WO2020034748A1 - 一种基于移动网络的无人机监管方法及装置 - Google Patents

一种基于移动网络的无人机监管方法及装置 Download PDF

Info

Publication number
WO2020034748A1
WO2020034748A1 PCT/CN2019/091848 CN2019091848W WO2020034748A1 WO 2020034748 A1 WO2020034748 A1 WO 2020034748A1 CN 2019091848 W CN2019091848 W CN 2019091848W WO 2020034748 A1 WO2020034748 A1 WO 2020034748A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
target
target drone
network element
event
Prior art date
Application number
PCT/CN2019/091848
Other languages
English (en)
French (fr)
Inventor
朱浩仁
靳维生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19850028.2A priority Critical patent/EP3832625A4/en
Publication of WO2020034748A1 publication Critical patent/WO2020034748A1/zh
Priority to US17/175,349 priority patent/US20210166571A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and a device for monitoring a drone based on a mobile network.
  • Unmanned aircraft is an unmanned aerial vehicle, which is an unmanned aerial vehicle controlled by radio remote control equipment and its own program control device. Because drones have the advantages of informatization, automation, and no risk of casualties when operating in the air, they have been widely used in emergency rescue, environmental testing, power line inspection, aerial mapping, agricultural plant protection, and military fields.
  • the existing drone supervision methods either require special deployment of drone detection equipment, such as radar equipment, electronic fences, etc., and it is difficult to achieve widespread deployment in the region due to cost issues; Equipment to achieve supervision of drones, but due to the increasing number of drone types and manufacturers, it is difficult to achieve unified supervision of drones. With the increase in the types of drones and the expansion of the drone's flight area, there is an urgent need for a means to conduct extensive and unified supervision of more types of drones in a larger space.
  • drone detection equipment such as radar equipment, electronic fences, etc.
  • the embodiments of the present application provide a method and a device for monitoring a drone based on a mobile network, which are used to solve the problem that the existing technology cannot implement extensive supervision of a drone.
  • the first aspect of the present application provides a method for monitoring a drone based on a mobile network.
  • the method includes:
  • the core network element may receive a request message sent by an application server, where the request message includes a target event performed on the target drone, and then the target event may be performed on the target drone according to the request message.
  • the response message including the execution result of the target event can be returned to the application server.
  • the response message is used to assist the application server to supervise the target drone. Since the mobile network can provide services for drones produced by different manufacturers, and the mobile network is The deployment scope in the region is wide. Therefore, in the method embodiment of the present application, the response message provided by the core network element to the application server is helpful to assist the application server in uniform and extensive supervision of the drone.
  • the target event may include a check event.
  • the verification event may include a drone control range verification, At least one of drone position verification and control area verification.
  • the performing, by the core network element, the target event on the target drone according to the request message includes: the core network element may determine the target drone based on the obtained position information of the target drone Whether the target drone is within the control range of the controller of the target drone.
  • the request message further includes an identity of the target drone
  • the method further includes: obtaining, by the core network element, the location information of the target drone according to the identification information of the target drone.
  • the core network element actively obtains the device's location information based on the device's identity information, which is more credible, which is helpful to improve the target drone based on the location information of the drone.
  • the credibility of the results of performing the drone control range check is more credible.
  • the position information reported by the drone can generally be used as an important reference basis for its supervision.
  • the accuracy of the position information reported by the drone affects the effect of the supervision of the drone.
  • the verification of the position of the drone is beneficial to guarantee The accuracy of the location information reported by the target drone.
  • the request message further includes an identity of the target drone
  • the method further includes: obtaining, by the core network element, the location information of the target drone according to the identification information of the target drone.
  • the core network element actively obtains the device's location information based on the device's identity information, which is more credible, which is helpful to improve the target drone based on the location information of the drone The credibility of the results of performing the drone control range check.
  • the request message further includes the control area information; the method The method further includes: obtaining, by the core network element, the location information of the target drone according to the identification information of the target drone.
  • the core network element actively obtains the device's location information based on the device's identity information, which is more credible, which is helpful to improve the target drone based on the location information The credibility of the results of performing the drone control range check.
  • the core network element performs a response to the target according to the request message.
  • the execution of the target event by the drone further includes: if the core network element determines that the position of the target drone is not within the control area, the core network element according to the position information of the target drone and The control area information determines risk information of the target drone entering the control area.
  • the core executing the target event on the target drone according to the request message further includes:
  • the core network element determines that the location of the target drone is within a no-fly area, the core network element determines a flight path for the target drone to fly out of the no-fly area.
  • a possible implementation manner is a combination of any one of the first possible implementation manner of the first aspect to the tenth possible implementation manner of the first aspect, and the eleventh aspect of the first aspect
  • the target event further includes an authorization decision
  • the execution of the target event by the core network element on the target drone according to the request message includes: Whether the target drone determines whether the target drone violates the rules through the verification event.
  • the method further includes: the core network element according to Whether the target drone sends a flight control command to the target drone in violation.
  • the core network element sends a control plane signaling to all The target drone sends the flight control command.
  • the flight control command includes a command to allow takeoff, or Flight control order for the target drone.
  • the flight control command includes instructing the target drone Execute a hover command or a landing command or a return command.
  • the core network element receives a request message sent by an application server Including: receiving, by the core network element, a request message sent by the application server through a service capability open network element; if the request message includes identity information of the target drone, then opening through the service capability The identity information of the target drone in the request message forwarded by the network element is converted from an external identifier of the core network to an internal identifier.
  • the target event includes a statistical event
  • the execution of the target event on the target drone by the core network element according to the request message includes: the core network element according to the obtained position information of the drone Generate drone statistics.
  • the request message further includes area information to be counted;
  • the core network element generating the drone statistical information according to the obtained position information of the drone includes: the core network element generating the drone statistical information in the area to be counted according to the obtained position information of the drone.
  • the second aspect of the present application provides a mobile network-based drone monitoring method, which may include: an application server sending a request message to a core network element, the request message including a target event performed on the target drone, and thereafter , A response message returned by the core network element may be received, the response message includes an execution result of the core network element performing the target event on the target drone, and the target
  • the man-machine sends a flight control command, and the target information includes the execution result to achieve supervision of the target drone.
  • the application server obtains the response message sent by the core network element, which is beneficial to Achieve unified and extensive supervision of drones.
  • the report message includes identity information of the target drone;
  • the method further includes: the application server performs identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone, and the target information may further include: A result of performing identity verification on the target drone.
  • the flight data includes position information of the target drone;
  • the method further includes: the application server determines a flight path of the target drone according to the position information of the target drone, and the target information may further include a flight path of the target drone.
  • the application server sends a target to the target according to the target information.
  • the sending of the flight control command by the human machine includes: the application server judges whether the target drone violates the rules according to the target information, and then sends the flight control command to the target drone according to whether the target drone violates the rules.
  • the flight control command includes a command on whether to allow takeoff, or Flight control order for target drone.
  • the flight control command includes instructing the target drone to perform hovering
  • the order of landing is either the order of landing or the order of returning home.
  • a third aspect of the present application provides a method for monitoring a drone based on a mobile network.
  • the method includes: the drone receives a first flight control command issued by an application server and a second flight control command issued by a controller of a target drone. Then, the first flight control command may be determined from the first flight control command and the second flight control command according to priority information, and the first flight control command may be executed.
  • the drone can take the flight control command sent by the application server as the standard, which is beneficial to enhancing the application server.
  • the effect of controlling drones reduces the threat of drones to public safety.
  • the fourth aspect of the present application provides a mobile network-based drone monitoring method.
  • the method includes: a core network element executes a target event on a target drone, and then sends a flight control command to the target drone according to the target information. , Supervise the target drone, where the target information includes the execution result of the target event. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • the target event includes a check event.
  • the verification event includes a drone control range verification, and an unmanned At least one of machine position verification and control area verification.
  • the target drone's controller is within the control range.
  • By performing a drone control range check on the target drone it is determined whether the target drone is within the control range of the controller of the target drone according to the obtained position information of the target drone. It is helpful to find out in time that the target drone exceeds the control range of its controller.
  • the method further includes: the core network element according to the target The identity information of the drone obtains the position information of the target drone.
  • the method further includes: the core network element according to the target The identity information of the drone obtains the position information of the target drone.
  • the core network network Performing the target event on the target drone includes: determining, by the core network element, the position of the target drone based on the obtained position information of the target drone and the control area information Whether it is within the control area.
  • the method further includes: the core network element according to the target The identity information of the drone obtains the position information of the target drone.
  • the core network element executes the target drone
  • the target event further includes: if the core network element determines that the location of the target drone is not within the controlled area, the core network element determines the location based on the location information of the target drone and the management area information Risk information of the target drone entering the controlled area.
  • the core network element executing the target event on the target drone further includes: if the core network element determines that the position of the target drone is within a no-fly area, the core network element determines the target The flight path of the drone flying out of the no-fly area.
  • the The target event includes a statistical event
  • the execution of the target event by the core network element on the target drone includes generating statistical information of the drone based on the obtained trusted position information of the drone.
  • the said according to the obtained trusted position information of the drone Generating the drone statistical information includes generating the drone statistical information in the area to be counted according to the obtained trusted position information of the drone.
  • the method further includes: the core network element receives a report message of the target drone, wherein the report message It may be a take-off authorization request for the target drone, or may be flight data periodically reported by the target drone during flight.
  • the report message includes an identity of the target drone Information; the method further comprises: the core network element performing identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone, the target The information also includes a result of identity verification of the target drone.
  • the flight data includes position information of the target drone
  • the method further comprises: the core network element determining a flight path of the target drone according to the position information of the target drone, and the target information further includes a flight path of the target drone.
  • a possible implementation manner, in combination with any one of the fifteenth possible implementation manners of the fourth aspect to the fourth aspect, in the sixteenth possible implementation manner of the fourth aspect, all The sending, by the core network element, a flight control command to the target drone according to the target information includes: determining, by the core network element, whether the target drone is in violation of the rule according to the target information, and thereafter, determining whether the target drone is in violation Sending a flight control command to the target drone in violation.
  • the flight control command includes a command to allow takeoff, or Flight control order for the target drone.
  • the flight control command includes instructing the target drone to execute A hover command or a landing command or a return command.
  • a fifth aspect of the present application provides a drone monitoring method based on a mobile network.
  • the method includes: the drone receives a first flight control command issued by a core network element and a second flight issued by a controller of a target drone. After controlling the command, the first flight control command may be determined from the first flight control command and the second flight control command according to priority information, and the first flight control command may be executed. In this way, even if the flight control command issued by the core network element to the drone conflicts with the flight control command issued by the controller to the drone, the drone can use the flight control command sent by the core network element. It is beneficial to enhance the control effect of drones by core network elements and reduce the threat of drones to public safety.
  • a sixth aspect of the present application provides a mobile network-based drone monitoring method.
  • the method includes: an application server executes a target event on the target drone, and then sends a flight control command to the target drone through the mobile network according to the target information. To monitor the target drone, where the target information includes the execution result of the target event. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • the target event includes a check event.
  • the verification event includes a drone control range verification, an unmanned At least one of machine position verification and control area verification.
  • the target event includes the drone control range check
  • the performing, by the application server, the target event on the target drone includes: determining, by the application server, whether the target drone is in the target drone according to the obtained position information of the target drone. Machine's controller. By performing a drone control range check on the target drone, it is determined whether the target drone is within the control range of the controller of the target drone according to the obtained position information of the target drone. It is helpful to find out in time that the target drone exceeds the control range of its controller.
  • the method further includes: the application server is unmanned according to the target The identity information of the aircraft acquires position information of the target drone.
  • the method further includes that the application server has no one according to the target The identity information of the aircraft acquires position information of the target drone.
  • the method further includes: the application server is unmanned according to the target The identity information of the aircraft acquires position information of the target drone.
  • the application server executes the target event on the target drone And further comprising: if the application server determines that the location of the target drone is not within the control area, the application server determines the target drone according to the location information of the target drone and the management area information Risk information entering the controlled area.
  • the application server Executing the target event on the target drone further includes: if the application server determines that the location of the target drone is within a no-fly area, the application server determines that the target drone is flying out of the office The flight path of the no-fly zone is described.
  • the The target event includes a statistical event
  • the execution of the target event on the target drone by the application server includes generating drone statistical information based on the obtained trusted position information of the drone.
  • the said according to the obtained trusted position information of the drone Generating the drone statistical information includes generating the drone statistical information in the area to be counted according to the obtained trusted position information of the drone.
  • the method further includes: the application server receives a report message of the target drone, where the report message may be the The take-off authorization request of the target drone may be flight data reported by the target drone periodically during flight.
  • the report message includes an identity of the target drone Information; the method further comprises: the application server performs identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone, the target information further The result of identity verification on the target drone is included.
  • the flight data includes position information of the target drone ;
  • the method further includes: determining, by the application server, a flight path of the target drone according to the position information of the target drone, and the target information further includes a flight path of the target drone.
  • the application server sending a flight control command to the target drone according to the target information includes: the application server judges whether the target drone is in violation of the rules according to the target information, and sends the flight control command to the target drone according to the target information.
  • the target drone sends flight control commands.
  • the flight control command includes a command to allow takeoff, or Flight control order for the target drone.
  • the flight control command includes instructing the target drone to execute A hover command or a landing command or a return command.
  • a seventh aspect of the present application provides a core network element, including: a receiving unit configured to receive a request message sent by an application server, the request message including a target event performed on a target drone; and an event execution unit configured to The request message executes the target event on the target drone; a sending unit is configured to return a response message to the application server, and the response message includes an execution result of the target event.
  • the event execution unit can execute the target event on the target drone according to the request information to obtain the execution result of the target event.
  • the execution result of the target event is used for the target.
  • the sending unit can return a response message including the execution result of the target event to the application server.
  • the response message is used to assist the application server to supervise the target drone. Since the mobile network can be produced by different manufacturers, The drone provides services and the mobile network is widely deployed in the region. Therefore, in the device embodiment of the present application, the response message provided by the core network element to the application server is helpful to assist the application server to unify and broaden the drone. Regulation.
  • the target event includes a check event.
  • the verification event includes a drone control range verification, an unmanned At least one of machine position verification and control area verification.
  • the event execution unit is configured to determine whether the target drone is within a control range of a controller of the target drone according to the obtained position information of the target drone. By performing a drone control range check on the target drone, it is determined whether the target drone is within the control range of the controller of the target drone according to the obtained position information of the target drone. It is helpful to find out in time that the target drone exceeds the control range of its controller.
  • the request message further includes identity information of the target drone
  • the event execution unit is further configured to obtain position information of the target drone according to the identification information of the target drone, respectively.
  • the request message further includes identity information of the target drone
  • the event execution unit is further configured to obtain position information of the target drone according to the identity information of the target drone.
  • the event execution unit if the target event includes a control area check, the event execution unit And configured to determine whether the position of the target drone is within the control area according to the obtained position information of the target drone and the control area information.
  • the request message further includes the control area information; the event execution The unit is further configured to obtain position information of the target drone according to the identification information of the target drone.
  • the event execution unit is further configured to, if it is determined that the target is unmanned The position of the drone is not in the control area, and the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • the unit is further configured to determine a flight path of the target drone flying out of the no-fly area if it is determined that the position of the target drone is within the no-fly area.
  • a possible implementation manner is a combination of any one of the first possible implementation manner of the seventh aspect to the tenth possible implementation manner of the seventh aspect, and the eleventh aspect of the seventh aspect
  • the target event further includes an authorization decision
  • the event execution unit is configured to determine whether the target drone violates the rules according to whether the target drone passes the verification event.
  • the sending unit is further configured to: Whether to send a flight control command to the target drone in violation.
  • the flight control command includes a command to allow takeoff, or Flight control order for the target drone.
  • the flight control command includes instructing the target drone to execute A hover command or a landing command or a return command.
  • the receiving unit is configured to receive an The request message sent by the application server, if the request message includes the identification information of the target drone, then the target drone in the request message forwarded by the service capability open network element
  • the identity information is converted from an external identity of the core network to an internal identity.
  • the target event includes a statistical event
  • the event execution unit is used to:
  • the request message further includes information of a region to be counted; the event The execution unit is configured to generate the drone statistical information in the area to be counted according to the obtained position information of the drone.
  • An eighth aspect of the present application provides an application server.
  • the application server includes a message sending unit configured to send a request message to a core network element.
  • the request message includes a target event performed on a target drone.
  • the receiving unit is configured to: Receiving a response message returned by the core network element, the response message including an execution result of the core network element performing the target event on the target drone; and a command sending unit configured to send a response to the target information to The target drone sends a flight control command, and the target information includes the execution result.
  • the message sending unit in the application server can send a request message to the core network element. When the receiving unit receives the corresponding response message, it can obtain the execution result of the target event performed by the core network element on the target drone.
  • the sending unit may send a flight control command to the target drone according to the target information including the execution result, so as to achieve supervision of the target drone.
  • the application server obtains the response message sent by the core network element, which is beneficial to Achieve unified and extensive supervision of drones.
  • the receiving unit before the message sending unit sends a request message to a core network element, the receiving unit is further configured to receive all
  • the report message of the target drone is the take-off authorization request of the target drone, or the flight data reported by the target drone periodically during the flight.
  • the report message includes identity information of the target drone;
  • the command sending unit is configured to perform identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone, and the target information further includes the target drone The result of the identity verification of the drone.
  • the flight data includes position information of the target drone;
  • the command sending unit is configured to determine a flight path of the target drone according to the position information of the target drone; the target information further includes a flight path of the target drone.
  • the command The sending unit is configured to determine whether the target drone violates the rules according to the target information, and send a flight control command to the target drone according to whether the target drone violates the rules.
  • the flight control command includes a command on whether to allow takeoff, or Flight control order for target drone.
  • the flight control command includes instructing the target drone to perform hovering
  • the order of landing is either the order of landing or the order of returning home.
  • a ninth aspect of the present application provides a drone, including: a receiving unit configured to receive a first flight control command issued by an application server and a second flight control command issued by a controller of a target drone; and a determining unit configured to: Determining the first flight control command from the first flight control command and the second flight control command according to priority information; a command execution unit is configured to execute the first flight control command.
  • a receiving unit configured to receive a first flight control command issued by an application server and a second flight control command issued by a controller of a target drone
  • a determining unit configured to: Determining the first flight control command from the first flight control command and the second flight control command according to priority information
  • a command execution unit is configured to execute the first flight control command.
  • a tenth aspect of the present application provides a core network element, including: an event execution unit configured to execute a target event on a target drone; and a sending unit configured to send a flight control command to the target drone according to the target information,
  • the target information includes an execution result of the target event.
  • the event execution unit in the core network element can execute the target event on the target drone and obtain the execution result of the target event.
  • the sending unit can send flight control commands to the target drone according to the target information to perform the target drone.
  • Supervision where target information includes the results of the execution of a target event. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • the target event includes a check event.
  • the verification event includes a drone control range verification, an unmanned At least one of machine position verification and control area verification.
  • the event execution unit is configured to determine whether the target drone is within a control range of a controller of the target drone according to the obtained position information of the target drone. By performing a drone control range check on the target drone, it is determined whether the target drone is within the control range of the controller of the target drone according to the obtained position information of the target drone. It is helpful to find out in time that the target drone exceeds the control range of its controller.
  • the event execution unit is further configured to: The identity information acquires position information of the target drone.
  • the event execution unit is further configured to: The identity information acquires position information of the target drone.
  • a possible implementation manner in combination with the second possible implementation manner of the tenth aspect, in a seventh possible implementation manner of the tenth aspect, if the target event includes a control area check, the event execution unit And configured to determine whether the position of the target drone is within the control area according to the obtained position information of the target drone and the control area information.
  • the event execution unit is further configured to: The identity information acquires position information of the target drone.
  • the event execution unit is further configured to: if determining the target drone's The location is not within the control area, and the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • a possible implementation manner is combined with the eighth possible implementation manner of the tenth aspect.
  • the event execution unit also For: if it is determined that the position of the target drone is in a no-fly area, determine a flight path of the target drone flying out of the no-fly area.
  • the target event includes a statistical event
  • the event The execution unit is configured to generate drone statistical information based on the obtained trusted position information of the drone
  • the event execution unit is configured to:
  • the core network element further includes: a receiving unit for receiving a report message of the target drone; the report message is the target drone The take-off authorization request of the aircraft or the flight data reported periodically by the target drone during flight.
  • the report message includes an identity of the target drone Information; the event execution unit is further configured to perform identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone; the target information further includes The identity verification result of the target drone.
  • the flight data includes position information of the target drone
  • the event execution unit is further configured to determine a flight path of the target drone according to the position information of the target drone; the target information further includes a flight path of the target drone.
  • the sending unit is configured to judge the target information according to the target information. Whether the target drone violates the rules, and sends a flight control command to the target drone according to whether the target drone violates the rules.
  • the flight control command includes a command on whether to allow takeoff, or there is no Man-machine flight control order.
  • the flight control command includes instructing the target drone to execute A hover command or a landing command or a return command.
  • An eleventh aspect of the present application provides an unmanned aerial vehicle, including: a receiving unit for receiving a first flight control command issued by a core network element and a second flight control command issued by a controller of a target drone; a determining unit Is configured to determine the first flight control command from the first flight control command and the second flight control command according to priority information; a command execution unit is configured to execute the first flight control command.
  • a receiving unit for receiving a first flight control command issued by a core network element and a second flight control command issued by a controller of a target drone
  • a determining unit Is configured to determine the first flight control command from the first flight control command and the second flight control command according to priority information
  • a command execution unit is configured to execute the first flight control command.
  • An twelfth aspect of the present application provides an application server, including: an event execution unit configured to execute a target event on the target drone; and a sending unit configured to send a flight control command to the target drone via a mobile network according to the target information,
  • the target information includes an execution result of the target event.
  • the event execution unit in the application server can execute the target event on the target drone to obtain the execution result of the target event.
  • the sending unit can determine the flight control command for the target drone based on the target information, and send the target drone to the target through the mobile network
  • the man-machine sends this flight control command to supervise the target drone, wherein the target information includes the execution result of the target event. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • the target event includes a check event.
  • the verification event includes a drone control range verification, At least one of drone position verification and control area verification.
  • the event execution unit is configured to determine whether the target drone is within a control range of a controller of the target drone according to the obtained position information of the target drone. By performing a drone control range check on the target drone, it is determined whether the target drone is within the control range of the controller of the target drone according to the obtained position information of the target drone. It is helpful to find out in time that the target drone exceeds the control range of its controller.
  • the event execution unit is further configured to no one according to the target
  • the identity information of the aircraft acquires position information of the target drone.
  • the event execution unit is further configured to no one according to the target
  • the identity information of the aircraft acquires position information of the target drone.
  • the event execution unit is further configured to have no one according to the target.
  • the identity information of the aircraft acquires position information of the target drone.
  • the event execution unit is further configured to: if the target is determined The position of the drone is not in the control area, and the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • a possible implementation manner is combined with the eighth possible implementation manner of the twelfth aspect.
  • the control area information is no-fly area information
  • all The event execution unit is further configured to: if it is determined that the position of the target drone is within a no-fly area, determine a flight path of the target drone flying out of the no-fly area.
  • the target event includes a statistical event
  • the event execution unit is configured to generate statistical information of the drone based on the obtained trusted position information of the drone
  • the event execution unit is further configured to:
  • the trusted position information of the drone generates the drone statistical information in the area to be counted.
  • the application server before sending a flight control command to the target drone according to the target information, further includes: a receiving unit for receiving a report message of the target drone;
  • the report message is a take-off authorization request of the target drone, or flight data that is periodically reported by the target drone during flight.
  • the report message includes the target drone's Identity information; the event execution unit is further configured to perform identity verification on the target drone according to the identity information of the target drone and the obtained pre-registration information of the drone; the target information also The result of identity verification on the target drone is included.
  • the flight data includes the target drone Position information; the event execution unit is further configured to determine a flight path of the target drone according to the position information of the target drone; the target information further includes a flight path of the target drone.
  • a possible implementation manner in combination with any one of the fifteenth possible implementation manners of the twelfth aspect to the twelfth aspect, the sixteenth possible implementation manner of the twelfth aspect
  • the sending unit is used for judging whether the target drone violates the rules according to the target information, and sends a flight control command to the target drone according to whether the target drone violates the rules.
  • the flight control command includes a command to allow takeoff, Or a flight control order for the target drone.
  • the flight control command includes indicating that the target is unmanned The aircraft executes the hover command or the landing command or the return command.
  • a thirteenth aspect of the present application provides a communication device, including: at least one processor, a memory, a communication line, at least one communication interface, and a computer executing instructions stored in the memory and executable on the processor, when the computer executes
  • the processor executes the foregoing first aspect or any one of the possible implementation methods of the first aspect, or executes the foregoing second aspect or any one of the possible implementation methods of the second aspect Method, or the method of the third aspect, or the method of the fourth aspect or any possible implementation manner of the fourth aspect, or the method of the fifth aspect, or the sixth aspect or A method of any possible implementation manner of the sixth aspect.
  • the communication device may correspond to A core network element.
  • the communication device may correspond to An application server.
  • the communication device may correspond to a drone.
  • a fourteenth aspect of the present application provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the first aspect or the first aspect.
  • Method of any one of the possible implementation manners of the aspect, or method of performing the second aspect or the method of any possible implementation of the second aspect, or method of the third aspect, or method of the fourth aspect or the first The method of any one of the four possible implementation manners, or the method of the fifth aspect, or the method of the sixth or the sixth possible implementation manners.
  • a fifteenth aspect of the present application provides a computer program product that stores one or more computer execution instructions.
  • the processor executes the first aspect or any of the first aspect.
  • a method for a possible implementation manner, or a method for performing the foregoing second aspect or any one of the possible implementation manners for the second aspect, or a method for performing the third aspect, or a method for performing the fourth or fourth aspect A method of any possible implementation manner, or a method of performing the foregoing fifth aspect, or a method of performing the foregoing sixth aspect or any of the possible implementation manners of the sixth aspect.
  • a sixteenth aspect of the present application provides a mobile network-based drone monitoring system, which includes:
  • a core network element configured to implement the first aspect or any of the possible implementation methods of the first aspect
  • An application server configured to execute the second aspect or any of the possible implementation methods of the second aspect
  • a seventeenth aspect of the present application provides a drone monitoring system based on a mobile network.
  • the system includes:
  • a core network element for implementing the fourth aspect or any one of the possible implementation methods of the fourth aspect
  • An eighteenth aspect of the present application provides a drone monitoring system based on a mobile network.
  • the system includes:
  • An application server configured to execute the foregoing sixth aspect or any one of the possible implementation methods of the sixth aspect
  • FIG. 1 is a schematic diagram of an embodiment of a drone monitoring system based on a mobile network in this application;
  • FIG. 2 is a schematic diagram of an embodiment of a drone monitoring method based on a mobile network in this application;
  • 3 to 6 are schematic diagrams of four possible scenarios when a drone system accesses a mobile network
  • FIG. 7 is a schematic diagram of a possible embodiment of performing a relative control range check by a core network element of this application.
  • FIG. 8 is a schematic diagram of a possible embodiment in which a core network element of the present application performs absolute control range verification
  • FIG. 9 is a schematic diagram of a possible embodiment of performing a drone position check by a core network element of this application.
  • FIG. 10 is a schematic diagram of a network architecture applied to the drone monitoring method of this application.
  • FIG. 11 is a schematic diagram of another embodiment of a method for monitoring a drone based on a mobile network in this application;
  • FIG. 12 is a schematic diagram of another network architecture applied to the drone monitoring method of this application.
  • FIG. 13 is a schematic diagram of another embodiment of a drone monitoring method based on a mobile network of the present application.
  • FIG. 14 is a schematic diagram of another network architecture applied to the drone monitoring method of this application.
  • 15 is a schematic diagram of another embodiment of a drone monitoring method based on a mobile network in this application.
  • FIG. 16 is a schematic diagram of another embodiment of a drone monitoring system based on a mobile network of the present application.
  • FIG. 17 is a schematic diagram of another embodiment of a drone monitoring method based on a mobile network of the present application.
  • 18 is a schematic diagram of another network architecture applied to the drone monitoring method of this application.
  • FIG. 19 is a schematic diagram of another embodiment of a drone monitoring method based on a mobile network in this application.
  • 20 is a schematic diagram of another network architecture applied to the drone monitoring method of this application.
  • 21 is a schematic diagram of an embodiment of a communication device according to the present application.
  • 22 is a schematic diagram of an embodiment of a core network element of this application.
  • FIG. 23 is a schematic diagram of an embodiment of an application server of the present application.
  • 24 is a schematic diagram of an embodiment of a drone of the present application.
  • 25 is a schematic diagram of another embodiment of an application server of the present application.
