WO2020034461A1 - 可监测型机械密封装置 - Google Patents

可监测型机械密封装置 Download PDF

Info

Publication number
WO2020034461A1
WO2020034461A1 PCT/CN2018/115322 CN2018115322W WO2020034461A1 WO 2020034461 A1 WO2020034461 A1 WO 2020034461A1 CN 2018115322 W CN2018115322 W CN 2018115322W WO 2020034461 A1 WO2020034461 A1 WO 2020034461A1
Authority
WO
WIPO (PCT)
Prior art keywords
end surface
ring
monitorable
blind holes
mechanical seal
Prior art date
Application number
PCT/CN2018/115322
Other languages
English (en)
French (fr)
Inventor
黄伟峰
刘向锋
尹源
刘莹
李德才
李永健
索双富
王子羲
贾晓红
郭飞
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020034461A1 publication Critical patent/WO2020034461A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3492Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3452Pressing means the pressing force resulting from the action of a spring

Definitions

  • the invention relates to the technical field of mechanical equipment, in particular to a monitorable mechanical seal device.
  • a mechanical seal is a shaft seal device. It is a device for preventing fluid leakage, which is composed of at least a pair of end faces perpendicular to the rotation axis, which are kept in contact with each other under the cooperation of the fluid pressure and the elastic force of the compensation mechanism and the auxiliary seal. It is generally used as a seal for the end of a rotating shaft of a rotary machine.
  • Mechanical seals can use liquid or gas as the sealing medium.
  • the spiral groove dry gas seal has excellent comprehensive performance and is particularly widely used.
  • the sealing performance will decrease during long-term service, which will cause excessive leakage and other faults. Therefore, real-time monitoring is required.
  • sensors can be added to the seal ring and the ring seat to perform more direct monitoring, but the information provided by the sensor is still insufficient to enable the user to infer the seal state in detail and accurately.
  • a monitorable mechanical seal device includes:
  • a static ring is disposed adjacent to the moving ring, and the static ring has a first end surface near the moving ring and a second end surface opposite to the first end surface in the axial direction of the rotating shaft, and the first end surface is opened There are multiple blind holes, and the multiple blind holes are arranged at intervals along the circumferential direction of the first end surface;
  • a first monitor is disposed on the second end surface and is configured to sense an acoustic emission signal generated by at least one of the static ring and the moving ring.
  • the moving ring In the above-mentioned monitorable mechanical seal device, the moving ring generates a layer of gas film between the moving ring and the static ring to prevent leakage when the rotating ring follows the rotating shaft, that is, to block the gas in the high-pressure area from flowing to the low-pressure area.
  • Acoustic emission signals generated by leaks are very important for inferring the status of monitorable mechanical seals, but acoustic emission signals due to leaks are usually weak and have low frequencies, which are easily mixed with noise.
  • the leaked airflow passes through the blind hole on the first end surface, which will resonate at the natural frequency of the gas column in the blind hole, thereby forming a A new easy-to-sense acoustic emission signal is set.
  • the first monitor receives the new acoustic emission signal, and can infer the leakage situation in detail and accurately according to the generated acoustic emission spectrum line.
  • a plurality of the blind holes are evenly divided into at least two groups, and at least two groups of the blind holes are evenly spaced along a circumferential direction of the first end surface.
  • each group of the blind holes includes a plurality of the blind holes of at least two different depths.
  • the first end surface is further provided with a plurality of friction portions, and the plurality of friction portions are evenly arranged along a circumferential direction of the first end surface and are disposed adjacent to the blind hole.
  • the friction portion includes a plurality of coating layers, and the plurality of coating layers are disposed in a stack along the axial direction of the rotating shaft.
  • the second end surface is provided with a receiving groove, and the receiving groove extends along a circumferential direction of the second end surface;
  • the number of the first monitors is at least two, and at least two of the first monitors are evenly spaced in the accommodation groove.
  • the monitorable mechanical seal device further includes a static ring seat and a plurality of second monitors.
  • the static ring and the plurality of second monitors are fixedly disposed on the static ring seat.
  • the second monitoring is used to sense the motion of the static ring.
  • the first monitor is an acoustic emission sensor
  • the second monitor is an eddy current displacement sensor
  • the first end surface is further provided with a plurality of friction grooves.
  • the plurality of friction grooves are grouped into three groups and the friction grooves are adjacent to the blind.
  • the holes are arranged and arranged on the peripheral edge of the first end surface at regular intervals.
  • a monitorable mechanical seal device includes:
  • a static ring is disposed adjacent to the moving ring, and the static ring has a first end surface near the moving ring and a second end surface opposite to the first end surface in the axial direction of the rotating shaft, and the first end surface is opened There are a plurality of blind holes and a plurality of friction grooves.
  • the plurality of blind holes are divided into three groups. The three groups of the blind holes are spaced along the circumferential direction of the first end surface.
  • Each group is divided into a plurality of groups, and the plurality of groups of the friction grooves are evenly spaced at the circumferential edge of the first end surface;
  • the first end surface is also provided with a plurality of friction portions, and the plurality of friction portions are arranged along The first end surface is uniformly arranged in the circumferential direction and is located between the blind hole and the friction groove;
  • the second end surface is also provided with a receiving groove extending along the second end surface in the circumferential direction;
  • Three acoustic emission sensors are evenly spaced in the accommodating slot, and are configured to sense acoustic emission signals generated by at least one of the static ring and the moving ring.
  • FIG. 1 is a cross-sectional view of a monitorable mechanical seal device according to an embodiment of the present invention
  • FIG. 2 is a front view of a first end surface of a static ring in an embodiment of the monitorable mechanical seal device shown in FIG. 1;
  • FIG. 3 is a cross-sectional view at A-A of the static ring shown in FIG. 2;
  • FIG. 4 is a front view of a first end surface of a static ring in another embodiment of the monitorable mechanical seal device shown in FIG. 1;
  • FIG. 5 is a front view of a first end surface of a static ring in another embodiment of the monitorable mechanical seal device shown in FIG. 1;
  • FIG. 6 is a front view of a second end surface of the static ring of the monitorable mechanical seal device shown in FIG. 1;
  • FIG. 7 is a cross-sectional view of a monitorable mechanical seal device according to another embodiment of the present invention.
  • a monitorable mechanical seal device 10 includes a moving ring 12, a static ring 14, and a first monitor 16.
