WO2019201322A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2019201322A1
WO2019201322A1 PCT/CN2019/083328 CN2019083328W WO2019201322A1 WO 2019201322 A1 WO2019201322 A1 WO 2019201322A1 CN 2019083328 W CN2019083328 W CN 2019083328W WO 2019201322 A1 WO2019201322 A1 WO 2019201322A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
function network
user plane
plane function
data
Prior art date
Application number
PCT/CN2019/083328
Other languages
English (en)
French (fr)
Inventor
胡翔
夏渊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019201322A1 publication Critical patent/WO2019201322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a communication method and related devices.
  • the Session Management Function (SMF) network element is a 5G core network element that is responsible for the selection and orientation of the user plane network element, such as the selection and orientation of the User Plane Function (UPF) network element.
  • a Service-Level Agreement (SLA) is a contract between a network service provider and a customer, defining the type of service, quality of service, and so on.
  • SLA Service-Level Agreement
  • the SMF network element selects the UPF network element for establishing the session, it is based on the dynamic load of the UPF network element, the location information of the user equipment (User Equipment, UE), and the Single Network Slice Selection Assistance Information (Single Network Slice Selection Assistance Information, S-NSSAI), etc. are selected. It can be seen that when the SMF network element selects the UPF network element, the SLA data is not considered, so that the SLA data of the selected UPF network element may not meet the service requirement.
  • the embodiment of the invention discloses a communication method and related device, which is used to ensure that the SLA data of the UPF network element used for establishing the session selected by the SMF network element can meet the service requirement.
  • the first aspect discloses a communication method.
  • the SMF network element selects a first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, and sends the first UPF network element to the first UPF network element.
  • a session setup message, the first session setup message is used to establish a session for the UE.
  • the M UPF network element is a UPF network element that establishes a connection with the SMF network element, and the subscription data may include SLA data of the UE, where the UE is a UE that triggers selection of a UPF network element, and M is greater than or equal to 1. Integer.
  • the SMF network element can select the UPF network element established by the session for the UE according to the SLA data of the UPF network element and the SLA data of the UE. Therefore, the SLA data of the UPF network element established by the selected session can be guaranteed to satisfy the SLA data of the UE. Therefore, the SLA data of the UPF network element used for establishing the session selected by the SMF network element can be guaranteed to meet the service requirement.
  • the SMF network element may first receive the second session setup message, and then select the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, and Sending a first session establishment message to the first UPF network element.
  • the SMF network element may first receive the session update message, and then select the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, and the first A UPF network element sends a first session setup message.
  • the SMF network element selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, at least one UPF exists in the M UPF network elements.
  • the first UPF network element may be selected from the at least one UPF network element; when the SLA data of the UPF network element does not exist in the M UPF network elements, the SLA data of the UE is satisfied.
  • the UPF network element with the highest similarity between the SLA data of the M and the SLA data of the UE may be determined as the first UPF network element.
  • the SMF network element may receive SLA data of the M UPF network elements sent by the M UPF network elements.
  • the SMF network element may send a subscription data request message to a Unified Data Management (UDM) network element and receive subscription data for the UE from the UDM network element.
  • the subscription data request message is used to acquire subscription data of the UE.
  • UDM Unified Data Management
  • the SLA data may include a latency indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the SMF network element may receive the session establishment response sent by the first UPF network element, and send a session deletion request message for deleting the session information of the UE to the second UPF network element, where the second UPF network element is received.
  • the UPF network element that establishes a session connection with the UE when the session is updated.
  • the second aspect discloses an SMF network element, the SMF network element comprising means for performing the communication method provided by the first aspect or any of the possible implementations of the first aspect.
  • a third aspect discloses an SMF network element including a processor, a memory, and a transceiver, the memory for storing program code, the processor for executing program code, and the transceiver for communicating with other communication devices.
  • the processor executes the program code stored in the memory, the processor is caused to perform the communication method disclosed in any of the possible implementations of the first aspect or the first aspect.
  • a fourth aspect discloses a readable storage medium storing program code for a communication method disclosed by the SMF network element to perform the first aspect or any of the possible implementations of the first aspect.
  • the fifth aspect discloses a communication method, in which the UPF network element sends the SLA data of the UPF network element to the SMF network element, where the SLA data of the UPF network element is used to select the first UPF network element established by the session for the UE, and receives the SMF from the SMF.
  • the first session establishment message of the network element establishing a session for the UE.
  • the SMF network element is an SMF network element that establishes a connection with the UPF network element.
  • the SMF network element can select the UPF network element established by the session for the UE according to the SLA data of the UPF network element. Therefore, the SLA data of the UPF network element established by the selection session can be ensured to meet the requirement of the SLA data of the UE.
  • the SLA data of the UPF network element used for establishing the session selected by the SMF network element can be guaranteed to meet the service requirement.
  • the UPF network element may first determine the SLA data of the UPF network element, and then send the SLA data of the UPF network element to the SMF network element.
  • the SLA data may include a latency indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the UPF network element may receive a session deletion request message sent by the SMF network element for deleting session information of the UE, and delete the session information of the UE.
  • a sixth aspect discloses a UPF network element, the UPF network element comprising means for performing the communication method provided by any of the possible implementations of the fifth aspect or the fifth aspect.
  • a seventh aspect discloses a UPF network element, the UPF network element including a processor, a memory, and a transceiver, the memory for storing program code, the processor for executing program code, and the transceiver for communicating with other communication devices.
  • the processor executes the program code stored in the memory, the processor is caused to perform the communication method disclosed in any of the possible implementations of the fifth aspect or the fifth aspect.
  • the eighth aspect discloses a readable storage medium storing program code for a communication method disclosed by the UPF network element to perform the fifth aspect or any of the possible implementations of the fifth aspect.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another communication method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an SMF network element according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another SMF network element disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another UPF network element disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a communication method and related device, which is used to ensure that the SLA data of the UPF network element used for establishing the session selected by the SMF network element can meet the service requirement. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include a UE, a Radio Access Network (R) AN device, a UPF network element, a Data Network (DN), access and mobility management.
  • R Radio Access Network
  • DN Data Network
  • AMF Access and Mobility Management Function
  • the UE and the (R) AN device can communicate directly; the UE and the AMF network element have a communication interface, and the communication interface can be an N1 interface; the (R) AN device and the AMF network element have a communication interface, and the communication interface can be an N2 interface;
  • the (R) AN device has a communication interface with the UPF network element, and the communication interface can be an N3 interface; the UPF network element has a communication interface with the DN, and the communication interface can be an N6 interface; the UPF network element and the SMF network element have a communication interface,
  • the communication interface can be an N4 interface.
  • the AMF network element can provide a serviced interface Namf.
  • the SMF network element can provide a serviced interface Nsmf, and the UDM network element can provide a serviced interface Nudm.
  • the AMF network element, the SMF network element, and the UDM network element can communicate through the serviced interface.
  • FIG. 2 is a schematic diagram of another network architecture disclosed in an embodiment of the present invention.
  • the network architecture may include a UE, an (R) AN device, a UPF network element, a DN, an AMF network element, an SMF network element, and a UDM network element.
  • the UE and the (R) AN device can communicate directly; the UE and the AMF network element have a communication interface, and the communication interface can be an N1 interface; the (R) AN device and the AMF network element have a communication interface, and the communication interface can be an N2 interface; (R) The AN device has a communication interface with the UPF network element, and the communication interface may be an N3 interface; the UPF network element has a communication interface with the DN, and the communication interface may be an N6 interface; a communication interface exists between different UPF network elements, the communication The interface can be an N9 interface; the UPF network element has a communication interface with the SMF network element, and the communication interface can be an N4 interface; a communication interface exists between different AMF network elements, and the communication interface can be an N14 interface; the AMF network element and the SMF network element There is a communication interface, which may be an N11 interface; the AMF network element has a communication interface with the UDM network element, and the communication interface may be an N8 interface
  • the UE can be a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, Wireless modem, handheld, laptop computer, cordless phone or Wireless Local Loop (WLL) station, Machine Type Communication (MTC) A terminal or other device that can access the network.
  • PDA personal digital assistant
  • WLL Wireless Local Loop
  • MTC Machine Type Communication
  • the UE communicates with the (R) AN device using some air interface technology.
