指示,该接入技术指示用于指示将业务流迁移到接入技术指示指示的接入技术对应的链路,本申请实施例提供的装置还包括:处理单元,用于根据接入技术指示处理业务流。
一种可能的设计中,接收单元,接收接入网设备发送的接入网设备的推荐带宽值。或者 接收单元,接收会话管理网元或用户面网元发送的接入网设备的推荐带宽值。
一种可能的设计中,处理单元,具体用于基于用户面功能网元发送的链路状态信息,根据分流策略和分流模式中的至少一个处理业务流。具体的处理方法,可以参考上述实施例中的描述,此处不再赘述。
一种可能的实现方式,本申请实施例还提供的一种通信装置,该一种通信装置可以为终端或者为应用于终端中的芯片,该一种通信装置包括:处理器和接口电路,其中,接口电路用于支持该一种通信装置执行第六方面至第六方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种通信装置执行第六方面至第六方面的任意一种可能的实现方式中所描述的在该一种通信装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第六方面至第六方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种通信装置的接口电路和处理器相互耦合。
可选的,该一种通信装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十五方面,本申请实施例提供一种数据包处理装置,该一种数据包处理装置可以实现第五方面或第五方面的任意一种可能的实现方式中描述的一种数据包处理方法,因此也可以实现第七方面或第七方面任意一种可能的实现方式中的有益效果。该一种数据包处理装置可以为发送网元,也可以为可以支持发送网元实现第七方面或第七方面的任意一种可能的实现方式中的一种数据包处理方法的装置。例如应用于发送网元中的芯片。该一种数据包处理装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种数据包处理装置,包括:确定单元,用于确定需要将业务流从多个接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;以及用于确定在第一接入技术对应的链路上发送的业务流的数据包传输结束;发送单元,用于向接收网元发送的用于指示在所述第一接入技术对应的链路上传输的所述业务流的数据包传输结束的第一指示。
一种可能的设计中,发送单元,具体用于在第一接入技术对应的链路上发送的最后一个包中携带所述第一指示。
一种可能的设计中,最后一个包为空包或者为所述业务流的最后一个数据包。
一种可能的设计中,第一指示携带在所述最后一个数据包的分组数据汇聚协议PDCP包头和业务数据应用协议SDAP包头的至少一个中。
一种可能的设计中,发送单元,用于将所述第一指示信息携带在数据包的GTP-U数据包头中。
一种可能的设计中,发送单元,用于通过最后一个包的包头携带第一指示。
一种可能的设计中,最后一个包的包头包括以下一项或者多项:IP包头、以太包头、用户数据报协议UDP包头、传输控制协议TCP包头、PDCP包头和SDAP包头。
一种可能的实现方式,本申请实施例还提供的一种数据包处理装置,该一种数据包处理装置可以为发送网元或者为应用于发送网元中的芯片,该一种数据包处理装置包括:处理器和接口电路,其中,接口电路用于支持该一种数据包处理装置执行第七方面至第七方面的任意一种可能的实现方式中所描述的在该一种数据包处理装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种数据包处理装置执行第七方面至第七方面的任意一种可能的实现方式中所描述的在该一种数据包处理装置侧进行消息/数据处理的步骤。具体相应的步骤可 以参考第七方面至第七方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种数据包处理装置的接口电路和处理器相互耦合。
可选的,该一种数据包处理装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十六方面,本申请实施例提供一种数据包处理装置,该一种数据包处理装置可以实现第八方面或第八方面的任意一种可能的实现方式中描述的一种数据包处理方法,因此也可以实现第八方面或第八方面任意一种可能的实现方式中的有益效果。该一种数据包处理装置可以为接收网元,也可以为可以支持接收网元实现第八方面或第八方面的任意一种可能的实现方式中的一种数据包处理方法的装置。例如应用于接收网元中的芯片。该一种数据包处理装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种数据包处理装置,接收单元,用于接收网元从业务流支持的多个接入技术中的第一接入技术对应的链路或/和第二接入技术对应的链路接收所述业务流的数据包,以及用于接收发送网元发送的第一指示,第一指示用于指示在第一接入技术对应的链路上传输的所述业务流的数据包传输结束;处理单元,用于根据第一指示,将通过第一接入技术对应的链路和所述第二接入技术对应的链路接收的业务流的数据包进行排序。
一种可能的设计中,接收单元,还用于接收所述第一接入技术对应的链路上发送的最后一个包中携带所述第一指示。
一种可能的设计中,最后一个包为空包或者为业务流的最后一个数据包.
一种可能的设计中,确定单元,用于基于空包或者业务流的最后一个数据包中的流描述参数确定第一指示对应的业务流。
一种可能的设计中,处理单元,用于接收到第一指示后再处理通过第二接入技术对应的链路接收的业务流的数据包。
一种可能的实现方式,本申请实施例还提供的一种数据包处理装置,该一种数据包处理装置可以为接收网元或者为应用于接收网元中的芯片,该一种数据包处理装置包括:处理器和接口电路,其中,接口电路用于支持该一种数据包处理装置执行第八方面至第八方面的任意一种可能的实现方式中所描述的在该一种数据包处理装置侧进行消息/数据接收和发送的步骤。处理器用于支持该一种数据包处理装置执行第八方面至第八方面的任意一种可能的实现方式中所描述的在该一种数据包处理装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第八方面至第八方面的任意一种可能的实现方式中的描述,在此不再赘述。
可选的,该一种数据包处理装置的接口电路和处理器相互耦合。
可选的,该一种数据包处理装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第十八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。
第十九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式 中所描述的一种处理业务流的方法。
第二十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第四方面或第四方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第二十一方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第五方面或第五方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第二十二方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第六方面或第六方面的各种可能的实现方式中所描述的一种通信方法。
第二十三方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第七方面或第七方面的各种可能的实现方式中所描述的一种数据包处理方法。
第二十四方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第八方面或第八方面的各种可能的实现方式中所描述的一种数据包处理方法。
第二十五方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第二十六方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。
第二十七方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第三方面或第三方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第二十八方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第四方面或第四方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第二十九方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第五方面或第五方面的各种可能的实现方式中所描述的一种处理业务流的方法。
第三十方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第六方面或第六方面的各种可能的实现方式中所描述的一种通信方法。
第三十一方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第七方面或第七方面的各种可能的实现方式中所描述的一种数据包处理方法。
第三十二方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第八方面或第八方面的各种可能的实现方式中所描述的一种数据包处理方法。
第三十三方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第一方面或第一方面的各种可能的实现方式中所描述的一种处理业务流的方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十四方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第二方面或第二方面的各种可能的实现方式中所描述的一种通信方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十五方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第三方面或第三方面的各种可能的实现方式中所描述的一种处理业务流的方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十六方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第四方面或第四方面的各种可能的实现方式中所描述的一种处理业务流的方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十七方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第五方面或第五方面的各种可能的实现方式中所描述的一种处理业务流的方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十八方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第六方面或第六方面的各种可能的实现方式中所描述的一种通信方法。接口电路用于与所述芯片之外的其它模块进行通信。
第三十九方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第七方面或第七方面的各种可能的实现方式中所描述的一种数据包处理方法。接口电路用于与所述芯片之外的其它模块进行通信。
第四十方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第八方面或第八方面的各种可能的实现方式中所描述的一种数据包处理方法。接口电路用于与所述芯片之外的其它模块进行通信。
具体的,本申请实施例中提供的芯片还包括存储器,用于存储计算机程序或指令。
第四十一方面,本申请实施例一种通信系统,该通信系统包括第九方面或第九方面的各种可能的实现方式提供的一种处理业务流的装置,以及第十方面或第十方面的各种可能的实现方式所提供的一种通信装置。
第四十二方面,本申请实施例一种通信系统,该通信系统包括第十一方面或第十一方面的各种可能的实现方式提供的一种处理业务流的装置,以及第十四方面及第十四方面的任一可能的设计中提供通信装置。可选的,第四十二方面所提供的通信系统还包括:与该处理业务流的装置交互的策略控制网元、用户面网元。
第四十三方面,本申请实施例一种通信系统,该通信系统包括第十二方面或第十二方面的各种可能的实现方式提供的一种处理业务流的装置,以及第十四方面及第十四方面的任一可能的设计中提供通信装置。可选的,第四十三方面所提供的通信系统还包括:与该处理业务流的装置交互的会话管理网元、用户面网元。
第四十四方面,本申请实施例一种通信系统,该通信系统包括第十三方面或第十三方面的各种可能的实现方式提供的一种处理业务流的装置,以及第十四方面及第十四方面的任一 可能的设计中提供通信装置。可选的,第四十四方面所提供的通信系统还包括:与该处理业务流的装置交互的会话管理网元。
附图说明
图1为一种多接入PDU会话示意图;
图2为本申请实施例提供的一种通信系统示意图;
图3为本申请实施例提供的一种5G网络架构示意图;
图4为本申请实施例提供的一种终端通过多个接入技术接入网络的示意图;
图5-图13为本申请实施例提供的一种处理业务流的方法和通信方法的流程示意图;
图14为本申请实施例提供的一种数据包处理方法流程示意图;
图15为本申请实施例提供的一种终端处理业务流的具体实施例示意图;
图16为本申请实施例提供的一种会话管理网元处理业务流的具体实施例示意图;
图17为本申请实施例提供的一种策略控制网元处理业务流的具体实施例示意图;
图18为本申请实施例提供的一种用户面网元处理业务流的具体实施例示意图;
图19为本申请实施例提供的一种处理业务流的装置的结构示意图一;
图20为本申请实施例提供的一种处理业务流的装置的结构示意图二;
图21为本申请实施例提供的一种处理业务流的装置的结构示意图三;
图22为本申请实施例提供的一种通信装置的结构示意图一;
图23为本申请实施例提供的一种通信装置的结构示意图二;
图24为本申请实施例提供的一种通信装置的结构示意图三;
图25为本申请实施例提供的一种数据包传输装置的结构示意图一;
图26为本申请实施例提供的一种数据包传输装置的结构示意图二;
图27为本申请实施例提供的一种数据包传输装置的结构示意图三;
图28为本申请实施例提供的一种数据包传输装置的结构示意图三;
图29为本申请实施例提供的一种处理业务流的装置的结构示意图四;
图30为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以 理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,图2示出了本申请实施例提供的一种通信系统示意图,该通信系统包括:核心网、接入网和一个或者多个终端104。一个或者多个终端104(图2中仅示出了一个终端)通过接入网接入核心网。其中核心网包括如下网元:会话管理网元101、与会话管理网元101连接的一个或者多个用户面网元102(图2中仅示出了一个用户面网元)、与会话管理网元101连接的策略控制网元103。