  • 26 is a schematic diagram of another embodiment of a core network element of this application.
  • FIG. 27 is a schematic diagram of another embodiment of a drone of the present application.
  • Mobile network is a kind of mobile communication hardware architecture. Considering that the current mobile network has a wide range of deployments and can be applied to drones from different manufacturers, this application provides a drone monitoring method and device based on mobile networks to achieve unified and extensive supervision of drones.
  • FIG. 1 is a schematic diagram of an embodiment of a drone monitoring system based on a mobile network of the present application.
  • the mobile network-based drone monitoring system of the present application may include a mobile network (the mobile network is represented by a base station in FIG. 1), a drone, and an application server.
  • a mobile user identity card in the drone such as a subscriber identity module (SIM) or a user identity card (UIM)
  • SIM subscriber identity module
  • UIM user identity card
  • the data transmission between the drone and the mobile network may refer to the data transmission through the communication connection established directly between the drone and the mobile network, or it may refer to the data transmission between the drone and the mobile network.
  • the data transmission is realized through the communication connection established indirectly by the controller corresponding to the drone.
  • a mobile network can include a radio access network (RAN) and a core network (CN).
  • the RAN can be connected to the CN.
  • the RAN is responsible for user access and the CN is responsible for service processing.
  • the RAN includes, but is not limited to, a base station, and the CN includes, but is not limited to, a core network element.
  • An embodiment of the drone monitoring method based on the mobile network of the present application includes:
  • the application server sends a request message to a core network element.
  • the application server may send a request message to the core network element.
  • the request message may be a subscription request.
  • the request message includes a target event performed on the target drone to request the core network element to perform the target on the target drone. event.
  • the execution result of the target event can be used to supervise the target drone.
  • the application server may send a request message to the core network element through the service capability open network element, and the service capability open network element may perform corresponding conversion of the request message, for example, if the request message includes the target drone External identity information of the target, then the identity information of the target drone in the request message forwarded by the service capability open network element is converted from the external identity of the core network to the internal identity.
  • the open service capability network element can be a network exposure function (NEF) network element.
  • NEF network exposure function
  • This network element mainly supports the secure interaction between the mobile network and the application server, and can safely expose network capabilities and third parties to third parties. Incidents are used to enhance or improve the quality of application services. Mobile networks can also securely obtain relevant data from third parties to enhance network intelligent decision-making.
  • the network element supports restoring structured data from the unified database or storing structured data in the unified database.
  • a service capability open network element may be a service capability open unit (service capability exposure function (SCEF) network element.
  • SCEF service capability exposure function
  • the core network element executes a target event on the target drone according to the request message.
  • the core network element After receiving the request message sent by the application server, the core network element can execute the target event on the target drone according to the request message, and obtain the execution result of executing the target event.
  • the core network element returns a response message to the application server.
  • the core network element After the core network element obtains the execution result of the target event, it may return a response message corresponding to the request message to the application server.
  • the response message includes the execution result of the core network element performing the target event on the target drone.
  • the application server sends a flight control command to the target drone according to the target information.
  • the application server After receiving the response message returned by the core network element, the application server can obtain the execution result of the core network element performing the target event on the target drone. After that, the application server can send flight control commands to the target drone according to the target information.
  • the target information may include the obtained execution result of the target event performed by the core network element on the target drone.
  • the target drone executes a flight control command.
  • the target event is generally an event related to the position information of the target drone. Therefore, in the process of performing the target event on the target drone, it is usually necessary to obtain the position information of the target drone.
  • the location information of the target drone here are several possible methods for obtaining it:
  • a drone can generally be equipped with a positioning device, such as a GPS device, it can obtain its own position information. Therefore, in the first possible source, the target drone can report the position information and the subject of the target event. Taking the embodiment corresponding to FIG. 2 as an example, that is, the core network element can obtain the location information reported by the target drone, and then execute the target event according to the location information reported by the target drone.
  • the position information reported by the drone is lack of supervision and has low credibility. Therefore, based on the position information reported by the drone, the credibility of the execution result of the target drone to execute the target event is also low. Regulatory loopholes.
  • the device's location information can be obtained according to the Internet protocol address (IP address) of the device, and this method of obtaining the device's location information can be referred to as the Internet method.
  • IP address Internet protocol address
  • the core network can obtain the device's location information according to the device's mobile network identity. This method of obtaining the device's location information can be referred to as a cellular method.
  • the mobile network identity can be an international mobile subscriber identity (IMSI), an international mobile equipment identity (IMEI), or a mobile subscriber international ISDN / PSTN number (mobile subscriber international ISDN / PSTN number) , MSISDN) or generic public subscription identifier (GPSI).
  • IMSI international mobile subscriber identity
  • IMEI international mobile equipment identity
  • GSSI generic public subscription identifier
  • the target event may include at least one of a check event and a statistical event.
  • target events include verification events
  • the verification event in the target event may be related to the position information of the drone.
  • the verification event in the target event may include a drone control range verification, a drone position verification, and a control area verification. At least one.
  • Target events include drone control range verification
  • the target drone is more likely to perform a malicious attack.
  • the target drone performs flight under the control of its paired controller During the mission, it is helpful to determine whether the target drone is within the control range of the target drone by performing the drone control range verification on the target drone and determining the target drone based on the acquired position information of the target drone. Find out in time that the target drone is out of the control range of its controller.
  • FIG. 3 to FIG. 6, are schematic diagrams of four possible scenarios when a drone system (including the drone and its controller) accesses a mobile network.
  • the controller of the drone is connected to the application server through the Internet, the drone is connected to the mobile network through the set mobile user identification card, the application server is connected to the mobile network, and the controller of the drone is connected through the application.
  • the server indirectly controls the drone.
  • both the controller and the drone of the drone are connected to the mobile network through a set mobile user identification card.
  • the controller of the drone controls the drone through the device manufacturer's own radio frequency protocol, and the drone is still connected to the mobile network through the set mobile user identification card.
  • the controller of the drone controls the drone through the device manufacturer's own radio frequency protocol, and at the same time, the controller of the drone is connected to the mobile network through the set mobile user identification card.
  • the target drone and its controller correspond to the scenario shown in Figure 5 or Figure 6, the target drone and its controller communicate through its own radio frequency protocol. At this time, the controller of the target drone controls the target.
  • the control range of the drone depends on the range of the radio frequency protocol. Because the range of the radio frequency protocol is relatively limited, it may not be considered to perform the drone control range verification on the target drone. Of course, in order to improve the supervision, you can also perform the drone control range verification on the target drone. This application is not limited.
  • the target drone and its controller correspond to the scene corresponding to Figure 3 or Figure 4, in theory, as long as there is a mobile network, the controller of the target drone can control the target drone. The target drone performs a relative control range check.
  • the control range of the target drone may be the information stored in the core network element, or the information carried in the request message sent by the application server.
  • the control range of the target drone can be a relative range or an absolute range.
  • the relative range can correspond to the maximum allowed distance between the target drone and its controller, and the absolute range can correspond to the allowed flight area of the target drone. information. Therefore, the drone control range verification may specifically include at least one of a relative control range verification and an absolute control range verification.
  • a possible specific process for the core network element to perform a relative control range check on the target drone may be as follows:
  • the core network element obtains the location information of the target drone and its controller, respectively.
  • the core network element can obtain the location information of the target drone and its controller respectively according to the identity information of the target drone and its controller. For example, when the target drone and its controller are connected to the cellular network At this time, the core network element can obtain the location information of the two based on their cellular network identities. Regarding the specific content of the process of obtaining the location information according to the identity information, reference may be made to the foregoing description of obtaining the location information of the target drone based on the identity information of the target drone by the core network element, which is not repeated here. In the process of obtaining the location information of the target drone and its controller based on the identity information of the target drone and its controller, the core network element needs to determine the target based on the request message sent by the application server.
  • the request message may include the identity information of the target drone and its controller, or the application server may store the correspondence between the target drone and its controller Relationship. According to the corresponding relationship between the target drone and its controller, the application server can determine the identity information of the other device through the identification information of any one of the devices. At this time, the request message may include the target drone.
  • the core network element calculates the distance between the target drone and its controller according to the position information of the target drone and its controller.
  • the core network element determines whether the distance between the target drone and its controller exceeds a relative range. If the distance exceeds the range, step 704 is performed, and if not, the step 705 is performed;
  • the core network element determines that the target drone has not passed the relative control range check.
  • the core network element determines that the target drone passes the relative control range verification.
  • the controller of the target drone may not be able to control the target drone, or the controller of the target drone can control the target drone to perform remote attack tasks.
  • the core network element can determine that the target drone has not passed the relative control range check.
  • the core network element cannot obtain the location information of the controller of the target drone, or the core network element obtains the location information of the controller of the target drone through the Internet.
  • the accuracy of the location information is too high. Low, at this time, the core network element can perform absolute control range verification on the target drone.
  • a possible specific process for the core network element to perform absolute control range verification on the target drone may be as follows:
  • the core network element obtains the location information of the target drone.
  • the core network element determines whether the target drone is within an absolute range. If not, execute step 803; if it is, execute step 804;
  • the core network element determines that the target drone has not passed the absolute control range check.
  • the core network element determines that the target drone passes the absolute control range verification.
  • the absolute range may be the coverage area information of the mobile network.
  • the core network element may first obtain the location information of the target drone, and then, if it is determined that the target drone is not in the coverage area of the mobile network, the target drone is indicated. Cannot communicate with the mobile network. At this time, the core network element can determine that the target drone has not passed the absolute control range check.
  • the absolute range may be preset area information. For example, if the mobile user ID card set in the target drone belongs to Guangdong province, then the absolute range may correspond to Guangdong province. If the core network element determines that the target is unmanned The drone is not in Guangdong province. At this time, it can be determined that the target drone has not passed the absolute control range check.
  • Target events include drone position verification
  • a possible specific process of performing a drone position verification on a target drone by a core network element may be as follows:
  • the core network element obtains the first position information of the target drone.
  • the core network element may obtain the location information of the target drone according to its mobile network identity.
  • the location information of the target drone is referred to as the first location information.
  • the core network element obtains the second location information reported by the target drone.
  • the request information sent by the application server may include the location information reported by the target drone.
  • the location information reported by the target drone is referred to as the second location information.
  • the core network element determines whether the difference between the first location information and the second location information exceeds a difference threshold. If the difference exceeds the difference threshold, step 904 is performed; if not, the step 905 is performed;
  • the core network element determines that the target drone fails the position verification of the drone.
  • the core network element determines that the target drone passes the drone position verification.
  • the position information reported by the drone can generally be used as an important reference basis for its supervision.
  • the accuracy of the reported position information affects the effect of the supervision of the drone.
  • Target events include control area verification
  • the core network element can obtain the location information and control area information of the target drone.
  • the method for the core network element to obtain the control area information may be: 1) The core network element stores the control area information in advance, and when performing the control area verification, the stored control area can be read directly Information; 2) Alternatively, the request message sent by the application server may include information on the control area. The core network element can obtain the control area information from the request message.
  • the controlled area information may include at least one of no-fly area information and no-fly area information. In order to ensure public safety and other purposes, certain areas are usually designated as no-fly zones or no-fly zones.
  • the drone's flight parameters such as limiting the drone's flight speed or flight altitude.
  • Restricting the flight parameters of a drone may mean that the drone is required to fly according to the value of a certain flight parameter. For example, the drone is required to fly at a certain speed.
  • the selectable range of the value of the flight parameters of the man-machine for example, stipulating that the flying height of the drone does not exceed 120 meters.
  • the core network element After the core network element obtains the position information and control area information of the target drone, it can determine whether the target drone is in the control area based on the obtained position information and control area information of the target drone. When the man-machine is in the control area, it can be determined that the target drone has not passed the control area verification. For example, when the control area verification is a no-fly area verification, if the target drone fails the verification, it is necessary to prohibit the target drone from taking off, or force the target drone to fly out of the no-fly area; When the verification is a flight-restricted area verification, if the target drone fails the verification, it is necessary to limit the flight parameters of the target drone.
  • Target events include statistical events
  • the core network element can obtain the airspace information to be counted.
  • the core network element may obtain the specified regulatory airspace information sent by the application server as the airspace information to be counted; or the core network element may also determine the airspace information to be counted by itself.
  • the core The network element can determine the airspace information to be counted according to the location information of the target drone. Specifically, as an example, after obtaining the location information of the target drone, the core network element can determine the location of the target drone. Is the airspace information within a radius of 1 km from the center (the spatial area may refer to an area within a certain distance from the ground surface), and the airspace information is used as the airspace information to be counted.
  • the core network element After the core network element obtains the airspace information to be counted, it can obtain the statistical information of the drones in the airspace to be counted, such as the number of drones.
  • the execution of statistical events on target UAVs by core network elements is conducive to limiting the density of UAVs in the airspace and improving the flight safety of UAVs.
  • the execution result of the statistical event may include statistical information of the drone in a certain airspace.
  • the execution result of the verification event may include the verification result of the verification event, such as passing the verification or failing the verification.
  • the execution result of the verification event may further include intermediate information obtained by the core network element during the execution of the verification event. For example, the distance between the target drone and its controller calculated by the core network element when performing a relative control range check.
  • the execution result of the verification event may further include the result information of the steps selected and executed by the core network element according to the verification result.
  • the core network element may determine the target drone's location information and the control area information. Risk information of the target drone entering the controlled area. Exemplarily, the risk information of the target drone entering the control area may be the minimum distance between the boundary of the target drone and the control area, or the time required for the target drone to fly into the control area. If the core network element determines that the target drone has failed verification, for example, when the control area is a no-fly area, the core network element can determine the flight path of the target drone out of the no-fly area to indicate that the target is unmanned The aircraft followed the flight path out of the no-fly zone. Exemplarily, the flight path out of the no-fly area obtained by the core network element may be the shortest path corresponding to the no-fly area, or the path with the least impact on public safety.
  • the flight control command sent by the core network element to the target drone may include the statistics of the drone in the airspace.
  • the information may alternatively include flight warning information. For example, when the number of drones in the airspace is large, the target drone may be advised not to take off or end the flight mission as soon as possible through flight control commands.
  • the application server can determine whether the target drone violates the rules according to the target information, and then send the target drone to the target drone according to whether the target drone violates the rules. Flight control command. As an example, if any one of the verification results fails, the application server can determine that the target drone violates the rules. If the target drone executes the flight plan, it will bring safety problems. At this time, the application server can report to the target. Drones send mandatory control commands, such as a command to prohibit take-off, or a flight control command to a target drone.
  • the flight control command may include a command instructing the target drone to perform a hovering or landing command, a returning command, or a command to limit flight parameters. If it is determined that the target drone is not in violation, the application server can perform other operations, such as not sending a flight control command to the target drone, or sending a command to the target drone to allow take-off.
  • the flight control command sent by the application server to the target drone may further include that the core network element is performing the verification event.
  • the flight control command when the flight control command includes a command to execute a return flight, the flight control command may also include a designated return path; if it is determined that the target drone does not violate the rule, the flight control command may include Information on the control area or risk information expected to enter the control area.
  • step 205 when the target drone performs a flight task under the control of a controller paired with the target drone, in a possible implementation manner, the target drone is configured to preferentially perform the flight issued by the application server. control commands. Specifically, when the target drone receives the first flight control command issued by the application server and the second flight control command issued by the controller of the target drone, the target drone may control the first flight from the first flight according to the priority information.
  • the first flight control command is selected among the command and the second flight control command, and the first flight control command is executed.
  • the priority information is preset information and is used to indicate that the priority of the first flight control command is higher than that of the second flight control command.
  • the drone can take the flight control command sent by the application server as the standard, which is beneficial to enhancing the application server.
  • the effect of controlling drones reduces the threat of drones to public safety.
  • the core network element of the mobile network can execute the target event on the target drone according to the request information to obtain the execution result of the target event.
  • the execution result of the target event is used to perform the target drone.
  • a response message including the execution result of the target event can be returned to the application server.
  • the response message is used to assist the application server to supervise the target drone. Since the mobile network can provide services for drones produced by different manufacturers, And the mobile network has a wide range of deployment in the region. Therefore, in the embodiment of the method of the present application, the response message provided by the core network element to the application server is beneficial to assist the application server in uniform and extensive supervision of the drone.
  • the application server may send a request message to the core network element.
  • the application server may obtain the execution result of the target event performed by the core network element on the target drone. After that, the application server may obtain the target result including the execution result.
  • the information sends flight control commands to the target drone to achieve supervision of the target drone. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, in the method embodiment of the present application, the application server obtains the response message sent by the core network element, which is beneficial to Achieve unified and extensive supervision of drones.
  • the target event includes two or more events, such as two or more verification events
  • one request message may include multiple Check events, so that the application server can instruct the core network element to perform multiple check events by sending a request message.
  • a request message may include a check event, and the application server needs to send multiple request messages to instruct the core network element to perform multiple check events.
  • the core network element receives multiple verification events, it can process each verification event at the same time. The result of any verification event does not affect the execution of other verification events. Alternatively, the core network element may process multiple verification events one by one. If the execution result of a certain verification event indicates that the target drone fails the verification event, the core network element may not perform other verification events. event.
  • the core network element can immediately return a response message to the application server when it obtains the verification result of a verification event.
  • the response message includes the verification result of a verification event.
  • the core network element may return a response message to the application server after obtaining the verification results of multiple verification events, and the response message includes the verification results of multiple verification events.
  • the embodiment of FIG. 2 is an application server sending a flight control command to a drone.
  • the core network element may send a flight control command to the drone.
  • the core network element 206 sends a flight control command to the target drone according to whether the target drone violates the rules.
  • the target event may also include an authorization decision event, and the core network element may determine whether the target drone violates the rule based on whether the target drone passes the verification event in the target event. For example, when the execution result of a verification event is failed, the core network element may determine that the target drone is in violation, or when the execution result of a preset number of verification events is not passed, the core network network Yuan can determine target drone violations.
  • the core network element sending the flight control command to the target drone refer to the process of the application server sending the flight control command to the target drone according to the target information in step 204.
  • the core network element may send a flight control command when it is determined that the target drone is in violation, and the flight control command may be a command forbidding to take off or a flight control command for the target drone.
  • the flight control command may include a command instructing the target drone to perform a hovering or landing command or a return flight command.
  • the core network element may send flight control commands to the target drone through control plane signaling.
  • the control plane signaling may be non-access stratum (NAS) signaling, where the non-access stratum As a functional layer between the core network and the user equipment.
  • NAS non-access stratum
  • the core network element directly sends the control command to the target drone, which requires fewer steps and delays. Shorter, allowing flight control commands to reach the target drone earlier, thereby improving the timeliness of drone supervision.
  • the core network element determines that the target drone is in violation, the core network element sends a flight control command to the target drone.
  • the response message returned by the core network element to the application server may indicate that the core network element has sent a flight control command to the target drone.
  • the application server receives the instruction, it is not necessary to send a flight control command to the target drone according to the target information.
  • the core network element and the application server may both send flight control commands to the target drone, and the flight control commands sent by the two may be the same or different.
  • the flight control command sent by the core network element to the target drone is a mandatory control command, such as executing a hovering command.
  • the application server determines that the core network element has sent a mandatory control command.
  • the flight control command sent by the application server to the target drone may include prompt information, such as prompting the target drone to issue a compulsory control command because it entered the no-fly zone, and the flight control command may also include no-fly zone information .
  • the target drone can execute the flight control command issued by the core network element.
  • the specific content of the target drone executing the flight control command issued by the core network element is similar to the specific description of step 205 above.
  • the target drone may be configured to execute the core network network preferentially. Yuan issued a flight control order.
  • the following takes the core network element in the embodiment corresponding to FIG. 2 as a core network element in a 5G network as an example to describe the method embodiment corresponding to FIG. 2 in detail.
  • FIG. 10 is a schematic diagram of a network architecture to which the drone monitoring method of the present application is applied.
  • User equipment (UE), (radio) access network ((R) AN), user plane function (UPF) network elements, and data network (data network) in FIG. 10 (DN) is generally called a user layer network function or entity, and the user's data traffic can be transmitted through a data transmission channel established between the UE and the DN.
  • the other network elements in Figure 10 are called control-layer network functions or entities, and are mainly used to achieve reliable and stable transmission of user-layer traffic, such as the network exposure function (NEF), which is mainly used to securely forward to the first layer.
  • NEF network exposure function
  • the three parties expose network capabilities and events; the session management function (SMF) is mainly used for user plane network element selection, user plane network element redirection, IP address allocation, bearer establishment, modification, and release, etc .; access And mobility management functions (access and mobility management functions (AMF)), which are mainly responsible for signaling processing, such as access control, mobility management, attachment and detachment, and gateway selection functions; location management functions (LMF) ), which is mainly used for location management; unified data management (UDM) can be used for location management and subscription management; gateway mobile location center (GMLC), which is mainly responsible for mobile location services The user and server provide interfaces. Among them, AMF, LMF, UDM, and GMLC can jointly perform mobile positioning services. Mobile positioning services are mobile network operators that use special mobile positioning technologies to determine the geographic location of mobile terminal devices and provide mobile users with location-related services.
  • the core network element further includes an unmanned management assistance function (AUMF) network element.
  • AUMF unmanned management assistance function
  • the AUMF network element may be an independent network element or integrated into other core network elements, which is not limited here.
  • DN includes unmanned surveillance and management (UMM) network elements and authorized law enforcement offices (ALEO) network elements.
  • the application server in the embodiment corresponding to FIG. 2 may include a UMM network element and / or an ALEO network element.
  • FIG. 11 is a flowchart of another drone monitoring method of the present application. Please refer to FIG. 11, which is based on mobile Network drone monitoring methods can include:
  • the target drone sends a takeoff authorization request to a UMM network element
  • the identity registration information may include the identity information of the user of the drone, such as the user's name, ID card number, mobile phone number, etc.
  • the device registration information may include the serial number of the drone, and the corresponding drone. Controller's serial number, etc.
  • the target drone Before the target drone performs a flight mission, it can send a take-off authorization request to the UMM network element online.
  • the take-off authorization request may include relevant information about the drone.
  • the target drone and its controller may include: Serial number and mobile network identification, take-off location information of the target drone, current location information, owner information (such as the owner's identification information and living address information, etc.), flight mission type, flight path data, and take-off weight, etc.
  • the UMM network element obtains reference information sent by the ALEO network element.
  • the reference information may include control area information, identity registration information of the target drone, and device registration information.
  • control area information is taken as the no-fly area information as an example.
  • the UMM network element may request the ALEO network element to obtain the latest no-fly zone information, such as the drone fence information that has been clearly defined by China Civil Aviation.
  • the ALEO network element may also periodically and actively push the no-fly zone information to the UMM network element.
  • the UMM network element can query the ALEO network element for the identity registration information and device registration information reported by the user of the drone. After that, in a possible implementation manner, the UMM network element can obtain the identity registration information and device obtained from the ALEO network element.
  • the registration information verifies the identity of the target drone. When it is determined that the owner of the target drone has not registered with ALEO or the target drone, it can be determined that the target drone has not passed the identity verification. You can send feedback result information to the target drone. The result information indicates that the target drone has failed the identity verification. It is recommended to go to the relevant government department to verify whether its registration information has been tampered with. If it is determined that the target drone has passed the identity verification, you can Go to step 1103.
  • the UMM network element sends a first subscription request for the drone control range verification event to the AUMF network element.
  • the device registration information that ALEO can send to the UMM network element may include the scenario where the drone accesses the mobile network.
  • the UMM network element determines the target After the drone is connected to the mobile network, it can be determined that the target drone needs to be verified for the relative control range.
  • the UMM network element can send a subscription request for the drone control range verification event to the AUMF network element.
  • this subscription request is referred to as a first subscription request.
  • the first subscription request may include: the serial number and mobile network identifier of the target drone, the serial number and mobile network identifier of the controller of the target drone, relative range information, error range requirement information, and the like.
  • the AUMF network element performs a drone control range verification on the target drone according to the first subscription request.
  • the AUMF network element may perform a drone control range verification event on the target drone.
  • the AUMF network element performing the relative control range verification on the target drone according to the first subscription request may include the following process:
  • the AUMF network element can obtain the location information of the target drone and its controller. It is assumed that the AUMF network element obtains the location information of the target drone and its controller from the AMF network element or the LMF network element. More specifically, AUMF The network element may obtain the position of the target drone and its controller by subscribing to the location event of the AMF network element, or initiate a positioning request process initiated by the network to obtain the position information of the target drone and its controller. Exemplarily, the AMF network element may provide coarse-grained UE location information, such as information about a cell identifier where the UE is located, according to the received location event subscription request.
  • the AUMF network element can be integrated into an existing core network network element, such as an AMF network element or an LMF network element.
  • an existing core network network element such as an AMF network element or an LMF network element.
  • the AUMF network element is After receiving the first subscription request, the position information of the target drone and its controller can be obtained directly.
  • the AUMF network element obtains the distance between the target drone and its controller based on the position information of the target drone, and then determines whether the distance between the target drone and its controller exceeds the relative range according to the error range requirement information. , It can be determined that the target drone has not passed the relative control range check. If it has not been exceeded, it can be determined that the target drone has passed the relative control range check.
  • AUMF performing absolute control range verification on the target drone according to the first subscription request may include the following process:
  • AUMF can obtain the position information of the target drone, and the obtaining process can refer to the corresponding content of the above-mentioned AUMF performing relative control range verification on the target drone according to the first subscription request.
  • AUMF judges whether the target drone is in the absolute range. If it is not in the absolute range, it can be determined that the target drone has not passed the absolute control range check. Control range verification.
  • the AUMF network element returns a first response message corresponding to the first subscription request to the UMM network element.
  • the first response message may include the execution result of the first subscription request, for example, it may include the verification result of performing the drone control range verification on the target drone, and may also include the obtained between the target drone and its controller. distance.
  • the UMM network element sends a second subscription request to the AUMF network element.
  • the AUMF network element can be responsible for the control area verification and position accuracy verification of the drone, and can also provide services to the UMM network element by subscribing to events.
  • the UMM network element may send a second subscription request to the AUMF network element to control the area verification event and the position accuracy verification event, and the second subscription request It can include: the serial number and mobile network identification of the target drone, information on the control area (drone fence information), error range requirement information, positioning accuracy requirement information, etc.
  • the AUMF network element performs a no-fly zone check and a position accuracy check on the target drone according to the second subscription request.
  • the AUMF network element performing the no-fly area verification on the target drone according to the second subscription request may include:
  • the AUMF network element obtains the location information of the target drone.
  • AUMF can obtain the location information of the target drone from the access and mobility management function AMF or the location management function LMF.
  • AMF access and mobility management function
  • LMF location management function
  • the AUMF network element judges whether the target drone is in the no-fly zone according to the required information of the error range. If it is determined that it is in the no-fly zone, it can be determined that the target drone has not passed the no-fly zone check. Within the area, it can be determined that the target drone passes the no-fly zone verification.
  • the AUMF network element performing the location accuracy check on the target drone according to the second subscription request may include:
  • the AUMF network element can obtain the location information of the target drone, and then can determine whether the location information reported by the target drone meets the positioning accuracy requirements based on the error range requirement information, the current location information in the takeoff authorization request, and the obtained location information.
  • the AUMF network element returns a second response message corresponding to the second subscription request to the UMM network element.
  • the second response message may include the verification result of the no-fly zone verification and the position accuracy verification. If the target drone is not in the no-fly zone, it may also include the risk information of the target drone entering the no-fly zone.
  • the AUMF network element sends a command prohibiting take-off to the target drone
  • the AUMF network element may make an authorization decision on the target drone according to the execution result of the first subscription request and the execution result of the second subscription request.
  • the AUMF network element may make a The man-machine sends an order prohibiting take-off. For example, when the drone control range verification or no-fly zone verification fails, the AUMF network element has the right to directly reject the takeoff authorization request of the target drone, and notify the drone device of the takeoff prohibition command through NAS signaling. .
  • the UMM network element sends a take-off control command corresponding to the take-off authorization request to the target drone.
  • the UMM network element can perform authorization decision on the target drone according to the first response message, the second response message, the identity verification result, etc., and obtain a takeoff control command, such as a command to allow takeoff, or a command to prohibit takeoff, and control the takeoff The command returns the target drone.
  • a takeoff control command such as a command to allow takeoff, or a command to prohibit takeoff
  • the target drone executes the take-off control command
  • the target drone reports flight data to the UMM network element.
  • the target drone can periodically send flight data to the UMM network element during the flight.
  • the flight data may include the serial number and mobile network identification of the target drone and its controller, the current location information of the target drone, the owner information (such as the owner's identification information and residence address information, etc.), and the flight path Data, etc.
  • the UMM network element sends a third subscription request to the AUMF network element.
  • the third subscription request may include a flight supervision event.
  • the AUMF network element performs a flight supervision event in the third subscription request to the target drone;
  • the flight supervision event may specifically include at least one of the drone control range check, the control area check, and the position accuracy check in steps 1104 and 1107 described above.
  • the execution process of each verification event refer to the foregoing corresponding content, which is not repeated here.
  • the AUMF network element returns a third response message corresponding to the third subscription request to the UMM network element.
  • the AUMF network element sends a flight control command to the target drone.
  • the AUMF network element may send a flight control command to the target drone, for example, it may Includes commands such as hover, landing, auto return, or alert.
