WO2020034799A1 - 一种数据通信方法、装置和电子设备 - Google Patents

一种数据通信方法、装置和电子设备 Download PDF

Info

Publication number
WO2020034799A1
WO2020034799A1 PCT/CN2019/096101 CN2019096101W WO2020034799A1 WO 2020034799 A1 WO2020034799 A1 WO 2020034799A1 CN 2019096101 W CN2019096101 W CN 2019096101W WO 2020034799 A1 WO2020034799 A1 WO 2020034799A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
time period
detection time
channel
data
Prior art date
Application number
PCT/CN2019/096101
Other languages
English (en)
French (fr)
Inventor
张婷婷
陈阳
陈竹
Original Assignee
哈尔滨海能达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨海能达科技有限公司 filed Critical 哈尔滨海能达科技有限公司
Publication of WO2020034799A1 publication Critical patent/WO2020034799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of data communication technology, and more particularly, to a data communication method, device, and electronic device.
  • LORA is a type of LPWAN (low-power Wide-Area Network) communication technology. It is an ultra-long-distance wireless transmission scheme based on spread-spectrum technology and is widely used in IoT systems. In the Internet of Things system, a gateway will deploy a large number of LORA nodes, and the LORA nodes send the collected data to the gateway.
  • LPWAN low-power Wide-Area Network
  • the LORA node will generate a fixed time detection window before sending the data. During the detection window time, if it is detected that the channel is not occupied, it will send to the gateway. send data.
  • a gateway usually deploys hundreds or thousands of LORA nodes, so it is likely that multiple nodes send data at the same time.
  • multiple LORA nodes generate detection windows of a fixed duration at the same time, thus Multiple LORA nodes will complete the detection of channel occupancy at the same time, and send out data at the same time, so data collision still occurs. It can be seen that when the number of LORA nodes is large, the anti-collision capability of the above method is low, and the anti-collision effect is poor.
  • the present application provides a data communication method, device and electronic equipment to improve data anti-collision capability.
  • a data communication method includes:
  • the detection window When a data sending request is received, a detection window is generated.
  • the detection window includes at least two detection time periods and at least one detection time period. The difference between the number of detection time periods and the number of detection time periods. It is 1, the detection time period and the detection time period are sequentially arranged in a cross, and the length of at least two time periods in the detection window is a random value;
  • each adjacent set of the detection time period and the detection time period detecting whether a channel is occupied during the detection time period, and if the channel is not occupied, the communication is forwarded within the detection time period.
  • the channel sends a detection frame, the detection frame is used to occupy the channel; until the channel is detected to be occupied within a certain set of the detection time period and the detection time period, the operation of the detection window is stopped;
  • the data is sent to the channel.
  • a data communication device includes:
  • a detection window generating unit is configured to generate a detection window when a data sending request is received, the detection window includes at least two detection time periods and at least one detection time period, and the number of the detection time periods and the detection time The difference between the number of segments is 1, the detection time period and the detection time period are sequentially arranged in a cross, and the length of at least two time periods in the detection window is a random value;
  • a detection window execution unit configured to execute in each adjacent set of the detection time period and the detection time period: detecting whether a channel is occupied during the detection time period, and if the channel is not occupied, then Sending a detection frame to the channel during the detection time period, the detection frame is used to occupy the channel; until the channel is detected to be occupied within a certain set of detection time periods and the detection time period, stop at this time Operation of the detection window;
  • a sending unit is configured to send the data to the channel if it is detected that the channel is not occupied during the detection time period.
  • An electronic device includes: a communication interface, a processor, and a memory;
  • the program code is stored in the memory
  • the detection window includes at least two detection time periods and at least one detection time period. The difference between the number of detection time periods and the number of detection time periods. Is 1, the detection time period and the detection time period are sequentially arranged in a crosswise manner, and the length of at least two time periods in the detection window is a random value; in each adjacent group of the detection time period and the detection time, Execution within a time period: detecting whether a channel is occupied during the detection time period, and if the channel is not occupied, sending a detection frame to the channel within the detection time period, the detection frame is used to occupy the channel; Until the channel is detected to be occupied within a certain set of detection time periods and the detection time period, the operation of the detection window is stopped; when the last detection time period is reached, if the detection is performed within the detection time period If the channel is not occupied, the data is sent to the channel.
  • the detection window includes at least two detection time periods and at least one detection time period.
  • the number of the detection time periods and the detection time period are different. The difference between the number is 1, the detection time period and the detection time period are sequentially arranged in a row, and the length of at least two time periods in the detection window is a random value; further, in each adjacent group of the detections, In the time period and the detection time period, the detection channel is used to detect whether the channel is occupied. If the channel is occupied, the operation of the detection window is stopped. If the channel is not occupied, the detection period is detected.
  • a sounding frame is transmitted to the channel, and the sounding frame is used to occupy the channel, and until the channel is detected to be occupied within a certain set of the detection time period and the detection time period, the detection is stopped at this time.
