WO2020034272A1 - 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法 - Google Patents

一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法 Download PDF

Info

Publication number
WO2020034272A1
WO2020034272A1 PCT/CN2018/104160 CN2018104160W WO2020034272A1 WO 2020034272 A1 WO2020034272 A1 WO 2020034272A1 CN 2018104160 W CN2018104160 W CN 2018104160W WO 2020034272 A1 WO2020034272 A1 WO 2020034272A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
photovoltaic module
mirror
sided photovoltaic
reflector
Prior art date
Application number
PCT/CN2018/104160
Other languages
English (en)
French (fr)
Inventor
黄忠
Original Assignee
四川钟顺太阳能开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川钟顺太阳能开发有限公司 filed Critical 四川钟顺太阳能开发有限公司
Publication of WO2020034272A1 publication Critical patent/WO2020034272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention belongs to the technical field of solar energy utilization, and particularly relates to a double-sided photovoltaic module system based on a dual-axis solar tracker and a method for increasing the power generation of the system.
  • this type of photovoltaic modules can generate electricity as often as traditional single-sided photovoltaic modules, and its back side can receive both reflected and scattered light and generate electricity.
  • it is still used as a traditional single-sided photovoltaic module.
  • the method is to receive the direct light on the front side and the reflected and scattered light on the back side.
  • This traditional method leads to a very low utilization rate of the back side of the double-sided photovoltaic module.
  • the increase in power generation is only about 10%.
  • the use of photovoltaic modules does not make full use of the power generation capacity of its front and back areas, resulting in the power generation of double-sided photovoltaic modules has not been effectively improved.
  • the purpose of the present invention is to provide a double-axis solar tracker-based double-sided photovoltaic module system capable of effectively increasing the utilization rate of double-sided photovoltaic modules, thereby greatly increasing its power generation, and increasing the power generation of the system. Volume method.
  • a double-sided photovoltaic module system based on a dual-axis solar tracker includes a double-sided photovoltaic module, which is characterized in that: the double-sided photovoltaic module is connected to a dual-axis solar tracker, and A front reflector is provided above both sides of the double-sided photovoltaic module, and an inner edge of the front reflector coincides with an outer edge of the double-sided photovoltaic module, and the front reflector is used to reflect sunlight to the double-sided photovoltaic module.
  • rear side reflectors are respectively provided on both sides below the double-sided photovoltaic module, and the rear side reflector is used to reflect sunlight to the back side of the double-sided photovoltaic module.
  • the inside edges of the are on the same vertical plane.
  • the specific installation position of the front mirror with respect to the double-sided photovoltaic module is:
  • the specific installation position of the back reflector with respect to the double-sided photovoltaic module is:
  • h 21 tg ⁇ ⁇ (b 1 + b 2 )
  • is the installation angle of the back mirror, that is, the acute angle between the back mirror and the horizontal plane; ⁇ is the angle between the double-sided photovoltaic module and the inner edge of the back mirror; B 2 is the width of the back mirror; b 2 is the projection width of the back mirror on the horizontal plane; h 21 is the vertical height between the upper end of the back mirror and the double-sided photovoltaic module; h 22 is the vertical height between the upper end of the back mirror and the lower end of the back mirror ; H 2 is the installation height of the back mirror, that is, the vertical height between the lower end of the back mirror and the double-sided photovoltaic module.
  • a method for increasing power generation in a double-sided photovoltaic module system based on a dual-axis solar tracker is characterized in that the double-sided photovoltaic module is connected to the dual-axis solar tracker and is arranged above both sides of the double-sided photovoltaic module There is a front reflector that illuminates all the sun rays reflected by its mirror surface in the front area of the double-sided photovoltaic module, and a back reflector is provided on each side below the double-sided photovoltaic module, and the back reflection The mirror reflects all the solar rays reflected by its mirror surface on the back area of the double-sided photovoltaic module.
  • the front and back sides of the double-sided photovoltaic module are added.
  • the luminous flux received by the front of the double-sided photovoltaic module is Among them, B is the width of the double-sided photovoltaic module, and b 1 is the projection width of the front reflector on the horizontal plane; the light flux received by the back of the double-sided photovoltaic module is, Among them, B is the width of the double-sided photovoltaic module, and b 2 is the projection width of the back reflector on the horizontal plane.
  • the method for increasing power generation in a double-sided photovoltaic module system based on a dual-axis solar tracker utilizes the front and back sides of a double-sided photovoltaic module to increase the luminous flux of light received by the module.
  • the specific method is:
  • the projection width b 1 of the front mirror on the horizontal plane and the projection width b 2 of the back mirror on the horizontal plane are determined according to the set pseudo increase and the width B of the double-sided photovoltaic module, and the front mirror and
  • the installation position, installation angle and reflector width of the rear reflector are as follows:
  • E 90 ° - ⁇ F
  • ⁇ B the vertical incident light and front reflection from the outer edge of the front mirror
  • ⁇ C is the angle between the reflected light on the outside edge of the front mirror and the front mirror
  • ⁇ D is the angle between the acute angle of the front mirror and the vertical plane
  • ⁇ F is the acute angle between the upper end of the front mirror and the horizontal plane
  • is the installation angle of the front mirror, that is, the acute angle between the lower end of the front mirror and the horizontal plane
  • ⁇ E is the acute angle between the lower end of the front mirror and the vertical plane
  • ⁇ A ⁇ ;
  • ⁇ A is the angle between O 1 O 3 and the horizontal plane
  • is the angle between the double-sided photovoltaic module and the outer edge of the front reflector
  • h 12 is the vertical distance between O 3 and the upper end of the front reflector
  • B 1 is the projection width of the front reflector on the horizontal plane
  • B is the width of the double-sided photovoltaic module
  • H 1 tg ⁇ ⁇ (b 1 + B), where H 1 is the installation height of the front reflector;
  • ⁇ a, where ⁇ is the angle between the double-sided photovoltaic module and the inner edge of the back reflector; ⁇ a is the angle between the double-sided photovoltaic module and the outer edge of the back reflector;
  • h 21 is the vertical height between the upper end of the back mirror and the double-sided photovoltaic module
  • h 22 is the vertical height between the upper end of the back mirror and the lower end of the back mirror
  • b 1 is the front mirror on the horizontal plane Projection width of b