  • the UMM network element sends a flight control command to the target drone according to the third response message.
  • the UMM network element When the UMM network element authorizes the target drone according to the execution result of the third subscription request or the execution result of the identity verification, the authorization result indicates that the target drone fails the verification, the UMM network element can report to the target drone.
  • the aircraft sends flight control commands, which can include, for example, hovering, landing, automatic return, or alarm commands.
  • UMM network elements can also predict the flight path of the target drone based on the flight data periodically reported by the target drone, and then estimate the length of time that the target drone enters the no-fly zone and the potential drone collision event. If the authorization result indicates that the target drone passes the verification, the UMM network element can send alarm information to the target drone, such as the length of time it enters the no-fly zone and a potential drone collision event.
  • the target drone executes a flight control command.
  • the core network element in the embodiment corresponding to FIG. 2 may also be a core network element in another mobile network architecture.
  • the core network element in the embodiment corresponding to FIG. 2 is a core network in a 4G network.
  • the network element is taken as an example.
  • the AUMF network element in the network architecture corresponding to FIG. 10 corresponds to the unmanned management auxiliary entity (AUME) network element in FIG. 12, and the mobility management entity in the AUME and 4G network architecture. (mobility management, MME) is directly connected. All or part of the functions of AUME can also be integrated in other core network elements, such as MME, which is not limited here.
  • the network 10 corresponds to the evolved universal terrestrial radio access network (E-UTRAN) in FIG. 12, and AMF in the network architecture corresponding to FIG. 10 corresponds to The MME in FIG. 12 and the LMF in the network architecture corresponding to FIG. 10 correspond to the evolved serving mobile location center (E-SMLC) in FIG. 12.
  • the NEF in the network architecture corresponding to FIG. 10 corresponds to the graph.
  • the service capability open unit (SCEF) in Figure 12 (SCEF, DN in the network architecture corresponding to Figure 10 corresponds to the packet data network (PDN) in Figure 12.
  • the application method is based on the unmanned 4G network architecture.
  • For the drone supervision method please refer to the drone supervision method corresponding to FIG. 11, which will not be repeated here.
  • the core network element executes the target event on the target drone according to the request message sent by the application server.
  • a target event may be performed on a target drone by an application server.
  • FIG. 13 another embodiment of the present application provides a drone monitoring method, which includes:
  • the application server executes a target event on the target drone.
  • step 1301 can refer to the corresponding content in the corresponding content of step 202 above. description.
  • the core network element in step 202 is replaced with an application server.
  • the application server needs to send a positioning request to the core network element to obtain the location information of the device obtained by the cellular method.
  • the application server sends a flight control command to the target drone through the mobile network according to the target information, and the target information includes the execution result of the target event;
  • the process by which the application server sends the flight control command to the target drone through the mobile network according to the target information is similar to the process in which the application server sends the flight control command to the target drone according to the target information in the above embodiment. Therefore, the steps For a detailed description of 1302, reference may be made to the corresponding description in the content corresponding to the foregoing step 204, and details are not described herein again.
  • the target drone executes a flight control command.
  • step 205 For the specific content of the target drone executing the flight control command sent by the application server, refer to the detailed description of step 205, which will not be repeated here.
  • the application server can execute the target event on the target drone, obtain the execution result of the target event, and then determine the flight control command for the target drone according to the target information, and send the flight control command to the target drone through the mobile network.
  • the target information includes the execution result of the target event.
  • the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • FIG. 13 is based on a 5G network as an example, and the method embodiment corresponding to FIG. 13 is described in detail.
  • FIG. 14 is another schematic diagram of a network architecture used by the drone monitoring method of the present application.
  • FIG. 14 is another schematic diagram of a network architecture used by the drone monitoring method of the present application.
  • FIG. 15 is a flowchart of another drone monitoring method of the present application.
  • the mobile network-based drone monitoring method of this application may specifically include:
  • the target drone sends a takeoff authorization request to the UMM network element
  • the UMM network element obtains reference information sent by the ALEO network element
  • step 1501 and step 1502 please refer to step 1101 and step 1102 in the method embodiment corresponding to FIG. 11, respectively, and details are not described herein again.
  • the UMM network element performs a drone control range verification event on the target drone.
  • step 1104 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • the UMM network element performs position accuracy verification on the target drone.
  • the UMM network element performs a no-fly zone verification on the target drone.
  • the UMM network element can perform a no-fly area check and a position accuracy check on the drone.
  • step 1107 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • steps 1503 to 1505 if the application server performs the above-mentioned verification by using the location information obtained through the cellular method, then the manner in which the AUMF network element obtains the location information in the embodiment corresponding to FIG. 11 is somewhat different.
  • the application server needs to send a positioning request to the core network element to obtain the location information of the device obtained by the cellular method.
  • the location information of the target drone can be obtained by subscribing to the location event of the AMF, or the terminal can be initiated to terminate the positioning request process to obtain the location information.
  • the UMM network element sends a takeoff control command corresponding to the takeoff authorization request to the target drone.
  • UMM network elements can make authorization judgments on target drones based on relative control range verification results, position accuracy verification results, no-fly zone verification results, and identity verification results to obtain takeoff control commands, such as a command to allow takeoff. Or prohibit takeoff orders and return takeoff control orders to the target drone.
  • the target drone executes a take-off control command.
  • the target drone reports flight data.
  • step 1508 reference may be made to step 1112 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • the UMM network element performs a flight supervision event on the target drone
  • the flight supervision event may include at least one of the drone control range check, the no-fly zone check, and the position accuracy check in steps 1503 to 1505 described above.
  • the execution process of each verification event refer to the foregoing corresponding content, which is not repeated here.
  • the UMM network element sends a flight control command to the target drone.
  • the UMM network element After the UMM network element authorizes the target drone according to the execution result of the flight supervision event or the identity verification execution result, the authorization result indicates that the target drone fails the verification, the UMM network element can report to the target drone.
  • Send flight control commands which can include, for example, hover, landing, auto return, or alert commands.
  • UMM network elements can also predict the flight path of the target drone based on the flight data periodically reported by the target drone, and then estimate the length of time that the target drone enters the no-fly zone and the potential drone collision event. If the authorization result indicates that the target drone passes the verification, the UMM network element can send alarm information to the target drone, such as the length of time it enters the no-fly zone and a potential drone collision event.
  • the target drone executes flight control commands.
  • FIG. 16 is a schematic diagram of another embodiment of a mobile network-based drone monitoring system of the present application.
  • the drone monitoring system corresponding to FIG. 16 includes a mobile network (the base station represents the mobile network in the figure) and a drone, and the drone can perform data transmission with the mobile network.
  • the unmanned aerial vehicle monitoring system corresponding to FIG. 16 please refer to the corresponding description of the unmanned aerial vehicle monitoring system corresponding to FIG. 1 described above, and details are not described herein again.
  • the core network element executes the target event on the target drone according to the request message sent by the application server.
  • the core network element may autonomously execute the target event on the target drone.
  • FIG. 17 Another embodiment of the present application provides a drone monitoring method, which includes:
  • a core network element executes a target event on a target drone
  • the core network element may pre-configure the target event, or in another possible manner, the core network element may receive configuration information of the target event sent by other network elements.
  • the process of the core network element performing the target event on the target drone is similar to the process of the core network element performing the target event on the target drone in step 202, so the detailed description of step 1701 can refer to the content corresponding to step 202 above. Corresponding description.
  • the core network element sends a flight control command to the target drone according to the target information, and the target information includes the execution result of the target event;
  • the process in which the core network element sends the flight control command to the target drone according to the target information is similar to the process in which the application server sends the flight control command to the target drone according to the target information in the embodiment shown in FIG. 2.
  • the application server sends the flight control command to the target drone according to the target information in the embodiment shown in FIG. 2.
  • the target drone executes a flight control command.
  • the target drone can execute the flight control command issued by the core network element.
  • the specific content of the target drone executing the flight control command issued by the core network element is similar to the specific description of step 205.
  • the target drone may be configured to execute the core network element first. Flight control orders issued.
  • the core network element of the mobile network can execute the target event on the target drone and obtain the execution result of the target event. After that, it can send flight control commands to the target drone according to the target information to supervise the target drone. Among them, The target information includes the execution result of the target event. Because the mobile network can provide services for drones produced by different manufacturers, and the mobile network is widely deployed in regions, the drone monitoring method based on mobile networks in this application can achieve unified and extensive supervision of drones. .
  • the following describes the method embodiment corresponding to FIG. 17 in detail by taking the core network element in the embodiment corresponding to FIG. 17 as a core network element in a 5G network as an example.
  • FIG. 18 is another schematic diagram of a network architecture used by the drone monitoring method of the present application.
  • the core network element further includes an unmanned monitoring and management function (UMMF) network element.
  • UMMF unmanned monitoring and management function
  • the UMMF network element can be an independent network element or can be integrated into other core network elements, which is not limited here.
  • the DN includes authorized law enforcement agencies (ALEO) network elements.
  • FIG. 19 is a flowchart of another drone monitoring method of the present application.
  • the mobile network-based drone monitoring method of this application may specifically include:
  • the target drone sends a take-off authorization request to a UMM network element.
  • the UMMF network element obtains reference information sent by the ALEO network element.
  • steps 1901 and 1902 please refer to steps 1101 and 1102 in the method embodiment corresponding to FIG. 11, respectively, and details are not described herein again.
  • the UMMF network element performs a drone control range verification event on the target drone.
  • step 1104 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • the UMMF network element performs a position accuracy check on the target drone.
  • the UMMF network element performs a no-fly zone verification on the target drone.
  • the UMMF network element can perform a no-fly area check and a position accuracy check on the drone. For a specific process, refer to step 1107 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • the UMMF network element sends a takeoff control command corresponding to the takeoff authorization request to the target drone.
  • the UMMF network element can perform authorization decision on the target drone based on the relative control range verification result, position accuracy verification result, no-fly zone verification result, and identity verification result, etc., and obtain take-off control commands, such as a command to allow take-off, Or prohibit takeoff orders and return takeoff control orders to the target drone.
  • the target drone executes a take-off control command.
  • the target drone reports flight data.
  • step 1908 reference may be made to step 1112 in the method embodiment corresponding to FIG. 11, and details are not described herein again.
  • the UMMF network element performs a flight supervision event on the target drone
  • the flight supervision event may include at least one of the drone control range check, the no-fly zone check, and the position accuracy check in the above steps 1903 to 1905.
  • the execution process of each verification event refer to the foregoing corresponding content, which is not repeated here.
  • the UMMF network element sends a flight control command to the target drone.
  • the UMMF network element After the UMMF network element authorizes the target drone according to the execution result of the flight supervision event or the identity verification execution result, the authorization result indicates that the target drone fails the verification, the UMMF network element can report to the target drone.
  • Send flight control commands which can include, for example, hover, landing, auto return, or alert commands.
  • the UMMF network element can also predict the flight path of the target drone based on the flight data periodically reported by the target drone, and then estimate the length of time the target drone enters the no-fly zone and the potential drone collision event. If the authorization result indicates that the target drone passes the verification, the UMMF network element can send alarm information to the target drone, such as the length of time it enters the no-fly zone and a potential drone collision event.
  • the target drone executes flight control commands.
  • the core network element in the embodiment corresponding to FIG. 17 may also be a core network element in another mobile network architecture.
  • the core network element in the embodiment corresponding to FIG. 17 is the core network in the 4G network.
  • the network element is taken as an example.
  • the UMMF network element in the network architecture corresponding to FIG. 18 corresponds to the unmanned monitoring and management entity (UMME) network element in FIG. 20.
  • the UMME is directly connected to the MME in FIG. 20. .
  • All or part of the functions of the UMME may also be integrated in other core network elements, such as the MME, which is not limited here.
  • (R) AN in the network architecture corresponding to FIG. 18 corresponds to E-UTRAN in FIG. 20, AMF in the network architecture corresponding to FIG.
  • the core network element, the application server, and the drone include a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the core network element or application server or drone can be implemented by one physical device, or can be implemented by multiple physical devices, or it can be a logical functional unit within a physical device.
  • the application example does not specifically limit this.
  • FIG. 21 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • the communication device includes at least one processor 2101, a memory 2102, a communication line 2103, and at least one communication interface 2104.
  • the processor 2101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (server IC), or one or more for controlling the execution of the program of the application scheme Integrated circuit.
  • CPU central processing unit
  • microprocessor microprocessor
  • server IC application-specific integrated circuit
  • the communication line 2103 may include a path for transmitting information between the aforementioned components.
  • the communication interface 2104 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 2102 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions Dynamic storage device, which can also be electrically erasable and programmable read-only memory (electrically programmable, read-only memory (EEPROM)), read-only compact disc (compact disc-read-only memory (CD-ROM) or other compact disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor 2101 through a communication line 2103.
  • the memory 2102 may also be integrated with the processor 2101.
  • the memory 2102 is configured to store a computer execution instruction for executing the solution of the present application, and the processor 2101 controls execution.
  • the processor 2101 is configured to execute computer execution instructions stored in the memory 2102, so as to implement a mobile network-based drone monitoring method provided by the foregoing method embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 2101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 21.
  • the communication device may include multiple processors, such as the processor 2101 and the processor 2105 in FIG. 21.
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer-executable instructions).
  • this application can divide the functional units of the core network element, application server, and drone according to the above method embodiments.
  • each functional unit can be divided corresponding to each function, or two or two can be divided. More than one function is integrated in one functional unit.
  • the above integrated functional units can be implemented in the form of hardware or software functional units.
  • FIG. 22 shows a schematic structural diagram of a core network element.
  • an embodiment of the core network element 2200 of the present application may include a receiving unit 2201, an event execution unit 2202, and a sending unit 2203.
  • the receiving unit 2201 is configured to receive a request message sent by an application server, where the request message includes a target event performed on the target drone;
  • An event execution unit 2202 configured to execute a target event on the target drone according to the request message
  • the sending unit 2203 is configured to return a response message to the application server, and the response message includes an execution result of the target event.
  • the event execution unit 2202 may execute the target event on the target drone according to the request information, and obtain the execution result of the target event.
  • the execution result of the target event is used for the The target drone performs supervision.
  • the sending unit 2203 may return a response message including the execution result of the target event to the application server.
  • the response message is used to assist the application server to supervise the target drone.
  • the production drone provides services and the mobile network is widely deployed in the region. Therefore, in the device embodiment of the present application, the response message provided by the core network element to the application server helps the application server to unify the drone. Extensive supervision.
  • the target event includes a check event.
  • the verification event includes at least one of a drone control range verification, a drone position verification, and a control area verification.
  • the event execution unit 2202 is configured to:
  • the obtained position information of the target drone and the position information of the controller of the target drone it is determined whether the target drone is within the control range of the controller of the target drone.
  • the request message further includes identification information of the target drone
  • the event execution unit 2202 is further configured to obtain position information of the target drone according to the identification information of the target drone.
  • the event execution unit 2202 is configured to:
  • the request message further includes identification information of the target drone
  • the event execution unit 2202 is further configured to obtain position information of the target drone according to the identification information of the target drone.
  • the event execution unit 2202 is configured to:
  • the obtained position information of the target drone and the control area information it is determined whether the position of the target drone is within the control area.
  • the request message further includes control area information
  • the event execution unit 2202 is further configured to obtain position information of the target drone according to the identification information of the target drone.
  • the event execution unit 2202 is further configured to:
  • the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • the event execution unit 2202 is further configured to:
  • the target event further includes an authorization decision
  • the event execution unit 2202 is configured to:
  • the sending unit 2203 is further configured to:
  • flight control commands are sent to the target drone through control plane signaling.
  • the flight control command includes a command to allow takeoff, or a flight control command to the target drone.
  • the flight control command includes a command instructing the target drone to perform a hovering or a landing command or a return flight command.
  • the receiving unit 2201 is configured to:
  • the request message sent by the application server is received through the service capability open network element. If the request message includes the identification information of the target drone, the identification information of the target drone in the request message forwarded by the service capability open network element The external identity of the core network is converted into an internal identity.
  • the target event includes a statistical event
  • the event execution unit 2202 is configured to:
  • the request message further includes area information to be counted
  • the event execution unit 2202 is configured to:
  • the core network element 2200 provided in the embodiment of the present application is used to execute the method performed by the core network element in the method embodiment corresponding to FIG. 2, so the embodiment of the present application may be performed by referring to relevant parts in the method embodiment corresponding to FIG. understanding.
  • the core network element 2200 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs
  • integrated logic circuit and / or other devices that can provide the above functions.
  • Device In a simple embodiment, those skilled in the art may think that the core network element 2200 may adopt the form shown in FIG. 21.
  • the processor 2101 of FIG. 21 may cause a core network element 2200 to execute a method performed by the core network element in the method embodiment corresponding to FIG. 2 by calling a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the receiving unit 2201, the event executing unit 2202, and the sending unit 2203 in FIG. 22 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the event execution unit 2202 in FIG. 22 may be implemented by the processor 2101 in FIG. 21 calling a computer execution instruction stored in the memory 2102, and the functions of the receiving unit 2201 and the sending unit 2203 in FIG. 22 /
  • the implementation process may be implemented through the communication interface 2104 in FIG. 21.
  • the core network element provided in this embodiment of the present application can be used to execute the method of the embodiment corresponding to FIG. 2, the technical effects obtained by the embodiment of this application can refer to the method embodiment corresponding to FIG.
  • FIG. 23 shows a schematic structural diagram of an application server.
  • an embodiment of the application server 2300 of the present application may include: a message sending unit 2301, a receiving unit 2302, and a command sending unit 2303;
  • a message sending unit 2301 is configured to send a request message to a core network element, where the request message includes a target event performed on the target drone;
  • the receiving unit 2302 is configured to receive a response message returned by a core network element, where the response message includes an execution result of the core network element performing a target event on the target drone;
  • a command sending unit 2303 is configured to send a flight control command to the target drone according to the target information, where the target information includes an execution result.
  • the message sending unit 2301 in the application server 2300 of this application may send a request message to the core network element.
  • the receiving unit 2302 receives a response message corresponding to the request message sent by the message sending unit 2301, it may obtain the core network element pair.
  • the target drone executes the execution result of the target event.
  • the command sending unit 2303 may send a flight control command to the target drone according to the target information including the execution result, so as to achieve supervision of the target drone.
  • the application server obtains the response message sent by the core network element, which is beneficial to Achieve unified and extensive supervision of drones.
  • the receiving unit 2302 before the message sending unit 2301 sends a request message to a core network element, the receiving unit 2302 is further configured to:
  • the reported message is the take-off authorization request of the target drone, or the flight data reported periodically by the target drone during the flight.
  • the report message includes identification information of the target drone
  • the command sending unit 2303 is used for:
  • the target information also includes the results of identity verification of the target drone.
  • the flight data includes position information of the target drone
  • the command sending unit 2303 is used for:
  • the target information also includes the flight path of the target drone.
  • the command sending unit 2303 is configured to:
  • the flight control command includes a command to allow takeoff, or a flight control command to the target drone.
  • the flight control command includes a command instructing the target drone to perform a hover or a landing command or a return flight command.
  • the application server 2300 provided in this embodiment of the present application is configured to execute the method executed by the application server in the method embodiment corresponding to FIG. 2, so the embodiment of this application may be understood by referring to relevant parts in the method embodiment corresponding to FIG. 2.
  • the application server 2300 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • FIG. 21 those skilled in the art may think that the application server 2300 may take the form shown in FIG. 21.
  • the processor 2101 in FIG. 21 may call a computer stored in the memory 2102 to execute instructions, so that the application server 2300 executes the method executed by the application server in the method embodiment corresponding to FIG. 2.
  • the function / implementation process of the message sending unit 2301, the receiving unit 2302, and the command sending unit 2303 in FIG. 23 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the message sending unit 2301 and the receiving unit 2302 in FIG. 23 may be implemented through the communication interface 2104 in FIG. 21.
  • the application server 2300 provided in this embodiment of the present application can be used to execute the method of the embodiment corresponding to FIG. 2, the technical effects obtained by the embodiment of this application can refer to the method embodiment corresponding to FIG.
  • FIG. 24 shows a schematic structural diagram of a drone.
  • an embodiment of the drone 2400 of the present application may include a receiving unit 2401, a determining unit 2402, and a command execution unit 2403.
  • a receiving unit 2401 configured to receive a first flight control command issued by an application server and a second flight control command issued by a controller of a target drone;
  • a determining unit 2402 configured to determine a first flight control command from the first flight control command and the second flight control command according to the priority information
  • a command execution unit 2403 is configured to execute a first flight control command.
  • the drone 2400 provided in the embodiment of the present application is used to execute the method performed by the target drone in the method embodiment corresponding to FIG. 2, so the embodiment of the present application may be understood by referring to relevant parts in the method embodiment corresponding to FIG. 2. .
  • the UAV 2400 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • Device In a simple embodiment, those skilled in the art may think that the drone 2400 may take the form shown in FIG. 21.
  • the processor 2101 of FIG. 21 may cause a drone 2400 to execute the method executed by the drone in the method embodiment corresponding to FIG. 2 by calling a computer to execute instructions stored in the memory 2102.
  • the function / implementation process of the receiving unit 2401, the determining unit 2402, and the command execution unit 2403 in FIG. 24 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the determining unit 2402 and the command execution unit 2403 in FIG. 24 may be implemented by the processor 2101 in FIG. 21 calling a computer execution instruction stored in the memory 2102, and the function / The implementation process may be implemented through the communication interface 2104 in FIG. 21.
  • the drone 2400 provided in the embodiment of the present application can be used to execute the method of the embodiment corresponding to FIG. 2, the technical effects obtained by the embodiment of the present application may refer to the method embodiment corresponding to FIG. 2, and details are not described herein again.
  • FIG. 25 shows a schematic structural diagram of an application server.
  • an embodiment of the application server 2500 of the present application may include an event execution unit 2501 and a sending unit 2502;
  • An event execution unit 2501 configured to execute a target event on the target drone
  • the sending unit 2502 is configured to send a flight control command to the target drone through the mobile network according to the target information, and the target information includes an execution result of the target event.
  • the target event includes a check event.
  • the verification event includes at least one of a drone control range verification, a drone position verification, and a control area verification.
  • the event execution unit 2501 is configured to:
  • the target drone According to the obtained position information of the target drone, it is determined whether the target drone is within the control range of the controller of the target drone.
  • the event execution unit 2501 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2501 is configured to:
  • the event execution unit 2501 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2501 is configured to:
  • the obtained position information of the target drone and the control area information it is determined whether the position of the target drone is within the control area.
  • the event execution unit 2501 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2501 is further configured to:
  • the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • the event execution unit 2501 is further configured to:
  • the target event includes a statistical event
  • the event execution unit 2501 is configured to:
  • the event execution unit 2501 is further configured to:
  • the device before sending the flight control command to the target drone according to the target information, the device further includes:
  • the reported message is the take-off authorization request of the target drone, or the flight data reported periodically by the target drone during the flight.
  • the report message includes identification information of the target drone
  • the event execution unit 2501 is further configured to:
  • the target information also includes the results of identity verification of the target drone.
  • the flight data includes position information of the target drone
  • the event execution unit 2501 is further configured to:
  • the target information also includes the flight path of the target drone.
  • the sending unit 2502 is configured to:
  • the flight control command includes a command to allow takeoff, or a flight control command to the target drone.
  • the flight control command includes a command instructing the target drone to perform a hovering or a landing command or a return flight command.
  • the application server 2500 provided in the embodiment of the present application is configured to execute the method performed by the application server in the method embodiment corresponding to FIG. 13, so the embodiment of the present application may be understood by referring to relevant parts in the method embodiment corresponding to FIG. 13.
  • the application server 2500 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • FIG. 21 those skilled in the art may think that the application server 2500 may take the form shown in FIG. 21.
  • the processor 2101 of FIG. 21 may cause the application server 2500 to execute the method executed by the core network element in the method embodiment corresponding to FIG. 13 by calling a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the event execution unit 2501 and the sending unit 2502 in FIG. 25 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the event execution unit 2501 in FIG. 25 may be implemented by the processor 2101 in FIG. 21 calling a computer execution instruction stored in the memory 2102
  • the function / implementation process of the sending unit 2502 in FIG. 25 may be implemented by The communication interface 2104 in FIG. 21 is implemented.
  • the application server 2500 provided in this embodiment of the present application can be used to execute the method of the embodiment corresponding to FIG. 13, the technical effects obtained by the embodiment of this application can refer to the method embodiment corresponding to FIG.
  • FIG. 23 shows a schematic structural diagram of an application server.
  • an embodiment of the core network element 2600 of the present application may include an event execution unit 2601 and a sending unit 2602.
  • An event execution unit 2601 configured to execute a target event on the target drone
  • the sending unit 2602 is configured to send a flight control command to the target drone according to the target information, where the target information includes an execution result of the target event.
  • the target event includes a check event.
  • the verification event includes at least one of a drone control range verification, a drone position verification, and a control area verification.
  • the event execution unit 2601 is configured to:
  • the target drone According to the obtained position information of the target drone, it is determined whether the target drone is within the control range of the controller of the target drone.
  • the event execution unit 2601 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2601 is configured to:
  • the event execution unit 2601 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2601 is configured to:
  • the obtained position information of the target drone and the control area information it is determined whether the position of the target drone is within the control area.
  • the event execution unit 2601 is further configured to:
  • the position information of the target drone is obtained according to the identification information of the target drone.
  • the event execution unit 2601 is further configured to:
  • the risk information of the target drone entering the control area is determined according to the position information of the target drone and the control area information.
  • the event execution unit 2601 is further configured to:
  • the target event includes a statistical event
  • the event execution unit 2601 is configured to:
  • the event execution unit 2601 is configured to:
  • the device before sending the flight control command to the target drone according to the target information, the device further includes:
  • a receiving unit 2603 configured to receive a report message of the target drone
  • the reported message is the takeoff authorization request of the target drone, or the flight data reported by the target drone periodically during the flight.
  • the report message includes identification information of the target drone
  • the event execution unit 2601 is further configured to:
  • the target information also includes the results of identity verification of the target drone.
  • the flight data includes position information of the target drone
  • the event execution unit 2601 is further configured to:
  • the target information also includes the flight path of the target drone.
  • the sending unit 2602 is configured to:
  • the flight control command includes a command to allow takeoff, or a flight control command to the target drone.
  • the flight control command includes a command instructing the target drone to perform a hovering or a landing command or a return flight command.
  • the core network element 2600 provided in this embodiment of the present application is used to execute the method performed by the core network element in the method embodiment corresponding to FIG. 17, so the embodiment of this application may be performed by referring to relevant parts in the method embodiment corresponding to FIG. understanding.
  • the core network element 2600 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • FIG. 21 the core network element 2600 may adopt the form shown in FIG. 21.
  • the processor 2101 of FIG. 21 may cause a core network element 2600 to execute a method performed by the core network element in the method embodiment corresponding to FIG. 17 by calling a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the event execution unit 2601 and the sending unit 2602 in FIG. 26 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the event execution unit 2601 in FIG. 26 may be implemented by the processor 2101 in FIG. 21 calling a computer execution instruction stored in the memory 2102
  • the function / implementation process of the sending unit 2602 in FIG. 26 may be implemented by The communication interface 2104 in FIG. 21 is implemented.
  • the core network element provided in this embodiment of the present application can be used to execute the method of the embodiment corresponding to FIG. 17, the technical effects obtained by the embodiment of this application can refer to the method embodiment corresponding to FIG. 17, and details are not described herein again.
  • FIG. 27 shows a schematic structural diagram of a drone.
  • an embodiment of the drone 2700 of the present application may include a receiving unit 2701, a determining unit 2702, and a command executing unit 2703.
  • a receiving unit 2701 configured to receive a first flight control command issued by a core network element and a second flight control command issued by a controller of a target drone;
  • a determining unit 2702 configured to determine a first flight control command from the first flight control command and the second flight control command according to the priority information
  • a command execution unit 2703 is configured to execute a first flight control command.
  • the drone 2700 provided in the embodiment of the present application is used to execute the method performed by the target drone in the method embodiment corresponding to FIG. 17, so the embodiment of the present application can be understood by referring to the relevant part in the method embodiment corresponding to FIG. 17. .
  • the UAV 2700 is presented in the form of dividing each functional unit in an integrated manner.
  • the "functional unit” herein may refer to an application-specific integrated circuit (ASIC), a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions. Device.
  • ASIC application-specific integrated circuit
  • processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices that can provide the above functions.
  • Device In a simple embodiment, those skilled in the art may think that the drone 2700 may take the form shown in FIG. 21.
  • the processor 2101 of FIG. 21 may cause a drone 2700 to execute a method executed by a core network element in the method embodiment corresponding to FIG. 17 by calling a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the receiving unit 2701, the determining unit 2702, and the command execution unit 2703 in FIG. 27 may be implemented by the processor 2101 in FIG. 21 mobilizing a computer execution instruction stored in the memory 2102.
  • the function / implementation process of the determination unit 2702 and the command execution unit 2703 in FIG. 27 may be implemented by the processor 2101 in FIG. 21 calling a computer execution instruction stored in the memory 2102, and the function of the receiving unit 2701 in FIG. 27 /
  • the implementation process may be implemented through the communication interface 2104 in FIG. 21.
  • the core network element, the application server, and the drone are presented in the form of dividing each functional unit in an integrated manner.
  • the present application may also divide each functional unit corresponding to each function, which is not specifically limited in this embodiment of the present application.
  • various components are communicatively connected, that is, the processing unit (or processor), the storage unit (or memory), and the transceiver unit (transceiver) communicate with each other through an internal connection path to transfer control and / Or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the steps of the foregoing method embodiments may be implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP, a digital signal processor (DSP), and an application specific integrated circuit (application) specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps combined with the method disclosed in this application can be directly embodied as being executed by a hardware decoding processor, or executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the device may include multiple processors or the processor may include multiple processing units.
  • the processor may be a single-core (single-CPU) processor, or may be a multi-core (multi-CPU) processor.
  • the memory is used to store computer instructions executed by the processor.
  • the memory may be a memory circuit or a memory.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • the memory may be independent of the processor or a storage unit in the processor, which is not limited herein. Although only one memory is shown in the figure, the device may also include multiple memories or the memory includes multiple storage units.
  • the transceiver is used to implement the content interaction between the processor and other units or network elements.
  • the transceiver may be a communication interface of the device, a transceiver circuit or a communication unit, or a transceiver.
  • the transceiver may also be a communication interface or a transceiver circuit of the processor.
  • the transceiver may be a transceiver chip.
  • the transceiver may further include a transmitting unit and / or a receiving unit.
  • the transceiver may include at least one communication interface.
  • the transceiver may also be a unit implemented in software.
  • the processor may interact with other units or network elements through a transceiver. For example, the processor obtains or receives content from other network elements through the transceiver. If the processor and the transceiver are two physically separated components, the processor may interact with the other units of the device without going through the transceiver.
  • the processor, the memory, and the transceiver may be connected to each other through a bus.
  • the bus may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words "exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • names of request messages, response messages, and other various messages are used.
  • these messages are merely examples of the content or functions to be carried, and the specific names of the messages do not limit the application, for example, they may be the first message, the second message, the third message, and so on.
  • These messages can be specific messages or certain fields in the message.
  • These messages can also represent various service-oriented operations.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wire for example, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于移动网络的无人机监管方法及装置,用于解决现有技术无法实现对无人机的广泛监管的问题。该方法包括:核心网网元接收应用服务器发送的请求消息(201),请求消息包括对目标无人机执行的目标事件;核心网网元根据请求消息对目标无人机执行目标事件(202);核心网网元向应用服务器返回响应消息(203),响应消息包括目标事件的执行结果。