其中,接入网可以为采用多种接入技术的接入网设备。
当终端104通过不同的接入技术接入无线网络时,终端104可以通过不同的接入网设备连接核心网设备。
可选的,本申请实施例中一个或者多个终端104中存在至少一个终端与用户面网元102之间具有会话,且该会话可以支持多个接入技术。例如,以多个接入技术为第一接入技术和第二接入技术为例,该会话可以通过第一接入技术接入,也可以通过第二接入技术接入。
本申请实施例中的第一接入技术可以为符合3GPP标准规范的接入技术,例如,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)接入技术。例如,长期演进(long term evolution,LTE),2G,3G,4G或5G系统中采用的接入技术。采用3GPP接入技术的接入网络称为无线接入网络(Radio Access Network,RAN)。例如,终端104可以使用3GPP接入技术通过2G,3G,4G或5G系统中的接入网设备接入无线网络中。
第二接入技术可以为不在3GPP标准规范中定义的无线接入技术,例如称为非第三代合作伙伴计划(non 3rd Generation Partnership Project,non3GPP)接入技术。非3GPP接入技术可以是非可信non3GPP接入技术,也可以是可信non3GPP接入技术。非3GPP接入技术可以包括:无线保真(wirelessfidelity,Wi-Fi)、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)、无线局域网(Wireless Local Area Networks,WLAN),固网技术或者有线技术等。终端104可以通过以无线保真(Wireless Fidelity,WIFI)为代表的空口技术接入网络,其中,接入网设备可以为接入点(access Point,AP)。
在本发明实施例中,终端可以分布于无线网络中,每个终端可以是静态的或移动的。
本申请实施例中会话管理网元101、用户面网元102以及策略控制网元103均属于核心网网元中的网元,可以统称为核心网网元。
核心网网元主要负责分组数据包的转发、Qos控制、计费统计信息等(例如,用户面网元)。以及主要负责用户注册认证、移动性管理及向用户面功能网元下发数据包转发策略、QoS控制策略等(例如,会话管理网元)。其中,会话管理网元用于负责用户发起业务时网络侧建立相应的会话连接(例如,PDU会话),为用户提供具体服务,尤其是基于会话管理网元与用户面网元之间的接口向用户面网元下发数据包转发策略、QoS策略等。
其中,若图2所示的通信系统应用于5G网络,则如图3所示,会话管理网元101所对应的网元或者实体可以为会话管理功能(Session Management Function,SMF)网元、用户面网元 可以为用户面功能(user plane function,UPF)网元。策略控制网元可以为(policy control function,PCF)。
此外,如图3所示,该5G网络还可以包括:接入和移动性管理功能(access and mobility management function,AMF)网元、应用功能(Application Function,AF)网元、接入网设备(例如,接入网络(Access Network,AN)),也可以称为无线接入网设备(Radio Access Network,RAN)、鉴权服务器功能(Authentication Server Function,AUSF)网元、统一数据管理(unified data management,UDM)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元、网络能力开放功能(Network Eposure Function,NEF)网元、网络仓库贮存功能(Network Repository Function,NRF)网元以及数据网络(Data Network,DN)等,本申请实施例对此不作具体限定。
其中,终端通过N1接口(简称N1)与AMF网元通信。AMF网元通过N11接口(简称N11)与SMF网元通信。SMF网元通过N4接口(简称N4)与一个或者多个UPF网元通信。一个或多个UPF网元中任意两个UPF网元通过N9接口(简称N9)通信。UPF网元通过N6接口(简称N6)与数据网络(data network,DN)通信。终端通过接入网设备(例如,RAN设备)接入网络。接入网设备与AMF网元之间通过N2接口(简称N2)通信。SMF网元通过N7接口(简称N7)与PCF网元通信,PCF网元通过N5接口与AF网元通信。接入网设备通过N3接口(简称N3)与UPF网元通信。任意两个或两个以上的AMF网元之间通过N14接口(简称N14)通信。SMF网元通过N10接口(简称N10)与UDM网元通信。AMF网元通过N12接口(简称N12)与AUSF网元通信。AUSF网元通过N13接口(简称N13)与UDM网元通信。AMF网元通过N8接口(简称N8)与UDM网元通信。
需要说明的是,图3中的各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。
需要说明的是,图3的接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM网元、UPF网元和PCF网元等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,接入网设备、AF网元、AMF网元、SMF网元、AUSF网元、UDM网元、UPF网元和PCF网元所对应的网元也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM网元还有可能被替换为用户归属服务器(home subscriber server,HSS)或者用户签约数据库(user subscription database,USD)或者数据库实体,等等,在此进行统一说明,后续不再赘述。
示例性的,本申请实施例中所涉及到的接入网设备指的是用于接入核心网的设备,例如可以是基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机,非第三代合作伙伴计划(3rd generation partnership project,3GPP)接入网设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。
示例性的,本申请实施例中所涉及到的AMF网元还可以负责终端接入时的注册流程及终端移动过程中的位置管理,合法监听等功能,本申请实施例对此不作具体限定。
示例性的,本申请实施例中所涉及到的SMF网元用于进行会话管理,包括:会话建立,会话修改,会话释放,终端的网络之间互连的协议(internet protocol,IP)地址分配和管理,UPF网元的选择和控制,合法监听等与会话相关的控制功能。
示例性的,本申请实施例中所涉及到的UPF网元除了具备图3所示的用户面功能网元的功能,还可实现服务网关(serving gateway,SGW)和分组数据网络网关(packet data network  gateway,PGW)的用户面功能。此外,UPF网元还可以是软件定义网络(software defined network,SDN)交换机(switch),本申请实施例对此不作具体限定。
AUSF网元为鉴权服务器功能,主要负责对终端进行鉴权,确定终端合法性。例如,基于终端的用户签约数据对终端进行鉴权认证。
UDM网元为统一的用户数据管理,主要用来存储终端的签约数据。此外,UDM网元还包括鉴权认证,处理终端的标识信息,签约管理等功能,本申请实施例对此不作具体限定。
PCF网元为策略控制功能,主要用来下发业务相关的策略给AMF网元或SMF网元。
AF网元,发送应用相关需求给PCF,使得PCF网元生成对应的策略。
DN,为终端提供服务,如提供移动运营商业务,Internet服务或第三方服务等。
本申请实施例中的PDU会话指:会话管理网元建立的连通终端104和DN之间的数据传输通道。该数据传输通道中涉及到的网元包括终端、接入网设备、SMF网元、SMF网元为该会话选择的UPF网元以及UPF网元对应的DN。该数据传输通道中包括多个相邻两个网元之间的链路。例如,包括终端和接入网设备之间的链路、接入网设备和AMF网元之间的链路、AMF网元和SMF网元之间的链路、SMF网元和UPF网元之间的链路、以及UPF网元和UPF网元对应的DN之间的链路。
终端(terminal)是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端也可以称为用户设备(User Equipment,UE)、接入终端(Access Terminal)、用户单元(User Unit)、用户站(User Station)、移动站(Mobile Station)、移动台(Mobile)、远方站(Remote Station)、远程终端(Remote Terminal)、移动设备(Mobile Equipment)、用户终端(User Terminal)、无线通信设备(Wireless Telecom Equipment)、用户代理(User Agent)、用户装备(User Equipment)或用户装置。终端可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(Station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统(例如,第五代(Fifth-Generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端等。其中,5G还可以被称为新空口(New Radio,NR)。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图4示出了本申请一实施例中终端使用多个接入技术接入网络的架构示意图,例如,终端同时使用3GPP接入技术和non-3GPP接入技术的架构。如图4所示,终端可以同时通过3GPP接入技术和non-3GPP接入技术连接到AMF网元。具体的,如图4所示,终端在使用non-3GPP接入技术接入AMF网元时,可以通过非3GPP互通功能(non-3GPP interworking  function,N3IWF)实体接入AMF网元。
当3GPP接入技术与non 3GPP接入技术属于相同PLMN时,终端选择相同AMF网元。当3GPP接入技术与non 3GPP接入技术属于不同PLMN时,终端可以选择不同的AMF网元。SMF网元由AMF网元选择,不同的PDU会话可以选择不同的SMF网元,但相同的PDU会话要选择相同的SMF网元。
SMF网元在选择UPF网元,一个PDU会话可以有多个UPF网元,所以SMF网元可能会选择多个UPF网元为某PDU会话创建隧道连接。
其中,AUSF网元和鉴权存储功能(Authentication Repository Function,ARPF)/UDM网元构成归属公共陆地移动网(Home Public Land Mobile Network,HPLMN),终端通过不同的接入技术接入网络时,可以具有不同的受访地公用陆地移动网(visited public land mobile network,VPLMN),也可以具有相同的受访地公用陆地移动网。具体的,图4中所示的各个网元的功能可以参见上述实施例,本申请在此不再赘述。
下面对本申请中涉及的部分名词进行解释说明:
1)业务流迁移(switching或splitting)包括:对应支持多接入PDU会话而言,该多接入PDU会话中的业务流支持从多个接入技术中的第一接入技术对应的链路移动到第二接入技术对应的链路(switching)。或者,业务流从在一个接入技术对应的链路传输移动到在多个接入技术对应的链路上同时传输(splitting)。或者,业务流从多个接入技术对应的链路同时传输移动到从一个接入技术对应的链路上传输(switching)。
本申请实施例中的核心网网元可以为会话管理网元、策略控制网元和用户面网元中的任一个。
实施例一
如图5所示,图5示出了本申请实施例提供的一种处理业务流的方法与通信方法之间交互的流程示意图,该方法包括:
S101、会话管理网元获取业务流的策略信息,该策略信息包括:分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个。
用于传输业务流的链路条件信息可以包括链路阈值参数,例如:link performance thresholds/measurement thresholds。
该业务流所在的分组数据单元PDU会话支持多种接入技术。
在本申请的实施例中,链路(link)可以是接入技术对应的传输通道,或者可以是业务流对应的数据传输通道,或者可以是服务质量流对应的数据传输通道。
具体的,会话管理网元可以在终端请求以多种接入技术中的至少一个接入技术注册到网络的过程中,从策略控制网元处获取策略信息。或者会话管理网元可以在会话管理流程中,从策略控制网元处获取策略信息。
例如,会话管理流程可以包括:PDU会话建立流程或者PDU会话更新(也可以称为PDU会话修改)流程。
可以理解的是,业务流的策略信息包括:流描述参数和流描述参数对应的策略信息。具体可以指:流描述参数和流描述参数对应的分流策略、流描述参数和流描述参数对应的分流模式、和流描述参数和流描述参数对应的用于传输所述业务流的链路条件信息中的至少一个。
其中,流描述参数用于确定业务流。例如,流描述参数可以包括以下一项或者多项:业务流的五元组信息(例如,源IP地址、目的IP地址,源端口号、目的端口号和协议类型中 的至少一个)。
其中,链路条件信息包括:与接入相关的条件信息和与接入无关的条件信息中的至少一项。
示例性的,与接入相关的条件信息包括以下一项或者多项:接入网信号强度阈值、接入网信号质量阈值、回程(backhaul)带宽阈值或负载阈值、接入网带宽阈值和接入网负载阈值;
示例性的,与接入无关的条件信息包括以下一项或者多项:链路时延阈值(例如,上行链路时延阈值、下行链路时延阈值和上行/下行时延阈值(即RTT阈值))、链路丢包率阈值(例如,上行链路丢包率阈值、下行链路丢包率阈值和上行/下行丢包率阈值)和链路抖动阈值(例如,上行链路抖动阈值、下行链路抖动阈值和上行/下行抖动阈值)中的至少一个。
具体的,当一个链路的链路状态信息满足该业务流对应的链路条件信息时,此链路可以用于传输该业务流。当一个链路的链路状态信息不满足该业务流对应的链路条件信息时,此链路可以不能用于传输该业务流。
示例性的,分流策略可以为ATSSS policy/ATSSS RULE。分流策略可以包括至少一个接入技术指示。通过分流策略可以确定传输业务流的至少一个接入技术。如3GPP接入技术,和非3GPP接入技术中的至少一个。
其中,分流模式包括以下一项或者多项:
a)、接入技术优先指示,用于指示优先通过所述接入技术优先指示关联的接入技术对应的链路传输业务流。
例如,接入技术优先指示为3GPP接入技术或者non3GPP接入技术。当优先传输的接入技术不可用时,业务流可以通过另一个接入技术对应的链路传输。
b)、最优链路分流指示,用于指示优先通过最优链路传输所述业务流;所述最优链路为链路状态优于其他链路的链路。