  • the (R) AN device includes a RAN device and an AN device, the RAN device is a 3rd Generation Partnership Project (3GPP) wireless network device, and the AN device is an access network device defined by non (non)3GPP.
  • the RAN device is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • the RAN device may include various forms of base stations, such as macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the AN device allows non-3GPP technology interconnection between the UE and the 3GPP core network.
  • the non-3GPP technology can be Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMAX), Code Division Multiple Access (CDMA) network, etc.
  • the UPF network element is responsible for forwarding and receiving user data in the UE, and can receive user data from the DN and transmit it to the UE through the (R) AN device.
  • the user data can also be received from the UE through the (R) AN device and forwarded to the DN.
  • the transmission resources and scheduling functions provided by the UE in the UPF network element are controlled by the SMF network element.
  • the AMF network element belongs to the core network element and is mainly responsible for signaling processing, such as access control, mobility management, registration, deregistration, and gateway selection.
  • the AMF network element provides a service for the session in the UE
  • the storage resource of the control plane is provided for the session, and the session identifier, the SMF network element identifier associated with the session identifier, and the like are stored.
  • the SMF network element is responsible for user plane network element selection, user plane network element redirection, Internet Protocol (IP) address allocation, session establishment, modification, release, and QoS control.
  • IP Internet Protocol
  • the UDM network element is responsible for user key management, user identification processing, access authorization of subscription data, network function entity management of the UE, session and service continuity management, short message push, lawful interception, subscription management, and short message management.
  • FIG. 3 is a schematic flowchart diagram of a communication method according to an embodiment of the present invention. As shown in FIG. 3, the communication method may include the following steps.
  • the target UPF network element sends the SLA data of the target UPF network element to the SMF network element.
  • the target UPF network element can monitor the SLA data of the target UPF network element in real time, periodically, or periodically, and periodically, periodically, when the SLA data of the first UPF network element changes, or Upon receiving the SLA data data acquisition request message from the SMF network element, the target UPF network element may send the SLA data of the target UPF network element to the SMF network element.
  • the SLA data of the UPF network element may include a delay indicator of the UPF network element, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the change of the SLA data of the target UPF network element may be changed by at least one of a delay indicator of the UPF network element, a single-user peak rate, a single-stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the target UPF network element is any one of the M UPF network elements that are connected to the SMF network element, and M is an integer greater than or equal to 2.
  • the target UPF network element sends the SLA data of the target UPF network element to the SMF network element, which can be implemented by extending the PFCP Node Report Request message, and can be sent through the extended N4/Sx interface.
  • the SMF network element selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the SMF network element may select the first UPF from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the subscription data of the UE may include the SLA data of the UE, and the SLA data of the UE may include a delay indicator of the UE, a peak rate of the single user, a peak rate of the single stream, a packet loss rate, and a minimum guaranteed bandwidth.
  • the SLA data of the M UPF network elements used in this step is the latest SLA data received by the SMF network element from the M UPF network elements.
  • the SMF network element selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements
  • the SLA data of the UE and the M UPF network may be first used.
  • the SLA data of the UE is compared one by one.
  • the UPF network element in which the first SLA data of the M UPF network elements meets the SLA data of the UE can be determined as the first UPF network element.
  • the SLA data of the unfinished UPF network element can be no longer compared, so that the selection time of the UPF network element can be saved.
  • the SLA data of the UE and the SLA data of the M UPF network elements are compared, when the comparison result is that the SLA data of the at least one UPF network element in the M UPF network elements satisfies the SLA data of the UE, if at least If the number of one UPF network element is 1, the UPF network element can be directly determined as the first UPF network element. If the number of the at least one UPF network element is greater than 1, the any one of the at least one UPF network element may be determined as the first UPF network element, or the load of the at least one UPF network element may be minimized.
  • the UPF network element is determined to be the first UPF network element, and may also be selected according to the reference factor of the UPF network element selected by the current 5G standard. These reference factors may include the dynamic load of the UPF network element and the UPF network element in the same data network name ( The static capability under the Data Network Name (DNN), the location of the UPF network element to the SMF network element, the location information of the UE, the satisfaction of the UPF capability to the UE session requirements, the DNN network to which the session belongs, the session and the service continuity mode At least one of the subscription data of the UE, the service routing network identifier, the operator local policy, and the S-NSSAI class.
  • DNN Data Network Name
  • the SLA data of the UPF network element satisfies the SLA data of the UE, that is, the SLA data of the UPF network element, and each index of the UPF network element satisfies the corresponding index in the SLA data of the UE, that is, the delay index of the UPF network element is smaller than that of the UE.
  • the single-user peak rate of the UPF network element is greater than the single-user peak rate of the UE.
  • the single-stream peak rate of the UPF network element is greater than the single-stream peak rate of the UE.
  • the packet loss rate of the UPF network element is smaller than that of the UE.
  • the packet rate, the minimum guaranteed bandwidth of the UPF network element is greater than the minimum guaranteed bandwidth of the UE.
  • the SLA data of the UE and each UPF network element of the M UPF network elements may be calculated.
  • the similarity of the SLA data may be determined as the first UPF network element by the UPF network element with the highest similarity between the SLA data of the MUP network element and the SLA data of the UE.
  • the UPF network element that can satisfy the SLA data of the UE in the SUP data element can be determined as the first UPF network element. For example, if the number of indicators of the SLA data is 5, one of the UPF networks is included.
  • the UPF network element can be determined as the first UPF network element. Wherein, when calculating the similarity, the proportion of each indicator in the SLA data may be evenly distributed, may be allocated according to the degree of importance, or may be allocated according to other methods.
  • the SMF network element sends a first session establishment message to the first UPF network element.
  • the SMF network element after selecting the first UPF network element from the M UPF network elements, the SMF network element sends the first session to the first UPF network element according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the message can be sent through the N4 interface, and the first session setup message can carry the identifier of the UE.
  • the first UPF network element establishes a session for the UE.
  • the first UPF network element after receiving the first session establishment message from the SMF network element, the first UPF network element will establish a session for the UE according to the first session establishment message.
  • the SMF network element can select the UPF network element established by the session for the UE according to the SLA data of the UPF network element and the SLA data of the UE, the UPF network established by the selection session can be guaranteed as much as possible.
  • the SLA data of the element can meet the requirements of the SLA data of the UE, so that the SLA data of the UPF network element used for establishing the session selected by the SMF network element can satisfy the service requirement.
  • FIG. 4 is a schematic flowchart diagram of another communication method according to an embodiment of the present invention. As shown in FIG. 4, the method can include the following steps.
  • the target UPF network element sends the SLA data of the target UPF network element to the SMF network element.
  • Step 401 is the same as step 301.
  • Step 301 For details, refer to step 301, and details are not described herein.
  • the SMF network element sends a subscription data request message to the UDM network element.
  • the subscription data request message may be sent to the UDM network element, where the subscription data request message carries the identifier of the UE, so that the subscription data request message can be used to request the identifier.
  • the contracted data of the identified UE may be sent to the UDM network element, where the subscription data request message carries the identifier of the UE, so that the subscription data request message can be used to request the identifier.
  • the UDM network element sends the subscription data of the UE to the SMF network element.
  • the UDM network element after receiving the subscription data request message from the SMF network element, the UDM network element sends the subscription data of the identified UE to the SMF network element.
  • the SMF network element may perform SMF registration of the subscription data of the UE.
  • the SMF network element receives the second session establishment message.
  • the second session establishment message received by the SMF network element may be from the AMF network element, or may be from other network elements.
  • the SMF network element may first determine whether the subscription data of the UE exists in the SMF network element, and when there is subscription data of the UE, Step 405 may be directly performed, and the SLA data of the UPF network element may be further determined in the SMF network element. When the SLA data of the UPF network element exists, step 405 is directly performed.
  • step 401 When there is no SLA data of the UPF network element, the SMF network element sends an SLA data acquisition request message to the UPF network element connected to the SMF network element, and the UPF network element connected to the SMF network element receives the SLA data acquisition from the SMF network element. After the message is requested, step 401 will be performed. When there is no subscription data of the UE, step 402 to step 403 may be performed first, and then step 405 may be directly performed, or the SLA data of the UPF network element may be continuously determined in the SMF network element.