Description

一种基于移动网络的无人机监管方法及装置
本申请要求于2018年8月16日提交中国专利局、申请号为201810934556.6、发明名称为“一种基于移动网络的无人机监管方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于移动网络的无人机监管方法及装置。
背景技术
无人驾驶飞机(unmanned aerial vehicle,UAV)简称无人机,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞行器。由于无人机在空中运行时具备信息化、自动化、且无人员伤亡风险等优点,因此在应急救援、环境检测、电力巡线、航拍测绘、农业植保和军事等多个领域得到广泛应用。
然而,若无人机的广泛使用缺少相应的监管手段,容易出现无人机进入限制区域,影响国家安全、对民航机的正常飞行造成影响以及对地面人员的生命财产造成损失的严重后果。
但是,现有的无人机监管手段,要么通过专门部署无人机检测设备,比如雷达设备、电子围墙等,由于成本问题难以实现地域上的广泛部署;要么在无人机上专门设置配合监管的设备,以实现对无人机的监管,但是由于无人机的种类和生产厂商不断增多,难以实现对无人机的统一监管。随着无人机种类的增多和无人机飞行区域的扩大,急需一种能够在更大空间范围、对更多种类的无人机进行广泛、统一监管的手段。
发明内容
本申请实施例提供了一种基于移动网络的无人机监管方法及装置,用于解决现有技术无法实现对无人机的广泛监管的问题。
本申请第一方面提供一种基于移动网络的无人机监管方法,该方法包括:
核心网网元可以接收应用服务器发送的请求消息,所述请求消息包括对目标无人机执行的目标事件,之后可以根据所述请求消息对所述目标无人机执行所述目标事件,之后,可以将包括目标事件的执行结果的响应消息返回给应用服务器,响应消息用于辅助应用服务器对目标无人机进行监管,由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,核心网网元向应用服务器提供的响应消息有利于辅助应用服务器对无人机进行统一、广泛的监管。
一种可能的实现方式,结合上述第一方面,在第一方面的第一种可能的实现方式中,所述目标事件可以包括校验事件。
一种可能的实现方式,结合上述第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述校验事件可以包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合上述第一方面的第二种可能的实现方式,在第一方面的第三 种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:所述核心网网元可以根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。
通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合上述第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述请求消息还包括所述目标无人机的身份标识信息;所述方法还包括:所述核心网网元分别根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
相比于无人机上报的位置信息,核心网网元根据设备的身份标识信息主动获取的设备的位置信息的可信度更高,有利于提高基于无人机的位置信息对目标无人机执行无人机控制范围校验的执行结果的可信度。
一种可能的实现方式,结合上述第一方面的第二种可能的实现方式,在第一方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:所述核心网网元根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
无人机上报的位置信息一般可以作为对其进行监管的重要参考依据,无人机上报的位置信息的准确性影响着对无人机的监管的效果,通过无人机位置校验有利于保证目标无人机上报的位置信息的准确性。
一种可能的实现方式,结合上述第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述请求消息还包括所述目标无人机的身份标识信息;所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
相比于无人机上报的位置信息,核心网网元根据设备的身份标识信息主动获取的设备的位置信息的可信度更高,有利于提高基于无人机的位置信息对目标无人机执行无人机控制范围校验的执行结果的可信度。
一种可能的实现方式,结合上述第一方面的第二种可能的实现方式,在第一方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:所述核心网网元根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合上述第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述请求消息还包括所述管控区域信息;所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
相比于无人机上报的位置信息,核心网网元根据设备的身份标识信息主动获取的设备的位置信息的可信度更高,有利于提高基于无人机的位置信息对目标无人机执行无人机控制范围校验的执行结果的可信度。
一种可能的实现方式,结合上述第一方面的第八种可能的实现方式,在第一方面的第九 种可能的实现方式中,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,还包括:若所述核心网网元确定所述目标无人机的位置不在管控区域内,所述核心网网元根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
一种可能的实现方式,结合上述第一方面的第八种可能的实现方式,在第一方面的第十种可能的实现方式中,若所述管控区域信息为禁飞区域信息,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,还包括:
若所述核心网网元确定所述目标无人机的位置在禁飞区域内,所述核心网网元确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合上述第一方面的第一种可能的实现方式至第一方面的第十种可能的实现方式中的任意一种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述目标事件还包括授权判决,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:所述核心网网元根据所述目标无人机是否通过所述校验事件确定所述目标无人机是否违规。
一种可能的实现方式,结合上述第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述方法还包括:所述核心网网元根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合上述第一方面的第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述核心网网元通过控制面信令向所述目标无人机发送所述飞行控制命令。
一种可能的实现方式,结合上述第一方面的第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合上述第一方面的第十四种可能的实现方式,在第一方面的第十五种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
一种可能的实现方式,结合上述第一方面的第十五种可能的实现方式,在第一方面的第十六种可能的实现方式中,所述核心网网元接收应用服务器发送的请求消息,包括:所述核心网网元通过业务能力开放网元接收所述应用服务器发送的请求消息,若所述请求消息中包括所述目标无人机的身份标识信息,那么通过所述业务能力开放网元转发后的所述请求消息中所述目标无人机的身份标识信息由核心网的外部标识转换为内部标识。
一种可能的实现方式,结合上述第一方面至第一方面的第十六种可能的实现方式中的任意一种可能的实现方式,在第一方面的第十七种可能的实现方式中,所述目标事件包括统计事件,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:所述核心网网元根据获取到的无人机的位置信息生成无人机统计信息。
一种可能的实现方式,结合上述第一方面的第十七种可能的实现方式,在第一方面的第十八种可能的实现方式中,所述请求消息还包括待统计区域信息;所述核心网网元根据获取到的无人机的位置信息生成无人机统计信息包括:所述核心网网元根据获取到的无人机的位 置信息生成待统计区域内的无人机统计信息。
本申请第二方面提供一种基于移动网络的无人机监管方法,该方法可以包括:应用服务器向核心网网元发送请求消息,所述请求消息包括对目标无人机执行的目标事件,之后,可以接收到所述核心网网元返回的响应消息,所述响应消息包括所述核心网网元对所述目标无人机执行所述目标事件的执行结果,根据目标信息向所述目标无人机发送飞行控制命令,所述目标信息包括所述执行结果,以实现对目标无人机的监管。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,应用服务器通过获取核心网网元发送的响应消息,有利于实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第二方面,在第二方面的第一种可能的实现方式中,所述应用服务器向核心网网元发送请求消息之前,所述方法还包括:所述应用服务器接收所述目标无人机的上报消息,其中,所述上报消息为所述目标无人机的起飞授权请求,或者为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述方法还包括:所述应用服务器根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验,所述目标信息还可以包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述方法还包括:所述应用服务器根据所述目标无人机的位置信息确定所述目标无人机的飞行路径,所述目标信息还可以包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第二方面至第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述应用服务器根据目标信息向所述目标无人机发送飞行控制命令,包括:所述应用服务器根据目标信息判断所述目标无人机是否违规,之后根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第三方面提供一种基于移动网络的无人机监管方法,该方法包括:无人机接收应用服务器下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令,之后可以根据优先级信息从所述第一飞行控制命令和所述第二飞行控制命令中确定所述第一飞行控制命令,并执行所述第一飞行控制命令。这样,即使应用服务器向无人机下达的飞行控制命令与控制器向无人机下达的飞行控制命令相互冲突时,无人机可以以应用服务器发送的飞行 控制命令为准,有利于增强应用服务器对无人机的管制效果,减小无人机对公众安全带来的威胁。
本申请第四方面提供一种基于移动网络的无人机监管方法,该方法包括:核心网网元对目标无人机执行目标事件,之后根据目标信息向所述目标无人机发送飞行控制命令,对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第四方面,在第四方面的第一种可能的实现方式中,所述目标事件包括校验事件。
一种可能的实现方式,结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述核心网网元对所述目标无人机执行所述目标事件,包括:所述核心网网元根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第四方面的第二种可能的实现方式,在第四方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述核心网网元对所述目标无人机执行所述目标事件,包括:所述核心网网元根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
一种可能的实现方式,结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第四方面的第二种可能的实现方式,在第四方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述核心网网元对所述目标无人机执行所述目标事件,包括:所述核心网网元根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合第四方面的第七种可能的实现方式,在第四方面的第八种可能的实现方式中,所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第四方面的第八种可能的实现方式,在第四方面的第九种可 能的实现方式中,所述核心网网元对所述目标无人机执行所述目标事件,还包括:若所述核心网网元确定所述目标无人机的位置不在管控区域内,所述核心网网元根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
一种可能的实现方式,结合第四方面的第八种可能的实现方式,在第四方面的第十种可能的实现方式中,若所述管控区域信息为禁飞区域信息,所述核心网网元对所述目标无人机执行所述目标事件,还包括:若所述核心网网元确定所述目标无人机的位置在禁飞区域内,所述核心网网元确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合第四方面至第四方面的第十种可能的实现方式中的任意一种可能的实现方式,在第四方面的第十一种可能的实现方式中,所述目标事件包括统计事件,所述核心网网元对所述目标无人机执行所述目标事件,包括:根据获取到的无人机的可信位置信息生成无人机统计信息。
一种可能的实现方式,结合第四方面的第十一种可能的实现方式,在第四方面的第十二种可能的实现方式中,所述根据获取到的无人机的可信位置信息生成无人机统计信息包括:根据获取到的无人机的可信位置信息生成待统计区域内的无人机统计信息。
一种可能的实现方式,结合第四方面至第四方面的第十二种可能的实现方式中的任意一种可能的实现方式,在第四方面的第十三种可能的实现方式中,所述核心网网元根据目标信息向所述目标无人机发送飞行控制命令之前,所述方法还包括:所述核心网网元接收所述目标无人机的上报消息,其中,所述上报消息可以为所述目标无人机的起飞授权请求,或者可以为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第四方面的第十三种可能的实现方式,在第四方面的第十四种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述方法还包括:所述核心网网元根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验,所述目标信息还包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第四方面的第十四种可能的实现方式,在第四方面的第十五种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述方法还包括:所述核心网网元根据所述目标无人机的位置信息确定所述目标无人机的飞行路径,所述目标信息还包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第四方面至第四方面的第十五种可能的实现方式中的任意一种可能的实现方式,在第四方面的第十六种可能的实现方式中,所述核心网网元根据目标信息向所述目标无人机发送飞行控制命令,包括:所述核心网网元根据目标信息判断所述目标无人机是否违规,之后根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第四方面的第十六种可能的实现方式,在第四方面的第十七种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第四方面的第十七种可能的实现方式,在第四方面的第十八种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第五方面提供一种基于移动网络的无人机监管方法,该方法包括:无人机接收核 心网网元下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令,之后可以根据优先级信息从所述第一飞行控制命令和所述第二飞行控制命令中确定所述第一飞行控制命令,并执行所述第一飞行控制命令。这样,即使核心网网元向无人机下达的飞行控制命令与控制器向无人机下达的飞行控制命令相互冲突时,无人机可以以核心网网元发送的飞行控制命令为准,有利于增强核心网网元对无人机的管制效果,减小无人机对公众安全带来的威胁。
本申请第六方面提供一种基于移动网络的无人机监管方法,该方法包括:应用服务器对目标无人机执行目标事件,之后可以根据目标信息通过移动网络向目标无人机发送飞行控制命令,以对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第六方面,在第六方面的第一种可能的实现方式中,所述目标事件包括校验事件。
一种可能的实现方式,结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述应用服务器对所述目标无人机执行所述目标事件,包括:所述应用服务器根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述方法还包括:所述应用服务器根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第六方面的第二种可能的实现方式,在第六方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述应用服务器对所述目标无人机执行所述目标事件,包括:所述应用服务器根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
一种可能的实现方式,结合第六方面的第五种可能的实现方式,在第六方面的第六种可能的实现方式中,所述方法还包括:所述应用服务器根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第六方面的第二种可能的实现方式,在第六方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述应用服务器对所述目标无人机执行所述目标事件,包括:所述应用服务器根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合第六方面的第七种可能的实现方式,在第六方面的第八种可 能的实现方式中,所述方法还包括:所述应用服务器根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第六方面的第八种可能的实现方式,在第六方面的第九种可能的实现方式中,所述应用服务器对所述目标无人机执行所述目标事件,还包括:若所述应用服务器确定所述目标无人机的位置不在管控区域内,所述应用服务器根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
一种可能的实现方式,结合第六方面的第八种可能的实现方式,在第六方面的第十种可能的实现方式中,若所述管控区域信息为禁飞区域信息,所述应用服务器对所述目标无人机执行所述目标事件,还包括:若所述应用服务器确定所述目标无人机的位置在禁飞区域内,所述应用服务器确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合第六方面至第六方面的第十种可能的实现方式中的任意一种可能的实现方式,在第六方面的第十一种可能的实现方式中,所述目标事件包括统计事件,所述应用服务器对所述目标无人机执行所述目标事件,包括:根据获取到的无人机的可信位置信息生成无人机统计信息。
一种可能的实现方式,结合第六方面的第十一种可能的实现方式,在第六方面的第十二种可能的实现方式中,所述根据获取到的无人机的可信位置信息生成无人机统计信息包括:根据获取到的无人机的可信位置信息生成待统计区域内的无人机统计信息。
一种可能的实现方式,结合第六方面至第六方面的第十二种可能的实现方式中的任意一种可能的实现方式,在第六方面的第十三种可能的实现方式中,所述应用服务器根据目标信息向所述目标无人机发送飞行控制命令之前,所述方法还包括:所述应用服务器接收所述目标无人机的上报消息,其中,所述上报消息可以为所述目标无人机的起飞授权请求,或者可以为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第六方面的第十三种可能的实现方式,在第六方面的第十四种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述方法还包括:所述应用服务器根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验,所述目标信息还包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第六方面的第十四种可能的实现方式,在第六方面的第十五种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述方法还包括:所述应用服务器根据所述目标无人机的位置信息确定所述目标无人机的飞行路径,所述目标信息还包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第六方面至第六方面的第十五种可能的实现方式中的任意一种可能的实现方式,在第六方面的第十六种可能的实现方式中,所述应用服务器根据目标信息向所述目标无人机发送飞行控制命令,包括:所述应用服务器根据目标信息判断所述目标无人机是否违规,并根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第六方面的第十六种可能的实现方式,在第六方面的第十七种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第六方面的第十七种可能的实现方式,在第六方面的第十八 种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第七方面提供一种核心网网元,包括:接收单元,用于接收应用服务器发送的请求消息,所述请求消息包括对目标无人机执行的目标事件;事件执行单元,用于根据所述请求消息对所述目标无人机执行所述目标事件;发送单元,用于向所述应用服务器返回响应消息,所述响应消息包括所述目标事件的执行结果。核心网网元中的接收单元接收到应用服务器发送的请求信息后,事件执行单元可以根据请求信息对目标无人机执行目标事件,得到目标事件的执行结果,目标事件的执行结果用于对目标无人机进行监管,之后,发送单元可以将包括目标事件的执行结果的响应消息返回给应用服务器,响应消息用于辅助应用服务器对目标无人机进行监管,由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请装置实施例中,核心网网元向应用服务器提供的响应消息有利于辅助应用服务器对无人机进行统一、广泛的监管。
一种可能的实现方式,结合第七方面,在第七方面的第一种可能的实现方式中,所述目标事件包括校验事件。
一种可能的实现方式,结合第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合第七方面的第二种可能的实现方式,在第七方面的第三种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述事件执行单元用于:根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合第七方面的第三种可能的实现方式,在第七方面的第四种可能的实现方式中,所述请求消息还包括所述目标无人机的身份标识信息;所述事件执行单元还用于分别根据所述目标无人机的身份标识信息息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第七方面的第二种可能的实现方式,在第七方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述事件执行单元用于根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
一种可能的实现方式,结合第七方面的第五种可能的实现方式,在第七方面的第六种可能的实现方式中,所述请求消息还包括所述目标无人机的身份标识信息;所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第七方面的第二种可能的实现方式,在第七方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述事件执行单元用于根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合第七方面的第七种可能的实现方式,在第七方面的第八种可 能的实现方式中,所述请求消息还包括所述管控区域信息;所述事件执行单元还用于,根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第七方面的第八种可能的实现方式,在第七方面的第九种可能的实现方式中,所述事件执行单元还用于,若确定所述目标无人机的位置不在管控区域内,根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
一种可能的实现方式,结合第七方面的第八种可能的实现方式,在第七方面的第十种可能的实现方式中,若所述管控区域信息为禁飞区域信息,所述事件执行单元还用于:若确定所述目标无人机的位置在禁飞区域内,确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合第七方面的第一种可能的实现方式至第七方面的第十种可能的实现方式中的任意一种可能的实现方式,在第七方面的第十一种可能的实现方式中,所述目标事件还包括授权判决,所述事件执行单元用于根据所述目标无人机是否通过所述校验事件确定所述目标无人机是否违规。
一种可能的实现方式,结合第七方面的第十一种可能的实现方式,在第七方面的第十二种可能的实现方式中,所述发送单元还用于根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第七方面的第十二种可能的实现方式,在第七方面的第十三种可能的实现方式中,通过控制面信令向所述目标无人机发送所述飞行控制命令。
一种可能的实现方式,结合第七方面的第十三种可能的实现方式,在第七方面的第十四种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第七方面的第十四种可能的实现方式,在第七方面的第十五种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
一种可能的实现方式,结合第七方面的第十五种可能的实现方式,在第七方面的第十六种可能的实现方式中,所述接收单元用于通过业务能力开放网元接收所述应用服务器发送的请求消息,若所述请求消息中包括所述目标无人机的身份标识信息,那么通过所述业务能力开放网元转发后的所述请求消息中所述目标无人机的身份标识信息由核心网的外部标识转换为内部标识。
一种可能的实现方式,结合第七方面至第七方面的第十六种可能的实现方式,在第七方面的第十七种可能的实现方式中,所述目标事件包括统计事件,所述事件执行单元用于:
根据获取到的无人机的位置信息生成无人机统计信息。
一种可能的实现方式,结合第七方面的第十七种可能的实现方式,在第七方面的第十八种可能的实现方式中,所述请求消息还包括待统计区域信息;所述事件执行单元用于根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
本申请第八方面提供一种应用服务器,该应用服务器包括:消息发送单元,用于向核心网网元发送请求消息,所述请求消息包括对目标无人机执行的目标事件;接收单元,用于接收所述核心网网元返回的响应消息,所述响应消息包括所述核心网网元对所述目标无人机执 行所述目标事件的执行结果;命令发送单元,用于根据目标信息向所述目标无人机发送飞行控制命令,所述目标信息包括所述执行结果。应用服务器中的消息发送单元可以向核心网网元发送请求消息,当接收单元接收到相应的响应消息时,可以获取到核心网网元对目标无人机执行目标事件的执行结果,之后,命令发送单元可以根据包括该执行结果的目标信息向目标无人机发送飞行控制命令,以实现对目标无人机的监管。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,应用服务器通过获取核心网网元发送的响应消息,有利于实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第八方面,在第八方面的第一种可能的实现方式中,所述消息发送单元向核心网网元发送请求消息之前,所述接收单元还用于接收所述目标无人机的上报消息,所述上报消息为所述目标无人机的起飞授权请求,或者为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第八方面的第一种可能的实现方式,在第八方面的第二种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述命令发送单元用于根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验,所述目标信息还包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第八方面的第二种可能的实现方式,在第八方面的第三种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述命令发送单元用于根据所述目标无人机的位置信息确定所述目标无人机的飞行路径;所述目标信息还包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第八方面至第八方面的第三种可能的实现方式中的任意一种可能的实现方式,在第八方面的第四种可能的实现方式中,所述命令发送单元用于根据所述目标信息判断所述目标无人机是否违规,根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第八方面的第四种可能的实现方式,在第八方面的第五种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第八方面的第五种可能的实现方式,在第八方面的第六种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第九方面提供一种无人机,包括:接收单元,用于接收应用服务器下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令;确定单元,用于根据优先级信息从所述第一飞行控制命令和所述第二飞行控制命令中确定所述第一飞行控制命令;命令执行单元,用于执行所述第一飞行控制命令。这样,即使应用服务器向无人机下达的飞行控制命令与控制器向无人机下达的飞行控制命令相互冲突时,无人机通过确定单元确定目标飞行控制命令,通过命令执行单元执行目标飞行控制命令,可以以应用服务器发送的飞行控制命令为准,有利于增强应用服务器对无人机的管制效果,减小无人机对公众安全带来的威胁。
本申请第十方面提供一种核心网网元,包括:事件执行单元,用于对目标无人机执行目标事件;发送单元,用于根据目标信息向所述目标无人机发送飞行控制命令,所述目标信息 包括所述目标事件的执行结果。核心网网元中的事件执行单元可以对目标无人机执行目标事件,得到目标事件的执行结果,之后,发送单元可以根据目标信息向目标无人机发送飞行控制命令,对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第十方面,在第十方面的第一种可能的实现方式中,所述目标事件包括校验事件。
一种可能的实现方式,结合第十方面的第一种可能的实现方式,在第十方面的第二种可能的实现方式中,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合第十方面的第二种可能的实现方式,在第十方面的第三种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述事件执行单元用于根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合第十方面的第三种可能的实现方式,在第十方面的第四种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十方面的第二种可能的实现方式,在第十方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述事件执行单元用于根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
一种可能的实现方式,结合第十方面的第五种可能的实现方式,在第十方面的第六种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十方面的第二种可能的实现方式,在第十方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述事件执行单元用于根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合第十方面的第七种可能的实现方式,在第十方面的第八种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十方面的第八种可能的实现方式,在第十方面的第九种可能的实现方式中,事件执行单元还用于:若确定所述目标无人机的位置不在管控区域内,根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
一种可能的实现方式,结合第十方面的第八种可能的实现方式,在第十方面的第十种可 能的实现方式中,若所述管控区域信息为禁飞区域信息,事件执行单元还用于:若确定所述目标无人机的位置在禁飞区域内,确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合第十方面至第十方面的第十种可能的实现方式,在第十方面的第十一种可能的实现方式中,所述目标事件包括统计事件,所述事件执行单元用于根据获取到的无人机的可信位置信息生成无人机统计信息;
一种可能的实现方式,结合第十方面的第十一种可能的实现方式,在第十方面的第十二种可能的实现方式中,所述事件执行单元用于:
根据获取到的无人机的可信位置信息生成待统计区域内的无人机统计信息。
一种可能的实现方式,结合第十方面至第十方面的第十二种可能的实现方式中的任意一种可能的实现方式,在第十方面的第十三种可能的实现方式中,根据目标信息向所述目标无人机发送飞行控制命令之前,所述核心网网元还包括:接收单元,用于接收所述目标无人机的上报消息;所述上报消息为所述目标无人机的起飞授权请求,或者为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第十方面的第十三种可能的实现方式,在第十方面的第十四种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述事件执行单元还用于根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验;所述目标信息还包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第十方面的第十四种可能的实现方式,在第十方面的第十五种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述事件执行单元还用于根据所述目标无人机的位置信息确定所述目标无人机的飞行路径;所述目标信息还包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第十方面至第十方面的第十五种可能的实现方式,在第十方面的第十六种可能的实现方式中,发送单元用于根据目标信息判断所述目标无人机是否违规,根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第十方面的第十六种可能的实现方式,在第十七种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第十方面的第十七种可能的实现方式,在第十方面的第十八种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第十一方面提供一种无人机,包括:接收单元,用于接收核心网网元下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令;确定单元,用于根据优先级信息从所述第一飞行控制命令和所述第二飞行控制命令中确定所述第一飞行控制命令;命令执行单元,用于执行所述第一飞行控制命令。这样,即使核心网网元向无人机下达的飞行控制命令与控制器向无人机下达的飞行控制命令相互冲突时,无人机可以通过确定单元和命令执行单元,以核心网网元发送的飞行控制命令为准,有利于增强核心网网元对无人机的管制效果,减小无人机对公众安全带来的威胁。
本申请第十二方面提供一种应用服务器,包括:事件执行单元,用于对目标无人机执行 目标事件;发送单元,用于根据目标信息通过移动网络向目标无人机发送飞行控制命令,所述目标信息包括所述目标事件的执行结果。应用服务器中的事件执行单元可以对目标无人机执行目标事件,得到目标事件的执行结果,之后,发送单元可以根据目标信息确定对目标无人机的飞行控制命令,并通过移动网络向目标无人机发送此飞行控制命令,以对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
一种可能的实现方式,结合第十二方面,在第十二方面的第一种可能的实现方式中,所述目标事件包括校验事件。
一种可能的实现方式,结合第十二方面的第一种可能的实现方式,在第十二方面的第二种可能的实现方式中,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
一种可能的实现方式,结合第十二方面的第二种可能的实现方式,在第十二方面的第三种可能的实现方式中,若所述目标事件包括所述无人机控制范围校验,所述事件执行单元用于根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。通过对目标无人机执行无人机控制范围校验,根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
一种可能的实现方式,结合第十二方面的第三种可能的实现方式,在第十二方面的第四种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十二方面的第二种可能的实现方式,在第十二方面的第五种可能的实现方式中,若所述目标事件包括无人机位置校验,所述事件执行单元用于根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
一种可能的实现方式,结合第十二方面的第五种可能的实现方式,在第十二方面的第六种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十二方面的第二种可能的实现方式,在第十二方面的第七种可能的实现方式中,若所述目标事件包括管控区域校验,所述事件执行单元用于根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
一种可能的实现方式,结合第十二方面的第七种可能的实现方式,在第十二方面的第八种可能的实现方式中,所述事件执行单元还用于根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