示例性的,最优链路分流指示可以包括:最优链路指示、链路最小时延指示、最小RTT指示、链路最低负载指示、链路最大带宽指示、接入信号最强指示中的至少一个参数。
终端可以通过上述参数确定最优链路。例如,最优链路可以为:时延最小的链路、负载最低的链路、或者接入信号强度最强的链路。
c)、基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输业务流。
其中,基于链路负载均衡的分流指示包括:负载均衡指示。
d)、接入技术与分流比例指示,用于指示按照接入技术对应的分流比例传输业务流。
例如,当分流比例为具体数值时,终端按照接入技术对应的分流比例传输业务流。如,分流比例指示3GPP接入技术的分流比例为20%,non 3GPP接入技术的分流比例为80%,则该业务流中20%的数据包通过3GPP接入技术传输。业务流中80%的数据包通过non 3GPP接入技术传输。当分流比例为空或者不包括分流比例时,表示基于链路负载均衡对业务流进行分流。
e)、冗余传输指示,用于表示所述业务流中的相同数据包同时通过不同接入技术传输。
S102、会话管理网元向终端发送策略信息。
一种示例,在会话管理流程中会话管理网元向终端发送策略信息。
具体的,会话管理网元基于终端对PDU会话管理请求消息,向终端发送携带策略信息的PDU会话管理响应消息。例如,PDU会话管理请求消息可以为PDU会话建立请求消息或者PDU会话更新请求消息。
例如,PDU会话管理响应消息可以为:PDU会话新建接受消息或者PDU会话更新成功消息。
一种示例,在终端成功注册到网络的过程中,会话管理网元可以通过非接入层(Non-access stratum,NAS)传输消息向终端发送策略控制网元发送的策略信息。
在一种可能的实现方式中,会话管理网元可以从策略控制网元获取策略信息。
S103、终端获取业务流的策略信息。
示例性的,步骤S103可以通过以下方式实现:终端从非接入层NAS传输消息中获取策略控制网元发送的业务流的分流模式和用于传输业务流的链路条件信息中的至少一个。或者,终端从会话管理网元发送的会话管理响应消息中获取业务流的分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
S104、终端根据策略信息处理业务流。
本申请实施例提供一种处理业务流的方法,通过终端获取业务流的策略信息,并基于业务流的策略信息处理业务流。由于终端是基于网络侧下发的分流策略、分流模式和链路条件信息中的至少一个处理业务流,这样不仅可以使得处理后的业务流在满足链路条件信息的链路上传输,且可以使得终端对业务流实现更加精细化处理。
在一种可能的实现方式中,如图6所示,本申请实施例提供的方法还包括:
S105、终端向会话管理网元发送链路检测信息,该链路检测信息用于获取链路的链路状态信息。
例如,链路检测信息包括:链路状态检测上报策略(measurement assistance policy/reporting)。
可选的,为了降低信令开销,终端可以在PDU会话管理请求消息中携带链路检测信息。
示例性的,本申请提供的链路检测信息包括订阅的链路状态参数和所述订阅的链路状态参数的发送条件信息中的至少一个。其中,条件信息用于指示当订阅的链路状态参数满足链路条件信息中包括的该订阅的链路状态参数对应的阈值时,则上报订阅的链路状态参数。例如,订阅的链路状态参数为接入网信号质量,则当所检测到的接入网信号质量达到接入网信号质量阈值时,则上报所检测到的接入网信号质量。
例如,订阅的链路状态参数包括接入相关的状态参数和接入无关的状态参数中的至少一个。
例如,接入相关的状态参数包括:接入网信号质量、接入网信号强度、接入网带宽、接入网负载、回程网带宽或负载中的一个或者多个。
示例性的,在3GPP接入技术中,接入网带宽指:RAN设备的带宽。在non 3GPP接入技术中,接入网带宽指接入网元的带宽,例如,N3IWF的带宽。或可信接入网关的带宽。接入网负载为接入点的负荷情况,如non 3GPP接入技术中,接入点AP的负荷(load)。或3GPP接入技术中,RAN设备的负荷。
接入无关的状态参数链路包括:时延参数、链路丢包率参数和链路抖动参数一个或者多个。
可选的,链路检测信息还包括业务流的信息,用于确定对哪些业务流对应的链路进行检测。例如,链路检测信息还包括以下一项或者多项:接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数。
其中,接入技术指示用于指示需要订阅接入技术指示关联的接入技术对应的链路,GBR 指示用于表示所述需要发送链路状态信息的链路为GBR业务流所在的链路。非Non-GBR指示用于表示所述需要发送链路状态信息的链路为非GBR业务流所在的链路。流描述参数用于表示所述需要发送链路状态信息的链路为流描述参数确定的业务流所在的链路。QFI用于表示所述需要发送链路状态信息的链路为与所述QFI关联的服务质量QoS流对应的链路。
一种可能的实现方式,链路检测信息还可以包括:订阅的链路状态参数的发送频率信息。即上报订阅的链路状态参数的时间间隔,例如,1秒钟上报一次,或一分钟上报一次。
S106、会话管理网元获取链路检测信息。
例如,会话管理网元可以在PDU会话管理请求消息中接收链路检测信息。
需要说明的是,本申请实施例中会话管理网元也可以根据PCF向终端发送的策略信息生成链路检测信息。当链路检测信息由会话管理网元生成时,步骤S105可以省略。
S107、会话管理网元获取链路状态信息。
示例性的,步骤S107可以通过如下方式实现:会话管理网元向用户面网元发送链路检测信息。会话管理网元接收用户面网元发送的链路状态信息。
例如,会话管理网元向用户面网元发送N4会话消息(如N4会话建立/更新请求消息),该N4会话消息中携带链路检测信息。或者,会话管理网元在接入网设备请求向用户面网元发送与PDU会话相关的隧道标识时,向用户面网元发送N4会话更新消息,该N4会话更新消息中携带链路检测信息。
可选的,会话管理网元还向用户面网元发送第一指示,所述第一指示用于指示需要发送链路状态信息的链路。
示例性的,第一指示包括:服务质量流的标识(quality of service flow identifier,Qos identifier,QFI)、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
如QFI=1,链路检测信息为往返时间(Round-Trip Time,RTT)检测上报。则用户面网元针对QFI=1的QoS flow进行RTT检测,并将检测到的链路状态信息发送给终端或者会话管理网元。如果接入技术为3GPP接入技术,链路检测信息为RTT检测上报。则用户面网元针对3GPP接入技术对应的链路进行RTT检测,并将检测到的链路状态信息发送给终端或者会话管理网元。如果第一指示为隧道标识,链路检测信息为RTT检测上报。则用户面网元对上述隧道标识对应的链路进行RTT检测,并将检测到的链路状态信息发送给终端或者会话管理网元。
S108、会话管理网元将链路状态信息发送给终端。
可选的,将链路状态参数与接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI和流描述参数中的至少一个发送给所述终端。
S109、终端接收会话管理网元发送的链路状态信息。
可选的,当终端获取到链路状态信息后,S104可以通过以下方式实现:
S1041、终端确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足链路条件信息。
其中,目标链路为迁移后将要传输业务流的接入技术对应的链路。当前链路为当前传输业务流的接入技术对应的链路。
例如,当前链路为3GPP接入技术对应的链路,目标链路可以为non 3GPP接入技术对应的链路,或者non 3GPP接入技术和3GPP接入技术对应的链路。
或者,当前链路为non 3GPP接入技术对应的链路,目标链路可以为3GPP接入技术对应的链路,或者non 3GPP接入技术和3GPP接入技术对应的链路。
或者,当前链路为non 3GPP接入技术和3GPP接入技术对应的链路,目标链路可以为3GPP接入技术对应的链路,或者non 3GPP接入技术对应的链路。
S1042、终端根据分流策略和分流模式中的至少一个处理业务流。
一种可能的实现方式,步骤S1042可以通过以下方式实现:终端将业务流在多种接入技术对应的链路上传输。
例如,终端确定non 3GPP接入技术对应的链路和3GPP接入技术对应的链路的链路状态信息满足链路条件信息时,则将业务流从3GPP接入技术对应的链路迁移到non 3GPP接入技术对应的链路和3GPP接入技术对应的链路。
另一种可能的实现方式,步骤S1042可以通过以下方式实现:终端将业务流从多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输。
例如,当前传输业务流的接入技术为3GPP接入技术,当3GPP接入技术对应的链路的链路状态信息不满足链路条件信息时,终端将业务流从3GPP接入技术对应的链路迁移到non 3GPP接入技术对应的链路。或者,终端确定接入技术优先指示指示的是non 3GPP接入技术优先,则终端在确定non 3GPP接入技术的链路满足条件时,将业务流迁移至non 3GPP接入技术对应的链路。
又一种可能的实现方式,步骤S1042可以通过以下方式实现:终端将业务流从多种接入技术迁移至多种接入技术中的第一接入技术或第二接入技术对应的链路上传输。
例如,当前传输业务流的接入技术为3GPP接入技术和non 3GPP接入技术,当3GPP接入技术和non 3GPP接入技术对应的链路的链路状态信息不满足链路条件信息时,终端将业务流从3GPP接入技术和non 3GPP接入技术对应的链路迁移到non 3GPP接入技术对应的链路或者迁移至3GPP接入技术对应的链路。或者3GPP接入技术对应的链路或non 3GPP接入技术对应的链路满足条件时,终端将业务流从3GPP接入技术和non 3GPP接入技术对应的链路切换至3GPP接入技术对应的链路或non 3GPP接入技术对应的链路。
再一种可能的实现方式,终端发起业务流处理流程。
示例性的,终端发起的业务流处理流程包括:PDU会话建立流程或者PDU会话更新流程。该PDU会话建立流程或者PDU会话更新流程中携带业务流对应的至少一个接入技术指示。该至少一个接入技术指示用于表示终端请求将该业务流迁移至至少一个接入技术指示所指示的至少一个接入技术对应的链路上传输。此后,会话管理网元便可以向终端发送更新后的分流策略,该更新后的分流策略包括业务流对应的至少一个接入技术指示。
需要说明的是,本申请实施例中终端处具有一个分流策略1,当终端确定根据该分流策略1所指示的接入技术1传输业务流时,终端确定链路对应的链路状态信息不满足链路条件信息,则终端可以根据分流模式和链路条件信息中的至少一个重新确定接入技术。或者,终端根据分流模式确定优先传输业务流的接入技术(即分流策略所指示的接入技术)对应的链路状态信息不满足链路条件信息,向会话管理网元请求以重新确定的接入技术传输业务流。会话管理网元可以基于终端请求的接入技术重新向终端发送接入技术指示(即更新分流策略)。之后,终端根据更新后的分流策略对业务流进行迁移。
作为本申请的另一个实施例,如图7所示,本申请实施例提供的方法还包括:
S110、终端向会话管理网元发送指示信息,所述指示信息用于指示由所述终端对所述业 务流进行处理。
示例性的,该指示信息可以为UE-initiated。
可选的,终端还向会话管理网元发送多接入会话指示,用于表示该PDU会话支持多种接入技术。
示例性的,该指示信息可以携带在上述会话管理请求消息中。
S111、会话管理网元接收终端发送的指示信息。
可选的,在会话管理网元确定授权终端进行业务流迁移时,会话管理网元可以在PDU会话管理响应消息中携带UE-initiated或者向终端发送业务流的分流策略。
作为本申请的又一个实施例,如图8所示,本申请实施例提供的方法还包括:
S112、终端根据策略信息将业务流从所述多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输。
S113、终端确定在第一接入技术上发送的业务流的数据包传输结束。
S114、终端向用户面网元发送第一指示,该第一指示用于指示在第一接入技术上传输的业务流的数据包传输结束。
S115、用户面网元接收第一指示,并根据第一指示,对在第一接入技术上和第二接入技术中的至少一个对应的链路上的数据包进行排序。
具体的,步骤S112-S115的描述,可以参考后续实施例中的描述,此处不再赘述。
作为本申请的另一个实施例,如图9所示,本申请实施例提供的方法还包括:
S116、会话管理网元向接入网设备发送QFI与通知指示,该通知指示用于指示当接入网设备无法满足QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
推荐带宽值也可以称为“可用带宽值”,即接入网设备对上述QFI的QoS flow可以提供的带宽资源,如接入网设备可以为QFI=1的QoS flow提供5Mbps带宽,则推荐带宽为5Mbps。
示例性的,QFI与可用带宽指示表示该QFI的QoS flow的带宽需求为10M,而此时,接入网设备的可用带宽为3M,则接入网设备向会话管理网元或用户面网元发送的推荐带宽值为3M。
S117、会话管理网元接收接入网设备发送的QFI与接入网设备的推荐带宽值。
S118、会话管理网元向终端发送QFI与接入网设备的推荐带宽值。
例如,会话管理网元可以通过NAS传输消息向终端发送接入网设备的推荐带宽值。
S119、终端接收接入网设备发送的链路状态信息为所述接入网设备的推荐带宽值。或者终端接收会话管理网元或用户面网元发送的链路状态信息为所述接入网设备的推荐带宽值。
需要说明的是,当终端从接入网设备或者用户面网元处获取到链路状态信息是,步骤S118可以省略。
可选的,在终端获取到接入网设备的推荐带宽值以后,步骤S104具体可以通过以下方式实现:终端根据所述策略信息和推荐带宽值处理业务流。
具体的处理业务流方案包括:终端判断业务流需要的带宽大于接入网设备的推荐带宽值,则说明当前的接入网设备无法满足业务流的带宽需求。终端向另一接入技术请求业务流所需的带宽,将上述业务流整体迁移到另一接入技术。或者终端用业务流所需带宽减去接入网设备的推荐带宽值得到补充带宽。终端向另一接入技术请求补充带宽,将上述业务流部分迁移到另一接入技术,从而由当前接入设备与另一接入技术对应的接入设备为上述业务流提供所 需的带宽。
实施例二
如图10所示,图10示出了由核心网网元发起业务流移动的方法,该方法包括:
S201、核心网网元获取业务流的策略信息,该策略信息包括分流策略、分流模式和用于传输业务流的链路条件信息中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术。
其中,分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个的具体描述可以参考实施例一中的描述,此处不再赘述。
由于核心网网元不同,获取策略信息的方式不同,下述将分别介绍:
一种示例,核心网网元为会话管理网元:
会话管理网元可以在PDU会话管理过程中从策略控制网元处获取分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