  • the operation of the window when the last detection time period is reached, and it is detected that the channel is not occupied within the time period, the data is sent to the channel. It can be seen that the channel occupation detection is being performed. When the detection time period and / or the detection time period are random, even if multiple nodes generate detection windows at the same time, the specific detection channel occupation and the time for transmitting detection frames are different, which greatly reduces the The probability of sending data at the same time improves the anti-collision ability of the data.
  • FIG. 1 is a flowchart of a data communication method disclosed by an embodiment of the present application
  • FIG. 2 is a structural diagram of a detection window disclosed in another embodiment of the present application.
  • FIG. 3 is a flowchart of a method for detecting an occupied channel according to another embodiment of the present application.
  • FIG. 4 is a flowchart of a method for transmitting a detection frame disclosed in an embodiment of the present application
  • FIG. 5 is a composition block diagram of a data communication device disclosed in an embodiment of the present application.
  • An embodiment of the present application provides a data communication method. As shown in FIG. 1, the method includes:
  • a detection window is generated, and the detection window includes at least two detection time periods and at least one detection time period.
  • the difference between the number of detection time periods and the number of detection time periods is 1.
  • the detection time period and the detection time period are arranged alternately in order, and the length of at least two time periods in the detection window is a random value;
  • the node in the communication network receives a data transmission request, the node generates a detection window, and the node is a terminal electronic device in the communication network.
  • the nodes in the Internet of Things are LORA nodes, and LOAR nodes maintain low power consumption, stay in sleep mode when not in operation, and perform periodic wakeups. If data is received during wakeup, Send a request to generate a detection window.
  • the structure of the detection window is shown in Figure 2.
  • n detection time periods A and n-1 detection time periods B It includes n detection time periods A and n-1 detection time periods B, n is greater than or equal to 2, and the time periods in the detection window are arranged as the first detection time period A1, the first Detection period B1, second detection period A2, second detection period B2, ... n-1 detection period An-1, n-1 detection period Bn-1, n detection period An .
  • the detection time period is used to perform the operation of whether the channel is occupied during the detection time period; the detection time period is used to perform the operation of transmitting a detection frame to the channel during the detection time period, and the detection frame is used to occupy the channel, that is, a certain period of time.
  • a node transmits a detection frame to the channel during the detection time period. As long as other nodes detect the detection frame, it indicates that the channel is currently occupied and no data is sent. When a node does not transmit a detection frame, other nodes cannot detect the detection frame. frame. It can be understood that the structure of the detection frame is different with different application network environments. Taking the application of the LORA communication network as an example, the detection frame is composed of a LOAR preamble and detection data.
  • the duration of the detection time period and the duration of the detection time period are both integer multiples of a symbol time.
  • the durations of at least two time periods in the detection window are random values, and the two time periods may be any two time periods in the detection window. Specifically, two random values can be obtained within a range of values, and the two random values are used as the durations of the two time periods specified in advance; and then the corresponding duration values stored in other time periods are obtained in advance.
  • S101 Perform in each adjacent set of the detection time period and the detection time period: detect whether a channel is occupied during the detection time period, and if the channel is not occupied, perform detection at the detection time. Sending a detection frame to the channel within the segment, the detection frame is used to occupy the channel; until the channel is detected to be occupied within a certain set of the detection time period and the detection time period, it stops at the detection window. operating;
  • the adjacent set of the detection time period and the detection time period is a set of A1 and B1, a set of A2 and B2, ... a set of An-1 and Bn-1, from the first
  • the first detection period A1 of a group starts to detect whether a channel is occupied. If the channel is not occupied, a detection frame is sent to the channel within the first detection period B1 of the group, and then the second frame is detected.
  • the second detection time period A2 performs detection whether the channel is occupied, and when it is determined that it is not occupied, sends a detection frame in the second detection time period B2 until it is detected that the channel is occupied within a certain detection time period, and then stops.
  • a random avoidance is performed, and a new detection window is generated after the avoidance time is reached, and then step S101 is performed in the new detection window.
  • a detection window is generated before the data is sent.
  • the detection window includes at least two detection time periods and at least one detection time period.
  • the number of the detection time periods and the number of the detection time periods. The difference is 1, the detection time period and the detection time period are arranged in an orderly cross, and the length of at least two time periods in the detection window is a random value; further, in each adjacent group of the detection time periods And the detection time period is performed during the detection time period to detect whether the channel is occupied, and if it is occupied, the operation of the detection window is stopped; if the channel is not occupied, detection is performed after the detection time period During the time period, a sounding frame is transmitted to the channel, and the sounding frame is used to occupy the channel, and until the channel is detected to be occupied within a certain set of the detection time period and the detection time period, it stops at this time.
  • the detection window When the last detection time period is reached and it is detected that the channel is not occupied within the time period, the data is sent to the channel. It can be seen that the channel occupancy detection is being performed. During the test, the detection time period and / or the length of the detection time period are random. Even if multiple nodes generate detection windows at the same time, the specific detection channel occupation and the time for transmitting the detection frame are different, which greatly reduces each node. The probability of sending data at the same time improves the data's anti-collision ability. Specifically, when a LORA node is used in the Internet of Things, when the LORA node needs to register, report service data, or reply to a gateway response, the data communication method of the foregoing embodiment may be used to send data.