一种可能的实现方式,结合第十二方面的第八种可能的实现方式,在第十二方面的第九种可能的实现方式中,所述事件执行单元还用于:若确定所述目标无人机的位置不在管控区域内,根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管 控区域的风险信息。
一种可能的实现方式,结合第十二方面的第八种可能的实现方式,在第十二方面的第十一种可能的实现方式中,若所述管控区域信息为禁飞区域信息,所述事件执行单元还用于:若确定所述目标无人机的位置在禁飞区域内,确定所述目标无人机飞出所述禁飞区域的飞行路径。
一种可能的实现方式,结合第十二方面至第十二方面的第十种可能的实现方式中的任意一种可能的实现方式,在第十二方面的第十一种可能的实现方式中,所述目标事件包括统计事件,所述事件执行单元用于根据获取到的无人机的可信位置信息生成无人机统计信息;
一种可能的实现方式,结合第十二方面的第十一种可能的实现方式,在第十二方面的第十二种可能的实现方式中,所述事件执行单元还用于根据获取到的无人机的可信位置信息生成待统计区域内的无人机统计信息。
一种可能的实现方式,结合第十二方面至第十二方面的第十二种可能的实现方式中的任意一种可能的实现方式中的任意一种可能的实现方式,在第十二方面的第十三种可能的实现方式中,根据目标信息向所述目标无人机发送飞行控制命令之前,所述应用服务器还包括:接收单元,用于接收所述目标无人机的上报消息;所述上报消息为所述目标无人机的起飞授权请求,或者为所述目标无人机在飞行过程中周期性上报的飞行数据。
一种可能的实现方式,结合第十二方面的第十三种可能的实现方式,在第十二方面的第十四种可能的实现方式中,所述上报消息包括所述目标无人机的身份标识信息;所述事件执行单元还用于根据所述目标无人机的身份标识信息和获取到的无人机预登记信息对所述目标无人机进行身份校验;所述目标信息还包括对所述目标无人机进行身份校验的结果。
一种可能的实现方式,结合第十二方面的第十四种可能的实现方式,在第十二方面的第十五种可能的实现方式中,所述飞行数据包括所述目标无人机的位置信息;所述事件执行单元还用于根据所述目标无人机的位置信息确定所述目标无人机的飞行路径;所述目标信息还包括所述目标无人机的飞行路径。
一种可能的实现方式,结合第十二方面至第十二方面的第十五种可能的实现方式中的任意一种可能的实现方式,在第十二方面的第十六种可能的实现方式中所述发送单元用于根据目标信息判断所述目标无人机是否违规,根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
一种可能的实现方式,结合第十二方面的第十六种可能的实现方式,在第十二方面的第十七种可能的实现方式中,所述飞行控制命令包括是否允许起飞的命令,或者对所述目标无人机的飞行管制命令。
一种可能的实现方式,结合第十二方面的第十七种可能的实现方式,在第十二方面的第十八种可能的实现方式中,所述飞行管制命令包括指示所述目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请第十三方面提供一种通信设备,包括:至少一个处理器、存储器、通信线路、至少一个通信接口以及存储在存储器中并可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或者,执行上述第二方面或第二方面任意一种可能的实现方式的方法,或者, 执行上述第三方面的方法,或者,执行上述第四方面或第四方面任意一种可能实现方式的方法,或者,执行上述第五方面的方法,或者,执行上述第六方面或第六方面任意一种可能的实现方式的方法。
当所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或者,执行上述第四方面或第四方面任意一种可能实现方式的方法时,该通信设备可以对应于一种核心网网元。当所述处理器执行上述第二方面或第二方面任意一种可能实现方式的方法,或者,执行上述第六方面或第六方面任意一种可能实现方式的方法时,该通信设备可以对应于一种应用服务器。当所述处理器执行上述第三方面的方法或者执行上述第五方面的方法时,该通信设备可以对应于一种无人机。
本申请第十四方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或者,执行上述第二方面或第二方面任意一种可能的实现方式的方法,或者,执行上述第三方面的方法,或者,执行上述第四方面或第四方面任意一种可能实现方式的方法,或者,执行上述第五方面的方法,或者,执行上述第六方面或第六方面任意一种可能的实现方式的方法。
本申请第十五方面提供一种存储一个或多个计算机执行指令的计算机程序产品,当所述计算机执行指令被所述处理器执行时,所述处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或者,执行上述第二方面或第二方面任意一种可能的实现方式的方法,或者,执行上述第三方面的方法,或者,执行上述第四方面或第四方面任意一种可能实现方式的方法,或者,执行上述第五方面的方法,或者,执行上述第六方面或第六方面任意一种可能的实现方式的方法。
本申请第十六方面提供一种基于移动网络的无人机监管系统,该系统包括:
核心网网元,用于执行上述第一方面或第一方面任意一种可能实现方式的方法;
应用服务器,用于执行上述第二方面或第二方面任意一种可能实现方式的方法;
无人机,用于执行上述第三方面的方法。
本申请第十七方面提供一种基于移动网络的无人机监管系统,所述系统包括:
核心网网元,用于执行上述第四方面或第四方面任意一种可能实现方式的方法;
无人机,用于执行上述第五方面的方法。
本申请第十八方面提供一种基于移动网络的无人机监管系统,所述系统包括:
应用服务器,用于执行上述第六方面或第六方面任意一种可能实现方式的方法;
无人机,用于执行上述第三方面的方法。
附图说明
图1为本申请基于移动网络的无人机监管系统一个实施例示意图;
图2为本申请基于移动网络的无人机监管方法一个实施例示意图;
图3至图6为无人机系统接入移动网络的四种可能的场景示意图;
图7为本申请核心网网元执行相对控制范围校验一种可能的实施例示意图;
图8为本申请核心网网元执行绝对控制范围校验一种可能的实施例示意图;
图9为本申请核心网网元执行无人机位置校验一种可能的实施例示意图;
图10为本申请无人机监管方法所应用的一种网络架构示意图;
图11为本申请基于移动网络的无人机监管方法另一个实施例示意图;
图12为本申请无人机监管方法所应用的另一种网络架构示意图;
图13为本申请基于移动网络的无人机监管方法另一个实施例示意图;
图14为本申请无人机监管方法所应用的另一种网络架构示意图;
图15为本申请基于移动网络的无人机监管方法另一个实施例示意图;
图16为本申请基于移动网络的无人机监管系统另一个实施例示意图;
图17为本申请基于移动网络的无人机监管方法另一个实施例示意图;
图18为本申请无人机监管方法所应用的另一种网络架构示意图;
图19为本申请基于移动网络的无人机监管方法另一个实施例示意图;
图20为本申请无人机监管方法所应用的另一种网络架构示意图;
图21为本申请通信设备的一个实施例示意图;
图22为本申请核心网网元的一个实施例示意图;
图23为本申请应用服务器的一个实施例示意图;
图24为本申请无人机的一个实施例示意图;
图25为本申请应用服务器的另一个实施例示意图;
图26为本申请核心网网元的另一个实施例示意图;
图27为本申请无人机的另一个实施例示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
随着无人机技术日趋成熟,无人机的应用从军事应用领域逐渐向民用领域渗透。但如果没有完备的监管措施,任由民用无人机无序飞行,势必会对公众安全带来巨大威胁。而现有的对无人机的监管手段,要么需要专门部署监管设备,成本高,覆盖范围有限;要么各个厂商对各自生产的无人机分别进行监管,但是难以实现对不同厂商的无人机进行统一监管。
移动网络是一种移动通信硬件架构。考虑到目前移动网络的部署范围广泛,并且可以适用不同厂商的无人机,本申请提供一种基于移动网络的无人机监管方法及装置,以实现对无人机进行统一、广泛的监管。
请参阅图1,图1为本申请基于移动网络的无人机监管系统一个实施例示意图。如图1所示,本申请基于移动网络的无人机监管系统可以包括移动网络(图1中以基站代表移动网络)、无人机和应用服务器。通过在无人机中设置移动用户身份识别卡,比如用户身份识别卡(subscriber identification module,SIM)或者用户识别卡(user identity module, UIM),可以直接建立无人机与移动网络的通信连接;或者,通过在与无人机配对的控制器中设置移动用户身份识别卡,可以经由无人机对应的控制器间接建立无人机与移动网络的通信连接。在下述各个实施例中,无人机与移动网络之间的数据传输,可以指通过无人机与移动网络之间直接建立的通信连接实现的数据传输,也可以指无人机与移动网络之间通过与无人机对应的控制器间接建立的通信连接实现的数据传输。
从业务角度移动网络可以包括无线接入网(radio access network,RAN)和核心网(core network,CN),RAN可以与CN相连,RAN负责用户的接入,CN负责业务的处理。其中,RAN包括但不限于基站,CN包括但不限于核心网网元。
基于图1对应的无人机监管系统,下面提供本申请无人机监管方法一个实施例,具体的,请参阅图2,本申请基于移动网络的无人机监管方法一个实施例包括:
201、应用服务器向核心网网元发送请求消息;
应用服务器可以向核心网网元发送请求消息,示例性的,请求消息可以为订阅请求,请求消息中包括对目标无人机执行的目标事件,以请求核心网网元对目标无人机执行目标事件。示例性的,目标事件的执行结果可用于对目标无人机进行监管。
一种可能的实现方式,应用服务器可以通过业务能力开放网元向核心网网元发送请求消息,业务能力开放网元可以进行相应的请求消息的转换,比如,若请求消息中包括目标无人机的外部身份标识信息,那么通过业务能力开放网元转发后的请求消息中目标无人机的身份标识信息由核心网的外部标识转换为内部标识。
在5G网络结构中,业务能力开放网元可以为网络暴露功能(network exposure function,NEF)网元,该网元主要支持移动网络和应用服务器安全的交互,能够安全的向第三方暴露网络能力和事件,用于加强或者改善应用服务质量,移动网络同样可以安全的从第三方获取相关数据,用以增强网络的智能决策。该网元支持从统一数据库恢复结构化数据或者向统一数据库中存储结构化数据。在4G网络架构中,业务能力开放网元可以为业务能力开放单元(service capability exposure function,SCEF)网元。
202、核心网网元根据请求消息对目标无人机执行目标事件;
核心网网元接收到应用服务器发送的请求消息后,可以根据请求消息对目标无人机执行目标事件,并得到执行目标事件的执行结果。
203、核心网网元向应用服务器返回响应消息;
核心网网元得到目标事件的执行结果后,可以向应用服务器返回请求消息对应的响应消息,响应消息中包括核心网网元对目标无人机执行目标事件的执行结果。
204、应用服务器根据目标信息向目标无人机发送飞行控制命令;
应用服务器接收到核心网网元返回的响应消息之后,可以获取到核心网网元对目标无人机执行目标事件的执行结果,之后,应用服务器可以根据目标信息向目标无人机发送飞行控制命令,目标信息可以包括获取到的核心网网元对目标无人机执行目标事件的执行结果。
205、目标无人机执行飞行控制命令。
具体的,在步骤202中,目标事件一般为与目标无人机的位置信息相关的事件,因此在对目标无人机执行目标事件的过程中,通常需要获取目标无人机的位置信息。关于目标无人机的位置信息,下面提供几种可能的获取方法:
1)由于无人机一般可以安装有定位装置,比如GPS装置,可以获取自身的位置信息,因此,在第一种可能的来源中,目标无人机可以上报位置信息,目标事件的执行主体,以图2对应的实施例为例,即核心网网元,可以获取到目标无人机上报的位置信息,之后根据目标无人机上报的位置信息执行目标事件。但是无人机上报的位置信息为缺少监管的,可信度较低,因此,基于无人机上报的位置信息对目标无人机执行目标事件的执行结果的可信度也较低,存在一定的监管漏洞。
2)根据目标无人机的身份标识信息主动获取目标无人机的位置信息。比如,对于接入互联网的设备,可以根据该设备的互联网协议地址(internet protocol address,IP address)获取该设备的位置信息,可以将这种获取设备的位置信息的方式称作互联网方式。或者,当某个设备连接至移动网络时,核心网可以根据该设备的移动网络标识获取该设备的位置信息,可以将这种获取设备的位置信息的方式称作蜂窝方式,示例性的,设备的移动网络标识可以为国际移动用户识别码(international mobile subscriber identification number,IMSI)、国际移动设备身份码(international mobile equipment identity,IMEI)、移动用户国际ISDN/PSTN号码(mobile subscriber international ISDN/PSTN number,MSISDN)或者通用公用订阅标识符(generic public subscription identifier,GPSI)等。
具体的,目标事件可以包括校验事件和统计事件中的至少一种。
一、目标事件包括校验事件
目标事件中的校验事件可以与无人机的位置信息相关,示例性的,目标事件中的校验事件可以包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
1)目标事件包括无人机控制范围校验
若目标无人机的控制器可以远程操控目标无人机,目标无人机执行恶意攻击的可能性较高,为了保障公众安全,当目标无人机在与其配对的控制器的控制下执行飞行任务时,通过对目标无人机执行无人机控制范围校验,根据获取到的目标无人机的位置信息确定目标无人机是否在目标无人机的控制器的控制范围内,有利于及时发现目标无人机超出其控制器的控制范围的情况。
请参阅图3至图6,为无人机系统(包括无人机和其控制器)接入移动网络的四种可能的场景示意图。在图3对应的场景中,无人机的控制器通过互联网连接应用服务器,无人机通过设置的移动用户身份识别卡连接移动网络,应用服务器接入移动网络,无人机的控制器通过应用服务器间接控制无人机。在图4对应的场景中,无人机的控制器和无人机均通过设置的移动用户身份识别卡连接移动网络。在图5对应的场景中,无人机的控制器通过设备厂商的自有射频协议控制无人机,无人机仍然通过设置的移动用户身份识别卡连接移动网络。在图6对应的场景中,无人机的控制器通过设备厂商的自有射频协议控制无人机,同时无人机的控制器通过设置的移动用户身份识别卡连接移动网络。
当目标无人机及其控制器对应于图5或图6对应的场景时,目标无人机和其控制器之间通过自有射频协议进行通信,此时目标无人机的控制器对目标无人机的控制范围取决于射频协议的范围,由于射频协议的范围相对有限,可以不考虑对目标无人机执行无人机控制范围校验。当然,为了提高监管力度,也可以对目标无人机执行无人机控制范围校验。本申请不做限定。当目标无人机及其控制器对应于图3或图4对应的场景时,理论上,只要存在移动 网络,目标无人机的控制器便可以对目标无人机进行控制,此时需要对目标无人机执行相对控制范围校验。
目标无人机的控制范围可以为存储在核心网网元中的信息,也可以为应用服务器发送的请求消息中携带的信息。目标无人机的控制范围可以为相对范围或者绝对范围,相对范围可以对应于目标无人机与其控制器之间的被允许的最大距离,绝对范围可以对应于目标无人机被允许的飞行区域信息。因此,无人机控制范围校验可以具体包括相对控制范围校验和绝对控制范围校验中的至少一种。
参阅图7,核心网网元对目标无人机执行相对控制范围校验的一种可能的具体流程可以如下:
701、核心网网元分别获取目标无人机及其控制器的位置信息;
核心网网元可以分别根据目标无人机及其控制器的身份标识信息获取目标无人机及其控制器的位置信息,示例性的,当目标无人机及其控制器均连接至蜂窝网络时,核心网网元可以根据二者的蜂窝网络标识分别获取二者的位置信息。关于根据身份标识信息获取位置信息的过程的具体内容,可以参考前述核心网网元根据目标无人机的身份标识信息获取目标无人机的位置信息的描述内容,此处不再赘述。在核心网网元分别根据目标无人机及其控制器的身份标识信息获取目标无人机及其控制器的位置信息的过程中,对于核心网网元需要根据应用服务器发送的请求消息确定目标无人机及其控制器的身份标识信息的情况,请求消息中可以包括目标无人机及其控制器的身份标识信息,或者,应用服务器中可以存储目标无人机与其控制器之间的对应关系,根据目标无人机与其控制器之间的对应关系,应用服务器通过其中任意一个设备的身份标识信息,可以确定另一个设备的身份标识信息,此时,请求消息中可以包括目标无人机的身份标识信息,或者包括其控制器的身份标识信息,或者包括目标对应关系标识,其中,目标对应关系标识用于指示核心网网元获取目标无人机与其控制器之间的对应关系,进而确定目标无人机及其控制器的网络标识。
702、核心网网元根据目标无人机和其控制器的位置信息计算目标无人机与其控制器之间的距离;
703、核心网网元判断目标无人机与其控制器之间的距离是否超过相对范围,若超过,则执行步骤704,若未超过,则执行步骤705;
704、核心网网元判定目标无人机未通过相对控制范围校验;
705、核心网网元判定目标无人机通过相对控制范围校验。
若二者之间的距离超过相对范围,表示目标无人机的控制器可能无法控制目标无人机,或者,目标无人机的控制器能够控制目标无人机执行远程攻击任务,因此,此时核心网网元可以判定目标无人机未通过相对控制范围校验。
在一些情况下,比如,核心网网元无法获取目标无人机的控制器的位置信息,或者核心网网元通过互联网方式获取到目标无人机的控制器的位置信息,位置信息的精度过低,此时,核心网网元可以对目标无人机执行绝对控制范围校验。参阅图8,核心网网元对目标无人机执行绝对控制范围校验的一种可能的具体流程可以如下:
801、核心网网元获取目标无人机的位置信息;
802、核心网网元判断目标无人机是否处于绝对范围内,若未处于,则执行步骤803,若 处于,则执行步骤804;
803、核心网网元判定目标无人机未通过绝对控制范围校验;
804、核心网网元判定目标无人机通过绝对控制范围校验。
作为举例,绝对范围可以为移动网络的覆盖区域信息,核心网网元可以首先获取目标无人机的位置信息,之后若判定目标无人机未处于移动网络的覆盖区域,则表明目标无人机无法与移动网络进行通信,此时核心网网元可以判定目标无人机未通过绝对控制范围校验。或者,绝对范围可以为预设区域信息,比如,目标无人机中设置的移动用户身份识别卡的归属地为广东省,那么绝对范围可以对应于广东省,若核心网网元判定目标无人机未处于广东省内,此时可以判定目标无人机未通过绝对控制范围校验。
2)目标事件包括无人机位置校验
参阅图9,核心网网元对目标无人机执行无人机位置校验的一种可能的具体流程可以如下:
901、核心网网元获取目标无人机的第一位置信息;
示例性的,当目标无人机连接至移动网络时,核心网网元可以根据其移动网络标识获取目标无人机的位置信息,为了方便区分,将目标无人机的位置信息称作第一位置信息。
902、核心网网元获取目标无人机上报的第二位置信息;
示例性的,应用服务器发送的请求信息中可以包括目标无人机上报的位置信息,为了方便区分,将目标无人机上报的位置信息称作第二位置信息。
903、核心网网元判断第一位置信息和第二位置信息之间的差异是否超过差异阈值,若超过,则执行步骤904,若未超过,则执行步骤905;
904、核心网网元判定目标无人机未通过无人机位置校验;
905、核心网网元判定目标无人机通过无人机位置校验。
无人机上报的位置信息一般可以作为对其进行监管的重要参考依据,上报的位置信息的准确性影响着对无人机的监管的效果。
3)目标事件包括管控区域校验
核心网网元可以获取目标无人机的位置信息和管控区域信息。一种可能的实现方式,核心网网元获取管控区域信息的方法,可以为:1)核心网网元预先存储有管控区域信息,在执行管控区域校验时,可以直接读取存储的管控区域信息;2)或者,应用服务器发送的请求消息中可以包括管控区域信息。核心网网元可以从请求消息中获取管控区域信息。管控区域信息可以包括禁飞区域信息和限飞区域信息中的至少一种。为了保证公众安全等目的,通常会将某些区域规定为禁飞区域或限飞区域,在规定的禁飞区域内,一般需要禁止无人机起飞,并且禁止无人机从禁飞区域外飞入禁飞区域内;在限飞区域内,一般需要限制无人机的飞行参数,比如可以限制无人机的飞行速度或飞行高度。限制无人机的飞行参数可以指规定无人机按照某个飞行参数的取值进行飞行,比如,规定无人机按照某个速度进行飞行,或者,限制无人机的飞行参数可以指规定无人机的飞行参数的取值的可选范围,比如,规定无人机的飞行高度不超过120米。
核心网网元获取到目标无人机的位置信息和管控区域信息后,可以根据获取到的目标无人机的位置信息和管控区域信息判断目标无人机是否在管控区域内,若判定目标无人机在管 控区域内,可以判定目标无人机未通过管控区域校验。示例性的,当管控区域校验为禁飞区域校验时,若目标无人机未通过校验,需要禁止目标无人机起飞,或者强制目标无人机飞出禁飞区域;当管控区域校验为限飞区域校验时,若目标无人机未通过校验,需要限制目标无人机的飞行参数。
二、目标事件包括统计事件
核心网网元可以获取待统计的空域信息。示例性的,核心网网元可以获取应用服务器发送的指定的监管空域信息,将其作为待统计的空域信息;或者,核心网网元也可以自行确定待统计的空域信息,示例性的,核心网网元可以根据目标无人机的位置信息确定待统计的空域信息,具体的,作为举例,核心网网元在获取到目标无人机的位置信息后,可以确定以目标无人机的位置为中心的半径1公里内的空域信息(空间区域可以指距离地表一定范围内的区域),并将该空域信息作为待统计的空域信息。
核心网网元获取到待统计的空域信息之后,可以获取待统计的空域内无人机的统计信息,比如无人机的数量信息。核心网网元对目标无人机执行统计事件有利于限定空域内无人机的密度,提高无人机的飞行安全。
具体的,在步骤203中,若目标事件包括统计事件,统计事件的执行结果可以包括某个空域内无人机的统计信息。若目标事件包括校验事件,校验事件的执行结果可以包括校验事件的校验结果,比如通过校验或未通过校验。此外,一种可能的实现方式,校验事件的执行结果还可以包括核心网网元在执行校验事件的过程中得到的中间信息。比如核心网网元在执行相对控制范围校验时计算得到的目标无人机与其控制器之间的距离。或者,一种可能的实现方式,校验事件的执行结果还可以包括核心网网元根据校验结果选择执行的步骤的结果信息。比如,核心网网元在执行管控区域校验得到校验结果后,若核心网网元判定目标无人机通过校验,核心网网元可以根据目标无人机的位置信息和管控区域信息确定目标无人机进入管控区域的风险信息。示例性的,目标无人机进入管控区域的风险信息可以为目标无人机与管控区域的边界的最小距离,或者为目标无人机飞入管控区域所需的时长。若核心网网元判定目标无人机未通过校验,比如,当管控区域为禁飞区域时,核心网网元可以确定目标无人机飞出禁飞区域的飞行路径,以指示目标无人机按照该飞行路径飞出禁飞区域。示例性的,核心网网元得到的飞出禁飞区域的飞行路径可以为飞出禁飞区域对应的最短路径,也可以为对公众安全影响最小的路径。
具体的,在步骤204中,若目标事件的执行结果包括某个空域内无人机的统计信息,核心网网元向目标无人机发送的飞行控制命令可以包括该空域内无人机的统计信息,或者,可以包括飞行告警信息,比如,当该空域内无人机的数量很大时,可以通过飞行控制命令建议目标无人机不要起飞或者尽快结束飞行任务。
一种可能的实现方式,若目标事件的执行结果包括校验事件的校验结果,应用服务器可以根据目标信息判断目标无人机是否违规,之后根据目标无人机是否违规向目标无人机发送飞行控制命令。作为举例,若有任意一项校验结果为未通过,应用服务器便可以判定目标无人机违规,若任由目标无人机执行飞行计划,将带来安全问题,此时应用服务器可以向目标 无人机发送强制管制命令,比如禁止起飞的命令,或者对目标无人机的飞行管制命令。其中,示例性的,飞行管制命令可以包括指示目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令或者限制飞行参数的命令。若判定目标无人机不违规,应用服务器可以执行其他操作,比如不向目标无人机发送飞行控制命令,或者向目标无人机发送允许起飞的命令。
此外,一种可能的实现方式,若目标事件的执行结果包括校验事件的校验结果,应用服务器向目标无人机发送的飞行控制命令还可以包括,核心网网元在执行校验事件的过程中得到的中间信息,或者,核心网网元根据校验结果选择执行的步骤的结果信息,关于中间信息和选择执行的步骤的结果信息的具体内容请参考步骤203中的相应描述,此处不再赘述。示例性的,若判定目标无人机违规,当飞行控制命令包括执行返航的命令时,飞行控制命令中还可以包括指定的返航路径;若判定目标无人机不违规,飞行控制命令中可以包括管控区域信息或者预计进入管控区域的风险信息等。
具体的,在步骤205中,当目标无人机在与其配对的控制器的控制下执行飞行任务时,在一种可能的实现方式中,将目标无人机配置为优先执行应用服务器下达的飞行控制命令。具体的,当目标无人机接收到应用服务器下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令时,目标无人机可以根据优先级信息从第一飞行控制命令和第二飞行控制命令中选择第一飞行控制命令,并执行第一飞行控制命令。其中,优先级信息为预先设置的信息,用于指示第一飞行控制命令的优先级高于第二飞行控制命令。这样,即使应用服务器向无人机下达的飞行控制命令与控制器向无人机下达的飞行控制命令相互冲突时,无人机可以以应用服务器发送的飞行控制命令为准,有利于增强应用服务器对无人机的管制效果,减小无人机对公众安全带来的威胁。
移动网络的核心网网元接收到应用服务器发送的请求信息后,可以根据请求信息对目标无人机执行目标事件,得到目标事件的执行结果,目标事件的执行结果用于对目标无人机进行监管,之后,可以将包括目标事件的执行结果的响应消息返回给应用服务器,响应消息用于辅助应用服务器对目标无人机进行监管,由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,核心网网元向应用服务器提供的响应消息有利于辅助应用服务器对无人机进行统一、广泛的监管。
应用服务器可以向核心网网元发送请求消息,当接收到相应的响应消息时,可以获取到核心网网元对目标无人机执行目标事件的执行结果,之后,可以根据包括该执行结果的目标信息向目标无人机发送飞行控制命令,以实现对目标无人机的监管。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,应用服务器通过获取核心网网元发送的响应消息,有利于实现对无人机的统一、广泛的监管。
在实际使用中,若目标事件中包括两个或两个以上事件,比如包括两个或两个以上校验事件,应用服务器向核心网网元发送请求消息时,可以在一个请求消息包括多个校验事件,这样应用服务器通过发送一个请求消息,便可以指示核心网网元执行多个校验事件。或者,一个请求消息可以包括一个校验事件,应用服务器需要发送多个请求消息来指示核心网网元 执行多个校验事件。当核心网网元接收到多个校验事件时,可以同时对各个校验事件进行处理,任意一个校验事件的结果不影响其他校验事件的执行。或者,核心网网元可以对多个校验事件进行逐一处理,若某个校验事件的执行结果表明目标无人机未通过该校验事件时,核心网网元可以不再执行其他校验事件。
核心网网元执行目标事件的过程中,若对多个校验事件进行处理,那么,核心网网元在得到一个校验事件的校验结果时,可以立即向应用服务器返回一个响应消息,该响应消息中包括一个校验事件的校验结果。或者,核心网网元可以在得到多个校验事件的校验结果后,向应用服务器返回一个响应消息,该响应消息中包括多个校验事件的校验结果。
图2实施例是应用服务器向无人机发送飞行控制命令。本申请另一实施例中,核心网网元可以向无人机发送飞行控制命令。具体的,在图2对应的实施例中,在步骤202之后,请参阅图2中的虚线部分,206、核心网网元根据目标无人机是否违规向目标无人机发送飞行控制命令。
若目标事件包括校验事件,目标事件还可以包括授权判决事件,核心网网元可以根据目标无人机是否通过目标事件中的校验事件确定目标无人机是否违规。比如,当有一个校验事件的执行结果为未通过时,核心网网元可以判定目标无人机违规,或者,当有预设数目的校验事件的执行结果为未通过时,核心网网元可以判定目标无人机违规。核心网网元向目标无人机发送飞行控制命令的过程可以参考步骤204中应用服务器根据目标信息向目标无人机发送飞行控制命令的过程。或者,核心网网元可以在判定目标无人机违规时发送飞行控制命令,飞行控制命令可以为禁止起飞的命令,或者对目标无人机的飞行管制命令。其中,示例性的,飞行管制命令可以包括指示目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
核心网网元可以通过控制面信令向目标无人机发送飞行控制命令,示例性的,控制面信令可以为非接入层(non-access stratum,NAS)信令,其中非接入层作为核心网与用户设备之间的功能层。
跟应用服务器向目标无人机发送飞行控制命令的方式相比,当判定目标无人机违规时,由核心网网元直接向目标无人机发送控制命令,所需的步骤更少,时延更短,使得飞行控制命令能够更早到达目标无人机,从而提高对无人机监管的时效性。
若核心网网元判定目标无人机违规,核心网网元向目标无人机发送飞行控制命令。一种可能的实现方式,核心网网元向应用服务器返回的响应消息可以指示,核心网网元已向目标无人机发送飞行控制命令。应用服务器接收到该指示后,可以无需根据目标信息向目标无人机发送飞行控制命令。或者,当目标无人机违规时,核心网网元和应用服务器也可以均向目标无人机发送飞行控制命令,二者发送的飞行控制命令可以相同,也可以不同。作为举例,假设核心网网元向目标无人机发送的飞行控制命令为强制管制命令,比如执行悬停的命令,根据接收到的响应消息,应用服务器确定核心网网元已经发送强制管制命令,此时,应用服务器向目标无人机发送的飞行控制命令可以包括提示信息,比如提示目标无人机被下达强制管制命令的原因为飞入禁飞区域,飞行控制命令还可以包括禁飞区域信息。
在核心网网元向目标无人机发送飞行控制命令后,目标无人机可以执行核心网网元下达 的飞行控制命令。目标无人机执行核心网网元下达的飞行控制命令的具体内容与上述对步骤205的具体描述内容类似,在一种可能的实现方式中,可以将目标无人机配置为优先执行核心网网元下达的飞行控制命令。
下面以图2对应的实施例中的核心网网元为5G网络中的核心网网元为例,对图2对应的方法实施例进行详细描述。
图10为本申请的无人机监管方法所应用的一种网络架构的示意图。图10中的用户设备(user equipment,UE)、(无线)接入网络((radio)access network,(R)AN)、用户面功能(user plane function,UPF)网元和数据网络(data network,DN)一般被称为用户层网络功能或实体,用户的数据流量可以通过UE和DN之间建立的数据传输通道进行传输。图10中其他的网元,则被称为控制层网络功能或实体,主要用于实现用户层流量可靠稳定的传输,比如网络暴露功能(network exposure function,NEF),主要用于安全的向第三方暴露网络能力和事件;会话管理功能(session management function,SMF),主要用于负责用户面网元选择、用户面网元重定向、IP地址分配、承载的建立、修改和释放等;接入和移动性管理功能(access and mobility management function,AMF),主要负责信令处理部分,例如接入控制、移动性管理、附着与去附着以及网关选择等功能;位置管理功能(location management function,LMF),主要用于进行位置管理;统一数据管理(unified data management,UDM),可以用于进行位置管理和订阅管理;网关移动位置中心(gateway mobile location center,GMLC),主要负责为移动位置业务的用户和服务方提供接口。其中,AMF、LMF、UDM以及GMLC可以联合执行移动定位业务,移动定位业务是移动网络运营商利用专门的移动定位技术确定移动用户的终端设备的地理位置,向移动用户提供与位置相关的业务。
在图10所示的架构中,核心网网元还包括无人机管理辅助功能(assistanted unmanned management function,AUMF)网元。AUMF网元可以是独立的网元,也可以集成到其他核心网元中,在此不做限定。DN包括无人机监控和管理(unmanned monitor and management,UMM)网元和授权执法部门(authorized law enforcement offices,ALEO)网元。
图2对应的实施例中的应用服务器可以包括UMM网元和/或ALEO网元。
结合图10所示的网络架构,在图2所示的无人机监管方法的基础上,图11为本申请另一种无人机监管方法的流程图,请参阅图11,本申请基于移动网络的无人机监管方法可以具体包括:
1101、目标无人机向UMM网元发送起飞授权请求;
根据法律要求(目前中国和美国已经明确规定),无人机的用户需要向负责进行无人机授权的政府部门进行身份登记和设备登记,ALEO网元可以获取无人机的用户上报的身份登记信息和设备登记信息,身份登记信息可以包括无人机的用户的身份标识信息,比如用户的姓名、身份证号、手机号等,设备登记信息可以包括无人机的序列号、无人机对应的控制器的序列号等。
目标无人机在执行飞行任务前,可以在线向UMM网元发送起飞授权请求,起飞授权请求中可以包含无人机的相关信息,示例性的,可以包括:目标无人机及其控制器的序列号和移 动网络标识,目标无人机的起飞位置信息、当前位置信息、所有者信息(比如所有者的身份标识信息和居住地址信息等)、飞行任务类型、飞行路径数据和起飞重量等。
1102、UMM网元获取ALEO网元发送的参考信息;
参考信息可以包括管控区域信息、目标无人机的身份登记信息和设备登记信息等。在本申请实施例中,以管控区域信息为禁飞区域信息为例。
具体的,UMM网元可以向ALEO网元请求获取最新的禁飞区域信息,比如中国民航已经明确定义的无人机围栏信息。或者ALEO网元也可以定期主动推送禁飞区域信息给UMM网元。
UMM网元可以向ALEO网元查询无人机的用户上报的身份登记信息和设备登记信息,之后,一种可能的实现方式,UMM网元可以根据从ALEO网元获取到的身份登记信息和设备登记信息对目标无人机进行身份校验,当判定目标无人机的所有者未向ALEO进行身份登记或目标无人机的登记时,可以判定目标无人机未通过身份校验,此时可以向目标无人机发送反馈结果信息,该结果信息表示目标无人机未通过身份校验,建议去相关政府部门核实其登记信息是否被篡改;若判定目标无人机通过身份校验,可以执行步骤1103。
1103、UMM网元向AUMF网元发送无人机控制范围校验事件的第一订阅请求;
假设目标无人机与其控制器接入移动网络的场景如图7所示,比如ALEO可以向UMM网元发送的设备登记信息中可以包括无人机接入移动网络的场景,UMM网元确定目标无人机接入移动网络的场景后,可以确定需要对目标无人机进行相对控制范围校验,此时,UMM网元可以向AUMF网元发送无人机控制范围校验事件的订阅请求,为了方便描述,将该订阅请求称作第一订阅请求。第一订阅请求中可以包括:目标无人机的序列号和移动网络标识,目标无人机的控制器的序列号和移动网络标识,相对范围信息,误差范围要求信息等。
1104、AUMF网元根据第一订阅请求对目标无人机执行无人机控制范围校验;
AUMF网元接收到第一订阅请求之后,可以对目标无人机执行无人机控制范围校验事件。具体的,AUMF网元根据第一订阅请求对目标无人机执行相对控制范围校验可以包括如下过程:
1)AUMF网元可以获取目标无人机及其控制器的位置信息,假设AUMF网元向AMF网元或者LMF网元获取目标无人机及其控制器的位置信息,更为具体的,AUMF网元可以通过订阅AMF网元的位置事件获取目标无人机及其控制器的位置,或者发起网络发起的定位请求流程来获取目标无人机及其控制器的位置信息。示例性的,AMF网元可以根据接收到的位置事件订阅请求,提供粗粒度的UE位置信息,如UE所在的小区标识等信息。
需要说明的,AUMF网元可以集成在现有的某个核心网网元中,比如AMF网元或LMF网元,当AUMF网元集成在AMF网元或LMF网元中时,AUMF网元在接收到第一订阅请求后,可以直接获取目标无人机及其控制器的位置信息。
2)AUMF网元根据目标无人机及其控制器的位置信息获取二者之间的距离,之后根据误差范围要求信息判断目标无人机与其控制器之间的距离是否超过相对范围,若超过,则可以判定目标无人机未通过相对控制范围校验,若未超过,则可以判定目标无人机通过相对控制范围校验。
AUMF根据第一订阅请求对目标无人机执行绝对控制范围校验可以包括如下过程:
1)AUMF可以获取目标无人机的位置信息,获取过程可以参考上述AUMF根据第一订阅请求对目标无人机执行相对控制范围校验的相应内容。
2)AUMF判断目标无人机是否处于绝对范围内,若未处于绝对范围内,则可以判定目标无人机未通过绝对控制范围校验,若处于绝对范围内,可以判定目标无人机通过绝对控制范围校验。
1105、AUMF网元向UMM网元返回第一订阅请求对应的第一响应消息;
第一响应消息可以包括第一订阅请求的执行结果,比如可以包括对目标无人机执行无人机控制范围校验的校验结果,还可以包括获取到的目标无人机与其控制器之间的距离。
1106、UMM网元向AUMF网元发送第二订阅请求;
AUMF网元可以负责对无人机进行管控区域校验和位置精度校验,同样可以通过订阅事件的方式对UMM网元提供服务。当第一响应消息表明目标无人机通过无人机控制范围校验时,UMM网元可以向AUMF网元发送管控区域校验事件和位置精度校验事件的第二订阅请求,第二订阅请求中可以包括:目标无人机的序列号和移动网络标识,管控区域信息(无人机围栏信息),误差范围要求信息,定位精度要求信息等。
1107、AUMF网元根据第二订阅请求对目标无人机执行禁飞区域校验和位置精度校验;
假设管控区域信息为禁飞区域信息,AUMF网元根据第二订阅请求对目标无人机执行禁飞区域校验可以包括:
1)AUMF网元获取目标无人机的位置信息,比如,AUMF可以向接入和移动性管理功能AMF或者位置管理功能LMF获取目标无人机的位置信息,具体的请参考步骤704中的相应描述;
2)AUMF网元根据误差范围要求信息判断目标无人机是否在禁飞区域内,若判定在禁飞区域内,则可以判定目标无人机未通过禁飞区域校验,若判定不在禁飞区域内,则可以判定目标无人机通过禁飞区域校验。
AUMF网元根据第二订阅请求对目标无人机执行位置精度校验可以包括:
AUMF网元可以获取目标无人机的位置信息,之后可以根据误差范围要求信息、起飞授权请求中的当前位置信息和获取到的位置信息判断目标无人机上报的位置信息是否满足定位精度要求。
1108、AUMF网元向UMM网元返回第二订阅请求对应的第二响应消息;
第二响应消息可以包括禁飞区域校验和位置精度校验的校验结果,若目标无人机未处于禁飞区域内,还可以包括目标无人机进入禁飞区域的风险信息。
1109、AUMF网元向目标无人机发送禁止起飞的命令;
AUMF网元可以根据第一订阅请求的执行结果和第二订阅请求的执行结果对目标无人机进行授权判决,当判决结果表明目标无人机未通过校验时,AUMF网元可以向目标无人机发送禁止起飞的命令。例如当无人机控制范围校验或禁飞区域校验未通过时,AUMF网元有权直接拒绝目标无人机的起飞授权请求,并将禁止起飞的命令通过NAS信令通知无人机设备。
1110、UMM网元向目标无人机发送起飞授权请求对应的起飞控制命令;
UMM网元可以根据第一响应消息、第二响应消息、身份校验结果等对目标无人机进行授权判决,得到起飞控制命令,比如允许起飞的命令,或者禁止起飞的命令,并将起飞控制命令返回目标无人机。
1111、目标无人机执行起飞控制命令;
1112、目标无人机向UMM网元上报飞行数据;
若目标无人机接收到允许起飞的命令,目标无人机在飞行过程中,可以向UMM网元周期性发送飞行数据。飞行数据中可以包括目标无人机及其控制器的序列号和移动网络标识,目标无人机的当前位置信息、所有者信息(比如所有者的身份标识信息和居住地址信息等)、飞行路径数据等。
1113、UMM网元向AUMF网元发送第三订阅请求;
第三订阅请求可以包括飞行监管事件。
1114、AUMF网元对目标无人机执行第三订阅请求中的飞行监管事件;
飞行监管事件可以具体包括上述步骤1104和步骤1107中的无人机控制范围校验、管控区域校验和位置精度校验中的至少一种。各个校验事件的执行过程可以参考前述相应内容,此处不再赘述。
1115、AUMF网元向UMM网元返回第三订阅请求对应的第三响应消息;
1116、AUMF网元向目标无人机发送飞行管制命令;