其中,分流策略可以为策略控制网元根据链路状态信息以及分流模式和用于传输所述业务流的链路条件信息中的至少一个确定的。当然,分流策略还可以为会话管理网元本地预配置的。
在这种情况下,策略控制网元仅向会话管理网元发基于最优链路分流的指示,和基于链路负载均衡的指示。
由会话管理网元确定最优链路。即会话管理网元根据最优链路分流的指示,确定最优链路为链路最小时延指示、最小RTT指示、链路最低负载指示、链路最大带宽指示、接入信号最强指示中的至少一个参数所指示的链路。
此外,会话管理网元基于策略控制网元发送的基于链路负载均衡的指示,决定各个接入技术对应的链路的分流比例。
另一种示例,核心网网元为策略控制网元:
策略控制网元从本地配置中获取分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
又一种示例,核心网网元为用户面网元:
用户面网元可以从会话管理网元处获取分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。具体的,会话管理网元在PDU会话管理流程中获取到策略信息之后,可以通过N4会话消息向用户面网元发送策略信息。
S202、核心网网元根据策略信息处理业务流。
作为本申请的另一个实施例,如图11所示,本申请实施例提供的方法还包括:
S203、核心网网元获取链路状态信息。
由于核心网网元不同,S203的实现方式存在差异,因此下述实施例将分别介绍:
当核心网网元为会话管理网元时,如图12所示,本申请实施例提供的方法还包括:
S204、核心网网元向用户面网元或者终端发送链路检测信息。
具体的,链路检测信息的具体内容可以参考上述实施例中的描述,此处不再赘述。
与实施例一的区别在于,实施例一中,会话管理网元从终端处获取的链路检测信息是由策略控制网元发送的。此处的链路检测信息由会话管理网元根据策略信息生成。
需要说明的是,在会话管理网元向终端发送链路检测信息时,终端中已具有链路检测信息(例如,注册到网络侧时,策略控制网元向终端发送链路检测信息),则终端使用会话管理 网元发送的链路检测信息检测链路状态参数。
可选的,核心网网元向终端或者用户面网元发送第一指示,该第一指示用于指示需要发送链路状态信息的链路。
示例性的,第一指示包括:服务质量流的标识QFI、接入技术指示和隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。具体的,第一指示包括的各个内容的含义可以参考上述实施例中的描述,此处不再赘述。
S205、用户面网元或者终端向核心网网元发送链路检测信息。
示例性的,用户面网元可以通过N4接口消息向核心网网元发送链路检测信息。
示例性的,终端可以通过NAS传输消息向核心网网元发送链路检测信息。或者,终端将链路状态信息通过用户面消息发送给用户面网元,然后由用户面网元发送给核心网网元。
相应的步骤S203可以通过以下方式具体实现:核心网网元从终端或者用户面网元处获取终端或者用户面网元发送的链路状态信息。
当核心网网元为策略控制网元时,步骤S203具体通过以下方式实现:策略控制网元向会话管理网元发送链路检测信息,会话管理网元向终端或者用户面网元发送链路检测信息。会话管理网元在接收到终端或者用户面网元发送的链路状态信息后,上报给策略控制网元。
当核心网网元为用户面网元时,步骤S203具体通过以下方式实现:会话管理网元向核心网网元/终端发送链路检测信息,终端向核心网网元发送所述链路状态信息,核心网网元向终端发送链路状态信息。即由用户面网元自行检测链路状态信息,并将检测到的链路状态信息发送给终端。或者由终端自行检测链路状态信息,并将检测到的链路状态信息发送给用户面网元。
当核心网网元获取到链路状态信息后,S202可以通过以下方式实现:核心网网元确定链路状态信息不满足所述链路条件信息,核心网网元根据所述分流策略和所述分流模式中的至少一个处理所述业务流。
具体的,核心网网元确定目标链路的链路状态信息满足或者当前链路的链路状态信息不满足所述链路条件信息,所述核心网网元根据所述分流策略和所述分流模式中的至少一个处理所述业务流。
目标链路的确定方式和当前链路的确定方式可以参考实施例一中的描述,此处不再赘述。
一种示例,当核心网网元为会话管理网元时,如图12所示,S202具体可以通过以下方式实现:S2021、向终端发送业务流对应的接入技术指示,接入技术指示用于指示将业务流迁移到所述接入技术指示对应的链路上。
示例性的,核心网网元可以在PDU会话管理响应消息中携带业务流对应的接入技术指示,以指示终端将业务流迁移到接入技术指示对应的链路上。
此外,本申请实施例提供的方法还包括:S206、终端接收核心网网元发送的业务流对应的接入技术指示,接入技术指示用于指示将业务流迁移到接入技术指示指示的接入技术对应的链路。S207、终端根据接入技术指示处理业务流。可以理解的是,S206和S207中由终端执行的过程,也可以由用户面网元执行。
具体的,终端根据接入技术指示将业务流迁移至接入技术指示指示的接入技术对应的链路。S207的实现方式可以参考上述实施例中终端处理业务流的方式,本申请实施例在此不再赘述。
又一种示例,当核心网网元为策略控制网元时,S202具体可以通过以下方式实现:核心 网网元向会话管理网元发送所述业务流对应的更新后的分流策略,所述更新后的分流策略包括至少一个接入技术指示,所述至少一个接入技术指示用于指示将所述业务流迁移到所述接入技术指示对应的链路上。
具体的,策略控制网元根据收到的链路状态信息及本地配置的分流模式和链路条件信息中的至少一个,确定为该业务流配置的分流策略不能满足链路要求,则向会话管理网元发送更新后的分流策略。例如,当前配置的分流策略为3GPP接入技术传输业务流,根据链路条件信息确定3GPP接入技术对应的链路状态信息不满足链路条件信息,则向会话管理网元发送更新后的分流策略,例如,non 3GPP接入技术。此后,会话管理网元在接收到分流策略之后,由会话管理网元发起业务流移动,或者会话管理网元发送给终端,由终端发起业务流移动。
再一种示例,当核心网网元为用户面网元时,S202具体可以通过以下方式实现,核心网网元将所述业务流在所述多种接入技术对应的链路上传输;或者,核心网网元将所述业务流从所述多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;或者,核心网网元将业务流从所述多种接入技术迁移至所述多种接入技术中的第一接入技术或第二接入技术对应的链路上传输。
可选的,本申请实施例提供的方法还包括:终端向核心网网元发送第一指示信息,该第一指示信息用于指示由核心网对所述业务流进行处理。核心网网元接收所述终端发送的第一指示信息。
具体的,该第一指示信息可以为Network-initiated。或者为空,当第一指示信息为空时,核心网网元确定由网络侧发起业务流迁移。
作为本申请的另一个实施例,如图13所示,本申请实施例提供的方法还包括:S208、核心网网元向接入网设备发送QFI与通知指示,QFI与通知指示用于指示当接入网侧无法满足所述QFI的QoS flow的带宽需求时,向会话管理网元或用户面网元发送接入网设备的推荐带宽值。
可选的,如图13所述,本申请实施例提供的方法还包括:S209、核心网网元接收接入网设备发送的QFI与所述接入网设备的推荐带宽值。S210、核心网网元向终端发送所述QFI与所述接入网设备的推荐带宽值。S211、终端接收接入网设备发送的所述接入网设备的推荐带宽值;或者所述终端接收会话管理网元或用户面网元发送的所述接入网设备的推荐带宽值。
实施例三
当发送网元(例如,终端或者用户面网元)将业务流从多个接入技术迁移到多个接入技术中的任一个接入技术对应的链路,或者从多个接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路后,为了避免接收网元(例如,用户面网元或者终端)对接收到业务流的数据包进行排序时,出现数据包乱序的问题,如图14所示,本申请还提供一种数据包传输方法,该方法包括:
S301、发送网元确定需要将业务流从多个接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输。
具体的,步骤S301的实现方式可以参考上述实施例中的描述或者参考其他方式,此处不再赘述。
S302、发送网元确定在所述第一接入技术对应的链路上发送的所述业务流的数据包传输结束。
S303、发送网元向接收网元发送第一指示(例如,Endmark指示),该第一指示用于指示在第一接入技术对应的链路上传输的所述业务流的数据包传输结束。
一种可能的实现方式为:S303可以通过以下方式实现:发送网元在第一接入技术对应的链路上该业务流的最后一个包中携带第一指示。
示例性的,最后一个包可以为空包或者为最后一个数据包。
一种示例,以最后一个包为最后一个数据包为例,发送网元可以在分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)包头和业务数据应用协议(Service Data Adaptation Protocol,SDAP)包头的至少一个中携带第一指示。或者,以最后一个包为空包为例,发送网元在发送完最后一个数据包之后,生成一个空包,并在上述空包的PDCP包头和SDAP包头的至少一个中携带第一指示。
本申请实施例中的空包指:数据包中包括用于确定业务流的信息,且该数据包的载荷为空。例如,该数据包中含有IP头,用户数据报协议(User Datagram Protocol,UDP)头,传输控制协议(Transmission Control Protocol,TCP)头和以太包头中的至少一个。
例如,以发送网元为终端为例,终端确定在第一接入技术对应的链路上该业务流的数据包传输结束,则终端将第一指示携带在最后一个包的PDCP包头或者SDAP包头中发送给接入网设备(如5G RAN,或non 3GPP接入网元)。接入网设备获取最后一个包中携带的第一指示,并将第一指示通过GPRS隧道协议(GPRS Tunneling Protocol,GTP-U)或其他协议(如ethernet协议,SRv6协议IPv6 Segment Routing协议)数据包头传递给UPF网元。此外,接入网设备将最后一个包(空包,或最后一个数据包)封装在携带了第一指示的GTP-U数据包头中传递给UPF网元。UPF网元基于第一指示确定此数据包为3GPP接入技术对应的链路上的最后一个数据包,并基于最后一个包中的信息确定业务流。后续接入网设备与UPF之间的隧道协议以GTP-U协议为例。
例如,以发送网元为UPF网元为例,UPF网元在GTP-U数据包头中携带第一指示,并将GTP-U数据包头发送给接入网设备。由接入网设备去掉GTP-U数据包头后,将第一指示携带在PDCP包头或SDAP包头中发送给终端。此外,UPF网元将最后一个包(空包,或最后一个业务数据包)封装在含有第一指示的GTP-U数据包头中发送给接入网设备。接入网设备将上述最后一个包封装在携带了第一指示的PDCP包头或SDAP包头中发送给终端。
另一种示例,以最后一个包为空包为例,该第一指示可以携带在该空包中用于确定业务流的信息中。
例如,发送网元在IP包头或UDP包头或TCP包头或以太包头中携带第一指示。如在IP包头中增加option选项,option选项中携带第一指示。或以太包头中将以太类型设置为特殊值作为第一指示,或将以太包头的长度设置为特殊值作为End marker指示。
又一种示例,以最后一个包为最后一个数据包为例,发送网元将该第一指示可以携带在UDP头,TCP头和以太包头中的至少一个。具体在UDP头,TCP头和以太包头中的至少一个中如何携带,可以参考上述描述,此处不再赘述。
例如,以发送网元为终端为例,终端确定业务流在第一接入技术对应的链路传输结束,终端在第一接入技术对应的链路发送最后一个数据包给接入网设备,该最后一个数据包的以太包头、UDP包头和TCP包头中至少一个携带第一指示。接入网设备将上述最后一个数据包发送给UPF网元。UPF解析最后一个数据包,从最后一个数据包的包头信息中获取流描述信息,并从最后一个数据包中获取第一指示。
以发送网元为UPF网元为例,UPF网元确定业务流在第一接入技术对应的链路传输结束,UPF网元将第一指示携带在最后一个数据包的以太包头、UDP包头和TCP包头中的至少一个。UPF网元将最后一个数据包封装在GTP-U数据包头中,并在第一接入技术对应的链路发送给接入网设备。接入网设备在接收到GTP-U数据包头后,去掉GTP-U数据包头。然后向终端发送最后一个数据包。终端解析最后一个数据包,从最后一个数据包的包头信息中获取流描述信息,并从最后一个数据包中获取第一指示。接入网设备根据流描述信息确定第一指示针对的业务流。
可选的,当发送网元为UPF网元时,发送网元将所述第一指示携带在数据包的GTP-U数据包头中。
上述数据包的包头中还包括以下一项或者多项用于指示业务流的信息:IP包头中的源IP地址和/或目的IP地址、以太包头中的源IP地址和/或目的IP地址、UDP包头和TCP包头中的源端口号和/或目的端口号、虚拟局域网(Virtual Local Area Network,VLAN)标签、以及上述IP包头、以太包头、UDP包头、TCP包头的协议类型。
S304、接收网元从业务流支持的多个接入技术中的第一接入技术对应的链路或/和第二接入技术对应的链路接收所述业务流的数据包。
S305、接收网元接收发送网元发送的第一指示,所述第一指示用于指示在所述第一接入技术对应的链路上传输的所述业务流的数据包传输结束;
可选的,接收网元接收所述第一接入技术对应的链路上发送的最后一个包中携带所述第一指示。
S306、接收网元根据所述第一指示,将通过所述第一接入技术对应的链路和所述第二接入技术对应的链路接收的所述业务流的数据包进行排序。
可选的,接收网元基于空包或者业务流的最后一个数据包中的流描述参数确定第一指示对应的业务流。
示例性的,本申请实施例中的S306可以通过以下方式实现:接收网元接收到第一指示后再处理所述通过所述第二接入技术对应的链路接收的所述业务流的数据包。
具体的,对于上行数据包,当终端将业务流从第一接入技术对应的链路迁移至第二接入技术对应的链路的过程中,如果终端确定业务流的数据包在第一接入技术对应的链路传输结束,终端向UPF网元发送第一指示。在此过程中UPF网元从第一接入技术对应的链路和/第二接入技术对应的链路上接收业务流的数据包。UPF网元在接收到第一指示前,将在第二接入技术对应的链路上的该业务流的数据包缓存。在接收到第一指示后,UPF网元先对第一接入技术对应的链路上的业务流的数据包排序,然后再处理所述通过所述第二接入技术对应的链路接收的所述业务流的数据包。
对于下行数据包,由终端根据UPF网元发送的第一指示,对业务流的数据包进行排序的过程可以参考上行数据包中UPF网元根据第一指示对业务流的数据包进行排序的过程,此处不再赘述。
图15示出了本申请实施例提供的一种由终端处理业务流迁移的具体实施例,该方法包括:
S401、终端注册到网络侧。
例如,终端可以通过3GPP接入技术接入网络侧并完成注册流程(registration procedure)。或者终端通过non3GPP接入技术接入网络侧并完成注册流程。或者,终端分别通过non3GPP接入技术和3GPP接入技术接入网络侧并完成注册流程。
S402、PCF网元对于注册成功的终端向AMF网元发送策略信息,该策略信息包括:流描述参数和至少一个分流模式和流描述参数和用于传输业务流的链路条件信息中的至少一个。
S403、AMF网元通过NAS消息向终端发送策略信息。