  • b 2 is the projection width of the back reflector on the horizontal plane
  • B is the width of the double-sided photovoltaic module
  • Equation 1 can be reduced to:
  • the width of the back reflector B 2 b 2 / cos ⁇ ;
  • the mounting height of the rear reflector H 2 h 21 + h 22 ;
  • the installation position of the front and back mirrors relative to the double-sided photovoltaic module can make full use of the front and back of the double-sided photovoltaic module, increase the light flux of the double-sided photovoltaic module to receive light, and increase the power generation of the double-sided photovoltaic module.
  • the present invention by adding reflectors on the front and back of a double-sided photovoltaic module, and simultaneously determining the size of the reflector and its installation position with respect to the double-sided photovoltaic module, so that the solar light shining on the reflector can be reflected to
  • the area of the front and back of the double-sided photovoltaic module greatly increases the light flux received by the front and back of the double-sided photovoltaic module, thereby achieving the purpose of making full use of the front and back of the double-sided photovoltaic module to increase the power generation of the double-sided photovoltaic module.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram for determining a mirror mounting position in the present invention.
  • 1 is a double-sided photovoltaic module
  • 2 is a front reflector
  • 3 is a back reflector.
  • a double-sided photovoltaic module system based on a dual-axis solar tracker includes a double-sided photovoltaic module 1.
  • the system uses a dual-axis solar tracker, that is, the double-sided photovoltaic module 1 and a dual-axis A solar tracker is connected, and a front reflecting mirror 2 is provided above both sides of the double-sided photovoltaic module 1.
  • the inner edge of the front reflecting mirror 2 coincides with the outer edge of the double-sided photovoltaic module 1.
  • the front reflecting mirror 2 is used for In order to reflect sunlight to the front side of the double-sided photovoltaic module 1, a back reflector 3 is provided on both sides below the double-sided photovoltaic module 1, and the back reflector 3 is used to reflect the sunlight to the double-sided photovoltaic module 1. 1, the outer edge of the front mirror 2 and the inner edge of the back mirror 3 are on the same vertical plane.
  • the specific installation position of the front reflector 2 relative to the double-sided photovoltaic module 1 is:
  • the specific installation position of the backside reflector 3 relative to the double-sided photovoltaic module 1 is:
  • h 21 tg ⁇ ⁇ (b 1 + b 2 )
  • is the installation angle of the back mirror, that is, the acute angle between the back mirror and the horizontal plane; ⁇ is the angle between the double-sided photovoltaic module and the inner edge of the back mirror; B 2 is the width of the back mirror; b 2 is the projection width of the back mirror on the horizontal plane; h 21 is the vertical height between the upper end of the back mirror and the double-sided photovoltaic module; h 22 is the vertical height between the upper end of the back mirror and the lower end of the back mirror ; H 2 is the installation height of the back mirror, that is, the vertical height between the lower end of the back mirror and the double-sided photovoltaic module.
  • a method for increasing power generation in a double-sided photovoltaic module system based on a dual-axis solar tracker is provided with a front reflector on both sides of the double-sided photovoltaic module, and the front reflector All the solar rays reflected by the mirror surface are irradiated in the front area of the double-sided photovoltaic module, and the rear side mirrors are respectively arranged on the two sides below the double-sided photovoltaic module, and the rear mirror illuminates all the solar rays reflected by the mirror surface on both In the area of the backside of a photovoltaic module, assuming that the light flux received by the front side of the double-sided photovoltaic module is ⁇ without adding a mirror, and the light flux received by the backside is 0.1 ⁇ .
  • the light flux received by the front of the double-sided photovoltaic module is Among them, B is the width of the double-sided photovoltaic module, and b 1 is the projection width of the front reflector on the horizontal plane; the light flux received by the back of the double-sided photovoltaic module is, Among them, B is the width of the double-sided photovoltaic module, and b 2 is the projection width of the back reflector on the horizontal plane.
  • the front and back sides of a double-sided photovoltaic module are used to increase the luminous flux of light received by the module.
  • the specific method is as follows:
  • the projection width b 1 of the front mirror on the horizontal plane and the projection width b 2 of the back mirror on the horizontal plane are determined according to the set pseudo increase and the width B of the double-sided photovoltaic module, and the front mirror and
  • the installation position, installation angle and reflector width of the rear reflector are as follows:
  • E 90 ° - ⁇ F
  • ⁇ B the vertical incident light and front reflection from the outer edge of the front mirror
  • ⁇ C is the angle between the reflected light on the outside edge of the front mirror and the front mirror
  • ⁇ D is the angle between the acute angle of the front mirror and the vertical plane
  • ⁇ F is the acute angle between the upper end of the front mirror and the horizontal plane
  • is the installation angle of the front mirror, that is, the acute angle between the lower end of the front mirror and the horizontal plane
  • ⁇ E is the acute angle between the lower end of the front mirror and the vertical plane
  • ⁇ A ⁇ ;
  • ⁇ A is the angle between O 1 O 3 and the horizontal plane
  • is the angle between the double-sided photovoltaic module and the outer edge of the front reflector
  • h 12 is the vertical distance between O 3 and the upper end of the front reflector.
  • B 1 is the projection width of the front reflector on the horizontal plane;
  • B is the width of the double-sided photovoltaic module;
  • H 1 tg ⁇ ⁇ (b 1 + B), where H 1 is the installation height of the front reflector;
  • ⁇ a, where ⁇ is the angle between the double-sided photovoltaic module and the inner edge of the back reflector; ⁇ a is the angle between the double-sided photovoltaic module and the outer edge of the back reflector;
  • h 21 is the vertical height between the upper end of the back mirror and the double-sided photovoltaic module
  • h 22 is the vertical height between the upper end of the back mirror and the lower end of the back mirror
  • b 1 is the front mirror on the horizontal plane
  • the projected width of b; b 2 is the projected width of the back mirror on the horizontal plane;
  • B is the width of the double-sided photovoltaic module.
  • Equation 1 can be reduced to:
  • the width of the back reflector B 2 b 2 / cos ⁇ .
  • the mounting height of the rear reflector H 2 h 21 + h 22 .
  • the installation position of the front and back mirrors with respect to the double-sided photovoltaic module can make full use of the front and back of the double-sided photovoltaic module, increase the light flux of the double-sided photovoltaic module to receive light, and increase the power generation of the double-sided photovoltaic module.