当AUMF网元根据第三订阅请求的执行结果对目标无人机的授权判决结果表示,目标无人机未通过校验时,AUMF网元可以向目标无人机发送飞行管制命令,比如,可以包括悬停、降落、自动返航或告警等命令。
1117、UMM网元根据第三响应消息向目标无人机发送起飞行管制命令;
当UMM网元根据第三订阅请求的执行结果或身份校验的执行结果对目标无人机的授权判决后,授权结果表示目标无人机未通过校验时,UMM网元可以向目标无人机发送飞行管制命令,比如,可以包括悬停、降落、自动返航或告警等命令。
此外,UMM网元还可以根据目标无人机周期性上报的飞行数据,预测目标无人机的飞行路径,进而预估目标无人机进入禁飞区域的时长以及潜在的无人机碰撞事件。若授权结果表示目标无人机通过校验时,UMM网元可以向目标无人机发送告警信息,比如进入禁飞区域的时长以及潜在的无人机碰撞事件等。
1118、目标无人机执行飞行控制命令。
在图11对应的实施例中,与图2对应的实施例中的相同内容请具体参考图2对应的实施例,此处不再赘述。
图2对应的实施例中的核心网网元还可以为其他移动网络架构中的核心网网元,结合图12,以图2对应的实施例中的核心网网元为4G网络中的核心网网元为例,图10对应的网络架构中的AUMF网元对应于图12中的无人机管理辅助实体(assistanted unmanned management entity,AUME)网元,AUME与4G网络架构中的移动性管理实体(mobility management entity,MME)直连。AUME的全部或者部分功能也可以集成在其他核心网网元,例如MME中,在此不做限定。图10对应的网络架构中的(R)AN对应于图12中的演进的通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN),图10对应的网络架构中的AMF对应于图12中的MME,图10对应的网络架构中的LMF对应于图12中的发展服务移动位置中心(evolved serving mobile location centre,E-SMLC),图10对应的网络架构中的NEF对应于图12中的业务能力开放单元(service capability  exposure function,SCEF,图10对应的网络架构中的DN对应于图12中的分组数据网络(packet data network,PDN)。申请方法基于4G网络架构的无人机监管方法请参考图11对应的无人机监管方法,此处不再赘述。
上述图2实施例中,核心网网元根据应用服务器发送的请求消息对目标无人机执行目标事件。在另一实施例中,可以由应用服务器对目标无人机执行目标事件。具体的,请参阅图13,本申请另一个实施例提供一种无人机监管方法,该方法包括:
1301、应用服务器对目标无人机执行目标事件;
应用服务器对目标无人机执行目标事件的过程,与步骤202中核心网网元对目标无人机执行目标事件的过程类似,因此步骤1301的具体描述可以参阅上述步骤202对应的内容中的相应描述。例如,将步骤202中的核心网网元替换为应用服务器。
需要说明的是,与步骤202中核心网网元的获取方式有所不同,应用服务器需要向核心网网元发送定位请求来获取通过蜂窝方式得到的设备的位置信息。
1302、应用服务器根据目标信息通过移动网络向目标无人机发送飞行控制命令,目标信息包括目标事件的执行结果;
应用服务器根据目标信息通过移动网络向目标无人机发送飞行控制命令的过程,与上述图2对应的实施例中应用服务器根据目标信息向目标无人机发送飞行控制命令的过程类似,因此,步骤1302的具体描述可以参阅上述步骤204对应的内容中的相应描述,此处不再赘述。
1303、目标无人机执行飞行控制命令。
目标无人机执行应用服务器发送的飞行控制命令的具体内容可以参考对步骤205的具体描述,此处不再赘述。
应用服务器可以对目标无人机执行目标事件,得到目标事件的执行结果,之后,可以根据目标信息确定对目标无人机的飞行控制命令,并通过移动网络向目标无人机发送此飞行控制命令,以对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
下面以图13对应的实施例基于5G网络为例,对图13对应的方法实施例进行详细描述。
图14为本申请的无人机监管方法使用的另一种网络架构示意图,图14中各网元的具体内容请参考上述对图10对应的网络架构的相应描述内容。结合图14所示的网络架构,在图13所示的无人机监管方法的基础上,图15为本申请另一种无人机监管方法的流程图。请参阅图15,本申请基于移动网络的无人机监管方法可以具体包括:
1501、目标无人机向UMM网元发送起飞授权请求;
1502、UMM网元获取ALEO网元发送的参考信息;
步骤1501和步骤1502请分别参阅图11对应的方法实施例中的步骤1101和步骤1102,此处不再赘述。
1503、UMM网元对目标无人机执行无人机控制范围校验事件;
具体过程可以参考图11对应的方法实施例中的步骤1104,此处不再赘述。
1504、UMM网元对目标无人机执行位置精度校验;
1505、UMM网元对目标无人机执行禁飞区域校验;
UMM网元可以对无人机进行禁飞区域校验和位置精度校验,具体过程可以参考图11对应的方法实施例中的步骤1107,此处不再赘述。
需要说明的是,在步骤1503至步骤1505中,若应用服务器利用通过蜂窝方式获取到的位置信息进行上述校验,那么,与图11对应的实施例中AUMF网元获取位置信息的方式有所差异,应用服务器需要向核心网网元发送定位请求来获取通过蜂窝方式得到的设备的位置信息。比如可以通过订阅AMF的位置事件获取目标无人机(或者还有其控制器)的位置信息,或者可以发起终端终止定位请求流程来获取位置信息。
1506、UMM网元向目标无人机发送起飞授权请求对应的起飞控制命令;
UMM网元可以根据相对控制范围校验结果、位置精度校验结果、禁飞区域校验结果以及身份校验结果等对目标无人机进行授权判决,得到起飞控制命令,比如允许起飞的命令,或者禁止起飞的命令,并将起飞控制命令返回目标无人机。
1507、目标无人机执行起飞控制命令;
1508、目标无人机上报飞行数据;
步骤1508可以参考图11对应的方法实施例中的步骤1112,此处不再赘述。
1509、UMM网元对目标无人机执行飞行监管事件;
飞行监管事件可以包括上述步骤1503至步骤1505中的无人机控制范围校验、禁飞区域校验和位置精度校验中的至少一种。各个校验事件的执行过程可以参考前述相应内容,此处不再赘述。
1510、UMM网元向目标无人机发送起飞行管制命令;
当UMM网元根据飞行监管事件的执行结果或身份校验的执行结果对目标无人机的授权判决后,授权结果表示目标无人机未通过校验时,UMM网元可以向目标无人机发送飞行管制命令,比如,可以包括悬停、降落、自动返航或告警等命令。
此外,UMM网元还可以根据目标无人机周期性上报的飞行数据,预测目标无人机的飞行路径,进而预估目标无人机进入禁飞区域的时长以及潜在的无人机碰撞事件。若授权结果表示目标无人机通过校验时,UMM网元可以向目标无人机发送告警信息,比如进入禁飞区域的时长以及潜在的无人机碰撞事件等。
1511、目标无人机执行飞行控制命令。
上面描述了基于图1对应的无人机监管系统的方法实施例。请参阅图16,图16为本申请基于移动网络的无人机监管系统另一个实施例示意图。图16对应的无人机监管系统包括移动网络(图中以基站代表移动网络)和无人机,无人机可以与移动网络进行数据传输。对图16对应的无人机监管系统的具体说明请参考上述对图1对应的无人机监管系统的相应描述内容,此处不再赘述。
上述图2实施例中,核心网网元根据应用服务器发送的请求消息对目标无人机执行目标事件。在另一实施例中,可以由核心网网元自主对目标无人机执行目标事件。具体的,基于图16对应的无人机监管系统,请参阅图17,本申请另一个实施例提供一种无人机监管方法, 该方法包括:
1701、核心网网元对目标无人机执行目标事件;
一种可能的方式,核心网网元可以预先配置目标事件,或者,另一种可能的方式,核心网网元可以接收其他网元发送的目标事件的配置信息。核心网网元对目标无人机执行目标事件的过程,与步骤202中核心网网元对目标无人机执行目标事件的过程类似,因此步骤1701的具体描述可以参阅上述步骤202对应的内容中的相应描述。
1702、核心网网元根据目标信息向目标无人机发送飞行控制命令,目标信息包括目标事件的执行结果;
核心网网元根据目标信息向目标无人机发送飞行控制命令的过程,与上述图2对应的实施例中应用服务器根据目标信息向目标无人机发送飞行控制命令的过程类似,因此,步骤1702的具体内容可以参阅上述上述图2对应的实施例中步骤204对应的内容中的相应描述,此处不再赘述。
1703、目标无人机执行飞行控制命令。
在核心网网元向目标无人机发送飞行控制命令后,目标无人机可以执行核心网网元下达的飞行控制命令。目标无人机执行核心网网元下达的飞行控制命令的具体内容与对步骤205的具体描述内容类似,在一种可能的实现方式中,可以将目标无人机配置为优先执行核心网网元下达的飞行控制命令。
移动网络的核心网网元可以对目标无人机执行目标事件,得到目标事件的执行结果,之后,可以根据目标信息向目标无人机发送飞行控制命令,对目标无人机进行监管,其中,目标信息包括目标事件的执行结果。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此本申请基于移动网络的无人机监管方法能够实现对无人机的统一、广泛的监管。
下面以图17对应的实施例中的核心网网元为5G网络中的核心网网元为例,对图17对应的方法实施例进行详细描述。
图18为本申请的无人机监管方法使用的另一种网络架构示意图,图18中各网元的具体内容请参考图10对应的第一种网络架构的相应描述内容。在图18所示的架构中,核心网网元还包括无人机监控和管理功能(unmanned monitor and management function,UMMF)网元。UMMF网元可以是独立的网元,也可以集成到其他核心网元中,在此不做限定。DN包括授权执法部门(authorized law enforcement offices,ALEO)网元。
结合图18所示的网络架构,在图17所示的无人机监管方法的基础上,图19为本申请另一种无人机监管方法的流程图。请参阅图19,本申请基于移动网络的无人机监管方法可以具体包括:
1901、目标无人机向UMM网元发送起飞授权请求;
1902、UMMF网元获取ALEO网元发送的参考信息;
步骤1901和步骤1902请分别参阅图11对应的方法实施例中的步骤1101和步骤1102,此处不再赘述。
1903、UMMF网元对目标无人机执行无人机控制范围校验事件;
具体过程可以参考图11对应的方法实施例中的步骤1104,此处不再赘述。
1904、UMMF网元对目标无人机执行位置精度校验;
1905、UMMF网元对目标无人机执行禁飞区域校验;
UMMF网元可以对无人机进行禁飞区域校验和位置精度校验,具体过程可以参考图11对应的方法实施例中的步骤1107,此处不再赘述。
1906、UMMF网元向目标无人机发送起飞授权请求对应的起飞控制命令;
UMMF网元可以根据相对控制范围校验结果、位置精度校验结果、禁飞区域校验结果以及身份校验结果等对目标无人机进行授权判决,得到起飞控制命令,比如允许起飞的命令,或者禁止起飞的命令,并将起飞控制命令返回目标无人机。
1907、目标无人机执行起飞控制命令;
1908、目标无人机上报飞行数据;
步骤1908可以参考图11对应的方法实施例中的步骤1112,此处不再赘述。
1909、UMMF网元对目标无人机执行飞行监管事件;
飞行监管事件可以包括上述步骤1903至步骤1905中的无人机控制范围校验、禁飞区域校验和位置精度校验中的至少一种。各个校验事件的执行过程可以参考前述相应内容,此处不再赘述。
1910、UMMF网元向目标无人机发送起飞行管制命令;
当UMMF网元根据飞行监管事件的执行结果或身份校验的执行结果对目标无人机的授权判决后,授权结果表示目标无人机未通过校验时,UMMF网元可以向目标无人机发送飞行管制命令,比如,可以包括悬停、降落、自动返航或告警等命令。
此外,UMMF网元还可以根据目标无人机周期性上报的飞行数据,预测目标无人机的飞行路径,进而预估目标无人机进入禁飞区域的时长以及潜在的无人机碰撞事件。若授权结果表示目标无人机通过校验时,UMMF网元可以向目标无人机发送告警信息,比如进入禁飞区域的时长以及潜在的无人机碰撞事件等。
1911、目标无人机执行飞行控制命令。
图17对应的实施例中的核心网网元还可以为其他移动网络架构中的核心网网元,结合图20,以图17对应的实施例中的核心网网元为4G网络中的核心网网元为例,图18对应的网络架构中的UMMF网元对应于图20中的无人机监控和管理实体(unmanned monitor and management entity,UMME)网元,UMME与图20中的MME直连。UMME的全部或者部分功能也可以集成在其他核心网网元,例如MME中,在此不做限定。图18对应的网络架构中的(R)AN对应于图20中的E-UTRAN,图18对应的网络架构中的AMF对应于图20中的MME,图18对应的网络架构中的LMF对应于图20中的E-SMLC,图18对应的网络架构中的NEF对应于图20中的SCEF,图18对应的网络架构中的DN对应于图20中的PDN。本申请基于4G网络架构的无人机监管方法请参考图19对应的无人机监管方法,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述核心网网元、应用服务器以及无人机为了实现上述功能,其包含了执行各个功能 相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的功能,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
从实体设备角度来描述,上述核心网网元或者应用服务器或者无人机可以由一个实体设备实现,也可以由多个实体设备共同实现,还可以是一个实体设备内的一个逻辑功能单元,本申请实施例对此不作具体限定。
例如,上述核心网网元或者应用服务器或者无人机可以由图21中的通信设备来实现。图21所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备包括至少一个处理器2101、存储器2102、通信线路2103以及至少一个通信接口2104。
处理器2101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,服务器IC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路2103可包括一通路,在上述组件之间传送信息。
通信接口2104,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器2102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路2103与处理器2101相连接。存储器2102也可以和处理器2101集成在一起。
其中,存储器2102用于存储执行本申请方案的计算机执行指令,并由处理器2101来控制执行。处理器2101用于执行存储器2102中存储的计算机执行指令,从而实现本申请上述方法实施例提供的基于移动网络的无人机监管的方法。
一种可能的实现方式,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器2101可以包括一个或多个CPU,例如图21中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图21中的处理器2101和处理器2105。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机执行指令)的处理核。
从功能单元的角度,本申请可以根据上述方法实施例对核心网网元、应用服务器以及无人机进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个功能单元中。上述集成的功能单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
比如,以采用集成的方式划分各个功能单元的情况下,图22示出了一种核心网网元的结构示意图。如图22所示,本申请核心网网元2200的一个实施例可以包括接收单元2201、事件执行单元2202以及发送单元2203;
接收单元2201,用于接收应用服务器发送的请求消息,请求消息包括对目标无人机执行的目标事件;
事件执行单元2202,用于根据请求消息对目标无人机执行目标事件;
发送单元2203,用于向应用服务器返回响应消息,响应消息包括目标事件的执行结果。
核心网网元的接收单元2201接收到应用服务器发送的请求信息后,事件执行单元2202可以根据请求信息对目标无人机执行目标事件,得到目标事件的执行结果,目标事件的执行结果用于对目标无人机进行监管,之后,发送单元2203可以将包括目标事件的执行结果的响应消息返回给应用服务器,响应消息用于辅助应用服务器对目标无人机进行监管,由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请装置实施例中,核心网网元向应用服务器提供的响应消息有利于辅助应用服务器对无人机进行统一、广泛的监管。
在本申请的一些实施例中,目标事件包括校验事件。
在本申请的一些实施例中,校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
在本申请的一些实施例中,若目标事件包括无人机控制范围校验,事件执行单元2202用于:
根据获取到的目标无人机的位置信息和目标无人机的控制器的位置信息确定目标无人机是否在目标无人机的控制器的控制范围内。
在本申请的一些实施例中,请求消息还包括目标无人机的身份标识信息;
事件执行单元2202还用于,根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括无人机位置校验,事件执行单元2202用于:
根据目标无人机上报的位置信息和获取到的目标无人机的位置信息确定目标无人机的位置是否准确。
在本申请的一些实施例中,请求消息还包括目标无人机的身份标识信息;
事件执行单元2202还用于,根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括管控区域校验,事件执行单元2202用于:
根据获取到的目标无人机的位置信息和管控区域信息确定目标无人机的位置是否在管控区域内。
在本申请的一些实施例中,请求消息还包括管控区域信息;
事件执行单元2202还用于,根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,事件执行单元2202还用于:
若确定目标无人机的位置不在管控区域内,根据目标无人机的位置信息和管控区域信息确定目标无人机进入管控区域的风险信息。
在本申请的一些实施例中,若管控区域信息为禁飞区域信息,事件执行单元2202还用于:
若确定目标无人机的位置在禁飞区域内,确定目标无人机飞出禁飞区域的飞行路径。
在本申请的一些实施例中,目标事件还包括授权判决,事件执行单元2202用于:
根据目标无人机是否通过校验事件确定目标无人机是否违规。
在本申请的一些实施例中,发送单元2203还用于:
根据目标无人机是否违规向目标无人机发送飞行控制命令。
在本申请的一些实施例中,通过控制面信令向目标无人机发送飞行控制命令。
在本申请的一些实施例中,飞行控制命令包括是否允许起飞的命令,或者对目标无人机的飞行管制命令。
在本申请的一些实施例中,飞行管制命令包括指示目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
在本申请的一些实施例中,接收单元2201用于:
通过业务能力开放网元接收应用服务器发送的请求消息,若请求消息中包括目标无人机的身份标识信息,那么通过业务能力开放网元转发后的请求消息中目标无人机的身份标识信息由核心网的外部标识转换为内部标识。
在本申请的一些实施例中,目标事件包括统计事件,事件执行单元2202用于:
根据获取到的无人机的位置信息生成无人机统计信息;
在本申请的一些实施例中,请求消息还包括待统计区域信息;
事件执行单元2202用于:
根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
本申请实施例提供的核心网网元2200用于执行图2对应的方法实施例中核心网网元所执行的方法,故本申请实施例可以参考图2对应的方法实施例中的相关部分进行理解。
本申请实施例中,核心网网元2200以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到核心网网元2200可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得核心网网元2200执行图2对应的方法实施例中核心网网元所执行的方法。
具体的,图22中的接收单元2201、事件执行单元2202以及发送单元2203的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图22中的事件执行单元2202的功能/实现过程可以通过图21中的处理器2101调用存储器2102中存储的计算机执行指令来实现,图22中的接收单元2201和发送单元2203的功能/实现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的核心网网元可用于执行图2对应的实施例方法,因此本申请实 施例所能获得到的技术效果可参考图2对应的方法实施例,此处不再赘述。
比如,以采用集成的方式划分各个功能单元的情况下,图23示出了一种应用服务器的结构示意图。如图23所示,本申请应用服务器2300的一个实施例可以包括:消息发送单元2301、接收单元2302以及命令发送单元2303;
消息发送单元2301,用于向核心网网元发送请求消息,请求消息包括对目标无人机执行的目标事件;
接收单元2302,用于接收核心网网元返回的响应消息,响应消息包括核心网网元对目标无人机执行目标事件的执行结果;
命令发送单元2303,用于根据目标信息向目标无人机发送飞行控制命令,目标信息包括执行结果。
本申请应用服务器2300中的消息发送单元2301可以向核心网网元发送请求消息,当接收单元2302接收到与消息发送单元2301发送的请求消息相应的响应消息时,可以获取到核心网网元对目标无人机执行目标事件的执行结果,之后,命令发送单元2303可以根据包括该执行结果的目标信息向目标无人机发送飞行控制命令,以实现对目标无人机的监管。由于移动网络可以为不同厂商生产的无人机提供服务,并且移动网络在地域上的部署范围广泛,因此在本申请方法实施例中,应用服务器通过获取核心网网元发送的响应消息,有利于实现对无人机的统一、广泛的监管。
在本申请的一些实施例中,消息发送单元2301向核心网网元发送请求消息之前,接收单元2302还用于:
接收目标无人机的上报消息;
上报消息为目标无人机的起飞授权请求,或者为目标无人机在飞行过程中周期性上报的飞行数据。
在本申请的一些实施例中,上报消息包括目标无人机的身份标识信息;
命令发送单元2303用于:
根据目标无人机的身份标识信息和获取到的无人机预登记信息对目标无人机进行身份校验;
目标信息还包括对目标无人机进行身份校验的结果。
在本申请的一些实施例中,飞行数据包括目标无人机的位置信息;
命令发送单元2303用于:
根据目标无人机的位置信息确定目标无人机的飞行路径;
目标信息还包括目标无人机的飞行路径。
在本申请的一些实施例中,命令发送单元2303用于:
根据目标信息判断目标无人机是否违规;
根据目标无人机是否违规向目标无人机发送飞行控制命令。
在本申请的一些实施例中,飞行控制命令包括是否允许起飞的命令,或者对目标无人机的飞行管制命令。
在本申请的一些实施例中,飞行管制命令包括指示目标无人机执行悬停的命令或者执行 降落的命令或者执行返航的命令。
本申请实施例提供的应用服务器2300用于执行图2对应的方法实施例中应用服务器所执行的方法,故本申请实施例可以参考图2对应的方法实施例中的相关部分进行理解。
本申请实施例中,应用服务器2300以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到应用服务器2300可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得应用服务器2300执行图2对应的方法实施例中应用服务器所执行的方法。
具体的,图23中的消息发送单元2301、接收单元2302以及命令发送单元2303的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图23中的消息发送单元2301和接收单元2302的功能/实现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的应用服务器2300可用于执行图2对应的实施例方法,因此本申请实施例所能获得到的技术效果可参考图2对应的方法实施例,此处不再赘述。
比如,以采用集成的方式划分各个功能单元的情况下,图24示出了一种无人机的结构示意图。如图24所示,本申请无人机2400的一个实施例可以包括接收单元2401、确定单元2402以及命令执行单元2403;
接收单元2401,用于接收应用服务器下达的第一飞行控制命令和目标无人机的控制器下达的第二飞行控制命令;
确定单元2402,用于根据优先级信息从第一飞行控制命令和第二飞行控制命令中确定第一飞行控制命令;
命令执行单元2403,用于执行第一飞行控制命令。
本申请实施例提供的无人机2400用于执行图2对应的方法实施例中目标无人机所执行的方法,故本申请实施例可以参考图2对应的方法实施例中的相关部分进行理解。
本申请实施例中,无人机2400以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到无人机2400可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得无人机2400执行图2对应的方法实施例中无人机所执行的方法。
具体的,图24中的接收单元2401、确定单元2402以及命令执行单元2403的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图24中的确定单元2402和命令执行单元2403的功能/实现过程可以通过图21中的处理器2101调用存储器2102中存储的计算机执行指令来实现,图24中的接收单元2401的功能/实 现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的无人机2400可用于执行图2对应的实施例方法,因此本申请实施例所能获得到的技术效果可参考图2对应的方法实施例,此处不再赘述。
比如,以采用集成的方式划分各个功能单元的情况下,图25示出了一种应用服务器的结构示意图。如图25所示,本申请应用服务器2500的一个实施例可以包括事件执行单元2501和发送单元2502;
事件执行单元2501,用于对目标无人机执行目标事件;
发送单元2502,用于根据目标信息通过移动网络向目标无人机发送飞行控制命令,目标信息包括目标事件的执行结果。
在本申请的一些实施例中,目标事件包括校验事件。
在本申请的一些实施例中,校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
在本申请的一些实施例中,若目标事件包括无人机控制范围校验,事件执行单元2501用于:
根据获取到的目标无人机的位置信息确定目标无人机是否在目标无人机的控制器的控制范围内。
在本申请的一些实施例中,事件执行单元2501还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括无人机位置校验,事件执行单元2501用于:
根据目标无人机上报的位置信息和获取到的目标无人机的位置信息确定目标无人机的位置是否准确。
在本申请的一些实施例中,事件执行单元2501还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括管控区域校验,事件执行单元2501用于:
根据获取到的目标无人机的位置信息和管控区域信息确定目标无人机的位置是否在管控区域内。
在本申请的一些实施例中,事件执行单元2501还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,事件执行单元2501还用于:
若确定目标无人机的位置不在管控区域内,根据目标无人机的位置信息和管控区域信息确定目标无人机进入管控区域的风险信息。
在本申请的一些实施例中,若管控区域信息为禁飞区域信息,事件执行单元2501还用于:
若确定目标无人机的位置在禁飞区域内,确定目标无人机飞出禁飞区域的飞行路径。
在本申请的一些实施例中,目标事件包括统计事件,事件执行单元2501用于:
根据获取到的无人机的位置信息生成无人机统计信息;
在本申请的一些实施例中,事件执行单元2501还用于:
根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
在本申请的一些实施例中,根据目标信息向目标无人机发送飞行控制命令之前,装置还包括:
接收单元2503,用于接收目标无人机的上报消息;
上报消息为目标无人机的起飞授权请求,或者为目标无人机在飞行过程中周期性上报的飞行数据。
在本申请的一些实施例中,上报消息包括目标无人机的身份标识信息;
事件执行单元2501还用于:
根据目标无人机的身份标识信息和获取到的无人机预登记信息对目标无人机进行身份校验;
目标信息还包括对目标无人机进行身份校验的结果。
在本申请的一些实施例中,飞行数据包括目标无人机的位置信息;
事件执行单元2501还用于:
根据目标无人机的位置信息确定目标无人机的飞行路径;
目标信息还包括目标无人机的飞行路径。
在本申请的一些实施例中,发送单元2502用于:
根据目标信息判断目标无人机是否违规;
根据目标无人机是否违规向目标无人机发送飞行控制命令。
在本申请的一些实施例中,飞行控制命令包括是否允许起飞的命令,或者对目标无人机的飞行管制命令。
在本申请的一些实施例中,飞行管制命令包括指示目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请实施例提供的应用服务器2500用于执行图13对应的方法实施例中应用服务器所执行的方法,故本申请实施例可以参考图13对应的方法实施例中的相关部分进行理解。
本申请实施例中,应用服务器2500以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到应用服务器2500可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得应用服务器2500执行图13对应的方法实施例中核心网网元所执行的方法。
具体的,图25中的事件执行单元2501和发送单元2502的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图25中的事件执行单元2501的功能/实现过程可以通过图21中的处理器2101调用存储器2102中存储的计算机执行指令来实现,图25中的发送单元2502的功能/实现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的应用服务器2500可用于执行图13对应的实施例方法,因此本申请实施例所能获得到的技术效果可参考图13对应的方法实施例,此处不再赘述。
比如,以采用集成的方式划分各个功能单元的情况下,图23示出了一种应用服务器的结构示意图。如图26所示,本申请核心网网元2600的一个实施例可以包括事件执行单元2601和发送单元2602;
事件执行单元2601,用于对目标无人机执行目标事件;
发送单元2602,用于根据目标信息向目标无人机发送飞行控制命令,目标信息包括目标事件的执行结果。
在本申请的一些实施例中,目标事件包括校验事件。
在本申请的一些实施例中,校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
在本申请的一些实施例中,若目标事件包括无人机控制范围校验,事件执行单元2601用于:
根据获取到的目标无人机的位置信息确定目标无人机是否在目标无人机的控制器的控制范围内。
在本申请的一些实施例中,事件执行单元2601还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括无人机位置校验,事件执行单元2601用于:
根据目标无人机上报的位置信息和获取到的目标无人机的位置信息确定目标无人机的位置是否准确。
在本申请的一些实施例中,事件执行单元2601还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,若目标事件包括管控区域校验,事件执行单元2601用于:
根据获取到的目标无人机的位置信息和管控区域信息确定目标无人机的位置是否在管控区域内。
在本申请的一些实施例中,事件执行单元2601还用于:
根据目标无人机的身份标识信息获取目标无人机的位置信息。
在本申请的一些实施例中,事件执行单元2601还用于:
若确定目标无人机的位置不在管控区域内,根据目标无人机的位置信息和管控区域信息确定目标无人机进入管控区域的风险信息。
在本申请的一些实施例中,若管控区域信息为禁飞区域信息,事件执行单元2601还用于:
若确定目标无人机的位置在禁飞区域内,确定目标无人机飞出禁飞区域的飞行路径。
在本申请的一些实施例中,目标事件包括统计事件,事件执行单元2601用于:
根据获取到的无人机的位置信息生成无人机统计信息;
在本申请的一些实施例中,事件执行单元2601用于:
根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
在本申请的一些实施例中,根据目标信息向目标无人机发送飞行控制命令之前,装置还包括:
接收单元2603,用于接收目标无人机的上报消息;
上报消息为目标无人机的起飞授权请求,或者为目标无人机在飞行过程中周期性上报的 飞行数据。
在本申请的一些实施例中,上报消息包括目标无人机的身份标识信息;
事件执行单元2601还用于:
根据目标无人机的身份标识信息和获取到的无人机预登记信息对目标无人机进行身份校验;
目标信息还包括对目标无人机进行身份校验的结果。
在本申请的一些实施例中,飞行数据包括目标无人机的位置信息;
事件执行单元2601还用于:
根据目标无人机的位置信息确定目标无人机的飞行路径;
目标信息还包括目标无人机的飞行路径。
在本申请的一些实施例中,发送单元2602用于:
根据目标信息判断目标无人机是否违规;
根据目标无人机是否违规向目标无人机发送飞行控制命令。
在本申请的一些实施例中,飞行控制命令包括是否允许起飞的命令,或者对目标无人机的飞行管制命令。
在本申请的一些实施例中,飞行管制命令包括指示目标无人机执行悬停的命令或者执行降落的命令或者执行返航的命令。
本申请实施例提供的核心网网元2600用于执行图17对应的方法实施例中核心网网元所执行的方法,故本申请实施例可以参考图17对应的方法实施例中的相关部分进行理解。
本申请实施例中,核心网网元2600以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到核心网网元2600可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得核心网网元2600执行图17对应的方法实施例中核心网网元所执行的方法。
具体的,图26中的事件执行单元2601和发送单元2602的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图26中的事件执行单元2601的功能/实现过程可以通过图21中的处理器2101调用存储器2102中存储的计算机执行指令来实现,图26中的发送单元2602的功能/实现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的核心网网元可用于执行图17对应的实施例方法,因此本申请实施例所能获得到的技术效果可参考图17对应的方法实施例,此处不再赘述。
比如,以采用集成的方式划分各个功能单元的情况下,图27示出了一种无人机的结构示意图。如图27所示,本申请无人机2700的一个实施例可以包括接收单元2701、确定单元2702以及命令执行单元2703;
接收单元2701,用于接收核心网网元下达的第一飞行控制命令和目标无人机的控制器下 达的第二飞行控制命令;
确定单元2702,用于根据优先级信息从第一飞行控制命令和第二飞行控制命令中确定第一飞行控制命令;
命令执行单元2703,用于执行第一飞行控制命令。
本申请实施例提供的无人机2700用于执行图17对应的方法实施例中目标无人机所执行的方法,故本申请实施例可以参考图17对应的方法实施例中的相关部分进行理解。
本申请实施例中,无人机2700以采用集成的方式划分各个功能单元的形式来呈现。这里的“功能单元”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到无人机2700可以采用图21所示的形式。
比如,图21的处理器2101可以通过调用存储器2102中存储的计算机执行指令,使得无人机2700执行图17对应的方法实施例中核心网网元所执行的方法。
具体的,图27中的接收单元2701、确定单元2702以及命令执行单元2703的功能/实现过程可以通过图21中的处理器2101调动存储器2102中存储的计算机执行指令来实现。或者,图27中的确定单元2702和命令执行单元2703的功能/实现过程可以通过图21中的处理器2101调用存储器2102中存储的计算机执行指令来实现,图27中的接收单元2701的功能/实现过程可以通过图21中的通信接口2104来实现。
由于本申请实施例提供的无人机2700可用于执行图17对应的实施例方法,因此本申请实施例所能获得到的技术效果可参考图17对应的方法实施例,此处不再赘述。
上述图22至图27对应的实施例中,核心网网元、应用服务器以及无人机以采用集成的方式划分各个功能单元的形式来呈现。当然,本申请也可以对应各个功能划分各个功能单元,本申请实施例对此不作具体限定。
在本申请图21-图27的装置中各个组件通信连接,即处理单元(或者处理器)、存储单元(或者存储器)和收发单元(收发器)之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。虽然图中仅仅示出了一个处理器,该装 置可以包括多个处理器或者处理器包括多个处理单元。具体的,处理器可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。
存储器用于存储处理器执行的计算机指令。存储器可以是存储电路也可以是存储器。存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。存储器可以独立于处理器,也可以是处理器中的存储单元,在此不做限定。虽然图中仅仅示出了一个存储器,该装置也可以包括多个存储器或者存储器包括多个存储单元。
收发器用于实现处理器与其他单元或者网元的内容交互。具体的,收发器可以是该装置的通信接口,也可以是收发电路或者通信单元,还可以是收发信机。收发器还可以是处理器的通信接口或者收发电路。一种可能的实现方式,收发器可以是一个收发芯片。该收发器还可以包括发送单元和/或接收单元。在一种可能的实现方式中,该收发器可以包括至少一个通信接口。在另一种可能的实现方式中,该收发器也可以是以软件形式实现的单元。在本申请的各实施例中,处理器可以通过收发器与其他单元或者网元进行交互。例如:处理器通过该收发器获取或者接收来自其他网元的内容。若处理器与收发器是物理上分离的两个部件,处理器可以不经过收发器与该装置的其他单元进行内容交互。
一种可能的实现方式中,处理器、存储器以及收发器可以通过总线相互连接。总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的各实施例中,为了方面理解,进行了多种举例说明。然而,这些例子仅仅是一些举例,并不意味着是实现本申请的最佳实现方式。
在本申请的各实施例中,为了方便的描述,采用了请求消息,响应消息以及其他各种消息的名称。然而,这些消息仅仅是以举例方式说明需要携带的内容或者实现的功能,消息的具体名称并不对本申请的做出限定,例如:还可以是第一消息,第二消息,第三消息等。这些消息可以是具体的一些消息,可以是消息中的某些字段。这些消息还可以代表各种服务化操作。
上述实施例,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机执行指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用 计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上对本申请所提供的技术方案进行了详细介绍,本申请中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (27)