可以理解的是,如果终端在S401中通过non3GPP接入技术和3GPP接入技术接入中的一个完成注册,则终端通过non3GPP接入技术和3GPP接入技术接入中的另一个接入技术完成注册。以使得终端通过non3GPP接入技术和3GPP接入技术接入同时接入网络侧。
S404、终端向AMF网元发送会话管理请求消息。该会话管理请求消息携带PDU会话标识、UE-initiated指示以及多接入会话指示。
其中,UE-initiated指示表示PDU会话标识关联的PDU会话中的业务流迁移由终端处理。多接入会话指示表示PDU会话支持多种接入技术,即该PDU会话为多接入PDU会话(Multi Access PDU,MA PDU)会话。
示例性的,会话管理请求消息可以为PDU会话建立请求(PDU Session establishment request)消息或者PDU会话更新请求消息。
可选的,该会话管理请求消息还携带链路检测信息。
其中,链路检测信息的具体内容,参见上述实施例中的描述,在此不再赘述。
可选的,该会话管理请求消息还携带订阅的链路状态参数的发送频率信息。
S405、AMF网元接收到会话管理请求消息后,选择SMF网元,并将会话管理请求消息发送给SMF网元。
可选的,SMF网元存储UE-initiated,这样终端在接收到PCF网元发送的策略信息之后便可以确定将策略信息发送给UE-initiated所指示的终端。
S406、SMF网元向PCF网元发送策略请求消息,该策略请求消息中携带多接入会话指示。
S407、PCF网元基于多接入会话指示发送与多接入PDU会话相关的策略信息给SMF网元。此处的策略信息包括:流描述参数与分流策略之间的映射关系、流描述参数与至少一种分流模式和流描述参数与链路条件信息中的至少一项。
例如,PCF网元可以通过策略响应消息向SMF网元发送策略信息。
其中,分流策略可以携带在策略控制和计费(Policy Control and Charging,PCC)规则中发送给SMF网元。
此外,SMF网元还可以向PCF网元发送UE-initiated,然后PCF网元存储UE-initiated。
如果SMF网元接收到的会话管理请求消息中还可以链路检测信息,则SMF网元执行S408-S410。
S408、SMF网元向该PDU会话关联的UPF网元发送链路检测信息。
可选的,SMF网元还可以向UPF网元发送QFI、接入技术指示、隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一项。其中,QFI用于表示检测的链路信息为QFI关联的Qos flow流所在的链路。隧道标识用于表示检测的链路信息为隧道标识关联的隧道对应的链路。接入技术指示用于表示检测的链路信息为接入技术指示所指示的接入技术对应的链路。GBR指示用于表示所述需要发送链路状态信息的链路为GBR业务流所在的链路。非Non-GBR指示用于表示所述需要发送链路状态信息的链路为非GBR业务流所在的链路。流描述参数用于表示所述需要发送链路状态信息的链路为流描述参数确定的业务流所在的链路。
S409、UPF网元根据链路检测信息,向SMF网元发送链路状态信息。
如果链路状态信息是基于QFI、接入技术指示、隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一项检测的,则UPF网元还向SMF网元或终端发送QFI、接入技术指示、隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一项。
S410、SMF网元向终端发送链路状态信息。
可选的,步骤S409还可以通过如下方式替换:将链路状态信息发送给SMF网元,SMF在通过NAS消息向终端发送链路状态信息。或者UPF网元通过和终端之间的用户面消息(如链路消息)向终端发送链路状态信息。
S411、SMF网元向终端发送会话管理响应消息,该会话管理响应消息包括流描述参数与分流策略之间的映射关系或者用于指示授权终端进行业务流迁移的指示。
例如,会话管理响应消息可以为PDU会话新建接受消息,或者为PDU会话更新成功消息。
其中,流描述参数与分流策略用于表示业务流与指示一个接入技术之间的关联关系,即此业务流通过一个或者多个接入技术传输。
可选的,SMF网元可以发送N1N2消息给AMF网元。该N1N2消息中携带会话管理响应消息。
可选的,该N1N2消息中还携带QFI与可用带宽指示。
S412、AMF网元将QFI与可用带宽指示发送给接入网设备。
可选的,如果N1N2消息中还包括接入技术指示,则AMF网元将QFI与可用带宽指示发送给接入技术指示所指示的接入网设备。其中,QFI与可用带宽指示用于指示当接入网侧无法满足QFI对应的Qos flow的带宽需求时,接入网设备向SMF网元或者UPF网元上报接入网设备的推荐带宽。
例如,接入技术指示为3GPP接入技术指示,则AMF网元将QFI与可用带宽指示发送给5G RAN。如果接入技术指示为非3GPP接入技术指示,则AMF网元将QFI与可用带宽指示发送给非3GPP接入网中的设备。
可以理解的是,接入网设备可以为PDU会话分配相关的隧道标识,并通过AMF网元或者SMF网元发送给UPF网元。如果SMF网元未执行S408-S410,则SMF网元可以通过N4会话更新消息向UPF网元发送隧道标识的过程中向UPF网元发送链路检测信息。
隧道两个端点的网元各自通知对端自身的隧道标识,这样后续数据就封装对端的隧道标识。
S413、接入网设备根据QFI与可用带宽指示,检测Qos flow的带宽满足请求。
S414、接入网设备确定Qos flow的带宽不满足时,向AMF网元发送Qos flow的推荐带宽值。
具体的,接入网设备可以通过RAN notification消息向AMF发送QFI与推荐带宽值。
然后,AMF网元将QFI与推荐带宽值通过NAS消息发送给终端。或者AMF网元将QFI与推荐带宽值发送给SMF网元,SMF网元通过NAS消息发送给终端。或者SMF网元将QFI与推荐带宽值发送给UPF网元,由UPF网元通过用户面消息发送给终端。
S445、终端获取链路状态信息。
S416、终端根据链路状态信息,以及分流模式和用于传输所述业务流的链路条件信息中的至少一个处理业务流。
例如,如果业务流1当前在3GPP侧传输,分流模式为3GPP接入技术优先。链路条件信息包括3GPP侧信道强度阈值。终端根据链路状态信息确定当前3GPP侧信号强度低于3GPP侧 信道强度阈值,则终端发起业务流1迁移。
终端发起业务流1迁移具体为:终端发送PDU会话更新请求消息,该PDU会话更新请求消息中携带流描述参数与至少一个接入技术指示。针对上例,该PDU会话更新请求消息中携带业务流1的描述参数与non 3GPP接入技术指示,用于表示终端请求将业务流1移动到non3GPP侧。
可选的,SMF网元在收到S407中发送的策略信息之后,SMF网元保存该策略信息,以便于SMF基于策略信息授权终端发起的业务流迁移是否被允许。如果不允许,SMF网元可以拒绝终端发送的业务流迁移请求。如果允许,则SMF网元可以基于终端发起的业务流迁移向终端发送分流策略。终端在接收到SMF网元基于PDU会话更新请求消息下发的分流策略后,将业务流迁移至分流策略中所指示的接入技术对应的链路上。
可以理解的是,在未进行业务流迁移之前,终端处具有一个分流策略1,例如,包括:3GPP接入技术指示。在请求业务流移动后,终端得到的是更新后的分流策略,例如,包括non3GPP接入技术指示。
作为本申请实施例提供的另一个方案,终端在将业务流从第一接入技术侧对应的链路迁移到第二接入技术对应的链路时,还可以包括:
S417、终端确定业务流的数据包在第一接入技术对应的链路上传输结束,终端向UPF网元发送第一指示,该第一指示用于指示在第一接入技术上传输的业务流的数据包传输结束。
具体的,第一指示的发送方式以及实现方式,可以参考上述实施例中的描述。此处不再赘述。
S418、UPF网元接收第一指示。
S419、UPF网元根据第一指示将在第一接入技术和/或第二接入技术对应的链路上接收到的业务流的数据包进行排序。
具体进行排序的方式可以参考上述实施例中的描述,此处不再赘述。
S420、UPF网元确定业务流的数据包在第一接入技术对应的链路上传输结束,UPF网元向终端发送第一指示。
S421、终端接收第一指示。
S422、终端根据第一指示将在第一接入技术和/或第二接入技术对应的链路上接收到的业务流的数据包进行排序。
如图16所示,图16示出了一种由SMF网元发起业务流迁移的流程示意图,图16所示的方案中,S501-S504可以参考S401-S404,区别在于,S502和S503中向终端发送的是链路条件信息。S504中使用Network-initiated指示替代了UE-initiated指示,其中,UE-initiated指示用于表示由核心网发送业务流迁移。
可以理解的是,终端和网络侧还可以提前协商,当会话管理请求消息中不携带任何指示时,由网络侧发起业务流迁移。
S505-S507可以参考S405-S407。可选的,此处的分流模式,与S407中的区别在于,PCF网元可以仅向SMF网元发送:1)、最优链路分流指示。由SMF网元决定什么是最优链路,也即由SMF网元确定根据哪些参数确定最优链路。2)、基于负载链路均衡进行分流的指示。由SMF网元根据当前链路状态确定各个接入技术对应的链路的分流比例。
S508-S509可以参考S408-S409,区别在于,S408中链路检测信息由SMF网元从终端处获取,此处的链路检测信息由SMF网元根据从PCF网元处获取到的策略信息生成的。
S510、SMF网元向终端发送会话管理响应消息,该会话管理响应消息包括链路检测信息。
S511、终端接收链路检测信息。
需要说明的是,如果终端在S501-S504中已经收到了PCF网元发送的链路检测信息,则使用S511中收到的链路检测信息替换S501-S504中收到的PCF网元发送的链路检测信息。
S512、终端基于SMF网元发送的链路检测信息,向SMF网元发送链路状态信息。
具体的,终端可以通过NAS消息向SMF网元发送链路状态信息。也可以将链路状态信息通过用户面消息发送给UPF网元,以由UPF网元通过N4接口消息发送给SMF网元。
可选的,在本实施例中还包括:SMF网元接收接入网设备的推荐带宽。具体过程可以参考S411-S414。此处不再赘述。
S513、SMF网元根据链路状态信息,以及分流策略、分流模式和链路条件信息中的至少一个处理业务流。
可选的,该方法还包括:终端和UPF网元对业务流迁移过程中数据包处理的过程,具体过程可以参考S417-S422中的描述,此处不再赘述。通过向UE或者UPF发送第一指示,这样可以解决业务流在从一个接入技术对应的链路迁移至另一个接入技术对应的链路过程中出现的数据包乱序问题。
如图17所示,图17示出了由PCF网元发起业务流迁移的流程示意图,该方案与图15和图16的区别在于:在图17中,S601-S607与S501-S507相同。S608-S611可以参考S508-S611。此处不再赘述。区别在于,在图16中,链路检测信息由SMF网元从PCF网元处获取。
S612、终端基于SMF网元发送的链路检测信息,向PCF网元发送链路状态信息。
具体的,UE将链路状态信息发送直接或通过UPF网元给SMF网元,由SMF网元发送给PCF网元。
此外,UPF网元基于链路检测信息获取到的链路状态信息也发送给SMF网元,由SMF网元发送给PCF网元。
S613、PCF网元基于收到的链路状态信息,以及本地配置的分流模式、分流策略和链路条件信息中的至少一个处理业务流。
具体的,PCF网元确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足链路条件信息,PCF网元根据所述分流策略和所述分流模式中的至少一个处理所述业务流。
具体的,PCF网元根据所述分流策略和所述分流模式中的至少一个处理所述业务流可以指:PCF网元更新根据分流策略和所述分流模式中的至少一个。
其中,目标链路为业务流迁移后所在的接入技术对应的链路(例如,3GPP接入技术对应的链路),当前链路为业务流迁移前所在的接入技术对应的链路(non 3GPP接入技术对应的链路)。
例如,PCF网元确定3GPP接入技术对应的链路满足链路条件信息,则PCF网元向SMF网元发送更新后的分流策略,该更新后的分流策略包括:3GPP接入技术指示。
具体的,PCF网元向SMF网元发送更新后的分流策略,便可以由SMF网元发起业务流迁移或者由终端发起业务流迁移。在迁移过程中为了解决上述乱序的问题,还可以执行S417-S422,此处不再赘述。可选的,在本实施例中还包括:SMF网元接收接入网设备的推荐带宽。具体过程可以参考S411-S414。此处不再赘述。
如图18所示,图18为一种以终端和UPF网元针对non GBR业务流直接发送业务流移动的流程示意图:
S701-S707可以参考S401-S407或者参考S501-S507中的描述,此处不再赘述。
S708、SMF网元发送链路状态检测信息、策略信息,QFI或流描述参数与分流指示之间的关系给UPF网元。
其中,分流指示用于表示QFI对应的业务流或流描述参数对应的业务流可以由UPF网元迁移。可选的,分流指示的另一种实现方式为:接入技术指示与分流比例,即SMF网元发送QFI与接入技术指示及分流比例给UPF网元。
当分流比例为具体数值时,表示UPF网元基于分流比例进行业务流的移动。当分流比例为空时,表示UPF网元可以按照任意比例进行业务流移动。
S709、UPF网元向终端发送链路状态检测信息、策略信息、QFI或流描述参数与分流指示之间的关系。
S710、UPF网元和终端分流基于链路条件信息互相上报各自检测的链路状态信息。
S711、终端根据UPF网元发送的链路状态信息,以及策略信息处理业务流。
具体的,终端确定当前接入技术对应的链路的链路状态信息不满足链路条件信息,则终端将业务流迁移到目标接入技术对应的链路。或者,终端确定目标接入技术对应的链路的链路状态信息满足链路条件信息,则终端将业务流迁移到目标接入技术对应的链路。
S712、UPF网元根据终端发送的链路状态信息,以及策略信息处理业务流。
具体的,UPF网元确定当前接入技术对应的链路的链路状态信息不满足链路条件信息,则UPF网元将业务流迁移到目标接入技术对应的链路。或者,UPF网元确定目标接入技术对应的链路的链路状态信息满足链路条件信息,则UPF网元将业务流迁移到目标接入技术对应的链路。
可以理解的是,步骤S712中终端确定向UPF网元发送的业务流所在的链路,UPF网元确定向终端发送业务流所在的链路。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如处理业务流的、通信装置等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例处理业务流的装置、通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图19示出了上述实施例中所涉及的一种处理业务流的装置的一种可能的结构示意图,该一种处理业务流的装置可以为终端,或者为应用于终端中的芯片。该一种处理业务流的装置包括:获取单元201、处理单元202。
其中,获取单元201用于支持一种处理业务流的装置执行上述实施例中的步骤S103。处理单元202用于支持一种处理业务流的装置执行上述实施例中的步骤S104、S1042、S112。
作为一种可能的实现方式,该一种处理业务流的装置包括:发送单元203、接收单元204,和确定单元205。
其中,发送单元203,用于支持一种处理业务流的装置执行上述实施例中的步骤S105,S110,S114。