  • the SMF network element may first determine whether the SLA data of the UPF network element exists in the SMF network element. When the SLA data of the UPF network element exists, step 405 may be directly performed. It is also possible to continue to determine whether there is a subscription data of the UE in the SMF network element. When there is no subscription data of the UE, step 402 to step 403 may be performed first, and then step 405 is performed. When there is subscription data of the UE, step 405 is directly executed.
  • the SMF network element When there is no SLA data of the UPF network element, the SMF network element sends an SLA data acquisition request message to the UPF network element connected to the SMF network element, and the UPF network element connected to the SMF network element receives the SLA data acquisition from the SMF network element.
  • step 401 is performed, and then step 405 may be directly performed, or it may continue to determine whether the subscription data of the UE exists in the SMF network element.
  • the SMF network element selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • Step 405 is the same as step 302. For details, refer to step 302, and details are not described herein.
  • the SMF network element sends a first session establishment message to the first UPF network element.
  • Step 406 is the same as step 303.
  • Step 406 is the same as step 303.
  • steps 303 for details, refer to step 303, and details are not described herein.
  • the first UPF network element establishes a session for the UE.
  • Step 407 is the same as step 304.
  • Step 304 For detailed description, refer to step 304, and details are not described herein.
  • the SMF network element can select the UPF network element established by the session for the UE according to the SLA data of the UPF network element and the SLA data of the UE, the UPF network established by the selection session can be guaranteed as much as possible.
  • the SLA data of the element can meet the requirements of the SLA data of the UE, so that the SLA data of the UPF network element used for establishing the session selected by the SMF network element can satisfy the service requirement.
  • FIG. 5 is a schematic flowchart diagram of still another communication method according to an embodiment of the present invention. As shown in FIG. 5, the method can include the following steps.
  • the target UPF network element sends the SLA data of the target UPF network element to the SMF network element.
  • Step 501 is the same as step 301.
  • Step 301 For details, refer to step 301, and details are not described herein.
  • the SMF network element sends a subscription data request message to the UDM network element.
  • Step 502 is the same as step 402. For detailed description, refer to step 402, and details are not described herein again.
  • the UDM network element sends the subscription data of the UE to the SMF network element.
  • Step 503 is the same as step 403. For details, refer to step 403, and details are not described herein.
  • the SMF network element receives the second session establishment message.
  • Step 504 is the same as step 404.
  • Step 404 For details, refer to step 404, and details are not described herein again.
  • the SMF network element selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • Step 505 is the same as step 302. For detailed description, refer to step 302, and details are not described herein.
  • the SMF network element sends a first session establishment message to the first UPF network element.
  • Step 506 is the same as step 303.
  • Step 506 is the same as step 303.
  • steps 303 for details, refer to step 303, and details are not described herein.
  • the first UPF network element establishes a session for the UE.
  • Step 507 is the same as step 304.
  • Step 304 For detailed description, refer to step 304, and details are not described herein again.
  • the SMF network element receives the session update message.
  • the session update message received by the SMF network element may be from the AMF network element, or may be from other network elements.
  • the processing performed after the SMF network element receives the session update message is similar to the process after the SMF network element receives the second session setup message.
  • step 404 Step 405, step 509, step 401, step 501, step 402 is step 502, step 403 is step 503), and details are not described herein again.
  • the UDM network element when the UDM network element detects that the subscription data of the UE changes, the UDM network element sends a message that the subscription data is changed to the SMF network element, where the message of the UE carries the changed subscription data of the UE, and the SMF network After receiving the message that the subscription data of the UDM network element is changed, the SMF network element will generate a session update message, and the subsequent execution is similar to the above, and details are not described herein again.
  • the SMF network element selects the second UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • Step 509 is similar to step 302. For details, refer to step 302, and details are not described herein.
  • the SMF network element sends a third session setup message to the second UPF network element.
  • Step 510 is similar to step 406. For details, refer to step 406, and details are not described herein.
  • the second UPF network element establishes a session for the UE.
  • Step 511 is similar to step 407. For details, refer to step 407, and details are not described herein.
  • the second UPF network element sends a session establishment response to the SMF network element.
  • the session establishment response is sent to the SMF network element, indicating that the second UPF network element completes the session establishment of the UE.
  • the SMF network element sends a session deletion request message to the first UPF network element.
  • the SMF network element may send a session deletion request message to the first UPF network element.
  • the first UPF network element is a UPF network element that is established by the SMF network element when the session update message is received.
  • the first UPF network element deletes session information of the UE.
  • the first UPF network element after receiving the session deletion request message from the SMF network element, deletes the session information of the UE according to the deletion instruction.
  • the SMF network element can select the UPF network element established by the session for the UE according to the SLA data of the UPF network element and the SLA data of the UE, the UPF network established by the selection session can be guaranteed as much as possible.
  • the SLA data of the element can meet the requirements of the SLA data of the UE, so that the SLA data of the UPF network element used for establishing the session selected by the SMF network element can satisfy the service requirement.
  • FIG. 6 is a schematic structural diagram of an SMF network element according to an embodiment of the present invention.
  • the SMF network element may include:
  • the selecting unit 601 is configured to select a first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, where the M UPF network elements are connected to the SMF network element.
  • the UPF network element, the subscription data includes SLA data of the UE, the UE is a UE that triggers selection of a UPF network element, and M is an integer greater than or equal to 1;
  • the communication unit 602 is configured to send, to the first UPF network element selected by the selecting unit 601, a first session establishment message, where the first session establishment message is used to establish a session for the UE.
  • the communication unit 602 is further configured to receive the second session establishment message, and then the trigger selection unit 601 selects the MUP network element according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the first UPF network element, and the triggering communication unit 602 sends a first session establishment message to the first UPF network element selected by the selection unit.
  • the communication unit 602 is further configured to receive a session update message, and then trigger the selection unit to select the first UPF from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the network element, and the triggering communication unit sends a session establishment request message to the first UPF network element.
  • the selecting unit 601 may include:
  • the first UPF network element is selected from the at least one UPF network element
  • the UPF network element with the highest similarity between the SLA data of the M UPF network element and the SLA data of the UE is determined as the first UPF. Network element.
  • the communication unit 602 is further configured to receive SLA data of the M UPF network elements sent by the M UPF network elements.
  • the communication unit 602 is further configured to send, by the UDM network element, a subscription data request message, where the subscription data request message is used to acquire subscription data of the UE;
  • the communication unit 602 is further configured to receive subscription data of the UE from the UDM network element.
  • the SLA data may include a delay indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the SMF network element may also perform the method steps performed by the SMF network element in the foregoing FIG. 3 to FIG. 5, and may further include other units of the method steps performed by the SMF network element in the foregoing FIG. 3 to FIG. Narration.
  • FIG. 7 is a schematic structural diagram of another SMF network element disclosed in an embodiment of the present invention.
  • the SMF network element can include a processor 701, a memory 702, a transceiver 703, and a bus 704.
  • the processor 701 can be a general purpose central processing unit (CPU), a plurality of CPUs, a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present invention. integrated circuit.
  • the memory 702 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 702 can exist independently and bus 704 is coupled to processor 701. Memory 702 can also be integrated with processor 701. Bus 704 can include a path for communicating information between the components described above.
  • the transceiver 703 can be a transceiver antenna or other transceiver devices. among them:
  • the memory 702 stores a set of program codes, and the processor 701 is configured to call the program code stored in the memory 702 to perform the following operations:
  • the first UPF network element is selected from the M UPF network elements according to the subscription data of the UE and the SLA data of the M.
  • the UPF network element is a UPF network element that establishes a connection with the SMF network element, and the subscription is performed.
  • the data includes SLA data of the UE, the UE is a UE that triggers selection of a UPF network element, and M is an integer greater than or equal to 1;
  • the transceiver 703 is configured to send a first session setup message to the first UPF network element, where the first session setup message is used to indicate that the first UPF network element establishes a session for the UE.
  • the transceiver 703 is further configured to receive a second session setup message, where the processor 701 selects the Mth UPF network element according to the subscription data of the UE and the SLA data of the M UPF network elements. A UPF network element, and the transceiver 703 sends a first session setup message to the first UPF network element.