Abstract

本发明公开了一种基于双轴太阳跟踪器的双面光伏组件系统,包括双面光伏组件,在所述双面光伏组件两侧上方设置有正面反射镜,所述正面反射镜的内侧边缘与双面光伏组件的外侧边缘重合,所述正面反射镜用于将太阳光反射至双面光伏组件的正面,在所述双面光伏组件下方两侧分别设置有背面反射镜,所述背面反射镜用于将太阳光反射至双面光伏组件的背面,所述正面反射镜的外侧边缘与背面反射镜的内侧边缘在同一竖直面上。本发明通过在双面光伏组件正、背面增加反射镜,同时对反射镜的尺寸及位置进行确定,使照射在反射镜上的太阳光线能够全部被反射至双面光伏组件上,大大增加了双面光伏组件接收的光通量,进而实现了充分利用双面光伏组件以增加双面光伏组件发电量的目的。

Description

一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法 技术领域
本发明属于太阳能利用技术领域,特别涉及一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法。
背景技术
针对市场上出现的双面双玻光伏组件,该类光伏组件除正面与传统单面光伏组件一样常发电外,其背面同时能接收反射和散射光并发电,目前依然按照传统单面光伏组件使用方法,即正面接收直射光,背面接收反射和散射光,这种传统方法导致双面光伏组件的背面利用率极低,根据安装环境的不同,增加发电量仅10%左右,可见现有双面光伏组件的使用并未充分利用其正、背面区域的发电能力,造成双面光伏组件的发电量未得到有效的提高。
发明内容
本发明的目的在于:针对上述存在的问题,提供一种能有效提高双面光伏组件的利用率,进而大幅提高其发电量的基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法。
本发明的技术方案是这样实现的:一种基于双轴太阳跟踪器的双面光伏组件系统,包括双面光伏组件,其特征在于:所述双面光伏组件与双轴太阳跟踪器连接,在所述双面光伏组件两侧上方设置有正面反射镜,所述正面反射镜的内侧边缘与双面光伏组件的外侧边缘重合,所述正面反射镜用于将太阳光反射至双面光伏组件的正面,在所述双面光伏组件下方两侧分别设置有背面反射镜,所述背面反射镜用于将太阳光反射至双面光伏组件的背面,所述正面反射镜的外侧边缘与背面反射镜的内侧边缘在同一竖直面上。
本发明所述的基于双轴太阳跟踪器的双面光伏组件系统,其所述正面反射 镜相对于双面光伏组件的具体安装位置为:
Figure PCTCN2018104160-appb-000001
Figure PCTCN2018104160-appb-000002
其中,δ为正面反射镜的安装角度,即正面反射镜与水平面的锐角夹角;α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角;b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;B 1为正面反射镜的宽度;H 1为正面反射镜的安装高度;
所述背面反射镜相对于双面光伏组件的具体安装位置为:
Figure PCTCN2018104160-appb-000003
B 2=b 2/cosγ
h 22=tgγ·b 2
h 21=tgβ·(b 1+b 2)
H 2=h 21+h 22
其中,γ为背面反射镜的安装角度,即背面反射镜与水平面的锐角夹角;β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;B 2为背面反射镜的宽度;b 2为背面反射镜在水平面上的投影宽度;h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;H 2为背面反射镜的安装高度,即背面反射镜下端部与双面光伏组件之间的垂直高度。
一种基于双轴太阳跟踪器的双面光伏组件系统中增加发电量的方法,其特征在于:所述双面光伏组件与双轴太阳跟踪器连接,在所述双面光伏组件两侧上方设置有正面反射镜,所述正面反射镜将其镜面反射的太阳光线全部照射在 双面光伏组件的正面区域内,在所述双面光伏组件下方两侧分别设置有背面反射镜,所述背面反射镜将其镜面反射的太阳光线全部照射在双面光伏组件的背面区域内,假设双面光伏组件正面接收的光通量为φ,背面接收的光通量为0.1φ,则在双面光伏组件增加正、反面反射镜后,双面光伏组件正面接收的光通量为
Figure PCTCN2018104160-appb-000004
其中,B为双面光伏组件的宽度,b 1为正面反射镜在水平面上的投影宽度;双面光伏组件背面接收的光通量为,
Figure PCTCN2018104160-appb-000005
Figure PCTCN2018104160-appb-000006
其中,B为双面光伏组件的宽度,b 2为背面反射镜在水平面上的投影宽度。
本发明所述的基于双轴太阳跟踪器的双面光伏组件系统中增加发电量的方法,其利用双面光伏组件正、背面增加组件接收光线的光通量,其具体方法是:
首先根据设定的拟增加量和双面光伏组件的宽度B,确定正面反射镜在水平面上的投影宽度b 1以及背面反射镜在水平面上的投影宽度b 2,并分别计算出正面反射镜和背面反射镜的安装位置、安装角度及反射镜宽度,具体计算过程如下:
(1)正面反射镜O 1O 2