  • the duration of each time period in the generated detection window is a random value. In this way, only the duration of each time period in the detection windows generated by multiple nodes is completely the same. In this case, the data sent by multiple nodes will collide, but the probability that the time length of each time period in the detection window generated by multiple nodes is exactly the same is very low, so this method can greatly reduce the probability of data collision.
  • the length of the detection time period from the first detection time period to the last detection time period in the detection window is getting smaller and smaller, as shown in the detection window shown in FIG. 2, the first The duration of the detection period, that is, the first detection period A1 is the longest, and the duration of the detection period is smaller the later, and the duration of An is the shortest.
  • the length of the detection period at the later position in the detection window generated by any node is not only less than the length of the detection period at the earlier position in the detection window, but also basically shorter than the others The length of the earlier detection time period in the detection window generated by the node.
  • the following example illustrates the anti-collision effect of the set duration:
  • the detection window generated by node 1 and node 2 includes two detection time periods.
  • the length of the detection time period in the detection window generated by node 1 is from the first detection time period to the last detection time period. As the rule becomes smaller, the duration of the first detection period is 80 ms.
  • the length of the detection time period in the detection window generated by node 2 does not follow the above rules. For example, the length of the first detection time period is 20 ms, and the length of the second detection time period is 90 ms.
  • Node 2 first generates a detection window and performs detection.
  • the detection window generated by node 2 is executed to the 10th second detection time period, that is, the remaining detection time of 80 ms
  • the detection window generated by node 1 has just started to perform the first detection time. Segment, that is, it also has a detection time of 80ms.
  • the detection window generated by node 1 performs 80ms of the first detection period
  • it is determined that the channel is not occupied and a detection frame is sent to the channel.
  • the remaining 80 ms of the second detection time period is performed, it is determined that the channel is not occupied and the target data is transmitted. At this time, a collision between the detection frame and the target data occurs in the channel.
  • the remaining execution time of the second detection time period of the detection window generated by node 2 and the detection generated by node 1 will not occur. In the case where the remaining execution time of the first detection period of the window is the same, that is, a situation in which the detection frame collides with the target data is completely avoided.
  • the duration of the detection window is a preset fixed value, which can further reduce the collision probability of the data.
  • the following example illustrates the anti-collision effect of setting a fixed value:
  • the total length of the detection window generated by node 1 including 3 time periods is 110ms, of which the first detection time period is 60ms, the detection time period is 10ms, and the second detection time period is 40ms; the node 2 generation includes 3 times
  • the total length of the detection window of the segment is 100 ms, wherein the first detection time period is 50 ms, the detection time period is 10 ms, and the second detection time period is 40 ms.
  • the time for detecting the detection window generated by node 2 is 10 ms after the detection window is generated by node 1, at this time, the remaining execution time of the first detection time period in the detection window generated by node 1 is 50 ms, which is equivalent to generating with node 2
  • the duration of the first detection time period in the detection window of the same is the same, and the detection time period of the detection window and the second detection time period generated by the two nodes are exactly the same. In this way, the The duration is exactly the same 10ms after the detection window is generated by node 1, which results in data collision.
  • the time of the detection window is a fixed value, the situation of collision of the above data is completely avoided.
  • the process of generating a detection window including N time periods is:
  • the difference between the fixed value and the sum of the durations of the N-1 time periods is taken as the duration of the Nth time period, wherein the sum of the durations of the N-1 time periods is less than the fixed value.
  • the length of the detection window is a set fixed value
  • the difference between the number of detection time periods and the number of detection time periods is 1, so
  • the detection time period and the detection time period are arranged alternately in order. From the first detection time period to the last detection time period in the detection window, the length of the detection time period is getting smaller and smaller.
  • the length of the detection time period and the detection time period The length of time is an integer multiple of a symbol time, etc., a detection window structure with the most combination of detection time period and detection time period is the most preferred type of detection window structure, so that all nodes are based on the most preferred detection
  • the window structure generates a detection window for channel occupancy detection.
  • the data communication method is specifically applied to a LOAR node in the Internet of Things networked by using LOAR communication technology, and then detecting whether a channel is occupied, as shown in FIG. 3, including:
  • the LOAR node is in a channel activity detection mode (CAD).
  • CAD channel activity detection mode
  • the LOAR node judges whether data is received from the channel in real time.
  • the received data is demodulated based on a preset demodulation method corresponding to the LOAR communication.
  • the above method can accurately and efficiently judge whether a channel is occupied by detecting whether the channel is occupied by using a CAD mode.
  • a method for transmitting a detection frame to the channel includes:
  • the pre-stored LOAR preamble and detection data are acquired, and the detection data may be any data, which does not have substantial meaning.