  • the transceiver 703 is further configured to receive a session update message, where the processor 701 selects the first UPF from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements.
  • the network element, and the transceiver 703, send a session establishment request message to the first UPF network element.
  • the processor 701 selects the first UPF network element from the M UPF network elements according to the subscription data of the UE and the SLA data of the M UPF network elements, including:
  • the first UPF network element is selected from the at least one UPF network element
  • the UPF network element with the highest similarity between the SLA data of the M UPF network element and the SLA data of the UE is determined as the first UPF. Network element.
  • the transceiver 703 is further configured to receive SLA data of M UPF network elements sent by the M UPF network elements.
  • the transceiver 703 is further configured to send, by the UDM network element, a subscription data request message, where the subscription data request message is used to acquire subscription data of the UE;
  • the transceiver 703 is further configured to receive subscription data of the UE from the UDM network element.
  • the SLA data may include a delay indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to an embodiment of the present invention.
  • the UPF network element may include:
  • the communication unit 801 is configured to send the SLA data of the UPF network element to the SMF network element, where the SLA data of the UPF network element is used to select a first UPF network element established by the session for the UE, where the SMF network element is associated with the UPF network element Establish a connected UPF network element;
  • the communication unit 801 is further configured to receive a first session establishment message from the SMF network element.
  • a establishing unit 802 is configured to establish a session for the UE.
  • the trigger establishing unit 802 establishes a session for the UE.
  • the UPF network element may further include:
  • the determining unit 803 is configured to determine SLA data of the UPF network element.
  • the SLA data may include a delay indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the triggering communication unit 801 sends the SLA data of the UPF network element to the SMF network element.
  • the UPF network element may also perform the method steps performed by the UPF network element in the foregoing FIG. 3 to FIG. 5, and may further include other units of the method steps performed by the UPF network element in the foregoing FIG. 3 to FIG. Narration.
  • FIG. 9 is a schematic structural diagram of another UPF network element disclosed in an embodiment of the present invention.
  • the UPF network element can include a processor 901, a memory 902, a transceiver 903, and a bus 904.
  • the processor 901 can be a general purpose central processing unit (CPU), a plurality of CPUs, a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present invention. integrated circuit.
  • the memory 902 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 902 can exist independently and the bus 904 is coupled to the processor 901.
  • the memory 902 can also be integrated with the processor 901.
  • Bus 904 can include a path for communicating information between the components described above.
  • the transceiver 903 can be a transceiver antenna or other transceiver devices. among them:
  • a set of program codes is stored in the memory 902, and the processor 901 is configured to call the program code stored in the memory 902 to control the transceiver 903 to perform the following operations:
  • the processor 901 ring is used to call the program code stored in the memory 902 to perform the following operations:
  • the SLA data may include a delay indicator, a single user peak rate, a single stream peak rate, a packet loss rate, and a minimum guaranteed bandwidth.
  • the embodiment of the invention further discloses a readable storage medium, which stores program code of the SMF network element and/or the UPF network element for performing the communication method shown in FIG. 3 to FIG. 5.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本发明实施例公开一种通信方法及相关设备,该方法应用于会话管理功能网元,包括:根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从该M个用户面功能网元中选择第一用户面功能网元,该M个用户面功能网元是与该会话管理功能网元建立连接的用户面功能网元,该签约数据包括该用户设备的服务等级协议数据,该用户设备为触发用户面功能网元选择的用户设备,M为大于或等于1的整数;向第一用户面功能网元发送第一会话建立消息,该第一会话建立消息用于为该用户设备建立会话。实施本发明实施例,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。

Description

一种通信方法及相关设备
本申请要求于2018年4月21日提交中国国家知识产权局、申请号为201810363233.6、发明名称为“一种通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及相关设备。
背景技术
会话管理功能(Session Management Function,SMF)网元是5G核心网网元,负责用户面网元的选择和定向等,如用户面功能(User Plane Function,UPF)网元的选择和定向。服务等级协议(Service-Level Agreement,SLA)是网络服务供应商和客户间的合同,定义了服务类型、服务质量等。目前,SMF网元选择用于建立会话的UPF网元时,是根据UPF网元的动态负荷、用户设备(User Equipment,UE)的位置信息、单网络切片辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)等进行选择的。可见,SMF网元选择UPF网元时,并未考虑SLA数据,以致选择的UPF网元的SLA数据可能无法满足业务需求。