由∠B=∠C=∠D;∠F=∠δ;∠D=90°-∠δ;∠E=90°-∠F,其中,∠B为正面反射镜外侧边缘垂直入射光线与正面反射镜的锐角夹角;∠C为正面反射镜外侧边缘反射光线与正面反射镜的夹角;∠D为正面反射镜与竖直面的锐角夹角;∠F为正面反射镜上端与水平面的锐角夹角;∠δ为正面反射镜的安装角度,即正面反射镜下端与水平面的锐角夹角;∠E为正面反射镜下端与竖直面的锐角夹角;
得到∠E=∠C,且O 1O 3=O 2O 3=h 12
又∠A=∠α;
Figure PCTCN2018104160-appb-000007
其中,∠A为O 1O 3与水平面的夹角,∠α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角,h 12为O 3与正面反射镜上端部之间的垂直距离,b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;
得到
Figure PCTCN2018104160-appb-000008
Figure PCTCN2018104160-appb-000009
Figure PCTCN2018104160-appb-000010
Figure PCTCN2018104160-appb-000011
H 1=tgα·(b 1+B),其中,H 1为正面反射镜的安装高度;
得到
Figure PCTCN2018104160-appb-000012
即正面反射镜的安装角度;
Figure PCTCN2018104160-appb-000013
得到
Figure PCTCN2018104160-appb-000014
即正面反射镜的宽度;
(2)反面反射镜O 4O 5
由∠β=∠a,其中,∠β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;∠a为双面光伏组件与背面反射镜外侧边缘反射光线的夹角;
得到
Figure PCTCN2018104160-appb-000015
其中,h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;b 1为正面反射镜在水平面上的投影宽度;b 2为背面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;
又∠c=∠g=∠f,∠γ=90°-∠g=∠e=∠d,其中,∠c为垂直入射光线与背 面反射镜的锐角夹角;∠g为背面反射镜与竖直面的锐角夹角;∠f为背面反射镜外侧边缘反射光线与背面反射镜的夹角;∠γ为背面反射镜的安装角度,即背面反射镜与水平面的锐角夹角;∠e为为背面反射镜的垂直面与背面反射镜外侧边缘反射光线的夹角;∠d为背面反射镜的垂直面与竖直面的夹角;
得到
Figure PCTCN2018104160-appb-000016
即背面反射镜的安装角度;
Figure PCTCN2018104160-appb-000017
得到
Figure PCTCN2018104160-appb-000018
化简得:
Figure PCTCN2018104160-appb-000019
又设
Figure PCTCN2018104160-appb-000020
且0<sinβ<1;
方程①可化为:
Figure PCTCN2018104160-appb-000021
Figure PCTCN2018104160-appb-000022
(其中
Figure PCTCN2018104160-appb-000023
);
Figure PCTCN2018104160-appb-000024
(其中
Figure PCTCN2018104160-appb-000025
);
故:背面反射镜的安装角度
Figure PCTCN2018104160-appb-000026
背面反射镜的宽度B 2=b 2/cosγ;
其中,h 22=tgγ·b 2,h 21=tgβ·(b 1+b 2);
背面反射镜的的安装高度H 2=h 21+h 22
即采用上述正、背面反射镜相对于双面光伏组件的安装位置,能充分利用双面光伏组件的正、背面,增加双面光伏组件接收光线的光通量并增加双面光伏组件的发电量。
本发明通过在双面光伏组件正、背面增加反射镜,同时对反射镜的尺寸及 其相对于双面光伏组件的安装位置进行确定,从而使照射在反射镜上的太阳光线能够全部被反射至双面光伏组件的正、背面区域内,大大增加了双面光伏组件正、背面接收的光通量,进而实现了充分利用双面光伏组件的正、背面以增加双面光伏组件发电量的目的。
附图说明
图1是本发明的结构示意图。
图2是本发明中用于确定反射镜安装位置的示意图。
图中标记:1为双面光伏组件,2为正面反射镜,3为背面反射镜。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1和2所示,一种基于双轴太阳跟踪器的双面光伏组件系统,包括双面光伏组件1,本系统采用双轴太阳跟踪器,即所述双面光伏组件1与双轴太阳跟踪器连接,在所述双面光伏组件1两侧上方设置有正面反射镜2,所述正面反射镜2的内侧边缘与双面光伏组件1的外侧边缘重合,所述正面反射镜2用于将太阳光反射至双面光伏组件1的正面,在所述双面光伏组件1下方两侧分别设置有背面反射镜3,所述背面反射镜3用于将太阳光反射至双面光伏组件1的背面,所述正面反射镜2的外侧边缘与背面反射镜3的内侧边缘在同一竖直面上。
在本实施例中,所述正面反射镜2相对于双面光伏组件1的具体安装位置为:
Figure PCTCN2018104160-appb-000027
Figure PCTCN2018104160-appb-000028
其中,δ为正面反射镜的安装角度,即正面反射镜与水平面的锐角夹角;α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角;b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;B 1为正面反射镜的宽度;H 1为正面反射镜的安装高度。
所述背面反射镜3相对于双面光伏组件1的具体安装位置为:
Figure PCTCN2018104160-appb-000029
B 2=b 2/cosγ
h 22=tgγ·b 2
h 21=tgβ·(b 1+b 2)
H 2=h 21+h 22
其中,γ为背面反射镜的安装角度,即背面反射镜与水平面的锐角夹角;β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;B 2为背面反射镜的宽度;b 2为背面反射镜在水平面上的投影宽度;h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;H 2为背面反射镜的安装高度,即背面反射镜下端部与双面光伏组件之间的垂直高度。
如图2所示,一种基于双轴太阳跟踪器的双面光伏组件系统中增加发电量的方法,在所述双面光伏组件两侧上方设置有正面反射镜,所述正面反射镜将其镜面反射的太阳光线全部照射在双面光伏组件的正面区域内,在所述双面光伏组件下方两侧分别设置有背面反射镜,所述背面反射镜将其镜面反射的太阳 光线全部照射在双面光伏组件的背面区域内,假设不增加反射镜时双面光伏组件正面接收的光通量为φ,背面接收的光通量为0.1φ,则在双面光伏组件增加正、反面反射镜后,理想状态下双面光伏组件正面接收的光通量为
Figure PCTCN2018104160-appb-000030
Figure PCTCN2018104160-appb-000031
其中,B为双面光伏组件的宽度,b 1为正面反射镜在水平面上的投影宽度;双面光伏组件背面接收的光通量为,
Figure PCTCN2018104160-appb-000032
其中,B为双面光伏组件的宽度,b 2为背面反射镜在水平面上的投影宽度。
在本实施例中,利用双面光伏组件正、背面增加组件接收光线的光通量,其具体方法是:
首先根据设定的拟增加量和双面光伏组件的宽度B,确定正面反射镜在水平面上的投影宽度b 1以及背面反射镜在水平面上的投影宽度b 2,并分别计算出正面反射镜和背面反射镜的安装位置、安装角度及反射镜宽度,具体计算过程如下:
(1)正面反射镜O 1O 2
由∠B=∠C=∠D;∠F=∠δ;∠D=90°-∠δ;∠E=90°-∠F,其中,∠B为正面反射镜外侧边缘垂直入射光线与正面反射镜的锐角夹角;∠C为正面反射镜外侧边缘反射光线与正面反射镜的夹角;∠D为正面反射镜与竖直面的锐角夹角;∠F为正面反射镜上端与水平面的锐角夹角;∠δ为正面反射镜的安装角度,即正面反射镜下端与水平面的锐角夹角;∠E为正面反射镜下端与竖直面的锐角夹角;
得到∠E=∠C,且O 1O 3=O 2O 3=h 12
又∠A=∠α;
Figure PCTCN2018104160-appb-000033
其中,∠A为O 1O 3与水平面的夹角,∠α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角,h 12为O 3与正面反射 镜上端部之间的垂直距离,b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;
得到
Figure PCTCN2018104160-appb-000034
Figure PCTCN2018104160-appb-000035
Figure PCTCN2018104160-appb-000036
Figure PCTCN2018104160-appb-000037
H 1=tgα·(b 1+B),其中,H 1为正面反射镜的安装高度;
得到
Figure PCTCN2018104160-appb-000038
即正面反射镜的安装角度。
Figure PCTCN2018104160-appb-000039
得到
Figure PCTCN2018104160-appb-000040
即正面反射镜的宽度。
(2)反面反射镜O 4O 5
由∠β=∠a,其中,∠β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;∠a为双面光伏组件与背面反射镜外侧边缘反射光线的夹角;
得到
Figure PCTCN2018104160-appb-000041
其中,h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;b 1为正面反射镜在水平面上的投影宽度;b 2为背面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度。
又∠c=∠g=∠f,∠γ=90°-∠g=∠e=∠d,其中,∠c为垂直入射光线与背面反射镜的锐角夹角;∠g为背面反射镜与竖直面的锐角夹角;∠f为背面反射镜外侧边缘反射光线与背面反射镜的夹角;∠γ为背面反射镜的安装角度,即 背面反射镜与水平面的锐角夹角;∠e为为背面反射镜的垂直面与背面反射镜外侧边缘反射光线的夹角;∠d为背面反射镜的垂直面与竖直面的夹角;