接收单元204用于支持一种处理业务流的装置执行上述实施例中的步骤S109以及S119。
确定单元205,用于支持一种处理业务流的装置执行上述实施例中的步骤S1041以及S113。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图20示出了上述实施例中所涉及的一种处理业务流的装置的一种可能的逻辑结构示意图,该一种处理业务流的装置可以为上述实施例中的终端,或者为应用于终端中的芯片。一种处理业务流的装置包括:处理模块212和通信模块213。处理模块212用于对一种处理业务流的装置的动作进行控制管理,例如,处理模块212用于执行在一种处理业务流的装置侧进行消息或数据处理的步骤,通信模块213用于在一种处理业务流的装置侧进行消息或数据处理的步骤。
例如,处理模块212用于支持一种处理业务流的装置执行上述实施例中的S104、S1042、S112。通信模块213用于支持一种处理业务流的装置执行上述实施例中的S103,S105,S109,S110,S114以及S119。和/或用于本文所描述的技术的其他由一种处理业务流的装置执行的过程。
可选的,一种处理业务流的装置还可以包括存储模块211,用于存储一种处理业务流的装置的程序代码和数据。
其中,处理模块212可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块213可以是通信接口、收发器、收发电路或接口电路等。存储模块211可以是存储器。
当处理模块212为处理器220,通信模块213为接口电路230或收发器时,存储模块211为存储器240时,本申请所涉及的一种处理业务流的装置可以为图21所示的设备。
其中,接口电路230、一个或两个以上(包括两个)处理器220以及存储器240通过总线210相互连接。总线210可以是PCI总线或EISA总线等。总线210可以分为地址总线、数据总线、控制总线等。为便于表示,图21中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器240用于存储一种处理业务流的装置的程序代码和数据。接口电路230用于支持一种处理业务流的装置与其他设备(例如,通信装置)通信。处理器用于支持一种处理业务流的装置执行存储器240中存储的程序代码和数据,从而对一种处理业务流的装置的动作进行控制管理。
例如,接口电路230支持一种处理业务流的装置执行S103,S105,S109,S110,S114以及S119。处理器220用于支持一种处理业务流的装置执行存储器240中存储的程序代码和数据以实现本申请提供的S104、S1042、S112。
在采用集成的单元的情况下,图22示出了上述实施例中所涉及的通信装置的一种可能的结构示意图,该通信装置可以为会话管理网元,或者为应用于会话管理网元中的芯片。该通 信装置包括:获取单元301和发送单元302。
其中,获取单元301用于支持通信装置执行上述实施例中的步骤S101、S106以及S107。发送单元302用于支持通信装置执行上述实施例中的步骤S102、S108、S116以及S118。
一种可能的实现方式,通信装置还包括:接收单元303,用于支持通信装置执行上述实施例中的步骤S111以及S117。
在采用集成的单元的情况下,图23示出了上述实施例中所涉及的通信装置的一种可能的逻辑结构示意图,该通信装置可以为上述实施例中的会话管理网元,或者为应用于会话管理网元中的芯片。该通信装置包括:处理模块312和通信模块313。处理模块312用于对该通信装置的动作进行控制管理,通信模块313用于执行在通信装置侧进行消息或数据处理的步骤。
例如,通信模块313用于支持该通信装置执行上述实施例中的S101、S102、S106、S107、S108、S111、S116、S117以及S118。
和/或用于本文所描述的技术的其他由通信装置执行的过程。
可选的,该通信装置还可以包括存储模块311,用于存储该通信装置的程序代码和数据。
其中,处理模块312可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块313可以是通信接口、收发器、收发电路或接口电路等。存储模块311可以是存储器。
当处理模块312为处理器320,通信模块313为接口电路330或收发器时,存储模块311为存储器340时,本申请所涉及的该通信装置可以为图24所示的设备。
其中,接口电路330、一个或两个以上(包括两个)处理器320以及存储器340通过总线310相互连接。总线310可以是PCI总线或EISA总线等。总线310可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器340用于存储该通信装置的程序代码和数据。接口电路330用于支持该通信装置与其他设备(例如,终端)通信,处理器320用于支持该通信装置执行存储器340中存储的程序代码和数据以实现在通信装置侧进行消息/数据控制的动作。
作为一种可能的实现方式,接口电路330用于支持该通信装置执行上述实施例中的S101、S102、S106、S107、S108、S111、S116、S117以及S118。和/或用于本文所描述的技术的其他由通信装置执行的过程。
在采用集成的单元的情况下,图25示出了上述实施例中所涉及的一种数据包传输装置的一种可能的结构示意图,该数据包传输装置可以为发送网元,或者为应用于发送网元中的芯片。该数据包传输装置包括:确定单元401和发送单元402。
其中,确定单元401用于支持数据包传输装置执行上述实施例中的步骤S301以及302。发送单元302用于支持数据包传输装置执行上述实施例中的步骤S303。
在采用集成的单元的情况下,图26示出了上述实施例中所涉及的数据包传输装置的一种可能的逻辑结构示意图,该数据包传输装置可以为上述实施例中的发送网元,或者为应用于发送网元中的芯片。该数据包传输装置包括:处理模块412和通信模块413。处理模块412用于对该数据包传输装置的动作进行控制管理,通信模块413用于执行在数据包传输装置侧 进行消息或数据处理的步骤。
例如,通信模块413用于支持该数据包传输装置执行上述实施例中的S301、S302以及S303。
和/或用于本文所描述的技术的其他由数据包传输装置执行的过程。
可选的,该数据包传输装置还可以包括存储模块411,用于存储该数据包传输装置的程序代码和数据。
其中,处理模块412可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块413可以是通信接口、收发器、收发电路或接口电路等。存储模块411可以是存储器。
当处理模块412为处理器420,通信模块413为接口电路430或收发器时,存储模块411为存储器440时,本申请所涉及的该数据包传输装置可以为图27所示的设备。
其中,接口电路430、一个或两个以上(包括两个)处理器420以及存储器440通过总线410相互连接。总线410可以是PCI总线或EISA总线等。总线410可以分为地址总线、数据总线、控制总线等。为便于表示,图27中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器440用于存储该数据包传输装置的程序代码和数据。接口电路430用于支持该数据包传输装置与其他设备(例如,终端/用户面网元)通信,处理器420用于支持该数据包传输装置执行存储器440中存储的程序代码和数据以实现在数据包传输装置侧进行消息/数据控制的动作。
作为一种可能的实现方式,接口电路330用于支持该数据包传输装置执行上述实施例中的S301、S302以及S303。和/或用于本文所描述的技术的其他由数据包传输装置执行的过程。
在采用集成的单元的情况下,图25示出了上述实施例中所涉及的一种数据包传输装置的一种可能的结构示意图,该数据包传输装置可以为发送网元,或者为应用于发送网元中的芯片。该数据包传输装置包括:确定单元401和发送单元402。
其中,确定单元401用于支持数据包传输装置执行上述实施例中的步骤S301以及302。发送单元302用于支持数据包传输装置执行上述实施例中的步骤S303。
在采用集成的单元的情况下,图26示出了上述实施例中所涉及的数据包传输装置的一种可能的逻辑结构示意图,该数据包传输装置可以为上述实施例中的发送网元,或者为应用于发送网元中的芯片。该数据包传输装置包括:处理模块412和通信模块413。处理模块412用于对该数据包传输装置的动作进行控制管理,通信模块413用于执行在数据包传输装置侧进行消息或数据处理的步骤。
例如,通信模块413用于支持该数据包传输装置执行上述实施例中的S301、S302以及S303。
和/或用于本文所描述的技术的其他由数据包传输装置执行的过程。
可选的,该数据包传输装置还可以包括存储模块411,用于存储该数据包传输装置的程序代码和数据。
其中,处理模块412可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑 器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块413可以是通信接口、收发器、收发电路或接口电路等。存储模块411可以是存储器。
当处理模块412为处理器420,通信模块413为接口电路430或收发器时,存储模块411为存储器440时,本申请所涉及的该数据包传输装置可以为图27所示的设备。
其中,接口电路430、一个或两个以上(包括两个)处理器420以及存储器440通过总线410相互连接。总线410可以是PCI总线或EISA总线等。总线410可以分为地址总线、数据总线、控制总线等。为便于表示,图27中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器440用于存储该数据包传输装置的程序代码和数据。接口电路430用于支持该数据包传输装置与其他设备(例如,终端/用户面网元)通信,处理器420用于支持该数据包传输装置执行存储器440中存储的程序代码和数据以实现在数据包传输装置侧进行消息/数据控制的动作。
作为一种可能的实现方式,接口电路330用于支持该数据包传输装置执行上述实施例中的S301、S302以及S303。和/或用于本文所描述的技术的其他由数据包传输装置执行的过程。
在采用集成的单元的情况下,图28示出了上述实施例中所涉及的另一种数据包传输装置的一种可能的结构示意图,该数据包传输装置可以为接收网元,或者为应用于接收网元中的芯片。该数据包传输装置包括:接收单元501和处理单元502。
其中,接收单元501用于支持数据包传输装置执行上述实施例中的步骤S304以及305。处理单元502用于支持数据包传输装置执行上述实施例中的步骤S306。
在采用集成的单元的情况下,该数据包传输装置可以采用如图26所示的逻辑结构示意图,该数据包传输装置可以为上述实施例中的接收网元,或者为应用于接收网元中的芯片。此时,通信模块413用于支持该数据包传输装置执行上述实施例中的S304以及305。处理模块412,用于支持该数据包传输装置执行上述实施例中的S306。
一种可能的实现方式,图28所示的数据包传输装置,还可以采用图27所示的设备。图27中各个网元之间的连接和功能可以参考上述实施例中的描述,此处不再赘述。此时,接口电路330用于支持该数据包传输装置执行上述实施例中的S304以及S305。处理器用于支持该数据包传输装置执行S306。和/或用于本文所描述的技术的其他由数据包传输装置执行的过程。
在采用集成的单元的情况下,图29示出了上述实施例中所涉及的一种处理业务流的装置的一种可能的结构示意图,该处理业务流的装置可以为核心网网元,或者为应用于核心网网元中的芯片。该处理业务流的装置包括:获取单元601和处理单元602。
其中,获取单元601用于支持处理业务流的装置执行上述实施例中的步骤S201以及S203。处理单元602用于支持处理业务流的装置执行上述实施例中的步骤S202。
需要说明的是,当图29所示的装置为核心网网元或者为应用于核心网网元中的芯片时,一种可能的实现方式,若该核心网网元为用户面网元或者策略控制网元,则该用户面网元或者策略控制网元包括:获取单元601和处理单元602。
另一种可能的实现方式,当核心网网元为会话管理网元时,该处理业务流的装置还可以包括:接收单元603以及发送单元604。
其中,接收单元603用于支持处理业务流的装置执行上述实施例中的步骤S209。发送单 元604用于支持该处理业务流的装置执行上述实施例中的步骤S204、S2021以及S210。
一种示例,图29所示的处理业务流的装置还可以采用如图20所示的逻辑结构。当图29所示的处理业务流的装置还可以采用如图20所示的逻辑结构时,处理模块212用于支持处理业务流的装置执行上述实施例中的步骤S202。通信模块213用于支持处理业务流的装置执行上述实施例中的步骤S201以及S203。
可选的,当核心网网元为会话管理网元时,通信模块213还用于支持处理业务流的装置执行S204、S2021以及S210、S209。
另一种示例,图30所示的处理业务流的装置还可以采用如图21所示的结构。当图29所示的处理业务流的装置还可以采用如图21所示的结构时,处理器220用于支持处理业务流的装置执行上述实施例中的步骤S202。接口电路230用于支持处理业务流的装置执行上述实施例中的步骤S201以及S203。
可选的,当核心网网元为会话管理网元时,接口电路230还用于支持处理业务流的装置执行、S204、S2021以及S210、S209。
需要说明的是,本申请实施例中涉及接收单元、获取单元(或用于接收/获取的单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上发送单元、传输单元(或用于发送/传输的单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。本申请实施例中的处理单元,确定单元是一种该装置的处理器,用于处理接收到的信号或者处理自身的信号。例如,当该装置以芯片的方式实现时,该处理单元,确定单元是该芯片用于处理接收到的其它芯片或装置的信号的处理器。
图30是本发明实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和接口电路1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式为:通信装置和确定通信能力的装置,所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制通信装置和确定通信能力的装置的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、接口电路1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图30中将各种总线都标为总线系统1520。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处 理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式,接口电路1530用于执行图5-图9所示的实施例中的终端和会话管理网元的接收和发送的步骤。处理器1510用于执行图5-图9所示的实施例中的终端和会话管理网元处理的步骤。
另一种可能的实现方式,接口电路1530用于执行图10-图13所示的实施例中的终端/用户面网元和核心网网元的接收和发送的步骤。处理器1510用于执行图10-图13所示的实施例中的终端/用户面网元和核心网网元处理的步骤。