  1. 一种基于移动网络的无人机监管方法,其特征在于,包括:
    核心网网元接收应用服务器发送的请求消息,所述请求消息包括对目标无人机执行的目标事件;
    所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件;
    所述核心网网元向所述应用服务器返回响应消息,所述响应消息包括所述目标事件的执行结果。
  2. 根据权利要求1所述的方法,其特征在于,所述目标事件包括校验事件。
  3. 根据权利要求2所述的方法,其特征在于,所述校验事件包括无人机控制范围校验、无人机位置校验和管控区域校验中的至少一个。
  4. 根据权利要求3所述的方法,其特征在于,若所述目标事件包括所述无人机控制范围校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:
    所述核心网网元根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。
  5. 根据权利要求4所述的方法,其特征在于,所述请求消息还包括所述目标无人机的身份标识信息;
    所述方法还包括:
    所述核心网网元根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
  6. 根据权利要求3所述的方法,其特征在于,若所述目标事件包括所述无人机位置校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:
    所述核心网网元根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
  7. 根据权利要求3所述的方法,其特征在于,若所述目标事件包括所述管控区域校验,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:
    所述核心网网元根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
  8. 根据权利要求7所述的方法,其特征在于,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,还包括:
    若所述核心网网元确定所述目标无人机的位置不在管控区域内,所述核心网网元根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
  9. 根据权利要求7所述的方法,其特征在于,若所述管控区域信息为禁飞区域信息,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,还包括:
    若所述核心网网元确定所述目标无人机的位置在禁飞区域内,所述核心网网元确定所述目标无人机飞出所述禁飞区域的飞行路径。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述目标事件还包括授权判决,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:
    所述核心网网元根据所述目标无人机是否通过所述校验事件确定所述目标无人机是否违 规。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述核心网网元根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
  12. 根据权利要求11所述的方法,其特征在于,所述目标事件包括统计事件,所述核心网网元根据所述请求消息对所述目标无人机执行所述目标事件,包括:
    所述核心网网元根据获取到的无人机的位置信息生成无人机统计信息。
  13. 根据权利要求12所述的方法,其特征在于,所述请求消息还包括待统计区域信息;
    所述核心网网元根据获取到的无人机的位置信息生成无人机统计信息包括:
    所述核心网网元根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
  14. 一种核心网网元,其特征在于,包括:
    接收单元,用于接收应用服务器发送的请求消息,所述请求消息包括对目标无人机执行的目标事件;
    事件执行单元,用于根据所述请求消息对所述目标无人机执行所述目标事件;
    发送单元,用于向所述应用服务器返回响应消息,所述响应消息包括所述目标事件的执行结果。
  15. 根据权利要求14所述的核心网网元,其特征在于,若所述目标事件包括无人机控制范围校验,所述事件执行单元用于:
    根据获取到的所述目标无人机的位置信息确定所述目标无人机是否在所述目标无人机的控制器的控制范围内。
  16. 根据权利要求15所述的核心网网元,其特征在于,所述请求消息还包括所述目标无人机的身份标识信息;
    所述事件执行单元还用于:
    根据所述目标无人机的身份标识信息获取所述目标无人机的位置信息。
  17. 根据权利要求14所述的核心网网元,其特征在于,若所述目标事件包括无人机位置校验,所述事件执行单元用于:
    根据所述目标无人机上报的位置信息和获取到的所述目标无人机的位置信息确定所述目标无人机的位置是否准确。
  18. 根据权利要求14所述的核心网网元,其特征在于,若所述目标事件包括管控区域校验,所述事件执行单元用于:
    根据获取到的所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机的位置是否在管控区域内。
  19. 根据权利要求18所述的核心网网元,其特征在于,所述事件执行单元还用于:
    若确定所述目标无人机的位置不在管控区域内,则根据所述目标无人机的位置信息和所述管控区域信息确定所述目标无人机进入所述管控区域的风险信息。
  20. 根据权利要求18所述的核心网网元,其特征在于,若所述管控区域信息为禁飞区域信息,所述事件执行单元还用于:
    若确定所述目标无人机的位置在禁飞区域内,则确定所述目标无人机飞出所述禁飞区域的飞行路径。
  21. 根据权利要求14至20中任一项所述的核心网网元,其特征在于,若所述目标事件包括校验事件和授权判决,所述事件执行单元用于:
    根据所述目标无人机是否通过所述校验事件确定所述目标无人机是否违规。
  22. 根据权利要求21所述的核心网网元,其特征在于,所述发送单元还用于:
    根据所述目标无人机是否违规向所述目标无人机发送飞行控制命令。
  23. 根据权利要求22所述的核心网网元,其特征在于,所述目标事件包括统计事件,所述事件执行单元用于:
    根据获取到的无人机的位置信息生成无人机统计信息。
  24. 根据权利要求23所述的核心网网元,其特征在于,所述请求消息还包括待统计区域信息;
    所述事件执行单元用于:
    根据获取到的无人机的位置信息生成待统计区域内的无人机统计信息。
  25. 一种核心网网元,其特征在于,包括:至少一个处理器、存储器、通信线路、至少一个通信接口以及存储在存储器中并可在处理器上运行的计算机执行指令,当所述计算机执行指令被所述处理器执行时,所述处理器执行如权利要求1至13中任一项所述的方法。
  26. 一种存储一个或多个计算机执行指令的计算机可读存储介质,其特征在于,当所述计算机执行指令被处理器执行时,所述处理器执行如权利要求1至13中任一项所述的方法。
  27. 一种存储一个或多个计算机执行指令的计算机程序产品,其特征在于,当所述计算机执行指令被处理器执行时,所述处理器执行如权利要求1至13中任一项所述的方法。
PCT/CN2019/091848 2018-08-16 2019-06-19 一种基于移动网络的无人机监管方法及装置 WO2020034748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19850028.2A EP3832625A4 (en) 2018-08-16 2019-06-19 METHOD AND APPARATUS FOR UNPILOT AIR VEHICLE MONITORING BASED ON A MOBILE NETWORK
US17/175,349 US20210166571A1 (en) 2018-08-16 2021-02-12 Mobile network-based drone supervision method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810934556.6 2018-08-16
CN201810934556.6A CN110838245A (zh) 2018-08-16 2018-08-16 一种基于移动网络的无人机监管方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/175,349 Continuation US20210166571A1 (en) 2018-08-16 2021-02-12 Mobile network-based drone supervision method and apparatus