  • the moving ring 12 is sleeved on the rotating shaft 20.
  • the static ring 14 is disposed adjacent to the moving ring 12.
  • the static ring 14 has a first end surface 142 close to the moving ring 12 and a second end surface 144 opposite to the first end surface 142 along the axial direction of the rotating shaft 20.
  • a plurality of blind holes 146 are arranged at intervals along the circumferential direction of the first end surface 142.
  • the first monitor 16 is disposed on the second end surface 144 for sensing an acoustic emission signal generated by at least one of the static ring 14 and the moving ring 12.
  • the above-mentioned monitorable mechanical seal device 10 is formed and maintained by the moving ring 12 between the moving ring 12 and the static ring 14 when the rotating ring 12 rotates with the rotating shaft 20 to prevent leakage.
  • the gas in the high-pressure region 30 is prevented from flowing to the low-pressure region 40.
  • the acoustic emission signal generated by the leakage is very important for inferring the status of the monitorable mechanical seal device 10, but the acoustic emission signal caused by the leakage is usually weak and has a low frequency, which is easy to be mixed with noise and it is not easy to obtain its acoustic emission signal. .
  • the leaked airflow passes through the blind hole 146 of the first end surface 142, and will excite resonance at the natural frequency of the gas column in the blind hole 146.
  • the first monitor 16 receives the new acoustic emission signals, and can infer the leakage situation in detail and accurately according to the generated acoustic emission spectral lines.
  • acoustic emission signals are generated inside the material.
  • Acoustic emission signals are sometimes referred to as "stress wave emissions.”
  • the acoustic emission signal can carry frequency distribution information, and using this information can better understand the working state of the monitorable mechanical seal device 10.
  • the monitorable mechanical seal device 10 further includes a movable ring base 11.
  • the movable ring base 11 is fixedly disposed on one end of the rotary shaft 20, and the movable ring 12 is fixedly mounted on the movable ring base 11 to follow the rotation of the rotary shaft 20.
  • the moving ring 12 has a third end surface (not shown) close to the static ring 14 along the axial direction of the rotating shaft 20, and a plurality of spiral grooves (not shown) are formed on the third end surface to move the moving ring 12 at a high speed.
  • a dynamic pressure effect is generated during rotation, and the rigidity of the gas film between the moving ring 12 and the static ring 14 is improved.
  • a layer of gasket 13 is provided between the moving ring 12 and the connecting surface of the moving ring base 11 in the axial direction of the rotating shaft 20 to reduce noise signals of other components and bearings.
  • the gasket 13 is a nitrile rubber gasket.
  • the monitorable mechanical seal device includes a sleeve 15 which is sleeved on the movable ring seat 11 and remains stationary and does not follow the rotation shaft 20 to rotate. Further, the mechanical seal device further includes a static ring seat 17, which is fixedly connected to the sleeve 15. Furthermore, a gasket 13 is provided at an end of the sleeve 15 near the moving ring 12 to block noise signals.
  • a spring 18 is provided on a side of the static ring seat 17 near the movable ring 12, and an end of the spring 18 remote from the static ring seat 17 is connected to the static ring 14 to provide a movement trend of the static ring 14 toward the movable ring 12. Preload. Since the static ring 14 and the movable ring 12 are both arranged around the rotating shaft 20, the end surfaces of the static ring 14 and the moving ring 12 in the axial direction of the rotating shaft 20 are circular, and further along the first end surface 142, the second end surface 144, and the first end surface. The circumferential direction of the three end faces is an annular arrangement in the axial direction of the rotating shaft 20, that is, an arrangement surrounding the rotating shaft 20.
  • the above-mentioned parts are also briefly described.
  • the amplitude of the acoustic emission signal collected by the first monitor 16 can be used.
  • the first monitor 16 can not only collect signals generated when the airflow passes through the blind hole 146 when leaking, but also can detect other signals generated by friction and vibration.
  • the following situations are used to determine the occurrence of a failure:
  • the first end surface 142 will contact and rub against the third end surface, so that the amplitude of the acoustic emission signal Significant increase, if the amplitude change trend of the acoustic emission signal during the beginning of the rotation is significantly different from the normal change trend, it can be considered that a failure has occurred;
  • the monitorable mechanical seal device 10 runs stably, the static ring 14 It is separated from the moving ring 12 by a gas film, so no contact friction occurs, and the amplitude of the signal is small. If the signal amplitude is large during stable operation, it can be considered that a failure has occurred.
  • the first monitor 16 converts the acquired acoustic emission signal into an electric signal, and then converts the electric signal into a success rate spectrum through a Fourier transform.
  • the power spectrum can also include the frequency of the shaft 20 and the harmonics of each frequency multiple. Considering the shape and power spectrum of the signal comprehensively, different fault modes can be distinguished. It should be noted that the new acoustic emission generated by the leaked air flowing through the blind hole 146 The shape of the signal and the corresponding power spectrum are different from other acoustic emission signals generated by friction or vibration. Therefore, the sealing condition of the monitorable mechanical seal device 10 can also be directly judged by directly observing the new acoustic emission signal.
  • the multiple blind holes 146 are divided into at least two groups, and the at least two groups of blind holes 146 are evenly spaced along the circumferential direction of the first end surface 142.
  • each group of blind holes 146 includes a plurality of blind holes 146 of at least two different depths.
  • each group includes nine blind holes 146, and three depths of blind holes 146 may be provided, divided into three deeper ones.
  • Blind holes 146, three medium-depth blind holes 146, and three shallower blind holes 146 In this way, the complexity of the new acoustic emission signal generated when the leaked airflow flows through the blind hole 146 can be increased, thereby distinguishing it from other acoustic emission signals.
  • the multiple blind holes 146 are divided into three groups, each group includes twenty-one blind holes 146, and the blind holes 146 in each group include three depths.
  • Each of the three blind holes 146 of different depths is a group, and each group includes seven groups. The seven groups are arranged along the circumferential direction of the first end surface 142, which has further distinguished the new acoustic emission signal from other acoustic emission signals. Come.
  • the blind holes 146 may also have the same depth, as long as the leaked airflow can pass through the blind holes 146 to generate new acoustic emission signals that are distinguished from other acoustic emission signals. It should be noted that the acoustic emission signal is generated by the static ring 14 because the blind hole 146 is provided on the static ring 14, and the acoustic emission signal is generated when the leaked airflow passes through the blind hole 146. Acoustic emission signal.