  • the preamble and the detection data are modulated, and the time of the detection data is greater than or equal to the duration of 1 symbol.
  • S402. Transmit the sounding frame to the channel, and stop transmitting the sounding frame after reaching a duration of a sounding period.
  • generation of a sounding frame is achieved by using a preset modulation mode, and the sounding frame is sent to a channel so that other LOAR nodes detect the sounding frame to determine that a channel is occupied.
  • An embodiment of the present application also discloses a data communication device. As shown in FIG. 5, the device includes:
  • a detection window generating unit 500 is configured to generate a detection window when a data sending request is received, where the detection window includes at least two detection time periods and at least one detection time period, and the number of detection time periods and detection The difference between the number of time periods is 1, the detection time period and the detection time period are arranged in an orderly cross, and the length of at least two time periods in the detection window is a random value;
  • a detection window execution unit 501 is configured to execute in each adjacent set of the detection time period and the detection time period: detecting whether a channel is occupied during the detection time period, and if the channel is not occupied, Sending a sounding frame to the channel within the sounding time period, the sounding frame is used to occupy the channel; until the channel is detected to be occupied within a certain set of time periods and the sounding time period, stop here Operation of the secondary detection window;
  • a sending unit 502 configured to: when the last detection time period is reached, and if it is detected that the channel is not occupied within the detection time period, send the data to the channel
  • the duration of each time period in the detection window is a random value
  • the length of the detection time period is getting smaller and smaller
  • the duration of the detection window is a preset value.
  • the device avoidance unit is configured to perform an avoidance after stopping the operation of the detection window this time, and execute a detection window generation unit after the avoidance time has arrived.
  • An embodiment of the present application further discloses an electronic device, which is characterized in that the electronic device includes: a communication interface, a processor, and a memory;
  • the program code is stored in the memory
  • the detection window includes at least two detection time periods and at least one detection time period. The difference between the number of detection time periods and the number of detection time periods. Is 1, the detection time period and the detection time period are sequentially arranged in a crosswise manner, and the length of at least two time periods in the detection window is a random value; in each adjacent group of the detection time period and the detection time, Execution within a time period: detecting whether a channel is occupied during the detection time period, and if the channel is not occupied, sending a