发明内容
本发明实施例公开了一种通信方法及相关设备,用于保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
第一方面公开一种通信方法,SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,并向第一UPF网元发送第一会话建立消息,第一会话建立消息用于为该UE建立会话。其中,该M个UPF网元是与该SMF网元建立连接的UPF网元,该签约数据可以包括该UE的SLA数据,该UE为触发UPF网元选择的UE,M为大于或等于1的整数。由于SMF网元可以根据UPF网元的SLA数据和UE的SLA数据为UE选择会话建立的UPF网元,因此,可以尽可能的保证选择会话建立的UPF网元的SLA数据能够满足UE的SLA数据的需求,从而,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
在一个实施例中,SMF网元可以先接收第二会话建立消息,之后才根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及向第一UPF网元发送第一会话建立消息。
在一个实施例中,SMF网元可以先接收会话更新消息,之后才根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及向第一UPF网元发送第一会话建立消息。
在一个实施例中,SMF网元根据UE的签约数据和M个UPF网元的SLA数据从这M个UPF网元中选择第一UPF网元时,当M个UPF网元中存在至少一个UPF网元的SLA数据满 足UE的SLA数据时,可以从这至少一个UPF网元中选择第一UPF网元;当M个UPF网元中不存在UPF网元的SLA数据满足UE的SLA数据时,可以将这M个UPF网元中SLA数据与UE的SLA数据相似度最大的UPF网元确定为第一UPF网元。
在一个实施例中,SMF网元可以接收M个UPF网元发送的该M个UPF网元的SLA数据。
在一个实施例中,SMF网元可以向统一数据管理(Unified Data Management,UDM)网元发送签约数据请求消息,以及接收来自UDM网元的UE的签约数据。其中,该签约数据请求消息用于获取UE的签约数据。
在一个实施例中,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
在一个实施例中,SMF网元可以接收第一UPF网元发送的会话建立响应,并向第二UPF网元发送用于删除UE的会话信息的会话删除请求消息,第二UPF网元是接收到会话更新消息时,与该UE建立会话连接的UPF网元。
第二方面公开一种SMF网元,该SMF网元包括用于执行第一方面或第一方面的任一种可能实现方式所提供的通信方法的单元。
第三方面公开一种SMF网元,该SMF网元包括处理器、存储器和收发器,存储器用于存储程序代码,处理器用于执行程序代码,收发器用于与其它通信设备进行通信。当处理器执行存储器存储的程序代码时,使得处理器执行第一方面或第一方面的任一种可能实现方式所公开的通信方法。
第四方面公开一种可读存储介质,该可读存储介质存储了SMF网元用于执行第一方面或第一方面的任一种可能实现方式所公开的通信方法的程序代码。
第五方面公开一种通信方法,UPF网元向SMF网元发送该UPF网元的SLA数据,该UPF网元的SLA数据用于为UE选择会话建立的第一UPF网元,接收来自该SMF网元的第一会话建立消息;为该UE建立会话。其中,该SMF网元是与该UPF网元建立连接的SMF网元。由于SMF网元可以根据UPF网元的SLA数据为UE选择会话建立的UPF网元,因此,可以尽可能的保证选择会话建立的UPF网元的SLA数据能够满足UE的SLA数据的需求,从而,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
在一个实施例中,UPF网元可以先确定该UPF网元的SLA数据,之后才向SMF网元发送该UPF网元的SLA数据。
在一个实施例中,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
在一个实施例中,UPF网元可以接收来自该SMF网元发送的用于删除UE的会话信息的会话删除请求消息,并删除UE的会话信息。
第六方面公开一种UPF网元,该UPF网元包括用于执行第五方面或第五方面的任一种可能实现方式所提供的通信方法的单元。
第七方面公开一种UPF网元,该UPF网元包括处理器、存储器和收发器,存储器用于存储程序代码,处理器用于执行程序代码,收发器用于与其它通信设备进行通信。当处理器执行存储器存储的程序代码时,使得处理器执行第五方面或第五方面的任一种可能实现 方式所公开的通信方法。
第八方面公开一种可读存储介质,该可读存储介质存储了UPF网元用于执行第五方面或第五方面的任一种可能实现方式所公开的通信方法的程序代码。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的另一种网络架构示意图;
图3是本发明实施例公开的一种通信方法的流程示意图;
图4是本发明实施例公开的另一种通信方法的流程示意图;
图5是本发明实施例公开的又一种通信方法的流程示意图;
图6是本发明实施例公开的一种SMF网元的结构示意图;
图7是本发明实施例公开的另一种SMF网元的结构示意图;
图8是本发明实施例公开的一种UPF网元的结构示意图;
图9是本发明实施例公开的另一种UPF网元的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法及相关设备,用于保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种通信方法及相关设备,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括UE、(无线)接入网(Radio Access Network,(R)AN)设备、UPF网元、数据网络(Data Network,DN)、接入和移动性管理功能(Access and Mobility Management Function,AMF)网元、SMF网元和UDM网元。UE与(R)AN设备可以直接进行通信;UE与AMF网元存在通信接口,该通信接口可以为N1接口;(R)AN设备与AMF网元存在通信接口,该通信接口可以为N2接口;(R)AN设备与UPF网元存在通信接口,该通信接口可以为N3接口;UPF网元与DN存在通信接口,该通信接口可以为N6接口;UPF网元与SMF网元存在通信接口,该通信接口可以为N4接口。AMF网元可以提供服务化接口Namf,SMF网元可以提供服务化接口Nsmf,UDM网元可以提供服务化接口Nudm。AMF网元、SMF网元和UDM网元之间可以通过服务化接口进行通信。
请参阅图2,图2是本发明实施例公开的另一种网络架构示意图。如图2所示,该网络架构可以包括UE、(R)AN设备、UPF网元、DN、AMF网元、SMF网元和UDM网元。UE与(R)AN设备可以直接进行通信;UE与AMF网元存在通信接口,该通信接口可以为N1接口;(R)AN设备与AMF网元存在通信接口,该通信接口可以为N2接口;(R)AN设备与UPF网元存在通信接口,该通信接口可以为N3接口;UPF网元与DN存在通信接口,该通信接口可以为N6接口;不同的UPF网元间存在通信接口,该通信接口可以为N9接口;UPF网元与SMF网元存在通信接口,该通信接口可以为N4接口;不同的AMF网元间存在通信接口,该通信接口可以为N14接口;AMF网元与SMF网元存在通信接口,该通信接口可以为N11接口;AMF网元与UDM 网元存在通信接口,该通信接口可以为N8接口;SMF网元与UDM网元存在通信接口,该通信接口可以为N10接口。
UE可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(Wireless Local Loop,WLL)台、机器类型通信(Machine Type Communication,MTC)终端或其他可以接入网络的设备。
UE与(R)AN设备之间采用某种空口技术相互通信。(R)AN设备包含RAN设备和AN设备,RAN设备为第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)无线网络设备,AN设备为非(non)3GPP定义的接入网设备。RAN设备主要负责空口侧的无线资源管理、服务质量(Quality of Service,QoS)管理、数据压缩和加密等功能。RAN设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。AN设备允许UE和3GPP核心网之间采用非3GPP技术互连互通,非3GPP技术可以为无线保真(Wireless Fidelity,Wi-Fi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、码分多址(Code Division Multiple Access,CDMA)网络等。
UPF网元负责UE中用户数据的转发和接收,可以从DN接收用户数据,并通过(R)AN设备传输给UE;也可以通过(R)AN设备从UE接收用户数据,并转发到DN。UPF网元中为UE提供服务的传输资源和调度功能由SMF网元管理控制。
AMF网元属于核心网网元,主要负责信令处理,例如:接入控制、移动性管理、注册、去注册以及网关选择等功能。AMF网元为UE中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。
SMF网元负责用户面网元选择,用户面网元重定向,因特网协议(Internet Protocol,IP)地址分配,会话的建立、修改、释放以及QoS控制。
UDM网元负责用户密钥管理、用户标识处理、订阅数据的访问授权、UE的网络功能实体管理、会话和业务连续性管理、短消息推送、合法监听、签约管理、短消息管理。
基于图1或图2所示的网络架构,请参阅图3,图3是本发明实施例公开的一种通信方法的流程示意图。如图3所示,该通信方法可以包括以下步骤。
301、目标UPF网元向SMF网元发送目标UPF网元的SLA数据。
本实施例中,目标UPF网元可以实时、定时或周期性地对目标UPF网元的SLA数据进行监控,并定时地、周期性地、当第一UPF网元的SLA数据发生变化时,或接收到来自SMF网元的SLA数据数据获取请求消息时,目标UPF网元可以向SMF网元发送目标UPF网元的SLA数据。UPF网元的SLA数据可以包括UPF网元的时延指标、单用户峰值速率、单流峰值速率、丢包率、最低保障带宽等。目标UPF网元的SLA数据发生变化可以是UPF网元的时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽中的至少一个发生变化。其中,目标UPF网元是与SMF网元建立连接的M个UPF网元中的任一UPF网元,M为大于或等于2的整 数。其中,目标UPF网元向SMF网元发送目标UPF网元的SLA数据,可以通过扩展PFCP Node Report Request消息来实现,同时可以通过扩展的N4/Sx接口进行发送。
302、SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元。
本实施例中,当需要为UE选择用于建立会话的UPF网元时,SMF网元可以根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元。其中,UE的签约数据可以包括UE的SLA数据,UE的SLA数据可以包括UE的时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。其中,本步骤中使用的M个UPF网元的SLA数据是SMF网元接收的来自这M个UPF网元的最新SLA数据。