得到
Figure PCTCN2018104160-appb-000042
即背面反射镜的安装角度。
Figure PCTCN2018104160-appb-000043
得到
Figure PCTCN2018104160-appb-000044
化简得:
Figure PCTCN2018104160-appb-000045
又设
Figure PCTCN2018104160-appb-000046
且0<sinβ<1;
方程①可化为:
Figure PCTCN2018104160-appb-000047
Figure PCTCN2018104160-appb-000048
(其中
Figure PCTCN2018104160-appb-000049
);
Figure PCTCN2018104160-appb-000050
(其中
Figure PCTCN2018104160-appb-000051
)。
故:背面反射镜的安装角度
Figure PCTCN2018104160-appb-000052
背面反射镜的宽度B 2=b 2/cosγ。
其中,h 22=tgγ·b 2,h 21=tgβ·(b 1+b 2)。
背面反射镜的的安装高度H 2=h 21+h 22
即采用上述正、背面反射镜相对于双面光伏组件的安装位置,能充分利用双面光伏组件的正、背面,增加双面光伏组件接收光线的光通量并增加双面光伏组件的发电量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种基于双轴太阳跟踪器的双面光伏组件系统,包括双面光伏组件(1),其特征在于:所述双面光伏组件(1)与双轴太阳跟踪器连接,在所述双面光伏组件(1)两侧上方设置有正面反射镜(2),所述正面反射镜(2)的内侧边缘与双面光伏组件(1)的外侧边缘重合,所述正面反射镜(2)用于将太阳光反射至双面光伏组件(1)的正面,在所述双面光伏组件(1)下方两侧分别设置有背面反射镜(3),所述背面反射镜(3)用于将太阳光反射至双面光伏组件(1)的背面,所述正面反射镜(2)的外侧边缘与背面反射镜(3)的内侧边缘在同一竖直面上。
  2. 根据权利要求1所述的基于双轴太阳跟踪器的双面光伏组件系统,其特征在于:所述正面反射镜(2)相对于双面光伏组件(1)的具体安装位置为:
    Figure PCTCN2018104160-appb-100001
    Figure PCTCN2018104160-appb-100002
    其中,δ为正面反射镜的安装角度,即正面反射镜与水平面的锐角夹角;α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角;b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;B 1为正面反射镜的宽度;H 1为正面反射镜的安装高度;
    所述背面反射镜(3)相对于双面光伏组件(1)的具体安装位置为:
    Figure PCTCN2018104160-appb-100003
    B 2=b 2/cosγ
    h 22=tgγ·b 2
    h 21=tgβ·(b 1+b 2)
    H 2=h 21+h 22
    其中,γ为背面反射镜的安装角度,即背面反射镜与水平面的锐角夹角;β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;B 2为背面反射镜的宽度;b 2为背面反射镜在水平面上的投影宽度;h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;H 2为背面反射镜的安装高度,即背面反射镜下端部与双面光伏组件之间的垂直高度。
  3. 一种基于双轴太阳跟踪器的双面光伏组件系统中增加发电量的方法,其特征在于:所述双面光伏组件与双轴太阳跟踪器连接,在所述双面光伏组件两侧上方设置有正面反射镜,所述正面反射镜将其镜面反射的太阳光线全部照射在双面光伏组件的正面区域内,在所述双面光伏组件下方两侧分别设置有背面反射镜,所述背面反射镜将其镜面反射的太阳光线全部照射在双面光伏组件的背面区域内,假设双面光伏组件正面接收的光通量为φ,背面接收的光通量为0.1φ,则在双面光伏组件增加正、反面反射镜后,双面光伏组件正面接收的光通量为
    Figure PCTCN2018104160-appb-100004
    其中,B为双面光伏组件的宽度,b 1为正面反射镜在水平面上的投影宽度;双面光伏组件背面接收的光通量为,
    Figure PCTCN2018104160-appb-100005
    其中,B为双面光伏组件的宽度,b 2为背面反射镜在水平面上的投影宽度。
  4. 根据权利要求3所述的基于双轴太阳跟踪器的双面光伏组件系统中增加发电量的方法,其特征在于:利用双面光伏组件正、背面增加组件接收光线的光通量,其具体方法是:
    首先根据设定的拟增加量和双面光伏组件的宽度B,确定正面反射镜在水平面上的投影宽度b 1以及背面反射镜在水平面上的投影宽度b 2,并分别计算出正 面反射镜和背面反射镜的安装位置、安装角度及反射镜宽度,具体计算过程如下:
    (1)正面反射镜O 1O 2