Publications (1)

Publication Number Publication Date
WO2020034748A1 true WO2020034748A1 (zh) 2020-02-20

Family

ID=69525092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091848 WO2020034748A1 (zh) 2018-08-16 2019-06-19 一种基于移动网络的无人机监管方法及装置

Country Status (4)

Country Link
US (1) US20210166571A1 (zh)
EP (1) EP3832625A4 (zh)
CN (1) CN110838245A (zh)
WO (1) WO2020034748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047961A4 (en) * 2020-04-03 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195900A1 (zh) * 2020-03-30 2021-10-07 华为技术有限公司 一种终端设备的验证方法及装置
US20210392653A1 (en) * 2020-04-30 2021-12-16 Qualcomm Incorporated Unmanned aerial vehicle category reporting
CN113676936B (zh) * 2020-05-15 2024-04-09 华为技术有限公司 一种异常行为无人机的处理方法、网元、系统及存储介质
CN111724631B (zh) * 2020-05-29 2021-09-24 北京三快在线科技有限公司 无人机业务管理系统、方法、可读存储介质及电子设备
CN113093791A (zh) * 2021-03-24 2021-07-09 上海特金信息科技有限公司 无人机身份鉴别的控制方法、控制器、设备及介质
CN114679492B (zh) * 2022-03-25 2023-08-29 中国联合网络通信集团有限公司 数据卸载方法、mec服务器、无人机、装置及系统
CN117499854A (zh) * 2022-07-25 2024-02-02 中国电信股份有限公司 一种支持核心网网元获取飞行器空间位置的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105608930A (zh) * 2016-02-03 2016-05-25 辽宁猎鹰航空科技有限公司 无人机安全管理系统及方法
US20160360360A1 (en) * 2015-06-02 2016-12-08 GeoFrenzy, Inc. Geofence Information Delivery Systems and Methods
KR20170045638A (ko) * 2015-10-19 2017-04-27 (주)에이알웍스 Uav 관제 시스템 및 uav 관제 시스템의 uav 비행 제어 수행 방법
CN107180561A (zh) * 2017-07-04 2017-09-19 中国联合网络通信集团有限公司 一种无人机飞行监管方法、平台及系统
CN107204129A (zh) * 2017-05-27 2017-09-26 饶斯允 一种民用无人机飞行管理方法及平台
CN107731012A (zh) * 2017-11-09 2018-02-23 佛山市海科云筹信息技术有限公司 飞行器监管系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150117879A (ko) * 2014-04-11 2015-10-21 부산대학교 산학협력단 모바일 통신 기반 무인항공기 관제 시스템
EP2942688A1 (en) * 2014-05-05 2015-11-11 Puy du Fou International Flying drone and method for controlling a flying drone
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
US20160371987A1 (en) * 2015-06-17 2016-12-22 Verizon Patent And Licensing Inc. Command and control interface for uavs communication through a mobile wireless network
JP6657030B2 (ja) * 2015-07-17 2020-03-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無人飛行体、飛行制御方法、飛行基本プログラム及び強制移動プログラム
KR101809439B1 (ko) * 2015-07-22 2017-12-15 삼성에스디에스 주식회사 드론 관제 장치 및 방법
US20170032586A1 (en) * 2015-07-31 2017-02-02 Elwha Llc Systems and methods for collaborative vehicle tracking
CN105472558A (zh) * 2015-12-18 2016-04-06 苏州贝多环保技术有限公司 一种无人机及其控制方法
CN105575187A (zh) * 2016-02-04 2016-05-11 广州极飞电子科技有限公司 空中交通网络的描述方法及描述系统
CN105843183A (zh) * 2016-03-10 2016-08-10 赛度科技(北京)有限责任公司 一种基于4g/wifi网络通讯技术的无人机综合运行管理系统
CN105722031A (zh) * 2016-03-30 2016-06-29 冯基洲 无人机
US9977428B2 (en) * 2016-04-26 2018-05-22 At&T Intellectual Property I, L.P. Augmentative control of drones
CN105739516A (zh) * 2016-05-09 2016-07-06 王彦成 无人机管控装置及相应的系统
US20170337826A1 (en) * 2016-05-23 2017-11-23 Intel Corporation Flight Management and Control for Unmanned Aerial Vehicles
US10204521B2 (en) * 2016-08-31 2019-02-12 At&T Intellectual Property I, L.P. Method and system on dynamic control of UAVs using software defined networks
WO2018053815A1 (zh) * 2016-09-23 2018-03-29 深圳市大疆创新科技有限公司 应用于遥控器的信息提示方法及遥控器
CN107871404A (zh) * 2016-09-28 2018-04-03 中兴通讯股份有限公司 一种基于物联网的无人机智能管理装置、方法及系统
CN108073181A (zh) * 2016-11-10 2018-05-25 中国移动通信集团公司 一种无人机监管方法、装置及系统
CN107132852B (zh) * 2017-03-31 2019-10-25 西安戴森电子技术有限公司 一种基于北斗地理围栏差分定位模块的无人机监管云平台
CN107204130A (zh) * 2017-07-14 2017-09-26 哈尔滨工业大学(威海) 民用无人机空管系统及采用该系统实现对无人机进行飞行控制的方法
CN107479574B (zh) * 2017-08-17 2020-11-10 中国电子科技集团公司第二十九研究所 一种基于移动通信技术的无人机管控方法及装置
CN107703969A (zh) * 2017-10-30 2018-02-16 中国联合网络通信集团有限公司 无人机监控方法和无人机监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160360360A1 (en) * 2015-06-02 2016-12-08 GeoFrenzy, Inc. Geofence Information Delivery Systems and Methods
KR20170045638A (ko) * 2015-10-19 2017-04-27 (주)에이알웍스 Uav 관제 시스템 및 uav 관제 시스템의 uav 비행 제어 수행 방법
CN105608930A (zh) * 2016-02-03 2016-05-25 辽宁猎鹰航空科技有限公司 无人机安全管理系统及方法
CN107204129A (zh) * 2017-05-27 2017-09-26 饶斯允 一种民用无人机飞行管理方法及平台
CN107180561A (zh) * 2017-07-04 2017-09-19 中国联合网络通信集团有限公司 一种无人机飞行监管方法、平台及系统
CN107731012A (zh) * 2017-11-09 2018-02-23 佛山市海科云筹信息技术有限公司 飞行器监管系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832625A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047961A4 (en) * 2020-04-03 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE

Also Published As

Publication number Publication date
EP3832625A4 (en) 2021-10-06
EP3832625A1 (en) 2021-06-09
CN110838245A (zh) 2020-02-25
US20210166571A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2020034748A1 (zh) 一种基于移动网络的无人机监管方法及装置
US10712743B2 (en) Augmentative control of drones
CN110663074B (zh) 用于在无人航空器系统交通管理框架中使用网络位置服务的方法和系统
US11206541B2 (en) Method and device for managing and controlling terminal UE
CN110868712B (zh) 终端设备识别方法及通信装置
US10158671B2 (en) Reverse DRM geo-fencing of UAV method and apparatus
CN105761550A (zh) 无人机空中运行的安全管控方法、无人机和服务器
WO2021052425A1 (zh) 一种无人机系统的飞行授权方法、装置及系统
EP3349085A1 (en) Secure control of unmanned vehicles
CN107479574B (zh) 一种基于移动通信技术的无人机管控方法及装置
EP3846543A1 (en) Method and device for supervising unmanned aerial vehicle
WO2021227871A1 (zh) 一种异常行为无人机的处理方法、网元、系统及存储介质
US20210216083A1 (en) Aircraft control method and apparatus
WO2020147560A1 (zh) 一种移动路线确定方法及相关设备
WO2019183858A1 (zh) 一种无人机身份识别方法及设备
EP3806510B1 (en) Information transmission method, device and system, and storage medium
EP3942542A1 (en) Technique for controlling a uav
US11670177B2 (en) Unmanned aerial vehicle remote identification, command and control
WO2021174464A1 (en) Method and device for allocating identity, and communication device
WO2022013601A1 (en) Provisioning drone flight in 5g networks
US12010189B2 (en) Roadside edge node central management
WO2021179132A1 (en) Access control method and device
US20240214785A1 (en) Method for providing communication sensing service, communication apparatus, and system
EP3777262A1 (en) Mobile information exchange between a network system and one or more external systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850028

Country of ref document: EP

Effective date: 20210305