本实施例中,SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元时,可以先将UE的SLA数据与M个UPF网元的SLA数据一一进行比较,在比较过程中,可以将M个UPF网元中第一个SLA数据满足UE的SLA数据的UPF网元确定为第一UPF网元,此时,未进行比较或未比较完的UPF网元的SLA数据可以不再进行比较,从而可以节约UPF网元的选择时间。也可以在UE的SLA数据与M个UPF网元的SLA数据均比较完之后,当比较结果为M个UPF网元中存在至少一个UPF网元的SLA数据满足UE的SLA数据时,如果这至少一个UPF网元的数量为1,则可以直接将这个UPF网元确定为第一UPF网元。如果这至少一个UPF网元的数量为大于1,则可以将这至少一个UPF网元中的任一UPF网元确定为第一UPF网元,也可以将这至少一个UPF网元中负载最小的UPF网元确定为第一UPF网元,还可以根据现在5G标准中选择UPF网元的参考因素进行选择,这些参考因素可以包括UPF网元的动态负荷、UPF网元在同一个数据网络名称(Data Network Name,DNN)下的静态能力、UPF网元对SMF网元的位置可达、UE的位置信息、UPF能力对于UE会话需求的满足度、会话所属的DNN网络、会话和业务连续性模式、UE的签约数据、业务路由网络标识、运营商本地策略和S-NSSAI种的至少一种。其中,UPF网元的SLA数据满足UE的SLA数据即UPF网元的SLA数据中每个指标均要满足UE的SLA数据中对应的指标,也即是UPF网元的时延指标要小于UE的时延指标,UPF网元的单用户峰值速率要大于UE的单用户峰值速率,UPF网元的单流峰值速率要大于UE的单流峰值速率,UPF网元的丢包率要小于UE的丢包率,UPF网元的最低保障带宽要大于UE的最低保障带宽。
本实施例中,当比较结果为M个UPF网元中不存在UPF网元的SLA数据满足UE的SLA数据时,可以计算UE的SLA数据与这M个UPF网元中每个UPF网元的SLA数据的相似度,之后可以将这M个UPF网元中SLA数据与UE的SLA数据相似度最大的UPF网元确定为第一UPF网元。也可以将这M个UPF网元中SLA数据能够满足UE的SLA数据的指标数量最多的UPF网元确定为第一UPF网元,例如:假设SLA数据的指标数量为5,其中有一个UPF网元的SLA数据中有四个指标可以满足UE的SLA数据中对应的指标,可以将这个UPF网元确定为第一UPF网元。其中,计算相似度时,SLA数据中每个指标的比例可以是均匀分配的,也可以是按照重要程度的大小进行分配的,还可以是按照其他方式分配的。
303、SMF网元向第一UPF网元发送第一会话建立消息。
本实施例中,SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择出第一UPF网元之后,将向第一UPF网元发送第一会话建立消息,可以通过N4接口进行 发送,第一会话建立消息可以携带有UE的标识。
304、第一UPF网元为该UE建立会话。
本实施例中,第一UPF网元接收到来自SMF网元的第一会话建立消息之后,将根据第一会话建立消息为该UE建立会话。
在图3所描述的通信方法中,由于SMF网元可以根据UPF网元的SLA数据和UE的SLA数据为UE选择会话建立的UPF网元,因此,可以尽可能的保证选择会话建立的UPF网元的SLA数据能够满足UE的SLA数据的需求,从而,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
基于图1或图2所示的网络架构,请参阅图4,图4是本发明实施例公开的另一种通信方法的流程示意图。如图4所示,该方法可以包括以下步骤。
401、目标UPF网元向SMF网元发送目标UPF网元的SLA数据。
其中,步骤401与步骤301相同,详细描述请参考步骤301,在此不再赘述。
402、SMF网元向UDM网元发送签约数据请求消息。
本实施例中,当SMF网元需要UE的签约数据时,可以向UDM网元发送签约数据请求消息,签约数据请求消息携带有UE的标识,以便可以表示签约数据请求消息是用于请求标识所标识的UE的签约数据。
403、UDM网元向SMF网元发送UE的签约数据。
本实施例中,UDM网元接收到来自SMF网元的签约数据请求消息之后,将向SMF网元发送标识所标识的UE的签约数据。SMF网元接收到来自UDM网元的UE的签约数据之后,可以进行对UE的签约数据的SMF注册。
404、SMF网元接收第二会话建立消息。
本实施例中,SMF网元接收的第二会话建立消息可以是来自AMF网元的,也可以是来自其它网元的。SMF网元接收到第二会话建立消息之后,即分组数据单元(Package Data Unit,PDU)会话激活过程中,可以先判断SMF网元中是否存在UE的签约数据,当存在UE的签约数据时,可以直接执行步骤405,也可以继续判断SMF网元中是否存在UPF网元的SLA数据,当存在UPF网元的SLA数据时,直接执行步骤405。当不存在UPF网元的SLA数据时,SMF网元向与SMF网元连接的UPF网元发送SLA数据获取请求消息,与SMF网元连接的UPF网元接收到来自SMF网元的SLA数据获取请求消息之后,将执行步骤401。当不存在UE的签约数据时,可以先执行步骤402-步骤403,之后可以直接执行步骤405,也可以继续判断SMF网元中是否存在UPF网元的SLA数据。
本实施例中,SMF网元接收到第二会话建立消息之后,也可以先判断SMF网元中是否存在UPF网元的SLA数据,当存在UPF网元的SLA数据时,可以直接执行步骤405,也可以继续判断SMF网元中是否存在UE的签约数据,当不存在UE的签约数据时,可以先执行步骤402-步骤403,再执行步骤405。当存在UE的签约数据时,直接执行步骤405。当不存在UPF网元的SLA数据时,SMF网元向与SMF网元连接的UPF网元发送SLA数据获取请求消息,与SMF网元连接的UPF网元接收到来自SMF网元的SLA数据获取请求消息之后,将执行步骤401,之后可以直接执行步骤405,也可以继续判断SMF网元中是否存在UE的签约数据。
405、SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元。
其中,步骤405与步骤302相同,详细描述请参考步骤302,在此不再赘述。
406、SMF网元向第一UPF网元发送第一会话建立消息。
其中,步骤406与步骤303相同,详细描述请参考步骤303,在此不再赘述。
407、第一UPF网元为该UE建立会话。
其中,步骤407与步骤304相同,详细描述请参考步骤304,在此不再赘述。
在图4所描述的通信方法中,由于SMF网元可以根据UPF网元的SLA数据和UE的SLA数据为UE选择会话建立的UPF网元,因此,可以尽可能的保证选择会话建立的UPF网元的SLA数据能够满足UE的SLA数据的需求,从而,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
基于图1或图2所示的网络架构,请参阅图5,图5是本发明实施例公开的又一种通信方法的流程示意图。如图5所示,该方法可以包括以下步骤。
501、目标UPF网元向SMF网元发送目标UPF网元的SLA数据。
其中,步骤501与步骤301相同,详细描述请参考步骤301,在此不再赘述。
502、SMF网元向UDM网元发送签约数据请求消息。
其中,步骤502与步骤402相同,详细描述请参考步骤402,在此不再赘述。
503、UDM网元向SMF网元发送UE的签约数据。
其中,步骤503与步骤403相同,详细描述请参考步骤403,在此不再赘述。
504、SMF网元接收第二会话建立消息。
其中,步骤504与步骤404相同,详细描述请参考步骤404,在此不再赘述。
505、SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元。
其中,步骤505与步骤302相同,详细描述请参考步骤302,在此不再赘述。
506、SMF网元向第一UPF网元发送第一会话建立消息。
其中,步骤506与步骤303相同,详细描述请参考步骤303,在此不再赘述。
507、第一UPF网元为该UE建立会话。
其中,步骤507与步骤304相同,详细描述请参考步骤304,在此不再赘述。
508、SMF网元接收会话更新消息。
本实施例中,SMF网元接收的会话更新消息可以是来自AMF网元的,也可以是来自其它网元的。SMF网元接收到会话更新消息之后进行的处理与SMF网元接收到第二会话建立消息之后的处理类似,详细描述请参考步骤404(此时步骤405即步骤509,步骤401即步骤501,步骤402即步骤502,步骤403即步骤503),在此不再赘述。
在一个实施例中,当UDM网元检测到UE的签约数据发生变化时,UDM网元将向SMF网元发送签约数据发生变更的消息,该UE的消息携带UE变更后的签约数据,SMF网元接收到来自UDM网元的签约数据发生变更的消息之后,SMF网元将生成会话更新消息,后续执行与上述类似,在此不再赘述。
509、SMF网元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第二UPF网元。
其中,步骤509与步骤302相似,详细描述请参考步骤302,在此不再赘述。
510、SMF网元向第二UPF网元发送第三会话建立消息。
其中,步骤510与步骤406相似,详细描述请参考步骤406,在此不再赘述。
511、第二UPF网元为该UE建立会话。
其中,步骤511与步骤407相似,详细描述请参考步骤407,在此不再赘述。
512、第二UPF网元向SMF网元发送会话建立响应。
本实施例中,第二UPF网元为该UE建立会话之后,将向SMF网元发送会话建立响应,表明第二UPF网元为该UE的会话建立完成。
513、SMF网元向第一UPF网元发送会话删除请求消息。
本实施例中,SMF网元接收到来自第二UPF网元的会话建立响应之后,可以向第一UPF网元发送会话删除请求消息。其中,第一UPF网元是SMF网元在接收会话更新消息时,与UE之间存在会话建立的UPF网元。
514、第一UPF网元删除该UE的会话信息。
本实施例中,第一UPF网元接收到来自SMF网元的会话删除请求消息之后,将根据删除指令删除该UE的会话信息。
在图5所描述的通信方法中,由于SMF网元可以根据UPF网元的SLA数据和UE的SLA数据为UE选择会话建立的UPF网元,因此,可以尽可能的保证选择会话建立的UPF网元的SLA数据能够满足UE的SLA数据的需求,从而,可以保证SMF网元选择的用于建立会话的UPF网元的SLA数据能够满足业务需求。
请参阅图6,图6是本发明实施例公开的一种SMF网元的结构示意图。如图6所示,该SMF网元可以包括:
选择单元601,用于根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,该M个UPF网元是与该SMF网元建立连接的UPF网元,该签约数据包括该UE的SLA数据,该UE为触发UPF网元选择的UE,M为大于或等于1的整数;
通信单元602,用于向选择单元601选择的第一UPF网元发送第一会话建立消息,第一会话建立消息用于为该UE建立会话。
作为一种可能的实施方式,通信单元602,还用于接收第二会话建立消息,之后触发选择单元601根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及触发通信单元602向选择单元选择的第一UPF网元发送第一会话建立消息。
作为一种可能的实施方式,通信单元602,还用于接收会话更新消息,之后触发选择单元根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及触发通信单元向第一UPF网元发送会话建立请求消息。