又一种可能的实现方式,接口电路1530用于执行图14所示的实施例中的发送网元和接收网元的接收和发送的步骤。处理器1510用于执行图14所示的实施例中的发送网元和接收网元处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S103、S104、S1042、S105、S109、S110、S112、S114以及S119。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得会话管理网元或者应用于会话管理网元中的芯片执行实施例中的S101、S102、S106、S107、S108、S111、S116、S117以及S118。和/或用于本文所描述的技术的其他由会话管理网元或者应用于会话管理网元中的芯片执行的过程。
再一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得发送网元或者应用于发送网元中的芯片执行实施例中的S301、S302以及S303。和/或用于本文所描述的技术的其他由发送网元或者应用于发送网元中的芯片执行的过程。
另一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得接收网元或者应用于接收网元中的芯片执行实施例中的S304、S305以及S306。和/或用于本文所描述的技术的其他由接收网元或者应用于接收网元中的芯片执行的过程
再一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S201、S202、S203、S204、S2021、S209以及S210。和/或用于本文所描述的技术的其他由核心网网元或者应用于核心网网元中的芯片执行的过程。
前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S103、S104、S1042、S105、S109、S110、S112、S114以及S119。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得会话管理网元或者应用于会话管理网元中的芯片执行实施例中的S101、S102、S106、S107、S108、S111、S116、S117以及S118。和/或用于本文所描述的技术的其他由会话管理网元或者应用于会话管理网元中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得发送网元或者应用于发送网元中的芯片执行实施例中的S301、S302、S303。和/或用于本文所描述的技术的其他由发送网元或者应用于发送网元中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得接收网元或者应用于接收网元中的芯片执行实施例中的S304、S305、S306。和/或用于本文所描述的技术的其他由接收网元或者应用于接收网元中的芯片执行的过程。
又一方面,本申请实施例提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得核心网网元或者应用于核心网网元中的芯片执行实施例中的S201、S202、S203、S204、S2021、S209以及S210。
一方面,提供一种芯片,该芯片应用于终端中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S103、S104、S1042、S105、S109、S110、S112、S114以及S119。和/或用于本文所描述的技术的其他由终端执行的过程。
又一方面,提供一种芯片,该芯片应用于会话管理网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S101、S102、S106、S107、S108、S111、S116、S117以及S118。和/或用于本文所描述的技术的其他由会话管理网元执行的过程。
再一方面,提供一种芯片,该芯片应用于发送网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S301、S302以及S303。和/或用于本文所描述的技 术的其他由发送网元执行的过程。
另一方面,提供一种芯片,该芯片应用于接收网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S304、S305、S306。和/或用于本文所描述的技术的其他由接收网元执行的过程。
再一方面,提供一种芯片,该芯片应用于核心网网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S201、S202、S203、S204、S2021、S209以及S210。和/或用于本文所描述的技术的其他由核心网网元执行的过程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (29)

  1. 一种处理业务流的方法,其特征在于,包括:
    终端获取业务流的策略信息,所述策略信息包括:分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    所述终端根据所述策略信息处理所述业务流。
  2. 根据权利要求1所述的一种处理业务流的方法,其特征在于,所述方法还包括:
    所述终端向核心网网元发送链路检测信息,所述链路检测信息用于获取链路的链路状态信息;
    所述终端接收所述核心网网元发送的链路状态信息。
  3. 根据权利要求2所述的一种处理业务流的方法,其特征在于,所述终端根据所述策略信息处理所述业务流,包括:
    所述终端确定目标链路的链路状态信息满足或当前链路的链路状态信息不满足所述链路条件信息;
    所述终端根据所述分流策略和所述分流模式中的至少一个处理所述业务流。
  4. 根据权利要求1-3中任一项所述的一种处理业务流的方法,其特征在于,所述终端根据所述策略信息处理所述业务流,包括:
    所述终端将所述业务流在所述多种接入技术对应的链路上传输;或者,
    所述终端将所述业务流从所述多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;或者,
    所述终端将所述业务流从所述多种接入技术迁移至所述多种接入技术中的第一接入技术或第二接入技术对应的链路上传输;或者,
    所述终端发起所述业务流处理流程。
  5. 根据权利要求2-4任一项所述的一种处理业务流的方法,其特征在于,所述链路检测信息包括:订阅的链路状态参数和所述订阅的链路状态参数的发送条件信息中的至少一个。
  6. 根据权利要求5所述的一种处理业务流的方法,其特征在于,所述订阅的链路状态参数包括以下一项或者多项:接入网信号质量、接入网信号强度、接入网带宽、接入网负载、回程网带宽或负载、链路时延参数、链路丢包率参数和链路抖动参数。
  7. 根据权利要求5或6所述的一种处理业务流的方法,其特征在于,所述链路检测信息还包括以下一项或者多项:接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI、或流描述参数。
  8. 根据权利要求5-7任一项所述的一种处理业务流的方法,其特征在于,所述链路检测信息还包括:所述订阅的链路状态参数的发送频率信息。
  9. 根据权利要求1-8任一项所述的一种处理业务流的方法,其特征在于,所述链路条件信息包括:与接入相关的条件信息和与接入无关的条件信息中的至少一项。
  10. 根据权利要求9所述的一种处理业务流的方法,其特征在于,所述与接入相关的条件信息包括以下一项或者多项:接入网信号强度阈值、接入网信号质量阈值、回程带宽阈值或负载阈值、接入网带宽阈值和接入网负载阈值;
    所述与接入无关的条件信息包括以下一项或者多项:链路时延阈值、链路丢包率阈值和 链路抖动阈值。
  11. 根据权利要求1-10任一项所述的一种处理业务流的方法,其特征在于,所述终端获取业务流的策略信息,包括:
    所述终端从非接入层NAS传输消息中获取策略控制网元发送的所述业务流的分流模式和用于传输所述业务流的链路条件信息中的至少一个;或者
    所述终端从会话管理网元发送的会话管理响应消息中获取所述业务流的分流策略、分流模式和用于传输所述业务流的链路条件信息中的至少一个。
  12. 根据权利要求1-11任一项所述的一种处理业务流的方法,其特征在于,所述终端根据所述策略信息处理所述业务流,包括:
    所述终端根据所述策略信息将所述业务流从所述多种接入技术中的第一接入技术对应的链路迁移到第二接入技术对应的链路上传输;
    所述终端确定在所述第一接入技术对应的链路上发送的所述业务流的数据包传输结束;
    所述终端向用户面网元发送第一指示,所述第一指示用于指示在所述第一接入技术对应的链路上发送的所述业务流的数据包传输结束。
  13. 根据权利要求1-12任一项所述的一种处理业务流的方法,其特征在于,所述方法还包括:
    所述终端向核心网网元发送指示信息,所述指示信息用于指示由所述终端对所述业务流进行处理。
  14. 根据权利要求1-13任一项所述的一种处理业务流的方法,其特征在于,所述分流模式包括以下一项或者多项:
    接入技术优先指示,用于指示优先通过所述接入技术优先指示关联的接入技术传输所述业务流;
    最优链路分流指示,用于指示优先通过最优链路传输所述业务流,所述最优链路为链路状态优于其他链路的链路;
    基于链路负载均衡的分流指示,用于指示按照链路负载均衡策略传输所述业务流;
    接入技术与分流比例指示,用于指示按照所述接入技术对应的分流比例传输所述业务流;
    冗余传输指示,用于表示所述业务流中的相同数据包同时通过不同接入技术传输。
  15. 根据权利要求1-14任一项所述的一种处理业务流的方法,其特征在于,所述方法还包括:
    所述终端接收网络侧发送的链路状态信息,以及接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI、或流描述参数中的至少一个。
  16. 根据权利要求15所述的一种处理业务流的方法,其特征在于,所述方法还包括:
    所述终端接收接入网设备发送的链路状态信息为所述接入网设备的推荐带宽值;或者,
    所述终端接收会话管理网元或用户面网元发送的链路状态信息为所述接入网设备的推荐带宽值。
  17. 根据权利要求16所述的一种处理业务流的方法,其特征在于,所述终端根据所述策略信息处理所述业务流,包括:
    所述终端根据所述策略信息和所述推荐带宽值处理所述业务流。
  18. 一种通信方法,其特征在于,包括:
    会话管理网元获取业务流的策略信息,所述策略信息包括:分流策略、分流模式和用于 传输所述业务流的链路条件信息中的至少一个,所述业务流所在的分组数据单元PDU会话支持多种接入技术;
    所述会话管理网元将所述策略信息发送给终端。
  19. 根据权利要求18所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元向用户面网元发送链路检测信息,所述链路检测信息用于获取链路的链路状态信息;
    所述会话管理网元接收所述用户面网元发送的链路状态信息;
    所述会话管理网元向所述终端发送所述链路状态信息。
  20. 根据权利要求18或19所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元接收所述终端发送的所述链路检测信息;或者,
    所述会话管理网元根据所述业务流的策略信息,生成所述链路检测信息。
  21. 根据权利要求18-20任一项所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元将链路状态信息、以及接入技术指示、保证比特率GBR指示、非Non-GBR指示、服务质量流的标识QFI、或流描述参数中的至少一个发送给所述终端。
  22. 根据权利要求20或21所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述用户面网元发送第一指示,所述第一指示用于指示需要发送链路状态信息的链路。
  23. 根据权利要求22所述的一种通信方法,其特征在于,所述第一指示包括:
    服务质量流的标识QFI、接入技术指示、隧道标识、保证比特率GBR指示、非Non-GBR指示和流描述参数中的至少一个。
  24. 根据权利要求18-23任一项所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元向接入网设备发送服务质量流QoS flow的标识QFI与通知指示,所述通知指示用于指示当所述接入网设备无法满足所述QFI对应的QoS flow的带宽需求时,向所述会话管理网元或用户面网元发送所述接入网设备的推荐带宽值。
  25. 根据权利要求24所述的一种通信方法,其特征在于,所述方法还包括:
    所述会话管理网元接收所述接入网设备发送的所述QFI与所述接入网设备的推荐带宽值;
    所述会话管理网元向所述终端发送所述QFI与所述接入网设备的推荐带宽值。
  26. 一种处理业务流的装置,其特征在于,包括:
    存储器,用于存储计算机程序指令;
    至少一个处理器,用于执行所述计算机程序指令以使得该处理业务流的装置执行权利要求1-17任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序指令;
    至少一个处理器,用于执行所述计算机程序指令以使得该通信装置执行权利要求18-25任一项所述的方法。
  28. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求1至17任一项所述的一种处理业务流的方法,或者以实现如权利要求18-25任一项所述的一种通信方法。
  29. 一种通信系统,其特征在于,包括权利要求27所述的通信装置以及用于与所述通信装置进行通信的用户面网元。
PCT/CN2019/098659 2018-08-13 2019-07-31 一种处理业务流的方法、通信方法及装置 WO2020034844A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19850468.0A EP3829216A4 (en) 2018-08-13 2019-07-31 SERVICE FLOW PROCESSING PROCESS, AND COMMUNICATION PROCESS AND DEVICE
US17/172,722 US11588741B2 (en) 2018-08-13 2021-02-10 Service flow processing method, communication method, and apparatus
US18/158,037 US11888750B2 (en) 2018-08-13 2023-01-23 Service flow processing method, communication method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810918635.8 2018-08-13