  • the blind hole 146 is disposed on the first end surface 142 of the static ring 14 and is close to the low-pressure region 40. Therefore, the pressure here is generally only slightly higher than the pressure of the low-pressure region 40, ensuring that the frequency of the spectral line of the power spectrum will not be generated. Too much floating, meanwhile, slight frequency floating (including the broadening of the spectral line due to the pressure difference at the blind hole 146) reflects the pressure distribution near the blind hole 146.
  • the first end surface 142 is further provided with a plurality of friction portions 148, the plurality of friction portions 148 are evenly arranged along the circumferential direction of the first end surface 142, and adjacent blind holes 146 are provided.
  • the friction portion 148 will friction with the moving ring 12 before friction occurs between the static ring 14 and the moving ring 12.
  • the friction portion 148 is formed on the first end surface 142 with a material different from that of the static ring 14, and the friction portion 148 When friction with the moving ring 12 occurs, a friction signal different from that between the static ring 14 and the moving ring 12 is generated. When the friction part 148 is worn out, the corresponding friction signal will disappear, so as to confirm that the Solid friction began to occur.
  • the friction portion 148 includes a plurality of coating layers (not shown in the figure), and the plurality of coating layers are stacked in the axial direction of the rotating shaft 20, wherein the materials used for the adjacent coating layers of each two layers are different. Because the frequency bands of the signals generated by friction of different materials are different, you can confirm the degree of wear by observing the corresponding frequency bands. For example, when there are six coatings and three materials are used, the three materials are divided into a first coating, a second coating, and a third coating. The first coating covers the first end surface 142 and the second coating. Covering the first coating, the third coating covering the second coating, and then sequentially covering the first coating, the second coating, and the third coating, respectively.
  • the coating layer may also be a single layer, that is, the plurality of friction portions 148 are composed of the same coating, and the plurality of friction portions 148 are connected end to end to form a ring.
  • the coating is only used to monitor whether the first end surface 142 and the third end surface begin solid friction.
  • the first end surface 142 is further provided with a plurality of friction grooves 141.
  • the plurality of friction grooves 141 are divided into multiple groups by three groups, and the multiple groups of friction grooves 141 are adjacent to each other.
  • the holes 146 are provided and are evenly spaced at the peripheral edge of the first end surface 142.
  • the measured acoustic emission signal will obviously contain a corresponding change component that rotates with the axis; if the friction is mainly caused by the deflection moment of the static ring 14, the sound
  • the transmitted signal should obviously contain a change component related to the circumferential distribution of the groove shape of the spiral groove on the moving ring 12.
  • the plurality of friction portions 148 are located between the blind hole 146 and the friction groove 141.
  • the second end surface 144 is provided with a receiving groove 143.
  • the receiving groove 143 extends along the circumferential direction of the second end surface 144.
  • the first monitor 16 is disposed on the receiving groove 143 to facilitate Positioning and installation of the first monitor 16.
  • the number of the first monitors 16 may be at least two, and the at least two first monitors 16 are evenly arranged in the accommodation slot 143. In this way, signal comparison can be performed to reduce measurement errors.
  • the setting of the first monitor 16 can also provide information about the position of the sound source.
  • the leakage airflow along the first end surface can be judged according to the intensity comparison of the leakage spectrum lines received by the plurality of first monitors 16. 142 circumferential general distribution trend.
  • the monitorable mechanical seal device 10 further includes a plurality of second monitors 19.
  • the plurality of second monitors 19 are disposed on the static ring seat 17, and the plurality of second monitors 19 are along the axis of the rotation shaft 20.
  • the projection onto the second end surface 144 is projected into the accommodation groove 143 at regular intervals and is adjacent to the first monitor 16.
  • a plurality of second monitors 19 are used to sense the motion of the static ring 14.
  • the first monitor 16 is an acoustic emission sensor
  • the second monitor 19 is an eddy current displacement sensor.
  • all elements are related, but some elements are more closely related, and some elements are more alienated.
  • acoustic emission measurement is closely related to temperature measurement.
  • the installation structure of the eddy current displacement sensor is explained to a certain extent: metal pieces (not shown in the figure) are bonded at a plurality of uniformly spaced positions in the receiving groove 143, and at the same time, the static ring seat 17 is along the rotation axis 20 A threaded through hole (not shown in the figure) is provided at a position corresponding to the metal piece in the axial direction, and then the eddy current displacement sensor with an externally threaded structure package is fixed on the static ring seat 17.
  • the metal piece is installed in the accommodation groove 143, and then the eddy current displacement sensor is arranged on the static ring base 17 along the axial direction of the rotating shaft 20 so that the electricity
  • the probe of the eddy current displacement sensor is directly facing the metal sheet to measure the displacement of the metal sheet, and then the motion of the static ring 14 can be measured.
  • the monitorable mechanical seal device provided by the present invention has at least the following advantages:
  • a plurality of blind holes are provided on the first end surface to generate a new acoustic emission signal when the airflow leaking when the sealing device leaks flows through the blind hole, and the acoustic emission sensor can then use the new acoustic emission signal received to detail And accurately infer the state of the seal;
  • the blind holes are set to a plurality of different depths, and in combination with multiple acoustic emission sensors, the approximate distribution trend of the leakage airflow in the circumferential direction of the first end surface can be judged by comparing the intensity of the leakage spectrum lines;
  • a layer of coating is provided on the first end surface, and it can be inferred whether the first end surface and the third end surface begin to have fixed friction by sensing the corresponding signal generated by the friction between the coating and the third end surface;
  • a plurality of coatings of different materials are provided on the first end surface, and the adjacent two layers of coating materials are different.
  • the corresponding signal when the coating is rubbed can be used to further estimate the degree of wear in detail and accurately;