作为一种可能的实施方式,选择单元601可以包括:
当M个UPF网元中存在至少一个UPF网元的SLA数据满足UE的SLA数据时,从该至少一个UPF网元中选择第一UPF网元;
当M个UPF网元中不存在UPF网元的SLA数据满足UE的SLA数据时,将该M个UPF网元中SLA数据与该UE的SLA数据相似度最大的UPF网元确定为第一UPF网元。
作为一种可能的实施方式,通信单元602,还用于接收M个UPF网元发送的该M个UPF网元的SLA数据。
作为一种可能的实施方式,通信单元602,还用于向UDM网元发送签约数据请求消息,该签约数据请求消息用于获取UE的签约数据;
通信单元602,还用于接收来自UDM网元的该UE的签约数据。
作为一种可能的实施方式,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
此外,该SMF网元还可以执行上述图3-图5的SMF网元执行的方法步骤,还可以包括执行上述图3-图5的SMF网元执行的方法步骤的其他单元,此处不再赘述。
请参阅图7,图7是本发明实施例公开的另一种SMF网元的结构示意图。如图7所示,该SMF网元可以包括处理器701、存储器702、收发器703和总线704。处理器701可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以是独立存在,总线704与处理器701相连接。存储器702也可以和处理器701集成在一起。总线704可包括一通路,在上述组件之间传送信息。收发器703可以为收发天线,也可以为其他收发器件。其中:
存储器702中存储有一组程序代码,处理器701用于调用存储器702中存储的程序代码执行以下操作:
根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,该M个UPF网元是与该SMF网元建立连接的UPF网元,该签约数据包括该UE的SLA数据,该UE为触发UPF网元选择的UE,M为大于或等于1的整数;
收发器703,用于向第一UPF网元发送第一会话建立消息,第一会话建立消息用于指示第一UPF网元为该UE建立会话。
作为一种可能的实施方式,收发器703,还用于接收第二会话建立消息,之后处理器701根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及收发器703向第一UPF网元发送第一会话建立消息。
作为一种可能的实施方式,收发器703,还用于接收会话更新消息,之后处理器701根据UE的签约数据和M个UPF网元的SLA数据从该M个UPF网元中选择第一UPF网元,以及收发 器703向第一UPF网元发送会话建立请求消息。
作为一种可能的实施方式,处理器701根据UE的签约数据和M个UPF网元的SLA数据从M个UPF网元中选择第一UPF网元包括:
当M个UPF网元中存在至少一个UPF网元的SLA数据满足UE的SLA数据时,从该至少一个UPF网元中选择第一UPF网元;
当M个UPF网元中不存在UPF网元的SLA数据满足UE的SLA数据时,将该M个UPF网元中SLA数据与该UE的SLA数据相似度最大的UPF网元确定为第一UPF网元。
作为一种可能的实施方式,收发器703,还用于接收M个UPF网元发送的M个UPF网元的SLA数据。
作为一种可能的实施方式,收发器703,还用于向UDM网元发送签约数据请求消息,该签约数据请求消息用于获取UE的签约数据;
收发器703,还用于接收来自UDM网元的该UE的签约数据。
作为一种可能的实施方式,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
请参阅图8,图8是本发明实施例公开的一种UPF网元的结构示意图。如图8所示,该UPF网元可以包括:
通信单元801,用于向SMF网元发送该UPF网元的SLA数据,该UPF网元的SLA数据用于为UE选择会话建立的第一UPF网元,该SMF网元是与该UPF网元建立连接的UPF网元;
通信单元801,还用于接收来自该SMF网元的第一会话建立消息;
建立单元802,用于为该UE建立会话。
其中,通信单元802接收来自该SMF网元的第一会话建立消息之后,将触发建立单元802为该UE建立会话。
作为一种可能的实施方式,UPF网元还可以包括:
确定单元803,用于确定该UPF网元的SLA数据。
作为一种可能的实施方式,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
其中,确定单元803确定该UPF网元的SLA数据之后,将触发通信单元801向SMF网元发送该UPF网元的SLA数据。
此外,该UPF网元还可以执行上述图3-图5的UPF网元执行的方法步骤,还可以包括执行上述图3-图5的UPF网元执行的方法步骤的其他单元,此处不再赘述。
请参阅图9,图9是本发明实施例公开的另一种UPF网元的结构示意图。如图9所示,该UPF网元可以包括处理器901、存储器902、收发器903和总线904。处理器901可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器902可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息 和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器902可以是独立存在,总线904与处理器901相连接。存储器902也可以和处理器901集成在一起。总线904可包括一通路,在上述组件之间传送信息。收发器903可以为收发天线,也可以为其他收发器件。其中:
存储器902中存储有一组程序代码,处理器901用于调用存储器902中存储的程序代码控制收发器903执行以下操作:
向SMF网元发送该UPF网元的SLA数据,该UPF网元的SLA数据用于为UE选择会话建立的第一UPF网元,该SMF网元是与该UPF网元建立连接的UPF网元;
接收来自该SMF网元的第一会话建立消息;
为该UE建立会话。
作为一种可能的实施方式,处理器901环用于调用存储器902中存储的程序代码执行以下操作:
确定该UPF网元的SLA数据。
作为一种可能的实施方式,SLA数据可以包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
本发明实施例还公开了一种可读存储介质,该可读存储介质存储了SMF网元和/或UPF网元用于执行图3-图5所示的通信方法的程序代码。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中,通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

  1. 一种通信方法,其特征在于,所述方法应用于会话管理功能网元,包括:
    根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,所述M个用户面功能网元是与所述会话管理功能网元建立连接的用户面功能网元,所述签约数据包括所述用户设备的服务等级协议数据,所述用户设备为触发用户面功能网元选择的用户设备,所述M为大于或等于1的整数;
    向所述第一用户面功能网元发送第一会话建立消息,所述第一会话建立消息用于为所述用户设备建立会话。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二会话建立消息,并执行所述根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,向所述第一用户面功能网元发送第一会话建立消息的步骤。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收会话更新消息,并执行所述根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,向所述第一用户面功能网元发送第一会话建立消息的步骤。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元包括:
    当M个用户面功能网元中存在至少一个用户面功能网元的服务等级协议数据满足用户设备的服务等级协议数据时,从所述至少一个用户面功能网元中选择第一用户面功能网元;
    当M个用户面功能网元中不存在用户面功能网元的服务等级协议数据满足用户设备的服务等级协议数据时,将所述M个用户面功能网元中服务等级协议数据与所述用户设备的服务等级协议数据相似度最大的用户面功能网元确定为第一用户面功能网元。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    接收来自M个用户面功能网元的所述M个用户面功能网元的服务等级协议数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    向统一数据管理网元发送数据请求消息,所述数据请求消息用于获取用户设备的签约数据;
    接收来自所述统一数据管理网元的所述用户设备的签约数据。
  7. 一种通信方法,其特征在于,所述方法应用于用户面功能网元,包括:
    向会话管理功能网元发送所述用户面功能网元的服务等级协议数据,所述用户面功能网元的服务等级协议数据用于为用户设备选择会话建立的第一用户面功能网元,所述会话管理功能网元是与所述用户面功能网元建立连接的会话管理功能网元;
    接收来自所述会话管理功能网元的第一会话建立消息;
    为所述用户设备建立会话。
  8. 根据权利要求7所述的方法,其特征在于,所述向会话管理功能网元发送所述用户面功能网元的服务等级协议数据之前,所述方法还包括:
    确定所述用户面功能网元的服务等级协议数据。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述服务等级协议数据包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
  10. 一种会话管理功能网元,其特征在于,包括:
    选择单元,用于根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,所述M个用户面功能网元是与所述会话管理功能网元建立连接的用户面功能网元,所述签约数据包括所述用户设备的服务等级协议数据,所述用户设备为触发用户面功能网元选择的用户设备,所述M为大于或等于1的整数;
    通信单元,用于向所述选择单元选择的第一用户面功能网元发送第一会话建立消息,所述第一会话建立消息用于为所述用户设备建立会话。
  11. 根据权利要求10所述的会话管理功能网元,其特征在于,所述通信单元,还用于接收第二会话建立消息,之后触发所述选择单元根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,以及触发所述通信单元向所述第一用户面功能网元发送第一会话建立消息。
  12. 根据权利要求10所述的会话管理功能网元,其特征在于,所述通信单元,还用于接收会话更新消息,之后触发所述选择单元根据用户设备的签约数据和M个用户面功能网元的服务等级协议数据从所述M个用户面功能网元中选择第一用户面功能网元,以及触发所述通信单元向所述第一用户面功能网元发送第一会话建立消息。
  13. 根据权利要求10-12任一项所述的会话管理功能网元,其特征在于,所述选择单元包括:
    当M个用户面功能网元中存在至少一个用户面功能网元的服务等级协议数据满足用户设备的服务等级协议数据时,从所述至少一个用户面功能网元中选择第一用户面功能网元;