detection frame to the channel within the detection time period, the detection frame is used to occupy the channel; Until the channel is detected to be occupied within a certain set of detection time periods and the detection time period, the operation of the detection window is stopped; when the last detection time period is reached, if the detection is performed within the detection time period If the channel is not occupied, the data is sent to the channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据通信方法、装置及电子设备,该方法包括在接收到数据发送请求的情况下生成检测窗,检测窗包括依次交叉排列的至少两个检测时间段和至少一个探测时间段,检测时间段的个数与探测时间段的个数的差值为1,至少两个时间段的时长为随机值;在每相邻的一组检测时间段和探测时间段内执行:在检测时间段内检测信道是否被占用,若信道未被占用,则在探测时间段内向信道发送探测帧,探测帧用于占用信道;直到在某组检测时间段和探测时间段内检测到信道被占用,则停止在此次检测窗的操作;当到达最后一个检测时间段时,若在该检测时间段内检测到信道未被占用,则向信道发送所述数据,该方式提高了数据防碰撞能力。

Description

一种数据通信方法、装置和电子设备
本申请要求于2018年08月15日提交中国专利局、申请号为201810931065.6、发明名称为“一种数据通信方法、装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据通信技术领域,更具体地说,涉及一种数据通信方法、装置及电子设备。
背景技术
LORA是LPWAN(low-power Wide-Area Network,低功耗广域网)通信技术的一种,是基于扩频技术的超远距离无线传输方案,被广泛应用于物联网系统中。在物联网系统中,一个网关会部署大量LORA节点,LORA节点发送采集到的数据到网关。
当前,为了避免LORA节点向网关发送数据时出现数据碰撞情况,LORA节点在发送数据前,会生成一固定时间的检测窗,在该检测窗时间内,若检测到信道未被占用,则向网关发送数据。
上述方式中,一个网关通常会部署成百上千个LORA节点,所以很可能出现多个节点同时发送数据的情况,该情况下,多个LORA节点在同一个时刻生成固定时长的检测窗,从而多个LORA节点会在相同时刻完成信道被占用与否的检测,并在相同时刻发送出数据,由此仍然出现了数据碰撞情况。可见,当LORA节点数量较大时,上述方式的防数据碰撞能力较低,防碰撞效果较差。
发明内容
有鉴于此,本申请提供一种数据通信方法、装置及电子设备,以提高数据防碰撞能力。
为了实现上述目的,现提出的方案如下:
一种数据通信方法,所述方法包括:
在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;
在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组所述检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
一种数据通信装置,该装置包括:
检测窗生成单元,用于在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;
检测窗执行单元,用于在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
发送单元,用于当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
一种电子设备,所述电子设备包括:通讯接口、处理器和存储器;
所处存储器中存储有程序代码;
所述处理器调用所述存储器中的程序代码时执行如下操作:
在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
从上述的技术方案可以看出,本申请在数据发送前,生成检测窗,该检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;进而在每相邻的一组所述检测时间段和所述探测时间段内执行在检测时间段内,检测信道是否被占用,若所述信道被占用,则停止此次检测窗的操作;若所述信道未被占用,则在探测时间段内,向所述信道发射探测帧,所述探测帧用于占用信道,直到在某组所述检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作,当到达最后一个检测时间段,并在该时间段内时检测到所述信道未被占用,则向所述信道发送所述数据,可见,在进行信道占用检测时,检测时间段和/或探测时间段的时长存在随机情况,即使多个节点在同一时刻生成检测窗,但具体的检测信道占用和发射探测帧的时间都不相同,大大降低了各个节点在同一个时刻发送数据的概率,即提高了数据防碰撞能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种数据通信方法的流程图;
图2为本申请另一实施例公开的检测窗的结构图;
图3为本申请另一实施例公开的一种检测信道被占用方法的流程图;
图4为本申请一实施例公开的一种发射探测帧方法的流程图;
图5为本申请实施例公开的一种数据通信装置的组成框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种数据通信方法,如图1所示,该方法包括:
S100、在接收到数据发送请求的情况下,生成检测窗,该检测窗包括至少两个检测时间段和至少一个探测时间段,检测时间段的个数与探测时间段的个数的差值为1,检测时间段和探测时间段依次交叉排列,检测窗中,至少两个时间段的时长为随机值;
具体的,当处于通信网络中的节点接收到数据发送请求时,该节点生成检测窗,该节点即为处于通信网络中的各终端电子设备。以应用LORA通信技术的物联网为例,物联网中的节点为LORA节点, LOAR节点为保持低功耗,在不工作时处于休眠模式,并进行周期性唤醒,在唤醒时,若接收到数据发送请求,则生成检测窗。该检测窗的结构如图2所示,包括n个检测时间段A和n-1个探测时间段B,n大于等于2,检测窗中时间段的排列为第一检测时间段A1、第一探测时间段B1、第二检测时间段A2、第二探测时间段B2、...第n-1检测时间段An-1、第n-1探测时间段Bn-1、第n检测时间段An。
其中,检测时间段用于,在检测时间段执行信道是否被占用的操作;探测时间段用于,在探测时间段执行向信道发射探测帧的操作,该探测帧用于占用信道,即某一节点在探测时间段内向信道发射探测帧,只要其他节点检测到该探测帧,则表明信道当前被占用,从而不会发送数据,当某一节点不发射探测帧时,则其他节点无法检测到探测帧。可以理解,随着应用网络环境的不同,探测帧的结构也不相同,以应用LORA通信网络为例,探测帧是由LOAR前导码和探测数据构成的。