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Mechanical Sealing (AREA)

Abstract

公开了一种可监测型机械密封装置(10),包括动环(12)、静环(14)及第一监测器(16)。动环(12)套设于转轴(20);静环(14)相邻动环(12)设置,静环(14)沿转轴(20)的轴向方向具有靠近动环(12)的第一端面(142)及与第一端面(142)相对的第二端面(144),第一端面(142)开设有多个盲孔(146),多个盲孔(146)沿第一端面(142)的周向间隔布设;第一监测器(16)设置于第二端面(144),用于感测静环(14)和动环(12)中的至少一个产生的声发射信号。通过设置可监测型机械密封装置(10),当密封装置出现状况,发生泄漏时,泄露的气流经过第一端面(142)的盲孔(146),会在盲孔(146)内气体柱的固有频率上激发共鸣,从而形成一组新的易于感测的声发射信号,第一监测器(16)接收到新的声发射信号,可根据生成的声发射谱线详细且准确地推知泄漏情况。

Description

可监测型机械密封装置
相关申请
本申请要求2018年08月16日申请的,申请号为201810934692.5,名称为“可监测型机械密封装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及机械设备技术领域,特别是涉及一种可监测型机械密封装置。
背景技术
机械密封是一种轴封装置,是一种由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置,其一般用作旋转机械设备的旋转轴的端部的密封。
机械密封可采用液体或气体作为密封介质,其中螺旋槽干气密封综合性能优异,应用尤为广泛,长期服役过程中密封性能会降低,进而导致泄漏量过大等故障,因此需要进行实时监测。现有技术已可以通过在密封环及环座等位置增设传感器以进行更直接的监测,但其提供的信息仍不足以使用户详细且准确地推知密封的状态。
发明内容
基于此,有必要针对现有的螺旋槽气体密封的装置中的传感器的设置无法详细且准确地推知密封的状态的问题,提供一种能够详细且准确地实时获取密封的状态的可监测型机械密封装置。
一种可监测型机械密封装置,包括:
动环,套设于转轴;
静环,相邻所述动环设置,所述静环沿转轴的轴向方向具有靠近所述动环的第一端面及与所述第一端面相对的第二端面,所述第一端面开设有多个盲孔,多个所述盲孔沿所述第一端面的周向间隔布设;
第一监测器,设置于所述第二端面,用于感测所述静环和所述动环中的至少一个产生的声发射信号。
上述的可监测型机械密封装置,是由动环在跟随转轴转动时在动环与静环之间产生一 层气体膜以防止发生泄漏的,即阻隔高压区的气体流向低压区。泄漏产生的声发射信号对于可监测型机械密封装置的状态的推知非常重要,但是由于泄漏带来的声发射信号通常较为微弱,且频率较低,易与噪声混杂。而通过设置上述的可监测型机械密封装置,当密封装置出现状况,发生泄漏时,泄露的气流经过第一端面的盲孔,会在盲孔内气体柱的固有频率上激发共鸣,从而形成一组新的易与感测的声发射信号,第一监测器接收到新的声发射信号,可根据生成的声发射谱线详细且准确地推知泄漏情况。
在其中一个实施例中,多个所述盲孔均分至少两组,至少两组所述盲孔沿所述第一端面的周向均匀间隔布设。
在其中一个实施例中,每组所述盲孔包括至少两种不同深度的多个所述盲孔。
在其中一个实施例中,所述第一端面还设有多个摩擦部,多个所述摩擦部沿所述第一端面的周向均匀布设,且相邻所述盲孔设置。
在其中一个实施例中,所述摩擦部包括多个涂层,多个所述涂层沿所述转轴的轴向方向层叠设置。
在其中一个实施例中,所述第二端面开设有容置槽,所述容置槽沿所述第二端面的周向延伸;
所述第一监测器的数量至少为两个,至少两个所述第一监测器均匀间隔布设于所述容置槽。
在其中一个实施例中,所述可监测型机械密封装置还包括静环座及多个第二监测器,所述静环及多个所述第二监测器固定设置于静环座上,多个所述第二监测用于感测所述静环的运动。
在其中一个实施例中,所述第一监测器为声发射传感器,所述第二监测器为电涡流位移传感器。
在其中一个实施例中,所述第一端面还开设有多个摩擦凹槽,多个所述摩擦凹槽三个为一组分为多组,多组所述摩擦凹槽相邻所述盲孔设置,且均匀间隔布设于所述第一端面的周向边缘。
一种可监测型机械密封装置,包括:
动环,套设于转轴;
静环,相邻所述动环设置,所述静环沿转轴的轴向方向具有靠近所述动环的第一端面及与所述第一端面相对的第二端面,所述第一端面开设有多个盲孔及多个摩擦凹槽,多个所述盲孔均分为三组,三组所述盲孔沿所述第一端面的周向间隔布设,多个所述摩擦凹槽三个一组分为多组,多组所述摩擦凹槽均匀间隔布设于所述第一端面的周向边缘;所述第 一端面还设有多个摩擦部,多个所述摩擦部沿所述第一端面的周向均匀布设,且位于所述盲孔与所述摩擦凹槽之间;所述第二端面还开设有沿所述第二端面周向延伸的容置槽;