    当M个用户面功能网元中不存在用户面功能网元的服务等级协议数据满足用户设备的服务等级协议数据时,将所述M个用户面功能网元中服务等级协议数据与所述用户设备的服务等级协议数据相似度最大的用户面功能网元确定为第一用户面功能网元。
  14. 根据权利要求10-13任一项所述的会话管理功能网元,其特征在于,所述通信单元,还用于接收来自M个用户面功能网元的所述M个用户面功能网元的服务等级协议数据。
  15. 根据权利要求10-14任一项所述的会话管理功能网元,其特征在于,所述通信单元,还用于向统一数据管理网元发送数据请求消息,所述数据请求消息用于获取用户设备的签约数据;
    所述通信单元,还用于接收来自所述统一数据管理网元的所述用户设备的签约数据。
  16. 一种用户面功能网元,其特征在于,包括:
    通信单元,用于向会话管理功能网元发送所述用户面功能网元的服务等级协议数据,所述用户面功能网元的服务等级协议数据用于为用户设备选择会话建立的第一用户面功 能网元,所述会话管理功能网元是与所述用户面功能网元建立连接的会话管理功能网元;
    所述通信单元,还用于接收来自所述会话管理功能网元的第一会话建立消息;
    建立单元,用于为所述用户设备建立会话。
  17. 根据权利要求16所述的用户面功能网元,其特征在于,所述用户面功能网元还包括:
    确定单元,用于确定所述用户面功能网元的服务等级协议数据。
  18. 根据权利要求10-15任一项所述的会话管理功能网元,或16-17任一项所述用户面功能网元,其特征在于,所述服务等级协议数据包括时延指标、单用户峰值速率、单流峰值速率、丢包率和最低保障带宽。
PCT/CN2019/083328 2018-04-21 2019-04-19 一种通信方法及相关设备 WO2019201322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810363233.6 2018-04-21
CN201810363233.6A CN110392400B (zh) 2018-04-21 2018-04-21 一种通信方法及相关设备

Publications (1)

Publication Number Publication Date
WO2019201322A1 true WO2019201322A1 (zh) 2019-10-24

Family

ID=68240546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083328 WO2019201322A1 (zh) 2018-04-21 2019-04-19 一种通信方法及相关设备

Country Status (2)

Country Link
CN (1) CN110392400B (zh)
WO (1) WO2019201322A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021115388A1 (en) * 2019-12-12 2021-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for user plane function selection
CN111405638B (zh) * 2020-03-25 2021-09-21 广州爱浦路网络技术有限公司 节点n4-u隧道选择方法及装置
CN115802320A (zh) * 2021-09-09 2023-03-14 华为技术有限公司 一种业务处理方法、装置和系统
CN116436862A (zh) * 2021-12-31 2023-07-14 华为技术有限公司 一种通信方法及通信装置
CN116939588A (zh) * 2022-03-31 2023-10-24 华为技术有限公司 通信方法及装置
CN115297020A (zh) * 2022-08-24 2022-11-04 中国电信股份有限公司 通信控制方法及装置、电子设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859213A (zh) * 2006-03-01 2006-11-08 华为技术有限公司 在内容分发网络中保障服务水平的系统和方法
CN1886969A (zh) * 2003-12-01 2006-12-27 国际商业机器公司 用于提供通信会话的系统和方法
CN102131236A (zh) * 2010-01-19 2011-07-20 运软网络科技(上海)有限公司 一种实现vdi网络负载均衡的方法
US20150142950A1 (en) * 2013-11-19 2015-05-21 International Business Machines Corporation Management of cloud provider selection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002868A1 (en) * 2005-06-29 2007-01-04 Haibo Qian Location based quality of service (QoS) control
CN101052209B (zh) * 2006-04-07 2011-05-11 华为技术有限公司 一种用户设备的移动性管理实体用户面实体重选方法
CN102088795A (zh) * 2009-12-03 2011-06-08 北京三星通信技术研究有限公司 实现sipto的方法、移动管理控制节点设备
CN105743808B (zh) * 2014-12-08 2017-09-19 华为技术有限公司 一种适配QoS的方法和装置
CN105847035B (zh) * 2016-03-16 2019-04-30 中国联合网络通信集团有限公司 一种虚拟化epc系统及业务实例化方法
US10250491B2 (en) * 2016-05-09 2019-04-02 Qualcomm Incorporated In-flow packet prioritization and data-dependent flexible QoS policy
CN109997334B (zh) * 2016-10-06 2022-08-09 康维达无线有限责任公司 具有用于3gpp网络中物联网应用的间接连接的中继和收费的会话管理

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886969A (zh) * 2003-12-01 2006-12-27 国际商业机器公司 用于提供通信会话的系统和方法
CN1859213A (zh) * 2006-03-01 2006-11-08 华为技术有限公司 在内容分发网络中保障服务水平的系统和方法
CN102131236A (zh) * 2010-01-19 2011-07-20 运软网络科技(上海)有限公司 一种实现vdi网络负载均衡的方法
US20150142950A1 (en) * 2013-11-19 2015-05-21 International Business Machines Corporation Management of cloud provider selection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2(Release 15", 3GPP TS 23.501, vol. SA WG2, no. V15.1.0, 28 March 2018 (2018-03-28) - 31 March 2018 (2018-03-31), pages 1 - 201, XP051450586 *

Also Published As

Publication number Publication date
CN110392400A (zh) 2019-10-29
CN110392400B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
KR102436804B1 (ko) 세션 관리 방법, 장치 및 시스템
JP7118237B2 (ja) 通信方法及び通信装置
AU2019273268B2 (en) Method and apparatus for establishing gbr qos flow in session
CN108574969B (zh) 多接入场景中的连接处理方法和装置
US10425987B2 (en) Registration method, session establishment method, terminal, and AMF entity
WO2019201322A1 (zh) 一种通信方法及相关设备
CN110049070B (zh) 事件通知方法及相关设备
US20200045607A1 (en) Methods and apparatus for selecting a network route for data communications for iot devices
US11937128B2 (en) Communication method and communications apparatus for determining latency of transmission between network elements
CN113767672B (zh) 用于在插入中间会话管理功能之后管理无线通信的移动通信核心网络装置及方法
US20210168151A1 (en) Method for implementing user plane security policy, apparatus, and system
US20200252837A1 (en) Method for checking change in wireless connection type of terminal in third-party application server
WO2019033796A1 (zh) 会话处理方法及相关设备
CN110662308B (zh) 一种通信方法及装置
US20230072956A1 (en) Slice access method, apparatus, and system
EP4024956A1 (en) Communication method, apparatus, and system
CN109474954B (zh) 一种会话建立方法及装置
JP7248818B2 (ja) データ処理方法およびデータ処理装置
JP6047075B2 (ja) モバイルゲートウェイ、その制御方法、それを備える無線アクセスネットワークシステム
EP3920511B1 (en) Policy management method and device
US20220103482A1 (en) Maximum data burst volume (mdbv) determining method, apparatus, and system
CN111919501A (zh) 专用承载管理
WO2020034869A1 (zh) 一种业务流的传输方法、通信方法及装置
JP2014220694A (ja) 通信システム、基地局、及び通信方法
CN115244991A (zh) 通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789274

Country of ref document: EP

Kind code of ref document: A1