CN201810918635.8A CN110831070B (zh) 2018-08-13 2018-08-13 一种处理业务流的方法、通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,722 Continuation US11588741B2 (en) 2018-08-13 2021-02-10 Service flow processing method, communication method, and apparatus

Publications (1)

Publication Number Publication Date
WO2020034844A1 true WO2020034844A1 (zh) 2020-02-20

Family

ID=69525175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098659 WO2020034844A1 (zh) 2018-08-13 2019-07-31 一种处理业务流的方法、通信方法及装置

Country Status (4)

Country Link
US (2) US11588741B2 (zh)
EP (1) EP3829216A4 (zh)
CN (2) CN114390596A (zh)
WO (1) WO2020034844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923800A (zh) * 2020-07-08 2022-01-11 华为技术有限公司 一种通信方法及装置
EP4124104A4 (en) * 2020-04-13 2023-08-23 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210368373A1 (en) * 2019-02-14 2021-11-25 Lg Electronics Inc. Ma pdu session method and device
EP4000224B1 (en) * 2019-07-18 2023-10-11 Lenovo (Singapore) Pte. Ltd. Measuring round trip time in a mobile communication network
CN111800857B (zh) * 2019-08-27 2023-01-03 维沃移动通信有限公司 一种寻呼方法和设备
EP4032237A1 (en) * 2019-09-18 2022-07-27 Lenovo (Singapore) Pte. Ltd. Establishing a new qos flow for a data connection
WO2021136633A1 (en) * 2020-01-03 2021-07-08 Sony Group Corporation Reporting service for dynamic status information on a data link
US11323550B2 (en) * 2020-02-17 2022-05-03 Cisco Technology, Inc. Techniques to send load-share notifications to multiple receivers
CN113316199B (zh) * 2020-02-26 2023-06-20 华为技术有限公司 一种连接管理方法及相关设备
CN113498083B (zh) * 2020-04-07 2023-06-02 华为技术有限公司 通信方法、装置及系统
CN113518032B (zh) * 2020-04-10 2022-11-01 清华大学 基于SRv6的用户可信标识携带方法及系统
CN113676947A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 通信方法和装置
CN113873454B (zh) * 2020-06-30 2023-06-20 华为技术有限公司 一种通信方法及装置
CN114006860B (zh) * 2020-07-14 2023-12-22 中国电信股份有限公司 用户接入方法、系统和装置
CN113938438B (zh) * 2020-07-14 2023-10-13 维沃移动通信有限公司 数据处理方法、数据处理装置及第一终端
CN114071494A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 通信方法和装置
WO2022036604A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 数据传输方法及装置
CN114666398B (zh) * 2020-12-07 2024-02-23 深信服科技股份有限公司 应用分类方法、装置、设备及存储介质
CN114928561A (zh) * 2021-02-03 2022-08-19 华为技术有限公司 丢包率的检测方法、通信装置及通信系统
CN114916006A (zh) * 2021-02-10 2022-08-16 华为技术有限公司 一种传输路径确定方法及装置
CN112995320B (zh) * 2021-03-03 2024-05-14 浪潮通信技术有限公司 基于流表的upf扩容下的负荷分担方法及系统
CN115150895A (zh) * 2021-03-31 2022-10-04 华为技术有限公司 一种业务流处理方法、装置及系统
CN115242642A (zh) * 2021-04-23 2022-10-25 中兴通讯股份有限公司 通信方法、终端、核心网网元及计算机可读存储介质
CN115334493A (zh) * 2021-05-10 2022-11-11 中国移动通信有限公司研究院 一种状态订阅通知的方法、装置及设备
CN115396403A (zh) * 2021-05-24 2022-11-25 中兴通讯股份有限公司 一种增强ims业务的方法、装置、电子设备及存储介质
CN113596917B (zh) * 2021-08-04 2024-04-09 中国电信股份有限公司 基于信令辅助实现gtp通信数据报文处理方法、装置
CN113613291B (zh) * 2021-08-12 2024-02-02 中国联合网络通信集团有限公司 一种下行gbr业务流传送方法、终端及流量控制单元
CN114143292B (zh) * 2021-12-02 2023-12-22 中国联合网络通信集团有限公司 策略更新方法、装置及可读存储介质
CN114301831B (zh) * 2021-12-10 2023-07-07 中国联合网络通信集团有限公司 一种业务传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238632A (zh) * 2010-04-21 2011-11-09 电信科学技术研究院 一种分流的处理方法、系统和设备
US20120307658A1 (en) * 2011-05-31 2012-12-06 Ntt Docomo, Inc Method, apparatus and system for bandwidth aggregation of mobile internet access node
CN103188725A (zh) * 2011-12-29 2013-07-03 中兴通讯股份有限公司 一种协同业务的适配、分流传输及流切换方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857011B (zh) 2012-11-30 2018-01-05 中兴通讯股份有限公司 一种ue接入网络的选择方法、装置、系统及一种ue
CN103929740B (zh) * 2013-01-15 2017-05-10 中兴通讯股份有限公司 数据安全传输方法及lte接入网系统
CN104125608B (zh) * 2013-04-25 2018-01-02 华为技术有限公司 一种网络控制分流的方法和系统及其网络设备
US10111135B2 (en) * 2013-08-09 2018-10-23 Nokia Solutions And Networks Oy Offloading traffic of a user equipment communication session from a cellular communication network to a wireless local area network (WLAN)
CN103491578B (zh) * 2013-08-30 2016-11-16 华为技术有限公司 网络分流方法及装置
EP3108688A1 (en) * 2014-02-19 2016-12-28 Convida Wireless, LLC Serving gateway extensions for inter-system mobility
CN106162754B (zh) 2015-04-07 2020-03-24 中国移动通信集团公司 一种业务流的识别方法、装置及系统
CN109075919B (zh) * 2016-04-19 2021-10-29 诺基亚技术有限公司 拆分承载双/多连接重传分集
WO2017194768A1 (en) 2016-05-13 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network-service interaction regarding requested network behavior
ES2946703T3 (es) 2016-09-30 2023-07-24 Samsung Electronics Co Ltd Procedimiento y aparato para establecer la doble conectividad para transmitir datos en una nueva arquitectura de comunicación por radio
CN110383885A (zh) 2017-01-11 2019-10-25 瑞典爱立信有限公司 5G QoS流到无线承载重新映射

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238632A (zh) * 2010-04-21 2011-11-09 电信科学技术研究院 一种分流的处理方法、系统和设备
US20120307658A1 (en) * 2011-05-31 2012-12-06 Ntt Docomo, Inc Method, apparatus and system for bandwidth aggregation of mobile internet access node
CN103188725A (zh) * 2011-12-29 2013-07-03 中兴通讯股份有限公司 一种协同业务的适配、分流传输及流切换方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829216A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4124104A4 (en) * 2020-04-13 2023-08-23 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN113923800A (zh) * 2020-07-08 2022-01-11 华为技术有限公司 一种通信方法及装置
EP4171100A4 (en) * 2020-07-08 2023-12-06 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Also Published As

Publication number Publication date
US20210168079A1 (en) 2021-06-03
US11888750B2 (en) 2024-01-30
CN110831070A (zh) 2020-02-21
US20230155943A1 (en) 2023-05-18
CN114390596A (zh) 2022-04-22
CN110831070B (zh) 2021-12-21
EP3829216A1 (en) 2021-06-02
EP3829216A4 (en) 2021-11-03
US11588741B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2020034844A1 (zh) 一种处理业务流的方法、通信方法及装置
EP3829130B1 (en) Service flow transmission method and apparatus
US11368873B2 (en) Method and system of packet aggregation
WO2019223498A1 (zh) 一种数据处理方法、发送方法及装置
WO2018082602A1 (zh) 切换方法及装置
WO2022007899A1 (zh) Upf选择方法及装置
US11431621B2 (en) Systems and methods for user plane function (“UPF”) offload at configurable routing fabric
WO2015043395A1 (zh) 业务接入方法、用户设备和无线控制器
CN113543219B (zh) 通信方法和装置
WO2020034869A1 (zh) 一种业务流的传输方法、通信方法及装置
WO2019201322A1 (zh) 一种通信方法及相关设备
JP7389243B2 (ja) QoSマッピング
US20220217569A1 (en) Method and apparatus for controlling service flow transmission, and system
WO2020169039A1 (zh) 一种策略管理的方法及装置
WO2019149177A1 (zh) 一种业务分流的方法和装置
EP3457758A1 (en) Data transmission method, device, and system
US11963032B2 (en) Traffic routing method, apparatus, and system
US20230354143A1 (en) Rapid user equipment route selection policy rule processing
KR20190129378A (ko) 통신 시스템에서 통합 전달 네트워크를 통한 패킷의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850468

Country of ref document: EP

Effective date: 20210226