三个声发射传感器,均匀间隔布设于所述容置槽,用于感测所述静环和所述动环中的至少一个产生的声发射信号。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本发明一实施例提供的可监测型机械密封装置的剖视图;
图2为图1所示的可监测型机械密封装置一实施方式中的静环的第一端面的正视图;
图3为图2所示的静环的A-A处的剖视图;
图4为图1所示的可监测型机械密封装置的另一实施方式中的静环的第一端面的正视图;
图5为图1所示的可监测型机械密封装置的另一实施方式中的静环的第一端面的正视图;
图6为图1所示的可监测型机械密封装置的静环的第二端面的正视图;
图7为本发明另一实施例提供的可监测型机械密封装置的剖视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1及图2所示,本发明一实施例提供的可监测型机械密封装置10,包括动环12、静环14及第一监测器16。
动环12套设于转轴20。静环14相邻动环12设置,静环14沿转轴20的轴向方向具有靠近动环12的第一端面142及与第一端面142相对的第二端面144,第一端面142开设有多个盲孔146,多个盲孔146沿第一端面142的周向间隔布设。第一监测器16设置于第二端面144,用于感测静环14和动环12中的至少一个产生的声发射信号。
上述的可监测型机械密封装置10,是由动环12在跟随转轴20转动时在动环12与静环14之间形成并维持一层仅有几微米厚的薄气体膜以阻碍泄漏,即阻碍高压区30的气体流向低压区40。泄漏产生的声发射信号对于可监测型机械密封装置10的状态的推知非常重要,但是由于泄漏带来的声发射信号通常较为微弱,且频率较低,易与噪声混杂,不易获取其声发射信号。而通过设置上述的可监测型机械密封装置10,当密封装置出现状况,发生泄漏时,泄露的气流经过第一端面142的盲孔146,会在盲孔146内气体柱的固有频率上激发共鸣,从而形成一组新的易与感测的声发射信号,第一监测器16接收到新的声发射信号,可根据生成的声发射谱线详细且准确地推知泄漏情况。
需要进行解释的是,材料内部产生微裂纹或微裂纹扩展时,会以弹性波(即应力波)的形式释放能量,即产生声发射信号。有时声发射信号也被称为“应力波发射”。声发射信号能够携带频率分布信息,利用这些信息可以更深入的了解可监测型机械密封装置10的工作状态。
在一些实施例中,可监测型机械密封装置10还包括动环座11,动环座11固定设置于转轴20的一端,动环12固定设置于动环座11,以跟随转轴20的转动而转动。进一步地,动环12沿转轴20的轴向方向具有靠近静环14的第三端面(图未示),第三端面上开设有多个螺旋槽(图未示),以在动环12高速旋转时产生动压效应,提高动环12与静环14之间的气体膜的刚度。更进一步地,动环12与动环座11沿转轴20的轴向方向的连接面之间设有一层垫片13,以减少其他零部件及轴承的噪声信号。具体地,垫片13为丁腈橡胶垫片。
在一些实施例中,可监测型机械密封装置包括套筒15,套筒15套设于动环座11,且保持静止,不跟随转轴20转动。进一步地,机械密封装置还包括静环座17,静环座17固定连接于套筒15。更进一步地,套筒15靠近动环12的一端设有阻隔噪音信号的垫片13。
在一些实施例中,静环座17靠近动环12的一侧设有弹簧18,弹簧18的远离静环座17的一端连接于静环14,以提供静环14具有朝向动环12的移动趋势的预紧力。由于静环14及动环12均环绕转轴20设置,因此静环14及动环12在沿转轴20轴向方向的端面都为圆环形,进而沿第一端面142、第二端面144及第三端面的周向的设置为在沿转轴20轴向方向呈环状的设置,即环绕转轴20的设置。
关于可监测型机械密封装置10的工作状态,结合上述部分部件进行说明:当转轴20静止时,弹簧18抵压静环14,使得静环14的第一端面142与动环12的第三端面相互接触。当转轴20开始转动时,转轴20带动动环座11及动环12旋转,而静环14及静环座17保持静止。当动环12的转动达到一定的速率后,在螺旋槽的作用下,第一端面142与第三端面会逐渐分离并形成一层稳定的气体膜,以防止高压区30的气体流入低压区40,起到密封效果。
而关于可监测型机械密封装置10的工作状态的检测,同样综合上述部分部件进行简单说明:在可监测型机械密封装置10运转时,可以通过第一监测器16采集到的声发射信号的幅值在旋转周期时间尺度上的变化趋势来判断故障的类型。第一监测器16除了可以采集泄漏时气流经过盲孔146时产生的信号,还可以监测到其他摩擦及振动产生的信号。例如以下几种判断故障发生的情况:在转轴20开始转动或者停止转动的过程中,当转速低于一定的值时,第一端面142会与第三端面接触摩擦,从而使得声发射信号幅值显著上升,若开始转动的过程中声发射信号的幅值变化趋势与正常的变化趋势有很大的差异,则可以认为发生了故障;当可监测型机械密封装置10稳定运转时,静环14与动环12之间由气体膜隔开,因此不会发生接触摩擦,信号的幅值很小,而若稳定运转时信号幅值较大,即可认为发生了故障。