    由∠B=∠C=∠D;∠F=∠δ;∠D=90°-∠δ;∠E=90°-∠F,其中,∠B为正面反射镜外侧边缘垂直入射光线与正面反射镜的锐角夹角;∠C为正面反射镜外侧边缘反射光线与正面反射镜的夹角;∠D为正面反射镜与竖直面的锐角夹角;∠F为正面反射镜上端与水平面的锐角夹角;∠δ为正面反射镜的安装角度,即正面反射镜下端与水平面的锐角夹角;∠E为正面反射镜下端与竖直面的锐角夹角;
    得到∠E=∠C,且O 1O 3=O 2O 3=h 12
    又∠A=∠α;
    Figure PCTCN2018104160-appb-100006
    其中,∠A为O 1O 3与水平面的夹角,∠α为双面光伏组件与正面反射镜外侧边缘反射光线的夹角,h 12为O 3与正面反射镜上端部之间的垂直距离,b 1为正面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;
    得到
    Figure PCTCN2018104160-appb-100007
    Figure PCTCN2018104160-appb-100008
    Figure PCTCN2018104160-appb-100009
    Figure PCTCN2018104160-appb-100010
    H 1=tgα·(b 1+B),其中,H 1为正面反射镜的安装高度;
    得到
    Figure PCTCN2018104160-appb-100011
    即正面反射镜的安装角度;
    Figure PCTCN2018104160-appb-100012
    得到
    Figure PCTCN2018104160-appb-100013
    即正面反射镜的宽度;
    (2)反面反射镜O 4O 5
    由∠β=∠a,其中,∠β为双面光伏组件与背面反射镜内侧边缘反射光线的夹角;∠a为双面光伏组件与背面反射镜外侧边缘反射光线的夹角;
    得到
    Figure PCTCN2018104160-appb-100014
    其中,h 21为背面反射镜上端部与双面光伏组件之间的垂直高度;h 22为背面反射镜上端部与背面反射镜下端部之间的垂直高度;b 1为正面反射镜在水平面上的投影宽度;b 2为背面反射镜在水平面上的投影宽度;B为双面光伏组件的宽度;
    又∠c=∠g=∠f,∠γ=90°-∠g=∠e=∠d,其中,∠c为垂直入射光线与背面反射镜的锐角夹角;∠g为背面反射镜与竖直面的锐角夹角;∠f为背面反射镜外侧边缘反射光线与背面反射镜的夹角;∠γ为背面反射镜的安装角度,即背面反射镜与水平面的锐角夹角;∠e为为背面反射镜的垂直面与背面反射镜外侧边缘反射光线的夹角;∠d为背面反射镜的垂直面与竖直面的夹角;
    得到
    Figure PCTCN2018104160-appb-100015
    即背面反射镜的安装角度;
    Figure PCTCN2018104160-appb-100016
    得到
    Figure PCTCN2018104160-appb-100017
    化简得:
    Figure PCTCN2018104160-appb-100018
    又设
    Figure PCTCN2018104160-appb-100019
    且0<sinβ<1;
    方程①可化为:
    Figure PCTCN2018104160-appb-100020
    Figure PCTCN2018104160-appb-100021
    (其中
    Figure PCTCN2018104160-appb-100022
    );
    Figure PCTCN2018104160-appb-100023
    (其中
    Figure PCTCN2018104160-appb-100024
    );
    故:背面反射镜的安装角度
    Figure PCTCN2018104160-appb-100025
    背面反射镜的宽度B 2=b 2/cosγ;
    其中,h 22=tgγ·b 2,h 21=tgβ·(b 1+b 2);
    背面反射镜的的安装高度H 2=h 21+h 22
    即采用上述正、背面反射镜相对于双面光伏组件的安装位置,能充分利用双面光伏组件的正、背面,增加双面光伏组件接收光线的光通量并增加双面光伏组件的发电量。
PCT/CN2018/104160 2018-08-17 2018-09-05 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法 WO2020034272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810939040.0A CN109039268B (zh) 2018-08-17 2018-08-17 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法
CN201810939040.0 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034272A1 true WO2020034272A1 (zh) 2020-02-20