其中,检测时间段的时长与探测时间段的时长均为一个符号时间的整数倍。所述检测窗中至少两个时间段的时长为随机值,该两个时间段可为检测窗中的任意两个时间段。具体的,可在一取值范围内获得两个随机值,并将所述两个随机值作为预先指定的两个时间段的时长;然后获取其他时间段预先存储的对应的时长值。
S101、在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组所述检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
其中,由图2所示,相邻的一组所述检测时间段和所述探测时间段即为一组A1和B1,一组A2和B2…一组An-1和Bn-1,从第一组的第一检测时间段A1开始执行检测信道是否被占用,若所述信道未 被占用,则在该组的第一探测时间段B1内向所述信道发送探测帧,然后在第二组的第二检测时间段A2执行检测信道是否被占用,以及在确定未被占用时,在第二探测时间段B2内发送探测帧,直到在某组的检测时间段内检测到信道被占用,则停止在此次检测窗的操作,进行随机避让,并在避让时间到达后生成一个新的所述检测窗,进而在该新的检测窗中执行步骤S101。
S102、当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述目标数据。
具体的,执行到在最后一组的第n-1探测时间段Bn-1内向所述信道发送探测帧完毕后,在最后一个检测时间段An内检测信道是否被占用,若未被占用,则发送目标数据。
上述实施例中,在数据发送前,生成检测窗,该检测窗,该检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;进而在每相邻的一组所述检测时间段和所述探测时间段内执行在检测时间段内,检测信道是否被占用,若被占用则停止此次检测窗的操作;若所述信道未被占用,则在位于该检测时间段后的探测时间段内,向所述信道发射探测帧,所述探测帧用于占用信道,直到在某组所述检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作,当到达最后一个检测时间段时,并在该时间段内检测到所述信道未被占用时,向所述信道发送所述数据,可见,在进行信道占用检测时,检测时间段和/或探测时间段的时长存在随机情况,即使多个节点在同一时刻生成检测窗,但具体的检测信道占用和发射探测帧的时间都不相同,大大降低了各个节点在同一个时刻发送数据的概率,即提高了数据防碰撞能力。具体的,在物联网中使用LORA节点时,当LORA节点需登记、业务数据上报或回复网关应 答时,都可采用上述实施例的数据通信方法进行数据的发送。
在本申请另一实施例中,优选地,生成的检测窗中的每个时间段的时长均为随机值,如此,只有在多个节点生成的检测窗中每个时间段的时长完全相同的情况下,多个节点发送的数据才会发生碰撞,但多个节点生成的检测窗中每个时间段的时长完全相同的情况出现的概率非常低,所以该方式能够大大降低数据碰撞的概率。
优选地,针对任一个检测窗来说,检测窗中从第一个检测时间段至最后一个检测时间段,检测时间段的时长越来越小,如图2所示的检测窗,第一个检测时间段即第一检测时间段A1的时长最长,越往后检测时间段的时长越小,An的时长是最短的。如此,对于不同节点生成的检测窗来说,任一个节点生成的检测窗中位置靠后的检测时间段的时长不仅小于该检测窗中位置靠前的检测时间段的时长,基本也会小于其他节点生成的检测窗中位置靠前的检测时间段的时长。以下面的一个例子对设置时长的防碰撞效果进行说明:
节点1和节点2生成的检测窗包括2个检测时间段,节点1生成的检测窗中检测时间段的时长是遵循从第一个检测时间段至最后一个检测时间段,检测时间段的时长越来越小的规则,如第一检测时间段的时长为80ms。节点2生成的检测窗中检测时间段的时长并不遵循上述规则,如其第一检测时间段的时长为20ms,第二检测时间段的时长为90ms。
节点2先生成检测窗,并执行检测,当节点2生成的检测窗执行到第二检测时间段的第10ms,即剩余80ms的检测时长时,节点1生成的检测窗刚开始执行第一检测时间段,即其也剩余80ms的检测时长,如此节点1生成的检测窗在执行完第一检测时间段的80ms后,确定信道未被占用,向信道发送探测帧,而节点2生成的检测窗在执行完第二检测时间段的剩余80ms后,确定信道未被占用,发送目标 数据,此时信道中则发生探测帧和目标数据的碰撞。但,若节点2生成的检测窗的检测时间段的时长也遵循越来越小的规则,就不会发生节点2生成的检测窗的第二检测时间段的剩余执行时长与节点1生成的检测窗的第一检测时间段的剩余执行时长相同的情况,也即完全避免了探测帧和目标数据发生碰撞的情况。
优选地,所述检测窗的时长为预先设置的定值,该方式能够进一步降低数据的碰撞概率。以下面一个例子对设置定值的防碰撞效果进行说明:
如节点1生成包括3个时间段的检测窗的总时长为110ms,其中,第一检测时间段为60ms,探测时间段为10ms,第二检测时间段为40ms;节点2生成的包括3个时间段的检测窗的总时长为100ms,其中,第一检测时间段为50ms,探测时间段为10ms,第二检测时间段为40ms。
若节点2生成的检测检测窗的时间是在节点1生成检测窗的10ms后,此时,节点1生成的检测窗中的第一检测时间段的执行时长剩余为50ms,相当于与节点2生成的检测窗中的第一检测时间段的时长相同,而且两个节点生成的检测窗的探测时间段和第二检测时间段的时长是完全相同的,如此,两个检测窗的各时间段的时长,在节点1生成检测窗10ms后是完全相同的,由此则造成了数据的碰撞。但若检测窗的时间为一个定值,则完全避免了上述数据发生碰撞的情况。
具体的,在所述检测窗的时长为预先设置的定值时,生成包括N个时间段的检测窗的过程为:
对N-1个时间段中的任一时间段:从与该时间段对应的取值范围内获取随机值,并将获取的随机值作为该时间段的时长;
将所述定值与所述N-1个时间段时长总和的差值作为第N个时间段的时长,其中,所述N-1个时间段时长总和小于所述定值。
其中,根据上述对检测窗中检测时间段和探测时间段的设定即检测窗的时长为一设置的定值,检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,检测窗中从第一个检测时间段至最后一个检测时间段,检测时间段的时长越来越小,检测时间段的时长与探测时间段的时长均为一个符号时间的整数倍等,推算出的检测时间段和探测时间段组合最多的一种检测窗结构,为最优选地一种检测窗结构,以便所有节点根据该最优选的检测窗结构生成检测窗进行信道占用检测。
本申请提供的另一实施例中,数据通信方法具体应用在利用LOAR通信技术组网的物联网中的LOAR节点中,则检测信道是否被占用,如图3所示,包括:
S300、判断是否从所述信道中接收到数据;
其中,LOAR节点处于信道活动检测模式(Channel Activity Detection,CAD),在该CAD模式下,LOAR节点实时判断是否从信道中接收到数据。
S301、若接收到数据,基于预设解调方式对所述接收到的数据进行解调,获得解调数据;
其中,基于预设的对应于LOAR通信的解调方式对接收到的数据进行解调。
S302、判断解调数据是否与预先存储的LOAR前导码匹配;
S303、若匹配,则确定所述信道被占用。
上述方式通过利用CAD模式检测信道是否被占用,能够准确高效的实现信道被占用的判断。
基于上述实施例,向所述信道发射探测帧的方法,如图4所示,包括:
S400、获取所述LOAR前导码和探测数据;
具体的,获取预先存储的LOAR前导码和探测数据,探测数据可以是任何数据,其不具有实质的意义。