对于上述的检测说明,进一步地,第一监测器16将获取的声发射信号转换成电信号,然后通过傅里叶变换将电信号转换成功率谱。功率谱还可以包括转轴20的频率和各倍频谐波,综合考虑信号的形态和功率谱可以区分不同的故障形式需要说明的是,由泄漏气流流过盲孔146时产生的新的声发射信号的形态及对应的功率谱与其他的摩擦或振动产生的声发射信号是存在区别的,因此也可以通过直接观察到新的声发射信号而直接判断可监测型机械密封装置10的密封状况。
请参阅图3,在一些实施例中,多个盲孔146均分为至少两组,至少两组盲孔146沿第一端面142的周向均匀间隔布设。进一步地,每组盲孔146包括至少两种不同深度的多个盲孔146,举例进行说明,每组包括九个盲孔146,可设置三种深度的盲孔146,分为三个较深的盲孔146,三个中等深度的盲孔146及三个较浅的盲孔146。如此,可提高泄漏气流流过盲孔146时产生的新的声发射信号的复杂程度从而与其他声发射信号区分开来。具体到图2及图3所示的实施例中,多个盲孔146均分为三组,每组内包括二十一个盲孔146,且每组内的盲孔146包括三种深度,每三个不同深度的盲孔146为一小组,则每组内包括七个小组,七个小组沿第一端面142的周向排列,已进一步使得新的声发射信号与其他声发射信号区分开来。
在另一些实施例中,盲孔146也可以为同一深度,只要能使得泄漏的气流在经过盲孔146时能产生于其他声发射信号区分开来的新的声发射信号即可。对于该声发射信号需要说明的是,由于盲孔146是设置于静环14上的,而该声发射信号是泄露的气流经过盲孔146时产生的,因此,该声发射信号是静环14产生的声发射信号。
此外,盲孔146设置在静环14的第一端面142上,靠近低压区40,因此此处的压强一般仅略高于低压区40的压强,保证了功率谱的谱线的频率不会产生太大的浮动,同时,轻微的频率浮动(包括由于盲孔146处压强差别导致的谱线变宽)反映了压强在盲孔146附近的分布情况。
在一些实施例中,第一端面142还设有多个摩擦部148,多个摩擦部148沿第一端面142周向均匀布设,且相邻盲孔146设置。摩擦部148会在静环14与动环12之间发生摩擦前与动环12摩擦,而通过将摩擦部148采用与静环14的制作材料不同的材料形成于第一端面142,摩擦部148与动环12摩擦时会产生不同于静环14与动环12之间的摩擦信号,当摩擦部148磨损完,则对应的摩擦信号会消失,如此以确认静环14与动环12之间将要开始产生固体摩擦。
进一步地,摩擦部148包括多个涂层(图未标),多个涂层沿转轴20的轴向方向层叠设置,其中,每两层的相邻的涂层所使用的材料是不同的。由于不同材料的摩擦时产生的信号对应的频段是不一样的,因此可通过观察对应的频段以确认磨损程度。例如当有六个涂层,且使用三种材料时,三种材料分为第一涂层、第二涂层及第三涂层,第一涂层覆盖于第一端面142,第二涂层覆盖于第一涂层,第三涂层覆盖于第二涂层,然后依次在分别覆盖第一涂层、第二涂层及第三涂层。
请参阅图4,在另一些实施例中,涂层也可以为一层,即多个摩擦部148是由同一涂层构成,且多个摩擦部148首尾相连以围设形成一圆环,如此,涂层只是用于监测第一端面142与第三端面是否开始固体摩擦。
请参阅图5,在一些实施例中,第一端面142还开设有多个摩擦凹槽141,多个摩擦凹槽141三个为一组分为多组,多组摩擦凹槽141相邻盲孔146设置,且均匀间隔布设于第一端面142的周向边缘。如此,当动环12有较大的偏摆而导致摩擦时,测得的声发射信号会明显含有相应的随轴转动的变化成分;若是摩擦主要由静环14受偏斜力矩导致,则声发射信号中应明显含有与动环12上的螺旋槽的槽型的周向分布相关的变化成分。具体地,多个摩擦部148位于盲孔146与摩擦凹槽141之间。
请参阅图6,在一些实施例中,第二端面144开设有容置槽143,容置槽143沿第二端面144的周向延伸,第一监测器16设置于容置槽143,以便于第一监测器16的定位及 安装。需要说明的是,第一监测器16的数量可以是至少两个,至少两个第一监测器16均匀间隔布设于容置槽143内,如此,可进行信号对照,降低测量误差,且多个第一监测器16的设置还可以提供声源位置的相关信息。同时,配合如图2及图3实施例中设置多个不同深度的盲孔146依次排布,可根据多个第一监测器16接收到的泄漏谱线的强度对比判断泄漏气流沿第一端面142周向的大致分布趋势。
请参阅图7,进一步地,可监测型机械密封装置10还包括多个第二监测器19,多个第二监测器19设置于静环座17,且多个第二监测器19沿转轴20轴向在第二端面144的投影均匀间隔投射在容置槽143内,且与第一监测器16相邻,多个第二监测器19用于感测静环14的运动。具体地,第一监测器16为声发射传感器,第二监测器19为电涡流位移传感器。在一个系统中,所有要素都是有关联的,只是有些要素关联密切一点,有些要素关联疏远一点,如声发射测量与温度测量的关联比较密切,温度测量很大一部分是源于摩擦,而声发射功率的增加与温度的上升都会反映摩擦总体加重,因此信息会有比较大的重合。但是声发射测量与位移测量的关联比较疏远,所以可采用电涡流位移传感器对静环14的运动进行监测,而设置多个则可以直接推断静环14及动环12的振动与偏摆状况。