Family

ID=64630807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104160 WO2020034272A1 (zh) 2018-08-17 2018-09-05 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法

Country Status (2)

Country Link
CN (1) CN109039268B (zh)
WO (1) WO2020034272A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201063555Y (zh) * 2007-07-04 2008-05-21 张耀明 双面采光的聚光光伏发电装置
CN101567646A (zh) * 2009-05-21 2009-10-28 丁建东 组合式聚光太阳能电池方阵发电装置
JP2017143646A (ja) * 2016-02-10 2017-08-17 賢一 野下 太陽追尾装置
CN206442344U (zh) * 2017-01-04 2017-08-25 河北荣森新能源科技有限公司 改变太阳光传播方向提升太阳能电池板发电量的发电系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938235B2 (ja) * 2011-11-28 2016-06-22 元旦ビューティ工業株式会社 両面受光型太陽電池モジュールの設置構造
CN104393832B (zh) * 2014-11-28 2017-02-01 吴加林 一种增长型双平面镜反射光伏智能聚光系统
CN206585514U (zh) * 2017-03-07 2017-10-24 杭州品联科技有限公司 一种双面发电的平单轴跟踪光伏支架
CN208597058U (zh) * 2018-08-17 2019-03-12 四川钟顺太阳能开发有限公司 一种基于双轴太阳跟踪器的双面光伏组件聚光系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201063555Y (zh) * 2007-07-04 2008-05-21 张耀明 双面采光的聚光光伏发电装置
CN101567646A (zh) * 2009-05-21 2009-10-28 丁建东 组合式聚光太阳能电池方阵发电装置
JP2017143646A (ja) * 2016-02-10 2017-08-17 賢一 野下 太陽追尾装置
CN206442344U (zh) * 2017-01-04 2017-08-25 河北荣森新能源科技有限公司 改变太阳光传播方向提升太阳能电池板发电量的发电系统

Also Published As

Publication number Publication date
CN109039268B (zh) 2023-11-14
CN109039268A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020034273A1 (zh) 一种基于双轴太阳跟踪器的双面光伏组件系统以及双面光伏组件背面利用方法
WO2018170936A1 (zh) 一种双面发电的平单轴跟踪光伏支架
JP2013171894A (ja) 太陽光発電システム
KR20120049503A (ko) 접이식 반사판을 구비하는 태양광 발전장치
WO2020034272A1 (zh) 一种基于双轴太阳跟踪器的双面光伏组件系统以及增加该系统发电量的方法
CN105634397A (zh) 用于光伏系统的免跟踪聚光装置
US11349041B2 (en) Double-sided light-concentrating solar apparatus and system
CN208597058U (zh) 一种基于双轴太阳跟踪器的双面光伏组件聚光系统
KR20180063629A (ko) 태양광 발전장치
CN208597059U (zh) 一种基于双轴太阳跟踪器的双面光伏组件结构
CN105577093B (zh) 新洁净光伏板
WO2020034274A1 (zh) 基于双轴太阳跟踪器的双面光伏组件的曲面反射聚光系统
WO2018086079A1 (zh) 双面光伏发电装置
WO2018086073A1 (zh) 双面光伏发电装置
WO2018086078A1 (zh) 双面光伏发电装置
TW201026998A (en) Static concentrator
CN214900779U (zh) 一种光伏设备
CN202652108U (zh) 一种太阳能线聚光光伏发电装置
WO2021212422A1 (zh) 立式太阳能装置
CN210107112U (zh) 一种拱形垂直式组合光源
CN214480459U (zh) 一种光伏发电装置
CN102176484A (zh) 一种组合式线聚焦聚光光伏组件
CN207019321U (zh) 一种太阳光线反射器
CN202721166U (zh) 一种具有光能损失自动补偿功能的聚光太阳能电池板装置
TWM523967U (zh) 室內光線回收模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930360

Country of ref document: EP

Kind code of ref document: A1