S401、基于预设调制方式,对所述LOAR前导码和探测数据进行调制获得探测帧,所述前导码时间和所述探测数据时间的和值为所述探测时间段的时长;
其中,基于与LOAR通信技术对应的调制方式,对前导码和探测数据进行调制,所述探测数据的时间大于等于1个符号的时长。
S402、向所述信道发射所述探测帧,在达到探测时间段的时长后,停止发射该探测帧。
上述实施例,通过预设调制方式实现了探测帧的生成,并发送该探测帧至信道中以令其他LOAR节点检测该探测帧确定信道被占用。
本申请实施例还公开一种数据通信装置,如图5所示,该装置包括:
检测窗生成单元500,用于在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;
检测窗执行单元501,用于在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
发送单元502,用于当到达最后一个检测时间段时,若在该检测 时间段内检测到所述信道未被占用,则向所述信道发送所述数据
优选地,检测窗中的每个时间段的时长均为随机值;
优选地,从所述第一个检测时间段至最后一个检测时间段,所述检测时间段的时长越来越小;
优选地,所述检测窗的时长为预先设置的定值。
优选地,所述装置避让单元,用于在停止在此次检测窗的操作后进行避让,并在避让时间到达后执行检测窗生成单元。
本申请实施例还公开一种电子设备,其特征在于,所述电子设备包括:通讯接口、处理器和存储器;
所处存储器中存储有程序代码;
所述处理器调用所述存储器中的程序代码时执行如下操作:
在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
最后,还需要说明的是,在本文中术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限 定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种数据通信方法,其特征在于,所述方法包括:
    在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;
    在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组所述检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
    当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
  2. 如权利要求1所述方法,其特征在于,所述检测窗中的每个时间段的时长均为随机值。
  3. 如权利要求1所述方法,其特征在于,从所述第一个检测时间段至最后一个检测时间段,所述检测时间段的时长越来越小。
  4. 如权利要求1所述方法,其特征在于,所述检测窗的时长为预先设置的定值。
  5. 如权利要求1所述方法,其特征在于,在停止在此次检测窗的操作后,所述方法还包括:
    进行避让,并在避让时间到达后生成所述检测窗。
  6. 如权利要求1所述方法,其特征在于,所述检测信道是否被占用包括:
    判断是否从所述信道中接收到数据;
    若接收到数据,基于预设解调方式对所述接收到的数据进行解调,获得解调数据;
    判断解调数据是否与预先存储的LOAR前导码匹配;
    若匹配,则确定所述信道被占用。
  7. 如权利要求6所述方法,其特征在于,所述向所述信道发射探测帧包括:
    获取所述LOAR前导码和探测数据;
    基于预设调制方式,对所述LOAR前导码和探测数据进行调制获得探测帧,所述前导码时间和所述探测数据时间的和值为所述探测时间段的时长;
    向所述信道发射所述探测帧。
  8. 一种数据通信装置,其特征在于,该装置包括:
    检测窗生成单元,用于在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;
    检测窗执行单元,用于在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;
    发送单元,用于当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
  9. 如权利要求8所述装置,其特征在于,所述检测窗中的每个时间段的时长均为随机值。
  10. 如权利要求8所述装置,其特征在于,从所述第一个检测时间段至最后一个检测时间段,所述检测时间段的时长越来越小。
  11. 如权利要求8所述装置,其特征在于,所述检测窗的时长为 预先设置的定值。
  12. 如权利要求8所述装置,其特征在于,所述装置还包括:
    避让单元,用于停止在此次检测窗的操作后进行避让。
  13. 一种电子设备,其特征在于,所述电子设备包括:通讯接口、处理器和存储器;
    所处存储器中存储有程序代码;
    所述处理器调用所述存储器中的程序代码时执行如下操作:
    在接收到数据发送请求的情况下,生成检测窗,所述检测窗包括至少两个检测时间段和至少一个探测时间段,所述检测时间段的个数与探测时间段的个数的差值为1,所述检测时间段和所述探测时间段依次交叉排列,所述检测窗中至少两个时间段的时长为随机值;在每相邻的一组所述检测时间段和所述探测时间段内执行:在所述检测时间段内检测信道是否被占用,若所述信道未被占用,则在所述探测时间段内向所述信道发送探测帧,所述探测帧用于占用信道;直到在某组检测时间段和所述探测时间段内检测到所述信道被占用,则停止在此次检测窗的操作;当到达最后一个检测时间段时,若在该检测时间段内检测到所述信道未被占用,则向所述信道发送所述数据。
PCT/CN2019/096101 2018-08-15 2019-07-16 一种数据通信方法、装置和电子设备 WO2020034799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810931065.6 2018-08-15
CN201810931065.6A CN110839297B (zh) 2018-08-15 2018-08-15 一种数据通信方法、装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020034799A1 true WO2020034799A1 (zh) 2020-02-20

Family

ID=69525089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096101 WO2020034799A1 (zh) 2018-08-15 2019-07-16 一种数据通信方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN110839297B (zh)
WO (1) WO2020034799A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025378A (zh) * 2021-10-13 2022-02-08 北京邮电大学 一种基于跨信道扫描的LoRa信道占用检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648179A (zh) * 2013-12-16 2014-03-19 吉林大学 基于ow通信的mtc接入碰撞检测装置、系统及方法