结合图7对电涡流位移传感器的安装结构进行一定的说明:在容置槽143的多个均匀间隔的位置上粘接金属片(图未标),同时在静环座17的沿转轴20的轴向方向与金属片对应的位置开设螺纹通孔(图未标),然后将带有外螺纹结构封装的电涡流位移传感器固定在静环座17上。
结合上述安装结构对电涡流位移传感器的工作原理进行简单说明:将金属片安装于容置槽143内,然后将电涡流位移传感器沿转轴20的轴向方向设置于静环座17上,以使电涡流位移传感器的探头正好对着金属片,以测量金属片的位移状况,进而可测得静环14的运动。
与现有技术相比,本发明提供的可监测型机械密封装置至少具有以下优点:
1)在第一端面设有多个盲孔,以在密封装置发生泄漏时泄漏的气流流过盲孔时产生新的声发射信号,进而声发射传感器可通过接收到的新的声发射信号详细且准确地推知密封的状态;
2)盲孔设为多个不同深度的,且配合多个声发射传感器可通过泄漏谱线的强度对比判断泄漏气流沿第一端面周向的大致分布趋势;
3)、在第一端面设置一层涂层,可通过感测涂层与第三端面摩擦产生的对应的信号从而推知第一端面与第三端面是否开始固定摩擦;
4)在第一端面设置多层不同材料的涂层,且相邻两层涂层材料不同,可通过感测涂层摩擦时对应的信号进而可详细且准确的推知磨损程度;
5)增设多个电涡流位移传感器,可与声发射传感器相互配合,进而可更加详细的推知密封装置的状态。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种可监测型机械密封装置,其特征在于,包括:
    动环,套设于转轴;
    静环,相邻所述动环设置,所述静环沿转轴的轴向方向具有靠近所述动环的第一端面及与所述第一端面相对的第二端面,所述第一端面开设有多个盲孔,多个所述盲孔沿所述第一端面的周向间隔布设;
    第一监测器,设置于所述第二端面,用于感测所述静环和所述动环中的至少一个产生的声发射信号。
  2. 根据权利要求1所述的可监测型机械密封装置,其特征在于,多个所述盲孔均分至少两组,至少两组所述盲孔沿所述第一端面的周向均匀间隔布设。
  3. 根据权利要求2所述的可监测型机械密封装置,其特征在于,每组所述盲孔包括至少两种不同深度的多个所述盲孔。
  4. 根据权利要求1所述的可监测型机械密封装置,其特征在于,所述第一端面还设有多个摩擦部,多个所述摩擦部沿所述第一端面的周向均匀布设,且相邻所述盲孔设置。
  5. 根据权利要求4所述的可监测型机械密封装置,其特征在于,所述摩擦部包括多个涂层,多个所述涂层沿所述转轴的轴向方向层叠设置。
  6. 根据权利要求1所述的可监测型机械密封装置,其特征在于,所述第二端面开设有容置槽,所述容置槽沿所述第二端面的周向延伸;
    所述第一监测器的数量至少为两个,至少两个所述第一监测器均匀间隔布设于所述容置槽。
  7. 根据权利要求6所述的可监测型机械密封装置,其特征在于,所述可监测型机械密封装置还包括静环座及多个第二监测器,所述静环及多个所述第二监测器固定设置于静环座上,多个所述第二监测用于感测所述静环的运动。
  8. 根据权利要求7所述的可监测型机械密封装置,其特征在于,所述第一监测器为声发射传感器,所述第二监测器为电涡流位移传感器。
  9. 根据权利要求1所述的可监测型机械密封装置,其特征在于,所述第一端面还开设有多个摩擦凹槽,多个所述摩擦凹槽三个为一组分为多组,多组所述摩擦凹槽相邻所述盲孔设置,且均匀间隔布设于所述第一端面的周向边缘。
  10. 一种可监测型机械密封装置,其特征在于,包括:
    动环,套设于转轴;
    静环,相邻所述动环设置,所述静环沿转轴的轴向方向具有靠近所述动环的第一端面及与所述第一端面相对的第二端面,所述第一端面开设有多个盲孔及多个摩擦凹槽,多个所述盲孔均分为三组,三组所述盲孔沿所述第一端面的周向间隔布设,多个所述摩擦凹槽三个一组分为多组,多组所述摩擦凹槽均匀间隔布设于所述第一端面的周向边缘;所述第一端面还设有多个摩擦部,多个所述摩擦部沿所述第一端面的周向均匀布设,且位于所述盲孔与所述摩擦凹槽之间;所述第二端面还开设有沿所述第二端面周向延伸的容置槽;
    三个声发射传感器,均匀间隔布设于所述容置槽,用于感测所述静环和所述动环中的至少一个产生的声发射信号。
PCT/CN2018/115322 2018-08-16 2018-11-14 可监测型机械密封装置 WO2020034461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810934692.5 2018-08-16
CN201810934692.5A CN108869750A (zh) 2018-08-16 2018-08-16 可监测型机械密封装置

Publications (1)

Publication Number Publication Date
WO2020034461A1 true WO2020034461A1 (zh) 2020-02-20

Family

ID=64318090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115322 WO2020034461A1 (zh) 2018-08-16 2018-11-14 可监测型机械密封装置

Country Status (2)

Country Link
CN (1) CN108869750A (zh)
WO (1) WO2020034461A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210108723A1 (en) * 2018-03-06 2021-04-15 Fnv Ip B.V. Position monitoring of a gasket between tunnel segments
US11060999B2 (en) 2016-02-23 2021-07-13 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
US11231396B2 (en) 2018-10-08 2022-01-25 John Crane Uk Limited Mechanical seal with sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702906B (zh) * 2019-01-28 2024-02-02 江苏徐工工程机械研究院有限公司 一种切割机驱动单元双监测腔
CN110159764B (zh) * 2019-05-31 2024-01-23 清华大学 智能型机械密封系统及其实现方法
CN111256920B (zh) * 2020-01-17 2022-03-15 中密控股股份有限公司 干气密封智能监测系统
CN111503249B (zh) * 2020-06-29 2020-09-18 江苏国茂减速机股份有限公司 一种智能监测型减速机双密封结构
CN112664654A (zh) * 2020-12-30 2021-04-16 清华大学 可监测磨损量的机械密封装置
CN113091590A (zh) * 2021-04-19 2021-07-09 清华大学 一种干气密封气膜厚度测量装置和方法
CN115754010B (zh) * 2022-11-10 2024-04-09 四川科力特硬质合金股份有限公司 机械密封环密封端面质量控制方法
CN116989937B (zh) * 2023-09-25 2023-12-22 苏州俊煌机械科技有限公司 一种机械密封件的检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256726B2 (ja) * 1993-02-19 2002-02-12 株式会社日立製作所 モニタリング付メカニカルシールを備えた容器
US7405818B2 (en) * 1998-06-03 2008-07-29 Ralph Heinzen Self monitoring static seal with optical sensor
CN207297889U (zh) * 2017-09-30 2018-05-01 四川大禹机械密封件制造有限公司 运行数据采集机械密封装置
CN108343747A (zh) * 2018-01-24 2018-07-31 中国石油大学(华东) 一种可监控式轴端密封系统及控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689573A (en) * 1992-01-07 1997-11-18 Boston Acoustics, Inc. Frequency-dependent amplitude modification devices for acoustic sources
JPH07113471A (ja) * 1993-10-15 1995-05-02 Mitsubishi Heavy Ind Ltd シール装置
US7270890B2 (en) * 2002-09-23 2007-09-18 Siemens Power Generation, Inc. Wear monitoring system with embedded conductors
CN101057093B (zh) * 2004-11-09 2013-02-13 伊格尔工业股份有限公司 机械密封装置
JP5931708B2 (ja) * 2012-12-04 2016-06-08 三菱重工業株式会社 シール装置及び回転機械
US10132412B2 (en) * 2016-08-05 2018-11-20 Exxonmobil Upstream Research Company Device and method for controlling rotating equipment seal without buffer support equipment
CN206845897U (zh) * 2017-03-13 2018-01-05 清华大学 机械密封装置
CN208703128U (zh) * 2018-08-16 2019-04-05 清华大学 可监测型机械密封装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256726B2 (ja) * 1993-02-19 2002-02-12 株式会社日立製作所 モニタリング付メカニカルシールを備えた容器
US7405818B2 (en) * 1998-06-03 2008-07-29 Ralph Heinzen Self monitoring static seal with optical sensor
CN207297889U (zh) * 2017-09-30 2018-05-01 四川大禹机械密封件制造有限公司 运行数据采集机械密封装置
CN108343747A (zh) * 2018-01-24 2018-07-31 中国石油大学(华东) 一种可监控式轴端密封系统及控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060999B2 (en) 2016-02-23 2021-07-13 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
US11125726B2 (en) 2016-02-23 2021-09-21 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
US11719670B2 (en) 2016-02-23 2023-08-08 John Crane Uk Ltd. Systems and methods for predictive diagnostics for mechanical systems
US20210108723A1 (en) * 2018-03-06 2021-04-15 Fnv Ip B.V. Position monitoring of a gasket between tunnel segments
US11231396B2 (en) 2018-10-08 2022-01-25 John Crane Uk Limited Mechanical seal with sensor
US11280761B2 (en) 2018-10-08 2022-03-22 John Crane Uk Limited Mechanical seal with sensor
US11815491B2 (en) 2018-10-08 2023-11-14 John Crane Uk Limited Mechanical seal with sensor

Also Published As

Publication number Publication date
CN108869750A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2020034461A1 (zh) 可监测型机械密封装置
JP7077077B2 (ja) ドライガスシール
JP4737640B2 (ja) トランスデューサアセンブリ
JP7195329B2 (ja) 流体案内通路および/または空間を封止するための機械的シール、ならびに機械的シールの摩耗を監視するための方法
CN102928177B (zh) 矩形密封圈测试试验台
JP7257970B2 (ja) 軸受監視/解析システム
EP2510264B1 (en) Sensorized seal unit
JP6811242B2 (ja) スライドリングシールの監視
JP2007187310A (ja) 環状シールのための固定治具及び検査方法
US11965600B2 (en) Mechanical sealing arrangement and a sensor ring for monitoring the operation of a mechanical seal arrangement
US10704409B2 (en) Systems and methods to detect a fluid induced instability condition in a turbomachine
WO2022143029A1 (zh) 可监测磨损量的机械密封装置
CN108571590B (zh) 机械密封装置
JP2018054021A (ja) 液体漏れ検知ユニット
CN206845897U (zh) 机械密封装置
CN108571589B (zh) 机械密封装置
Ghazali et al. Piping vibration due to pressure pulsations
CN209196113U (zh) 机械密封装置
Daraz et al. Detection and diagnosis of mechanical seal faults in centrifugal pumps based on acoustic measurement
JPS60125512A (ja) 液圧作動近接プローブ
CN216045442U (zh) 可监测磨损量的机械密封装置
JPH07332502A (ja) メカニカルシール診断装置
WO2017149921A1 (ja) 振動計測装置、振動計測システム及び振動計測方法
CN106482779B (zh) 一种使用传感器采集管道介质参数的法兰集成装置
JP2004068965A (ja) 接触型シール装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930030

Country of ref document: EP

Kind code of ref document: A1