CN105050190A (zh) * 2015-08-14 2015-11-11 宇龙计算机通信科技(深圳)有限公司 基于非授权频段的发现参考信号配置方法、装置和基站
CN105451358A (zh) * 2014-08-27 2016-03-30 中国移动通信集团公司 一种上行传输方法、基站及终端
WO2016054817A1 (zh) * 2014-10-11 2016-04-14 华为技术有限公司 一种竞争资源、发送信号以及接收信号的方法、装置
CN106358313A (zh) * 2016-08-30 2017-01-25 中兴长天信息技术(南昌)有限公司 一种用于物联网的lora无线通信网络信道接入控制方法
CN107295676A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717686B (zh) * 2015-03-31 2018-11-30 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN106162925A (zh) * 2015-04-21 2016-11-23 电信科学技术研究院 一种信道接入方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648179A (zh) * 2013-12-16 2014-03-19 吉林大学 基于ow通信的mtc接入碰撞检测装置、系统及方法
CN105451358A (zh) * 2014-08-27 2016-03-30 中国移动通信集团公司 一种上行传输方法、基站及终端
WO2016054817A1 (zh) * 2014-10-11 2016-04-14 华为技术有限公司 一种竞争资源、发送信号以及接收信号的方法、装置
CN105050190A (zh) * 2015-08-14 2015-11-11 宇龙计算机通信科技(深圳)有限公司 基于非授权频段的发现参考信号配置方法、装置和基站
CN107295676A (zh) * 2016-03-31 2017-10-24 中兴通讯股份有限公司 数据传输方法及装置
CN106358313A (zh) * 2016-08-30 2017-01-25 中兴长天信息技术(南昌)有限公司 一种用于物联网的lora无线通信网络信道接入控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025378A (zh) * 2021-10-13 2022-02-08 北京邮电大学 一种基于跨信道扫描的LoRa信道占用检测方法及系统
CN114025378B (zh) * 2021-10-13 2023-08-25 北京邮电大学 一种基于跨信道扫描的LoRa信道占用检测方法及系统

Also Published As

Publication number Publication date
CN110839297B (zh) 2023-04-14
CN110839297A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
US8218493B2 (en) System and method for interference mitigation in wireless networks
Zhang et al. Enabling coexistence of heterogeneous wireless systems: Case for ZigBee and WiFi
EP2274940B1 (en) Fast feedback contention-based ranging procedure in wireless communications systems
JP4790462B2 (ja) 無線通信装置及び無線通信方法
CN104539405A (zh) 信道检测方法、信道检测系统、基站和终端
CN103858510A (zh) 用于使得多个设备能够共享数据传输时段的方法和装置
US10321482B2 (en) Method and device for processing carrier resource of unlicensed carrier and transmission node
EP3200491A1 (en) Method for establishing communication connection between station and access point, access point and station
EP3089541A1 (en) Channel resource allocation method and communications device
Richa et al. Competitive and fair throughput for co-existing networks under adversarial interference
US20200396769A1 (en) Managed Transmission of Wireless DAT Messages
JP4325400B2 (ja) データ送受信システムの競合回避制御方法、データ送受信システム、およびデータ送受信システム用端末
KR20180058662A (ko) 동기 무선 통신 시스템에서의 충돌 회피 방법
WO2016184219A1 (zh) 一种非授权频谱的共享方法及装置
Leone et al. Self-stabilizing tdma algorithms for dynamic wireless ad hoc networks
WO2018028545A1 (zh) 非授权频谱的接入方法、装置及传输节点
WO2020034799A1 (zh) 一种数据通信方法、装置和电子设备
EP3079432B1 (en) Channel reservation method and communications device
Hoang et al. A real-time lora protocol using logical frame partitioning for periodic and aperiodic data transmission
KR100904342B1 (ko) 비슬롯 기반 csma/ca 네트워크 구성에서의 ack보호 방법 및 성능척도 예측방법
Friedrich et al. WRTMAC: A MAC proposal for 802.11 networks in factory automation.
JP3855791B2 (ja) 無線通信装置
JP6288268B2 (ja) 無線通信デバイス、無線通信方法及びコンピュータプログラム
CN111436035B (zh) 5g车联网中传输样式的选择方法、装置及用户设备
Recas et al. Generic Markov model of the contention access period of IEEE 802.15. 4 MAC layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19849224

Country of ref document: EP

Kind code of ref document: A1